xref: /openbmc/qemu/migration/rdma.c (revision ed3a06b1)
1 /*
2  * RDMA protocol and interfaces
3  *
4  * Copyright IBM, Corp. 2010-2013
5  * Copyright Red Hat, Inc. 2015-2016
6  *
7  * Authors:
8  *  Michael R. Hines <mrhines@us.ibm.com>
9  *  Jiuxing Liu <jl@us.ibm.com>
10  *  Daniel P. Berrange <berrange@redhat.com>
11  *
12  * This work is licensed under the terms of the GNU GPL, version 2 or
13  * later.  See the COPYING file in the top-level directory.
14  *
15  */
16 
17 #include "qemu/osdep.h"
18 #include "qapi/error.h"
19 #include "qemu/cutils.h"
20 #include "rdma.h"
21 #include "migration.h"
22 #include "qemu-file.h"
23 #include "ram.h"
24 #include "qemu/error-report.h"
25 #include "qemu/main-loop.h"
26 #include "qemu/module.h"
27 #include "qemu/rcu.h"
28 #include "qemu/sockets.h"
29 #include "qemu/bitmap.h"
30 #include "qemu/coroutine.h"
31 #include "exec/memory.h"
32 #include <sys/socket.h>
33 #include <netdb.h>
34 #include <arpa/inet.h>
35 #include <rdma/rdma_cma.h>
36 #include "trace.h"
37 #include "qom/object.h"
38 #include <poll.h>
39 
40 /*
41  * Print and error on both the Monitor and the Log file.
42  */
43 #define ERROR(errp, fmt, ...) \
44     do { \
45         fprintf(stderr, "RDMA ERROR: " fmt "\n", ## __VA_ARGS__); \
46         if (errp && (*(errp) == NULL)) { \
47             error_setg(errp, "RDMA ERROR: " fmt, ## __VA_ARGS__); \
48         } \
49     } while (0)
50 
51 #define RDMA_RESOLVE_TIMEOUT_MS 10000
52 
53 /* Do not merge data if larger than this. */
54 #define RDMA_MERGE_MAX (2 * 1024 * 1024)
55 #define RDMA_SIGNALED_SEND_MAX (RDMA_MERGE_MAX / 4096)
56 
57 #define RDMA_REG_CHUNK_SHIFT 20 /* 1 MB */
58 
59 /*
60  * This is only for non-live state being migrated.
61  * Instead of RDMA_WRITE messages, we use RDMA_SEND
62  * messages for that state, which requires a different
63  * delivery design than main memory.
64  */
65 #define RDMA_SEND_INCREMENT 32768
66 
67 /*
68  * Maximum size infiniband SEND message
69  */
70 #define RDMA_CONTROL_MAX_BUFFER (512 * 1024)
71 #define RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE 4096
72 
73 #define RDMA_CONTROL_VERSION_CURRENT 1
74 /*
75  * Capabilities for negotiation.
76  */
77 #define RDMA_CAPABILITY_PIN_ALL 0x01
78 
79 /*
80  * Add the other flags above to this list of known capabilities
81  * as they are introduced.
82  */
83 static uint32_t known_capabilities = RDMA_CAPABILITY_PIN_ALL;
84 
85 #define CHECK_ERROR_STATE() \
86     do { \
87         if (rdma->error_state) { \
88             if (!rdma->error_reported) { \
89                 error_report("RDMA is in an error state waiting migration" \
90                                 " to abort!"); \
91                 rdma->error_reported = 1; \
92             } \
93             return rdma->error_state; \
94         } \
95     } while (0)
96 
97 /*
98  * A work request ID is 64-bits and we split up these bits
99  * into 3 parts:
100  *
101  * bits 0-15 : type of control message, 2^16
102  * bits 16-29: ram block index, 2^14
103  * bits 30-63: ram block chunk number, 2^34
104  *
105  * The last two bit ranges are only used for RDMA writes,
106  * in order to track their completion and potentially
107  * also track unregistration status of the message.
108  */
109 #define RDMA_WRID_TYPE_SHIFT  0UL
110 #define RDMA_WRID_BLOCK_SHIFT 16UL
111 #define RDMA_WRID_CHUNK_SHIFT 30UL
112 
113 #define RDMA_WRID_TYPE_MASK \
114     ((1UL << RDMA_WRID_BLOCK_SHIFT) - 1UL)
115 
116 #define RDMA_WRID_BLOCK_MASK \
117     (~RDMA_WRID_TYPE_MASK & ((1UL << RDMA_WRID_CHUNK_SHIFT) - 1UL))
118 
119 #define RDMA_WRID_CHUNK_MASK (~RDMA_WRID_BLOCK_MASK & ~RDMA_WRID_TYPE_MASK)
120 
121 /*
122  * RDMA migration protocol:
123  * 1. RDMA Writes (data messages, i.e. RAM)
124  * 2. IB Send/Recv (control channel messages)
125  */
126 enum {
127     RDMA_WRID_NONE = 0,
128     RDMA_WRID_RDMA_WRITE = 1,
129     RDMA_WRID_SEND_CONTROL = 2000,
130     RDMA_WRID_RECV_CONTROL = 4000,
131 };
132 
133 static const char *wrid_desc[] = {
134     [RDMA_WRID_NONE] = "NONE",
135     [RDMA_WRID_RDMA_WRITE] = "WRITE RDMA",
136     [RDMA_WRID_SEND_CONTROL] = "CONTROL SEND",
137     [RDMA_WRID_RECV_CONTROL] = "CONTROL RECV",
138 };
139 
140 /*
141  * Work request IDs for IB SEND messages only (not RDMA writes).
142  * This is used by the migration protocol to transmit
143  * control messages (such as device state and registration commands)
144  *
145  * We could use more WRs, but we have enough for now.
146  */
147 enum {
148     RDMA_WRID_READY = 0,
149     RDMA_WRID_DATA,
150     RDMA_WRID_CONTROL,
151     RDMA_WRID_MAX,
152 };
153 
154 /*
155  * SEND/RECV IB Control Messages.
156  */
157 enum {
158     RDMA_CONTROL_NONE = 0,
159     RDMA_CONTROL_ERROR,
160     RDMA_CONTROL_READY,               /* ready to receive */
161     RDMA_CONTROL_QEMU_FILE,           /* QEMUFile-transmitted bytes */
162     RDMA_CONTROL_RAM_BLOCKS_REQUEST,  /* RAMBlock synchronization */
163     RDMA_CONTROL_RAM_BLOCKS_RESULT,   /* RAMBlock synchronization */
164     RDMA_CONTROL_COMPRESS,            /* page contains repeat values */
165     RDMA_CONTROL_REGISTER_REQUEST,    /* dynamic page registration */
166     RDMA_CONTROL_REGISTER_RESULT,     /* key to use after registration */
167     RDMA_CONTROL_REGISTER_FINISHED,   /* current iteration finished */
168     RDMA_CONTROL_UNREGISTER_REQUEST,  /* dynamic UN-registration */
169     RDMA_CONTROL_UNREGISTER_FINISHED, /* unpinning finished */
170 };
171 
172 
173 /*
174  * Memory and MR structures used to represent an IB Send/Recv work request.
175  * This is *not* used for RDMA writes, only IB Send/Recv.
176  */
177 typedef struct {
178     uint8_t  control[RDMA_CONTROL_MAX_BUFFER]; /* actual buffer to register */
179     struct   ibv_mr *control_mr;               /* registration metadata */
180     size_t   control_len;                      /* length of the message */
181     uint8_t *control_curr;                     /* start of unconsumed bytes */
182 } RDMAWorkRequestData;
183 
184 /*
185  * Negotiate RDMA capabilities during connection-setup time.
186  */
187 typedef struct {
188     uint32_t version;
189     uint32_t flags;
190 } RDMACapabilities;
191 
192 static void caps_to_network(RDMACapabilities *cap)
193 {
194     cap->version = htonl(cap->version);
195     cap->flags = htonl(cap->flags);
196 }
197 
198 static void network_to_caps(RDMACapabilities *cap)
199 {
200     cap->version = ntohl(cap->version);
201     cap->flags = ntohl(cap->flags);
202 }
203 
204 /*
205  * Representation of a RAMBlock from an RDMA perspective.
206  * This is not transmitted, only local.
207  * This and subsequent structures cannot be linked lists
208  * because we're using a single IB message to transmit
209  * the information. It's small anyway, so a list is overkill.
210  */
211 typedef struct RDMALocalBlock {
212     char          *block_name;
213     uint8_t       *local_host_addr; /* local virtual address */
214     uint64_t       remote_host_addr; /* remote virtual address */
215     uint64_t       offset;
216     uint64_t       length;
217     struct         ibv_mr **pmr;    /* MRs for chunk-level registration */
218     struct         ibv_mr *mr;      /* MR for non-chunk-level registration */
219     uint32_t      *remote_keys;     /* rkeys for chunk-level registration */
220     uint32_t       remote_rkey;     /* rkeys for non-chunk-level registration */
221     int            index;           /* which block are we */
222     unsigned int   src_index;       /* (Only used on dest) */
223     bool           is_ram_block;
224     int            nb_chunks;
225     unsigned long *transit_bitmap;
226     unsigned long *unregister_bitmap;
227 } RDMALocalBlock;
228 
229 /*
230  * Also represents a RAMblock, but only on the dest.
231  * This gets transmitted by the dest during connection-time
232  * to the source VM and then is used to populate the
233  * corresponding RDMALocalBlock with
234  * the information needed to perform the actual RDMA.
235  */
236 typedef struct QEMU_PACKED RDMADestBlock {
237     uint64_t remote_host_addr;
238     uint64_t offset;
239     uint64_t length;
240     uint32_t remote_rkey;
241     uint32_t padding;
242 } RDMADestBlock;
243 
244 static const char *control_desc(unsigned int rdma_control)
245 {
246     static const char *strs[] = {
247         [RDMA_CONTROL_NONE] = "NONE",
248         [RDMA_CONTROL_ERROR] = "ERROR",
249         [RDMA_CONTROL_READY] = "READY",
250         [RDMA_CONTROL_QEMU_FILE] = "QEMU FILE",
251         [RDMA_CONTROL_RAM_BLOCKS_REQUEST] = "RAM BLOCKS REQUEST",
252         [RDMA_CONTROL_RAM_BLOCKS_RESULT] = "RAM BLOCKS RESULT",
253         [RDMA_CONTROL_COMPRESS] = "COMPRESS",
254         [RDMA_CONTROL_REGISTER_REQUEST] = "REGISTER REQUEST",
255         [RDMA_CONTROL_REGISTER_RESULT] = "REGISTER RESULT",
256         [RDMA_CONTROL_REGISTER_FINISHED] = "REGISTER FINISHED",
257         [RDMA_CONTROL_UNREGISTER_REQUEST] = "UNREGISTER REQUEST",
258         [RDMA_CONTROL_UNREGISTER_FINISHED] = "UNREGISTER FINISHED",
259     };
260 
261     if (rdma_control > RDMA_CONTROL_UNREGISTER_FINISHED) {
262         return "??BAD CONTROL VALUE??";
263     }
264 
265     return strs[rdma_control];
266 }
267 
268 static uint64_t htonll(uint64_t v)
269 {
270     union { uint32_t lv[2]; uint64_t llv; } u;
271     u.lv[0] = htonl(v >> 32);
272     u.lv[1] = htonl(v & 0xFFFFFFFFULL);
273     return u.llv;
274 }
275 
276 static uint64_t ntohll(uint64_t v)
277 {
278     union { uint32_t lv[2]; uint64_t llv; } u;
279     u.llv = v;
280     return ((uint64_t)ntohl(u.lv[0]) << 32) | (uint64_t) ntohl(u.lv[1]);
281 }
282 
283 static void dest_block_to_network(RDMADestBlock *db)
284 {
285     db->remote_host_addr = htonll(db->remote_host_addr);
286     db->offset = htonll(db->offset);
287     db->length = htonll(db->length);
288     db->remote_rkey = htonl(db->remote_rkey);
289 }
290 
291 static void network_to_dest_block(RDMADestBlock *db)
292 {
293     db->remote_host_addr = ntohll(db->remote_host_addr);
294     db->offset = ntohll(db->offset);
295     db->length = ntohll(db->length);
296     db->remote_rkey = ntohl(db->remote_rkey);
297 }
298 
299 /*
300  * Virtual address of the above structures used for transmitting
301  * the RAMBlock descriptions at connection-time.
302  * This structure is *not* transmitted.
303  */
304 typedef struct RDMALocalBlocks {
305     int nb_blocks;
306     bool     init;             /* main memory init complete */
307     RDMALocalBlock *block;
308 } RDMALocalBlocks;
309 
310 /*
311  * Main data structure for RDMA state.
312  * While there is only one copy of this structure being allocated right now,
313  * this is the place where one would start if you wanted to consider
314  * having more than one RDMA connection open at the same time.
315  */
316 typedef struct RDMAContext {
317     char *host;
318     int port;
319     char *host_port;
320 
321     RDMAWorkRequestData wr_data[RDMA_WRID_MAX];
322 
323     /*
324      * This is used by *_exchange_send() to figure out whether or not
325      * the initial "READY" message has already been received or not.
326      * This is because other functions may potentially poll() and detect
327      * the READY message before send() does, in which case we need to
328      * know if it completed.
329      */
330     int control_ready_expected;
331 
332     /* number of outstanding writes */
333     int nb_sent;
334 
335     /* store info about current buffer so that we can
336        merge it with future sends */
337     uint64_t current_addr;
338     uint64_t current_length;
339     /* index of ram block the current buffer belongs to */
340     int current_index;
341     /* index of the chunk in the current ram block */
342     int current_chunk;
343 
344     bool pin_all;
345 
346     /*
347      * infiniband-specific variables for opening the device
348      * and maintaining connection state and so forth.
349      *
350      * cm_id also has ibv_context, rdma_event_channel, and ibv_qp in
351      * cm_id->verbs, cm_id->channel, and cm_id->qp.
352      */
353     struct rdma_cm_id *cm_id;               /* connection manager ID */
354     struct rdma_cm_id *listen_id;
355     bool connected;
356 
357     struct ibv_context          *verbs;
358     struct rdma_event_channel   *channel;
359     struct ibv_qp *qp;                      /* queue pair */
360     struct ibv_comp_channel *recv_comp_channel;  /* recv completion channel */
361     struct ibv_comp_channel *send_comp_channel;  /* send completion channel */
362     struct ibv_pd *pd;                      /* protection domain */
363     struct ibv_cq *recv_cq;                 /* recvieve completion queue */
364     struct ibv_cq *send_cq;                 /* send completion queue */
365 
366     /*
367      * If a previous write failed (perhaps because of a failed
368      * memory registration, then do not attempt any future work
369      * and remember the error state.
370      */
371     int error_state;
372     int error_reported;
373     int received_error;
374 
375     /*
376      * Description of ram blocks used throughout the code.
377      */
378     RDMALocalBlocks local_ram_blocks;
379     RDMADestBlock  *dest_blocks;
380 
381     /* Index of the next RAMBlock received during block registration */
382     unsigned int    next_src_index;
383 
384     /*
385      * Migration on *destination* started.
386      * Then use coroutine yield function.
387      * Source runs in a thread, so we don't care.
388      */
389     int migration_started_on_destination;
390 
391     int total_registrations;
392     int total_writes;
393 
394     int unregister_current, unregister_next;
395     uint64_t unregistrations[RDMA_SIGNALED_SEND_MAX];
396 
397     GHashTable *blockmap;
398 
399     /* the RDMAContext for return path */
400     struct RDMAContext *return_path;
401     bool is_return_path;
402 } RDMAContext;
403 
404 #define TYPE_QIO_CHANNEL_RDMA "qio-channel-rdma"
405 OBJECT_DECLARE_SIMPLE_TYPE(QIOChannelRDMA, QIO_CHANNEL_RDMA)
406 
407 
408 
409 struct QIOChannelRDMA {
410     QIOChannel parent;
411     RDMAContext *rdmain;
412     RDMAContext *rdmaout;
413     QEMUFile *file;
414     bool blocking; /* XXX we don't actually honour this yet */
415 };
416 
417 /*
418  * Main structure for IB Send/Recv control messages.
419  * This gets prepended at the beginning of every Send/Recv.
420  */
421 typedef struct QEMU_PACKED {
422     uint32_t len;     /* Total length of data portion */
423     uint32_t type;    /* which control command to perform */
424     uint32_t repeat;  /* number of commands in data portion of same type */
425     uint32_t padding;
426 } RDMAControlHeader;
427 
428 static void control_to_network(RDMAControlHeader *control)
429 {
430     control->type = htonl(control->type);
431     control->len = htonl(control->len);
432     control->repeat = htonl(control->repeat);
433 }
434 
435 static void network_to_control(RDMAControlHeader *control)
436 {
437     control->type = ntohl(control->type);
438     control->len = ntohl(control->len);
439     control->repeat = ntohl(control->repeat);
440 }
441 
442 /*
443  * Register a single Chunk.
444  * Information sent by the source VM to inform the dest
445  * to register an single chunk of memory before we can perform
446  * the actual RDMA operation.
447  */
448 typedef struct QEMU_PACKED {
449     union QEMU_PACKED {
450         uint64_t current_addr;  /* offset into the ram_addr_t space */
451         uint64_t chunk;         /* chunk to lookup if unregistering */
452     } key;
453     uint32_t current_index; /* which ramblock the chunk belongs to */
454     uint32_t padding;
455     uint64_t chunks;            /* how many sequential chunks to register */
456 } RDMARegister;
457 
458 static void register_to_network(RDMAContext *rdma, RDMARegister *reg)
459 {
460     RDMALocalBlock *local_block;
461     local_block  = &rdma->local_ram_blocks.block[reg->current_index];
462 
463     if (local_block->is_ram_block) {
464         /*
465          * current_addr as passed in is an address in the local ram_addr_t
466          * space, we need to translate this for the destination
467          */
468         reg->key.current_addr -= local_block->offset;
469         reg->key.current_addr += rdma->dest_blocks[reg->current_index].offset;
470     }
471     reg->key.current_addr = htonll(reg->key.current_addr);
472     reg->current_index = htonl(reg->current_index);
473     reg->chunks = htonll(reg->chunks);
474 }
475 
476 static void network_to_register(RDMARegister *reg)
477 {
478     reg->key.current_addr = ntohll(reg->key.current_addr);
479     reg->current_index = ntohl(reg->current_index);
480     reg->chunks = ntohll(reg->chunks);
481 }
482 
483 typedef struct QEMU_PACKED {
484     uint32_t value;     /* if zero, we will madvise() */
485     uint32_t block_idx; /* which ram block index */
486     uint64_t offset;    /* Address in remote ram_addr_t space */
487     uint64_t length;    /* length of the chunk */
488 } RDMACompress;
489 
490 static void compress_to_network(RDMAContext *rdma, RDMACompress *comp)
491 {
492     comp->value = htonl(comp->value);
493     /*
494      * comp->offset as passed in is an address in the local ram_addr_t
495      * space, we need to translate this for the destination
496      */
497     comp->offset -= rdma->local_ram_blocks.block[comp->block_idx].offset;
498     comp->offset += rdma->dest_blocks[comp->block_idx].offset;
499     comp->block_idx = htonl(comp->block_idx);
500     comp->offset = htonll(comp->offset);
501     comp->length = htonll(comp->length);
502 }
503 
504 static void network_to_compress(RDMACompress *comp)
505 {
506     comp->value = ntohl(comp->value);
507     comp->block_idx = ntohl(comp->block_idx);
508     comp->offset = ntohll(comp->offset);
509     comp->length = ntohll(comp->length);
510 }
511 
512 /*
513  * The result of the dest's memory registration produces an "rkey"
514  * which the source VM must reference in order to perform
515  * the RDMA operation.
516  */
517 typedef struct QEMU_PACKED {
518     uint32_t rkey;
519     uint32_t padding;
520     uint64_t host_addr;
521 } RDMARegisterResult;
522 
523 static void result_to_network(RDMARegisterResult *result)
524 {
525     result->rkey = htonl(result->rkey);
526     result->host_addr = htonll(result->host_addr);
527 };
528 
529 static void network_to_result(RDMARegisterResult *result)
530 {
531     result->rkey = ntohl(result->rkey);
532     result->host_addr = ntohll(result->host_addr);
533 };
534 
535 const char *print_wrid(int wrid);
536 static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head,
537                                    uint8_t *data, RDMAControlHeader *resp,
538                                    int *resp_idx,
539                                    int (*callback)(RDMAContext *rdma));
540 
541 static inline uint64_t ram_chunk_index(const uint8_t *start,
542                                        const uint8_t *host)
543 {
544     return ((uintptr_t) host - (uintptr_t) start) >> RDMA_REG_CHUNK_SHIFT;
545 }
546 
547 static inline uint8_t *ram_chunk_start(const RDMALocalBlock *rdma_ram_block,
548                                        uint64_t i)
549 {
550     return (uint8_t *)(uintptr_t)(rdma_ram_block->local_host_addr +
551                                   (i << RDMA_REG_CHUNK_SHIFT));
552 }
553 
554 static inline uint8_t *ram_chunk_end(const RDMALocalBlock *rdma_ram_block,
555                                      uint64_t i)
556 {
557     uint8_t *result = ram_chunk_start(rdma_ram_block, i) +
558                                          (1UL << RDMA_REG_CHUNK_SHIFT);
559 
560     if (result > (rdma_ram_block->local_host_addr + rdma_ram_block->length)) {
561         result = rdma_ram_block->local_host_addr + rdma_ram_block->length;
562     }
563 
564     return result;
565 }
566 
567 static int rdma_add_block(RDMAContext *rdma, const char *block_name,
568                          void *host_addr,
569                          ram_addr_t block_offset, uint64_t length)
570 {
571     RDMALocalBlocks *local = &rdma->local_ram_blocks;
572     RDMALocalBlock *block;
573     RDMALocalBlock *old = local->block;
574 
575     local->block = g_new0(RDMALocalBlock, local->nb_blocks + 1);
576 
577     if (local->nb_blocks) {
578         int x;
579 
580         if (rdma->blockmap) {
581             for (x = 0; x < local->nb_blocks; x++) {
582                 g_hash_table_remove(rdma->blockmap,
583                                     (void *)(uintptr_t)old[x].offset);
584                 g_hash_table_insert(rdma->blockmap,
585                                     (void *)(uintptr_t)old[x].offset,
586                                     &local->block[x]);
587             }
588         }
589         memcpy(local->block, old, sizeof(RDMALocalBlock) * local->nb_blocks);
590         g_free(old);
591     }
592 
593     block = &local->block[local->nb_blocks];
594 
595     block->block_name = g_strdup(block_name);
596     block->local_host_addr = host_addr;
597     block->offset = block_offset;
598     block->length = length;
599     block->index = local->nb_blocks;
600     block->src_index = ~0U; /* Filled in by the receipt of the block list */
601     block->nb_chunks = ram_chunk_index(host_addr, host_addr + length) + 1UL;
602     block->transit_bitmap = bitmap_new(block->nb_chunks);
603     bitmap_clear(block->transit_bitmap, 0, block->nb_chunks);
604     block->unregister_bitmap = bitmap_new(block->nb_chunks);
605     bitmap_clear(block->unregister_bitmap, 0, block->nb_chunks);
606     block->remote_keys = g_new0(uint32_t, block->nb_chunks);
607 
608     block->is_ram_block = local->init ? false : true;
609 
610     if (rdma->blockmap) {
611         g_hash_table_insert(rdma->blockmap, (void *)(uintptr_t)block_offset, block);
612     }
613 
614     trace_rdma_add_block(block_name, local->nb_blocks,
615                          (uintptr_t) block->local_host_addr,
616                          block->offset, block->length,
617                          (uintptr_t) (block->local_host_addr + block->length),
618                          BITS_TO_LONGS(block->nb_chunks) *
619                              sizeof(unsigned long) * 8,
620                          block->nb_chunks);
621 
622     local->nb_blocks++;
623 
624     return 0;
625 }
626 
627 /*
628  * Memory regions need to be registered with the device and queue pairs setup
629  * in advanced before the migration starts. This tells us where the RAM blocks
630  * are so that we can register them individually.
631  */
632 static int qemu_rdma_init_one_block(RAMBlock *rb, void *opaque)
633 {
634     const char *block_name = qemu_ram_get_idstr(rb);
635     void *host_addr = qemu_ram_get_host_addr(rb);
636     ram_addr_t block_offset = qemu_ram_get_offset(rb);
637     ram_addr_t length = qemu_ram_get_used_length(rb);
638     return rdma_add_block(opaque, block_name, host_addr, block_offset, length);
639 }
640 
641 /*
642  * Identify the RAMBlocks and their quantity. They will be references to
643  * identify chunk boundaries inside each RAMBlock and also be referenced
644  * during dynamic page registration.
645  */
646 static int qemu_rdma_init_ram_blocks(RDMAContext *rdma)
647 {
648     RDMALocalBlocks *local = &rdma->local_ram_blocks;
649     int ret;
650 
651     assert(rdma->blockmap == NULL);
652     memset(local, 0, sizeof *local);
653     ret = foreach_not_ignored_block(qemu_rdma_init_one_block, rdma);
654     if (ret) {
655         return ret;
656     }
657     trace_qemu_rdma_init_ram_blocks(local->nb_blocks);
658     rdma->dest_blocks = g_new0(RDMADestBlock,
659                                rdma->local_ram_blocks.nb_blocks);
660     local->init = true;
661     return 0;
662 }
663 
664 /*
665  * Note: If used outside of cleanup, the caller must ensure that the destination
666  * block structures are also updated
667  */
668 static int rdma_delete_block(RDMAContext *rdma, RDMALocalBlock *block)
669 {
670     RDMALocalBlocks *local = &rdma->local_ram_blocks;
671     RDMALocalBlock *old = local->block;
672     int x;
673 
674     if (rdma->blockmap) {
675         g_hash_table_remove(rdma->blockmap, (void *)(uintptr_t)block->offset);
676     }
677     if (block->pmr) {
678         int j;
679 
680         for (j = 0; j < block->nb_chunks; j++) {
681             if (!block->pmr[j]) {
682                 continue;
683             }
684             ibv_dereg_mr(block->pmr[j]);
685             rdma->total_registrations--;
686         }
687         g_free(block->pmr);
688         block->pmr = NULL;
689     }
690 
691     if (block->mr) {
692         ibv_dereg_mr(block->mr);
693         rdma->total_registrations--;
694         block->mr = NULL;
695     }
696 
697     g_free(block->transit_bitmap);
698     block->transit_bitmap = NULL;
699 
700     g_free(block->unregister_bitmap);
701     block->unregister_bitmap = NULL;
702 
703     g_free(block->remote_keys);
704     block->remote_keys = NULL;
705 
706     g_free(block->block_name);
707     block->block_name = NULL;
708 
709     if (rdma->blockmap) {
710         for (x = 0; x < local->nb_blocks; x++) {
711             g_hash_table_remove(rdma->blockmap,
712                                 (void *)(uintptr_t)old[x].offset);
713         }
714     }
715 
716     if (local->nb_blocks > 1) {
717 
718         local->block = g_new0(RDMALocalBlock, local->nb_blocks - 1);
719 
720         if (block->index) {
721             memcpy(local->block, old, sizeof(RDMALocalBlock) * block->index);
722         }
723 
724         if (block->index < (local->nb_blocks - 1)) {
725             memcpy(local->block + block->index, old + (block->index + 1),
726                 sizeof(RDMALocalBlock) *
727                     (local->nb_blocks - (block->index + 1)));
728             for (x = block->index; x < local->nb_blocks - 1; x++) {
729                 local->block[x].index--;
730             }
731         }
732     } else {
733         assert(block == local->block);
734         local->block = NULL;
735     }
736 
737     trace_rdma_delete_block(block, (uintptr_t)block->local_host_addr,
738                            block->offset, block->length,
739                             (uintptr_t)(block->local_host_addr + block->length),
740                            BITS_TO_LONGS(block->nb_chunks) *
741                                sizeof(unsigned long) * 8, block->nb_chunks);
742 
743     g_free(old);
744 
745     local->nb_blocks--;
746 
747     if (local->nb_blocks && rdma->blockmap) {
748         for (x = 0; x < local->nb_blocks; x++) {
749             g_hash_table_insert(rdma->blockmap,
750                                 (void *)(uintptr_t)local->block[x].offset,
751                                 &local->block[x]);
752         }
753     }
754 
755     return 0;
756 }
757 
758 /*
759  * Put in the log file which RDMA device was opened and the details
760  * associated with that device.
761  */
762 static void qemu_rdma_dump_id(const char *who, struct ibv_context *verbs)
763 {
764     struct ibv_port_attr port;
765 
766     if (ibv_query_port(verbs, 1, &port)) {
767         error_report("Failed to query port information");
768         return;
769     }
770 
771     printf("%s RDMA Device opened: kernel name %s "
772            "uverbs device name %s, "
773            "infiniband_verbs class device path %s, "
774            "infiniband class device path %s, "
775            "transport: (%d) %s\n",
776                 who,
777                 verbs->device->name,
778                 verbs->device->dev_name,
779                 verbs->device->dev_path,
780                 verbs->device->ibdev_path,
781                 port.link_layer,
782                 (port.link_layer == IBV_LINK_LAYER_INFINIBAND) ? "Infiniband" :
783                  ((port.link_layer == IBV_LINK_LAYER_ETHERNET)
784                     ? "Ethernet" : "Unknown"));
785 }
786 
787 /*
788  * Put in the log file the RDMA gid addressing information,
789  * useful for folks who have trouble understanding the
790  * RDMA device hierarchy in the kernel.
791  */
792 static void qemu_rdma_dump_gid(const char *who, struct rdma_cm_id *id)
793 {
794     char sgid[33];
795     char dgid[33];
796     inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.sgid, sgid, sizeof sgid);
797     inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.dgid, dgid, sizeof dgid);
798     trace_qemu_rdma_dump_gid(who, sgid, dgid);
799 }
800 
801 /*
802  * As of now, IPv6 over RoCE / iWARP is not supported by linux.
803  * We will try the next addrinfo struct, and fail if there are
804  * no other valid addresses to bind against.
805  *
806  * If user is listening on '[::]', then we will not have a opened a device
807  * yet and have no way of verifying if the device is RoCE or not.
808  *
809  * In this case, the source VM will throw an error for ALL types of
810  * connections (both IPv4 and IPv6) if the destination machine does not have
811  * a regular infiniband network available for use.
812  *
813  * The only way to guarantee that an error is thrown for broken kernels is
814  * for the management software to choose a *specific* interface at bind time
815  * and validate what time of hardware it is.
816  *
817  * Unfortunately, this puts the user in a fix:
818  *
819  *  If the source VM connects with an IPv4 address without knowing that the
820  *  destination has bound to '[::]' the migration will unconditionally fail
821  *  unless the management software is explicitly listening on the IPv4
822  *  address while using a RoCE-based device.
823  *
824  *  If the source VM connects with an IPv6 address, then we're OK because we can
825  *  throw an error on the source (and similarly on the destination).
826  *
827  *  But in mixed environments, this will be broken for a while until it is fixed
828  *  inside linux.
829  *
830  * We do provide a *tiny* bit of help in this function: We can list all of the
831  * devices in the system and check to see if all the devices are RoCE or
832  * Infiniband.
833  *
834  * If we detect that we have a *pure* RoCE environment, then we can safely
835  * thrown an error even if the management software has specified '[::]' as the
836  * bind address.
837  *
838  * However, if there is are multiple hetergeneous devices, then we cannot make
839  * this assumption and the user just has to be sure they know what they are
840  * doing.
841  *
842  * Patches are being reviewed on linux-rdma.
843  */
844 static int qemu_rdma_broken_ipv6_kernel(struct ibv_context *verbs, Error **errp)
845 {
846     /* This bug only exists in linux, to our knowledge. */
847 #ifdef CONFIG_LINUX
848     struct ibv_port_attr port_attr;
849 
850     /*
851      * Verbs are only NULL if management has bound to '[::]'.
852      *
853      * Let's iterate through all the devices and see if there any pure IB
854      * devices (non-ethernet).
855      *
856      * If not, then we can safely proceed with the migration.
857      * Otherwise, there are no guarantees until the bug is fixed in linux.
858      */
859     if (!verbs) {
860         int num_devices, x;
861         struct ibv_device **dev_list = ibv_get_device_list(&num_devices);
862         bool roce_found = false;
863         bool ib_found = false;
864 
865         for (x = 0; x < num_devices; x++) {
866             verbs = ibv_open_device(dev_list[x]);
867             if (!verbs) {
868                 if (errno == EPERM) {
869                     continue;
870                 } else {
871                     return -EINVAL;
872                 }
873             }
874 
875             if (ibv_query_port(verbs, 1, &port_attr)) {
876                 ibv_close_device(verbs);
877                 ERROR(errp, "Could not query initial IB port");
878                 return -EINVAL;
879             }
880 
881             if (port_attr.link_layer == IBV_LINK_LAYER_INFINIBAND) {
882                 ib_found = true;
883             } else if (port_attr.link_layer == IBV_LINK_LAYER_ETHERNET) {
884                 roce_found = true;
885             }
886 
887             ibv_close_device(verbs);
888 
889         }
890 
891         if (roce_found) {
892             if (ib_found) {
893                 fprintf(stderr, "WARN: migrations may fail:"
894                                 " IPv6 over RoCE / iWARP in linux"
895                                 " is broken. But since you appear to have a"
896                                 " mixed RoCE / IB environment, be sure to only"
897                                 " migrate over the IB fabric until the kernel "
898                                 " fixes the bug.\n");
899             } else {
900                 ERROR(errp, "You only have RoCE / iWARP devices in your systems"
901                             " and your management software has specified '[::]'"
902                             ", but IPv6 over RoCE / iWARP is not supported in Linux.");
903                 return -ENONET;
904             }
905         }
906 
907         return 0;
908     }
909 
910     /*
911      * If we have a verbs context, that means that some other than '[::]' was
912      * used by the management software for binding. In which case we can
913      * actually warn the user about a potentially broken kernel.
914      */
915 
916     /* IB ports start with 1, not 0 */
917     if (ibv_query_port(verbs, 1, &port_attr)) {
918         ERROR(errp, "Could not query initial IB port");
919         return -EINVAL;
920     }
921 
922     if (port_attr.link_layer == IBV_LINK_LAYER_ETHERNET) {
923         ERROR(errp, "Linux kernel's RoCE / iWARP does not support IPv6 "
924                     "(but patches on linux-rdma in progress)");
925         return -ENONET;
926     }
927 
928 #endif
929 
930     return 0;
931 }
932 
933 /*
934  * Figure out which RDMA device corresponds to the requested IP hostname
935  * Also create the initial connection manager identifiers for opening
936  * the connection.
937  */
938 static int qemu_rdma_resolve_host(RDMAContext *rdma, Error **errp)
939 {
940     int ret;
941     struct rdma_addrinfo *res;
942     char port_str[16];
943     struct rdma_cm_event *cm_event;
944     char ip[40] = "unknown";
945     struct rdma_addrinfo *e;
946 
947     if (rdma->host == NULL || !strcmp(rdma->host, "")) {
948         ERROR(errp, "RDMA hostname has not been set");
949         return -EINVAL;
950     }
951 
952     /* create CM channel */
953     rdma->channel = rdma_create_event_channel();
954     if (!rdma->channel) {
955         ERROR(errp, "could not create CM channel");
956         return -EINVAL;
957     }
958 
959     /* create CM id */
960     ret = rdma_create_id(rdma->channel, &rdma->cm_id, NULL, RDMA_PS_TCP);
961     if (ret) {
962         ERROR(errp, "could not create channel id");
963         goto err_resolve_create_id;
964     }
965 
966     snprintf(port_str, 16, "%d", rdma->port);
967     port_str[15] = '\0';
968 
969     ret = rdma_getaddrinfo(rdma->host, port_str, NULL, &res);
970     if (ret < 0) {
971         ERROR(errp, "could not rdma_getaddrinfo address %s", rdma->host);
972         goto err_resolve_get_addr;
973     }
974 
975     for (e = res; e != NULL; e = e->ai_next) {
976         inet_ntop(e->ai_family,
977             &((struct sockaddr_in *) e->ai_dst_addr)->sin_addr, ip, sizeof ip);
978         trace_qemu_rdma_resolve_host_trying(rdma->host, ip);
979 
980         ret = rdma_resolve_addr(rdma->cm_id, NULL, e->ai_dst_addr,
981                 RDMA_RESOLVE_TIMEOUT_MS);
982         if (!ret) {
983             if (e->ai_family == AF_INET6) {
984                 ret = qemu_rdma_broken_ipv6_kernel(rdma->cm_id->verbs, errp);
985                 if (ret) {
986                     continue;
987                 }
988             }
989             goto route;
990         }
991     }
992 
993     rdma_freeaddrinfo(res);
994     ERROR(errp, "could not resolve address %s", rdma->host);
995     goto err_resolve_get_addr;
996 
997 route:
998     rdma_freeaddrinfo(res);
999     qemu_rdma_dump_gid("source_resolve_addr", rdma->cm_id);
1000 
1001     ret = rdma_get_cm_event(rdma->channel, &cm_event);
1002     if (ret) {
1003         ERROR(errp, "could not perform event_addr_resolved");
1004         goto err_resolve_get_addr;
1005     }
1006 
1007     if (cm_event->event != RDMA_CM_EVENT_ADDR_RESOLVED) {
1008         ERROR(errp, "result not equal to event_addr_resolved %s",
1009                 rdma_event_str(cm_event->event));
1010         error_report("rdma_resolve_addr");
1011         rdma_ack_cm_event(cm_event);
1012         ret = -EINVAL;
1013         goto err_resolve_get_addr;
1014     }
1015     rdma_ack_cm_event(cm_event);
1016 
1017     /* resolve route */
1018     ret = rdma_resolve_route(rdma->cm_id, RDMA_RESOLVE_TIMEOUT_MS);
1019     if (ret) {
1020         ERROR(errp, "could not resolve rdma route");
1021         goto err_resolve_get_addr;
1022     }
1023 
1024     ret = rdma_get_cm_event(rdma->channel, &cm_event);
1025     if (ret) {
1026         ERROR(errp, "could not perform event_route_resolved");
1027         goto err_resolve_get_addr;
1028     }
1029     if (cm_event->event != RDMA_CM_EVENT_ROUTE_RESOLVED) {
1030         ERROR(errp, "result not equal to event_route_resolved: %s",
1031                         rdma_event_str(cm_event->event));
1032         rdma_ack_cm_event(cm_event);
1033         ret = -EINVAL;
1034         goto err_resolve_get_addr;
1035     }
1036     rdma_ack_cm_event(cm_event);
1037     rdma->verbs = rdma->cm_id->verbs;
1038     qemu_rdma_dump_id("source_resolve_host", rdma->cm_id->verbs);
1039     qemu_rdma_dump_gid("source_resolve_host", rdma->cm_id);
1040     return 0;
1041 
1042 err_resolve_get_addr:
1043     rdma_destroy_id(rdma->cm_id);
1044     rdma->cm_id = NULL;
1045 err_resolve_create_id:
1046     rdma_destroy_event_channel(rdma->channel);
1047     rdma->channel = NULL;
1048     return ret;
1049 }
1050 
1051 /*
1052  * Create protection domain and completion queues
1053  */
1054 static int qemu_rdma_alloc_pd_cq(RDMAContext *rdma)
1055 {
1056     /* allocate pd */
1057     rdma->pd = ibv_alloc_pd(rdma->verbs);
1058     if (!rdma->pd) {
1059         error_report("failed to allocate protection domain");
1060         return -1;
1061     }
1062 
1063     /* create receive completion channel */
1064     rdma->recv_comp_channel = ibv_create_comp_channel(rdma->verbs);
1065     if (!rdma->recv_comp_channel) {
1066         error_report("failed to allocate receive completion channel");
1067         goto err_alloc_pd_cq;
1068     }
1069 
1070     /*
1071      * Completion queue can be filled by read work requests.
1072      */
1073     rdma->recv_cq = ibv_create_cq(rdma->verbs, (RDMA_SIGNALED_SEND_MAX * 3),
1074                                   NULL, rdma->recv_comp_channel, 0);
1075     if (!rdma->recv_cq) {
1076         error_report("failed to allocate receive completion queue");
1077         goto err_alloc_pd_cq;
1078     }
1079 
1080     /* create send completion channel */
1081     rdma->send_comp_channel = ibv_create_comp_channel(rdma->verbs);
1082     if (!rdma->send_comp_channel) {
1083         error_report("failed to allocate send completion channel");
1084         goto err_alloc_pd_cq;
1085     }
1086 
1087     rdma->send_cq = ibv_create_cq(rdma->verbs, (RDMA_SIGNALED_SEND_MAX * 3),
1088                                   NULL, rdma->send_comp_channel, 0);
1089     if (!rdma->send_cq) {
1090         error_report("failed to allocate send completion queue");
1091         goto err_alloc_pd_cq;
1092     }
1093 
1094     return 0;
1095 
1096 err_alloc_pd_cq:
1097     if (rdma->pd) {
1098         ibv_dealloc_pd(rdma->pd);
1099     }
1100     if (rdma->recv_comp_channel) {
1101         ibv_destroy_comp_channel(rdma->recv_comp_channel);
1102     }
1103     if (rdma->send_comp_channel) {
1104         ibv_destroy_comp_channel(rdma->send_comp_channel);
1105     }
1106     if (rdma->recv_cq) {
1107         ibv_destroy_cq(rdma->recv_cq);
1108         rdma->recv_cq = NULL;
1109     }
1110     rdma->pd = NULL;
1111     rdma->recv_comp_channel = NULL;
1112     rdma->send_comp_channel = NULL;
1113     return -1;
1114 
1115 }
1116 
1117 /*
1118  * Create queue pairs.
1119  */
1120 static int qemu_rdma_alloc_qp(RDMAContext *rdma)
1121 {
1122     struct ibv_qp_init_attr attr = { 0 };
1123     int ret;
1124 
1125     attr.cap.max_send_wr = RDMA_SIGNALED_SEND_MAX;
1126     attr.cap.max_recv_wr = 3;
1127     attr.cap.max_send_sge = 1;
1128     attr.cap.max_recv_sge = 1;
1129     attr.send_cq = rdma->send_cq;
1130     attr.recv_cq = rdma->recv_cq;
1131     attr.qp_type = IBV_QPT_RC;
1132 
1133     ret = rdma_create_qp(rdma->cm_id, rdma->pd, &attr);
1134     if (ret) {
1135         return -1;
1136     }
1137 
1138     rdma->qp = rdma->cm_id->qp;
1139     return 0;
1140 }
1141 
1142 /* Check whether On-Demand Paging is supported by RDAM device */
1143 static bool rdma_support_odp(struct ibv_context *dev)
1144 {
1145     struct ibv_device_attr_ex attr = {0};
1146     int ret = ibv_query_device_ex(dev, NULL, &attr);
1147     if (ret) {
1148         return false;
1149     }
1150 
1151     if (attr.odp_caps.general_caps & IBV_ODP_SUPPORT) {
1152         return true;
1153     }
1154 
1155     return false;
1156 }
1157 
1158 /*
1159  * ibv_advise_mr to avoid RNR NAK error as far as possible.
1160  * The responder mr registering with ODP will sent RNR NAK back to
1161  * the requester in the face of the page fault.
1162  */
1163 static void qemu_rdma_advise_prefetch_mr(struct ibv_pd *pd, uint64_t addr,
1164                                          uint32_t len,  uint32_t lkey,
1165                                          const char *name, bool wr)
1166 {
1167 #ifdef HAVE_IBV_ADVISE_MR
1168     int ret;
1169     int advice = wr ? IBV_ADVISE_MR_ADVICE_PREFETCH_WRITE :
1170                  IBV_ADVISE_MR_ADVICE_PREFETCH;
1171     struct ibv_sge sg_list = {.lkey = lkey, .addr = addr, .length = len};
1172 
1173     ret = ibv_advise_mr(pd, advice,
1174                         IBV_ADVISE_MR_FLAG_FLUSH, &sg_list, 1);
1175     /* ignore the error */
1176     if (ret) {
1177         trace_qemu_rdma_advise_mr(name, len, addr, strerror(errno));
1178     } else {
1179         trace_qemu_rdma_advise_mr(name, len, addr, "successed");
1180     }
1181 #endif
1182 }
1183 
1184 static int qemu_rdma_reg_whole_ram_blocks(RDMAContext *rdma)
1185 {
1186     int i;
1187     RDMALocalBlocks *local = &rdma->local_ram_blocks;
1188 
1189     for (i = 0; i < local->nb_blocks; i++) {
1190         int access = IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE;
1191 
1192         local->block[i].mr =
1193             ibv_reg_mr(rdma->pd,
1194                     local->block[i].local_host_addr,
1195                     local->block[i].length, access
1196                     );
1197 
1198         if (!local->block[i].mr &&
1199             errno == ENOTSUP && rdma_support_odp(rdma->verbs)) {
1200                 access |= IBV_ACCESS_ON_DEMAND;
1201                 /* register ODP mr */
1202                 local->block[i].mr =
1203                     ibv_reg_mr(rdma->pd,
1204                                local->block[i].local_host_addr,
1205                                local->block[i].length, access);
1206                 trace_qemu_rdma_register_odp_mr(local->block[i].block_name);
1207 
1208                 if (local->block[i].mr) {
1209                     qemu_rdma_advise_prefetch_mr(rdma->pd,
1210                                     (uintptr_t)local->block[i].local_host_addr,
1211                                     local->block[i].length,
1212                                     local->block[i].mr->lkey,
1213                                     local->block[i].block_name,
1214                                     true);
1215                 }
1216         }
1217 
1218         if (!local->block[i].mr) {
1219             perror("Failed to register local dest ram block!");
1220             break;
1221         }
1222         rdma->total_registrations++;
1223     }
1224 
1225     if (i >= local->nb_blocks) {
1226         return 0;
1227     }
1228 
1229     for (i--; i >= 0; i--) {
1230         ibv_dereg_mr(local->block[i].mr);
1231         local->block[i].mr = NULL;
1232         rdma->total_registrations--;
1233     }
1234 
1235     return -1;
1236 
1237 }
1238 
1239 /*
1240  * Find the ram block that corresponds to the page requested to be
1241  * transmitted by QEMU.
1242  *
1243  * Once the block is found, also identify which 'chunk' within that
1244  * block that the page belongs to.
1245  *
1246  * This search cannot fail or the migration will fail.
1247  */
1248 static int qemu_rdma_search_ram_block(RDMAContext *rdma,
1249                                       uintptr_t block_offset,
1250                                       uint64_t offset,
1251                                       uint64_t length,
1252                                       uint64_t *block_index,
1253                                       uint64_t *chunk_index)
1254 {
1255     uint64_t current_addr = block_offset + offset;
1256     RDMALocalBlock *block = g_hash_table_lookup(rdma->blockmap,
1257                                                 (void *) block_offset);
1258     assert(block);
1259     assert(current_addr >= block->offset);
1260     assert((current_addr + length) <= (block->offset + block->length));
1261 
1262     *block_index = block->index;
1263     *chunk_index = ram_chunk_index(block->local_host_addr,
1264                 block->local_host_addr + (current_addr - block->offset));
1265 
1266     return 0;
1267 }
1268 
1269 /*
1270  * Register a chunk with IB. If the chunk was already registered
1271  * previously, then skip.
1272  *
1273  * Also return the keys associated with the registration needed
1274  * to perform the actual RDMA operation.
1275  */
1276 static int qemu_rdma_register_and_get_keys(RDMAContext *rdma,
1277         RDMALocalBlock *block, uintptr_t host_addr,
1278         uint32_t *lkey, uint32_t *rkey, int chunk,
1279         uint8_t *chunk_start, uint8_t *chunk_end)
1280 {
1281     if (block->mr) {
1282         if (lkey) {
1283             *lkey = block->mr->lkey;
1284         }
1285         if (rkey) {
1286             *rkey = block->mr->rkey;
1287         }
1288         return 0;
1289     }
1290 
1291     /* allocate memory to store chunk MRs */
1292     if (!block->pmr) {
1293         block->pmr = g_new0(struct ibv_mr *, block->nb_chunks);
1294     }
1295 
1296     /*
1297      * If 'rkey', then we're the destination, so grant access to the source.
1298      *
1299      * If 'lkey', then we're the source VM, so grant access only to ourselves.
1300      */
1301     if (!block->pmr[chunk]) {
1302         uint64_t len = chunk_end - chunk_start;
1303         int access = rkey ? IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE :
1304                      0;
1305 
1306         trace_qemu_rdma_register_and_get_keys(len, chunk_start);
1307 
1308         block->pmr[chunk] = ibv_reg_mr(rdma->pd, chunk_start, len, access);
1309         if (!block->pmr[chunk] &&
1310             errno == ENOTSUP && rdma_support_odp(rdma->verbs)) {
1311             access |= IBV_ACCESS_ON_DEMAND;
1312             /* register ODP mr */
1313             block->pmr[chunk] = ibv_reg_mr(rdma->pd, chunk_start, len, access);
1314             trace_qemu_rdma_register_odp_mr(block->block_name);
1315 
1316             if (block->pmr[chunk]) {
1317                 qemu_rdma_advise_prefetch_mr(rdma->pd, (uintptr_t)chunk_start,
1318                                             len, block->pmr[chunk]->lkey,
1319                                             block->block_name, rkey);
1320 
1321             }
1322         }
1323     }
1324     if (!block->pmr[chunk]) {
1325         perror("Failed to register chunk!");
1326         fprintf(stderr, "Chunk details: block: %d chunk index %d"
1327                         " start %" PRIuPTR " end %" PRIuPTR
1328                         " host %" PRIuPTR
1329                         " local %" PRIuPTR " registrations: %d\n",
1330                         block->index, chunk, (uintptr_t)chunk_start,
1331                         (uintptr_t)chunk_end, host_addr,
1332                         (uintptr_t)block->local_host_addr,
1333                         rdma->total_registrations);
1334         return -1;
1335     }
1336     rdma->total_registrations++;
1337 
1338     if (lkey) {
1339         *lkey = block->pmr[chunk]->lkey;
1340     }
1341     if (rkey) {
1342         *rkey = block->pmr[chunk]->rkey;
1343     }
1344     return 0;
1345 }
1346 
1347 /*
1348  * Register (at connection time) the memory used for control
1349  * channel messages.
1350  */
1351 static int qemu_rdma_reg_control(RDMAContext *rdma, int idx)
1352 {
1353     rdma->wr_data[idx].control_mr = ibv_reg_mr(rdma->pd,
1354             rdma->wr_data[idx].control, RDMA_CONTROL_MAX_BUFFER,
1355             IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE);
1356     if (rdma->wr_data[idx].control_mr) {
1357         rdma->total_registrations++;
1358         return 0;
1359     }
1360     error_report("qemu_rdma_reg_control failed");
1361     return -1;
1362 }
1363 
1364 const char *print_wrid(int wrid)
1365 {
1366     if (wrid >= RDMA_WRID_RECV_CONTROL) {
1367         return wrid_desc[RDMA_WRID_RECV_CONTROL];
1368     }
1369     return wrid_desc[wrid];
1370 }
1371 
1372 /*
1373  * Perform a non-optimized memory unregistration after every transfer
1374  * for demonstration purposes, only if pin-all is not requested.
1375  *
1376  * Potential optimizations:
1377  * 1. Start a new thread to run this function continuously
1378         - for bit clearing
1379         - and for receipt of unregister messages
1380  * 2. Use an LRU.
1381  * 3. Use workload hints.
1382  */
1383 static int qemu_rdma_unregister_waiting(RDMAContext *rdma)
1384 {
1385     while (rdma->unregistrations[rdma->unregister_current]) {
1386         int ret;
1387         uint64_t wr_id = rdma->unregistrations[rdma->unregister_current];
1388         uint64_t chunk =
1389             (wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT;
1390         uint64_t index =
1391             (wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT;
1392         RDMALocalBlock *block =
1393             &(rdma->local_ram_blocks.block[index]);
1394         RDMARegister reg = { .current_index = index };
1395         RDMAControlHeader resp = { .type = RDMA_CONTROL_UNREGISTER_FINISHED,
1396                                  };
1397         RDMAControlHeader head = { .len = sizeof(RDMARegister),
1398                                    .type = RDMA_CONTROL_UNREGISTER_REQUEST,
1399                                    .repeat = 1,
1400                                  };
1401 
1402         trace_qemu_rdma_unregister_waiting_proc(chunk,
1403                                                 rdma->unregister_current);
1404 
1405         rdma->unregistrations[rdma->unregister_current] = 0;
1406         rdma->unregister_current++;
1407 
1408         if (rdma->unregister_current == RDMA_SIGNALED_SEND_MAX) {
1409             rdma->unregister_current = 0;
1410         }
1411 
1412 
1413         /*
1414          * Unregistration is speculative (because migration is single-threaded
1415          * and we cannot break the protocol's inifinband message ordering).
1416          * Thus, if the memory is currently being used for transmission,
1417          * then abort the attempt to unregister and try again
1418          * later the next time a completion is received for this memory.
1419          */
1420         clear_bit(chunk, block->unregister_bitmap);
1421 
1422         if (test_bit(chunk, block->transit_bitmap)) {
1423             trace_qemu_rdma_unregister_waiting_inflight(chunk);
1424             continue;
1425         }
1426 
1427         trace_qemu_rdma_unregister_waiting_send(chunk);
1428 
1429         ret = ibv_dereg_mr(block->pmr[chunk]);
1430         block->pmr[chunk] = NULL;
1431         block->remote_keys[chunk] = 0;
1432 
1433         if (ret != 0) {
1434             perror("unregistration chunk failed");
1435             return -ret;
1436         }
1437         rdma->total_registrations--;
1438 
1439         reg.key.chunk = chunk;
1440         register_to_network(rdma, &reg);
1441         ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) &reg,
1442                                 &resp, NULL, NULL);
1443         if (ret < 0) {
1444             return ret;
1445         }
1446 
1447         trace_qemu_rdma_unregister_waiting_complete(chunk);
1448     }
1449 
1450     return 0;
1451 }
1452 
1453 static uint64_t qemu_rdma_make_wrid(uint64_t wr_id, uint64_t index,
1454                                          uint64_t chunk)
1455 {
1456     uint64_t result = wr_id & RDMA_WRID_TYPE_MASK;
1457 
1458     result |= (index << RDMA_WRID_BLOCK_SHIFT);
1459     result |= (chunk << RDMA_WRID_CHUNK_SHIFT);
1460 
1461     return result;
1462 }
1463 
1464 /*
1465  * Consult the connection manager to see a work request
1466  * (of any kind) has completed.
1467  * Return the work request ID that completed.
1468  */
1469 static uint64_t qemu_rdma_poll(RDMAContext *rdma, struct ibv_cq *cq,
1470                                uint64_t *wr_id_out, uint32_t *byte_len)
1471 {
1472     int ret;
1473     struct ibv_wc wc;
1474     uint64_t wr_id;
1475 
1476     ret = ibv_poll_cq(cq, 1, &wc);
1477 
1478     if (!ret) {
1479         *wr_id_out = RDMA_WRID_NONE;
1480         return 0;
1481     }
1482 
1483     if (ret < 0) {
1484         error_report("ibv_poll_cq return %d", ret);
1485         return ret;
1486     }
1487 
1488     wr_id = wc.wr_id & RDMA_WRID_TYPE_MASK;
1489 
1490     if (wc.status != IBV_WC_SUCCESS) {
1491         fprintf(stderr, "ibv_poll_cq wc.status=%d %s!\n",
1492                         wc.status, ibv_wc_status_str(wc.status));
1493         fprintf(stderr, "ibv_poll_cq wrid=%s!\n", wrid_desc[wr_id]);
1494 
1495         return -1;
1496     }
1497 
1498     if (rdma->control_ready_expected &&
1499         (wr_id >= RDMA_WRID_RECV_CONTROL)) {
1500         trace_qemu_rdma_poll_recv(wrid_desc[RDMA_WRID_RECV_CONTROL],
1501                   wr_id - RDMA_WRID_RECV_CONTROL, wr_id, rdma->nb_sent);
1502         rdma->control_ready_expected = 0;
1503     }
1504 
1505     if (wr_id == RDMA_WRID_RDMA_WRITE) {
1506         uint64_t chunk =
1507             (wc.wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT;
1508         uint64_t index =
1509             (wc.wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT;
1510         RDMALocalBlock *block = &(rdma->local_ram_blocks.block[index]);
1511 
1512         trace_qemu_rdma_poll_write(print_wrid(wr_id), wr_id, rdma->nb_sent,
1513                                    index, chunk, block->local_host_addr,
1514                                    (void *)(uintptr_t)block->remote_host_addr);
1515 
1516         clear_bit(chunk, block->transit_bitmap);
1517 
1518         if (rdma->nb_sent > 0) {
1519             rdma->nb_sent--;
1520         }
1521     } else {
1522         trace_qemu_rdma_poll_other(print_wrid(wr_id), wr_id, rdma->nb_sent);
1523     }
1524 
1525     *wr_id_out = wc.wr_id;
1526     if (byte_len) {
1527         *byte_len = wc.byte_len;
1528     }
1529 
1530     return  0;
1531 }
1532 
1533 /* Wait for activity on the completion channel.
1534  * Returns 0 on success, none-0 on error.
1535  */
1536 static int qemu_rdma_wait_comp_channel(RDMAContext *rdma,
1537                                        struct ibv_comp_channel *comp_channel)
1538 {
1539     struct rdma_cm_event *cm_event;
1540     int ret = -1;
1541 
1542     /*
1543      * Coroutine doesn't start until migration_fd_process_incoming()
1544      * so don't yield unless we know we're running inside of a coroutine.
1545      */
1546     if (rdma->migration_started_on_destination &&
1547         migration_incoming_get_current()->state == MIGRATION_STATUS_ACTIVE) {
1548         yield_until_fd_readable(comp_channel->fd);
1549     } else {
1550         /* This is the source side, we're in a separate thread
1551          * or destination prior to migration_fd_process_incoming()
1552          * after postcopy, the destination also in a separate thread.
1553          * we can't yield; so we have to poll the fd.
1554          * But we need to be able to handle 'cancel' or an error
1555          * without hanging forever.
1556          */
1557         while (!rdma->error_state  && !rdma->received_error) {
1558             GPollFD pfds[2];
1559             pfds[0].fd = comp_channel->fd;
1560             pfds[0].events = G_IO_IN | G_IO_HUP | G_IO_ERR;
1561             pfds[0].revents = 0;
1562 
1563             pfds[1].fd = rdma->channel->fd;
1564             pfds[1].events = G_IO_IN | G_IO_HUP | G_IO_ERR;
1565             pfds[1].revents = 0;
1566 
1567             /* 0.1s timeout, should be fine for a 'cancel' */
1568             switch (qemu_poll_ns(pfds, 2, 100 * 1000 * 1000)) {
1569             case 2:
1570             case 1: /* fd active */
1571                 if (pfds[0].revents) {
1572                     return 0;
1573                 }
1574 
1575                 if (pfds[1].revents) {
1576                     ret = rdma_get_cm_event(rdma->channel, &cm_event);
1577                     if (ret) {
1578                         error_report("failed to get cm event while wait "
1579                                      "completion channel");
1580                         return -EPIPE;
1581                     }
1582 
1583                     error_report("receive cm event while wait comp channel,"
1584                                  "cm event is %d", cm_event->event);
1585                     if (cm_event->event == RDMA_CM_EVENT_DISCONNECTED ||
1586                         cm_event->event == RDMA_CM_EVENT_DEVICE_REMOVAL) {
1587                         rdma_ack_cm_event(cm_event);
1588                         return -EPIPE;
1589                     }
1590                     rdma_ack_cm_event(cm_event);
1591                 }
1592                 break;
1593 
1594             case 0: /* Timeout, go around again */
1595                 break;
1596 
1597             default: /* Error of some type -
1598                       * I don't trust errno from qemu_poll_ns
1599                      */
1600                 error_report("%s: poll failed", __func__);
1601                 return -EPIPE;
1602             }
1603 
1604             if (migrate_get_current()->state == MIGRATION_STATUS_CANCELLING) {
1605                 /* Bail out and let the cancellation happen */
1606                 return -EPIPE;
1607             }
1608         }
1609     }
1610 
1611     if (rdma->received_error) {
1612         return -EPIPE;
1613     }
1614     return rdma->error_state;
1615 }
1616 
1617 static struct ibv_comp_channel *to_channel(RDMAContext *rdma, int wrid)
1618 {
1619     return wrid < RDMA_WRID_RECV_CONTROL ? rdma->send_comp_channel :
1620            rdma->recv_comp_channel;
1621 }
1622 
1623 static struct ibv_cq *to_cq(RDMAContext *rdma, int wrid)
1624 {
1625     return wrid < RDMA_WRID_RECV_CONTROL ? rdma->send_cq : rdma->recv_cq;
1626 }
1627 
1628 /*
1629  * Block until the next work request has completed.
1630  *
1631  * First poll to see if a work request has already completed,
1632  * otherwise block.
1633  *
1634  * If we encounter completed work requests for IDs other than
1635  * the one we're interested in, then that's generally an error.
1636  *
1637  * The only exception is actual RDMA Write completions. These
1638  * completions only need to be recorded, but do not actually
1639  * need further processing.
1640  */
1641 static int qemu_rdma_block_for_wrid(RDMAContext *rdma, int wrid_requested,
1642                                     uint32_t *byte_len)
1643 {
1644     int num_cq_events = 0, ret = 0;
1645     struct ibv_cq *cq;
1646     void *cq_ctx;
1647     uint64_t wr_id = RDMA_WRID_NONE, wr_id_in;
1648     struct ibv_comp_channel *ch = to_channel(rdma, wrid_requested);
1649     struct ibv_cq *poll_cq = to_cq(rdma, wrid_requested);
1650 
1651     if (ibv_req_notify_cq(poll_cq, 0)) {
1652         return -1;
1653     }
1654     /* poll cq first */
1655     while (wr_id != wrid_requested) {
1656         ret = qemu_rdma_poll(rdma, poll_cq, &wr_id_in, byte_len);
1657         if (ret < 0) {
1658             return ret;
1659         }
1660 
1661         wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
1662 
1663         if (wr_id == RDMA_WRID_NONE) {
1664             break;
1665         }
1666         if (wr_id != wrid_requested) {
1667             trace_qemu_rdma_block_for_wrid_miss(print_wrid(wrid_requested),
1668                        wrid_requested, print_wrid(wr_id), wr_id);
1669         }
1670     }
1671 
1672     if (wr_id == wrid_requested) {
1673         return 0;
1674     }
1675 
1676     while (1) {
1677         ret = qemu_rdma_wait_comp_channel(rdma, ch);
1678         if (ret) {
1679             goto err_block_for_wrid;
1680         }
1681 
1682         ret = ibv_get_cq_event(ch, &cq, &cq_ctx);
1683         if (ret) {
1684             perror("ibv_get_cq_event");
1685             goto err_block_for_wrid;
1686         }
1687 
1688         num_cq_events++;
1689 
1690         ret = -ibv_req_notify_cq(cq, 0);
1691         if (ret) {
1692             goto err_block_for_wrid;
1693         }
1694 
1695         while (wr_id != wrid_requested) {
1696             ret = qemu_rdma_poll(rdma, poll_cq, &wr_id_in, byte_len);
1697             if (ret < 0) {
1698                 goto err_block_for_wrid;
1699             }
1700 
1701             wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
1702 
1703             if (wr_id == RDMA_WRID_NONE) {
1704                 break;
1705             }
1706             if (wr_id != wrid_requested) {
1707                 trace_qemu_rdma_block_for_wrid_miss(print_wrid(wrid_requested),
1708                                    wrid_requested, print_wrid(wr_id), wr_id);
1709             }
1710         }
1711 
1712         if (wr_id == wrid_requested) {
1713             goto success_block_for_wrid;
1714         }
1715     }
1716 
1717 success_block_for_wrid:
1718     if (num_cq_events) {
1719         ibv_ack_cq_events(cq, num_cq_events);
1720     }
1721     return 0;
1722 
1723 err_block_for_wrid:
1724     if (num_cq_events) {
1725         ibv_ack_cq_events(cq, num_cq_events);
1726     }
1727 
1728     rdma->error_state = ret;
1729     return ret;
1730 }
1731 
1732 /*
1733  * Post a SEND message work request for the control channel
1734  * containing some data and block until the post completes.
1735  */
1736 static int qemu_rdma_post_send_control(RDMAContext *rdma, uint8_t *buf,
1737                                        RDMAControlHeader *head)
1738 {
1739     int ret = 0;
1740     RDMAWorkRequestData *wr = &rdma->wr_data[RDMA_WRID_CONTROL];
1741     struct ibv_send_wr *bad_wr;
1742     struct ibv_sge sge = {
1743                            .addr = (uintptr_t)(wr->control),
1744                            .length = head->len + sizeof(RDMAControlHeader),
1745                            .lkey = wr->control_mr->lkey,
1746                          };
1747     struct ibv_send_wr send_wr = {
1748                                    .wr_id = RDMA_WRID_SEND_CONTROL,
1749                                    .opcode = IBV_WR_SEND,
1750                                    .send_flags = IBV_SEND_SIGNALED,
1751                                    .sg_list = &sge,
1752                                    .num_sge = 1,
1753                                 };
1754 
1755     trace_qemu_rdma_post_send_control(control_desc(head->type));
1756 
1757     /*
1758      * We don't actually need to do a memcpy() in here if we used
1759      * the "sge" properly, but since we're only sending control messages
1760      * (not RAM in a performance-critical path), then its OK for now.
1761      *
1762      * The copy makes the RDMAControlHeader simpler to manipulate
1763      * for the time being.
1764      */
1765     assert(head->len <= RDMA_CONTROL_MAX_BUFFER - sizeof(*head));
1766     memcpy(wr->control, head, sizeof(RDMAControlHeader));
1767     control_to_network((void *) wr->control);
1768 
1769     if (buf) {
1770         memcpy(wr->control + sizeof(RDMAControlHeader), buf, head->len);
1771     }
1772 
1773 
1774     ret = ibv_post_send(rdma->qp, &send_wr, &bad_wr);
1775 
1776     if (ret > 0) {
1777         error_report("Failed to use post IB SEND for control");
1778         return -ret;
1779     }
1780 
1781     ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_SEND_CONTROL, NULL);
1782     if (ret < 0) {
1783         error_report("rdma migration: send polling control error");
1784     }
1785 
1786     return ret;
1787 }
1788 
1789 /*
1790  * Post a RECV work request in anticipation of some future receipt
1791  * of data on the control channel.
1792  */
1793 static int qemu_rdma_post_recv_control(RDMAContext *rdma, int idx)
1794 {
1795     struct ibv_recv_wr *bad_wr;
1796     struct ibv_sge sge = {
1797                             .addr = (uintptr_t)(rdma->wr_data[idx].control),
1798                             .length = RDMA_CONTROL_MAX_BUFFER,
1799                             .lkey = rdma->wr_data[idx].control_mr->lkey,
1800                          };
1801 
1802     struct ibv_recv_wr recv_wr = {
1803                                     .wr_id = RDMA_WRID_RECV_CONTROL + idx,
1804                                     .sg_list = &sge,
1805                                     .num_sge = 1,
1806                                  };
1807 
1808 
1809     if (ibv_post_recv(rdma->qp, &recv_wr, &bad_wr)) {
1810         return -1;
1811     }
1812 
1813     return 0;
1814 }
1815 
1816 /*
1817  * Block and wait for a RECV control channel message to arrive.
1818  */
1819 static int qemu_rdma_exchange_get_response(RDMAContext *rdma,
1820                 RDMAControlHeader *head, int expecting, int idx)
1821 {
1822     uint32_t byte_len;
1823     int ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RECV_CONTROL + idx,
1824                                        &byte_len);
1825 
1826     if (ret < 0) {
1827         error_report("rdma migration: recv polling control error!");
1828         return ret;
1829     }
1830 
1831     network_to_control((void *) rdma->wr_data[idx].control);
1832     memcpy(head, rdma->wr_data[idx].control, sizeof(RDMAControlHeader));
1833 
1834     trace_qemu_rdma_exchange_get_response_start(control_desc(expecting));
1835 
1836     if (expecting == RDMA_CONTROL_NONE) {
1837         trace_qemu_rdma_exchange_get_response_none(control_desc(head->type),
1838                                              head->type);
1839     } else if (head->type != expecting || head->type == RDMA_CONTROL_ERROR) {
1840         error_report("Was expecting a %s (%d) control message"
1841                 ", but got: %s (%d), length: %d",
1842                 control_desc(expecting), expecting,
1843                 control_desc(head->type), head->type, head->len);
1844         if (head->type == RDMA_CONTROL_ERROR) {
1845             rdma->received_error = true;
1846         }
1847         return -EIO;
1848     }
1849     if (head->len > RDMA_CONTROL_MAX_BUFFER - sizeof(*head)) {
1850         error_report("too long length: %d", head->len);
1851         return -EINVAL;
1852     }
1853     if (sizeof(*head) + head->len != byte_len) {
1854         error_report("Malformed length: %d byte_len %d", head->len, byte_len);
1855         return -EINVAL;
1856     }
1857 
1858     return 0;
1859 }
1860 
1861 /*
1862  * When a RECV work request has completed, the work request's
1863  * buffer is pointed at the header.
1864  *
1865  * This will advance the pointer to the data portion
1866  * of the control message of the work request's buffer that
1867  * was populated after the work request finished.
1868  */
1869 static void qemu_rdma_move_header(RDMAContext *rdma, int idx,
1870                                   RDMAControlHeader *head)
1871 {
1872     rdma->wr_data[idx].control_len = head->len;
1873     rdma->wr_data[idx].control_curr =
1874         rdma->wr_data[idx].control + sizeof(RDMAControlHeader);
1875 }
1876 
1877 /*
1878  * This is an 'atomic' high-level operation to deliver a single, unified
1879  * control-channel message.
1880  *
1881  * Additionally, if the user is expecting some kind of reply to this message,
1882  * they can request a 'resp' response message be filled in by posting an
1883  * additional work request on behalf of the user and waiting for an additional
1884  * completion.
1885  *
1886  * The extra (optional) response is used during registration to us from having
1887  * to perform an *additional* exchange of message just to provide a response by
1888  * instead piggy-backing on the acknowledgement.
1889  */
1890 static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head,
1891                                    uint8_t *data, RDMAControlHeader *resp,
1892                                    int *resp_idx,
1893                                    int (*callback)(RDMAContext *rdma))
1894 {
1895     int ret = 0;
1896 
1897     /*
1898      * Wait until the dest is ready before attempting to deliver the message
1899      * by waiting for a READY message.
1900      */
1901     if (rdma->control_ready_expected) {
1902         RDMAControlHeader resp;
1903         ret = qemu_rdma_exchange_get_response(rdma,
1904                                     &resp, RDMA_CONTROL_READY, RDMA_WRID_READY);
1905         if (ret < 0) {
1906             return ret;
1907         }
1908     }
1909 
1910     /*
1911      * If the user is expecting a response, post a WR in anticipation of it.
1912      */
1913     if (resp) {
1914         ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_DATA);
1915         if (ret) {
1916             error_report("rdma migration: error posting"
1917                     " extra control recv for anticipated result!");
1918             return ret;
1919         }
1920     }
1921 
1922     /*
1923      * Post a WR to replace the one we just consumed for the READY message.
1924      */
1925     ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
1926     if (ret) {
1927         error_report("rdma migration: error posting first control recv!");
1928         return ret;
1929     }
1930 
1931     /*
1932      * Deliver the control message that was requested.
1933      */
1934     ret = qemu_rdma_post_send_control(rdma, data, head);
1935 
1936     if (ret < 0) {
1937         error_report("Failed to send control buffer!");
1938         return ret;
1939     }
1940 
1941     /*
1942      * If we're expecting a response, block and wait for it.
1943      */
1944     if (resp) {
1945         if (callback) {
1946             trace_qemu_rdma_exchange_send_issue_callback();
1947             ret = callback(rdma);
1948             if (ret < 0) {
1949                 return ret;
1950             }
1951         }
1952 
1953         trace_qemu_rdma_exchange_send_waiting(control_desc(resp->type));
1954         ret = qemu_rdma_exchange_get_response(rdma, resp,
1955                                               resp->type, RDMA_WRID_DATA);
1956 
1957         if (ret < 0) {
1958             return ret;
1959         }
1960 
1961         qemu_rdma_move_header(rdma, RDMA_WRID_DATA, resp);
1962         if (resp_idx) {
1963             *resp_idx = RDMA_WRID_DATA;
1964         }
1965         trace_qemu_rdma_exchange_send_received(control_desc(resp->type));
1966     }
1967 
1968     rdma->control_ready_expected = 1;
1969 
1970     return 0;
1971 }
1972 
1973 /*
1974  * This is an 'atomic' high-level operation to receive a single, unified
1975  * control-channel message.
1976  */
1977 static int qemu_rdma_exchange_recv(RDMAContext *rdma, RDMAControlHeader *head,
1978                                 int expecting)
1979 {
1980     RDMAControlHeader ready = {
1981                                 .len = 0,
1982                                 .type = RDMA_CONTROL_READY,
1983                                 .repeat = 1,
1984                               };
1985     int ret;
1986 
1987     /*
1988      * Inform the source that we're ready to receive a message.
1989      */
1990     ret = qemu_rdma_post_send_control(rdma, NULL, &ready);
1991 
1992     if (ret < 0) {
1993         error_report("Failed to send control buffer!");
1994         return ret;
1995     }
1996 
1997     /*
1998      * Block and wait for the message.
1999      */
2000     ret = qemu_rdma_exchange_get_response(rdma, head,
2001                                           expecting, RDMA_WRID_READY);
2002 
2003     if (ret < 0) {
2004         return ret;
2005     }
2006 
2007     qemu_rdma_move_header(rdma, RDMA_WRID_READY, head);
2008 
2009     /*
2010      * Post a new RECV work request to replace the one we just consumed.
2011      */
2012     ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
2013     if (ret) {
2014         error_report("rdma migration: error posting second control recv!");
2015         return ret;
2016     }
2017 
2018     return 0;
2019 }
2020 
2021 /*
2022  * Write an actual chunk of memory using RDMA.
2023  *
2024  * If we're using dynamic registration on the dest-side, we have to
2025  * send a registration command first.
2026  */
2027 static int qemu_rdma_write_one(QEMUFile *f, RDMAContext *rdma,
2028                                int current_index, uint64_t current_addr,
2029                                uint64_t length)
2030 {
2031     struct ibv_sge sge;
2032     struct ibv_send_wr send_wr = { 0 };
2033     struct ibv_send_wr *bad_wr;
2034     int reg_result_idx, ret, count = 0;
2035     uint64_t chunk, chunks;
2036     uint8_t *chunk_start, *chunk_end;
2037     RDMALocalBlock *block = &(rdma->local_ram_blocks.block[current_index]);
2038     RDMARegister reg;
2039     RDMARegisterResult *reg_result;
2040     RDMAControlHeader resp = { .type = RDMA_CONTROL_REGISTER_RESULT };
2041     RDMAControlHeader head = { .len = sizeof(RDMARegister),
2042                                .type = RDMA_CONTROL_REGISTER_REQUEST,
2043                                .repeat = 1,
2044                              };
2045 
2046 retry:
2047     sge.addr = (uintptr_t)(block->local_host_addr +
2048                             (current_addr - block->offset));
2049     sge.length = length;
2050 
2051     chunk = ram_chunk_index(block->local_host_addr,
2052                             (uint8_t *)(uintptr_t)sge.addr);
2053     chunk_start = ram_chunk_start(block, chunk);
2054 
2055     if (block->is_ram_block) {
2056         chunks = length / (1UL << RDMA_REG_CHUNK_SHIFT);
2057 
2058         if (chunks && ((length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) {
2059             chunks--;
2060         }
2061     } else {
2062         chunks = block->length / (1UL << RDMA_REG_CHUNK_SHIFT);
2063 
2064         if (chunks && ((block->length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) {
2065             chunks--;
2066         }
2067     }
2068 
2069     trace_qemu_rdma_write_one_top(chunks + 1,
2070                                   (chunks + 1) *
2071                                   (1UL << RDMA_REG_CHUNK_SHIFT) / 1024 / 1024);
2072 
2073     chunk_end = ram_chunk_end(block, chunk + chunks);
2074 
2075 
2076     while (test_bit(chunk, block->transit_bitmap)) {
2077         (void)count;
2078         trace_qemu_rdma_write_one_block(count++, current_index, chunk,
2079                 sge.addr, length, rdma->nb_sent, block->nb_chunks);
2080 
2081         ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
2082 
2083         if (ret < 0) {
2084             error_report("Failed to Wait for previous write to complete "
2085                     "block %d chunk %" PRIu64
2086                     " current %" PRIu64 " len %" PRIu64 " %d",
2087                     current_index, chunk, sge.addr, length, rdma->nb_sent);
2088             return ret;
2089         }
2090     }
2091 
2092     if (!rdma->pin_all || !block->is_ram_block) {
2093         if (!block->remote_keys[chunk]) {
2094             /*
2095              * This chunk has not yet been registered, so first check to see
2096              * if the entire chunk is zero. If so, tell the other size to
2097              * memset() + madvise() the entire chunk without RDMA.
2098              */
2099 
2100             if (buffer_is_zero((void *)(uintptr_t)sge.addr, length)) {
2101                 RDMACompress comp = {
2102                                         .offset = current_addr,
2103                                         .value = 0,
2104                                         .block_idx = current_index,
2105                                         .length = length,
2106                                     };
2107 
2108                 head.len = sizeof(comp);
2109                 head.type = RDMA_CONTROL_COMPRESS;
2110 
2111                 trace_qemu_rdma_write_one_zero(chunk, sge.length,
2112                                                current_index, current_addr);
2113 
2114                 compress_to_network(rdma, &comp);
2115                 ret = qemu_rdma_exchange_send(rdma, &head,
2116                                 (uint8_t *) &comp, NULL, NULL, NULL);
2117 
2118                 if (ret < 0) {
2119                     return -EIO;
2120                 }
2121 
2122                 acct_update_position(f, sge.length, true);
2123 
2124                 return 1;
2125             }
2126 
2127             /*
2128              * Otherwise, tell other side to register.
2129              */
2130             reg.current_index = current_index;
2131             if (block->is_ram_block) {
2132                 reg.key.current_addr = current_addr;
2133             } else {
2134                 reg.key.chunk = chunk;
2135             }
2136             reg.chunks = chunks;
2137 
2138             trace_qemu_rdma_write_one_sendreg(chunk, sge.length, current_index,
2139                                               current_addr);
2140 
2141             register_to_network(rdma, &reg);
2142             ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) &reg,
2143                                     &resp, &reg_result_idx, NULL);
2144             if (ret < 0) {
2145                 return ret;
2146             }
2147 
2148             /* try to overlap this single registration with the one we sent. */
2149             if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr,
2150                                                 &sge.lkey, NULL, chunk,
2151                                                 chunk_start, chunk_end)) {
2152                 error_report("cannot get lkey");
2153                 return -EINVAL;
2154             }
2155 
2156             reg_result = (RDMARegisterResult *)
2157                     rdma->wr_data[reg_result_idx].control_curr;
2158 
2159             network_to_result(reg_result);
2160 
2161             trace_qemu_rdma_write_one_recvregres(block->remote_keys[chunk],
2162                                                  reg_result->rkey, chunk);
2163 
2164             block->remote_keys[chunk] = reg_result->rkey;
2165             block->remote_host_addr = reg_result->host_addr;
2166         } else {
2167             /* already registered before */
2168             if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr,
2169                                                 &sge.lkey, NULL, chunk,
2170                                                 chunk_start, chunk_end)) {
2171                 error_report("cannot get lkey!");
2172                 return -EINVAL;
2173             }
2174         }
2175 
2176         send_wr.wr.rdma.rkey = block->remote_keys[chunk];
2177     } else {
2178         send_wr.wr.rdma.rkey = block->remote_rkey;
2179 
2180         if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr,
2181                                                      &sge.lkey, NULL, chunk,
2182                                                      chunk_start, chunk_end)) {
2183             error_report("cannot get lkey!");
2184             return -EINVAL;
2185         }
2186     }
2187 
2188     /*
2189      * Encode the ram block index and chunk within this wrid.
2190      * We will use this information at the time of completion
2191      * to figure out which bitmap to check against and then which
2192      * chunk in the bitmap to look for.
2193      */
2194     send_wr.wr_id = qemu_rdma_make_wrid(RDMA_WRID_RDMA_WRITE,
2195                                         current_index, chunk);
2196 
2197     send_wr.opcode = IBV_WR_RDMA_WRITE;
2198     send_wr.send_flags = IBV_SEND_SIGNALED;
2199     send_wr.sg_list = &sge;
2200     send_wr.num_sge = 1;
2201     send_wr.wr.rdma.remote_addr = block->remote_host_addr +
2202                                 (current_addr - block->offset);
2203 
2204     trace_qemu_rdma_write_one_post(chunk, sge.addr, send_wr.wr.rdma.remote_addr,
2205                                    sge.length);
2206 
2207     /*
2208      * ibv_post_send() does not return negative error numbers,
2209      * per the specification they are positive - no idea why.
2210      */
2211     ret = ibv_post_send(rdma->qp, &send_wr, &bad_wr);
2212 
2213     if (ret == ENOMEM) {
2214         trace_qemu_rdma_write_one_queue_full();
2215         ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
2216         if (ret < 0) {
2217             error_report("rdma migration: failed to make "
2218                          "room in full send queue! %d", ret);
2219             return ret;
2220         }
2221 
2222         goto retry;
2223 
2224     } else if (ret > 0) {
2225         perror("rdma migration: post rdma write failed");
2226         return -ret;
2227     }
2228 
2229     set_bit(chunk, block->transit_bitmap);
2230     acct_update_position(f, sge.length, false);
2231     rdma->total_writes++;
2232 
2233     return 0;
2234 }
2235 
2236 /*
2237  * Push out any unwritten RDMA operations.
2238  *
2239  * We support sending out multiple chunks at the same time.
2240  * Not all of them need to get signaled in the completion queue.
2241  */
2242 static int qemu_rdma_write_flush(QEMUFile *f, RDMAContext *rdma)
2243 {
2244     int ret;
2245 
2246     if (!rdma->current_length) {
2247         return 0;
2248     }
2249 
2250     ret = qemu_rdma_write_one(f, rdma,
2251             rdma->current_index, rdma->current_addr, rdma->current_length);
2252 
2253     if (ret < 0) {
2254         return ret;
2255     }
2256 
2257     if (ret == 0) {
2258         rdma->nb_sent++;
2259         trace_qemu_rdma_write_flush(rdma->nb_sent);
2260     }
2261 
2262     rdma->current_length = 0;
2263     rdma->current_addr = 0;
2264 
2265     return 0;
2266 }
2267 
2268 static inline int qemu_rdma_buffer_mergable(RDMAContext *rdma,
2269                     uint64_t offset, uint64_t len)
2270 {
2271     RDMALocalBlock *block;
2272     uint8_t *host_addr;
2273     uint8_t *chunk_end;
2274 
2275     if (rdma->current_index < 0) {
2276         return 0;
2277     }
2278 
2279     if (rdma->current_chunk < 0) {
2280         return 0;
2281     }
2282 
2283     block = &(rdma->local_ram_blocks.block[rdma->current_index]);
2284     host_addr = block->local_host_addr + (offset - block->offset);
2285     chunk_end = ram_chunk_end(block, rdma->current_chunk);
2286 
2287     if (rdma->current_length == 0) {
2288         return 0;
2289     }
2290 
2291     /*
2292      * Only merge into chunk sequentially.
2293      */
2294     if (offset != (rdma->current_addr + rdma->current_length)) {
2295         return 0;
2296     }
2297 
2298     if (offset < block->offset) {
2299         return 0;
2300     }
2301 
2302     if ((offset + len) > (block->offset + block->length)) {
2303         return 0;
2304     }
2305 
2306     if ((host_addr + len) > chunk_end) {
2307         return 0;
2308     }
2309 
2310     return 1;
2311 }
2312 
2313 /*
2314  * We're not actually writing here, but doing three things:
2315  *
2316  * 1. Identify the chunk the buffer belongs to.
2317  * 2. If the chunk is full or the buffer doesn't belong to the current
2318  *    chunk, then start a new chunk and flush() the old chunk.
2319  * 3. To keep the hardware busy, we also group chunks into batches
2320  *    and only require that a batch gets acknowledged in the completion
2321  *    queue instead of each individual chunk.
2322  */
2323 static int qemu_rdma_write(QEMUFile *f, RDMAContext *rdma,
2324                            uint64_t block_offset, uint64_t offset,
2325                            uint64_t len)
2326 {
2327     uint64_t current_addr = block_offset + offset;
2328     uint64_t index = rdma->current_index;
2329     uint64_t chunk = rdma->current_chunk;
2330     int ret;
2331 
2332     /* If we cannot merge it, we flush the current buffer first. */
2333     if (!qemu_rdma_buffer_mergable(rdma, current_addr, len)) {
2334         ret = qemu_rdma_write_flush(f, rdma);
2335         if (ret) {
2336             return ret;
2337         }
2338         rdma->current_length = 0;
2339         rdma->current_addr = current_addr;
2340 
2341         ret = qemu_rdma_search_ram_block(rdma, block_offset,
2342                                          offset, len, &index, &chunk);
2343         if (ret) {
2344             error_report("ram block search failed");
2345             return ret;
2346         }
2347         rdma->current_index = index;
2348         rdma->current_chunk = chunk;
2349     }
2350 
2351     /* merge it */
2352     rdma->current_length += len;
2353 
2354     /* flush it if buffer is too large */
2355     if (rdma->current_length >= RDMA_MERGE_MAX) {
2356         return qemu_rdma_write_flush(f, rdma);
2357     }
2358 
2359     return 0;
2360 }
2361 
2362 static void qemu_rdma_cleanup(RDMAContext *rdma)
2363 {
2364     int idx;
2365 
2366     if (rdma->cm_id && rdma->connected) {
2367         if ((rdma->error_state ||
2368              migrate_get_current()->state == MIGRATION_STATUS_CANCELLING) &&
2369             !rdma->received_error) {
2370             RDMAControlHeader head = { .len = 0,
2371                                        .type = RDMA_CONTROL_ERROR,
2372                                        .repeat = 1,
2373                                      };
2374             error_report("Early error. Sending error.");
2375             qemu_rdma_post_send_control(rdma, NULL, &head);
2376         }
2377 
2378         rdma_disconnect(rdma->cm_id);
2379         trace_qemu_rdma_cleanup_disconnect();
2380         rdma->connected = false;
2381     }
2382 
2383     if (rdma->channel) {
2384         qemu_set_fd_handler(rdma->channel->fd, NULL, NULL, NULL);
2385     }
2386     g_free(rdma->dest_blocks);
2387     rdma->dest_blocks = NULL;
2388 
2389     for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2390         if (rdma->wr_data[idx].control_mr) {
2391             rdma->total_registrations--;
2392             ibv_dereg_mr(rdma->wr_data[idx].control_mr);
2393         }
2394         rdma->wr_data[idx].control_mr = NULL;
2395     }
2396 
2397     if (rdma->local_ram_blocks.block) {
2398         while (rdma->local_ram_blocks.nb_blocks) {
2399             rdma_delete_block(rdma, &rdma->local_ram_blocks.block[0]);
2400         }
2401     }
2402 
2403     if (rdma->qp) {
2404         rdma_destroy_qp(rdma->cm_id);
2405         rdma->qp = NULL;
2406     }
2407     if (rdma->recv_cq) {
2408         ibv_destroy_cq(rdma->recv_cq);
2409         rdma->recv_cq = NULL;
2410     }
2411     if (rdma->send_cq) {
2412         ibv_destroy_cq(rdma->send_cq);
2413         rdma->send_cq = NULL;
2414     }
2415     if (rdma->recv_comp_channel) {
2416         ibv_destroy_comp_channel(rdma->recv_comp_channel);
2417         rdma->recv_comp_channel = NULL;
2418     }
2419     if (rdma->send_comp_channel) {
2420         ibv_destroy_comp_channel(rdma->send_comp_channel);
2421         rdma->send_comp_channel = NULL;
2422     }
2423     if (rdma->pd) {
2424         ibv_dealloc_pd(rdma->pd);
2425         rdma->pd = NULL;
2426     }
2427     if (rdma->cm_id) {
2428         rdma_destroy_id(rdma->cm_id);
2429         rdma->cm_id = NULL;
2430     }
2431 
2432     /* the destination side, listen_id and channel is shared */
2433     if (rdma->listen_id) {
2434         if (!rdma->is_return_path) {
2435             rdma_destroy_id(rdma->listen_id);
2436         }
2437         rdma->listen_id = NULL;
2438 
2439         if (rdma->channel) {
2440             if (!rdma->is_return_path) {
2441                 rdma_destroy_event_channel(rdma->channel);
2442             }
2443             rdma->channel = NULL;
2444         }
2445     }
2446 
2447     if (rdma->channel) {
2448         rdma_destroy_event_channel(rdma->channel);
2449         rdma->channel = NULL;
2450     }
2451     g_free(rdma->host);
2452     g_free(rdma->host_port);
2453     rdma->host = NULL;
2454     rdma->host_port = NULL;
2455 }
2456 
2457 
2458 static int qemu_rdma_source_init(RDMAContext *rdma, bool pin_all, Error **errp)
2459 {
2460     int ret, idx;
2461     Error *local_err = NULL, **temp = &local_err;
2462 
2463     /*
2464      * Will be validated against destination's actual capabilities
2465      * after the connect() completes.
2466      */
2467     rdma->pin_all = pin_all;
2468 
2469     ret = qemu_rdma_resolve_host(rdma, temp);
2470     if (ret) {
2471         goto err_rdma_source_init;
2472     }
2473 
2474     ret = qemu_rdma_alloc_pd_cq(rdma);
2475     if (ret) {
2476         ERROR(temp, "rdma migration: error allocating pd and cq! Your mlock()"
2477                     " limits may be too low. Please check $ ulimit -a # and "
2478                     "search for 'ulimit -l' in the output");
2479         goto err_rdma_source_init;
2480     }
2481 
2482     ret = qemu_rdma_alloc_qp(rdma);
2483     if (ret) {
2484         ERROR(temp, "rdma migration: error allocating qp!");
2485         goto err_rdma_source_init;
2486     }
2487 
2488     ret = qemu_rdma_init_ram_blocks(rdma);
2489     if (ret) {
2490         ERROR(temp, "rdma migration: error initializing ram blocks!");
2491         goto err_rdma_source_init;
2492     }
2493 
2494     /* Build the hash that maps from offset to RAMBlock */
2495     rdma->blockmap = g_hash_table_new(g_direct_hash, g_direct_equal);
2496     for (idx = 0; idx < rdma->local_ram_blocks.nb_blocks; idx++) {
2497         g_hash_table_insert(rdma->blockmap,
2498                 (void *)(uintptr_t)rdma->local_ram_blocks.block[idx].offset,
2499                 &rdma->local_ram_blocks.block[idx]);
2500     }
2501 
2502     for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2503         ret = qemu_rdma_reg_control(rdma, idx);
2504         if (ret) {
2505             ERROR(temp, "rdma migration: error registering %d control!",
2506                                                             idx);
2507             goto err_rdma_source_init;
2508         }
2509     }
2510 
2511     return 0;
2512 
2513 err_rdma_source_init:
2514     error_propagate(errp, local_err);
2515     qemu_rdma_cleanup(rdma);
2516     return -1;
2517 }
2518 
2519 static int qemu_get_cm_event_timeout(RDMAContext *rdma,
2520                                      struct rdma_cm_event **cm_event,
2521                                      long msec, Error **errp)
2522 {
2523     int ret;
2524     struct pollfd poll_fd = {
2525                                 .fd = rdma->channel->fd,
2526                                 .events = POLLIN,
2527                                 .revents = 0
2528                             };
2529 
2530     do {
2531         ret = poll(&poll_fd, 1, msec);
2532     } while (ret < 0 && errno == EINTR);
2533 
2534     if (ret == 0) {
2535         ERROR(errp, "poll cm event timeout");
2536         return -1;
2537     } else if (ret < 0) {
2538         ERROR(errp, "failed to poll cm event, errno=%i", errno);
2539         return -1;
2540     } else if (poll_fd.revents & POLLIN) {
2541         return rdma_get_cm_event(rdma->channel, cm_event);
2542     } else {
2543         ERROR(errp, "no POLLIN event, revent=%x", poll_fd.revents);
2544         return -1;
2545     }
2546 }
2547 
2548 static int qemu_rdma_connect(RDMAContext *rdma, Error **errp, bool return_path)
2549 {
2550     RDMACapabilities cap = {
2551                                 .version = RDMA_CONTROL_VERSION_CURRENT,
2552                                 .flags = 0,
2553                            };
2554     struct rdma_conn_param conn_param = { .initiator_depth = 2,
2555                                           .retry_count = 5,
2556                                           .private_data = &cap,
2557                                           .private_data_len = sizeof(cap),
2558                                         };
2559     struct rdma_cm_event *cm_event;
2560     int ret;
2561 
2562     /*
2563      * Only negotiate the capability with destination if the user
2564      * on the source first requested the capability.
2565      */
2566     if (rdma->pin_all) {
2567         trace_qemu_rdma_connect_pin_all_requested();
2568         cap.flags |= RDMA_CAPABILITY_PIN_ALL;
2569     }
2570 
2571     caps_to_network(&cap);
2572 
2573     ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
2574     if (ret) {
2575         ERROR(errp, "posting second control recv");
2576         goto err_rdma_source_connect;
2577     }
2578 
2579     ret = rdma_connect(rdma->cm_id, &conn_param);
2580     if (ret) {
2581         perror("rdma_connect");
2582         ERROR(errp, "connecting to destination!");
2583         goto err_rdma_source_connect;
2584     }
2585 
2586     if (return_path) {
2587         ret = qemu_get_cm_event_timeout(rdma, &cm_event, 5000, errp);
2588     } else {
2589         ret = rdma_get_cm_event(rdma->channel, &cm_event);
2590     }
2591     if (ret) {
2592         perror("rdma_get_cm_event after rdma_connect");
2593         ERROR(errp, "connecting to destination!");
2594         goto err_rdma_source_connect;
2595     }
2596 
2597     if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) {
2598         error_report("rdma_get_cm_event != EVENT_ESTABLISHED after rdma_connect");
2599         ERROR(errp, "connecting to destination!");
2600         rdma_ack_cm_event(cm_event);
2601         goto err_rdma_source_connect;
2602     }
2603     rdma->connected = true;
2604 
2605     memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap));
2606     network_to_caps(&cap);
2607 
2608     /*
2609      * Verify that the *requested* capabilities are supported by the destination
2610      * and disable them otherwise.
2611      */
2612     if (rdma->pin_all && !(cap.flags & RDMA_CAPABILITY_PIN_ALL)) {
2613         ERROR(errp, "Server cannot support pinning all memory. "
2614                         "Will register memory dynamically.");
2615         rdma->pin_all = false;
2616     }
2617 
2618     trace_qemu_rdma_connect_pin_all_outcome(rdma->pin_all);
2619 
2620     rdma_ack_cm_event(cm_event);
2621 
2622     rdma->control_ready_expected = 1;
2623     rdma->nb_sent = 0;
2624     return 0;
2625 
2626 err_rdma_source_connect:
2627     qemu_rdma_cleanup(rdma);
2628     return -1;
2629 }
2630 
2631 static int qemu_rdma_dest_init(RDMAContext *rdma, Error **errp)
2632 {
2633     int ret, idx;
2634     struct rdma_cm_id *listen_id;
2635     char ip[40] = "unknown";
2636     struct rdma_addrinfo *res, *e;
2637     char port_str[16];
2638     int reuse = 1;
2639 
2640     for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2641         rdma->wr_data[idx].control_len = 0;
2642         rdma->wr_data[idx].control_curr = NULL;
2643     }
2644 
2645     if (!rdma->host || !rdma->host[0]) {
2646         ERROR(errp, "RDMA host is not set!");
2647         rdma->error_state = -EINVAL;
2648         return -1;
2649     }
2650     /* create CM channel */
2651     rdma->channel = rdma_create_event_channel();
2652     if (!rdma->channel) {
2653         ERROR(errp, "could not create rdma event channel");
2654         rdma->error_state = -EINVAL;
2655         return -1;
2656     }
2657 
2658     /* create CM id */
2659     ret = rdma_create_id(rdma->channel, &listen_id, NULL, RDMA_PS_TCP);
2660     if (ret) {
2661         ERROR(errp, "could not create cm_id!");
2662         goto err_dest_init_create_listen_id;
2663     }
2664 
2665     snprintf(port_str, 16, "%d", rdma->port);
2666     port_str[15] = '\0';
2667 
2668     ret = rdma_getaddrinfo(rdma->host, port_str, NULL, &res);
2669     if (ret < 0) {
2670         ERROR(errp, "could not rdma_getaddrinfo address %s", rdma->host);
2671         goto err_dest_init_bind_addr;
2672     }
2673 
2674     ret = rdma_set_option(listen_id, RDMA_OPTION_ID, RDMA_OPTION_ID_REUSEADDR,
2675                           &reuse, sizeof reuse);
2676     if (ret) {
2677         ERROR(errp, "Error: could not set REUSEADDR option");
2678         goto err_dest_init_bind_addr;
2679     }
2680     for (e = res; e != NULL; e = e->ai_next) {
2681         inet_ntop(e->ai_family,
2682             &((struct sockaddr_in *) e->ai_dst_addr)->sin_addr, ip, sizeof ip);
2683         trace_qemu_rdma_dest_init_trying(rdma->host, ip);
2684         ret = rdma_bind_addr(listen_id, e->ai_dst_addr);
2685         if (ret) {
2686             continue;
2687         }
2688         if (e->ai_family == AF_INET6) {
2689             ret = qemu_rdma_broken_ipv6_kernel(listen_id->verbs, errp);
2690             if (ret) {
2691                 continue;
2692             }
2693         }
2694         break;
2695     }
2696 
2697     rdma_freeaddrinfo(res);
2698     if (!e) {
2699         ERROR(errp, "Error: could not rdma_bind_addr!");
2700         goto err_dest_init_bind_addr;
2701     }
2702 
2703     rdma->listen_id = listen_id;
2704     qemu_rdma_dump_gid("dest_init", listen_id);
2705     return 0;
2706 
2707 err_dest_init_bind_addr:
2708     rdma_destroy_id(listen_id);
2709 err_dest_init_create_listen_id:
2710     rdma_destroy_event_channel(rdma->channel);
2711     rdma->channel = NULL;
2712     rdma->error_state = ret;
2713     return ret;
2714 
2715 }
2716 
2717 static void qemu_rdma_return_path_dest_init(RDMAContext *rdma_return_path,
2718                                             RDMAContext *rdma)
2719 {
2720     int idx;
2721 
2722     for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2723         rdma_return_path->wr_data[idx].control_len = 0;
2724         rdma_return_path->wr_data[idx].control_curr = NULL;
2725     }
2726 
2727     /*the CM channel and CM id is shared*/
2728     rdma_return_path->channel = rdma->channel;
2729     rdma_return_path->listen_id = rdma->listen_id;
2730 
2731     rdma->return_path = rdma_return_path;
2732     rdma_return_path->return_path = rdma;
2733     rdma_return_path->is_return_path = true;
2734 }
2735 
2736 static void *qemu_rdma_data_init(const char *host_port, Error **errp)
2737 {
2738     RDMAContext *rdma = NULL;
2739     InetSocketAddress *addr;
2740 
2741     if (host_port) {
2742         rdma = g_new0(RDMAContext, 1);
2743         rdma->current_index = -1;
2744         rdma->current_chunk = -1;
2745 
2746         addr = g_new(InetSocketAddress, 1);
2747         if (!inet_parse(addr, host_port, NULL)) {
2748             rdma->port = atoi(addr->port);
2749             rdma->host = g_strdup(addr->host);
2750             rdma->host_port = g_strdup(host_port);
2751         } else {
2752             ERROR(errp, "bad RDMA migration address '%s'", host_port);
2753             g_free(rdma);
2754             rdma = NULL;
2755         }
2756 
2757         qapi_free_InetSocketAddress(addr);
2758     }
2759 
2760     return rdma;
2761 }
2762 
2763 /*
2764  * QEMUFile interface to the control channel.
2765  * SEND messages for control only.
2766  * VM's ram is handled with regular RDMA messages.
2767  */
2768 static ssize_t qio_channel_rdma_writev(QIOChannel *ioc,
2769                                        const struct iovec *iov,
2770                                        size_t niov,
2771                                        int *fds,
2772                                        size_t nfds,
2773                                        int flags,
2774                                        Error **errp)
2775 {
2776     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
2777     QEMUFile *f = rioc->file;
2778     RDMAContext *rdma;
2779     int ret;
2780     ssize_t done = 0;
2781     size_t i;
2782     size_t len = 0;
2783 
2784     RCU_READ_LOCK_GUARD();
2785     rdma = qatomic_rcu_read(&rioc->rdmaout);
2786 
2787     if (!rdma) {
2788         return -EIO;
2789     }
2790 
2791     CHECK_ERROR_STATE();
2792 
2793     /*
2794      * Push out any writes that
2795      * we're queued up for VM's ram.
2796      */
2797     ret = qemu_rdma_write_flush(f, rdma);
2798     if (ret < 0) {
2799         rdma->error_state = ret;
2800         return ret;
2801     }
2802 
2803     for (i = 0; i < niov; i++) {
2804         size_t remaining = iov[i].iov_len;
2805         uint8_t * data = (void *)iov[i].iov_base;
2806         while (remaining) {
2807             RDMAControlHeader head;
2808 
2809             len = MIN(remaining, RDMA_SEND_INCREMENT);
2810             remaining -= len;
2811 
2812             head.len = len;
2813             head.type = RDMA_CONTROL_QEMU_FILE;
2814 
2815             ret = qemu_rdma_exchange_send(rdma, &head, data, NULL, NULL, NULL);
2816 
2817             if (ret < 0) {
2818                 rdma->error_state = ret;
2819                 return ret;
2820             }
2821 
2822             data += len;
2823             done += len;
2824         }
2825     }
2826 
2827     return done;
2828 }
2829 
2830 static size_t qemu_rdma_fill(RDMAContext *rdma, uint8_t *buf,
2831                              size_t size, int idx)
2832 {
2833     size_t len = 0;
2834 
2835     if (rdma->wr_data[idx].control_len) {
2836         trace_qemu_rdma_fill(rdma->wr_data[idx].control_len, size);
2837 
2838         len = MIN(size, rdma->wr_data[idx].control_len);
2839         memcpy(buf, rdma->wr_data[idx].control_curr, len);
2840         rdma->wr_data[idx].control_curr += len;
2841         rdma->wr_data[idx].control_len -= len;
2842     }
2843 
2844     return len;
2845 }
2846 
2847 /*
2848  * QEMUFile interface to the control channel.
2849  * RDMA links don't use bytestreams, so we have to
2850  * return bytes to QEMUFile opportunistically.
2851  */
2852 static ssize_t qio_channel_rdma_readv(QIOChannel *ioc,
2853                                       const struct iovec *iov,
2854                                       size_t niov,
2855                                       int **fds,
2856                                       size_t *nfds,
2857                                       Error **errp)
2858 {
2859     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
2860     RDMAContext *rdma;
2861     RDMAControlHeader head;
2862     int ret = 0;
2863     ssize_t i;
2864     size_t done = 0;
2865 
2866     RCU_READ_LOCK_GUARD();
2867     rdma = qatomic_rcu_read(&rioc->rdmain);
2868 
2869     if (!rdma) {
2870         return -EIO;
2871     }
2872 
2873     CHECK_ERROR_STATE();
2874 
2875     for (i = 0; i < niov; i++) {
2876         size_t want = iov[i].iov_len;
2877         uint8_t *data = (void *)iov[i].iov_base;
2878 
2879         /*
2880          * First, we hold on to the last SEND message we
2881          * were given and dish out the bytes until we run
2882          * out of bytes.
2883          */
2884         ret = qemu_rdma_fill(rdma, data, want, 0);
2885         done += ret;
2886         want -= ret;
2887         /* Got what we needed, so go to next iovec */
2888         if (want == 0) {
2889             continue;
2890         }
2891 
2892         /* If we got any data so far, then don't wait
2893          * for more, just return what we have */
2894         if (done > 0) {
2895             break;
2896         }
2897 
2898 
2899         /* We've got nothing at all, so lets wait for
2900          * more to arrive
2901          */
2902         ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_QEMU_FILE);
2903 
2904         if (ret < 0) {
2905             rdma->error_state = ret;
2906             return ret;
2907         }
2908 
2909         /*
2910          * SEND was received with new bytes, now try again.
2911          */
2912         ret = qemu_rdma_fill(rdma, data, want, 0);
2913         done += ret;
2914         want -= ret;
2915 
2916         /* Still didn't get enough, so lets just return */
2917         if (want) {
2918             if (done == 0) {
2919                 return QIO_CHANNEL_ERR_BLOCK;
2920             } else {
2921                 break;
2922             }
2923         }
2924     }
2925     return done;
2926 }
2927 
2928 /*
2929  * Block until all the outstanding chunks have been delivered by the hardware.
2930  */
2931 static int qemu_rdma_drain_cq(QEMUFile *f, RDMAContext *rdma)
2932 {
2933     int ret;
2934 
2935     if (qemu_rdma_write_flush(f, rdma) < 0) {
2936         return -EIO;
2937     }
2938 
2939     while (rdma->nb_sent) {
2940         ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
2941         if (ret < 0) {
2942             error_report("rdma migration: complete polling error!");
2943             return -EIO;
2944         }
2945     }
2946 
2947     qemu_rdma_unregister_waiting(rdma);
2948 
2949     return 0;
2950 }
2951 
2952 
2953 static int qio_channel_rdma_set_blocking(QIOChannel *ioc,
2954                                          bool blocking,
2955                                          Error **errp)
2956 {
2957     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
2958     /* XXX we should make readv/writev actually honour this :-) */
2959     rioc->blocking = blocking;
2960     return 0;
2961 }
2962 
2963 
2964 typedef struct QIOChannelRDMASource QIOChannelRDMASource;
2965 struct QIOChannelRDMASource {
2966     GSource parent;
2967     QIOChannelRDMA *rioc;
2968     GIOCondition condition;
2969 };
2970 
2971 static gboolean
2972 qio_channel_rdma_source_prepare(GSource *source,
2973                                 gint *timeout)
2974 {
2975     QIOChannelRDMASource *rsource = (QIOChannelRDMASource *)source;
2976     RDMAContext *rdma;
2977     GIOCondition cond = 0;
2978     *timeout = -1;
2979 
2980     RCU_READ_LOCK_GUARD();
2981     if (rsource->condition == G_IO_IN) {
2982         rdma = qatomic_rcu_read(&rsource->rioc->rdmain);
2983     } else {
2984         rdma = qatomic_rcu_read(&rsource->rioc->rdmaout);
2985     }
2986 
2987     if (!rdma) {
2988         error_report("RDMAContext is NULL when prepare Gsource");
2989         return FALSE;
2990     }
2991 
2992     if (rdma->wr_data[0].control_len) {
2993         cond |= G_IO_IN;
2994     }
2995     cond |= G_IO_OUT;
2996 
2997     return cond & rsource->condition;
2998 }
2999 
3000 static gboolean
3001 qio_channel_rdma_source_check(GSource *source)
3002 {
3003     QIOChannelRDMASource *rsource = (QIOChannelRDMASource *)source;
3004     RDMAContext *rdma;
3005     GIOCondition cond = 0;
3006 
3007     RCU_READ_LOCK_GUARD();
3008     if (rsource->condition == G_IO_IN) {
3009         rdma = qatomic_rcu_read(&rsource->rioc->rdmain);
3010     } else {
3011         rdma = qatomic_rcu_read(&rsource->rioc->rdmaout);
3012     }
3013 
3014     if (!rdma) {
3015         error_report("RDMAContext is NULL when check Gsource");
3016         return FALSE;
3017     }
3018 
3019     if (rdma->wr_data[0].control_len) {
3020         cond |= G_IO_IN;
3021     }
3022     cond |= G_IO_OUT;
3023 
3024     return cond & rsource->condition;
3025 }
3026 
3027 static gboolean
3028 qio_channel_rdma_source_dispatch(GSource *source,
3029                                  GSourceFunc callback,
3030                                  gpointer user_data)
3031 {
3032     QIOChannelFunc func = (QIOChannelFunc)callback;
3033     QIOChannelRDMASource *rsource = (QIOChannelRDMASource *)source;
3034     RDMAContext *rdma;
3035     GIOCondition cond = 0;
3036 
3037     RCU_READ_LOCK_GUARD();
3038     if (rsource->condition == G_IO_IN) {
3039         rdma = qatomic_rcu_read(&rsource->rioc->rdmain);
3040     } else {
3041         rdma = qatomic_rcu_read(&rsource->rioc->rdmaout);
3042     }
3043 
3044     if (!rdma) {
3045         error_report("RDMAContext is NULL when dispatch Gsource");
3046         return FALSE;
3047     }
3048 
3049     if (rdma->wr_data[0].control_len) {
3050         cond |= G_IO_IN;
3051     }
3052     cond |= G_IO_OUT;
3053 
3054     return (*func)(QIO_CHANNEL(rsource->rioc),
3055                    (cond & rsource->condition),
3056                    user_data);
3057 }
3058 
3059 static void
3060 qio_channel_rdma_source_finalize(GSource *source)
3061 {
3062     QIOChannelRDMASource *ssource = (QIOChannelRDMASource *)source;
3063 
3064     object_unref(OBJECT(ssource->rioc));
3065 }
3066 
3067 GSourceFuncs qio_channel_rdma_source_funcs = {
3068     qio_channel_rdma_source_prepare,
3069     qio_channel_rdma_source_check,
3070     qio_channel_rdma_source_dispatch,
3071     qio_channel_rdma_source_finalize
3072 };
3073 
3074 static GSource *qio_channel_rdma_create_watch(QIOChannel *ioc,
3075                                               GIOCondition condition)
3076 {
3077     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
3078     QIOChannelRDMASource *ssource;
3079     GSource *source;
3080 
3081     source = g_source_new(&qio_channel_rdma_source_funcs,
3082                           sizeof(QIOChannelRDMASource));
3083     ssource = (QIOChannelRDMASource *)source;
3084 
3085     ssource->rioc = rioc;
3086     object_ref(OBJECT(rioc));
3087 
3088     ssource->condition = condition;
3089 
3090     return source;
3091 }
3092 
3093 static void qio_channel_rdma_set_aio_fd_handler(QIOChannel *ioc,
3094                                                   AioContext *ctx,
3095                                                   IOHandler *io_read,
3096                                                   IOHandler *io_write,
3097                                                   void *opaque)
3098 {
3099     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
3100     if (io_read) {
3101         aio_set_fd_handler(ctx, rioc->rdmain->recv_comp_channel->fd,
3102                            false, io_read, io_write, NULL, NULL, opaque);
3103         aio_set_fd_handler(ctx, rioc->rdmain->send_comp_channel->fd,
3104                            false, io_read, io_write, NULL, NULL, opaque);
3105     } else {
3106         aio_set_fd_handler(ctx, rioc->rdmaout->recv_comp_channel->fd,
3107                            false, io_read, io_write, NULL, NULL, opaque);
3108         aio_set_fd_handler(ctx, rioc->rdmaout->send_comp_channel->fd,
3109                            false, io_read, io_write, NULL, NULL, opaque);
3110     }
3111 }
3112 
3113 struct rdma_close_rcu {
3114     struct rcu_head rcu;
3115     RDMAContext *rdmain;
3116     RDMAContext *rdmaout;
3117 };
3118 
3119 /* callback from qio_channel_rdma_close via call_rcu */
3120 static void qio_channel_rdma_close_rcu(struct rdma_close_rcu *rcu)
3121 {
3122     if (rcu->rdmain) {
3123         qemu_rdma_cleanup(rcu->rdmain);
3124     }
3125 
3126     if (rcu->rdmaout) {
3127         qemu_rdma_cleanup(rcu->rdmaout);
3128     }
3129 
3130     g_free(rcu->rdmain);
3131     g_free(rcu->rdmaout);
3132     g_free(rcu);
3133 }
3134 
3135 static int qio_channel_rdma_close(QIOChannel *ioc,
3136                                   Error **errp)
3137 {
3138     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
3139     RDMAContext *rdmain, *rdmaout;
3140     struct rdma_close_rcu *rcu = g_new(struct rdma_close_rcu, 1);
3141 
3142     trace_qemu_rdma_close();
3143 
3144     rdmain = rioc->rdmain;
3145     if (rdmain) {
3146         qatomic_rcu_set(&rioc->rdmain, NULL);
3147     }
3148 
3149     rdmaout = rioc->rdmaout;
3150     if (rdmaout) {
3151         qatomic_rcu_set(&rioc->rdmaout, NULL);
3152     }
3153 
3154     rcu->rdmain = rdmain;
3155     rcu->rdmaout = rdmaout;
3156     call_rcu(rcu, qio_channel_rdma_close_rcu, rcu);
3157 
3158     return 0;
3159 }
3160 
3161 static int
3162 qio_channel_rdma_shutdown(QIOChannel *ioc,
3163                             QIOChannelShutdown how,
3164                             Error **errp)
3165 {
3166     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
3167     RDMAContext *rdmain, *rdmaout;
3168 
3169     RCU_READ_LOCK_GUARD();
3170 
3171     rdmain = qatomic_rcu_read(&rioc->rdmain);
3172     rdmaout = qatomic_rcu_read(&rioc->rdmain);
3173 
3174     switch (how) {
3175     case QIO_CHANNEL_SHUTDOWN_READ:
3176         if (rdmain) {
3177             rdmain->error_state = -1;
3178         }
3179         break;
3180     case QIO_CHANNEL_SHUTDOWN_WRITE:
3181         if (rdmaout) {
3182             rdmaout->error_state = -1;
3183         }
3184         break;
3185     case QIO_CHANNEL_SHUTDOWN_BOTH:
3186     default:
3187         if (rdmain) {
3188             rdmain->error_state = -1;
3189         }
3190         if (rdmaout) {
3191             rdmaout->error_state = -1;
3192         }
3193         break;
3194     }
3195 
3196     return 0;
3197 }
3198 
3199 /*
3200  * Parameters:
3201  *    @offset == 0 :
3202  *        This means that 'block_offset' is a full virtual address that does not
3203  *        belong to a RAMBlock of the virtual machine and instead
3204  *        represents a private malloc'd memory area that the caller wishes to
3205  *        transfer.
3206  *
3207  *    @offset != 0 :
3208  *        Offset is an offset to be added to block_offset and used
3209  *        to also lookup the corresponding RAMBlock.
3210  *
3211  *    @size : Number of bytes to transfer
3212  *
3213  *    @bytes_sent : User-specificed pointer to indicate how many bytes were
3214  *                  sent. Usually, this will not be more than a few bytes of
3215  *                  the protocol because most transfers are sent asynchronously.
3216  */
3217 static size_t qemu_rdma_save_page(QEMUFile *f,
3218                                   ram_addr_t block_offset, ram_addr_t offset,
3219                                   size_t size, uint64_t *bytes_sent)
3220 {
3221     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(qemu_file_get_ioc(f));
3222     RDMAContext *rdma;
3223     int ret;
3224 
3225     RCU_READ_LOCK_GUARD();
3226     rdma = qatomic_rcu_read(&rioc->rdmaout);
3227 
3228     if (!rdma) {
3229         return -EIO;
3230     }
3231 
3232     CHECK_ERROR_STATE();
3233 
3234     if (migration_in_postcopy()) {
3235         return RAM_SAVE_CONTROL_NOT_SUPP;
3236     }
3237 
3238     qemu_fflush(f);
3239 
3240     /*
3241      * Add this page to the current 'chunk'. If the chunk
3242      * is full, or the page doesn't belong to the current chunk,
3243      * an actual RDMA write will occur and a new chunk will be formed.
3244      */
3245     ret = qemu_rdma_write(f, rdma, block_offset, offset, size);
3246     if (ret < 0) {
3247         error_report("rdma migration: write error! %d", ret);
3248         goto err;
3249     }
3250 
3251     /*
3252      * We always return 1 bytes because the RDMA
3253      * protocol is completely asynchronous. We do not yet know
3254      * whether an  identified chunk is zero or not because we're
3255      * waiting for other pages to potentially be merged with
3256      * the current chunk. So, we have to call qemu_update_position()
3257      * later on when the actual write occurs.
3258      */
3259     if (bytes_sent) {
3260         *bytes_sent = 1;
3261     }
3262 
3263     /*
3264      * Drain the Completion Queue if possible, but do not block,
3265      * just poll.
3266      *
3267      * If nothing to poll, the end of the iteration will do this
3268      * again to make sure we don't overflow the request queue.
3269      */
3270     while (1) {
3271         uint64_t wr_id, wr_id_in;
3272         int ret = qemu_rdma_poll(rdma, rdma->recv_cq, &wr_id_in, NULL);
3273         if (ret < 0) {
3274             error_report("rdma migration: polling error! %d", ret);
3275             goto err;
3276         }
3277 
3278         wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
3279 
3280         if (wr_id == RDMA_WRID_NONE) {
3281             break;
3282         }
3283     }
3284 
3285     while (1) {
3286         uint64_t wr_id, wr_id_in;
3287         int ret = qemu_rdma_poll(rdma, rdma->send_cq, &wr_id_in, NULL);
3288         if (ret < 0) {
3289             error_report("rdma migration: polling error! %d", ret);
3290             goto err;
3291         }
3292 
3293         wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
3294 
3295         if (wr_id == RDMA_WRID_NONE) {
3296             break;
3297         }
3298     }
3299 
3300     return RAM_SAVE_CONTROL_DELAYED;
3301 err:
3302     rdma->error_state = ret;
3303     return ret;
3304 }
3305 
3306 static void rdma_accept_incoming_migration(void *opaque);
3307 
3308 static void rdma_cm_poll_handler(void *opaque)
3309 {
3310     RDMAContext *rdma = opaque;
3311     int ret;
3312     struct rdma_cm_event *cm_event;
3313     MigrationIncomingState *mis = migration_incoming_get_current();
3314 
3315     ret = rdma_get_cm_event(rdma->channel, &cm_event);
3316     if (ret) {
3317         error_report("get_cm_event failed %d", errno);
3318         return;
3319     }
3320 
3321     if (cm_event->event == RDMA_CM_EVENT_DISCONNECTED ||
3322         cm_event->event == RDMA_CM_EVENT_DEVICE_REMOVAL) {
3323         if (!rdma->error_state &&
3324             migration_incoming_get_current()->state !=
3325               MIGRATION_STATUS_COMPLETED) {
3326             error_report("receive cm event, cm event is %d", cm_event->event);
3327             rdma->error_state = -EPIPE;
3328             if (rdma->return_path) {
3329                 rdma->return_path->error_state = -EPIPE;
3330             }
3331         }
3332         rdma_ack_cm_event(cm_event);
3333 
3334         if (mis->migration_incoming_co) {
3335             qemu_coroutine_enter(mis->migration_incoming_co);
3336         }
3337         return;
3338     }
3339     rdma_ack_cm_event(cm_event);
3340 }
3341 
3342 static int qemu_rdma_accept(RDMAContext *rdma)
3343 {
3344     RDMACapabilities cap;
3345     struct rdma_conn_param conn_param = {
3346                                             .responder_resources = 2,
3347                                             .private_data = &cap,
3348                                             .private_data_len = sizeof(cap),
3349                                          };
3350     RDMAContext *rdma_return_path = NULL;
3351     struct rdma_cm_event *cm_event;
3352     struct ibv_context *verbs;
3353     int ret = -EINVAL;
3354     int idx;
3355 
3356     ret = rdma_get_cm_event(rdma->channel, &cm_event);
3357     if (ret) {
3358         goto err_rdma_dest_wait;
3359     }
3360 
3361     if (cm_event->event != RDMA_CM_EVENT_CONNECT_REQUEST) {
3362         rdma_ack_cm_event(cm_event);
3363         goto err_rdma_dest_wait;
3364     }
3365 
3366     /*
3367      * initialize the RDMAContext for return path for postcopy after first
3368      * connection request reached.
3369      */
3370     if (migrate_postcopy() && !rdma->is_return_path) {
3371         rdma_return_path = qemu_rdma_data_init(rdma->host_port, NULL);
3372         if (rdma_return_path == NULL) {
3373             rdma_ack_cm_event(cm_event);
3374             goto err_rdma_dest_wait;
3375         }
3376 
3377         qemu_rdma_return_path_dest_init(rdma_return_path, rdma);
3378     }
3379 
3380     memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap));
3381 
3382     network_to_caps(&cap);
3383 
3384     if (cap.version < 1 || cap.version > RDMA_CONTROL_VERSION_CURRENT) {
3385             error_report("Unknown source RDMA version: %d, bailing...",
3386                             cap.version);
3387             rdma_ack_cm_event(cm_event);
3388             goto err_rdma_dest_wait;
3389     }
3390 
3391     /*
3392      * Respond with only the capabilities this version of QEMU knows about.
3393      */
3394     cap.flags &= known_capabilities;
3395 
3396     /*
3397      * Enable the ones that we do know about.
3398      * Add other checks here as new ones are introduced.
3399      */
3400     if (cap.flags & RDMA_CAPABILITY_PIN_ALL) {
3401         rdma->pin_all = true;
3402     }
3403 
3404     rdma->cm_id = cm_event->id;
3405     verbs = cm_event->id->verbs;
3406 
3407     rdma_ack_cm_event(cm_event);
3408 
3409     trace_qemu_rdma_accept_pin_state(rdma->pin_all);
3410 
3411     caps_to_network(&cap);
3412 
3413     trace_qemu_rdma_accept_pin_verbsc(verbs);
3414 
3415     if (!rdma->verbs) {
3416         rdma->verbs = verbs;
3417     } else if (rdma->verbs != verbs) {
3418             error_report("ibv context not matching %p, %p!", rdma->verbs,
3419                          verbs);
3420             goto err_rdma_dest_wait;
3421     }
3422 
3423     qemu_rdma_dump_id("dest_init", verbs);
3424 
3425     ret = qemu_rdma_alloc_pd_cq(rdma);
3426     if (ret) {
3427         error_report("rdma migration: error allocating pd and cq!");
3428         goto err_rdma_dest_wait;
3429     }
3430 
3431     ret = qemu_rdma_alloc_qp(rdma);
3432     if (ret) {
3433         error_report("rdma migration: error allocating qp!");
3434         goto err_rdma_dest_wait;
3435     }
3436 
3437     ret = qemu_rdma_init_ram_blocks(rdma);
3438     if (ret) {
3439         error_report("rdma migration: error initializing ram blocks!");
3440         goto err_rdma_dest_wait;
3441     }
3442 
3443     for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
3444         ret = qemu_rdma_reg_control(rdma, idx);
3445         if (ret) {
3446             error_report("rdma: error registering %d control", idx);
3447             goto err_rdma_dest_wait;
3448         }
3449     }
3450 
3451     /* Accept the second connection request for return path */
3452     if (migrate_postcopy() && !rdma->is_return_path) {
3453         qemu_set_fd_handler(rdma->channel->fd, rdma_accept_incoming_migration,
3454                             NULL,
3455                             (void *)(intptr_t)rdma->return_path);
3456     } else {
3457         qemu_set_fd_handler(rdma->channel->fd, rdma_cm_poll_handler,
3458                             NULL, rdma);
3459     }
3460 
3461     ret = rdma_accept(rdma->cm_id, &conn_param);
3462     if (ret) {
3463         error_report("rdma_accept returns %d", ret);
3464         goto err_rdma_dest_wait;
3465     }
3466 
3467     ret = rdma_get_cm_event(rdma->channel, &cm_event);
3468     if (ret) {
3469         error_report("rdma_accept get_cm_event failed %d", ret);
3470         goto err_rdma_dest_wait;
3471     }
3472 
3473     if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) {
3474         error_report("rdma_accept not event established");
3475         rdma_ack_cm_event(cm_event);
3476         goto err_rdma_dest_wait;
3477     }
3478 
3479     rdma_ack_cm_event(cm_event);
3480     rdma->connected = true;
3481 
3482     ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
3483     if (ret) {
3484         error_report("rdma migration: error posting second control recv");
3485         goto err_rdma_dest_wait;
3486     }
3487 
3488     qemu_rdma_dump_gid("dest_connect", rdma->cm_id);
3489 
3490     return 0;
3491 
3492 err_rdma_dest_wait:
3493     rdma->error_state = ret;
3494     qemu_rdma_cleanup(rdma);
3495     g_free(rdma_return_path);
3496     return ret;
3497 }
3498 
3499 static int dest_ram_sort_func(const void *a, const void *b)
3500 {
3501     unsigned int a_index = ((const RDMALocalBlock *)a)->src_index;
3502     unsigned int b_index = ((const RDMALocalBlock *)b)->src_index;
3503 
3504     return (a_index < b_index) ? -1 : (a_index != b_index);
3505 }
3506 
3507 /*
3508  * During each iteration of the migration, we listen for instructions
3509  * by the source VM to perform dynamic page registrations before they
3510  * can perform RDMA operations.
3511  *
3512  * We respond with the 'rkey'.
3513  *
3514  * Keep doing this until the source tells us to stop.
3515  */
3516 static int qemu_rdma_registration_handle(QEMUFile *f, void *opaque)
3517 {
3518     RDMAControlHeader reg_resp = { .len = sizeof(RDMARegisterResult),
3519                                .type = RDMA_CONTROL_REGISTER_RESULT,
3520                                .repeat = 0,
3521                              };
3522     RDMAControlHeader unreg_resp = { .len = 0,
3523                                .type = RDMA_CONTROL_UNREGISTER_FINISHED,
3524                                .repeat = 0,
3525                              };
3526     RDMAControlHeader blocks = { .type = RDMA_CONTROL_RAM_BLOCKS_RESULT,
3527                                  .repeat = 1 };
3528     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(opaque);
3529     RDMAContext *rdma;
3530     RDMALocalBlocks *local;
3531     RDMAControlHeader head;
3532     RDMARegister *reg, *registers;
3533     RDMACompress *comp;
3534     RDMARegisterResult *reg_result;
3535     static RDMARegisterResult results[RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE];
3536     RDMALocalBlock *block;
3537     void *host_addr;
3538     int ret = 0;
3539     int idx = 0;
3540     int count = 0;
3541     int i = 0;
3542 
3543     RCU_READ_LOCK_GUARD();
3544     rdma = qatomic_rcu_read(&rioc->rdmain);
3545 
3546     if (!rdma) {
3547         return -EIO;
3548     }
3549 
3550     CHECK_ERROR_STATE();
3551 
3552     local = &rdma->local_ram_blocks;
3553     do {
3554         trace_qemu_rdma_registration_handle_wait();
3555 
3556         ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_NONE);
3557 
3558         if (ret < 0) {
3559             break;
3560         }
3561 
3562         if (head.repeat > RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE) {
3563             error_report("rdma: Too many requests in this message (%d)."
3564                             "Bailing.", head.repeat);
3565             ret = -EIO;
3566             break;
3567         }
3568 
3569         switch (head.type) {
3570         case RDMA_CONTROL_COMPRESS:
3571             comp = (RDMACompress *) rdma->wr_data[idx].control_curr;
3572             network_to_compress(comp);
3573 
3574             trace_qemu_rdma_registration_handle_compress(comp->length,
3575                                                          comp->block_idx,
3576                                                          comp->offset);
3577             if (comp->block_idx >= rdma->local_ram_blocks.nb_blocks) {
3578                 error_report("rdma: 'compress' bad block index %u (vs %d)",
3579                              (unsigned int)comp->block_idx,
3580                              rdma->local_ram_blocks.nb_blocks);
3581                 ret = -EIO;
3582                 goto out;
3583             }
3584             block = &(rdma->local_ram_blocks.block[comp->block_idx]);
3585 
3586             host_addr = block->local_host_addr +
3587                             (comp->offset - block->offset);
3588 
3589             ram_handle_compressed(host_addr, comp->value, comp->length);
3590             break;
3591 
3592         case RDMA_CONTROL_REGISTER_FINISHED:
3593             trace_qemu_rdma_registration_handle_finished();
3594             goto out;
3595 
3596         case RDMA_CONTROL_RAM_BLOCKS_REQUEST:
3597             trace_qemu_rdma_registration_handle_ram_blocks();
3598 
3599             /* Sort our local RAM Block list so it's the same as the source,
3600              * we can do this since we've filled in a src_index in the list
3601              * as we received the RAMBlock list earlier.
3602              */
3603             qsort(rdma->local_ram_blocks.block,
3604                   rdma->local_ram_blocks.nb_blocks,
3605                   sizeof(RDMALocalBlock), dest_ram_sort_func);
3606             for (i = 0; i < local->nb_blocks; i++) {
3607                 local->block[i].index = i;
3608             }
3609 
3610             if (rdma->pin_all) {
3611                 ret = qemu_rdma_reg_whole_ram_blocks(rdma);
3612                 if (ret) {
3613                     error_report("rdma migration: error dest "
3614                                     "registering ram blocks");
3615                     goto out;
3616                 }
3617             }
3618 
3619             /*
3620              * Dest uses this to prepare to transmit the RAMBlock descriptions
3621              * to the source VM after connection setup.
3622              * Both sides use the "remote" structure to communicate and update
3623              * their "local" descriptions with what was sent.
3624              */
3625             for (i = 0; i < local->nb_blocks; i++) {
3626                 rdma->dest_blocks[i].remote_host_addr =
3627                     (uintptr_t)(local->block[i].local_host_addr);
3628 
3629                 if (rdma->pin_all) {
3630                     rdma->dest_blocks[i].remote_rkey = local->block[i].mr->rkey;
3631                 }
3632 
3633                 rdma->dest_blocks[i].offset = local->block[i].offset;
3634                 rdma->dest_blocks[i].length = local->block[i].length;
3635 
3636                 dest_block_to_network(&rdma->dest_blocks[i]);
3637                 trace_qemu_rdma_registration_handle_ram_blocks_loop(
3638                     local->block[i].block_name,
3639                     local->block[i].offset,
3640                     local->block[i].length,
3641                     local->block[i].local_host_addr,
3642                     local->block[i].src_index);
3643             }
3644 
3645             blocks.len = rdma->local_ram_blocks.nb_blocks
3646                                                 * sizeof(RDMADestBlock);
3647 
3648 
3649             ret = qemu_rdma_post_send_control(rdma,
3650                                         (uint8_t *) rdma->dest_blocks, &blocks);
3651 
3652             if (ret < 0) {
3653                 error_report("rdma migration: error sending remote info");
3654                 goto out;
3655             }
3656 
3657             break;
3658         case RDMA_CONTROL_REGISTER_REQUEST:
3659             trace_qemu_rdma_registration_handle_register(head.repeat);
3660 
3661             reg_resp.repeat = head.repeat;
3662             registers = (RDMARegister *) rdma->wr_data[idx].control_curr;
3663 
3664             for (count = 0; count < head.repeat; count++) {
3665                 uint64_t chunk;
3666                 uint8_t *chunk_start, *chunk_end;
3667 
3668                 reg = &registers[count];
3669                 network_to_register(reg);
3670 
3671                 reg_result = &results[count];
3672 
3673                 trace_qemu_rdma_registration_handle_register_loop(count,
3674                          reg->current_index, reg->key.current_addr, reg->chunks);
3675 
3676                 if (reg->current_index >= rdma->local_ram_blocks.nb_blocks) {
3677                     error_report("rdma: 'register' bad block index %u (vs %d)",
3678                                  (unsigned int)reg->current_index,
3679                                  rdma->local_ram_blocks.nb_blocks);
3680                     ret = -ENOENT;
3681                     goto out;
3682                 }
3683                 block = &(rdma->local_ram_blocks.block[reg->current_index]);
3684                 if (block->is_ram_block) {
3685                     if (block->offset > reg->key.current_addr) {
3686                         error_report("rdma: bad register address for block %s"
3687                             " offset: %" PRIx64 " current_addr: %" PRIx64,
3688                             block->block_name, block->offset,
3689                             reg->key.current_addr);
3690                         ret = -ERANGE;
3691                         goto out;
3692                     }
3693                     host_addr = (block->local_host_addr +
3694                                 (reg->key.current_addr - block->offset));
3695                     chunk = ram_chunk_index(block->local_host_addr,
3696                                             (uint8_t *) host_addr);
3697                 } else {
3698                     chunk = reg->key.chunk;
3699                     host_addr = block->local_host_addr +
3700                         (reg->key.chunk * (1UL << RDMA_REG_CHUNK_SHIFT));
3701                     /* Check for particularly bad chunk value */
3702                     if (host_addr < (void *)block->local_host_addr) {
3703                         error_report("rdma: bad chunk for block %s"
3704                             " chunk: %" PRIx64,
3705                             block->block_name, reg->key.chunk);
3706                         ret = -ERANGE;
3707                         goto out;
3708                     }
3709                 }
3710                 chunk_start = ram_chunk_start(block, chunk);
3711                 chunk_end = ram_chunk_end(block, chunk + reg->chunks);
3712                 /* avoid "-Waddress-of-packed-member" warning */
3713                 uint32_t tmp_rkey = 0;
3714                 if (qemu_rdma_register_and_get_keys(rdma, block,
3715                             (uintptr_t)host_addr, NULL, &tmp_rkey,
3716                             chunk, chunk_start, chunk_end)) {
3717                     error_report("cannot get rkey");
3718                     ret = -EINVAL;
3719                     goto out;
3720                 }
3721                 reg_result->rkey = tmp_rkey;
3722 
3723                 reg_result->host_addr = (uintptr_t)block->local_host_addr;
3724 
3725                 trace_qemu_rdma_registration_handle_register_rkey(
3726                                                            reg_result->rkey);
3727 
3728                 result_to_network(reg_result);
3729             }
3730 
3731             ret = qemu_rdma_post_send_control(rdma,
3732                             (uint8_t *) results, &reg_resp);
3733 
3734             if (ret < 0) {
3735                 error_report("Failed to send control buffer");
3736                 goto out;
3737             }
3738             break;
3739         case RDMA_CONTROL_UNREGISTER_REQUEST:
3740             trace_qemu_rdma_registration_handle_unregister(head.repeat);
3741             unreg_resp.repeat = head.repeat;
3742             registers = (RDMARegister *) rdma->wr_data[idx].control_curr;
3743 
3744             for (count = 0; count < head.repeat; count++) {
3745                 reg = &registers[count];
3746                 network_to_register(reg);
3747 
3748                 trace_qemu_rdma_registration_handle_unregister_loop(count,
3749                            reg->current_index, reg->key.chunk);
3750 
3751                 block = &(rdma->local_ram_blocks.block[reg->current_index]);
3752 
3753                 ret = ibv_dereg_mr(block->pmr[reg->key.chunk]);
3754                 block->pmr[reg->key.chunk] = NULL;
3755 
3756                 if (ret != 0) {
3757                     perror("rdma unregistration chunk failed");
3758                     ret = -ret;
3759                     goto out;
3760                 }
3761 
3762                 rdma->total_registrations--;
3763 
3764                 trace_qemu_rdma_registration_handle_unregister_success(
3765                                                        reg->key.chunk);
3766             }
3767 
3768             ret = qemu_rdma_post_send_control(rdma, NULL, &unreg_resp);
3769 
3770             if (ret < 0) {
3771                 error_report("Failed to send control buffer");
3772                 goto out;
3773             }
3774             break;
3775         case RDMA_CONTROL_REGISTER_RESULT:
3776             error_report("Invalid RESULT message at dest.");
3777             ret = -EIO;
3778             goto out;
3779         default:
3780             error_report("Unknown control message %s", control_desc(head.type));
3781             ret = -EIO;
3782             goto out;
3783         }
3784     } while (1);
3785 out:
3786     if (ret < 0) {
3787         rdma->error_state = ret;
3788     }
3789     return ret;
3790 }
3791 
3792 /* Destination:
3793  * Called via a ram_control_load_hook during the initial RAM load section which
3794  * lists the RAMBlocks by name.  This lets us know the order of the RAMBlocks
3795  * on the source.
3796  * We've already built our local RAMBlock list, but not yet sent the list to
3797  * the source.
3798  */
3799 static int
3800 rdma_block_notification_handle(QIOChannelRDMA *rioc, const char *name)
3801 {
3802     RDMAContext *rdma;
3803     int curr;
3804     int found = -1;
3805 
3806     RCU_READ_LOCK_GUARD();
3807     rdma = qatomic_rcu_read(&rioc->rdmain);
3808 
3809     if (!rdma) {
3810         return -EIO;
3811     }
3812 
3813     /* Find the matching RAMBlock in our local list */
3814     for (curr = 0; curr < rdma->local_ram_blocks.nb_blocks; curr++) {
3815         if (!strcmp(rdma->local_ram_blocks.block[curr].block_name, name)) {
3816             found = curr;
3817             break;
3818         }
3819     }
3820 
3821     if (found == -1) {
3822         error_report("RAMBlock '%s' not found on destination", name);
3823         return -ENOENT;
3824     }
3825 
3826     rdma->local_ram_blocks.block[curr].src_index = rdma->next_src_index;
3827     trace_rdma_block_notification_handle(name, rdma->next_src_index);
3828     rdma->next_src_index++;
3829 
3830     return 0;
3831 }
3832 
3833 static int rdma_load_hook(QEMUFile *f, uint64_t flags, void *data)
3834 {
3835     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(qemu_file_get_ioc(f));
3836     switch (flags) {
3837     case RAM_CONTROL_BLOCK_REG:
3838         return rdma_block_notification_handle(rioc, data);
3839 
3840     case RAM_CONTROL_HOOK:
3841         return qemu_rdma_registration_handle(f, rioc);
3842 
3843     default:
3844         /* Shouldn't be called with any other values */
3845         abort();
3846     }
3847 }
3848 
3849 static int qemu_rdma_registration_start(QEMUFile *f,
3850                                         uint64_t flags, void *data)
3851 {
3852     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(qemu_file_get_ioc(f));
3853     RDMAContext *rdma;
3854 
3855     RCU_READ_LOCK_GUARD();
3856     rdma = qatomic_rcu_read(&rioc->rdmaout);
3857     if (!rdma) {
3858         return -EIO;
3859     }
3860 
3861     CHECK_ERROR_STATE();
3862 
3863     if (migration_in_postcopy()) {
3864         return 0;
3865     }
3866 
3867     trace_qemu_rdma_registration_start(flags);
3868     qemu_put_be64(f, RAM_SAVE_FLAG_HOOK);
3869     qemu_fflush(f);
3870 
3871     return 0;
3872 }
3873 
3874 /*
3875  * Inform dest that dynamic registrations are done for now.
3876  * First, flush writes, if any.
3877  */
3878 static int qemu_rdma_registration_stop(QEMUFile *f,
3879                                        uint64_t flags, void *data)
3880 {
3881     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(qemu_file_get_ioc(f));
3882     RDMAContext *rdma;
3883     RDMAControlHeader head = { .len = 0, .repeat = 1 };
3884     int ret = 0;
3885 
3886     RCU_READ_LOCK_GUARD();
3887     rdma = qatomic_rcu_read(&rioc->rdmaout);
3888     if (!rdma) {
3889         return -EIO;
3890     }
3891 
3892     CHECK_ERROR_STATE();
3893 
3894     if (migration_in_postcopy()) {
3895         return 0;
3896     }
3897 
3898     qemu_fflush(f);
3899     ret = qemu_rdma_drain_cq(f, rdma);
3900 
3901     if (ret < 0) {
3902         goto err;
3903     }
3904 
3905     if (flags == RAM_CONTROL_SETUP) {
3906         RDMAControlHeader resp = {.type = RDMA_CONTROL_RAM_BLOCKS_RESULT };
3907         RDMALocalBlocks *local = &rdma->local_ram_blocks;
3908         int reg_result_idx, i, nb_dest_blocks;
3909 
3910         head.type = RDMA_CONTROL_RAM_BLOCKS_REQUEST;
3911         trace_qemu_rdma_registration_stop_ram();
3912 
3913         /*
3914          * Make sure that we parallelize the pinning on both sides.
3915          * For very large guests, doing this serially takes a really
3916          * long time, so we have to 'interleave' the pinning locally
3917          * with the control messages by performing the pinning on this
3918          * side before we receive the control response from the other
3919          * side that the pinning has completed.
3920          */
3921         ret = qemu_rdma_exchange_send(rdma, &head, NULL, &resp,
3922                     &reg_result_idx, rdma->pin_all ?
3923                     qemu_rdma_reg_whole_ram_blocks : NULL);
3924         if (ret < 0) {
3925             fprintf(stderr, "receiving remote info!");
3926             return ret;
3927         }
3928 
3929         nb_dest_blocks = resp.len / sizeof(RDMADestBlock);
3930 
3931         /*
3932          * The protocol uses two different sets of rkeys (mutually exclusive):
3933          * 1. One key to represent the virtual address of the entire ram block.
3934          *    (dynamic chunk registration disabled - pin everything with one rkey.)
3935          * 2. One to represent individual chunks within a ram block.
3936          *    (dynamic chunk registration enabled - pin individual chunks.)
3937          *
3938          * Once the capability is successfully negotiated, the destination transmits
3939          * the keys to use (or sends them later) including the virtual addresses
3940          * and then propagates the remote ram block descriptions to his local copy.
3941          */
3942 
3943         if (local->nb_blocks != nb_dest_blocks) {
3944             fprintf(stderr, "ram blocks mismatch (Number of blocks %d vs %d) "
3945                     "Your QEMU command line parameters are probably "
3946                     "not identical on both the source and destination.",
3947                     local->nb_blocks, nb_dest_blocks);
3948             rdma->error_state = -EINVAL;
3949             return -EINVAL;
3950         }
3951 
3952         qemu_rdma_move_header(rdma, reg_result_idx, &resp);
3953         memcpy(rdma->dest_blocks,
3954             rdma->wr_data[reg_result_idx].control_curr, resp.len);
3955         for (i = 0; i < nb_dest_blocks; i++) {
3956             network_to_dest_block(&rdma->dest_blocks[i]);
3957 
3958             /* We require that the blocks are in the same order */
3959             if (rdma->dest_blocks[i].length != local->block[i].length) {
3960                 fprintf(stderr, "Block %s/%d has a different length %" PRIu64
3961                         "vs %" PRIu64, local->block[i].block_name, i,
3962                         local->block[i].length,
3963                         rdma->dest_blocks[i].length);
3964                 rdma->error_state = -EINVAL;
3965                 return -EINVAL;
3966             }
3967             local->block[i].remote_host_addr =
3968                     rdma->dest_blocks[i].remote_host_addr;
3969             local->block[i].remote_rkey = rdma->dest_blocks[i].remote_rkey;
3970         }
3971     }
3972 
3973     trace_qemu_rdma_registration_stop(flags);
3974 
3975     head.type = RDMA_CONTROL_REGISTER_FINISHED;
3976     ret = qemu_rdma_exchange_send(rdma, &head, NULL, NULL, NULL, NULL);
3977 
3978     if (ret < 0) {
3979         goto err;
3980     }
3981 
3982     return 0;
3983 err:
3984     rdma->error_state = ret;
3985     return ret;
3986 }
3987 
3988 static const QEMUFileHooks rdma_read_hooks = {
3989     .hook_ram_load = rdma_load_hook,
3990 };
3991 
3992 static const QEMUFileHooks rdma_write_hooks = {
3993     .before_ram_iterate = qemu_rdma_registration_start,
3994     .after_ram_iterate  = qemu_rdma_registration_stop,
3995     .save_page          = qemu_rdma_save_page,
3996 };
3997 
3998 
3999 static void qio_channel_rdma_finalize(Object *obj)
4000 {
4001     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(obj);
4002     if (rioc->rdmain) {
4003         qemu_rdma_cleanup(rioc->rdmain);
4004         g_free(rioc->rdmain);
4005         rioc->rdmain = NULL;
4006     }
4007     if (rioc->rdmaout) {
4008         qemu_rdma_cleanup(rioc->rdmaout);
4009         g_free(rioc->rdmaout);
4010         rioc->rdmaout = NULL;
4011     }
4012 }
4013 
4014 static void qio_channel_rdma_class_init(ObjectClass *klass,
4015                                         void *class_data G_GNUC_UNUSED)
4016 {
4017     QIOChannelClass *ioc_klass = QIO_CHANNEL_CLASS(klass);
4018 
4019     ioc_klass->io_writev = qio_channel_rdma_writev;
4020     ioc_klass->io_readv = qio_channel_rdma_readv;
4021     ioc_klass->io_set_blocking = qio_channel_rdma_set_blocking;
4022     ioc_klass->io_close = qio_channel_rdma_close;
4023     ioc_klass->io_create_watch = qio_channel_rdma_create_watch;
4024     ioc_klass->io_set_aio_fd_handler = qio_channel_rdma_set_aio_fd_handler;
4025     ioc_klass->io_shutdown = qio_channel_rdma_shutdown;
4026 }
4027 
4028 static const TypeInfo qio_channel_rdma_info = {
4029     .parent = TYPE_QIO_CHANNEL,
4030     .name = TYPE_QIO_CHANNEL_RDMA,
4031     .instance_size = sizeof(QIOChannelRDMA),
4032     .instance_finalize = qio_channel_rdma_finalize,
4033     .class_init = qio_channel_rdma_class_init,
4034 };
4035 
4036 static void qio_channel_rdma_register_types(void)
4037 {
4038     type_register_static(&qio_channel_rdma_info);
4039 }
4040 
4041 type_init(qio_channel_rdma_register_types);
4042 
4043 static QEMUFile *qemu_fopen_rdma(RDMAContext *rdma, const char *mode)
4044 {
4045     QIOChannelRDMA *rioc;
4046 
4047     if (qemu_file_mode_is_not_valid(mode)) {
4048         return NULL;
4049     }
4050 
4051     rioc = QIO_CHANNEL_RDMA(object_new(TYPE_QIO_CHANNEL_RDMA));
4052 
4053     if (mode[0] == 'w') {
4054         rioc->file = qemu_file_new_output(QIO_CHANNEL(rioc));
4055         rioc->rdmaout = rdma;
4056         rioc->rdmain = rdma->return_path;
4057         qemu_file_set_hooks(rioc->file, &rdma_write_hooks);
4058     } else {
4059         rioc->file = qemu_file_new_input(QIO_CHANNEL(rioc));
4060         rioc->rdmain = rdma;
4061         rioc->rdmaout = rdma->return_path;
4062         qemu_file_set_hooks(rioc->file, &rdma_read_hooks);
4063     }
4064 
4065     return rioc->file;
4066 }
4067 
4068 static void rdma_accept_incoming_migration(void *opaque)
4069 {
4070     RDMAContext *rdma = opaque;
4071     int ret;
4072     QEMUFile *f;
4073     Error *local_err = NULL;
4074 
4075     trace_qemu_rdma_accept_incoming_migration();
4076     ret = qemu_rdma_accept(rdma);
4077 
4078     if (ret) {
4079         fprintf(stderr, "RDMA ERROR: Migration initialization failed\n");
4080         return;
4081     }
4082 
4083     trace_qemu_rdma_accept_incoming_migration_accepted();
4084 
4085     if (rdma->is_return_path) {
4086         return;
4087     }
4088 
4089     f = qemu_fopen_rdma(rdma, "rb");
4090     if (f == NULL) {
4091         fprintf(stderr, "RDMA ERROR: could not qemu_fopen_rdma\n");
4092         qemu_rdma_cleanup(rdma);
4093         return;
4094     }
4095 
4096     rdma->migration_started_on_destination = 1;
4097     migration_fd_process_incoming(f, &local_err);
4098     if (local_err) {
4099         error_reportf_err(local_err, "RDMA ERROR:");
4100     }
4101 }
4102 
4103 void rdma_start_incoming_migration(const char *host_port, Error **errp)
4104 {
4105     int ret;
4106     RDMAContext *rdma, *rdma_return_path = NULL;
4107     Error *local_err = NULL;
4108 
4109     trace_rdma_start_incoming_migration();
4110 
4111     /* Avoid ram_block_discard_disable(), cannot change during migration. */
4112     if (ram_block_discard_is_required()) {
4113         error_setg(errp, "RDMA: cannot disable RAM discard");
4114         return;
4115     }
4116 
4117     rdma = qemu_rdma_data_init(host_port, &local_err);
4118     if (rdma == NULL) {
4119         goto err;
4120     }
4121 
4122     ret = qemu_rdma_dest_init(rdma, &local_err);
4123 
4124     if (ret) {
4125         goto err;
4126     }
4127 
4128     trace_rdma_start_incoming_migration_after_dest_init();
4129 
4130     ret = rdma_listen(rdma->listen_id, 5);
4131 
4132     if (ret) {
4133         ERROR(errp, "listening on socket!");
4134         goto cleanup_rdma;
4135     }
4136 
4137     trace_rdma_start_incoming_migration_after_rdma_listen();
4138 
4139     qemu_set_fd_handler(rdma->channel->fd, rdma_accept_incoming_migration,
4140                         NULL, (void *)(intptr_t)rdma);
4141     return;
4142 
4143 cleanup_rdma:
4144     qemu_rdma_cleanup(rdma);
4145 err:
4146     error_propagate(errp, local_err);
4147     if (rdma) {
4148         g_free(rdma->host);
4149         g_free(rdma->host_port);
4150     }
4151     g_free(rdma);
4152     g_free(rdma_return_path);
4153 }
4154 
4155 void rdma_start_outgoing_migration(void *opaque,
4156                             const char *host_port, Error **errp)
4157 {
4158     MigrationState *s = opaque;
4159     RDMAContext *rdma_return_path = NULL;
4160     RDMAContext *rdma;
4161     int ret = 0;
4162 
4163     /* Avoid ram_block_discard_disable(), cannot change during migration. */
4164     if (ram_block_discard_is_required()) {
4165         error_setg(errp, "RDMA: cannot disable RAM discard");
4166         return;
4167     }
4168 
4169     rdma = qemu_rdma_data_init(host_port, errp);
4170     if (rdma == NULL) {
4171         goto err;
4172     }
4173 
4174     ret = qemu_rdma_source_init(rdma,
4175         s->enabled_capabilities[MIGRATION_CAPABILITY_RDMA_PIN_ALL], errp);
4176 
4177     if (ret) {
4178         goto err;
4179     }
4180 
4181     trace_rdma_start_outgoing_migration_after_rdma_source_init();
4182     ret = qemu_rdma_connect(rdma, errp, false);
4183 
4184     if (ret) {
4185         goto err;
4186     }
4187 
4188     /* RDMA postcopy need a separate queue pair for return path */
4189     if (migrate_postcopy()) {
4190         rdma_return_path = qemu_rdma_data_init(host_port, errp);
4191 
4192         if (rdma_return_path == NULL) {
4193             goto return_path_err;
4194         }
4195 
4196         ret = qemu_rdma_source_init(rdma_return_path,
4197             s->enabled_capabilities[MIGRATION_CAPABILITY_RDMA_PIN_ALL], errp);
4198 
4199         if (ret) {
4200             goto return_path_err;
4201         }
4202 
4203         ret = qemu_rdma_connect(rdma_return_path, errp, true);
4204 
4205         if (ret) {
4206             goto return_path_err;
4207         }
4208 
4209         rdma->return_path = rdma_return_path;
4210         rdma_return_path->return_path = rdma;
4211         rdma_return_path->is_return_path = true;
4212     }
4213 
4214     trace_rdma_start_outgoing_migration_after_rdma_connect();
4215 
4216     s->to_dst_file = qemu_fopen_rdma(rdma, "wb");
4217     migrate_fd_connect(s, NULL);
4218     return;
4219 return_path_err:
4220     qemu_rdma_cleanup(rdma);
4221 err:
4222     g_free(rdma);
4223     g_free(rdma_return_path);
4224 }
4225