xref: /openbmc/qemu/migration/rdma.c (revision c964b660)
1 /*
2  * RDMA protocol and interfaces
3  *
4  * Copyright IBM, Corp. 2010-2013
5  *
6  * Authors:
7  *  Michael R. Hines <mrhines@us.ibm.com>
8  *  Jiuxing Liu <jl@us.ibm.com>
9  *
10  * This work is licensed under the terms of the GNU GPL, version 2 or
11  * later.  See the COPYING file in the top-level directory.
12  *
13  */
14 #include "qemu/osdep.h"
15 #include "qemu-common.h"
16 #include "migration/migration.h"
17 #include "migration/qemu-file.h"
18 #include "exec/cpu-common.h"
19 #include "qemu/error-report.h"
20 #include "qemu/main-loop.h"
21 #include "qemu/sockets.h"
22 #include "qemu/bitmap.h"
23 #include "qemu/coroutine.h"
24 #include <sys/socket.h>
25 #include <netdb.h>
26 #include <arpa/inet.h>
27 #include <rdma/rdma_cma.h>
28 #include "trace.h"
29 
30 /*
31  * Print and error on both the Monitor and the Log file.
32  */
33 #define ERROR(errp, fmt, ...) \
34     do { \
35         fprintf(stderr, "RDMA ERROR: " fmt "\n", ## __VA_ARGS__); \
36         if (errp && (*(errp) == NULL)) { \
37             error_setg(errp, "RDMA ERROR: " fmt, ## __VA_ARGS__); \
38         } \
39     } while (0)
40 
41 #define RDMA_RESOLVE_TIMEOUT_MS 10000
42 
43 /* Do not merge data if larger than this. */
44 #define RDMA_MERGE_MAX (2 * 1024 * 1024)
45 #define RDMA_SIGNALED_SEND_MAX (RDMA_MERGE_MAX / 4096)
46 
47 #define RDMA_REG_CHUNK_SHIFT 20 /* 1 MB */
48 
49 /*
50  * This is only for non-live state being migrated.
51  * Instead of RDMA_WRITE messages, we use RDMA_SEND
52  * messages for that state, which requires a different
53  * delivery design than main memory.
54  */
55 #define RDMA_SEND_INCREMENT 32768
56 
57 /*
58  * Maximum size infiniband SEND message
59  */
60 #define RDMA_CONTROL_MAX_BUFFER (512 * 1024)
61 #define RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE 4096
62 
63 #define RDMA_CONTROL_VERSION_CURRENT 1
64 /*
65  * Capabilities for negotiation.
66  */
67 #define RDMA_CAPABILITY_PIN_ALL 0x01
68 
69 /*
70  * Add the other flags above to this list of known capabilities
71  * as they are introduced.
72  */
73 static uint32_t known_capabilities = RDMA_CAPABILITY_PIN_ALL;
74 
75 #define CHECK_ERROR_STATE() \
76     do { \
77         if (rdma->error_state) { \
78             if (!rdma->error_reported) { \
79                 error_report("RDMA is in an error state waiting migration" \
80                                 " to abort!"); \
81                 rdma->error_reported = 1; \
82             } \
83             return rdma->error_state; \
84         } \
85     } while (0);
86 
87 /*
88  * A work request ID is 64-bits and we split up these bits
89  * into 3 parts:
90  *
91  * bits 0-15 : type of control message, 2^16
92  * bits 16-29: ram block index, 2^14
93  * bits 30-63: ram block chunk number, 2^34
94  *
95  * The last two bit ranges are only used for RDMA writes,
96  * in order to track their completion and potentially
97  * also track unregistration status of the message.
98  */
99 #define RDMA_WRID_TYPE_SHIFT  0UL
100 #define RDMA_WRID_BLOCK_SHIFT 16UL
101 #define RDMA_WRID_CHUNK_SHIFT 30UL
102 
103 #define RDMA_WRID_TYPE_MASK \
104     ((1UL << RDMA_WRID_BLOCK_SHIFT) - 1UL)
105 
106 #define RDMA_WRID_BLOCK_MASK \
107     (~RDMA_WRID_TYPE_MASK & ((1UL << RDMA_WRID_CHUNK_SHIFT) - 1UL))
108 
109 #define RDMA_WRID_CHUNK_MASK (~RDMA_WRID_BLOCK_MASK & ~RDMA_WRID_TYPE_MASK)
110 
111 /*
112  * RDMA migration protocol:
113  * 1. RDMA Writes (data messages, i.e. RAM)
114  * 2. IB Send/Recv (control channel messages)
115  */
116 enum {
117     RDMA_WRID_NONE = 0,
118     RDMA_WRID_RDMA_WRITE = 1,
119     RDMA_WRID_SEND_CONTROL = 2000,
120     RDMA_WRID_RECV_CONTROL = 4000,
121 };
122 
123 static const char *wrid_desc[] = {
124     [RDMA_WRID_NONE] = "NONE",
125     [RDMA_WRID_RDMA_WRITE] = "WRITE RDMA",
126     [RDMA_WRID_SEND_CONTROL] = "CONTROL SEND",
127     [RDMA_WRID_RECV_CONTROL] = "CONTROL RECV",
128 };
129 
130 /*
131  * Work request IDs for IB SEND messages only (not RDMA writes).
132  * This is used by the migration protocol to transmit
133  * control messages (such as device state and registration commands)
134  *
135  * We could use more WRs, but we have enough for now.
136  */
137 enum {
138     RDMA_WRID_READY = 0,
139     RDMA_WRID_DATA,
140     RDMA_WRID_CONTROL,
141     RDMA_WRID_MAX,
142 };
143 
144 /*
145  * SEND/RECV IB Control Messages.
146  */
147 enum {
148     RDMA_CONTROL_NONE = 0,
149     RDMA_CONTROL_ERROR,
150     RDMA_CONTROL_READY,               /* ready to receive */
151     RDMA_CONTROL_QEMU_FILE,           /* QEMUFile-transmitted bytes */
152     RDMA_CONTROL_RAM_BLOCKS_REQUEST,  /* RAMBlock synchronization */
153     RDMA_CONTROL_RAM_BLOCKS_RESULT,   /* RAMBlock synchronization */
154     RDMA_CONTROL_COMPRESS,            /* page contains repeat values */
155     RDMA_CONTROL_REGISTER_REQUEST,    /* dynamic page registration */
156     RDMA_CONTROL_REGISTER_RESULT,     /* key to use after registration */
157     RDMA_CONTROL_REGISTER_FINISHED,   /* current iteration finished */
158     RDMA_CONTROL_UNREGISTER_REQUEST,  /* dynamic UN-registration */
159     RDMA_CONTROL_UNREGISTER_FINISHED, /* unpinning finished */
160 };
161 
162 static const char *control_desc[] = {
163     [RDMA_CONTROL_NONE] = "NONE",
164     [RDMA_CONTROL_ERROR] = "ERROR",
165     [RDMA_CONTROL_READY] = "READY",
166     [RDMA_CONTROL_QEMU_FILE] = "QEMU FILE",
167     [RDMA_CONTROL_RAM_BLOCKS_REQUEST] = "RAM BLOCKS REQUEST",
168     [RDMA_CONTROL_RAM_BLOCKS_RESULT] = "RAM BLOCKS RESULT",
169     [RDMA_CONTROL_COMPRESS] = "COMPRESS",
170     [RDMA_CONTROL_REGISTER_REQUEST] = "REGISTER REQUEST",
171     [RDMA_CONTROL_REGISTER_RESULT] = "REGISTER RESULT",
172     [RDMA_CONTROL_REGISTER_FINISHED] = "REGISTER FINISHED",
173     [RDMA_CONTROL_UNREGISTER_REQUEST] = "UNREGISTER REQUEST",
174     [RDMA_CONTROL_UNREGISTER_FINISHED] = "UNREGISTER FINISHED",
175 };
176 
177 /*
178  * Memory and MR structures used to represent an IB Send/Recv work request.
179  * This is *not* used for RDMA writes, only IB Send/Recv.
180  */
181 typedef struct {
182     uint8_t  control[RDMA_CONTROL_MAX_BUFFER]; /* actual buffer to register */
183     struct   ibv_mr *control_mr;               /* registration metadata */
184     size_t   control_len;                      /* length of the message */
185     uint8_t *control_curr;                     /* start of unconsumed bytes */
186 } RDMAWorkRequestData;
187 
188 /*
189  * Negotiate RDMA capabilities during connection-setup time.
190  */
191 typedef struct {
192     uint32_t version;
193     uint32_t flags;
194 } RDMACapabilities;
195 
196 static void caps_to_network(RDMACapabilities *cap)
197 {
198     cap->version = htonl(cap->version);
199     cap->flags = htonl(cap->flags);
200 }
201 
202 static void network_to_caps(RDMACapabilities *cap)
203 {
204     cap->version = ntohl(cap->version);
205     cap->flags = ntohl(cap->flags);
206 }
207 
208 /*
209  * Representation of a RAMBlock from an RDMA perspective.
210  * This is not transmitted, only local.
211  * This and subsequent structures cannot be linked lists
212  * because we're using a single IB message to transmit
213  * the information. It's small anyway, so a list is overkill.
214  */
215 typedef struct RDMALocalBlock {
216     char          *block_name;
217     uint8_t       *local_host_addr; /* local virtual address */
218     uint64_t       remote_host_addr; /* remote virtual address */
219     uint64_t       offset;
220     uint64_t       length;
221     struct         ibv_mr **pmr;    /* MRs for chunk-level registration */
222     struct         ibv_mr *mr;      /* MR for non-chunk-level registration */
223     uint32_t      *remote_keys;     /* rkeys for chunk-level registration */
224     uint32_t       remote_rkey;     /* rkeys for non-chunk-level registration */
225     int            index;           /* which block are we */
226     unsigned int   src_index;       /* (Only used on dest) */
227     bool           is_ram_block;
228     int            nb_chunks;
229     unsigned long *transit_bitmap;
230     unsigned long *unregister_bitmap;
231 } RDMALocalBlock;
232 
233 /*
234  * Also represents a RAMblock, but only on the dest.
235  * This gets transmitted by the dest during connection-time
236  * to the source VM and then is used to populate the
237  * corresponding RDMALocalBlock with
238  * the information needed to perform the actual RDMA.
239  */
240 typedef struct QEMU_PACKED RDMADestBlock {
241     uint64_t remote_host_addr;
242     uint64_t offset;
243     uint64_t length;
244     uint32_t remote_rkey;
245     uint32_t padding;
246 } RDMADestBlock;
247 
248 static uint64_t htonll(uint64_t v)
249 {
250     union { uint32_t lv[2]; uint64_t llv; } u;
251     u.lv[0] = htonl(v >> 32);
252     u.lv[1] = htonl(v & 0xFFFFFFFFULL);
253     return u.llv;
254 }
255 
256 static uint64_t ntohll(uint64_t v) {
257     union { uint32_t lv[2]; uint64_t llv; } u;
258     u.llv = v;
259     return ((uint64_t)ntohl(u.lv[0]) << 32) | (uint64_t) ntohl(u.lv[1]);
260 }
261 
262 static void dest_block_to_network(RDMADestBlock *db)
263 {
264     db->remote_host_addr = htonll(db->remote_host_addr);
265     db->offset = htonll(db->offset);
266     db->length = htonll(db->length);
267     db->remote_rkey = htonl(db->remote_rkey);
268 }
269 
270 static void network_to_dest_block(RDMADestBlock *db)
271 {
272     db->remote_host_addr = ntohll(db->remote_host_addr);
273     db->offset = ntohll(db->offset);
274     db->length = ntohll(db->length);
275     db->remote_rkey = ntohl(db->remote_rkey);
276 }
277 
278 /*
279  * Virtual address of the above structures used for transmitting
280  * the RAMBlock descriptions at connection-time.
281  * This structure is *not* transmitted.
282  */
283 typedef struct RDMALocalBlocks {
284     int nb_blocks;
285     bool     init;             /* main memory init complete */
286     RDMALocalBlock *block;
287 } RDMALocalBlocks;
288 
289 /*
290  * Main data structure for RDMA state.
291  * While there is only one copy of this structure being allocated right now,
292  * this is the place where one would start if you wanted to consider
293  * having more than one RDMA connection open at the same time.
294  */
295 typedef struct RDMAContext {
296     char *host;
297     int port;
298 
299     RDMAWorkRequestData wr_data[RDMA_WRID_MAX];
300 
301     /*
302      * This is used by *_exchange_send() to figure out whether or not
303      * the initial "READY" message has already been received or not.
304      * This is because other functions may potentially poll() and detect
305      * the READY message before send() does, in which case we need to
306      * know if it completed.
307      */
308     int control_ready_expected;
309 
310     /* number of outstanding writes */
311     int nb_sent;
312 
313     /* store info about current buffer so that we can
314        merge it with future sends */
315     uint64_t current_addr;
316     uint64_t current_length;
317     /* index of ram block the current buffer belongs to */
318     int current_index;
319     /* index of the chunk in the current ram block */
320     int current_chunk;
321 
322     bool pin_all;
323 
324     /*
325      * infiniband-specific variables for opening the device
326      * and maintaining connection state and so forth.
327      *
328      * cm_id also has ibv_context, rdma_event_channel, and ibv_qp in
329      * cm_id->verbs, cm_id->channel, and cm_id->qp.
330      */
331     struct rdma_cm_id *cm_id;               /* connection manager ID */
332     struct rdma_cm_id *listen_id;
333     bool connected;
334 
335     struct ibv_context          *verbs;
336     struct rdma_event_channel   *channel;
337     struct ibv_qp *qp;                      /* queue pair */
338     struct ibv_comp_channel *comp_channel;  /* completion channel */
339     struct ibv_pd *pd;                      /* protection domain */
340     struct ibv_cq *cq;                      /* completion queue */
341 
342     /*
343      * If a previous write failed (perhaps because of a failed
344      * memory registration, then do not attempt any future work
345      * and remember the error state.
346      */
347     int error_state;
348     int error_reported;
349 
350     /*
351      * Description of ram blocks used throughout the code.
352      */
353     RDMALocalBlocks local_ram_blocks;
354     RDMADestBlock  *dest_blocks;
355 
356     /* Index of the next RAMBlock received during block registration */
357     unsigned int    next_src_index;
358 
359     /*
360      * Migration on *destination* started.
361      * Then use coroutine yield function.
362      * Source runs in a thread, so we don't care.
363      */
364     int migration_started_on_destination;
365 
366     int total_registrations;
367     int total_writes;
368 
369     int unregister_current, unregister_next;
370     uint64_t unregistrations[RDMA_SIGNALED_SEND_MAX];
371 
372     GHashTable *blockmap;
373 } RDMAContext;
374 
375 /*
376  * Interface to the rest of the migration call stack.
377  */
378 typedef struct QEMUFileRDMA {
379     RDMAContext *rdma;
380     size_t len;
381     void *file;
382 } QEMUFileRDMA;
383 
384 /*
385  * Main structure for IB Send/Recv control messages.
386  * This gets prepended at the beginning of every Send/Recv.
387  */
388 typedef struct QEMU_PACKED {
389     uint32_t len;     /* Total length of data portion */
390     uint32_t type;    /* which control command to perform */
391     uint32_t repeat;  /* number of commands in data portion of same type */
392     uint32_t padding;
393 } RDMAControlHeader;
394 
395 static void control_to_network(RDMAControlHeader *control)
396 {
397     control->type = htonl(control->type);
398     control->len = htonl(control->len);
399     control->repeat = htonl(control->repeat);
400 }
401 
402 static void network_to_control(RDMAControlHeader *control)
403 {
404     control->type = ntohl(control->type);
405     control->len = ntohl(control->len);
406     control->repeat = ntohl(control->repeat);
407 }
408 
409 /*
410  * Register a single Chunk.
411  * Information sent by the source VM to inform the dest
412  * to register an single chunk of memory before we can perform
413  * the actual RDMA operation.
414  */
415 typedef struct QEMU_PACKED {
416     union QEMU_PACKED {
417         uint64_t current_addr;  /* offset into the ram_addr_t space */
418         uint64_t chunk;         /* chunk to lookup if unregistering */
419     } key;
420     uint32_t current_index; /* which ramblock the chunk belongs to */
421     uint32_t padding;
422     uint64_t chunks;            /* how many sequential chunks to register */
423 } RDMARegister;
424 
425 static void register_to_network(RDMAContext *rdma, RDMARegister *reg)
426 {
427     RDMALocalBlock *local_block;
428     local_block  = &rdma->local_ram_blocks.block[reg->current_index];
429 
430     if (local_block->is_ram_block) {
431         /*
432          * current_addr as passed in is an address in the local ram_addr_t
433          * space, we need to translate this for the destination
434          */
435         reg->key.current_addr -= local_block->offset;
436         reg->key.current_addr += rdma->dest_blocks[reg->current_index].offset;
437     }
438     reg->key.current_addr = htonll(reg->key.current_addr);
439     reg->current_index = htonl(reg->current_index);
440     reg->chunks = htonll(reg->chunks);
441 }
442 
443 static void network_to_register(RDMARegister *reg)
444 {
445     reg->key.current_addr = ntohll(reg->key.current_addr);
446     reg->current_index = ntohl(reg->current_index);
447     reg->chunks = ntohll(reg->chunks);
448 }
449 
450 typedef struct QEMU_PACKED {
451     uint32_t value;     /* if zero, we will madvise() */
452     uint32_t block_idx; /* which ram block index */
453     uint64_t offset;    /* Address in remote ram_addr_t space */
454     uint64_t length;    /* length of the chunk */
455 } RDMACompress;
456 
457 static void compress_to_network(RDMAContext *rdma, RDMACompress *comp)
458 {
459     comp->value = htonl(comp->value);
460     /*
461      * comp->offset as passed in is an address in the local ram_addr_t
462      * space, we need to translate this for the destination
463      */
464     comp->offset -= rdma->local_ram_blocks.block[comp->block_idx].offset;
465     comp->offset += rdma->dest_blocks[comp->block_idx].offset;
466     comp->block_idx = htonl(comp->block_idx);
467     comp->offset = htonll(comp->offset);
468     comp->length = htonll(comp->length);
469 }
470 
471 static void network_to_compress(RDMACompress *comp)
472 {
473     comp->value = ntohl(comp->value);
474     comp->block_idx = ntohl(comp->block_idx);
475     comp->offset = ntohll(comp->offset);
476     comp->length = ntohll(comp->length);
477 }
478 
479 /*
480  * The result of the dest's memory registration produces an "rkey"
481  * which the source VM must reference in order to perform
482  * the RDMA operation.
483  */
484 typedef struct QEMU_PACKED {
485     uint32_t rkey;
486     uint32_t padding;
487     uint64_t host_addr;
488 } RDMARegisterResult;
489 
490 static void result_to_network(RDMARegisterResult *result)
491 {
492     result->rkey = htonl(result->rkey);
493     result->host_addr = htonll(result->host_addr);
494 };
495 
496 static void network_to_result(RDMARegisterResult *result)
497 {
498     result->rkey = ntohl(result->rkey);
499     result->host_addr = ntohll(result->host_addr);
500 };
501 
502 const char *print_wrid(int wrid);
503 static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head,
504                                    uint8_t *data, RDMAControlHeader *resp,
505                                    int *resp_idx,
506                                    int (*callback)(RDMAContext *rdma));
507 
508 static inline uint64_t ram_chunk_index(const uint8_t *start,
509                                        const uint8_t *host)
510 {
511     return ((uintptr_t) host - (uintptr_t) start) >> RDMA_REG_CHUNK_SHIFT;
512 }
513 
514 static inline uint8_t *ram_chunk_start(const RDMALocalBlock *rdma_ram_block,
515                                        uint64_t i)
516 {
517     return (uint8_t *)(uintptr_t)(rdma_ram_block->local_host_addr +
518                                   (i << RDMA_REG_CHUNK_SHIFT));
519 }
520 
521 static inline uint8_t *ram_chunk_end(const RDMALocalBlock *rdma_ram_block,
522                                      uint64_t i)
523 {
524     uint8_t *result = ram_chunk_start(rdma_ram_block, i) +
525                                          (1UL << RDMA_REG_CHUNK_SHIFT);
526 
527     if (result > (rdma_ram_block->local_host_addr + rdma_ram_block->length)) {
528         result = rdma_ram_block->local_host_addr + rdma_ram_block->length;
529     }
530 
531     return result;
532 }
533 
534 static int rdma_add_block(RDMAContext *rdma, const char *block_name,
535                          void *host_addr,
536                          ram_addr_t block_offset, uint64_t length)
537 {
538     RDMALocalBlocks *local = &rdma->local_ram_blocks;
539     RDMALocalBlock *block;
540     RDMALocalBlock *old = local->block;
541 
542     local->block = g_new0(RDMALocalBlock, local->nb_blocks + 1);
543 
544     if (local->nb_blocks) {
545         int x;
546 
547         if (rdma->blockmap) {
548             for (x = 0; x < local->nb_blocks; x++) {
549                 g_hash_table_remove(rdma->blockmap,
550                                     (void *)(uintptr_t)old[x].offset);
551                 g_hash_table_insert(rdma->blockmap,
552                                     (void *)(uintptr_t)old[x].offset,
553                                     &local->block[x]);
554             }
555         }
556         memcpy(local->block, old, sizeof(RDMALocalBlock) * local->nb_blocks);
557         g_free(old);
558     }
559 
560     block = &local->block[local->nb_blocks];
561 
562     block->block_name = g_strdup(block_name);
563     block->local_host_addr = host_addr;
564     block->offset = block_offset;
565     block->length = length;
566     block->index = local->nb_blocks;
567     block->src_index = ~0U; /* Filled in by the receipt of the block list */
568     block->nb_chunks = ram_chunk_index(host_addr, host_addr + length) + 1UL;
569     block->transit_bitmap = bitmap_new(block->nb_chunks);
570     bitmap_clear(block->transit_bitmap, 0, block->nb_chunks);
571     block->unregister_bitmap = bitmap_new(block->nb_chunks);
572     bitmap_clear(block->unregister_bitmap, 0, block->nb_chunks);
573     block->remote_keys = g_new0(uint32_t, block->nb_chunks);
574 
575     block->is_ram_block = local->init ? false : true;
576 
577     if (rdma->blockmap) {
578         g_hash_table_insert(rdma->blockmap, (void *)(uintptr_t)block_offset, block);
579     }
580 
581     trace_rdma_add_block(block_name, local->nb_blocks,
582                          (uintptr_t) block->local_host_addr,
583                          block->offset, block->length,
584                          (uintptr_t) (block->local_host_addr + block->length),
585                          BITS_TO_LONGS(block->nb_chunks) *
586                              sizeof(unsigned long) * 8,
587                          block->nb_chunks);
588 
589     local->nb_blocks++;
590 
591     return 0;
592 }
593 
594 /*
595  * Memory regions need to be registered with the device and queue pairs setup
596  * in advanced before the migration starts. This tells us where the RAM blocks
597  * are so that we can register them individually.
598  */
599 static int qemu_rdma_init_one_block(const char *block_name, void *host_addr,
600     ram_addr_t block_offset, ram_addr_t length, void *opaque)
601 {
602     return rdma_add_block(opaque, block_name, host_addr, block_offset, length);
603 }
604 
605 /*
606  * Identify the RAMBlocks and their quantity. They will be references to
607  * identify chunk boundaries inside each RAMBlock and also be referenced
608  * during dynamic page registration.
609  */
610 static int qemu_rdma_init_ram_blocks(RDMAContext *rdma)
611 {
612     RDMALocalBlocks *local = &rdma->local_ram_blocks;
613 
614     assert(rdma->blockmap == NULL);
615     memset(local, 0, sizeof *local);
616     qemu_ram_foreach_block(qemu_rdma_init_one_block, rdma);
617     trace_qemu_rdma_init_ram_blocks(local->nb_blocks);
618     rdma->dest_blocks = g_new0(RDMADestBlock,
619                                rdma->local_ram_blocks.nb_blocks);
620     local->init = true;
621     return 0;
622 }
623 
624 /*
625  * Note: If used outside of cleanup, the caller must ensure that the destination
626  * block structures are also updated
627  */
628 static int rdma_delete_block(RDMAContext *rdma, RDMALocalBlock *block)
629 {
630     RDMALocalBlocks *local = &rdma->local_ram_blocks;
631     RDMALocalBlock *old = local->block;
632     int x;
633 
634     if (rdma->blockmap) {
635         g_hash_table_remove(rdma->blockmap, (void *)(uintptr_t)block->offset);
636     }
637     if (block->pmr) {
638         int j;
639 
640         for (j = 0; j < block->nb_chunks; j++) {
641             if (!block->pmr[j]) {
642                 continue;
643             }
644             ibv_dereg_mr(block->pmr[j]);
645             rdma->total_registrations--;
646         }
647         g_free(block->pmr);
648         block->pmr = NULL;
649     }
650 
651     if (block->mr) {
652         ibv_dereg_mr(block->mr);
653         rdma->total_registrations--;
654         block->mr = NULL;
655     }
656 
657     g_free(block->transit_bitmap);
658     block->transit_bitmap = NULL;
659 
660     g_free(block->unregister_bitmap);
661     block->unregister_bitmap = NULL;
662 
663     g_free(block->remote_keys);
664     block->remote_keys = NULL;
665 
666     g_free(block->block_name);
667     block->block_name = NULL;
668 
669     if (rdma->blockmap) {
670         for (x = 0; x < local->nb_blocks; x++) {
671             g_hash_table_remove(rdma->blockmap,
672                                 (void *)(uintptr_t)old[x].offset);
673         }
674     }
675 
676     if (local->nb_blocks > 1) {
677 
678         local->block = g_new0(RDMALocalBlock, local->nb_blocks - 1);
679 
680         if (block->index) {
681             memcpy(local->block, old, sizeof(RDMALocalBlock) * block->index);
682         }
683 
684         if (block->index < (local->nb_blocks - 1)) {
685             memcpy(local->block + block->index, old + (block->index + 1),
686                 sizeof(RDMALocalBlock) *
687                     (local->nb_blocks - (block->index + 1)));
688         }
689     } else {
690         assert(block == local->block);
691         local->block = NULL;
692     }
693 
694     trace_rdma_delete_block(block, (uintptr_t)block->local_host_addr,
695                            block->offset, block->length,
696                             (uintptr_t)(block->local_host_addr + block->length),
697                            BITS_TO_LONGS(block->nb_chunks) *
698                                sizeof(unsigned long) * 8, block->nb_chunks);
699 
700     g_free(old);
701 
702     local->nb_blocks--;
703 
704     if (local->nb_blocks && rdma->blockmap) {
705         for (x = 0; x < local->nb_blocks; x++) {
706             g_hash_table_insert(rdma->blockmap,
707                                 (void *)(uintptr_t)local->block[x].offset,
708                                 &local->block[x]);
709         }
710     }
711 
712     return 0;
713 }
714 
715 /*
716  * Put in the log file which RDMA device was opened and the details
717  * associated with that device.
718  */
719 static void qemu_rdma_dump_id(const char *who, struct ibv_context *verbs)
720 {
721     struct ibv_port_attr port;
722 
723     if (ibv_query_port(verbs, 1, &port)) {
724         error_report("Failed to query port information");
725         return;
726     }
727 
728     printf("%s RDMA Device opened: kernel name %s "
729            "uverbs device name %s, "
730            "infiniband_verbs class device path %s, "
731            "infiniband class device path %s, "
732            "transport: (%d) %s\n",
733                 who,
734                 verbs->device->name,
735                 verbs->device->dev_name,
736                 verbs->device->dev_path,
737                 verbs->device->ibdev_path,
738                 port.link_layer,
739                 (port.link_layer == IBV_LINK_LAYER_INFINIBAND) ? "Infiniband" :
740                  ((port.link_layer == IBV_LINK_LAYER_ETHERNET)
741                     ? "Ethernet" : "Unknown"));
742 }
743 
744 /*
745  * Put in the log file the RDMA gid addressing information,
746  * useful for folks who have trouble understanding the
747  * RDMA device hierarchy in the kernel.
748  */
749 static void qemu_rdma_dump_gid(const char *who, struct rdma_cm_id *id)
750 {
751     char sgid[33];
752     char dgid[33];
753     inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.sgid, sgid, sizeof sgid);
754     inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.dgid, dgid, sizeof dgid);
755     trace_qemu_rdma_dump_gid(who, sgid, dgid);
756 }
757 
758 /*
759  * As of now, IPv6 over RoCE / iWARP is not supported by linux.
760  * We will try the next addrinfo struct, and fail if there are
761  * no other valid addresses to bind against.
762  *
763  * If user is listening on '[::]', then we will not have a opened a device
764  * yet and have no way of verifying if the device is RoCE or not.
765  *
766  * In this case, the source VM will throw an error for ALL types of
767  * connections (both IPv4 and IPv6) if the destination machine does not have
768  * a regular infiniband network available for use.
769  *
770  * The only way to guarantee that an error is thrown for broken kernels is
771  * for the management software to choose a *specific* interface at bind time
772  * and validate what time of hardware it is.
773  *
774  * Unfortunately, this puts the user in a fix:
775  *
776  *  If the source VM connects with an IPv4 address without knowing that the
777  *  destination has bound to '[::]' the migration will unconditionally fail
778  *  unless the management software is explicitly listening on the IPv4
779  *  address while using a RoCE-based device.
780  *
781  *  If the source VM connects with an IPv6 address, then we're OK because we can
782  *  throw an error on the source (and similarly on the destination).
783  *
784  *  But in mixed environments, this will be broken for a while until it is fixed
785  *  inside linux.
786  *
787  * We do provide a *tiny* bit of help in this function: We can list all of the
788  * devices in the system and check to see if all the devices are RoCE or
789  * Infiniband.
790  *
791  * If we detect that we have a *pure* RoCE environment, then we can safely
792  * thrown an error even if the management software has specified '[::]' as the
793  * bind address.
794  *
795  * However, if there is are multiple hetergeneous devices, then we cannot make
796  * this assumption and the user just has to be sure they know what they are
797  * doing.
798  *
799  * Patches are being reviewed on linux-rdma.
800  */
801 static int qemu_rdma_broken_ipv6_kernel(Error **errp, struct ibv_context *verbs)
802 {
803     struct ibv_port_attr port_attr;
804 
805     /* This bug only exists in linux, to our knowledge. */
806 #ifdef CONFIG_LINUX
807 
808     /*
809      * Verbs are only NULL if management has bound to '[::]'.
810      *
811      * Let's iterate through all the devices and see if there any pure IB
812      * devices (non-ethernet).
813      *
814      * If not, then we can safely proceed with the migration.
815      * Otherwise, there are no guarantees until the bug is fixed in linux.
816      */
817     if (!verbs) {
818         int num_devices, x;
819         struct ibv_device ** dev_list = ibv_get_device_list(&num_devices);
820         bool roce_found = false;
821         bool ib_found = false;
822 
823         for (x = 0; x < num_devices; x++) {
824             verbs = ibv_open_device(dev_list[x]);
825             if (!verbs) {
826                 if (errno == EPERM) {
827                     continue;
828                 } else {
829                     return -EINVAL;
830                 }
831             }
832 
833             if (ibv_query_port(verbs, 1, &port_attr)) {
834                 ibv_close_device(verbs);
835                 ERROR(errp, "Could not query initial IB port");
836                 return -EINVAL;
837             }
838 
839             if (port_attr.link_layer == IBV_LINK_LAYER_INFINIBAND) {
840                 ib_found = true;
841             } else if (port_attr.link_layer == IBV_LINK_LAYER_ETHERNET) {
842                 roce_found = true;
843             }
844 
845             ibv_close_device(verbs);
846 
847         }
848 
849         if (roce_found) {
850             if (ib_found) {
851                 fprintf(stderr, "WARN: migrations may fail:"
852                                 " IPv6 over RoCE / iWARP in linux"
853                                 " is broken. But since you appear to have a"
854                                 " mixed RoCE / IB environment, be sure to only"
855                                 " migrate over the IB fabric until the kernel "
856                                 " fixes the bug.\n");
857             } else {
858                 ERROR(errp, "You only have RoCE / iWARP devices in your systems"
859                             " and your management software has specified '[::]'"
860                             ", but IPv6 over RoCE / iWARP is not supported in Linux.");
861                 return -ENONET;
862             }
863         }
864 
865         return 0;
866     }
867 
868     /*
869      * If we have a verbs context, that means that some other than '[::]' was
870      * used by the management software for binding. In which case we can
871      * actually warn the user about a potentially broken kernel.
872      */
873 
874     /* IB ports start with 1, not 0 */
875     if (ibv_query_port(verbs, 1, &port_attr)) {
876         ERROR(errp, "Could not query initial IB port");
877         return -EINVAL;
878     }
879 
880     if (port_attr.link_layer == IBV_LINK_LAYER_ETHERNET) {
881         ERROR(errp, "Linux kernel's RoCE / iWARP does not support IPv6 "
882                     "(but patches on linux-rdma in progress)");
883         return -ENONET;
884     }
885 
886 #endif
887 
888     return 0;
889 }
890 
891 /*
892  * Figure out which RDMA device corresponds to the requested IP hostname
893  * Also create the initial connection manager identifiers for opening
894  * the connection.
895  */
896 static int qemu_rdma_resolve_host(RDMAContext *rdma, Error **errp)
897 {
898     int ret;
899     struct rdma_addrinfo *res;
900     char port_str[16];
901     struct rdma_cm_event *cm_event;
902     char ip[40] = "unknown";
903     struct rdma_addrinfo *e;
904 
905     if (rdma->host == NULL || !strcmp(rdma->host, "")) {
906         ERROR(errp, "RDMA hostname has not been set");
907         return -EINVAL;
908     }
909 
910     /* create CM channel */
911     rdma->channel = rdma_create_event_channel();
912     if (!rdma->channel) {
913         ERROR(errp, "could not create CM channel");
914         return -EINVAL;
915     }
916 
917     /* create CM id */
918     ret = rdma_create_id(rdma->channel, &rdma->cm_id, NULL, RDMA_PS_TCP);
919     if (ret) {
920         ERROR(errp, "could not create channel id");
921         goto err_resolve_create_id;
922     }
923 
924     snprintf(port_str, 16, "%d", rdma->port);
925     port_str[15] = '\0';
926 
927     ret = rdma_getaddrinfo(rdma->host, port_str, NULL, &res);
928     if (ret < 0) {
929         ERROR(errp, "could not rdma_getaddrinfo address %s", rdma->host);
930         goto err_resolve_get_addr;
931     }
932 
933     for (e = res; e != NULL; e = e->ai_next) {
934         inet_ntop(e->ai_family,
935             &((struct sockaddr_in *) e->ai_dst_addr)->sin_addr, ip, sizeof ip);
936         trace_qemu_rdma_resolve_host_trying(rdma->host, ip);
937 
938         ret = rdma_resolve_addr(rdma->cm_id, NULL, e->ai_dst_addr,
939                 RDMA_RESOLVE_TIMEOUT_MS);
940         if (!ret) {
941             if (e->ai_family == AF_INET6) {
942                 ret = qemu_rdma_broken_ipv6_kernel(errp, rdma->cm_id->verbs);
943                 if (ret) {
944                     continue;
945                 }
946             }
947             goto route;
948         }
949     }
950 
951     ERROR(errp, "could not resolve address %s", rdma->host);
952     goto err_resolve_get_addr;
953 
954 route:
955     qemu_rdma_dump_gid("source_resolve_addr", rdma->cm_id);
956 
957     ret = rdma_get_cm_event(rdma->channel, &cm_event);
958     if (ret) {
959         ERROR(errp, "could not perform event_addr_resolved");
960         goto err_resolve_get_addr;
961     }
962 
963     if (cm_event->event != RDMA_CM_EVENT_ADDR_RESOLVED) {
964         ERROR(errp, "result not equal to event_addr_resolved %s",
965                 rdma_event_str(cm_event->event));
966         perror("rdma_resolve_addr");
967         rdma_ack_cm_event(cm_event);
968         ret = -EINVAL;
969         goto err_resolve_get_addr;
970     }
971     rdma_ack_cm_event(cm_event);
972 
973     /* resolve route */
974     ret = rdma_resolve_route(rdma->cm_id, RDMA_RESOLVE_TIMEOUT_MS);
975     if (ret) {
976         ERROR(errp, "could not resolve rdma route");
977         goto err_resolve_get_addr;
978     }
979 
980     ret = rdma_get_cm_event(rdma->channel, &cm_event);
981     if (ret) {
982         ERROR(errp, "could not perform event_route_resolved");
983         goto err_resolve_get_addr;
984     }
985     if (cm_event->event != RDMA_CM_EVENT_ROUTE_RESOLVED) {
986         ERROR(errp, "result not equal to event_route_resolved: %s",
987                         rdma_event_str(cm_event->event));
988         rdma_ack_cm_event(cm_event);
989         ret = -EINVAL;
990         goto err_resolve_get_addr;
991     }
992     rdma_ack_cm_event(cm_event);
993     rdma->verbs = rdma->cm_id->verbs;
994     qemu_rdma_dump_id("source_resolve_host", rdma->cm_id->verbs);
995     qemu_rdma_dump_gid("source_resolve_host", rdma->cm_id);
996     return 0;
997 
998 err_resolve_get_addr:
999     rdma_destroy_id(rdma->cm_id);
1000     rdma->cm_id = NULL;
1001 err_resolve_create_id:
1002     rdma_destroy_event_channel(rdma->channel);
1003     rdma->channel = NULL;
1004     return ret;
1005 }
1006 
1007 /*
1008  * Create protection domain and completion queues
1009  */
1010 static int qemu_rdma_alloc_pd_cq(RDMAContext *rdma)
1011 {
1012     /* allocate pd */
1013     rdma->pd = ibv_alloc_pd(rdma->verbs);
1014     if (!rdma->pd) {
1015         error_report("failed to allocate protection domain");
1016         return -1;
1017     }
1018 
1019     /* create completion channel */
1020     rdma->comp_channel = ibv_create_comp_channel(rdma->verbs);
1021     if (!rdma->comp_channel) {
1022         error_report("failed to allocate completion channel");
1023         goto err_alloc_pd_cq;
1024     }
1025 
1026     /*
1027      * Completion queue can be filled by both read and write work requests,
1028      * so must reflect the sum of both possible queue sizes.
1029      */
1030     rdma->cq = ibv_create_cq(rdma->verbs, (RDMA_SIGNALED_SEND_MAX * 3),
1031             NULL, rdma->comp_channel, 0);
1032     if (!rdma->cq) {
1033         error_report("failed to allocate completion queue");
1034         goto err_alloc_pd_cq;
1035     }
1036 
1037     return 0;
1038 
1039 err_alloc_pd_cq:
1040     if (rdma->pd) {
1041         ibv_dealloc_pd(rdma->pd);
1042     }
1043     if (rdma->comp_channel) {
1044         ibv_destroy_comp_channel(rdma->comp_channel);
1045     }
1046     rdma->pd = NULL;
1047     rdma->comp_channel = NULL;
1048     return -1;
1049 
1050 }
1051 
1052 /*
1053  * Create queue pairs.
1054  */
1055 static int qemu_rdma_alloc_qp(RDMAContext *rdma)
1056 {
1057     struct ibv_qp_init_attr attr = { 0 };
1058     int ret;
1059 
1060     attr.cap.max_send_wr = RDMA_SIGNALED_SEND_MAX;
1061     attr.cap.max_recv_wr = 3;
1062     attr.cap.max_send_sge = 1;
1063     attr.cap.max_recv_sge = 1;
1064     attr.send_cq = rdma->cq;
1065     attr.recv_cq = rdma->cq;
1066     attr.qp_type = IBV_QPT_RC;
1067 
1068     ret = rdma_create_qp(rdma->cm_id, rdma->pd, &attr);
1069     if (ret) {
1070         return -1;
1071     }
1072 
1073     rdma->qp = rdma->cm_id->qp;
1074     return 0;
1075 }
1076 
1077 static int qemu_rdma_reg_whole_ram_blocks(RDMAContext *rdma)
1078 {
1079     int i;
1080     RDMALocalBlocks *local = &rdma->local_ram_blocks;
1081 
1082     for (i = 0; i < local->nb_blocks; i++) {
1083         local->block[i].mr =
1084             ibv_reg_mr(rdma->pd,
1085                     local->block[i].local_host_addr,
1086                     local->block[i].length,
1087                     IBV_ACCESS_LOCAL_WRITE |
1088                     IBV_ACCESS_REMOTE_WRITE
1089                     );
1090         if (!local->block[i].mr) {
1091             perror("Failed to register local dest ram block!\n");
1092             break;
1093         }
1094         rdma->total_registrations++;
1095     }
1096 
1097     if (i >= local->nb_blocks) {
1098         return 0;
1099     }
1100 
1101     for (i--; i >= 0; i--) {
1102         ibv_dereg_mr(local->block[i].mr);
1103         rdma->total_registrations--;
1104     }
1105 
1106     return -1;
1107 
1108 }
1109 
1110 /*
1111  * Find the ram block that corresponds to the page requested to be
1112  * transmitted by QEMU.
1113  *
1114  * Once the block is found, also identify which 'chunk' within that
1115  * block that the page belongs to.
1116  *
1117  * This search cannot fail or the migration will fail.
1118  */
1119 static int qemu_rdma_search_ram_block(RDMAContext *rdma,
1120                                       uintptr_t block_offset,
1121                                       uint64_t offset,
1122                                       uint64_t length,
1123                                       uint64_t *block_index,
1124                                       uint64_t *chunk_index)
1125 {
1126     uint64_t current_addr = block_offset + offset;
1127     RDMALocalBlock *block = g_hash_table_lookup(rdma->blockmap,
1128                                                 (void *) block_offset);
1129     assert(block);
1130     assert(current_addr >= block->offset);
1131     assert((current_addr + length) <= (block->offset + block->length));
1132 
1133     *block_index = block->index;
1134     *chunk_index = ram_chunk_index(block->local_host_addr,
1135                 block->local_host_addr + (current_addr - block->offset));
1136 
1137     return 0;
1138 }
1139 
1140 /*
1141  * Register a chunk with IB. If the chunk was already registered
1142  * previously, then skip.
1143  *
1144  * Also return the keys associated with the registration needed
1145  * to perform the actual RDMA operation.
1146  */
1147 static int qemu_rdma_register_and_get_keys(RDMAContext *rdma,
1148         RDMALocalBlock *block, uintptr_t host_addr,
1149         uint32_t *lkey, uint32_t *rkey, int chunk,
1150         uint8_t *chunk_start, uint8_t *chunk_end)
1151 {
1152     if (block->mr) {
1153         if (lkey) {
1154             *lkey = block->mr->lkey;
1155         }
1156         if (rkey) {
1157             *rkey = block->mr->rkey;
1158         }
1159         return 0;
1160     }
1161 
1162     /* allocate memory to store chunk MRs */
1163     if (!block->pmr) {
1164         block->pmr = g_new0(struct ibv_mr *, block->nb_chunks);
1165     }
1166 
1167     /*
1168      * If 'rkey', then we're the destination, so grant access to the source.
1169      *
1170      * If 'lkey', then we're the source VM, so grant access only to ourselves.
1171      */
1172     if (!block->pmr[chunk]) {
1173         uint64_t len = chunk_end - chunk_start;
1174 
1175         trace_qemu_rdma_register_and_get_keys(len, chunk_start);
1176 
1177         block->pmr[chunk] = ibv_reg_mr(rdma->pd,
1178                 chunk_start, len,
1179                 (rkey ? (IBV_ACCESS_LOCAL_WRITE |
1180                         IBV_ACCESS_REMOTE_WRITE) : 0));
1181 
1182         if (!block->pmr[chunk]) {
1183             perror("Failed to register chunk!");
1184             fprintf(stderr, "Chunk details: block: %d chunk index %d"
1185                             " start %" PRIuPTR " end %" PRIuPTR
1186                             " host %" PRIuPTR
1187                             " local %" PRIuPTR " registrations: %d\n",
1188                             block->index, chunk, (uintptr_t)chunk_start,
1189                             (uintptr_t)chunk_end, host_addr,
1190                             (uintptr_t)block->local_host_addr,
1191                             rdma->total_registrations);
1192             return -1;
1193         }
1194         rdma->total_registrations++;
1195     }
1196 
1197     if (lkey) {
1198         *lkey = block->pmr[chunk]->lkey;
1199     }
1200     if (rkey) {
1201         *rkey = block->pmr[chunk]->rkey;
1202     }
1203     return 0;
1204 }
1205 
1206 /*
1207  * Register (at connection time) the memory used for control
1208  * channel messages.
1209  */
1210 static int qemu_rdma_reg_control(RDMAContext *rdma, int idx)
1211 {
1212     rdma->wr_data[idx].control_mr = ibv_reg_mr(rdma->pd,
1213             rdma->wr_data[idx].control, RDMA_CONTROL_MAX_BUFFER,
1214             IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE);
1215     if (rdma->wr_data[idx].control_mr) {
1216         rdma->total_registrations++;
1217         return 0;
1218     }
1219     error_report("qemu_rdma_reg_control failed");
1220     return -1;
1221 }
1222 
1223 const char *print_wrid(int wrid)
1224 {
1225     if (wrid >= RDMA_WRID_RECV_CONTROL) {
1226         return wrid_desc[RDMA_WRID_RECV_CONTROL];
1227     }
1228     return wrid_desc[wrid];
1229 }
1230 
1231 /*
1232  * RDMA requires memory registration (mlock/pinning), but this is not good for
1233  * overcommitment.
1234  *
1235  * In preparation for the future where LRU information or workload-specific
1236  * writable writable working set memory access behavior is available to QEMU
1237  * it would be nice to have in place the ability to UN-register/UN-pin
1238  * particular memory regions from the RDMA hardware when it is determine that
1239  * those regions of memory will likely not be accessed again in the near future.
1240  *
1241  * While we do not yet have such information right now, the following
1242  * compile-time option allows us to perform a non-optimized version of this
1243  * behavior.
1244  *
1245  * By uncommenting this option, you will cause *all* RDMA transfers to be
1246  * unregistered immediately after the transfer completes on both sides of the
1247  * connection. This has no effect in 'rdma-pin-all' mode, only regular mode.
1248  *
1249  * This will have a terrible impact on migration performance, so until future
1250  * workload information or LRU information is available, do not attempt to use
1251  * this feature except for basic testing.
1252  */
1253 //#define RDMA_UNREGISTRATION_EXAMPLE
1254 
1255 /*
1256  * Perform a non-optimized memory unregistration after every transfer
1257  * for demonstration purposes, only if pin-all is not requested.
1258  *
1259  * Potential optimizations:
1260  * 1. Start a new thread to run this function continuously
1261         - for bit clearing
1262         - and for receipt of unregister messages
1263  * 2. Use an LRU.
1264  * 3. Use workload hints.
1265  */
1266 static int qemu_rdma_unregister_waiting(RDMAContext *rdma)
1267 {
1268     while (rdma->unregistrations[rdma->unregister_current]) {
1269         int ret;
1270         uint64_t wr_id = rdma->unregistrations[rdma->unregister_current];
1271         uint64_t chunk =
1272             (wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT;
1273         uint64_t index =
1274             (wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT;
1275         RDMALocalBlock *block =
1276             &(rdma->local_ram_blocks.block[index]);
1277         RDMARegister reg = { .current_index = index };
1278         RDMAControlHeader resp = { .type = RDMA_CONTROL_UNREGISTER_FINISHED,
1279                                  };
1280         RDMAControlHeader head = { .len = sizeof(RDMARegister),
1281                                    .type = RDMA_CONTROL_UNREGISTER_REQUEST,
1282                                    .repeat = 1,
1283                                  };
1284 
1285         trace_qemu_rdma_unregister_waiting_proc(chunk,
1286                                                 rdma->unregister_current);
1287 
1288         rdma->unregistrations[rdma->unregister_current] = 0;
1289         rdma->unregister_current++;
1290 
1291         if (rdma->unregister_current == RDMA_SIGNALED_SEND_MAX) {
1292             rdma->unregister_current = 0;
1293         }
1294 
1295 
1296         /*
1297          * Unregistration is speculative (because migration is single-threaded
1298          * and we cannot break the protocol's inifinband message ordering).
1299          * Thus, if the memory is currently being used for transmission,
1300          * then abort the attempt to unregister and try again
1301          * later the next time a completion is received for this memory.
1302          */
1303         clear_bit(chunk, block->unregister_bitmap);
1304 
1305         if (test_bit(chunk, block->transit_bitmap)) {
1306             trace_qemu_rdma_unregister_waiting_inflight(chunk);
1307             continue;
1308         }
1309 
1310         trace_qemu_rdma_unregister_waiting_send(chunk);
1311 
1312         ret = ibv_dereg_mr(block->pmr[chunk]);
1313         block->pmr[chunk] = NULL;
1314         block->remote_keys[chunk] = 0;
1315 
1316         if (ret != 0) {
1317             perror("unregistration chunk failed");
1318             return -ret;
1319         }
1320         rdma->total_registrations--;
1321 
1322         reg.key.chunk = chunk;
1323         register_to_network(rdma, &reg);
1324         ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) &reg,
1325                                 &resp, NULL, NULL);
1326         if (ret < 0) {
1327             return ret;
1328         }
1329 
1330         trace_qemu_rdma_unregister_waiting_complete(chunk);
1331     }
1332 
1333     return 0;
1334 }
1335 
1336 static uint64_t qemu_rdma_make_wrid(uint64_t wr_id, uint64_t index,
1337                                          uint64_t chunk)
1338 {
1339     uint64_t result = wr_id & RDMA_WRID_TYPE_MASK;
1340 
1341     result |= (index << RDMA_WRID_BLOCK_SHIFT);
1342     result |= (chunk << RDMA_WRID_CHUNK_SHIFT);
1343 
1344     return result;
1345 }
1346 
1347 /*
1348  * Set bit for unregistration in the next iteration.
1349  * We cannot transmit right here, but will unpin later.
1350  */
1351 static void qemu_rdma_signal_unregister(RDMAContext *rdma, uint64_t index,
1352                                         uint64_t chunk, uint64_t wr_id)
1353 {
1354     if (rdma->unregistrations[rdma->unregister_next] != 0) {
1355         error_report("rdma migration: queue is full");
1356     } else {
1357         RDMALocalBlock *block = &(rdma->local_ram_blocks.block[index]);
1358 
1359         if (!test_and_set_bit(chunk, block->unregister_bitmap)) {
1360             trace_qemu_rdma_signal_unregister_append(chunk,
1361                                                      rdma->unregister_next);
1362 
1363             rdma->unregistrations[rdma->unregister_next++] =
1364                     qemu_rdma_make_wrid(wr_id, index, chunk);
1365 
1366             if (rdma->unregister_next == RDMA_SIGNALED_SEND_MAX) {
1367                 rdma->unregister_next = 0;
1368             }
1369         } else {
1370             trace_qemu_rdma_signal_unregister_already(chunk);
1371         }
1372     }
1373 }
1374 
1375 /*
1376  * Consult the connection manager to see a work request
1377  * (of any kind) has completed.
1378  * Return the work request ID that completed.
1379  */
1380 static uint64_t qemu_rdma_poll(RDMAContext *rdma, uint64_t *wr_id_out,
1381                                uint32_t *byte_len)
1382 {
1383     int ret;
1384     struct ibv_wc wc;
1385     uint64_t wr_id;
1386 
1387     ret = ibv_poll_cq(rdma->cq, 1, &wc);
1388 
1389     if (!ret) {
1390         *wr_id_out = RDMA_WRID_NONE;
1391         return 0;
1392     }
1393 
1394     if (ret < 0) {
1395         error_report("ibv_poll_cq return %d", ret);
1396         return ret;
1397     }
1398 
1399     wr_id = wc.wr_id & RDMA_WRID_TYPE_MASK;
1400 
1401     if (wc.status != IBV_WC_SUCCESS) {
1402         fprintf(stderr, "ibv_poll_cq wc.status=%d %s!\n",
1403                         wc.status, ibv_wc_status_str(wc.status));
1404         fprintf(stderr, "ibv_poll_cq wrid=%s!\n", wrid_desc[wr_id]);
1405 
1406         return -1;
1407     }
1408 
1409     if (rdma->control_ready_expected &&
1410         (wr_id >= RDMA_WRID_RECV_CONTROL)) {
1411         trace_qemu_rdma_poll_recv(wrid_desc[RDMA_WRID_RECV_CONTROL],
1412                   wr_id - RDMA_WRID_RECV_CONTROL, wr_id, rdma->nb_sent);
1413         rdma->control_ready_expected = 0;
1414     }
1415 
1416     if (wr_id == RDMA_WRID_RDMA_WRITE) {
1417         uint64_t chunk =
1418             (wc.wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT;
1419         uint64_t index =
1420             (wc.wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT;
1421         RDMALocalBlock *block = &(rdma->local_ram_blocks.block[index]);
1422 
1423         trace_qemu_rdma_poll_write(print_wrid(wr_id), wr_id, rdma->nb_sent,
1424                                    index, chunk, block->local_host_addr,
1425                                    (void *)(uintptr_t)block->remote_host_addr);
1426 
1427         clear_bit(chunk, block->transit_bitmap);
1428 
1429         if (rdma->nb_sent > 0) {
1430             rdma->nb_sent--;
1431         }
1432 
1433         if (!rdma->pin_all) {
1434             /*
1435              * FYI: If one wanted to signal a specific chunk to be unregistered
1436              * using LRU or workload-specific information, this is the function
1437              * you would call to do so. That chunk would then get asynchronously
1438              * unregistered later.
1439              */
1440 #ifdef RDMA_UNREGISTRATION_EXAMPLE
1441             qemu_rdma_signal_unregister(rdma, index, chunk, wc.wr_id);
1442 #endif
1443         }
1444     } else {
1445         trace_qemu_rdma_poll_other(print_wrid(wr_id), wr_id, rdma->nb_sent);
1446     }
1447 
1448     *wr_id_out = wc.wr_id;
1449     if (byte_len) {
1450         *byte_len = wc.byte_len;
1451     }
1452 
1453     return  0;
1454 }
1455 
1456 /*
1457  * Block until the next work request has completed.
1458  *
1459  * First poll to see if a work request has already completed,
1460  * otherwise block.
1461  *
1462  * If we encounter completed work requests for IDs other than
1463  * the one we're interested in, then that's generally an error.
1464  *
1465  * The only exception is actual RDMA Write completions. These
1466  * completions only need to be recorded, but do not actually
1467  * need further processing.
1468  */
1469 static int qemu_rdma_block_for_wrid(RDMAContext *rdma, int wrid_requested,
1470                                     uint32_t *byte_len)
1471 {
1472     int num_cq_events = 0, ret = 0;
1473     struct ibv_cq *cq;
1474     void *cq_ctx;
1475     uint64_t wr_id = RDMA_WRID_NONE, wr_id_in;
1476 
1477     if (ibv_req_notify_cq(rdma->cq, 0)) {
1478         return -1;
1479     }
1480     /* poll cq first */
1481     while (wr_id != wrid_requested) {
1482         ret = qemu_rdma_poll(rdma, &wr_id_in, byte_len);
1483         if (ret < 0) {
1484             return ret;
1485         }
1486 
1487         wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
1488 
1489         if (wr_id == RDMA_WRID_NONE) {
1490             break;
1491         }
1492         if (wr_id != wrid_requested) {
1493             trace_qemu_rdma_block_for_wrid_miss(print_wrid(wrid_requested),
1494                        wrid_requested, print_wrid(wr_id), wr_id);
1495         }
1496     }
1497 
1498     if (wr_id == wrid_requested) {
1499         return 0;
1500     }
1501 
1502     while (1) {
1503         /*
1504          * Coroutine doesn't start until process_incoming_migration()
1505          * so don't yield unless we know we're running inside of a coroutine.
1506          */
1507         if (rdma->migration_started_on_destination) {
1508             yield_until_fd_readable(rdma->comp_channel->fd);
1509         }
1510 
1511         if (ibv_get_cq_event(rdma->comp_channel, &cq, &cq_ctx)) {
1512             perror("ibv_get_cq_event");
1513             goto err_block_for_wrid;
1514         }
1515 
1516         num_cq_events++;
1517 
1518         if (ibv_req_notify_cq(cq, 0)) {
1519             goto err_block_for_wrid;
1520         }
1521 
1522         while (wr_id != wrid_requested) {
1523             ret = qemu_rdma_poll(rdma, &wr_id_in, byte_len);
1524             if (ret < 0) {
1525                 goto err_block_for_wrid;
1526             }
1527 
1528             wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
1529 
1530             if (wr_id == RDMA_WRID_NONE) {
1531                 break;
1532             }
1533             if (wr_id != wrid_requested) {
1534                 trace_qemu_rdma_block_for_wrid_miss(print_wrid(wrid_requested),
1535                                    wrid_requested, print_wrid(wr_id), wr_id);
1536             }
1537         }
1538 
1539         if (wr_id == wrid_requested) {
1540             goto success_block_for_wrid;
1541         }
1542     }
1543 
1544 success_block_for_wrid:
1545     if (num_cq_events) {
1546         ibv_ack_cq_events(cq, num_cq_events);
1547     }
1548     return 0;
1549 
1550 err_block_for_wrid:
1551     if (num_cq_events) {
1552         ibv_ack_cq_events(cq, num_cq_events);
1553     }
1554     return ret;
1555 }
1556 
1557 /*
1558  * Post a SEND message work request for the control channel
1559  * containing some data and block until the post completes.
1560  */
1561 static int qemu_rdma_post_send_control(RDMAContext *rdma, uint8_t *buf,
1562                                        RDMAControlHeader *head)
1563 {
1564     int ret = 0;
1565     RDMAWorkRequestData *wr = &rdma->wr_data[RDMA_WRID_CONTROL];
1566     struct ibv_send_wr *bad_wr;
1567     struct ibv_sge sge = {
1568                            .addr = (uintptr_t)(wr->control),
1569                            .length = head->len + sizeof(RDMAControlHeader),
1570                            .lkey = wr->control_mr->lkey,
1571                          };
1572     struct ibv_send_wr send_wr = {
1573                                    .wr_id = RDMA_WRID_SEND_CONTROL,
1574                                    .opcode = IBV_WR_SEND,
1575                                    .send_flags = IBV_SEND_SIGNALED,
1576                                    .sg_list = &sge,
1577                                    .num_sge = 1,
1578                                 };
1579 
1580     trace_qemu_rdma_post_send_control(control_desc[head->type]);
1581 
1582     /*
1583      * We don't actually need to do a memcpy() in here if we used
1584      * the "sge" properly, but since we're only sending control messages
1585      * (not RAM in a performance-critical path), then its OK for now.
1586      *
1587      * The copy makes the RDMAControlHeader simpler to manipulate
1588      * for the time being.
1589      */
1590     assert(head->len <= RDMA_CONTROL_MAX_BUFFER - sizeof(*head));
1591     memcpy(wr->control, head, sizeof(RDMAControlHeader));
1592     control_to_network((void *) wr->control);
1593 
1594     if (buf) {
1595         memcpy(wr->control + sizeof(RDMAControlHeader), buf, head->len);
1596     }
1597 
1598 
1599     ret = ibv_post_send(rdma->qp, &send_wr, &bad_wr);
1600 
1601     if (ret > 0) {
1602         error_report("Failed to use post IB SEND for control");
1603         return -ret;
1604     }
1605 
1606     ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_SEND_CONTROL, NULL);
1607     if (ret < 0) {
1608         error_report("rdma migration: send polling control error");
1609     }
1610 
1611     return ret;
1612 }
1613 
1614 /*
1615  * Post a RECV work request in anticipation of some future receipt
1616  * of data on the control channel.
1617  */
1618 static int qemu_rdma_post_recv_control(RDMAContext *rdma, int idx)
1619 {
1620     struct ibv_recv_wr *bad_wr;
1621     struct ibv_sge sge = {
1622                             .addr = (uintptr_t)(rdma->wr_data[idx].control),
1623                             .length = RDMA_CONTROL_MAX_BUFFER,
1624                             .lkey = rdma->wr_data[idx].control_mr->lkey,
1625                          };
1626 
1627     struct ibv_recv_wr recv_wr = {
1628                                     .wr_id = RDMA_WRID_RECV_CONTROL + idx,
1629                                     .sg_list = &sge,
1630                                     .num_sge = 1,
1631                                  };
1632 
1633 
1634     if (ibv_post_recv(rdma->qp, &recv_wr, &bad_wr)) {
1635         return -1;
1636     }
1637 
1638     return 0;
1639 }
1640 
1641 /*
1642  * Block and wait for a RECV control channel message to arrive.
1643  */
1644 static int qemu_rdma_exchange_get_response(RDMAContext *rdma,
1645                 RDMAControlHeader *head, int expecting, int idx)
1646 {
1647     uint32_t byte_len;
1648     int ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RECV_CONTROL + idx,
1649                                        &byte_len);
1650 
1651     if (ret < 0) {
1652         error_report("rdma migration: recv polling control error!");
1653         return ret;
1654     }
1655 
1656     network_to_control((void *) rdma->wr_data[idx].control);
1657     memcpy(head, rdma->wr_data[idx].control, sizeof(RDMAControlHeader));
1658 
1659     trace_qemu_rdma_exchange_get_response_start(control_desc[expecting]);
1660 
1661     if (expecting == RDMA_CONTROL_NONE) {
1662         trace_qemu_rdma_exchange_get_response_none(control_desc[head->type],
1663                                              head->type);
1664     } else if (head->type != expecting || head->type == RDMA_CONTROL_ERROR) {
1665         error_report("Was expecting a %s (%d) control message"
1666                 ", but got: %s (%d), length: %d",
1667                 control_desc[expecting], expecting,
1668                 control_desc[head->type], head->type, head->len);
1669         return -EIO;
1670     }
1671     if (head->len > RDMA_CONTROL_MAX_BUFFER - sizeof(*head)) {
1672         error_report("too long length: %d", head->len);
1673         return -EINVAL;
1674     }
1675     if (sizeof(*head) + head->len != byte_len) {
1676         error_report("Malformed length: %d byte_len %d", head->len, byte_len);
1677         return -EINVAL;
1678     }
1679 
1680     return 0;
1681 }
1682 
1683 /*
1684  * When a RECV work request has completed, the work request's
1685  * buffer is pointed at the header.
1686  *
1687  * This will advance the pointer to the data portion
1688  * of the control message of the work request's buffer that
1689  * was populated after the work request finished.
1690  */
1691 static void qemu_rdma_move_header(RDMAContext *rdma, int idx,
1692                                   RDMAControlHeader *head)
1693 {
1694     rdma->wr_data[idx].control_len = head->len;
1695     rdma->wr_data[idx].control_curr =
1696         rdma->wr_data[idx].control + sizeof(RDMAControlHeader);
1697 }
1698 
1699 /*
1700  * This is an 'atomic' high-level operation to deliver a single, unified
1701  * control-channel message.
1702  *
1703  * Additionally, if the user is expecting some kind of reply to this message,
1704  * they can request a 'resp' response message be filled in by posting an
1705  * additional work request on behalf of the user and waiting for an additional
1706  * completion.
1707  *
1708  * The extra (optional) response is used during registration to us from having
1709  * to perform an *additional* exchange of message just to provide a response by
1710  * instead piggy-backing on the acknowledgement.
1711  */
1712 static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head,
1713                                    uint8_t *data, RDMAControlHeader *resp,
1714                                    int *resp_idx,
1715                                    int (*callback)(RDMAContext *rdma))
1716 {
1717     int ret = 0;
1718 
1719     /*
1720      * Wait until the dest is ready before attempting to deliver the message
1721      * by waiting for a READY message.
1722      */
1723     if (rdma->control_ready_expected) {
1724         RDMAControlHeader resp;
1725         ret = qemu_rdma_exchange_get_response(rdma,
1726                                     &resp, RDMA_CONTROL_READY, RDMA_WRID_READY);
1727         if (ret < 0) {
1728             return ret;
1729         }
1730     }
1731 
1732     /*
1733      * If the user is expecting a response, post a WR in anticipation of it.
1734      */
1735     if (resp) {
1736         ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_DATA);
1737         if (ret) {
1738             error_report("rdma migration: error posting"
1739                     " extra control recv for anticipated result!");
1740             return ret;
1741         }
1742     }
1743 
1744     /*
1745      * Post a WR to replace the one we just consumed for the READY message.
1746      */
1747     ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
1748     if (ret) {
1749         error_report("rdma migration: error posting first control recv!");
1750         return ret;
1751     }
1752 
1753     /*
1754      * Deliver the control message that was requested.
1755      */
1756     ret = qemu_rdma_post_send_control(rdma, data, head);
1757 
1758     if (ret < 0) {
1759         error_report("Failed to send control buffer!");
1760         return ret;
1761     }
1762 
1763     /*
1764      * If we're expecting a response, block and wait for it.
1765      */
1766     if (resp) {
1767         if (callback) {
1768             trace_qemu_rdma_exchange_send_issue_callback();
1769             ret = callback(rdma);
1770             if (ret < 0) {
1771                 return ret;
1772             }
1773         }
1774 
1775         trace_qemu_rdma_exchange_send_waiting(control_desc[resp->type]);
1776         ret = qemu_rdma_exchange_get_response(rdma, resp,
1777                                               resp->type, RDMA_WRID_DATA);
1778 
1779         if (ret < 0) {
1780             return ret;
1781         }
1782 
1783         qemu_rdma_move_header(rdma, RDMA_WRID_DATA, resp);
1784         if (resp_idx) {
1785             *resp_idx = RDMA_WRID_DATA;
1786         }
1787         trace_qemu_rdma_exchange_send_received(control_desc[resp->type]);
1788     }
1789 
1790     rdma->control_ready_expected = 1;
1791 
1792     return 0;
1793 }
1794 
1795 /*
1796  * This is an 'atomic' high-level operation to receive a single, unified
1797  * control-channel message.
1798  */
1799 static int qemu_rdma_exchange_recv(RDMAContext *rdma, RDMAControlHeader *head,
1800                                 int expecting)
1801 {
1802     RDMAControlHeader ready = {
1803                                 .len = 0,
1804                                 .type = RDMA_CONTROL_READY,
1805                                 .repeat = 1,
1806                               };
1807     int ret;
1808 
1809     /*
1810      * Inform the source that we're ready to receive a message.
1811      */
1812     ret = qemu_rdma_post_send_control(rdma, NULL, &ready);
1813 
1814     if (ret < 0) {
1815         error_report("Failed to send control buffer!");
1816         return ret;
1817     }
1818 
1819     /*
1820      * Block and wait for the message.
1821      */
1822     ret = qemu_rdma_exchange_get_response(rdma, head,
1823                                           expecting, RDMA_WRID_READY);
1824 
1825     if (ret < 0) {
1826         return ret;
1827     }
1828 
1829     qemu_rdma_move_header(rdma, RDMA_WRID_READY, head);
1830 
1831     /*
1832      * Post a new RECV work request to replace the one we just consumed.
1833      */
1834     ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
1835     if (ret) {
1836         error_report("rdma migration: error posting second control recv!");
1837         return ret;
1838     }
1839 
1840     return 0;
1841 }
1842 
1843 /*
1844  * Write an actual chunk of memory using RDMA.
1845  *
1846  * If we're using dynamic registration on the dest-side, we have to
1847  * send a registration command first.
1848  */
1849 static int qemu_rdma_write_one(QEMUFile *f, RDMAContext *rdma,
1850                                int current_index, uint64_t current_addr,
1851                                uint64_t length)
1852 {
1853     struct ibv_sge sge;
1854     struct ibv_send_wr send_wr = { 0 };
1855     struct ibv_send_wr *bad_wr;
1856     int reg_result_idx, ret, count = 0;
1857     uint64_t chunk, chunks;
1858     uint8_t *chunk_start, *chunk_end;
1859     RDMALocalBlock *block = &(rdma->local_ram_blocks.block[current_index]);
1860     RDMARegister reg;
1861     RDMARegisterResult *reg_result;
1862     RDMAControlHeader resp = { .type = RDMA_CONTROL_REGISTER_RESULT };
1863     RDMAControlHeader head = { .len = sizeof(RDMARegister),
1864                                .type = RDMA_CONTROL_REGISTER_REQUEST,
1865                                .repeat = 1,
1866                              };
1867 
1868 retry:
1869     sge.addr = (uintptr_t)(block->local_host_addr +
1870                             (current_addr - block->offset));
1871     sge.length = length;
1872 
1873     chunk = ram_chunk_index(block->local_host_addr,
1874                             (uint8_t *)(uintptr_t)sge.addr);
1875     chunk_start = ram_chunk_start(block, chunk);
1876 
1877     if (block->is_ram_block) {
1878         chunks = length / (1UL << RDMA_REG_CHUNK_SHIFT);
1879 
1880         if (chunks && ((length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) {
1881             chunks--;
1882         }
1883     } else {
1884         chunks = block->length / (1UL << RDMA_REG_CHUNK_SHIFT);
1885 
1886         if (chunks && ((block->length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) {
1887             chunks--;
1888         }
1889     }
1890 
1891     trace_qemu_rdma_write_one_top(chunks + 1,
1892                                   (chunks + 1) *
1893                                   (1UL << RDMA_REG_CHUNK_SHIFT) / 1024 / 1024);
1894 
1895     chunk_end = ram_chunk_end(block, chunk + chunks);
1896 
1897     if (!rdma->pin_all) {
1898 #ifdef RDMA_UNREGISTRATION_EXAMPLE
1899         qemu_rdma_unregister_waiting(rdma);
1900 #endif
1901     }
1902 
1903     while (test_bit(chunk, block->transit_bitmap)) {
1904         (void)count;
1905         trace_qemu_rdma_write_one_block(count++, current_index, chunk,
1906                 sge.addr, length, rdma->nb_sent, block->nb_chunks);
1907 
1908         ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
1909 
1910         if (ret < 0) {
1911             error_report("Failed to Wait for previous write to complete "
1912                     "block %d chunk %" PRIu64
1913                     " current %" PRIu64 " len %" PRIu64 " %d",
1914                     current_index, chunk, sge.addr, length, rdma->nb_sent);
1915             return ret;
1916         }
1917     }
1918 
1919     if (!rdma->pin_all || !block->is_ram_block) {
1920         if (!block->remote_keys[chunk]) {
1921             /*
1922              * This chunk has not yet been registered, so first check to see
1923              * if the entire chunk is zero. If so, tell the other size to
1924              * memset() + madvise() the entire chunk without RDMA.
1925              */
1926 
1927             if (can_use_buffer_find_nonzero_offset((void *)(uintptr_t)sge.addr,
1928                                                    length)
1929                    && buffer_find_nonzero_offset((void *)(uintptr_t)sge.addr,
1930                                                     length) == length) {
1931                 RDMACompress comp = {
1932                                         .offset = current_addr,
1933                                         .value = 0,
1934                                         .block_idx = current_index,
1935                                         .length = length,
1936                                     };
1937 
1938                 head.len = sizeof(comp);
1939                 head.type = RDMA_CONTROL_COMPRESS;
1940 
1941                 trace_qemu_rdma_write_one_zero(chunk, sge.length,
1942                                                current_index, current_addr);
1943 
1944                 compress_to_network(rdma, &comp);
1945                 ret = qemu_rdma_exchange_send(rdma, &head,
1946                                 (uint8_t *) &comp, NULL, NULL, NULL);
1947 
1948                 if (ret < 0) {
1949                     return -EIO;
1950                 }
1951 
1952                 acct_update_position(f, sge.length, true);
1953 
1954                 return 1;
1955             }
1956 
1957             /*
1958              * Otherwise, tell other side to register.
1959              */
1960             reg.current_index = current_index;
1961             if (block->is_ram_block) {
1962                 reg.key.current_addr = current_addr;
1963             } else {
1964                 reg.key.chunk = chunk;
1965             }
1966             reg.chunks = chunks;
1967 
1968             trace_qemu_rdma_write_one_sendreg(chunk, sge.length, current_index,
1969                                               current_addr);
1970 
1971             register_to_network(rdma, &reg);
1972             ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) &reg,
1973                                     &resp, &reg_result_idx, NULL);
1974             if (ret < 0) {
1975                 return ret;
1976             }
1977 
1978             /* try to overlap this single registration with the one we sent. */
1979             if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr,
1980                                                 &sge.lkey, NULL, chunk,
1981                                                 chunk_start, chunk_end)) {
1982                 error_report("cannot get lkey");
1983                 return -EINVAL;
1984             }
1985 
1986             reg_result = (RDMARegisterResult *)
1987                     rdma->wr_data[reg_result_idx].control_curr;
1988 
1989             network_to_result(reg_result);
1990 
1991             trace_qemu_rdma_write_one_recvregres(block->remote_keys[chunk],
1992                                                  reg_result->rkey, chunk);
1993 
1994             block->remote_keys[chunk] = reg_result->rkey;
1995             block->remote_host_addr = reg_result->host_addr;
1996         } else {
1997             /* already registered before */
1998             if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr,
1999                                                 &sge.lkey, NULL, chunk,
2000                                                 chunk_start, chunk_end)) {
2001                 error_report("cannot get lkey!");
2002                 return -EINVAL;
2003             }
2004         }
2005 
2006         send_wr.wr.rdma.rkey = block->remote_keys[chunk];
2007     } else {
2008         send_wr.wr.rdma.rkey = block->remote_rkey;
2009 
2010         if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr,
2011                                                      &sge.lkey, NULL, chunk,
2012                                                      chunk_start, chunk_end)) {
2013             error_report("cannot get lkey!");
2014             return -EINVAL;
2015         }
2016     }
2017 
2018     /*
2019      * Encode the ram block index and chunk within this wrid.
2020      * We will use this information at the time of completion
2021      * to figure out which bitmap to check against and then which
2022      * chunk in the bitmap to look for.
2023      */
2024     send_wr.wr_id = qemu_rdma_make_wrid(RDMA_WRID_RDMA_WRITE,
2025                                         current_index, chunk);
2026 
2027     send_wr.opcode = IBV_WR_RDMA_WRITE;
2028     send_wr.send_flags = IBV_SEND_SIGNALED;
2029     send_wr.sg_list = &sge;
2030     send_wr.num_sge = 1;
2031     send_wr.wr.rdma.remote_addr = block->remote_host_addr +
2032                                 (current_addr - block->offset);
2033 
2034     trace_qemu_rdma_write_one_post(chunk, sge.addr, send_wr.wr.rdma.remote_addr,
2035                                    sge.length);
2036 
2037     /*
2038      * ibv_post_send() does not return negative error numbers,
2039      * per the specification they are positive - no idea why.
2040      */
2041     ret = ibv_post_send(rdma->qp, &send_wr, &bad_wr);
2042 
2043     if (ret == ENOMEM) {
2044         trace_qemu_rdma_write_one_queue_full();
2045         ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
2046         if (ret < 0) {
2047             error_report("rdma migration: failed to make "
2048                          "room in full send queue! %d", ret);
2049             return ret;
2050         }
2051 
2052         goto retry;
2053 
2054     } else if (ret > 0) {
2055         perror("rdma migration: post rdma write failed");
2056         return -ret;
2057     }
2058 
2059     set_bit(chunk, block->transit_bitmap);
2060     acct_update_position(f, sge.length, false);
2061     rdma->total_writes++;
2062 
2063     return 0;
2064 }
2065 
2066 /*
2067  * Push out any unwritten RDMA operations.
2068  *
2069  * We support sending out multiple chunks at the same time.
2070  * Not all of them need to get signaled in the completion queue.
2071  */
2072 static int qemu_rdma_write_flush(QEMUFile *f, RDMAContext *rdma)
2073 {
2074     int ret;
2075 
2076     if (!rdma->current_length) {
2077         return 0;
2078     }
2079 
2080     ret = qemu_rdma_write_one(f, rdma,
2081             rdma->current_index, rdma->current_addr, rdma->current_length);
2082 
2083     if (ret < 0) {
2084         return ret;
2085     }
2086 
2087     if (ret == 0) {
2088         rdma->nb_sent++;
2089         trace_qemu_rdma_write_flush(rdma->nb_sent);
2090     }
2091 
2092     rdma->current_length = 0;
2093     rdma->current_addr = 0;
2094 
2095     return 0;
2096 }
2097 
2098 static inline int qemu_rdma_buffer_mergable(RDMAContext *rdma,
2099                     uint64_t offset, uint64_t len)
2100 {
2101     RDMALocalBlock *block;
2102     uint8_t *host_addr;
2103     uint8_t *chunk_end;
2104 
2105     if (rdma->current_index < 0) {
2106         return 0;
2107     }
2108 
2109     if (rdma->current_chunk < 0) {
2110         return 0;
2111     }
2112 
2113     block = &(rdma->local_ram_blocks.block[rdma->current_index]);
2114     host_addr = block->local_host_addr + (offset - block->offset);
2115     chunk_end = ram_chunk_end(block, rdma->current_chunk);
2116 
2117     if (rdma->current_length == 0) {
2118         return 0;
2119     }
2120 
2121     /*
2122      * Only merge into chunk sequentially.
2123      */
2124     if (offset != (rdma->current_addr + rdma->current_length)) {
2125         return 0;
2126     }
2127 
2128     if (offset < block->offset) {
2129         return 0;
2130     }
2131 
2132     if ((offset + len) > (block->offset + block->length)) {
2133         return 0;
2134     }
2135 
2136     if ((host_addr + len) > chunk_end) {
2137         return 0;
2138     }
2139 
2140     return 1;
2141 }
2142 
2143 /*
2144  * We're not actually writing here, but doing three things:
2145  *
2146  * 1. Identify the chunk the buffer belongs to.
2147  * 2. If the chunk is full or the buffer doesn't belong to the current
2148  *    chunk, then start a new chunk and flush() the old chunk.
2149  * 3. To keep the hardware busy, we also group chunks into batches
2150  *    and only require that a batch gets acknowledged in the completion
2151  *    qeueue instead of each individual chunk.
2152  */
2153 static int qemu_rdma_write(QEMUFile *f, RDMAContext *rdma,
2154                            uint64_t block_offset, uint64_t offset,
2155                            uint64_t len)
2156 {
2157     uint64_t current_addr = block_offset + offset;
2158     uint64_t index = rdma->current_index;
2159     uint64_t chunk = rdma->current_chunk;
2160     int ret;
2161 
2162     /* If we cannot merge it, we flush the current buffer first. */
2163     if (!qemu_rdma_buffer_mergable(rdma, current_addr, len)) {
2164         ret = qemu_rdma_write_flush(f, rdma);
2165         if (ret) {
2166             return ret;
2167         }
2168         rdma->current_length = 0;
2169         rdma->current_addr = current_addr;
2170 
2171         ret = qemu_rdma_search_ram_block(rdma, block_offset,
2172                                          offset, len, &index, &chunk);
2173         if (ret) {
2174             error_report("ram block search failed");
2175             return ret;
2176         }
2177         rdma->current_index = index;
2178         rdma->current_chunk = chunk;
2179     }
2180 
2181     /* merge it */
2182     rdma->current_length += len;
2183 
2184     /* flush it if buffer is too large */
2185     if (rdma->current_length >= RDMA_MERGE_MAX) {
2186         return qemu_rdma_write_flush(f, rdma);
2187     }
2188 
2189     return 0;
2190 }
2191 
2192 static void qemu_rdma_cleanup(RDMAContext *rdma)
2193 {
2194     struct rdma_cm_event *cm_event;
2195     int ret, idx;
2196 
2197     if (rdma->cm_id && rdma->connected) {
2198         if (rdma->error_state) {
2199             RDMAControlHeader head = { .len = 0,
2200                                        .type = RDMA_CONTROL_ERROR,
2201                                        .repeat = 1,
2202                                      };
2203             error_report("Early error. Sending error.");
2204             qemu_rdma_post_send_control(rdma, NULL, &head);
2205         }
2206 
2207         ret = rdma_disconnect(rdma->cm_id);
2208         if (!ret) {
2209             trace_qemu_rdma_cleanup_waiting_for_disconnect();
2210             ret = rdma_get_cm_event(rdma->channel, &cm_event);
2211             if (!ret) {
2212                 rdma_ack_cm_event(cm_event);
2213             }
2214         }
2215         trace_qemu_rdma_cleanup_disconnect();
2216         rdma->connected = false;
2217     }
2218 
2219     g_free(rdma->dest_blocks);
2220     rdma->dest_blocks = NULL;
2221 
2222     for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2223         if (rdma->wr_data[idx].control_mr) {
2224             rdma->total_registrations--;
2225             ibv_dereg_mr(rdma->wr_data[idx].control_mr);
2226         }
2227         rdma->wr_data[idx].control_mr = NULL;
2228     }
2229 
2230     if (rdma->local_ram_blocks.block) {
2231         while (rdma->local_ram_blocks.nb_blocks) {
2232             rdma_delete_block(rdma, &rdma->local_ram_blocks.block[0]);
2233         }
2234     }
2235 
2236     if (rdma->qp) {
2237         rdma_destroy_qp(rdma->cm_id);
2238         rdma->qp = NULL;
2239     }
2240     if (rdma->cq) {
2241         ibv_destroy_cq(rdma->cq);
2242         rdma->cq = NULL;
2243     }
2244     if (rdma->comp_channel) {
2245         ibv_destroy_comp_channel(rdma->comp_channel);
2246         rdma->comp_channel = NULL;
2247     }
2248     if (rdma->pd) {
2249         ibv_dealloc_pd(rdma->pd);
2250         rdma->pd = NULL;
2251     }
2252     if (rdma->cm_id) {
2253         rdma_destroy_id(rdma->cm_id);
2254         rdma->cm_id = NULL;
2255     }
2256     if (rdma->listen_id) {
2257         rdma_destroy_id(rdma->listen_id);
2258         rdma->listen_id = NULL;
2259     }
2260     if (rdma->channel) {
2261         rdma_destroy_event_channel(rdma->channel);
2262         rdma->channel = NULL;
2263     }
2264     g_free(rdma->host);
2265     rdma->host = NULL;
2266 }
2267 
2268 
2269 static int qemu_rdma_source_init(RDMAContext *rdma, Error **errp, bool pin_all)
2270 {
2271     int ret, idx;
2272     Error *local_err = NULL, **temp = &local_err;
2273 
2274     /*
2275      * Will be validated against destination's actual capabilities
2276      * after the connect() completes.
2277      */
2278     rdma->pin_all = pin_all;
2279 
2280     ret = qemu_rdma_resolve_host(rdma, temp);
2281     if (ret) {
2282         goto err_rdma_source_init;
2283     }
2284 
2285     ret = qemu_rdma_alloc_pd_cq(rdma);
2286     if (ret) {
2287         ERROR(temp, "rdma migration: error allocating pd and cq! Your mlock()"
2288                     " limits may be too low. Please check $ ulimit -a # and "
2289                     "search for 'ulimit -l' in the output");
2290         goto err_rdma_source_init;
2291     }
2292 
2293     ret = qemu_rdma_alloc_qp(rdma);
2294     if (ret) {
2295         ERROR(temp, "rdma migration: error allocating qp!");
2296         goto err_rdma_source_init;
2297     }
2298 
2299     ret = qemu_rdma_init_ram_blocks(rdma);
2300     if (ret) {
2301         ERROR(temp, "rdma migration: error initializing ram blocks!");
2302         goto err_rdma_source_init;
2303     }
2304 
2305     /* Build the hash that maps from offset to RAMBlock */
2306     rdma->blockmap = g_hash_table_new(g_direct_hash, g_direct_equal);
2307     for (idx = 0; idx < rdma->local_ram_blocks.nb_blocks; idx++) {
2308         g_hash_table_insert(rdma->blockmap,
2309                 (void *)(uintptr_t)rdma->local_ram_blocks.block[idx].offset,
2310                 &rdma->local_ram_blocks.block[idx]);
2311     }
2312 
2313     for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2314         ret = qemu_rdma_reg_control(rdma, idx);
2315         if (ret) {
2316             ERROR(temp, "rdma migration: error registering %d control!",
2317                                                             idx);
2318             goto err_rdma_source_init;
2319         }
2320     }
2321 
2322     return 0;
2323 
2324 err_rdma_source_init:
2325     error_propagate(errp, local_err);
2326     qemu_rdma_cleanup(rdma);
2327     return -1;
2328 }
2329 
2330 static int qemu_rdma_connect(RDMAContext *rdma, Error **errp)
2331 {
2332     RDMACapabilities cap = {
2333                                 .version = RDMA_CONTROL_VERSION_CURRENT,
2334                                 .flags = 0,
2335                            };
2336     struct rdma_conn_param conn_param = { .initiator_depth = 2,
2337                                           .retry_count = 5,
2338                                           .private_data = &cap,
2339                                           .private_data_len = sizeof(cap),
2340                                         };
2341     struct rdma_cm_event *cm_event;
2342     int ret;
2343 
2344     /*
2345      * Only negotiate the capability with destination if the user
2346      * on the source first requested the capability.
2347      */
2348     if (rdma->pin_all) {
2349         trace_qemu_rdma_connect_pin_all_requested();
2350         cap.flags |= RDMA_CAPABILITY_PIN_ALL;
2351     }
2352 
2353     caps_to_network(&cap);
2354 
2355     ret = rdma_connect(rdma->cm_id, &conn_param);
2356     if (ret) {
2357         perror("rdma_connect");
2358         ERROR(errp, "connecting to destination!");
2359         goto err_rdma_source_connect;
2360     }
2361 
2362     ret = rdma_get_cm_event(rdma->channel, &cm_event);
2363     if (ret) {
2364         perror("rdma_get_cm_event after rdma_connect");
2365         ERROR(errp, "connecting to destination!");
2366         rdma_ack_cm_event(cm_event);
2367         goto err_rdma_source_connect;
2368     }
2369 
2370     if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) {
2371         perror("rdma_get_cm_event != EVENT_ESTABLISHED after rdma_connect");
2372         ERROR(errp, "connecting to destination!");
2373         rdma_ack_cm_event(cm_event);
2374         goto err_rdma_source_connect;
2375     }
2376     rdma->connected = true;
2377 
2378     memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap));
2379     network_to_caps(&cap);
2380 
2381     /*
2382      * Verify that the *requested* capabilities are supported by the destination
2383      * and disable them otherwise.
2384      */
2385     if (rdma->pin_all && !(cap.flags & RDMA_CAPABILITY_PIN_ALL)) {
2386         ERROR(errp, "Server cannot support pinning all memory. "
2387                         "Will register memory dynamically.");
2388         rdma->pin_all = false;
2389     }
2390 
2391     trace_qemu_rdma_connect_pin_all_outcome(rdma->pin_all);
2392 
2393     rdma_ack_cm_event(cm_event);
2394 
2395     ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
2396     if (ret) {
2397         ERROR(errp, "posting second control recv!");
2398         goto err_rdma_source_connect;
2399     }
2400 
2401     rdma->control_ready_expected = 1;
2402     rdma->nb_sent = 0;
2403     return 0;
2404 
2405 err_rdma_source_connect:
2406     qemu_rdma_cleanup(rdma);
2407     return -1;
2408 }
2409 
2410 static int qemu_rdma_dest_init(RDMAContext *rdma, Error **errp)
2411 {
2412     int ret, idx;
2413     struct rdma_cm_id *listen_id;
2414     char ip[40] = "unknown";
2415     struct rdma_addrinfo *res, *e;
2416     char port_str[16];
2417 
2418     for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2419         rdma->wr_data[idx].control_len = 0;
2420         rdma->wr_data[idx].control_curr = NULL;
2421     }
2422 
2423     if (!rdma->host || !rdma->host[0]) {
2424         ERROR(errp, "RDMA host is not set!");
2425         rdma->error_state = -EINVAL;
2426         return -1;
2427     }
2428     /* create CM channel */
2429     rdma->channel = rdma_create_event_channel();
2430     if (!rdma->channel) {
2431         ERROR(errp, "could not create rdma event channel");
2432         rdma->error_state = -EINVAL;
2433         return -1;
2434     }
2435 
2436     /* create CM id */
2437     ret = rdma_create_id(rdma->channel, &listen_id, NULL, RDMA_PS_TCP);
2438     if (ret) {
2439         ERROR(errp, "could not create cm_id!");
2440         goto err_dest_init_create_listen_id;
2441     }
2442 
2443     snprintf(port_str, 16, "%d", rdma->port);
2444     port_str[15] = '\0';
2445 
2446     ret = rdma_getaddrinfo(rdma->host, port_str, NULL, &res);
2447     if (ret < 0) {
2448         ERROR(errp, "could not rdma_getaddrinfo address %s", rdma->host);
2449         goto err_dest_init_bind_addr;
2450     }
2451 
2452     for (e = res; e != NULL; e = e->ai_next) {
2453         inet_ntop(e->ai_family,
2454             &((struct sockaddr_in *) e->ai_dst_addr)->sin_addr, ip, sizeof ip);
2455         trace_qemu_rdma_dest_init_trying(rdma->host, ip);
2456         ret = rdma_bind_addr(listen_id, e->ai_dst_addr);
2457         if (ret) {
2458             continue;
2459         }
2460         if (e->ai_family == AF_INET6) {
2461             ret = qemu_rdma_broken_ipv6_kernel(errp, listen_id->verbs);
2462             if (ret) {
2463                 continue;
2464             }
2465         }
2466         break;
2467     }
2468 
2469     if (!e) {
2470         ERROR(errp, "Error: could not rdma_bind_addr!");
2471         goto err_dest_init_bind_addr;
2472     }
2473 
2474     rdma->listen_id = listen_id;
2475     qemu_rdma_dump_gid("dest_init", listen_id);
2476     return 0;
2477 
2478 err_dest_init_bind_addr:
2479     rdma_destroy_id(listen_id);
2480 err_dest_init_create_listen_id:
2481     rdma_destroy_event_channel(rdma->channel);
2482     rdma->channel = NULL;
2483     rdma->error_state = ret;
2484     return ret;
2485 
2486 }
2487 
2488 static void *qemu_rdma_data_init(const char *host_port, Error **errp)
2489 {
2490     RDMAContext *rdma = NULL;
2491     InetSocketAddress *addr;
2492 
2493     if (host_port) {
2494         rdma = g_new0(RDMAContext, 1);
2495         rdma->current_index = -1;
2496         rdma->current_chunk = -1;
2497 
2498         addr = inet_parse(host_port, NULL);
2499         if (addr != NULL) {
2500             rdma->port = atoi(addr->port);
2501             rdma->host = g_strdup(addr->host);
2502         } else {
2503             ERROR(errp, "bad RDMA migration address '%s'", host_port);
2504             g_free(rdma);
2505             rdma = NULL;
2506         }
2507 
2508         qapi_free_InetSocketAddress(addr);
2509     }
2510 
2511     return rdma;
2512 }
2513 
2514 /*
2515  * QEMUFile interface to the control channel.
2516  * SEND messages for control only.
2517  * VM's ram is handled with regular RDMA messages.
2518  */
2519 static ssize_t qemu_rdma_put_buffer(void *opaque, const uint8_t *buf,
2520                                     int64_t pos, size_t size)
2521 {
2522     QEMUFileRDMA *r = opaque;
2523     QEMUFile *f = r->file;
2524     RDMAContext *rdma = r->rdma;
2525     size_t remaining = size;
2526     uint8_t * data = (void *) buf;
2527     int ret;
2528 
2529     CHECK_ERROR_STATE();
2530 
2531     /*
2532      * Push out any writes that
2533      * we're queued up for VM's ram.
2534      */
2535     ret = qemu_rdma_write_flush(f, rdma);
2536     if (ret < 0) {
2537         rdma->error_state = ret;
2538         return ret;
2539     }
2540 
2541     while (remaining) {
2542         RDMAControlHeader head;
2543 
2544         r->len = MIN(remaining, RDMA_SEND_INCREMENT);
2545         remaining -= r->len;
2546 
2547         /* Guaranteed to fit due to RDMA_SEND_INCREMENT MIN above */
2548         head.len = (uint32_t)r->len;
2549         head.type = RDMA_CONTROL_QEMU_FILE;
2550 
2551         ret = qemu_rdma_exchange_send(rdma, &head, data, NULL, NULL, NULL);
2552 
2553         if (ret < 0) {
2554             rdma->error_state = ret;
2555             return ret;
2556         }
2557 
2558         data += r->len;
2559     }
2560 
2561     return size;
2562 }
2563 
2564 static size_t qemu_rdma_fill(RDMAContext *rdma, uint8_t *buf,
2565                              size_t size, int idx)
2566 {
2567     size_t len = 0;
2568 
2569     if (rdma->wr_data[idx].control_len) {
2570         trace_qemu_rdma_fill(rdma->wr_data[idx].control_len, size);
2571 
2572         len = MIN(size, rdma->wr_data[idx].control_len);
2573         memcpy(buf, rdma->wr_data[idx].control_curr, len);
2574         rdma->wr_data[idx].control_curr += len;
2575         rdma->wr_data[idx].control_len -= len;
2576     }
2577 
2578     return len;
2579 }
2580 
2581 /*
2582  * QEMUFile interface to the control channel.
2583  * RDMA links don't use bytestreams, so we have to
2584  * return bytes to QEMUFile opportunistically.
2585  */
2586 static ssize_t qemu_rdma_get_buffer(void *opaque, uint8_t *buf,
2587                                     int64_t pos, size_t size)
2588 {
2589     QEMUFileRDMA *r = opaque;
2590     RDMAContext *rdma = r->rdma;
2591     RDMAControlHeader head;
2592     int ret = 0;
2593 
2594     CHECK_ERROR_STATE();
2595 
2596     /*
2597      * First, we hold on to the last SEND message we
2598      * were given and dish out the bytes until we run
2599      * out of bytes.
2600      */
2601     r->len = qemu_rdma_fill(r->rdma, buf, size, 0);
2602     if (r->len) {
2603         return r->len;
2604     }
2605 
2606     /*
2607      * Once we run out, we block and wait for another
2608      * SEND message to arrive.
2609      */
2610     ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_QEMU_FILE);
2611 
2612     if (ret < 0) {
2613         rdma->error_state = ret;
2614         return ret;
2615     }
2616 
2617     /*
2618      * SEND was received with new bytes, now try again.
2619      */
2620     return qemu_rdma_fill(r->rdma, buf, size, 0);
2621 }
2622 
2623 /*
2624  * Block until all the outstanding chunks have been delivered by the hardware.
2625  */
2626 static int qemu_rdma_drain_cq(QEMUFile *f, RDMAContext *rdma)
2627 {
2628     int ret;
2629 
2630     if (qemu_rdma_write_flush(f, rdma) < 0) {
2631         return -EIO;
2632     }
2633 
2634     while (rdma->nb_sent) {
2635         ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
2636         if (ret < 0) {
2637             error_report("rdma migration: complete polling error!");
2638             return -EIO;
2639         }
2640     }
2641 
2642     qemu_rdma_unregister_waiting(rdma);
2643 
2644     return 0;
2645 }
2646 
2647 static int qemu_rdma_close(void *opaque)
2648 {
2649     trace_qemu_rdma_close();
2650     QEMUFileRDMA *r = opaque;
2651     if (r->rdma) {
2652         qemu_rdma_cleanup(r->rdma);
2653         g_free(r->rdma);
2654     }
2655     g_free(r);
2656     return 0;
2657 }
2658 
2659 /*
2660  * Parameters:
2661  *    @offset == 0 :
2662  *        This means that 'block_offset' is a full virtual address that does not
2663  *        belong to a RAMBlock of the virtual machine and instead
2664  *        represents a private malloc'd memory area that the caller wishes to
2665  *        transfer.
2666  *
2667  *    @offset != 0 :
2668  *        Offset is an offset to be added to block_offset and used
2669  *        to also lookup the corresponding RAMBlock.
2670  *
2671  *    @size > 0 :
2672  *        Initiate an transfer this size.
2673  *
2674  *    @size == 0 :
2675  *        A 'hint' or 'advice' that means that we wish to speculatively
2676  *        and asynchronously unregister this memory. In this case, there is no
2677  *        guarantee that the unregister will actually happen, for example,
2678  *        if the memory is being actively transmitted. Additionally, the memory
2679  *        may be re-registered at any future time if a write within the same
2680  *        chunk was requested again, even if you attempted to unregister it
2681  *        here.
2682  *
2683  *    @size < 0 : TODO, not yet supported
2684  *        Unregister the memory NOW. This means that the caller does not
2685  *        expect there to be any future RDMA transfers and we just want to clean
2686  *        things up. This is used in case the upper layer owns the memory and
2687  *        cannot wait for qemu_fclose() to occur.
2688  *
2689  *    @bytes_sent : User-specificed pointer to indicate how many bytes were
2690  *                  sent. Usually, this will not be more than a few bytes of
2691  *                  the protocol because most transfers are sent asynchronously.
2692  */
2693 static size_t qemu_rdma_save_page(QEMUFile *f, void *opaque,
2694                                   ram_addr_t block_offset, ram_addr_t offset,
2695                                   size_t size, uint64_t *bytes_sent)
2696 {
2697     QEMUFileRDMA *rfile = opaque;
2698     RDMAContext *rdma = rfile->rdma;
2699     int ret;
2700 
2701     CHECK_ERROR_STATE();
2702 
2703     qemu_fflush(f);
2704 
2705     if (size > 0) {
2706         /*
2707          * Add this page to the current 'chunk'. If the chunk
2708          * is full, or the page doen't belong to the current chunk,
2709          * an actual RDMA write will occur and a new chunk will be formed.
2710          */
2711         ret = qemu_rdma_write(f, rdma, block_offset, offset, size);
2712         if (ret < 0) {
2713             error_report("rdma migration: write error! %d", ret);
2714             goto err;
2715         }
2716 
2717         /*
2718          * We always return 1 bytes because the RDMA
2719          * protocol is completely asynchronous. We do not yet know
2720          * whether an  identified chunk is zero or not because we're
2721          * waiting for other pages to potentially be merged with
2722          * the current chunk. So, we have to call qemu_update_position()
2723          * later on when the actual write occurs.
2724          */
2725         if (bytes_sent) {
2726             *bytes_sent = 1;
2727         }
2728     } else {
2729         uint64_t index, chunk;
2730 
2731         /* TODO: Change QEMUFileOps prototype to be signed: size_t => long
2732         if (size < 0) {
2733             ret = qemu_rdma_drain_cq(f, rdma);
2734             if (ret < 0) {
2735                 fprintf(stderr, "rdma: failed to synchronously drain"
2736                                 " completion queue before unregistration.\n");
2737                 goto err;
2738             }
2739         }
2740         */
2741 
2742         ret = qemu_rdma_search_ram_block(rdma, block_offset,
2743                                          offset, size, &index, &chunk);
2744 
2745         if (ret) {
2746             error_report("ram block search failed");
2747             goto err;
2748         }
2749 
2750         qemu_rdma_signal_unregister(rdma, index, chunk, 0);
2751 
2752         /*
2753          * TODO: Synchronous, guaranteed unregistration (should not occur during
2754          * fast-path). Otherwise, unregisters will process on the next call to
2755          * qemu_rdma_drain_cq()
2756         if (size < 0) {
2757             qemu_rdma_unregister_waiting(rdma);
2758         }
2759         */
2760     }
2761 
2762     /*
2763      * Drain the Completion Queue if possible, but do not block,
2764      * just poll.
2765      *
2766      * If nothing to poll, the end of the iteration will do this
2767      * again to make sure we don't overflow the request queue.
2768      */
2769     while (1) {
2770         uint64_t wr_id, wr_id_in;
2771         int ret = qemu_rdma_poll(rdma, &wr_id_in, NULL);
2772         if (ret < 0) {
2773             error_report("rdma migration: polling error! %d", ret);
2774             goto err;
2775         }
2776 
2777         wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
2778 
2779         if (wr_id == RDMA_WRID_NONE) {
2780             break;
2781         }
2782     }
2783 
2784     return RAM_SAVE_CONTROL_DELAYED;
2785 err:
2786     rdma->error_state = ret;
2787     return ret;
2788 }
2789 
2790 static int qemu_rdma_accept(RDMAContext *rdma)
2791 {
2792     RDMACapabilities cap;
2793     struct rdma_conn_param conn_param = {
2794                                             .responder_resources = 2,
2795                                             .private_data = &cap,
2796                                             .private_data_len = sizeof(cap),
2797                                          };
2798     struct rdma_cm_event *cm_event;
2799     struct ibv_context *verbs;
2800     int ret = -EINVAL;
2801     int idx;
2802 
2803     ret = rdma_get_cm_event(rdma->channel, &cm_event);
2804     if (ret) {
2805         goto err_rdma_dest_wait;
2806     }
2807 
2808     if (cm_event->event != RDMA_CM_EVENT_CONNECT_REQUEST) {
2809         rdma_ack_cm_event(cm_event);
2810         goto err_rdma_dest_wait;
2811     }
2812 
2813     memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap));
2814 
2815     network_to_caps(&cap);
2816 
2817     if (cap.version < 1 || cap.version > RDMA_CONTROL_VERSION_CURRENT) {
2818             error_report("Unknown source RDMA version: %d, bailing...",
2819                             cap.version);
2820             rdma_ack_cm_event(cm_event);
2821             goto err_rdma_dest_wait;
2822     }
2823 
2824     /*
2825      * Respond with only the capabilities this version of QEMU knows about.
2826      */
2827     cap.flags &= known_capabilities;
2828 
2829     /*
2830      * Enable the ones that we do know about.
2831      * Add other checks here as new ones are introduced.
2832      */
2833     if (cap.flags & RDMA_CAPABILITY_PIN_ALL) {
2834         rdma->pin_all = true;
2835     }
2836 
2837     rdma->cm_id = cm_event->id;
2838     verbs = cm_event->id->verbs;
2839 
2840     rdma_ack_cm_event(cm_event);
2841 
2842     trace_qemu_rdma_accept_pin_state(rdma->pin_all);
2843 
2844     caps_to_network(&cap);
2845 
2846     trace_qemu_rdma_accept_pin_verbsc(verbs);
2847 
2848     if (!rdma->verbs) {
2849         rdma->verbs = verbs;
2850     } else if (rdma->verbs != verbs) {
2851             error_report("ibv context not matching %p, %p!", rdma->verbs,
2852                          verbs);
2853             goto err_rdma_dest_wait;
2854     }
2855 
2856     qemu_rdma_dump_id("dest_init", verbs);
2857 
2858     ret = qemu_rdma_alloc_pd_cq(rdma);
2859     if (ret) {
2860         error_report("rdma migration: error allocating pd and cq!");
2861         goto err_rdma_dest_wait;
2862     }
2863 
2864     ret = qemu_rdma_alloc_qp(rdma);
2865     if (ret) {
2866         error_report("rdma migration: error allocating qp!");
2867         goto err_rdma_dest_wait;
2868     }
2869 
2870     ret = qemu_rdma_init_ram_blocks(rdma);
2871     if (ret) {
2872         error_report("rdma migration: error initializing ram blocks!");
2873         goto err_rdma_dest_wait;
2874     }
2875 
2876     for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2877         ret = qemu_rdma_reg_control(rdma, idx);
2878         if (ret) {
2879             error_report("rdma: error registering %d control", idx);
2880             goto err_rdma_dest_wait;
2881         }
2882     }
2883 
2884     qemu_set_fd_handler(rdma->channel->fd, NULL, NULL, NULL);
2885 
2886     ret = rdma_accept(rdma->cm_id, &conn_param);
2887     if (ret) {
2888         error_report("rdma_accept returns %d", ret);
2889         goto err_rdma_dest_wait;
2890     }
2891 
2892     ret = rdma_get_cm_event(rdma->channel, &cm_event);
2893     if (ret) {
2894         error_report("rdma_accept get_cm_event failed %d", ret);
2895         goto err_rdma_dest_wait;
2896     }
2897 
2898     if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) {
2899         error_report("rdma_accept not event established");
2900         rdma_ack_cm_event(cm_event);
2901         goto err_rdma_dest_wait;
2902     }
2903 
2904     rdma_ack_cm_event(cm_event);
2905     rdma->connected = true;
2906 
2907     ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
2908     if (ret) {
2909         error_report("rdma migration: error posting second control recv");
2910         goto err_rdma_dest_wait;
2911     }
2912 
2913     qemu_rdma_dump_gid("dest_connect", rdma->cm_id);
2914 
2915     return 0;
2916 
2917 err_rdma_dest_wait:
2918     rdma->error_state = ret;
2919     qemu_rdma_cleanup(rdma);
2920     return ret;
2921 }
2922 
2923 static int dest_ram_sort_func(const void *a, const void *b)
2924 {
2925     unsigned int a_index = ((const RDMALocalBlock *)a)->src_index;
2926     unsigned int b_index = ((const RDMALocalBlock *)b)->src_index;
2927 
2928     return (a_index < b_index) ? -1 : (a_index != b_index);
2929 }
2930 
2931 /*
2932  * During each iteration of the migration, we listen for instructions
2933  * by the source VM to perform dynamic page registrations before they
2934  * can perform RDMA operations.
2935  *
2936  * We respond with the 'rkey'.
2937  *
2938  * Keep doing this until the source tells us to stop.
2939  */
2940 static int qemu_rdma_registration_handle(QEMUFile *f, void *opaque)
2941 {
2942     RDMAControlHeader reg_resp = { .len = sizeof(RDMARegisterResult),
2943                                .type = RDMA_CONTROL_REGISTER_RESULT,
2944                                .repeat = 0,
2945                              };
2946     RDMAControlHeader unreg_resp = { .len = 0,
2947                                .type = RDMA_CONTROL_UNREGISTER_FINISHED,
2948                                .repeat = 0,
2949                              };
2950     RDMAControlHeader blocks = { .type = RDMA_CONTROL_RAM_BLOCKS_RESULT,
2951                                  .repeat = 1 };
2952     QEMUFileRDMA *rfile = opaque;
2953     RDMAContext *rdma = rfile->rdma;
2954     RDMALocalBlocks *local = &rdma->local_ram_blocks;
2955     RDMAControlHeader head;
2956     RDMARegister *reg, *registers;
2957     RDMACompress *comp;
2958     RDMARegisterResult *reg_result;
2959     static RDMARegisterResult results[RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE];
2960     RDMALocalBlock *block;
2961     void *host_addr;
2962     int ret = 0;
2963     int idx = 0;
2964     int count = 0;
2965     int i = 0;
2966 
2967     CHECK_ERROR_STATE();
2968 
2969     do {
2970         trace_qemu_rdma_registration_handle_wait();
2971 
2972         ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_NONE);
2973 
2974         if (ret < 0) {
2975             break;
2976         }
2977 
2978         if (head.repeat > RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE) {
2979             error_report("rdma: Too many requests in this message (%d)."
2980                             "Bailing.", head.repeat);
2981             ret = -EIO;
2982             break;
2983         }
2984 
2985         switch (head.type) {
2986         case RDMA_CONTROL_COMPRESS:
2987             comp = (RDMACompress *) rdma->wr_data[idx].control_curr;
2988             network_to_compress(comp);
2989 
2990             trace_qemu_rdma_registration_handle_compress(comp->length,
2991                                                          comp->block_idx,
2992                                                          comp->offset);
2993             if (comp->block_idx >= rdma->local_ram_blocks.nb_blocks) {
2994                 error_report("rdma: 'compress' bad block index %u (vs %d)",
2995                              (unsigned int)comp->block_idx,
2996                              rdma->local_ram_blocks.nb_blocks);
2997                 ret = -EIO;
2998                 goto out;
2999             }
3000             block = &(rdma->local_ram_blocks.block[comp->block_idx]);
3001 
3002             host_addr = block->local_host_addr +
3003                             (comp->offset - block->offset);
3004 
3005             ram_handle_compressed(host_addr, comp->value, comp->length);
3006             break;
3007 
3008         case RDMA_CONTROL_REGISTER_FINISHED:
3009             trace_qemu_rdma_registration_handle_finished();
3010             goto out;
3011 
3012         case RDMA_CONTROL_RAM_BLOCKS_REQUEST:
3013             trace_qemu_rdma_registration_handle_ram_blocks();
3014 
3015             /* Sort our local RAM Block list so it's the same as the source,
3016              * we can do this since we've filled in a src_index in the list
3017              * as we received the RAMBlock list earlier.
3018              */
3019             qsort(rdma->local_ram_blocks.block,
3020                   rdma->local_ram_blocks.nb_blocks,
3021                   sizeof(RDMALocalBlock), dest_ram_sort_func);
3022             if (rdma->pin_all) {
3023                 ret = qemu_rdma_reg_whole_ram_blocks(rdma);
3024                 if (ret) {
3025                     error_report("rdma migration: error dest "
3026                                     "registering ram blocks");
3027                     goto out;
3028                 }
3029             }
3030 
3031             /*
3032              * Dest uses this to prepare to transmit the RAMBlock descriptions
3033              * to the source VM after connection setup.
3034              * Both sides use the "remote" structure to communicate and update
3035              * their "local" descriptions with what was sent.
3036              */
3037             for (i = 0; i < local->nb_blocks; i++) {
3038                 rdma->dest_blocks[i].remote_host_addr =
3039                     (uintptr_t)(local->block[i].local_host_addr);
3040 
3041                 if (rdma->pin_all) {
3042                     rdma->dest_blocks[i].remote_rkey = local->block[i].mr->rkey;
3043                 }
3044 
3045                 rdma->dest_blocks[i].offset = local->block[i].offset;
3046                 rdma->dest_blocks[i].length = local->block[i].length;
3047 
3048                 dest_block_to_network(&rdma->dest_blocks[i]);
3049                 trace_qemu_rdma_registration_handle_ram_blocks_loop(
3050                     local->block[i].block_name,
3051                     local->block[i].offset,
3052                     local->block[i].length,
3053                     local->block[i].local_host_addr,
3054                     local->block[i].src_index);
3055             }
3056 
3057             blocks.len = rdma->local_ram_blocks.nb_blocks
3058                                                 * sizeof(RDMADestBlock);
3059 
3060 
3061             ret = qemu_rdma_post_send_control(rdma,
3062                                         (uint8_t *) rdma->dest_blocks, &blocks);
3063 
3064             if (ret < 0) {
3065                 error_report("rdma migration: error sending remote info");
3066                 goto out;
3067             }
3068 
3069             break;
3070         case RDMA_CONTROL_REGISTER_REQUEST:
3071             trace_qemu_rdma_registration_handle_register(head.repeat);
3072 
3073             reg_resp.repeat = head.repeat;
3074             registers = (RDMARegister *) rdma->wr_data[idx].control_curr;
3075 
3076             for (count = 0; count < head.repeat; count++) {
3077                 uint64_t chunk;
3078                 uint8_t *chunk_start, *chunk_end;
3079 
3080                 reg = &registers[count];
3081                 network_to_register(reg);
3082 
3083                 reg_result = &results[count];
3084 
3085                 trace_qemu_rdma_registration_handle_register_loop(count,
3086                          reg->current_index, reg->key.current_addr, reg->chunks);
3087 
3088                 if (reg->current_index >= rdma->local_ram_blocks.nb_blocks) {
3089                     error_report("rdma: 'register' bad block index %u (vs %d)",
3090                                  (unsigned int)reg->current_index,
3091                                  rdma->local_ram_blocks.nb_blocks);
3092                     ret = -ENOENT;
3093                     goto out;
3094                 }
3095                 block = &(rdma->local_ram_blocks.block[reg->current_index]);
3096                 if (block->is_ram_block) {
3097                     if (block->offset > reg->key.current_addr) {
3098                         error_report("rdma: bad register address for block %s"
3099                             " offset: %" PRIx64 " current_addr: %" PRIx64,
3100                             block->block_name, block->offset,
3101                             reg->key.current_addr);
3102                         ret = -ERANGE;
3103                         goto out;
3104                     }
3105                     host_addr = (block->local_host_addr +
3106                                 (reg->key.current_addr - block->offset));
3107                     chunk = ram_chunk_index(block->local_host_addr,
3108                                             (uint8_t *) host_addr);
3109                 } else {
3110                     chunk = reg->key.chunk;
3111                     host_addr = block->local_host_addr +
3112                         (reg->key.chunk * (1UL << RDMA_REG_CHUNK_SHIFT));
3113                     /* Check for particularly bad chunk value */
3114                     if (host_addr < (void *)block->local_host_addr) {
3115                         error_report("rdma: bad chunk for block %s"
3116                             " chunk: %" PRIx64,
3117                             block->block_name, reg->key.chunk);
3118                         ret = -ERANGE;
3119                         goto out;
3120                     }
3121                 }
3122                 chunk_start = ram_chunk_start(block, chunk);
3123                 chunk_end = ram_chunk_end(block, chunk + reg->chunks);
3124                 if (qemu_rdma_register_and_get_keys(rdma, block,
3125                             (uintptr_t)host_addr, NULL, &reg_result->rkey,
3126                             chunk, chunk_start, chunk_end)) {
3127                     error_report("cannot get rkey");
3128                     ret = -EINVAL;
3129                     goto out;
3130                 }
3131 
3132                 reg_result->host_addr = (uintptr_t)block->local_host_addr;
3133 
3134                 trace_qemu_rdma_registration_handle_register_rkey(
3135                                                            reg_result->rkey);
3136 
3137                 result_to_network(reg_result);
3138             }
3139 
3140             ret = qemu_rdma_post_send_control(rdma,
3141                             (uint8_t *) results, &reg_resp);
3142 
3143             if (ret < 0) {
3144                 error_report("Failed to send control buffer");
3145                 goto out;
3146             }
3147             break;
3148         case RDMA_CONTROL_UNREGISTER_REQUEST:
3149             trace_qemu_rdma_registration_handle_unregister(head.repeat);
3150             unreg_resp.repeat = head.repeat;
3151             registers = (RDMARegister *) rdma->wr_data[idx].control_curr;
3152 
3153             for (count = 0; count < head.repeat; count++) {
3154                 reg = &registers[count];
3155                 network_to_register(reg);
3156 
3157                 trace_qemu_rdma_registration_handle_unregister_loop(count,
3158                            reg->current_index, reg->key.chunk);
3159 
3160                 block = &(rdma->local_ram_blocks.block[reg->current_index]);
3161 
3162                 ret = ibv_dereg_mr(block->pmr[reg->key.chunk]);
3163                 block->pmr[reg->key.chunk] = NULL;
3164 
3165                 if (ret != 0) {
3166                     perror("rdma unregistration chunk failed");
3167                     ret = -ret;
3168                     goto out;
3169                 }
3170 
3171                 rdma->total_registrations--;
3172 
3173                 trace_qemu_rdma_registration_handle_unregister_success(
3174                                                        reg->key.chunk);
3175             }
3176 
3177             ret = qemu_rdma_post_send_control(rdma, NULL, &unreg_resp);
3178 
3179             if (ret < 0) {
3180                 error_report("Failed to send control buffer");
3181                 goto out;
3182             }
3183             break;
3184         case RDMA_CONTROL_REGISTER_RESULT:
3185             error_report("Invalid RESULT message at dest.");
3186             ret = -EIO;
3187             goto out;
3188         default:
3189             error_report("Unknown control message %s", control_desc[head.type]);
3190             ret = -EIO;
3191             goto out;
3192         }
3193     } while (1);
3194 out:
3195     if (ret < 0) {
3196         rdma->error_state = ret;
3197     }
3198     return ret;
3199 }
3200 
3201 /* Destination:
3202  * Called via a ram_control_load_hook during the initial RAM load section which
3203  * lists the RAMBlocks by name.  This lets us know the order of the RAMBlocks
3204  * on the source.
3205  * We've already built our local RAMBlock list, but not yet sent the list to
3206  * the source.
3207  */
3208 static int rdma_block_notification_handle(QEMUFileRDMA *rfile, const char *name)
3209 {
3210     RDMAContext *rdma = rfile->rdma;
3211     int curr;
3212     int found = -1;
3213 
3214     /* Find the matching RAMBlock in our local list */
3215     for (curr = 0; curr < rdma->local_ram_blocks.nb_blocks; curr++) {
3216         if (!strcmp(rdma->local_ram_blocks.block[curr].block_name, name)) {
3217             found = curr;
3218             break;
3219         }
3220     }
3221 
3222     if (found == -1) {
3223         error_report("RAMBlock '%s' not found on destination", name);
3224         return -ENOENT;
3225     }
3226 
3227     rdma->local_ram_blocks.block[curr].src_index = rdma->next_src_index;
3228     trace_rdma_block_notification_handle(name, rdma->next_src_index);
3229     rdma->next_src_index++;
3230 
3231     return 0;
3232 }
3233 
3234 static int rdma_load_hook(QEMUFile *f, void *opaque, uint64_t flags, void *data)
3235 {
3236     switch (flags) {
3237     case RAM_CONTROL_BLOCK_REG:
3238         return rdma_block_notification_handle(opaque, data);
3239 
3240     case RAM_CONTROL_HOOK:
3241         return qemu_rdma_registration_handle(f, opaque);
3242 
3243     default:
3244         /* Shouldn't be called with any other values */
3245         abort();
3246     }
3247 }
3248 
3249 static int qemu_rdma_registration_start(QEMUFile *f, void *opaque,
3250                                         uint64_t flags, void *data)
3251 {
3252     QEMUFileRDMA *rfile = opaque;
3253     RDMAContext *rdma = rfile->rdma;
3254 
3255     CHECK_ERROR_STATE();
3256 
3257     trace_qemu_rdma_registration_start(flags);
3258     qemu_put_be64(f, RAM_SAVE_FLAG_HOOK);
3259     qemu_fflush(f);
3260 
3261     return 0;
3262 }
3263 
3264 /*
3265  * Inform dest that dynamic registrations are done for now.
3266  * First, flush writes, if any.
3267  */
3268 static int qemu_rdma_registration_stop(QEMUFile *f, void *opaque,
3269                                        uint64_t flags, void *data)
3270 {
3271     Error *local_err = NULL, **errp = &local_err;
3272     QEMUFileRDMA *rfile = opaque;
3273     RDMAContext *rdma = rfile->rdma;
3274     RDMAControlHeader head = { .len = 0, .repeat = 1 };
3275     int ret = 0;
3276 
3277     CHECK_ERROR_STATE();
3278 
3279     qemu_fflush(f);
3280     ret = qemu_rdma_drain_cq(f, rdma);
3281 
3282     if (ret < 0) {
3283         goto err;
3284     }
3285 
3286     if (flags == RAM_CONTROL_SETUP) {
3287         RDMAControlHeader resp = {.type = RDMA_CONTROL_RAM_BLOCKS_RESULT };
3288         RDMALocalBlocks *local = &rdma->local_ram_blocks;
3289         int reg_result_idx, i, nb_dest_blocks;
3290 
3291         head.type = RDMA_CONTROL_RAM_BLOCKS_REQUEST;
3292         trace_qemu_rdma_registration_stop_ram();
3293 
3294         /*
3295          * Make sure that we parallelize the pinning on both sides.
3296          * For very large guests, doing this serially takes a really
3297          * long time, so we have to 'interleave' the pinning locally
3298          * with the control messages by performing the pinning on this
3299          * side before we receive the control response from the other
3300          * side that the pinning has completed.
3301          */
3302         ret = qemu_rdma_exchange_send(rdma, &head, NULL, &resp,
3303                     &reg_result_idx, rdma->pin_all ?
3304                     qemu_rdma_reg_whole_ram_blocks : NULL);
3305         if (ret < 0) {
3306             ERROR(errp, "receiving remote info!");
3307             return ret;
3308         }
3309 
3310         nb_dest_blocks = resp.len / sizeof(RDMADestBlock);
3311 
3312         /*
3313          * The protocol uses two different sets of rkeys (mutually exclusive):
3314          * 1. One key to represent the virtual address of the entire ram block.
3315          *    (dynamic chunk registration disabled - pin everything with one rkey.)
3316          * 2. One to represent individual chunks within a ram block.
3317          *    (dynamic chunk registration enabled - pin individual chunks.)
3318          *
3319          * Once the capability is successfully negotiated, the destination transmits
3320          * the keys to use (or sends them later) including the virtual addresses
3321          * and then propagates the remote ram block descriptions to his local copy.
3322          */
3323 
3324         if (local->nb_blocks != nb_dest_blocks) {
3325             ERROR(errp, "ram blocks mismatch (Number of blocks %d vs %d) "
3326                         "Your QEMU command line parameters are probably "
3327                         "not identical on both the source and destination.",
3328                         local->nb_blocks, nb_dest_blocks);
3329             rdma->error_state = -EINVAL;
3330             return -EINVAL;
3331         }
3332 
3333         qemu_rdma_move_header(rdma, reg_result_idx, &resp);
3334         memcpy(rdma->dest_blocks,
3335             rdma->wr_data[reg_result_idx].control_curr, resp.len);
3336         for (i = 0; i < nb_dest_blocks; i++) {
3337             network_to_dest_block(&rdma->dest_blocks[i]);
3338 
3339             /* We require that the blocks are in the same order */
3340             if (rdma->dest_blocks[i].length != local->block[i].length) {
3341                 ERROR(errp, "Block %s/%d has a different length %" PRIu64
3342                             "vs %" PRIu64, local->block[i].block_name, i,
3343                             local->block[i].length,
3344                             rdma->dest_blocks[i].length);
3345                 rdma->error_state = -EINVAL;
3346                 return -EINVAL;
3347             }
3348             local->block[i].remote_host_addr =
3349                     rdma->dest_blocks[i].remote_host_addr;
3350             local->block[i].remote_rkey = rdma->dest_blocks[i].remote_rkey;
3351         }
3352     }
3353 
3354     trace_qemu_rdma_registration_stop(flags);
3355 
3356     head.type = RDMA_CONTROL_REGISTER_FINISHED;
3357     ret = qemu_rdma_exchange_send(rdma, &head, NULL, NULL, NULL, NULL);
3358 
3359     if (ret < 0) {
3360         goto err;
3361     }
3362 
3363     return 0;
3364 err:
3365     rdma->error_state = ret;
3366     return ret;
3367 }
3368 
3369 static int qemu_rdma_get_fd(void *opaque)
3370 {
3371     QEMUFileRDMA *rfile = opaque;
3372     RDMAContext *rdma = rfile->rdma;
3373 
3374     return rdma->comp_channel->fd;
3375 }
3376 
3377 static const QEMUFileOps rdma_read_ops = {
3378     .get_buffer    = qemu_rdma_get_buffer,
3379     .get_fd        = qemu_rdma_get_fd,
3380     .close         = qemu_rdma_close,
3381     .hook_ram_load = rdma_load_hook,
3382 };
3383 
3384 static const QEMUFileOps rdma_write_ops = {
3385     .put_buffer         = qemu_rdma_put_buffer,
3386     .close              = qemu_rdma_close,
3387     .before_ram_iterate = qemu_rdma_registration_start,
3388     .after_ram_iterate  = qemu_rdma_registration_stop,
3389     .save_page          = qemu_rdma_save_page,
3390 };
3391 
3392 static void *qemu_fopen_rdma(RDMAContext *rdma, const char *mode)
3393 {
3394     QEMUFileRDMA *r;
3395 
3396     if (qemu_file_mode_is_not_valid(mode)) {
3397         return NULL;
3398     }
3399 
3400     r = g_new0(QEMUFileRDMA, 1);
3401     r->rdma = rdma;
3402 
3403     if (mode[0] == 'w') {
3404         r->file = qemu_fopen_ops(r, &rdma_write_ops);
3405     } else {
3406         r->file = qemu_fopen_ops(r, &rdma_read_ops);
3407     }
3408 
3409     return r->file;
3410 }
3411 
3412 static void rdma_accept_incoming_migration(void *opaque)
3413 {
3414     RDMAContext *rdma = opaque;
3415     int ret;
3416     QEMUFile *f;
3417     Error *local_err = NULL, **errp = &local_err;
3418 
3419     trace_qemu_rdma_accept_incoming_migration();
3420     ret = qemu_rdma_accept(rdma);
3421 
3422     if (ret) {
3423         ERROR(errp, "RDMA Migration initialization failed!");
3424         return;
3425     }
3426 
3427     trace_qemu_rdma_accept_incoming_migration_accepted();
3428 
3429     f = qemu_fopen_rdma(rdma, "rb");
3430     if (f == NULL) {
3431         ERROR(errp, "could not qemu_fopen_rdma!");
3432         qemu_rdma_cleanup(rdma);
3433         return;
3434     }
3435 
3436     rdma->migration_started_on_destination = 1;
3437     process_incoming_migration(f);
3438 }
3439 
3440 void rdma_start_incoming_migration(const char *host_port, Error **errp)
3441 {
3442     int ret;
3443     RDMAContext *rdma;
3444     Error *local_err = NULL;
3445 
3446     trace_rdma_start_incoming_migration();
3447     rdma = qemu_rdma_data_init(host_port, &local_err);
3448 
3449     if (rdma == NULL) {
3450         goto err;
3451     }
3452 
3453     ret = qemu_rdma_dest_init(rdma, &local_err);
3454 
3455     if (ret) {
3456         goto err;
3457     }
3458 
3459     trace_rdma_start_incoming_migration_after_dest_init();
3460 
3461     ret = rdma_listen(rdma->listen_id, 5);
3462 
3463     if (ret) {
3464         ERROR(errp, "listening on socket!");
3465         goto err;
3466     }
3467 
3468     trace_rdma_start_incoming_migration_after_rdma_listen();
3469 
3470     qemu_set_fd_handler(rdma->channel->fd, rdma_accept_incoming_migration,
3471                         NULL, (void *)(intptr_t)rdma);
3472     return;
3473 err:
3474     error_propagate(errp, local_err);
3475     g_free(rdma);
3476 }
3477 
3478 void rdma_start_outgoing_migration(void *opaque,
3479                             const char *host_port, Error **errp)
3480 {
3481     MigrationState *s = opaque;
3482     Error *local_err = NULL, **temp = &local_err;
3483     RDMAContext *rdma = qemu_rdma_data_init(host_port, &local_err);
3484     int ret = 0;
3485 
3486     if (rdma == NULL) {
3487         ERROR(temp, "Failed to initialize RDMA data structures! %d", ret);
3488         goto err;
3489     }
3490 
3491     ret = qemu_rdma_source_init(rdma, &local_err,
3492         s->enabled_capabilities[MIGRATION_CAPABILITY_RDMA_PIN_ALL]);
3493 
3494     if (ret) {
3495         goto err;
3496     }
3497 
3498     trace_rdma_start_outgoing_migration_after_rdma_source_init();
3499     ret = qemu_rdma_connect(rdma, &local_err);
3500 
3501     if (ret) {
3502         goto err;
3503     }
3504 
3505     trace_rdma_start_outgoing_migration_after_rdma_connect();
3506 
3507     s->to_dst_file = qemu_fopen_rdma(rdma, "wb");
3508     migrate_fd_connect(s);
3509     return;
3510 err:
3511     error_propagate(errp, local_err);
3512     g_free(rdma);
3513     migrate_fd_error(s);
3514 }
3515