xref: /openbmc/qemu/migration/rdma.c (revision c576d8bf)
1 /*
2  * RDMA protocol and interfaces
3  *
4  * Copyright IBM, Corp. 2010-2013
5  * Copyright Red Hat, Inc. 2015-2016
6  *
7  * Authors:
8  *  Michael R. Hines <mrhines@us.ibm.com>
9  *  Jiuxing Liu <jl@us.ibm.com>
10  *  Daniel P. Berrange <berrange@redhat.com>
11  *
12  * This work is licensed under the terms of the GNU GPL, version 2 or
13  * later.  See the COPYING file in the top-level directory.
14  *
15  */
16 
17 #include "qemu/osdep.h"
18 #include "qapi/error.h"
19 #include "qemu/cutils.h"
20 #include "exec/target_page.h"
21 #include "rdma.h"
22 #include "migration.h"
23 #include "migration-stats.h"
24 #include "qemu-file.h"
25 #include "ram.h"
26 #include "qemu/error-report.h"
27 #include "qemu/main-loop.h"
28 #include "qemu/module.h"
29 #include "qemu/rcu.h"
30 #include "qemu/sockets.h"
31 #include "qemu/bitmap.h"
32 #include "qemu/coroutine.h"
33 #include "exec/memory.h"
34 #include <sys/socket.h>
35 #include <netdb.h>
36 #include <arpa/inet.h>
37 #include <rdma/rdma_cma.h>
38 #include "trace.h"
39 #include "qom/object.h"
40 #include "options.h"
41 #include <poll.h>
42 
43 /*
44  * Print and error on both the Monitor and the Log file.
45  */
46 #define ERROR(errp, fmt, ...) \
47     do { \
48         fprintf(stderr, "RDMA ERROR: " fmt "\n", ## __VA_ARGS__); \
49         if (errp && (*(errp) == NULL)) { \
50             error_setg(errp, "RDMA ERROR: " fmt, ## __VA_ARGS__); \
51         } \
52     } while (0)
53 
54 #define RDMA_RESOLVE_TIMEOUT_MS 10000
55 
56 /* Do not merge data if larger than this. */
57 #define RDMA_MERGE_MAX (2 * 1024 * 1024)
58 #define RDMA_SIGNALED_SEND_MAX (RDMA_MERGE_MAX / 4096)
59 
60 #define RDMA_REG_CHUNK_SHIFT 20 /* 1 MB */
61 
62 /*
63  * This is only for non-live state being migrated.
64  * Instead of RDMA_WRITE messages, we use RDMA_SEND
65  * messages for that state, which requires a different
66  * delivery design than main memory.
67  */
68 #define RDMA_SEND_INCREMENT 32768
69 
70 /*
71  * Maximum size infiniband SEND message
72  */
73 #define RDMA_CONTROL_MAX_BUFFER (512 * 1024)
74 #define RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE 4096
75 
76 #define RDMA_CONTROL_VERSION_CURRENT 1
77 /*
78  * Capabilities for negotiation.
79  */
80 #define RDMA_CAPABILITY_PIN_ALL 0x01
81 
82 /*
83  * Add the other flags above to this list of known capabilities
84  * as they are introduced.
85  */
86 static uint32_t known_capabilities = RDMA_CAPABILITY_PIN_ALL;
87 
88 #define CHECK_ERROR_STATE() \
89     do { \
90         if (rdma->error_state) { \
91             if (!rdma->error_reported) { \
92                 error_report("RDMA is in an error state waiting migration" \
93                                 " to abort!"); \
94                 rdma->error_reported = 1; \
95             } \
96             return rdma->error_state; \
97         } \
98     } while (0)
99 
100 /*
101  * A work request ID is 64-bits and we split up these bits
102  * into 3 parts:
103  *
104  * bits 0-15 : type of control message, 2^16
105  * bits 16-29: ram block index, 2^14
106  * bits 30-63: ram block chunk number, 2^34
107  *
108  * The last two bit ranges are only used for RDMA writes,
109  * in order to track their completion and potentially
110  * also track unregistration status of the message.
111  */
112 #define RDMA_WRID_TYPE_SHIFT  0UL
113 #define RDMA_WRID_BLOCK_SHIFT 16UL
114 #define RDMA_WRID_CHUNK_SHIFT 30UL
115 
116 #define RDMA_WRID_TYPE_MASK \
117     ((1UL << RDMA_WRID_BLOCK_SHIFT) - 1UL)
118 
119 #define RDMA_WRID_BLOCK_MASK \
120     (~RDMA_WRID_TYPE_MASK & ((1UL << RDMA_WRID_CHUNK_SHIFT) - 1UL))
121 
122 #define RDMA_WRID_CHUNK_MASK (~RDMA_WRID_BLOCK_MASK & ~RDMA_WRID_TYPE_MASK)
123 
124 /*
125  * RDMA migration protocol:
126  * 1. RDMA Writes (data messages, i.e. RAM)
127  * 2. IB Send/Recv (control channel messages)
128  */
129 enum {
130     RDMA_WRID_NONE = 0,
131     RDMA_WRID_RDMA_WRITE = 1,
132     RDMA_WRID_SEND_CONTROL = 2000,
133     RDMA_WRID_RECV_CONTROL = 4000,
134 };
135 
136 static const char *wrid_desc[] = {
137     [RDMA_WRID_NONE] = "NONE",
138     [RDMA_WRID_RDMA_WRITE] = "WRITE RDMA",
139     [RDMA_WRID_SEND_CONTROL] = "CONTROL SEND",
140     [RDMA_WRID_RECV_CONTROL] = "CONTROL RECV",
141 };
142 
143 /*
144  * Work request IDs for IB SEND messages only (not RDMA writes).
145  * This is used by the migration protocol to transmit
146  * control messages (such as device state and registration commands)
147  *
148  * We could use more WRs, but we have enough for now.
149  */
150 enum {
151     RDMA_WRID_READY = 0,
152     RDMA_WRID_DATA,
153     RDMA_WRID_CONTROL,
154     RDMA_WRID_MAX,
155 };
156 
157 /*
158  * SEND/RECV IB Control Messages.
159  */
160 enum {
161     RDMA_CONTROL_NONE = 0,
162     RDMA_CONTROL_ERROR,
163     RDMA_CONTROL_READY,               /* ready to receive */
164     RDMA_CONTROL_QEMU_FILE,           /* QEMUFile-transmitted bytes */
165     RDMA_CONTROL_RAM_BLOCKS_REQUEST,  /* RAMBlock synchronization */
166     RDMA_CONTROL_RAM_BLOCKS_RESULT,   /* RAMBlock synchronization */
167     RDMA_CONTROL_COMPRESS,            /* page contains repeat values */
168     RDMA_CONTROL_REGISTER_REQUEST,    /* dynamic page registration */
169     RDMA_CONTROL_REGISTER_RESULT,     /* key to use after registration */
170     RDMA_CONTROL_REGISTER_FINISHED,   /* current iteration finished */
171     RDMA_CONTROL_UNREGISTER_REQUEST,  /* dynamic UN-registration */
172     RDMA_CONTROL_UNREGISTER_FINISHED, /* unpinning finished */
173 };
174 
175 
176 /*
177  * Memory and MR structures used to represent an IB Send/Recv work request.
178  * This is *not* used for RDMA writes, only IB Send/Recv.
179  */
180 typedef struct {
181     uint8_t  control[RDMA_CONTROL_MAX_BUFFER]; /* actual buffer to register */
182     struct   ibv_mr *control_mr;               /* registration metadata */
183     size_t   control_len;                      /* length of the message */
184     uint8_t *control_curr;                     /* start of unconsumed bytes */
185 } RDMAWorkRequestData;
186 
187 /*
188  * Negotiate RDMA capabilities during connection-setup time.
189  */
190 typedef struct {
191     uint32_t version;
192     uint32_t flags;
193 } RDMACapabilities;
194 
195 static void caps_to_network(RDMACapabilities *cap)
196 {
197     cap->version = htonl(cap->version);
198     cap->flags = htonl(cap->flags);
199 }
200 
201 static void network_to_caps(RDMACapabilities *cap)
202 {
203     cap->version = ntohl(cap->version);
204     cap->flags = ntohl(cap->flags);
205 }
206 
207 /*
208  * Representation of a RAMBlock from an RDMA perspective.
209  * This is not transmitted, only local.
210  * This and subsequent structures cannot be linked lists
211  * because we're using a single IB message to transmit
212  * the information. It's small anyway, so a list is overkill.
213  */
214 typedef struct RDMALocalBlock {
215     char          *block_name;
216     uint8_t       *local_host_addr; /* local virtual address */
217     uint64_t       remote_host_addr; /* remote virtual address */
218     uint64_t       offset;
219     uint64_t       length;
220     struct         ibv_mr **pmr;    /* MRs for chunk-level registration */
221     struct         ibv_mr *mr;      /* MR for non-chunk-level registration */
222     uint32_t      *remote_keys;     /* rkeys for chunk-level registration */
223     uint32_t       remote_rkey;     /* rkeys for non-chunk-level registration */
224     int            index;           /* which block are we */
225     unsigned int   src_index;       /* (Only used on dest) */
226     bool           is_ram_block;
227     int            nb_chunks;
228     unsigned long *transit_bitmap;
229     unsigned long *unregister_bitmap;
230 } RDMALocalBlock;
231 
232 /*
233  * Also represents a RAMblock, but only on the dest.
234  * This gets transmitted by the dest during connection-time
235  * to the source VM and then is used to populate the
236  * corresponding RDMALocalBlock with
237  * the information needed to perform the actual RDMA.
238  */
239 typedef struct QEMU_PACKED RDMADestBlock {
240     uint64_t remote_host_addr;
241     uint64_t offset;
242     uint64_t length;
243     uint32_t remote_rkey;
244     uint32_t padding;
245 } RDMADestBlock;
246 
247 static const char *control_desc(unsigned int rdma_control)
248 {
249     static const char *strs[] = {
250         [RDMA_CONTROL_NONE] = "NONE",
251         [RDMA_CONTROL_ERROR] = "ERROR",
252         [RDMA_CONTROL_READY] = "READY",
253         [RDMA_CONTROL_QEMU_FILE] = "QEMU FILE",
254         [RDMA_CONTROL_RAM_BLOCKS_REQUEST] = "RAM BLOCKS REQUEST",
255         [RDMA_CONTROL_RAM_BLOCKS_RESULT] = "RAM BLOCKS RESULT",
256         [RDMA_CONTROL_COMPRESS] = "COMPRESS",
257         [RDMA_CONTROL_REGISTER_REQUEST] = "REGISTER REQUEST",
258         [RDMA_CONTROL_REGISTER_RESULT] = "REGISTER RESULT",
259         [RDMA_CONTROL_REGISTER_FINISHED] = "REGISTER FINISHED",
260         [RDMA_CONTROL_UNREGISTER_REQUEST] = "UNREGISTER REQUEST",
261         [RDMA_CONTROL_UNREGISTER_FINISHED] = "UNREGISTER FINISHED",
262     };
263 
264     if (rdma_control > RDMA_CONTROL_UNREGISTER_FINISHED) {
265         return "??BAD CONTROL VALUE??";
266     }
267 
268     return strs[rdma_control];
269 }
270 
271 static uint64_t htonll(uint64_t v)
272 {
273     union { uint32_t lv[2]; uint64_t llv; } u;
274     u.lv[0] = htonl(v >> 32);
275     u.lv[1] = htonl(v & 0xFFFFFFFFULL);
276     return u.llv;
277 }
278 
279 static uint64_t ntohll(uint64_t v)
280 {
281     union { uint32_t lv[2]; uint64_t llv; } u;
282     u.llv = v;
283     return ((uint64_t)ntohl(u.lv[0]) << 32) | (uint64_t) ntohl(u.lv[1]);
284 }
285 
286 static void dest_block_to_network(RDMADestBlock *db)
287 {
288     db->remote_host_addr = htonll(db->remote_host_addr);
289     db->offset = htonll(db->offset);
290     db->length = htonll(db->length);
291     db->remote_rkey = htonl(db->remote_rkey);
292 }
293 
294 static void network_to_dest_block(RDMADestBlock *db)
295 {
296     db->remote_host_addr = ntohll(db->remote_host_addr);
297     db->offset = ntohll(db->offset);
298     db->length = ntohll(db->length);
299     db->remote_rkey = ntohl(db->remote_rkey);
300 }
301 
302 /*
303  * Virtual address of the above structures used for transmitting
304  * the RAMBlock descriptions at connection-time.
305  * This structure is *not* transmitted.
306  */
307 typedef struct RDMALocalBlocks {
308     int nb_blocks;
309     bool     init;             /* main memory init complete */
310     RDMALocalBlock *block;
311 } RDMALocalBlocks;
312 
313 /*
314  * Main data structure for RDMA state.
315  * While there is only one copy of this structure being allocated right now,
316  * this is the place where one would start if you wanted to consider
317  * having more than one RDMA connection open at the same time.
318  */
319 typedef struct RDMAContext {
320     char *host;
321     int port;
322     char *host_port;
323 
324     RDMAWorkRequestData wr_data[RDMA_WRID_MAX];
325 
326     /*
327      * This is used by *_exchange_send() to figure out whether or not
328      * the initial "READY" message has already been received or not.
329      * This is because other functions may potentially poll() and detect
330      * the READY message before send() does, in which case we need to
331      * know if it completed.
332      */
333     int control_ready_expected;
334 
335     /* number of outstanding writes */
336     int nb_sent;
337 
338     /* store info about current buffer so that we can
339        merge it with future sends */
340     uint64_t current_addr;
341     uint64_t current_length;
342     /* index of ram block the current buffer belongs to */
343     int current_index;
344     /* index of the chunk in the current ram block */
345     int current_chunk;
346 
347     bool pin_all;
348 
349     /*
350      * infiniband-specific variables for opening the device
351      * and maintaining connection state and so forth.
352      *
353      * cm_id also has ibv_context, rdma_event_channel, and ibv_qp in
354      * cm_id->verbs, cm_id->channel, and cm_id->qp.
355      */
356     struct rdma_cm_id *cm_id;               /* connection manager ID */
357     struct rdma_cm_id *listen_id;
358     bool connected;
359 
360     struct ibv_context          *verbs;
361     struct rdma_event_channel   *channel;
362     struct ibv_qp *qp;                      /* queue pair */
363     struct ibv_comp_channel *recv_comp_channel;  /* recv completion channel */
364     struct ibv_comp_channel *send_comp_channel;  /* send completion channel */
365     struct ibv_pd *pd;                      /* protection domain */
366     struct ibv_cq *recv_cq;                 /* recvieve completion queue */
367     struct ibv_cq *send_cq;                 /* send completion queue */
368 
369     /*
370      * If a previous write failed (perhaps because of a failed
371      * memory registration, then do not attempt any future work
372      * and remember the error state.
373      */
374     int error_state;
375     int error_reported;
376     int received_error;
377 
378     /*
379      * Description of ram blocks used throughout the code.
380      */
381     RDMALocalBlocks local_ram_blocks;
382     RDMADestBlock  *dest_blocks;
383 
384     /* Index of the next RAMBlock received during block registration */
385     unsigned int    next_src_index;
386 
387     /*
388      * Migration on *destination* started.
389      * Then use coroutine yield function.
390      * Source runs in a thread, so we don't care.
391      */
392     int migration_started_on_destination;
393 
394     int total_registrations;
395     int total_writes;
396 
397     int unregister_current, unregister_next;
398     uint64_t unregistrations[RDMA_SIGNALED_SEND_MAX];
399 
400     GHashTable *blockmap;
401 
402     /* the RDMAContext for return path */
403     struct RDMAContext *return_path;
404     bool is_return_path;
405 } RDMAContext;
406 
407 #define TYPE_QIO_CHANNEL_RDMA "qio-channel-rdma"
408 OBJECT_DECLARE_SIMPLE_TYPE(QIOChannelRDMA, QIO_CHANNEL_RDMA)
409 
410 
411 
412 struct QIOChannelRDMA {
413     QIOChannel parent;
414     RDMAContext *rdmain;
415     RDMAContext *rdmaout;
416     QEMUFile *file;
417     bool blocking; /* XXX we don't actually honour this yet */
418 };
419 
420 /*
421  * Main structure for IB Send/Recv control messages.
422  * This gets prepended at the beginning of every Send/Recv.
423  */
424 typedef struct QEMU_PACKED {
425     uint32_t len;     /* Total length of data portion */
426     uint32_t type;    /* which control command to perform */
427     uint32_t repeat;  /* number of commands in data portion of same type */
428     uint32_t padding;
429 } RDMAControlHeader;
430 
431 static void control_to_network(RDMAControlHeader *control)
432 {
433     control->type = htonl(control->type);
434     control->len = htonl(control->len);
435     control->repeat = htonl(control->repeat);
436 }
437 
438 static void network_to_control(RDMAControlHeader *control)
439 {
440     control->type = ntohl(control->type);
441     control->len = ntohl(control->len);
442     control->repeat = ntohl(control->repeat);
443 }
444 
445 /*
446  * Register a single Chunk.
447  * Information sent by the source VM to inform the dest
448  * to register an single chunk of memory before we can perform
449  * the actual RDMA operation.
450  */
451 typedef struct QEMU_PACKED {
452     union QEMU_PACKED {
453         uint64_t current_addr;  /* offset into the ram_addr_t space */
454         uint64_t chunk;         /* chunk to lookup if unregistering */
455     } key;
456     uint32_t current_index; /* which ramblock the chunk belongs to */
457     uint32_t padding;
458     uint64_t chunks;            /* how many sequential chunks to register */
459 } RDMARegister;
460 
461 static void register_to_network(RDMAContext *rdma, RDMARegister *reg)
462 {
463     RDMALocalBlock *local_block;
464     local_block  = &rdma->local_ram_blocks.block[reg->current_index];
465 
466     if (local_block->is_ram_block) {
467         /*
468          * current_addr as passed in is an address in the local ram_addr_t
469          * space, we need to translate this for the destination
470          */
471         reg->key.current_addr -= local_block->offset;
472         reg->key.current_addr += rdma->dest_blocks[reg->current_index].offset;
473     }
474     reg->key.current_addr = htonll(reg->key.current_addr);
475     reg->current_index = htonl(reg->current_index);
476     reg->chunks = htonll(reg->chunks);
477 }
478 
479 static void network_to_register(RDMARegister *reg)
480 {
481     reg->key.current_addr = ntohll(reg->key.current_addr);
482     reg->current_index = ntohl(reg->current_index);
483     reg->chunks = ntohll(reg->chunks);
484 }
485 
486 typedef struct QEMU_PACKED {
487     uint32_t value;     /* if zero, we will madvise() */
488     uint32_t block_idx; /* which ram block index */
489     uint64_t offset;    /* Address in remote ram_addr_t space */
490     uint64_t length;    /* length of the chunk */
491 } RDMACompress;
492 
493 static void compress_to_network(RDMAContext *rdma, RDMACompress *comp)
494 {
495     comp->value = htonl(comp->value);
496     /*
497      * comp->offset as passed in is an address in the local ram_addr_t
498      * space, we need to translate this for the destination
499      */
500     comp->offset -= rdma->local_ram_blocks.block[comp->block_idx].offset;
501     comp->offset += rdma->dest_blocks[comp->block_idx].offset;
502     comp->block_idx = htonl(comp->block_idx);
503     comp->offset = htonll(comp->offset);
504     comp->length = htonll(comp->length);
505 }
506 
507 static void network_to_compress(RDMACompress *comp)
508 {
509     comp->value = ntohl(comp->value);
510     comp->block_idx = ntohl(comp->block_idx);
511     comp->offset = ntohll(comp->offset);
512     comp->length = ntohll(comp->length);
513 }
514 
515 /*
516  * The result of the dest's memory registration produces an "rkey"
517  * which the source VM must reference in order to perform
518  * the RDMA operation.
519  */
520 typedef struct QEMU_PACKED {
521     uint32_t rkey;
522     uint32_t padding;
523     uint64_t host_addr;
524 } RDMARegisterResult;
525 
526 static void result_to_network(RDMARegisterResult *result)
527 {
528     result->rkey = htonl(result->rkey);
529     result->host_addr = htonll(result->host_addr);
530 };
531 
532 static void network_to_result(RDMARegisterResult *result)
533 {
534     result->rkey = ntohl(result->rkey);
535     result->host_addr = ntohll(result->host_addr);
536 };
537 
538 const char *print_wrid(int wrid);
539 static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head,
540                                    uint8_t *data, RDMAControlHeader *resp,
541                                    int *resp_idx,
542                                    int (*callback)(RDMAContext *rdma));
543 
544 static inline uint64_t ram_chunk_index(const uint8_t *start,
545                                        const uint8_t *host)
546 {
547     return ((uintptr_t) host - (uintptr_t) start) >> RDMA_REG_CHUNK_SHIFT;
548 }
549 
550 static inline uint8_t *ram_chunk_start(const RDMALocalBlock *rdma_ram_block,
551                                        uint64_t i)
552 {
553     return (uint8_t *)(uintptr_t)(rdma_ram_block->local_host_addr +
554                                   (i << RDMA_REG_CHUNK_SHIFT));
555 }
556 
557 static inline uint8_t *ram_chunk_end(const RDMALocalBlock *rdma_ram_block,
558                                      uint64_t i)
559 {
560     uint8_t *result = ram_chunk_start(rdma_ram_block, i) +
561                                          (1UL << RDMA_REG_CHUNK_SHIFT);
562 
563     if (result > (rdma_ram_block->local_host_addr + rdma_ram_block->length)) {
564         result = rdma_ram_block->local_host_addr + rdma_ram_block->length;
565     }
566 
567     return result;
568 }
569 
570 static int rdma_add_block(RDMAContext *rdma, const char *block_name,
571                          void *host_addr,
572                          ram_addr_t block_offset, uint64_t length)
573 {
574     RDMALocalBlocks *local = &rdma->local_ram_blocks;
575     RDMALocalBlock *block;
576     RDMALocalBlock *old = local->block;
577 
578     local->block = g_new0(RDMALocalBlock, local->nb_blocks + 1);
579 
580     if (local->nb_blocks) {
581         int x;
582 
583         if (rdma->blockmap) {
584             for (x = 0; x < local->nb_blocks; x++) {
585                 g_hash_table_remove(rdma->blockmap,
586                                     (void *)(uintptr_t)old[x].offset);
587                 g_hash_table_insert(rdma->blockmap,
588                                     (void *)(uintptr_t)old[x].offset,
589                                     &local->block[x]);
590             }
591         }
592         memcpy(local->block, old, sizeof(RDMALocalBlock) * local->nb_blocks);
593         g_free(old);
594     }
595 
596     block = &local->block[local->nb_blocks];
597 
598     block->block_name = g_strdup(block_name);
599     block->local_host_addr = host_addr;
600     block->offset = block_offset;
601     block->length = length;
602     block->index = local->nb_blocks;
603     block->src_index = ~0U; /* Filled in by the receipt of the block list */
604     block->nb_chunks = ram_chunk_index(host_addr, host_addr + length) + 1UL;
605     block->transit_bitmap = bitmap_new(block->nb_chunks);
606     bitmap_clear(block->transit_bitmap, 0, block->nb_chunks);
607     block->unregister_bitmap = bitmap_new(block->nb_chunks);
608     bitmap_clear(block->unregister_bitmap, 0, block->nb_chunks);
609     block->remote_keys = g_new0(uint32_t, block->nb_chunks);
610 
611     block->is_ram_block = local->init ? false : true;
612 
613     if (rdma->blockmap) {
614         g_hash_table_insert(rdma->blockmap, (void *)(uintptr_t)block_offset, block);
615     }
616 
617     trace_rdma_add_block(block_name, local->nb_blocks,
618                          (uintptr_t) block->local_host_addr,
619                          block->offset, block->length,
620                          (uintptr_t) (block->local_host_addr + block->length),
621                          BITS_TO_LONGS(block->nb_chunks) *
622                              sizeof(unsigned long) * 8,
623                          block->nb_chunks);
624 
625     local->nb_blocks++;
626 
627     return 0;
628 }
629 
630 /*
631  * Memory regions need to be registered with the device and queue pairs setup
632  * in advanced before the migration starts. This tells us where the RAM blocks
633  * are so that we can register them individually.
634  */
635 static int qemu_rdma_init_one_block(RAMBlock *rb, void *opaque)
636 {
637     const char *block_name = qemu_ram_get_idstr(rb);
638     void *host_addr = qemu_ram_get_host_addr(rb);
639     ram_addr_t block_offset = qemu_ram_get_offset(rb);
640     ram_addr_t length = qemu_ram_get_used_length(rb);
641     return rdma_add_block(opaque, block_name, host_addr, block_offset, length);
642 }
643 
644 /*
645  * Identify the RAMBlocks and their quantity. They will be references to
646  * identify chunk boundaries inside each RAMBlock and also be referenced
647  * during dynamic page registration.
648  */
649 static int qemu_rdma_init_ram_blocks(RDMAContext *rdma)
650 {
651     RDMALocalBlocks *local = &rdma->local_ram_blocks;
652     int ret;
653 
654     assert(rdma->blockmap == NULL);
655     memset(local, 0, sizeof *local);
656     ret = foreach_not_ignored_block(qemu_rdma_init_one_block, rdma);
657     if (ret) {
658         return ret;
659     }
660     trace_qemu_rdma_init_ram_blocks(local->nb_blocks);
661     rdma->dest_blocks = g_new0(RDMADestBlock,
662                                rdma->local_ram_blocks.nb_blocks);
663     local->init = true;
664     return 0;
665 }
666 
667 /*
668  * Note: If used outside of cleanup, the caller must ensure that the destination
669  * block structures are also updated
670  */
671 static int rdma_delete_block(RDMAContext *rdma, RDMALocalBlock *block)
672 {
673     RDMALocalBlocks *local = &rdma->local_ram_blocks;
674     RDMALocalBlock *old = local->block;
675     int x;
676 
677     if (rdma->blockmap) {
678         g_hash_table_remove(rdma->blockmap, (void *)(uintptr_t)block->offset);
679     }
680     if (block->pmr) {
681         int j;
682 
683         for (j = 0; j < block->nb_chunks; j++) {
684             if (!block->pmr[j]) {
685                 continue;
686             }
687             ibv_dereg_mr(block->pmr[j]);
688             rdma->total_registrations--;
689         }
690         g_free(block->pmr);
691         block->pmr = NULL;
692     }
693 
694     if (block->mr) {
695         ibv_dereg_mr(block->mr);
696         rdma->total_registrations--;
697         block->mr = NULL;
698     }
699 
700     g_free(block->transit_bitmap);
701     block->transit_bitmap = NULL;
702 
703     g_free(block->unregister_bitmap);
704     block->unregister_bitmap = NULL;
705 
706     g_free(block->remote_keys);
707     block->remote_keys = NULL;
708 
709     g_free(block->block_name);
710     block->block_name = NULL;
711 
712     if (rdma->blockmap) {
713         for (x = 0; x < local->nb_blocks; x++) {
714             g_hash_table_remove(rdma->blockmap,
715                                 (void *)(uintptr_t)old[x].offset);
716         }
717     }
718 
719     if (local->nb_blocks > 1) {
720 
721         local->block = g_new0(RDMALocalBlock, local->nb_blocks - 1);
722 
723         if (block->index) {
724             memcpy(local->block, old, sizeof(RDMALocalBlock) * block->index);
725         }
726 
727         if (block->index < (local->nb_blocks - 1)) {
728             memcpy(local->block + block->index, old + (block->index + 1),
729                 sizeof(RDMALocalBlock) *
730                     (local->nb_blocks - (block->index + 1)));
731             for (x = block->index; x < local->nb_blocks - 1; x++) {
732                 local->block[x].index--;
733             }
734         }
735     } else {
736         assert(block == local->block);
737         local->block = NULL;
738     }
739 
740     trace_rdma_delete_block(block, (uintptr_t)block->local_host_addr,
741                            block->offset, block->length,
742                             (uintptr_t)(block->local_host_addr + block->length),
743                            BITS_TO_LONGS(block->nb_chunks) *
744                                sizeof(unsigned long) * 8, block->nb_chunks);
745 
746     g_free(old);
747 
748     local->nb_blocks--;
749 
750     if (local->nb_blocks && rdma->blockmap) {
751         for (x = 0; x < local->nb_blocks; x++) {
752             g_hash_table_insert(rdma->blockmap,
753                                 (void *)(uintptr_t)local->block[x].offset,
754                                 &local->block[x]);
755         }
756     }
757 
758     return 0;
759 }
760 
761 /*
762  * Put in the log file which RDMA device was opened and the details
763  * associated with that device.
764  */
765 static void qemu_rdma_dump_id(const char *who, struct ibv_context *verbs)
766 {
767     struct ibv_port_attr port;
768 
769     if (ibv_query_port(verbs, 1, &port)) {
770         error_report("Failed to query port information");
771         return;
772     }
773 
774     printf("%s RDMA Device opened: kernel name %s "
775            "uverbs device name %s, "
776            "infiniband_verbs class device path %s, "
777            "infiniband class device path %s, "
778            "transport: (%d) %s\n",
779                 who,
780                 verbs->device->name,
781                 verbs->device->dev_name,
782                 verbs->device->dev_path,
783                 verbs->device->ibdev_path,
784                 port.link_layer,
785                 (port.link_layer == IBV_LINK_LAYER_INFINIBAND) ? "Infiniband" :
786                  ((port.link_layer == IBV_LINK_LAYER_ETHERNET)
787                     ? "Ethernet" : "Unknown"));
788 }
789 
790 /*
791  * Put in the log file the RDMA gid addressing information,
792  * useful for folks who have trouble understanding the
793  * RDMA device hierarchy in the kernel.
794  */
795 static void qemu_rdma_dump_gid(const char *who, struct rdma_cm_id *id)
796 {
797     char sgid[33];
798     char dgid[33];
799     inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.sgid, sgid, sizeof sgid);
800     inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.dgid, dgid, sizeof dgid);
801     trace_qemu_rdma_dump_gid(who, sgid, dgid);
802 }
803 
804 /*
805  * As of now, IPv6 over RoCE / iWARP is not supported by linux.
806  * We will try the next addrinfo struct, and fail if there are
807  * no other valid addresses to bind against.
808  *
809  * If user is listening on '[::]', then we will not have a opened a device
810  * yet and have no way of verifying if the device is RoCE or not.
811  *
812  * In this case, the source VM will throw an error for ALL types of
813  * connections (both IPv4 and IPv6) if the destination machine does not have
814  * a regular infiniband network available for use.
815  *
816  * The only way to guarantee that an error is thrown for broken kernels is
817  * for the management software to choose a *specific* interface at bind time
818  * and validate what time of hardware it is.
819  *
820  * Unfortunately, this puts the user in a fix:
821  *
822  *  If the source VM connects with an IPv4 address without knowing that the
823  *  destination has bound to '[::]' the migration will unconditionally fail
824  *  unless the management software is explicitly listening on the IPv4
825  *  address while using a RoCE-based device.
826  *
827  *  If the source VM connects with an IPv6 address, then we're OK because we can
828  *  throw an error on the source (and similarly on the destination).
829  *
830  *  But in mixed environments, this will be broken for a while until it is fixed
831  *  inside linux.
832  *
833  * We do provide a *tiny* bit of help in this function: We can list all of the
834  * devices in the system and check to see if all the devices are RoCE or
835  * Infiniband.
836  *
837  * If we detect that we have a *pure* RoCE environment, then we can safely
838  * thrown an error even if the management software has specified '[::]' as the
839  * bind address.
840  *
841  * However, if there is are multiple hetergeneous devices, then we cannot make
842  * this assumption and the user just has to be sure they know what they are
843  * doing.
844  *
845  * Patches are being reviewed on linux-rdma.
846  */
847 static int qemu_rdma_broken_ipv6_kernel(struct ibv_context *verbs, Error **errp)
848 {
849     /* This bug only exists in linux, to our knowledge. */
850 #ifdef CONFIG_LINUX
851     struct ibv_port_attr port_attr;
852 
853     /*
854      * Verbs are only NULL if management has bound to '[::]'.
855      *
856      * Let's iterate through all the devices and see if there any pure IB
857      * devices (non-ethernet).
858      *
859      * If not, then we can safely proceed with the migration.
860      * Otherwise, there are no guarantees until the bug is fixed in linux.
861      */
862     if (!verbs) {
863         int num_devices, x;
864         struct ibv_device **dev_list = ibv_get_device_list(&num_devices);
865         bool roce_found = false;
866         bool ib_found = false;
867 
868         for (x = 0; x < num_devices; x++) {
869             verbs = ibv_open_device(dev_list[x]);
870             if (!verbs) {
871                 if (errno == EPERM) {
872                     continue;
873                 } else {
874                     return -EINVAL;
875                 }
876             }
877 
878             if (ibv_query_port(verbs, 1, &port_attr)) {
879                 ibv_close_device(verbs);
880                 ERROR(errp, "Could not query initial IB port");
881                 return -EINVAL;
882             }
883 
884             if (port_attr.link_layer == IBV_LINK_LAYER_INFINIBAND) {
885                 ib_found = true;
886             } else if (port_attr.link_layer == IBV_LINK_LAYER_ETHERNET) {
887                 roce_found = true;
888             }
889 
890             ibv_close_device(verbs);
891 
892         }
893 
894         if (roce_found) {
895             if (ib_found) {
896                 fprintf(stderr, "WARN: migrations may fail:"
897                                 " IPv6 over RoCE / iWARP in linux"
898                                 " is broken. But since you appear to have a"
899                                 " mixed RoCE / IB environment, be sure to only"
900                                 " migrate over the IB fabric until the kernel "
901                                 " fixes the bug.\n");
902             } else {
903                 ERROR(errp, "You only have RoCE / iWARP devices in your systems"
904                             " and your management software has specified '[::]'"
905                             ", but IPv6 over RoCE / iWARP is not supported in Linux.");
906                 return -ENONET;
907             }
908         }
909 
910         return 0;
911     }
912 
913     /*
914      * If we have a verbs context, that means that some other than '[::]' was
915      * used by the management software for binding. In which case we can
916      * actually warn the user about a potentially broken kernel.
917      */
918 
919     /* IB ports start with 1, not 0 */
920     if (ibv_query_port(verbs, 1, &port_attr)) {
921         ERROR(errp, "Could not query initial IB port");
922         return -EINVAL;
923     }
924 
925     if (port_attr.link_layer == IBV_LINK_LAYER_ETHERNET) {
926         ERROR(errp, "Linux kernel's RoCE / iWARP does not support IPv6 "
927                     "(but patches on linux-rdma in progress)");
928         return -ENONET;
929     }
930 
931 #endif
932 
933     return 0;
934 }
935 
936 /*
937  * Figure out which RDMA device corresponds to the requested IP hostname
938  * Also create the initial connection manager identifiers for opening
939  * the connection.
940  */
941 static int qemu_rdma_resolve_host(RDMAContext *rdma, Error **errp)
942 {
943     int ret;
944     struct rdma_addrinfo *res;
945     char port_str[16];
946     struct rdma_cm_event *cm_event;
947     char ip[40] = "unknown";
948     struct rdma_addrinfo *e;
949 
950     if (rdma->host == NULL || !strcmp(rdma->host, "")) {
951         ERROR(errp, "RDMA hostname has not been set");
952         return -EINVAL;
953     }
954 
955     /* create CM channel */
956     rdma->channel = rdma_create_event_channel();
957     if (!rdma->channel) {
958         ERROR(errp, "could not create CM channel");
959         return -EINVAL;
960     }
961 
962     /* create CM id */
963     ret = rdma_create_id(rdma->channel, &rdma->cm_id, NULL, RDMA_PS_TCP);
964     if (ret) {
965         ERROR(errp, "could not create channel id");
966         goto err_resolve_create_id;
967     }
968 
969     snprintf(port_str, 16, "%d", rdma->port);
970     port_str[15] = '\0';
971 
972     ret = rdma_getaddrinfo(rdma->host, port_str, NULL, &res);
973     if (ret < 0) {
974         ERROR(errp, "could not rdma_getaddrinfo address %s", rdma->host);
975         goto err_resolve_get_addr;
976     }
977 
978     for (e = res; e != NULL; e = e->ai_next) {
979         inet_ntop(e->ai_family,
980             &((struct sockaddr_in *) e->ai_dst_addr)->sin_addr, ip, sizeof ip);
981         trace_qemu_rdma_resolve_host_trying(rdma->host, ip);
982 
983         ret = rdma_resolve_addr(rdma->cm_id, NULL, e->ai_dst_addr,
984                 RDMA_RESOLVE_TIMEOUT_MS);
985         if (!ret) {
986             if (e->ai_family == AF_INET6) {
987                 ret = qemu_rdma_broken_ipv6_kernel(rdma->cm_id->verbs, errp);
988                 if (ret) {
989                     continue;
990                 }
991             }
992             goto route;
993         }
994     }
995 
996     rdma_freeaddrinfo(res);
997     ERROR(errp, "could not resolve address %s", rdma->host);
998     goto err_resolve_get_addr;
999 
1000 route:
1001     rdma_freeaddrinfo(res);
1002     qemu_rdma_dump_gid("source_resolve_addr", rdma->cm_id);
1003 
1004     ret = rdma_get_cm_event(rdma->channel, &cm_event);
1005     if (ret) {
1006         ERROR(errp, "could not perform event_addr_resolved");
1007         goto err_resolve_get_addr;
1008     }
1009 
1010     if (cm_event->event != RDMA_CM_EVENT_ADDR_RESOLVED) {
1011         ERROR(errp, "result not equal to event_addr_resolved %s",
1012                 rdma_event_str(cm_event->event));
1013         error_report("rdma_resolve_addr");
1014         rdma_ack_cm_event(cm_event);
1015         ret = -EINVAL;
1016         goto err_resolve_get_addr;
1017     }
1018     rdma_ack_cm_event(cm_event);
1019 
1020     /* resolve route */
1021     ret = rdma_resolve_route(rdma->cm_id, RDMA_RESOLVE_TIMEOUT_MS);
1022     if (ret) {
1023         ERROR(errp, "could not resolve rdma route");
1024         goto err_resolve_get_addr;
1025     }
1026 
1027     ret = rdma_get_cm_event(rdma->channel, &cm_event);
1028     if (ret) {
1029         ERROR(errp, "could not perform event_route_resolved");
1030         goto err_resolve_get_addr;
1031     }
1032     if (cm_event->event != RDMA_CM_EVENT_ROUTE_RESOLVED) {
1033         ERROR(errp, "result not equal to event_route_resolved: %s",
1034                         rdma_event_str(cm_event->event));
1035         rdma_ack_cm_event(cm_event);
1036         ret = -EINVAL;
1037         goto err_resolve_get_addr;
1038     }
1039     rdma_ack_cm_event(cm_event);
1040     rdma->verbs = rdma->cm_id->verbs;
1041     qemu_rdma_dump_id("source_resolve_host", rdma->cm_id->verbs);
1042     qemu_rdma_dump_gid("source_resolve_host", rdma->cm_id);
1043     return 0;
1044 
1045 err_resolve_get_addr:
1046     rdma_destroy_id(rdma->cm_id);
1047     rdma->cm_id = NULL;
1048 err_resolve_create_id:
1049     rdma_destroy_event_channel(rdma->channel);
1050     rdma->channel = NULL;
1051     return ret;
1052 }
1053 
1054 /*
1055  * Create protection domain and completion queues
1056  */
1057 static int qemu_rdma_alloc_pd_cq(RDMAContext *rdma)
1058 {
1059     /* allocate pd */
1060     rdma->pd = ibv_alloc_pd(rdma->verbs);
1061     if (!rdma->pd) {
1062         error_report("failed to allocate protection domain");
1063         return -1;
1064     }
1065 
1066     /* create receive completion channel */
1067     rdma->recv_comp_channel = ibv_create_comp_channel(rdma->verbs);
1068     if (!rdma->recv_comp_channel) {
1069         error_report("failed to allocate receive completion channel");
1070         goto err_alloc_pd_cq;
1071     }
1072 
1073     /*
1074      * Completion queue can be filled by read work requests.
1075      */
1076     rdma->recv_cq = ibv_create_cq(rdma->verbs, (RDMA_SIGNALED_SEND_MAX * 3),
1077                                   NULL, rdma->recv_comp_channel, 0);
1078     if (!rdma->recv_cq) {
1079         error_report("failed to allocate receive completion queue");
1080         goto err_alloc_pd_cq;
1081     }
1082 
1083     /* create send completion channel */
1084     rdma->send_comp_channel = ibv_create_comp_channel(rdma->verbs);
1085     if (!rdma->send_comp_channel) {
1086         error_report("failed to allocate send completion channel");
1087         goto err_alloc_pd_cq;
1088     }
1089 
1090     rdma->send_cq = ibv_create_cq(rdma->verbs, (RDMA_SIGNALED_SEND_MAX * 3),
1091                                   NULL, rdma->send_comp_channel, 0);
1092     if (!rdma->send_cq) {
1093         error_report("failed to allocate send completion queue");
1094         goto err_alloc_pd_cq;
1095     }
1096 
1097     return 0;
1098 
1099 err_alloc_pd_cq:
1100     if (rdma->pd) {
1101         ibv_dealloc_pd(rdma->pd);
1102     }
1103     if (rdma->recv_comp_channel) {
1104         ibv_destroy_comp_channel(rdma->recv_comp_channel);
1105     }
1106     if (rdma->send_comp_channel) {
1107         ibv_destroy_comp_channel(rdma->send_comp_channel);
1108     }
1109     if (rdma->recv_cq) {
1110         ibv_destroy_cq(rdma->recv_cq);
1111         rdma->recv_cq = NULL;
1112     }
1113     rdma->pd = NULL;
1114     rdma->recv_comp_channel = NULL;
1115     rdma->send_comp_channel = NULL;
1116     return -1;
1117 
1118 }
1119 
1120 /*
1121  * Create queue pairs.
1122  */
1123 static int qemu_rdma_alloc_qp(RDMAContext *rdma)
1124 {
1125     struct ibv_qp_init_attr attr = { 0 };
1126     int ret;
1127 
1128     attr.cap.max_send_wr = RDMA_SIGNALED_SEND_MAX;
1129     attr.cap.max_recv_wr = 3;
1130     attr.cap.max_send_sge = 1;
1131     attr.cap.max_recv_sge = 1;
1132     attr.send_cq = rdma->send_cq;
1133     attr.recv_cq = rdma->recv_cq;
1134     attr.qp_type = IBV_QPT_RC;
1135 
1136     ret = rdma_create_qp(rdma->cm_id, rdma->pd, &attr);
1137     if (ret) {
1138         return -1;
1139     }
1140 
1141     rdma->qp = rdma->cm_id->qp;
1142     return 0;
1143 }
1144 
1145 /* Check whether On-Demand Paging is supported by RDAM device */
1146 static bool rdma_support_odp(struct ibv_context *dev)
1147 {
1148     struct ibv_device_attr_ex attr = {0};
1149     int ret = ibv_query_device_ex(dev, NULL, &attr);
1150     if (ret) {
1151         return false;
1152     }
1153 
1154     if (attr.odp_caps.general_caps & IBV_ODP_SUPPORT) {
1155         return true;
1156     }
1157 
1158     return false;
1159 }
1160 
1161 /*
1162  * ibv_advise_mr to avoid RNR NAK error as far as possible.
1163  * The responder mr registering with ODP will sent RNR NAK back to
1164  * the requester in the face of the page fault.
1165  */
1166 static void qemu_rdma_advise_prefetch_mr(struct ibv_pd *pd, uint64_t addr,
1167                                          uint32_t len,  uint32_t lkey,
1168                                          const char *name, bool wr)
1169 {
1170 #ifdef HAVE_IBV_ADVISE_MR
1171     int ret;
1172     int advice = wr ? IBV_ADVISE_MR_ADVICE_PREFETCH_WRITE :
1173                  IBV_ADVISE_MR_ADVICE_PREFETCH;
1174     struct ibv_sge sg_list = {.lkey = lkey, .addr = addr, .length = len};
1175 
1176     ret = ibv_advise_mr(pd, advice,
1177                         IBV_ADVISE_MR_FLAG_FLUSH, &sg_list, 1);
1178     /* ignore the error */
1179     if (ret) {
1180         trace_qemu_rdma_advise_mr(name, len, addr, strerror(errno));
1181     } else {
1182         trace_qemu_rdma_advise_mr(name, len, addr, "successed");
1183     }
1184 #endif
1185 }
1186 
1187 static int qemu_rdma_reg_whole_ram_blocks(RDMAContext *rdma)
1188 {
1189     int i;
1190     RDMALocalBlocks *local = &rdma->local_ram_blocks;
1191 
1192     for (i = 0; i < local->nb_blocks; i++) {
1193         int access = IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE;
1194 
1195         local->block[i].mr =
1196             ibv_reg_mr(rdma->pd,
1197                     local->block[i].local_host_addr,
1198                     local->block[i].length, access
1199                     );
1200 
1201         if (!local->block[i].mr &&
1202             errno == ENOTSUP && rdma_support_odp(rdma->verbs)) {
1203                 access |= IBV_ACCESS_ON_DEMAND;
1204                 /* register ODP mr */
1205                 local->block[i].mr =
1206                     ibv_reg_mr(rdma->pd,
1207                                local->block[i].local_host_addr,
1208                                local->block[i].length, access);
1209                 trace_qemu_rdma_register_odp_mr(local->block[i].block_name);
1210 
1211                 if (local->block[i].mr) {
1212                     qemu_rdma_advise_prefetch_mr(rdma->pd,
1213                                     (uintptr_t)local->block[i].local_host_addr,
1214                                     local->block[i].length,
1215                                     local->block[i].mr->lkey,
1216                                     local->block[i].block_name,
1217                                     true);
1218                 }
1219         }
1220 
1221         if (!local->block[i].mr) {
1222             perror("Failed to register local dest ram block!");
1223             break;
1224         }
1225         rdma->total_registrations++;
1226     }
1227 
1228     if (i >= local->nb_blocks) {
1229         return 0;
1230     }
1231 
1232     for (i--; i >= 0; i--) {
1233         ibv_dereg_mr(local->block[i].mr);
1234         local->block[i].mr = NULL;
1235         rdma->total_registrations--;
1236     }
1237 
1238     return -1;
1239 
1240 }
1241 
1242 /*
1243  * Find the ram block that corresponds to the page requested to be
1244  * transmitted by QEMU.
1245  *
1246  * Once the block is found, also identify which 'chunk' within that
1247  * block that the page belongs to.
1248  *
1249  * This search cannot fail or the migration will fail.
1250  */
1251 static int qemu_rdma_search_ram_block(RDMAContext *rdma,
1252                                       uintptr_t block_offset,
1253                                       uint64_t offset,
1254                                       uint64_t length,
1255                                       uint64_t *block_index,
1256                                       uint64_t *chunk_index)
1257 {
1258     uint64_t current_addr = block_offset + offset;
1259     RDMALocalBlock *block = g_hash_table_lookup(rdma->blockmap,
1260                                                 (void *) block_offset);
1261     assert(block);
1262     assert(current_addr >= block->offset);
1263     assert((current_addr + length) <= (block->offset + block->length));
1264 
1265     *block_index = block->index;
1266     *chunk_index = ram_chunk_index(block->local_host_addr,
1267                 block->local_host_addr + (current_addr - block->offset));
1268 
1269     return 0;
1270 }
1271 
1272 /*
1273  * Register a chunk with IB. If the chunk was already registered
1274  * previously, then skip.
1275  *
1276  * Also return the keys associated with the registration needed
1277  * to perform the actual RDMA operation.
1278  */
1279 static int qemu_rdma_register_and_get_keys(RDMAContext *rdma,
1280         RDMALocalBlock *block, uintptr_t host_addr,
1281         uint32_t *lkey, uint32_t *rkey, int chunk,
1282         uint8_t *chunk_start, uint8_t *chunk_end)
1283 {
1284     if (block->mr) {
1285         if (lkey) {
1286             *lkey = block->mr->lkey;
1287         }
1288         if (rkey) {
1289             *rkey = block->mr->rkey;
1290         }
1291         return 0;
1292     }
1293 
1294     /* allocate memory to store chunk MRs */
1295     if (!block->pmr) {
1296         block->pmr = g_new0(struct ibv_mr *, block->nb_chunks);
1297     }
1298 
1299     /*
1300      * If 'rkey', then we're the destination, so grant access to the source.
1301      *
1302      * If 'lkey', then we're the source VM, so grant access only to ourselves.
1303      */
1304     if (!block->pmr[chunk]) {
1305         uint64_t len = chunk_end - chunk_start;
1306         int access = rkey ? IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE :
1307                      0;
1308 
1309         trace_qemu_rdma_register_and_get_keys(len, chunk_start);
1310 
1311         block->pmr[chunk] = ibv_reg_mr(rdma->pd, chunk_start, len, access);
1312         if (!block->pmr[chunk] &&
1313             errno == ENOTSUP && rdma_support_odp(rdma->verbs)) {
1314             access |= IBV_ACCESS_ON_DEMAND;
1315             /* register ODP mr */
1316             block->pmr[chunk] = ibv_reg_mr(rdma->pd, chunk_start, len, access);
1317             trace_qemu_rdma_register_odp_mr(block->block_name);
1318 
1319             if (block->pmr[chunk]) {
1320                 qemu_rdma_advise_prefetch_mr(rdma->pd, (uintptr_t)chunk_start,
1321                                             len, block->pmr[chunk]->lkey,
1322                                             block->block_name, rkey);
1323 
1324             }
1325         }
1326     }
1327     if (!block->pmr[chunk]) {
1328         perror("Failed to register chunk!");
1329         fprintf(stderr, "Chunk details: block: %d chunk index %d"
1330                         " start %" PRIuPTR " end %" PRIuPTR
1331                         " host %" PRIuPTR
1332                         " local %" PRIuPTR " registrations: %d\n",
1333                         block->index, chunk, (uintptr_t)chunk_start,
1334                         (uintptr_t)chunk_end, host_addr,
1335                         (uintptr_t)block->local_host_addr,
1336                         rdma->total_registrations);
1337         return -1;
1338     }
1339     rdma->total_registrations++;
1340 
1341     if (lkey) {
1342         *lkey = block->pmr[chunk]->lkey;
1343     }
1344     if (rkey) {
1345         *rkey = block->pmr[chunk]->rkey;
1346     }
1347     return 0;
1348 }
1349 
1350 /*
1351  * Register (at connection time) the memory used for control
1352  * channel messages.
1353  */
1354 static int qemu_rdma_reg_control(RDMAContext *rdma, int idx)
1355 {
1356     rdma->wr_data[idx].control_mr = ibv_reg_mr(rdma->pd,
1357             rdma->wr_data[idx].control, RDMA_CONTROL_MAX_BUFFER,
1358             IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE);
1359     if (rdma->wr_data[idx].control_mr) {
1360         rdma->total_registrations++;
1361         return 0;
1362     }
1363     error_report("qemu_rdma_reg_control failed");
1364     return -1;
1365 }
1366 
1367 const char *print_wrid(int wrid)
1368 {
1369     if (wrid >= RDMA_WRID_RECV_CONTROL) {
1370         return wrid_desc[RDMA_WRID_RECV_CONTROL];
1371     }
1372     return wrid_desc[wrid];
1373 }
1374 
1375 /*
1376  * Perform a non-optimized memory unregistration after every transfer
1377  * for demonstration purposes, only if pin-all is not requested.
1378  *
1379  * Potential optimizations:
1380  * 1. Start a new thread to run this function continuously
1381         - for bit clearing
1382         - and for receipt of unregister messages
1383  * 2. Use an LRU.
1384  * 3. Use workload hints.
1385  */
1386 static int qemu_rdma_unregister_waiting(RDMAContext *rdma)
1387 {
1388     while (rdma->unregistrations[rdma->unregister_current]) {
1389         int ret;
1390         uint64_t wr_id = rdma->unregistrations[rdma->unregister_current];
1391         uint64_t chunk =
1392             (wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT;
1393         uint64_t index =
1394             (wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT;
1395         RDMALocalBlock *block =
1396             &(rdma->local_ram_blocks.block[index]);
1397         RDMARegister reg = { .current_index = index };
1398         RDMAControlHeader resp = { .type = RDMA_CONTROL_UNREGISTER_FINISHED,
1399                                  };
1400         RDMAControlHeader head = { .len = sizeof(RDMARegister),
1401                                    .type = RDMA_CONTROL_UNREGISTER_REQUEST,
1402                                    .repeat = 1,
1403                                  };
1404 
1405         trace_qemu_rdma_unregister_waiting_proc(chunk,
1406                                                 rdma->unregister_current);
1407 
1408         rdma->unregistrations[rdma->unregister_current] = 0;
1409         rdma->unregister_current++;
1410 
1411         if (rdma->unregister_current == RDMA_SIGNALED_SEND_MAX) {
1412             rdma->unregister_current = 0;
1413         }
1414 
1415 
1416         /*
1417          * Unregistration is speculative (because migration is single-threaded
1418          * and we cannot break the protocol's inifinband message ordering).
1419          * Thus, if the memory is currently being used for transmission,
1420          * then abort the attempt to unregister and try again
1421          * later the next time a completion is received for this memory.
1422          */
1423         clear_bit(chunk, block->unregister_bitmap);
1424 
1425         if (test_bit(chunk, block->transit_bitmap)) {
1426             trace_qemu_rdma_unregister_waiting_inflight(chunk);
1427             continue;
1428         }
1429 
1430         trace_qemu_rdma_unregister_waiting_send(chunk);
1431 
1432         ret = ibv_dereg_mr(block->pmr[chunk]);
1433         block->pmr[chunk] = NULL;
1434         block->remote_keys[chunk] = 0;
1435 
1436         if (ret != 0) {
1437             perror("unregistration chunk failed");
1438             return -ret;
1439         }
1440         rdma->total_registrations--;
1441 
1442         reg.key.chunk = chunk;
1443         register_to_network(rdma, &reg);
1444         ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) &reg,
1445                                 &resp, NULL, NULL);
1446         if (ret < 0) {
1447             return ret;
1448         }
1449 
1450         trace_qemu_rdma_unregister_waiting_complete(chunk);
1451     }
1452 
1453     return 0;
1454 }
1455 
1456 static uint64_t qemu_rdma_make_wrid(uint64_t wr_id, uint64_t index,
1457                                          uint64_t chunk)
1458 {
1459     uint64_t result = wr_id & RDMA_WRID_TYPE_MASK;
1460 
1461     result |= (index << RDMA_WRID_BLOCK_SHIFT);
1462     result |= (chunk << RDMA_WRID_CHUNK_SHIFT);
1463 
1464     return result;
1465 }
1466 
1467 /*
1468  * Consult the connection manager to see a work request
1469  * (of any kind) has completed.
1470  * Return the work request ID that completed.
1471  */
1472 static uint64_t qemu_rdma_poll(RDMAContext *rdma, struct ibv_cq *cq,
1473                                uint64_t *wr_id_out, uint32_t *byte_len)
1474 {
1475     int ret;
1476     struct ibv_wc wc;
1477     uint64_t wr_id;
1478 
1479     ret = ibv_poll_cq(cq, 1, &wc);
1480 
1481     if (!ret) {
1482         *wr_id_out = RDMA_WRID_NONE;
1483         return 0;
1484     }
1485 
1486     if (ret < 0) {
1487         error_report("ibv_poll_cq return %d", ret);
1488         return ret;
1489     }
1490 
1491     wr_id = wc.wr_id & RDMA_WRID_TYPE_MASK;
1492 
1493     if (wc.status != IBV_WC_SUCCESS) {
1494         fprintf(stderr, "ibv_poll_cq wc.status=%d %s!\n",
1495                         wc.status, ibv_wc_status_str(wc.status));
1496         fprintf(stderr, "ibv_poll_cq wrid=%s!\n", wrid_desc[wr_id]);
1497 
1498         return -1;
1499     }
1500 
1501     if (rdma->control_ready_expected &&
1502         (wr_id >= RDMA_WRID_RECV_CONTROL)) {
1503         trace_qemu_rdma_poll_recv(wrid_desc[RDMA_WRID_RECV_CONTROL],
1504                   wr_id - RDMA_WRID_RECV_CONTROL, wr_id, rdma->nb_sent);
1505         rdma->control_ready_expected = 0;
1506     }
1507 
1508     if (wr_id == RDMA_WRID_RDMA_WRITE) {
1509         uint64_t chunk =
1510             (wc.wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT;
1511         uint64_t index =
1512             (wc.wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT;
1513         RDMALocalBlock *block = &(rdma->local_ram_blocks.block[index]);
1514 
1515         trace_qemu_rdma_poll_write(print_wrid(wr_id), wr_id, rdma->nb_sent,
1516                                    index, chunk, block->local_host_addr,
1517                                    (void *)(uintptr_t)block->remote_host_addr);
1518 
1519         clear_bit(chunk, block->transit_bitmap);
1520 
1521         if (rdma->nb_sent > 0) {
1522             rdma->nb_sent--;
1523         }
1524     } else {
1525         trace_qemu_rdma_poll_other(print_wrid(wr_id), wr_id, rdma->nb_sent);
1526     }
1527 
1528     *wr_id_out = wc.wr_id;
1529     if (byte_len) {
1530         *byte_len = wc.byte_len;
1531     }
1532 
1533     return  0;
1534 }
1535 
1536 /* Wait for activity on the completion channel.
1537  * Returns 0 on success, none-0 on error.
1538  */
1539 static int qemu_rdma_wait_comp_channel(RDMAContext *rdma,
1540                                        struct ibv_comp_channel *comp_channel)
1541 {
1542     struct rdma_cm_event *cm_event;
1543     int ret = -1;
1544 
1545     /*
1546      * Coroutine doesn't start until migration_fd_process_incoming()
1547      * so don't yield unless we know we're running inside of a coroutine.
1548      */
1549     if (rdma->migration_started_on_destination &&
1550         migration_incoming_get_current()->state == MIGRATION_STATUS_ACTIVE) {
1551         yield_until_fd_readable(comp_channel->fd);
1552     } else {
1553         /* This is the source side, we're in a separate thread
1554          * or destination prior to migration_fd_process_incoming()
1555          * after postcopy, the destination also in a separate thread.
1556          * we can't yield; so we have to poll the fd.
1557          * But we need to be able to handle 'cancel' or an error
1558          * without hanging forever.
1559          */
1560         while (!rdma->error_state  && !rdma->received_error) {
1561             GPollFD pfds[2];
1562             pfds[0].fd = comp_channel->fd;
1563             pfds[0].events = G_IO_IN | G_IO_HUP | G_IO_ERR;
1564             pfds[0].revents = 0;
1565 
1566             pfds[1].fd = rdma->channel->fd;
1567             pfds[1].events = G_IO_IN | G_IO_HUP | G_IO_ERR;
1568             pfds[1].revents = 0;
1569 
1570             /* 0.1s timeout, should be fine for a 'cancel' */
1571             switch (qemu_poll_ns(pfds, 2, 100 * 1000 * 1000)) {
1572             case 2:
1573             case 1: /* fd active */
1574                 if (pfds[0].revents) {
1575                     return 0;
1576                 }
1577 
1578                 if (pfds[1].revents) {
1579                     ret = rdma_get_cm_event(rdma->channel, &cm_event);
1580                     if (ret) {
1581                         error_report("failed to get cm event while wait "
1582                                      "completion channel");
1583                         return -EPIPE;
1584                     }
1585 
1586                     error_report("receive cm event while wait comp channel,"
1587                                  "cm event is %d", cm_event->event);
1588                     if (cm_event->event == RDMA_CM_EVENT_DISCONNECTED ||
1589                         cm_event->event == RDMA_CM_EVENT_DEVICE_REMOVAL) {
1590                         rdma_ack_cm_event(cm_event);
1591                         return -EPIPE;
1592                     }
1593                     rdma_ack_cm_event(cm_event);
1594                 }
1595                 break;
1596 
1597             case 0: /* Timeout, go around again */
1598                 break;
1599 
1600             default: /* Error of some type -
1601                       * I don't trust errno from qemu_poll_ns
1602                      */
1603                 error_report("%s: poll failed", __func__);
1604                 return -EPIPE;
1605             }
1606 
1607             if (migrate_get_current()->state == MIGRATION_STATUS_CANCELLING) {
1608                 /* Bail out and let the cancellation happen */
1609                 return -EPIPE;
1610             }
1611         }
1612     }
1613 
1614     if (rdma->received_error) {
1615         return -EPIPE;
1616     }
1617     return rdma->error_state;
1618 }
1619 
1620 static struct ibv_comp_channel *to_channel(RDMAContext *rdma, int wrid)
1621 {
1622     return wrid < RDMA_WRID_RECV_CONTROL ? rdma->send_comp_channel :
1623            rdma->recv_comp_channel;
1624 }
1625 
1626 static struct ibv_cq *to_cq(RDMAContext *rdma, int wrid)
1627 {
1628     return wrid < RDMA_WRID_RECV_CONTROL ? rdma->send_cq : rdma->recv_cq;
1629 }
1630 
1631 /*
1632  * Block until the next work request has completed.
1633  *
1634  * First poll to see if a work request has already completed,
1635  * otherwise block.
1636  *
1637  * If we encounter completed work requests for IDs other than
1638  * the one we're interested in, then that's generally an error.
1639  *
1640  * The only exception is actual RDMA Write completions. These
1641  * completions only need to be recorded, but do not actually
1642  * need further processing.
1643  */
1644 static int qemu_rdma_block_for_wrid(RDMAContext *rdma, int wrid_requested,
1645                                     uint32_t *byte_len)
1646 {
1647     int num_cq_events = 0, ret = 0;
1648     struct ibv_cq *cq;
1649     void *cq_ctx;
1650     uint64_t wr_id = RDMA_WRID_NONE, wr_id_in;
1651     struct ibv_comp_channel *ch = to_channel(rdma, wrid_requested);
1652     struct ibv_cq *poll_cq = to_cq(rdma, wrid_requested);
1653 
1654     if (ibv_req_notify_cq(poll_cq, 0)) {
1655         return -1;
1656     }
1657     /* poll cq first */
1658     while (wr_id != wrid_requested) {
1659         ret = qemu_rdma_poll(rdma, poll_cq, &wr_id_in, byte_len);
1660         if (ret < 0) {
1661             return ret;
1662         }
1663 
1664         wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
1665 
1666         if (wr_id == RDMA_WRID_NONE) {
1667             break;
1668         }
1669         if (wr_id != wrid_requested) {
1670             trace_qemu_rdma_block_for_wrid_miss(print_wrid(wrid_requested),
1671                        wrid_requested, print_wrid(wr_id), wr_id);
1672         }
1673     }
1674 
1675     if (wr_id == wrid_requested) {
1676         return 0;
1677     }
1678 
1679     while (1) {
1680         ret = qemu_rdma_wait_comp_channel(rdma, ch);
1681         if (ret) {
1682             goto err_block_for_wrid;
1683         }
1684 
1685         ret = ibv_get_cq_event(ch, &cq, &cq_ctx);
1686         if (ret) {
1687             perror("ibv_get_cq_event");
1688             goto err_block_for_wrid;
1689         }
1690 
1691         num_cq_events++;
1692 
1693         ret = -ibv_req_notify_cq(cq, 0);
1694         if (ret) {
1695             goto err_block_for_wrid;
1696         }
1697 
1698         while (wr_id != wrid_requested) {
1699             ret = qemu_rdma_poll(rdma, poll_cq, &wr_id_in, byte_len);
1700             if (ret < 0) {
1701                 goto err_block_for_wrid;
1702             }
1703 
1704             wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
1705 
1706             if (wr_id == RDMA_WRID_NONE) {
1707                 break;
1708             }
1709             if (wr_id != wrid_requested) {
1710                 trace_qemu_rdma_block_for_wrid_miss(print_wrid(wrid_requested),
1711                                    wrid_requested, print_wrid(wr_id), wr_id);
1712             }
1713         }
1714 
1715         if (wr_id == wrid_requested) {
1716             goto success_block_for_wrid;
1717         }
1718     }
1719 
1720 success_block_for_wrid:
1721     if (num_cq_events) {
1722         ibv_ack_cq_events(cq, num_cq_events);
1723     }
1724     return 0;
1725 
1726 err_block_for_wrid:
1727     if (num_cq_events) {
1728         ibv_ack_cq_events(cq, num_cq_events);
1729     }
1730 
1731     rdma->error_state = ret;
1732     return ret;
1733 }
1734 
1735 /*
1736  * Post a SEND message work request for the control channel
1737  * containing some data and block until the post completes.
1738  */
1739 static int qemu_rdma_post_send_control(RDMAContext *rdma, uint8_t *buf,
1740                                        RDMAControlHeader *head)
1741 {
1742     int ret = 0;
1743     RDMAWorkRequestData *wr = &rdma->wr_data[RDMA_WRID_CONTROL];
1744     struct ibv_send_wr *bad_wr;
1745     struct ibv_sge sge = {
1746                            .addr = (uintptr_t)(wr->control),
1747                            .length = head->len + sizeof(RDMAControlHeader),
1748                            .lkey = wr->control_mr->lkey,
1749                          };
1750     struct ibv_send_wr send_wr = {
1751                                    .wr_id = RDMA_WRID_SEND_CONTROL,
1752                                    .opcode = IBV_WR_SEND,
1753                                    .send_flags = IBV_SEND_SIGNALED,
1754                                    .sg_list = &sge,
1755                                    .num_sge = 1,
1756                                 };
1757 
1758     trace_qemu_rdma_post_send_control(control_desc(head->type));
1759 
1760     /*
1761      * We don't actually need to do a memcpy() in here if we used
1762      * the "sge" properly, but since we're only sending control messages
1763      * (not RAM in a performance-critical path), then its OK for now.
1764      *
1765      * The copy makes the RDMAControlHeader simpler to manipulate
1766      * for the time being.
1767      */
1768     assert(head->len <= RDMA_CONTROL_MAX_BUFFER - sizeof(*head));
1769     memcpy(wr->control, head, sizeof(RDMAControlHeader));
1770     control_to_network((void *) wr->control);
1771 
1772     if (buf) {
1773         memcpy(wr->control + sizeof(RDMAControlHeader), buf, head->len);
1774     }
1775 
1776 
1777     ret = ibv_post_send(rdma->qp, &send_wr, &bad_wr);
1778 
1779     if (ret > 0) {
1780         error_report("Failed to use post IB SEND for control");
1781         return -ret;
1782     }
1783 
1784     ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_SEND_CONTROL, NULL);
1785     if (ret < 0) {
1786         error_report("rdma migration: send polling control error");
1787     }
1788 
1789     return ret;
1790 }
1791 
1792 /*
1793  * Post a RECV work request in anticipation of some future receipt
1794  * of data on the control channel.
1795  */
1796 static int qemu_rdma_post_recv_control(RDMAContext *rdma, int idx)
1797 {
1798     struct ibv_recv_wr *bad_wr;
1799     struct ibv_sge sge = {
1800                             .addr = (uintptr_t)(rdma->wr_data[idx].control),
1801                             .length = RDMA_CONTROL_MAX_BUFFER,
1802                             .lkey = rdma->wr_data[idx].control_mr->lkey,
1803                          };
1804 
1805     struct ibv_recv_wr recv_wr = {
1806                                     .wr_id = RDMA_WRID_RECV_CONTROL + idx,
1807                                     .sg_list = &sge,
1808                                     .num_sge = 1,
1809                                  };
1810 
1811 
1812     if (ibv_post_recv(rdma->qp, &recv_wr, &bad_wr)) {
1813         return -1;
1814     }
1815 
1816     return 0;
1817 }
1818 
1819 /*
1820  * Block and wait for a RECV control channel message to arrive.
1821  */
1822 static int qemu_rdma_exchange_get_response(RDMAContext *rdma,
1823                 RDMAControlHeader *head, int expecting, int idx)
1824 {
1825     uint32_t byte_len;
1826     int ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RECV_CONTROL + idx,
1827                                        &byte_len);
1828 
1829     if (ret < 0) {
1830         error_report("rdma migration: recv polling control error!");
1831         return ret;
1832     }
1833 
1834     network_to_control((void *) rdma->wr_data[idx].control);
1835     memcpy(head, rdma->wr_data[idx].control, sizeof(RDMAControlHeader));
1836 
1837     trace_qemu_rdma_exchange_get_response_start(control_desc(expecting));
1838 
1839     if (expecting == RDMA_CONTROL_NONE) {
1840         trace_qemu_rdma_exchange_get_response_none(control_desc(head->type),
1841                                              head->type);
1842     } else if (head->type != expecting || head->type == RDMA_CONTROL_ERROR) {
1843         error_report("Was expecting a %s (%d) control message"
1844                 ", but got: %s (%d), length: %d",
1845                 control_desc(expecting), expecting,
1846                 control_desc(head->type), head->type, head->len);
1847         if (head->type == RDMA_CONTROL_ERROR) {
1848             rdma->received_error = true;
1849         }
1850         return -EIO;
1851     }
1852     if (head->len > RDMA_CONTROL_MAX_BUFFER - sizeof(*head)) {
1853         error_report("too long length: %d", head->len);
1854         return -EINVAL;
1855     }
1856     if (sizeof(*head) + head->len != byte_len) {
1857         error_report("Malformed length: %d byte_len %d", head->len, byte_len);
1858         return -EINVAL;
1859     }
1860 
1861     return 0;
1862 }
1863 
1864 /*
1865  * When a RECV work request has completed, the work request's
1866  * buffer is pointed at the header.
1867  *
1868  * This will advance the pointer to the data portion
1869  * of the control message of the work request's buffer that
1870  * was populated after the work request finished.
1871  */
1872 static void qemu_rdma_move_header(RDMAContext *rdma, int idx,
1873                                   RDMAControlHeader *head)
1874 {
1875     rdma->wr_data[idx].control_len = head->len;
1876     rdma->wr_data[idx].control_curr =
1877         rdma->wr_data[idx].control + sizeof(RDMAControlHeader);
1878 }
1879 
1880 /*
1881  * This is an 'atomic' high-level operation to deliver a single, unified
1882  * control-channel message.
1883  *
1884  * Additionally, if the user is expecting some kind of reply to this message,
1885  * they can request a 'resp' response message be filled in by posting an
1886  * additional work request on behalf of the user and waiting for an additional
1887  * completion.
1888  *
1889  * The extra (optional) response is used during registration to us from having
1890  * to perform an *additional* exchange of message just to provide a response by
1891  * instead piggy-backing on the acknowledgement.
1892  */
1893 static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head,
1894                                    uint8_t *data, RDMAControlHeader *resp,
1895                                    int *resp_idx,
1896                                    int (*callback)(RDMAContext *rdma))
1897 {
1898     int ret = 0;
1899 
1900     /*
1901      * Wait until the dest is ready before attempting to deliver the message
1902      * by waiting for a READY message.
1903      */
1904     if (rdma->control_ready_expected) {
1905         RDMAControlHeader resp;
1906         ret = qemu_rdma_exchange_get_response(rdma,
1907                                     &resp, RDMA_CONTROL_READY, RDMA_WRID_READY);
1908         if (ret < 0) {
1909             return ret;
1910         }
1911     }
1912 
1913     /*
1914      * If the user is expecting a response, post a WR in anticipation of it.
1915      */
1916     if (resp) {
1917         ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_DATA);
1918         if (ret) {
1919             error_report("rdma migration: error posting"
1920                     " extra control recv for anticipated result!");
1921             return ret;
1922         }
1923     }
1924 
1925     /*
1926      * Post a WR to replace the one we just consumed for the READY message.
1927      */
1928     ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
1929     if (ret) {
1930         error_report("rdma migration: error posting first control recv!");
1931         return ret;
1932     }
1933 
1934     /*
1935      * Deliver the control message that was requested.
1936      */
1937     ret = qemu_rdma_post_send_control(rdma, data, head);
1938 
1939     if (ret < 0) {
1940         error_report("Failed to send control buffer!");
1941         return ret;
1942     }
1943 
1944     /*
1945      * If we're expecting a response, block and wait for it.
1946      */
1947     if (resp) {
1948         if (callback) {
1949             trace_qemu_rdma_exchange_send_issue_callback();
1950             ret = callback(rdma);
1951             if (ret < 0) {
1952                 return ret;
1953             }
1954         }
1955 
1956         trace_qemu_rdma_exchange_send_waiting(control_desc(resp->type));
1957         ret = qemu_rdma_exchange_get_response(rdma, resp,
1958                                               resp->type, RDMA_WRID_DATA);
1959 
1960         if (ret < 0) {
1961             return ret;
1962         }
1963 
1964         qemu_rdma_move_header(rdma, RDMA_WRID_DATA, resp);
1965         if (resp_idx) {
1966             *resp_idx = RDMA_WRID_DATA;
1967         }
1968         trace_qemu_rdma_exchange_send_received(control_desc(resp->type));
1969     }
1970 
1971     rdma->control_ready_expected = 1;
1972 
1973     return 0;
1974 }
1975 
1976 /*
1977  * This is an 'atomic' high-level operation to receive a single, unified
1978  * control-channel message.
1979  */
1980 static int qemu_rdma_exchange_recv(RDMAContext *rdma, RDMAControlHeader *head,
1981                                 int expecting)
1982 {
1983     RDMAControlHeader ready = {
1984                                 .len = 0,
1985                                 .type = RDMA_CONTROL_READY,
1986                                 .repeat = 1,
1987                               };
1988     int ret;
1989 
1990     /*
1991      * Inform the source that we're ready to receive a message.
1992      */
1993     ret = qemu_rdma_post_send_control(rdma, NULL, &ready);
1994 
1995     if (ret < 0) {
1996         error_report("Failed to send control buffer!");
1997         return ret;
1998     }
1999 
2000     /*
2001      * Block and wait for the message.
2002      */
2003     ret = qemu_rdma_exchange_get_response(rdma, head,
2004                                           expecting, RDMA_WRID_READY);
2005 
2006     if (ret < 0) {
2007         return ret;
2008     }
2009 
2010     qemu_rdma_move_header(rdma, RDMA_WRID_READY, head);
2011 
2012     /*
2013      * Post a new RECV work request to replace the one we just consumed.
2014      */
2015     ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
2016     if (ret) {
2017         error_report("rdma migration: error posting second control recv!");
2018         return ret;
2019     }
2020 
2021     return 0;
2022 }
2023 
2024 /*
2025  * Write an actual chunk of memory using RDMA.
2026  *
2027  * If we're using dynamic registration on the dest-side, we have to
2028  * send a registration command first.
2029  */
2030 static int qemu_rdma_write_one(QEMUFile *f, RDMAContext *rdma,
2031                                int current_index, uint64_t current_addr,
2032                                uint64_t length)
2033 {
2034     struct ibv_sge sge;
2035     struct ibv_send_wr send_wr = { 0 };
2036     struct ibv_send_wr *bad_wr;
2037     int reg_result_idx, ret, count = 0;
2038     uint64_t chunk, chunks;
2039     uint8_t *chunk_start, *chunk_end;
2040     RDMALocalBlock *block = &(rdma->local_ram_blocks.block[current_index]);
2041     RDMARegister reg;
2042     RDMARegisterResult *reg_result;
2043     RDMAControlHeader resp = { .type = RDMA_CONTROL_REGISTER_RESULT };
2044     RDMAControlHeader head = { .len = sizeof(RDMARegister),
2045                                .type = RDMA_CONTROL_REGISTER_REQUEST,
2046                                .repeat = 1,
2047                              };
2048 
2049 retry:
2050     sge.addr = (uintptr_t)(block->local_host_addr +
2051                             (current_addr - block->offset));
2052     sge.length = length;
2053 
2054     chunk = ram_chunk_index(block->local_host_addr,
2055                             (uint8_t *)(uintptr_t)sge.addr);
2056     chunk_start = ram_chunk_start(block, chunk);
2057 
2058     if (block->is_ram_block) {
2059         chunks = length / (1UL << RDMA_REG_CHUNK_SHIFT);
2060 
2061         if (chunks && ((length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) {
2062             chunks--;
2063         }
2064     } else {
2065         chunks = block->length / (1UL << RDMA_REG_CHUNK_SHIFT);
2066 
2067         if (chunks && ((block->length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) {
2068             chunks--;
2069         }
2070     }
2071 
2072     trace_qemu_rdma_write_one_top(chunks + 1,
2073                                   (chunks + 1) *
2074                                   (1UL << RDMA_REG_CHUNK_SHIFT) / 1024 / 1024);
2075 
2076     chunk_end = ram_chunk_end(block, chunk + chunks);
2077 
2078 
2079     while (test_bit(chunk, block->transit_bitmap)) {
2080         (void)count;
2081         trace_qemu_rdma_write_one_block(count++, current_index, chunk,
2082                 sge.addr, length, rdma->nb_sent, block->nb_chunks);
2083 
2084         ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
2085 
2086         if (ret < 0) {
2087             error_report("Failed to Wait for previous write to complete "
2088                     "block %d chunk %" PRIu64
2089                     " current %" PRIu64 " len %" PRIu64 " %d",
2090                     current_index, chunk, sge.addr, length, rdma->nb_sent);
2091             return ret;
2092         }
2093     }
2094 
2095     if (!rdma->pin_all || !block->is_ram_block) {
2096         if (!block->remote_keys[chunk]) {
2097             /*
2098              * This chunk has not yet been registered, so first check to see
2099              * if the entire chunk is zero. If so, tell the other size to
2100              * memset() + madvise() the entire chunk without RDMA.
2101              */
2102 
2103             if (buffer_is_zero((void *)(uintptr_t)sge.addr, length)) {
2104                 RDMACompress comp = {
2105                                         .offset = current_addr,
2106                                         .value = 0,
2107                                         .block_idx = current_index,
2108                                         .length = length,
2109                                     };
2110 
2111                 head.len = sizeof(comp);
2112                 head.type = RDMA_CONTROL_COMPRESS;
2113 
2114                 trace_qemu_rdma_write_one_zero(chunk, sge.length,
2115                                                current_index, current_addr);
2116 
2117                 compress_to_network(rdma, &comp);
2118                 ret = qemu_rdma_exchange_send(rdma, &head,
2119                                 (uint8_t *) &comp, NULL, NULL, NULL);
2120 
2121                 if (ret < 0) {
2122                     return -EIO;
2123                 }
2124 
2125                 stat64_add(&mig_stats.zero_pages,
2126                            sge.length / qemu_target_page_size());
2127 
2128                 return 1;
2129             }
2130 
2131             /*
2132              * Otherwise, tell other side to register.
2133              */
2134             reg.current_index = current_index;
2135             if (block->is_ram_block) {
2136                 reg.key.current_addr = current_addr;
2137             } else {
2138                 reg.key.chunk = chunk;
2139             }
2140             reg.chunks = chunks;
2141 
2142             trace_qemu_rdma_write_one_sendreg(chunk, sge.length, current_index,
2143                                               current_addr);
2144 
2145             register_to_network(rdma, &reg);
2146             ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) &reg,
2147                                     &resp, &reg_result_idx, NULL);
2148             if (ret < 0) {
2149                 return ret;
2150             }
2151 
2152             /* try to overlap this single registration with the one we sent. */
2153             if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr,
2154                                                 &sge.lkey, NULL, chunk,
2155                                                 chunk_start, chunk_end)) {
2156                 error_report("cannot get lkey");
2157                 return -EINVAL;
2158             }
2159 
2160             reg_result = (RDMARegisterResult *)
2161                     rdma->wr_data[reg_result_idx].control_curr;
2162 
2163             network_to_result(reg_result);
2164 
2165             trace_qemu_rdma_write_one_recvregres(block->remote_keys[chunk],
2166                                                  reg_result->rkey, chunk);
2167 
2168             block->remote_keys[chunk] = reg_result->rkey;
2169             block->remote_host_addr = reg_result->host_addr;
2170         } else {
2171             /* already registered before */
2172             if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr,
2173                                                 &sge.lkey, NULL, chunk,
2174                                                 chunk_start, chunk_end)) {
2175                 error_report("cannot get lkey!");
2176                 return -EINVAL;
2177             }
2178         }
2179 
2180         send_wr.wr.rdma.rkey = block->remote_keys[chunk];
2181     } else {
2182         send_wr.wr.rdma.rkey = block->remote_rkey;
2183 
2184         if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr,
2185                                                      &sge.lkey, NULL, chunk,
2186                                                      chunk_start, chunk_end)) {
2187             error_report("cannot get lkey!");
2188             return -EINVAL;
2189         }
2190     }
2191 
2192     /*
2193      * Encode the ram block index and chunk within this wrid.
2194      * We will use this information at the time of completion
2195      * to figure out which bitmap to check against and then which
2196      * chunk in the bitmap to look for.
2197      */
2198     send_wr.wr_id = qemu_rdma_make_wrid(RDMA_WRID_RDMA_WRITE,
2199                                         current_index, chunk);
2200 
2201     send_wr.opcode = IBV_WR_RDMA_WRITE;
2202     send_wr.send_flags = IBV_SEND_SIGNALED;
2203     send_wr.sg_list = &sge;
2204     send_wr.num_sge = 1;
2205     send_wr.wr.rdma.remote_addr = block->remote_host_addr +
2206                                 (current_addr - block->offset);
2207 
2208     trace_qemu_rdma_write_one_post(chunk, sge.addr, send_wr.wr.rdma.remote_addr,
2209                                    sge.length);
2210 
2211     /*
2212      * ibv_post_send() does not return negative error numbers,
2213      * per the specification they are positive - no idea why.
2214      */
2215     ret = ibv_post_send(rdma->qp, &send_wr, &bad_wr);
2216 
2217     if (ret == ENOMEM) {
2218         trace_qemu_rdma_write_one_queue_full();
2219         ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
2220         if (ret < 0) {
2221             error_report("rdma migration: failed to make "
2222                          "room in full send queue! %d", ret);
2223             return ret;
2224         }
2225 
2226         goto retry;
2227 
2228     } else if (ret > 0) {
2229         perror("rdma migration: post rdma write failed");
2230         return -ret;
2231     }
2232 
2233     set_bit(chunk, block->transit_bitmap);
2234     stat64_add(&mig_stats.normal_pages, sge.length / qemu_target_page_size());
2235     ram_transferred_add(sge.length);
2236     qemu_file_credit_transfer(f, sge.length);
2237     rdma->total_writes++;
2238 
2239     return 0;
2240 }
2241 
2242 /*
2243  * Push out any unwritten RDMA operations.
2244  *
2245  * We support sending out multiple chunks at the same time.
2246  * Not all of them need to get signaled in the completion queue.
2247  */
2248 static int qemu_rdma_write_flush(QEMUFile *f, RDMAContext *rdma)
2249 {
2250     int ret;
2251 
2252     if (!rdma->current_length) {
2253         return 0;
2254     }
2255 
2256     ret = qemu_rdma_write_one(f, rdma,
2257             rdma->current_index, rdma->current_addr, rdma->current_length);
2258 
2259     if (ret < 0) {
2260         return ret;
2261     }
2262 
2263     if (ret == 0) {
2264         rdma->nb_sent++;
2265         trace_qemu_rdma_write_flush(rdma->nb_sent);
2266     }
2267 
2268     rdma->current_length = 0;
2269     rdma->current_addr = 0;
2270 
2271     return 0;
2272 }
2273 
2274 static inline int qemu_rdma_buffer_mergable(RDMAContext *rdma,
2275                     uint64_t offset, uint64_t len)
2276 {
2277     RDMALocalBlock *block;
2278     uint8_t *host_addr;
2279     uint8_t *chunk_end;
2280 
2281     if (rdma->current_index < 0) {
2282         return 0;
2283     }
2284 
2285     if (rdma->current_chunk < 0) {
2286         return 0;
2287     }
2288 
2289     block = &(rdma->local_ram_blocks.block[rdma->current_index]);
2290     host_addr = block->local_host_addr + (offset - block->offset);
2291     chunk_end = ram_chunk_end(block, rdma->current_chunk);
2292 
2293     if (rdma->current_length == 0) {
2294         return 0;
2295     }
2296 
2297     /*
2298      * Only merge into chunk sequentially.
2299      */
2300     if (offset != (rdma->current_addr + rdma->current_length)) {
2301         return 0;
2302     }
2303 
2304     if (offset < block->offset) {
2305         return 0;
2306     }
2307 
2308     if ((offset + len) > (block->offset + block->length)) {
2309         return 0;
2310     }
2311 
2312     if ((host_addr + len) > chunk_end) {
2313         return 0;
2314     }
2315 
2316     return 1;
2317 }
2318 
2319 /*
2320  * We're not actually writing here, but doing three things:
2321  *
2322  * 1. Identify the chunk the buffer belongs to.
2323  * 2. If the chunk is full or the buffer doesn't belong to the current
2324  *    chunk, then start a new chunk and flush() the old chunk.
2325  * 3. To keep the hardware busy, we also group chunks into batches
2326  *    and only require that a batch gets acknowledged in the completion
2327  *    queue instead of each individual chunk.
2328  */
2329 static int qemu_rdma_write(QEMUFile *f, RDMAContext *rdma,
2330                            uint64_t block_offset, uint64_t offset,
2331                            uint64_t len)
2332 {
2333     uint64_t current_addr = block_offset + offset;
2334     uint64_t index = rdma->current_index;
2335     uint64_t chunk = rdma->current_chunk;
2336     int ret;
2337 
2338     /* If we cannot merge it, we flush the current buffer first. */
2339     if (!qemu_rdma_buffer_mergable(rdma, current_addr, len)) {
2340         ret = qemu_rdma_write_flush(f, rdma);
2341         if (ret) {
2342             return ret;
2343         }
2344         rdma->current_length = 0;
2345         rdma->current_addr = current_addr;
2346 
2347         ret = qemu_rdma_search_ram_block(rdma, block_offset,
2348                                          offset, len, &index, &chunk);
2349         if (ret) {
2350             error_report("ram block search failed");
2351             return ret;
2352         }
2353         rdma->current_index = index;
2354         rdma->current_chunk = chunk;
2355     }
2356 
2357     /* merge it */
2358     rdma->current_length += len;
2359 
2360     /* flush it if buffer is too large */
2361     if (rdma->current_length >= RDMA_MERGE_MAX) {
2362         return qemu_rdma_write_flush(f, rdma);
2363     }
2364 
2365     return 0;
2366 }
2367 
2368 static void qemu_rdma_cleanup(RDMAContext *rdma)
2369 {
2370     int idx;
2371 
2372     if (rdma->cm_id && rdma->connected) {
2373         if ((rdma->error_state ||
2374              migrate_get_current()->state == MIGRATION_STATUS_CANCELLING) &&
2375             !rdma->received_error) {
2376             RDMAControlHeader head = { .len = 0,
2377                                        .type = RDMA_CONTROL_ERROR,
2378                                        .repeat = 1,
2379                                      };
2380             error_report("Early error. Sending error.");
2381             qemu_rdma_post_send_control(rdma, NULL, &head);
2382         }
2383 
2384         rdma_disconnect(rdma->cm_id);
2385         trace_qemu_rdma_cleanup_disconnect();
2386         rdma->connected = false;
2387     }
2388 
2389     if (rdma->channel) {
2390         qemu_set_fd_handler(rdma->channel->fd, NULL, NULL, NULL);
2391     }
2392     g_free(rdma->dest_blocks);
2393     rdma->dest_blocks = NULL;
2394 
2395     for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2396         if (rdma->wr_data[idx].control_mr) {
2397             rdma->total_registrations--;
2398             ibv_dereg_mr(rdma->wr_data[idx].control_mr);
2399         }
2400         rdma->wr_data[idx].control_mr = NULL;
2401     }
2402 
2403     if (rdma->local_ram_blocks.block) {
2404         while (rdma->local_ram_blocks.nb_blocks) {
2405             rdma_delete_block(rdma, &rdma->local_ram_blocks.block[0]);
2406         }
2407     }
2408 
2409     if (rdma->qp) {
2410         rdma_destroy_qp(rdma->cm_id);
2411         rdma->qp = NULL;
2412     }
2413     if (rdma->recv_cq) {
2414         ibv_destroy_cq(rdma->recv_cq);
2415         rdma->recv_cq = NULL;
2416     }
2417     if (rdma->send_cq) {
2418         ibv_destroy_cq(rdma->send_cq);
2419         rdma->send_cq = NULL;
2420     }
2421     if (rdma->recv_comp_channel) {
2422         ibv_destroy_comp_channel(rdma->recv_comp_channel);
2423         rdma->recv_comp_channel = NULL;
2424     }
2425     if (rdma->send_comp_channel) {
2426         ibv_destroy_comp_channel(rdma->send_comp_channel);
2427         rdma->send_comp_channel = NULL;
2428     }
2429     if (rdma->pd) {
2430         ibv_dealloc_pd(rdma->pd);
2431         rdma->pd = NULL;
2432     }
2433     if (rdma->cm_id) {
2434         rdma_destroy_id(rdma->cm_id);
2435         rdma->cm_id = NULL;
2436     }
2437 
2438     /* the destination side, listen_id and channel is shared */
2439     if (rdma->listen_id) {
2440         if (!rdma->is_return_path) {
2441             rdma_destroy_id(rdma->listen_id);
2442         }
2443         rdma->listen_id = NULL;
2444 
2445         if (rdma->channel) {
2446             if (!rdma->is_return_path) {
2447                 rdma_destroy_event_channel(rdma->channel);
2448             }
2449             rdma->channel = NULL;
2450         }
2451     }
2452 
2453     if (rdma->channel) {
2454         rdma_destroy_event_channel(rdma->channel);
2455         rdma->channel = NULL;
2456     }
2457     g_free(rdma->host);
2458     g_free(rdma->host_port);
2459     rdma->host = NULL;
2460     rdma->host_port = NULL;
2461 }
2462 
2463 
2464 static int qemu_rdma_source_init(RDMAContext *rdma, bool pin_all, Error **errp)
2465 {
2466     int ret, idx;
2467     Error *local_err = NULL, **temp = &local_err;
2468 
2469     /*
2470      * Will be validated against destination's actual capabilities
2471      * after the connect() completes.
2472      */
2473     rdma->pin_all = pin_all;
2474 
2475     ret = qemu_rdma_resolve_host(rdma, temp);
2476     if (ret) {
2477         goto err_rdma_source_init;
2478     }
2479 
2480     ret = qemu_rdma_alloc_pd_cq(rdma);
2481     if (ret) {
2482         ERROR(temp, "rdma migration: error allocating pd and cq! Your mlock()"
2483                     " limits may be too low. Please check $ ulimit -a # and "
2484                     "search for 'ulimit -l' in the output");
2485         goto err_rdma_source_init;
2486     }
2487 
2488     ret = qemu_rdma_alloc_qp(rdma);
2489     if (ret) {
2490         ERROR(temp, "rdma migration: error allocating qp!");
2491         goto err_rdma_source_init;
2492     }
2493 
2494     ret = qemu_rdma_init_ram_blocks(rdma);
2495     if (ret) {
2496         ERROR(temp, "rdma migration: error initializing ram blocks!");
2497         goto err_rdma_source_init;
2498     }
2499 
2500     /* Build the hash that maps from offset to RAMBlock */
2501     rdma->blockmap = g_hash_table_new(g_direct_hash, g_direct_equal);
2502     for (idx = 0; idx < rdma->local_ram_blocks.nb_blocks; idx++) {
2503         g_hash_table_insert(rdma->blockmap,
2504                 (void *)(uintptr_t)rdma->local_ram_blocks.block[idx].offset,
2505                 &rdma->local_ram_blocks.block[idx]);
2506     }
2507 
2508     for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2509         ret = qemu_rdma_reg_control(rdma, idx);
2510         if (ret) {
2511             ERROR(temp, "rdma migration: error registering %d control!",
2512                                                             idx);
2513             goto err_rdma_source_init;
2514         }
2515     }
2516 
2517     return 0;
2518 
2519 err_rdma_source_init:
2520     error_propagate(errp, local_err);
2521     qemu_rdma_cleanup(rdma);
2522     return -1;
2523 }
2524 
2525 static int qemu_get_cm_event_timeout(RDMAContext *rdma,
2526                                      struct rdma_cm_event **cm_event,
2527                                      long msec, Error **errp)
2528 {
2529     int ret;
2530     struct pollfd poll_fd = {
2531                                 .fd = rdma->channel->fd,
2532                                 .events = POLLIN,
2533                                 .revents = 0
2534                             };
2535 
2536     do {
2537         ret = poll(&poll_fd, 1, msec);
2538     } while (ret < 0 && errno == EINTR);
2539 
2540     if (ret == 0) {
2541         ERROR(errp, "poll cm event timeout");
2542         return -1;
2543     } else if (ret < 0) {
2544         ERROR(errp, "failed to poll cm event, errno=%i", errno);
2545         return -1;
2546     } else if (poll_fd.revents & POLLIN) {
2547         return rdma_get_cm_event(rdma->channel, cm_event);
2548     } else {
2549         ERROR(errp, "no POLLIN event, revent=%x", poll_fd.revents);
2550         return -1;
2551     }
2552 }
2553 
2554 static int qemu_rdma_connect(RDMAContext *rdma, Error **errp, bool return_path)
2555 {
2556     RDMACapabilities cap = {
2557                                 .version = RDMA_CONTROL_VERSION_CURRENT,
2558                                 .flags = 0,
2559                            };
2560     struct rdma_conn_param conn_param = { .initiator_depth = 2,
2561                                           .retry_count = 5,
2562                                           .private_data = &cap,
2563                                           .private_data_len = sizeof(cap),
2564                                         };
2565     struct rdma_cm_event *cm_event;
2566     int ret;
2567 
2568     /*
2569      * Only negotiate the capability with destination if the user
2570      * on the source first requested the capability.
2571      */
2572     if (rdma->pin_all) {
2573         trace_qemu_rdma_connect_pin_all_requested();
2574         cap.flags |= RDMA_CAPABILITY_PIN_ALL;
2575     }
2576 
2577     caps_to_network(&cap);
2578 
2579     ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
2580     if (ret) {
2581         ERROR(errp, "posting second control recv");
2582         goto err_rdma_source_connect;
2583     }
2584 
2585     ret = rdma_connect(rdma->cm_id, &conn_param);
2586     if (ret) {
2587         perror("rdma_connect");
2588         ERROR(errp, "connecting to destination!");
2589         goto err_rdma_source_connect;
2590     }
2591 
2592     if (return_path) {
2593         ret = qemu_get_cm_event_timeout(rdma, &cm_event, 5000, errp);
2594     } else {
2595         ret = rdma_get_cm_event(rdma->channel, &cm_event);
2596     }
2597     if (ret) {
2598         perror("rdma_get_cm_event after rdma_connect");
2599         ERROR(errp, "connecting to destination!");
2600         goto err_rdma_source_connect;
2601     }
2602 
2603     if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) {
2604         error_report("rdma_get_cm_event != EVENT_ESTABLISHED after rdma_connect");
2605         ERROR(errp, "connecting to destination!");
2606         rdma_ack_cm_event(cm_event);
2607         goto err_rdma_source_connect;
2608     }
2609     rdma->connected = true;
2610 
2611     memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap));
2612     network_to_caps(&cap);
2613 
2614     /*
2615      * Verify that the *requested* capabilities are supported by the destination
2616      * and disable them otherwise.
2617      */
2618     if (rdma->pin_all && !(cap.flags & RDMA_CAPABILITY_PIN_ALL)) {
2619         ERROR(errp, "Server cannot support pinning all memory. "
2620                         "Will register memory dynamically.");
2621         rdma->pin_all = false;
2622     }
2623 
2624     trace_qemu_rdma_connect_pin_all_outcome(rdma->pin_all);
2625 
2626     rdma_ack_cm_event(cm_event);
2627 
2628     rdma->control_ready_expected = 1;
2629     rdma->nb_sent = 0;
2630     return 0;
2631 
2632 err_rdma_source_connect:
2633     qemu_rdma_cleanup(rdma);
2634     return -1;
2635 }
2636 
2637 static int qemu_rdma_dest_init(RDMAContext *rdma, Error **errp)
2638 {
2639     int ret, idx;
2640     struct rdma_cm_id *listen_id;
2641     char ip[40] = "unknown";
2642     struct rdma_addrinfo *res, *e;
2643     char port_str[16];
2644     int reuse = 1;
2645 
2646     for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2647         rdma->wr_data[idx].control_len = 0;
2648         rdma->wr_data[idx].control_curr = NULL;
2649     }
2650 
2651     if (!rdma->host || !rdma->host[0]) {
2652         ERROR(errp, "RDMA host is not set!");
2653         rdma->error_state = -EINVAL;
2654         return -1;
2655     }
2656     /* create CM channel */
2657     rdma->channel = rdma_create_event_channel();
2658     if (!rdma->channel) {
2659         ERROR(errp, "could not create rdma event channel");
2660         rdma->error_state = -EINVAL;
2661         return -1;
2662     }
2663 
2664     /* create CM id */
2665     ret = rdma_create_id(rdma->channel, &listen_id, NULL, RDMA_PS_TCP);
2666     if (ret) {
2667         ERROR(errp, "could not create cm_id!");
2668         goto err_dest_init_create_listen_id;
2669     }
2670 
2671     snprintf(port_str, 16, "%d", rdma->port);
2672     port_str[15] = '\0';
2673 
2674     ret = rdma_getaddrinfo(rdma->host, port_str, NULL, &res);
2675     if (ret < 0) {
2676         ERROR(errp, "could not rdma_getaddrinfo address %s", rdma->host);
2677         goto err_dest_init_bind_addr;
2678     }
2679 
2680     ret = rdma_set_option(listen_id, RDMA_OPTION_ID, RDMA_OPTION_ID_REUSEADDR,
2681                           &reuse, sizeof reuse);
2682     if (ret) {
2683         ERROR(errp, "Error: could not set REUSEADDR option");
2684         goto err_dest_init_bind_addr;
2685     }
2686     for (e = res; e != NULL; e = e->ai_next) {
2687         inet_ntop(e->ai_family,
2688             &((struct sockaddr_in *) e->ai_dst_addr)->sin_addr, ip, sizeof ip);
2689         trace_qemu_rdma_dest_init_trying(rdma->host, ip);
2690         ret = rdma_bind_addr(listen_id, e->ai_dst_addr);
2691         if (ret) {
2692             continue;
2693         }
2694         if (e->ai_family == AF_INET6) {
2695             ret = qemu_rdma_broken_ipv6_kernel(listen_id->verbs, errp);
2696             if (ret) {
2697                 continue;
2698             }
2699         }
2700         break;
2701     }
2702 
2703     rdma_freeaddrinfo(res);
2704     if (!e) {
2705         ERROR(errp, "Error: could not rdma_bind_addr!");
2706         goto err_dest_init_bind_addr;
2707     }
2708 
2709     rdma->listen_id = listen_id;
2710     qemu_rdma_dump_gid("dest_init", listen_id);
2711     return 0;
2712 
2713 err_dest_init_bind_addr:
2714     rdma_destroy_id(listen_id);
2715 err_dest_init_create_listen_id:
2716     rdma_destroy_event_channel(rdma->channel);
2717     rdma->channel = NULL;
2718     rdma->error_state = ret;
2719     return ret;
2720 
2721 }
2722 
2723 static void qemu_rdma_return_path_dest_init(RDMAContext *rdma_return_path,
2724                                             RDMAContext *rdma)
2725 {
2726     int idx;
2727 
2728     for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2729         rdma_return_path->wr_data[idx].control_len = 0;
2730         rdma_return_path->wr_data[idx].control_curr = NULL;
2731     }
2732 
2733     /*the CM channel and CM id is shared*/
2734     rdma_return_path->channel = rdma->channel;
2735     rdma_return_path->listen_id = rdma->listen_id;
2736 
2737     rdma->return_path = rdma_return_path;
2738     rdma_return_path->return_path = rdma;
2739     rdma_return_path->is_return_path = true;
2740 }
2741 
2742 static void *qemu_rdma_data_init(const char *host_port, Error **errp)
2743 {
2744     RDMAContext *rdma = NULL;
2745     InetSocketAddress *addr;
2746 
2747     if (host_port) {
2748         rdma = g_new0(RDMAContext, 1);
2749         rdma->current_index = -1;
2750         rdma->current_chunk = -1;
2751 
2752         addr = g_new(InetSocketAddress, 1);
2753         if (!inet_parse(addr, host_port, NULL)) {
2754             rdma->port = atoi(addr->port);
2755             rdma->host = g_strdup(addr->host);
2756             rdma->host_port = g_strdup(host_port);
2757         } else {
2758             ERROR(errp, "bad RDMA migration address '%s'", host_port);
2759             g_free(rdma);
2760             rdma = NULL;
2761         }
2762 
2763         qapi_free_InetSocketAddress(addr);
2764     }
2765 
2766     return rdma;
2767 }
2768 
2769 /*
2770  * QEMUFile interface to the control channel.
2771  * SEND messages for control only.
2772  * VM's ram is handled with regular RDMA messages.
2773  */
2774 static ssize_t qio_channel_rdma_writev(QIOChannel *ioc,
2775                                        const struct iovec *iov,
2776                                        size_t niov,
2777                                        int *fds,
2778                                        size_t nfds,
2779                                        int flags,
2780                                        Error **errp)
2781 {
2782     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
2783     QEMUFile *f = rioc->file;
2784     RDMAContext *rdma;
2785     int ret;
2786     ssize_t done = 0;
2787     size_t i;
2788     size_t len = 0;
2789 
2790     RCU_READ_LOCK_GUARD();
2791     rdma = qatomic_rcu_read(&rioc->rdmaout);
2792 
2793     if (!rdma) {
2794         error_setg(errp, "RDMA control channel output is not set");
2795         return -1;
2796     }
2797 
2798     CHECK_ERROR_STATE();
2799 
2800     /*
2801      * Push out any writes that
2802      * we're queued up for VM's ram.
2803      */
2804     ret = qemu_rdma_write_flush(f, rdma);
2805     if (ret < 0) {
2806         rdma->error_state = ret;
2807         error_setg(errp, "qemu_rdma_write_flush returned %d", ret);
2808         return -1;
2809     }
2810 
2811     for (i = 0; i < niov; i++) {
2812         size_t remaining = iov[i].iov_len;
2813         uint8_t * data = (void *)iov[i].iov_base;
2814         while (remaining) {
2815             RDMAControlHeader head;
2816 
2817             len = MIN(remaining, RDMA_SEND_INCREMENT);
2818             remaining -= len;
2819 
2820             head.len = len;
2821             head.type = RDMA_CONTROL_QEMU_FILE;
2822 
2823             ret = qemu_rdma_exchange_send(rdma, &head, data, NULL, NULL, NULL);
2824 
2825             if (ret < 0) {
2826                 rdma->error_state = ret;
2827                 error_setg(errp, "qemu_rdma_exchange_send returned %d", ret);
2828                 return -1;
2829             }
2830 
2831             data += len;
2832             done += len;
2833         }
2834     }
2835 
2836     return done;
2837 }
2838 
2839 static size_t qemu_rdma_fill(RDMAContext *rdma, uint8_t *buf,
2840                              size_t size, int idx)
2841 {
2842     size_t len = 0;
2843 
2844     if (rdma->wr_data[idx].control_len) {
2845         trace_qemu_rdma_fill(rdma->wr_data[idx].control_len, size);
2846 
2847         len = MIN(size, rdma->wr_data[idx].control_len);
2848         memcpy(buf, rdma->wr_data[idx].control_curr, len);
2849         rdma->wr_data[idx].control_curr += len;
2850         rdma->wr_data[idx].control_len -= len;
2851     }
2852 
2853     return len;
2854 }
2855 
2856 /*
2857  * QEMUFile interface to the control channel.
2858  * RDMA links don't use bytestreams, so we have to
2859  * return bytes to QEMUFile opportunistically.
2860  */
2861 static ssize_t qio_channel_rdma_readv(QIOChannel *ioc,
2862                                       const struct iovec *iov,
2863                                       size_t niov,
2864                                       int **fds,
2865                                       size_t *nfds,
2866                                       int flags,
2867                                       Error **errp)
2868 {
2869     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
2870     RDMAContext *rdma;
2871     RDMAControlHeader head;
2872     int ret = 0;
2873     ssize_t i;
2874     size_t done = 0;
2875 
2876     RCU_READ_LOCK_GUARD();
2877     rdma = qatomic_rcu_read(&rioc->rdmain);
2878 
2879     if (!rdma) {
2880         error_setg(errp, "RDMA control channel input is not set");
2881         return -1;
2882     }
2883 
2884     CHECK_ERROR_STATE();
2885 
2886     for (i = 0; i < niov; i++) {
2887         size_t want = iov[i].iov_len;
2888         uint8_t *data = (void *)iov[i].iov_base;
2889 
2890         /*
2891          * First, we hold on to the last SEND message we
2892          * were given and dish out the bytes until we run
2893          * out of bytes.
2894          */
2895         ret = qemu_rdma_fill(rdma, data, want, 0);
2896         done += ret;
2897         want -= ret;
2898         /* Got what we needed, so go to next iovec */
2899         if (want == 0) {
2900             continue;
2901         }
2902 
2903         /* If we got any data so far, then don't wait
2904          * for more, just return what we have */
2905         if (done > 0) {
2906             break;
2907         }
2908 
2909 
2910         /* We've got nothing at all, so lets wait for
2911          * more to arrive
2912          */
2913         ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_QEMU_FILE);
2914 
2915         if (ret < 0) {
2916             rdma->error_state = ret;
2917             error_setg(errp, "qemu_rdma_exchange_recv returned %d", ret);
2918             return -1;
2919         }
2920 
2921         /*
2922          * SEND was received with new bytes, now try again.
2923          */
2924         ret = qemu_rdma_fill(rdma, data, want, 0);
2925         done += ret;
2926         want -= ret;
2927 
2928         /* Still didn't get enough, so lets just return */
2929         if (want) {
2930             if (done == 0) {
2931                 return QIO_CHANNEL_ERR_BLOCK;
2932             } else {
2933                 break;
2934             }
2935         }
2936     }
2937     return done;
2938 }
2939 
2940 /*
2941  * Block until all the outstanding chunks have been delivered by the hardware.
2942  */
2943 static int qemu_rdma_drain_cq(QEMUFile *f, RDMAContext *rdma)
2944 {
2945     int ret;
2946 
2947     if (qemu_rdma_write_flush(f, rdma) < 0) {
2948         return -EIO;
2949     }
2950 
2951     while (rdma->nb_sent) {
2952         ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
2953         if (ret < 0) {
2954             error_report("rdma migration: complete polling error!");
2955             return -EIO;
2956         }
2957     }
2958 
2959     qemu_rdma_unregister_waiting(rdma);
2960 
2961     return 0;
2962 }
2963 
2964 
2965 static int qio_channel_rdma_set_blocking(QIOChannel *ioc,
2966                                          bool blocking,
2967                                          Error **errp)
2968 {
2969     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
2970     /* XXX we should make readv/writev actually honour this :-) */
2971     rioc->blocking = blocking;
2972     return 0;
2973 }
2974 
2975 
2976 typedef struct QIOChannelRDMASource QIOChannelRDMASource;
2977 struct QIOChannelRDMASource {
2978     GSource parent;
2979     QIOChannelRDMA *rioc;
2980     GIOCondition condition;
2981 };
2982 
2983 static gboolean
2984 qio_channel_rdma_source_prepare(GSource *source,
2985                                 gint *timeout)
2986 {
2987     QIOChannelRDMASource *rsource = (QIOChannelRDMASource *)source;
2988     RDMAContext *rdma;
2989     GIOCondition cond = 0;
2990     *timeout = -1;
2991 
2992     RCU_READ_LOCK_GUARD();
2993     if (rsource->condition == G_IO_IN) {
2994         rdma = qatomic_rcu_read(&rsource->rioc->rdmain);
2995     } else {
2996         rdma = qatomic_rcu_read(&rsource->rioc->rdmaout);
2997     }
2998 
2999     if (!rdma) {
3000         error_report("RDMAContext is NULL when prepare Gsource");
3001         return FALSE;
3002     }
3003 
3004     if (rdma->wr_data[0].control_len) {
3005         cond |= G_IO_IN;
3006     }
3007     cond |= G_IO_OUT;
3008 
3009     return cond & rsource->condition;
3010 }
3011 
3012 static gboolean
3013 qio_channel_rdma_source_check(GSource *source)
3014 {
3015     QIOChannelRDMASource *rsource = (QIOChannelRDMASource *)source;
3016     RDMAContext *rdma;
3017     GIOCondition cond = 0;
3018 
3019     RCU_READ_LOCK_GUARD();
3020     if (rsource->condition == G_IO_IN) {
3021         rdma = qatomic_rcu_read(&rsource->rioc->rdmain);
3022     } else {
3023         rdma = qatomic_rcu_read(&rsource->rioc->rdmaout);
3024     }
3025 
3026     if (!rdma) {
3027         error_report("RDMAContext is NULL when check Gsource");
3028         return FALSE;
3029     }
3030 
3031     if (rdma->wr_data[0].control_len) {
3032         cond |= G_IO_IN;
3033     }
3034     cond |= G_IO_OUT;
3035 
3036     return cond & rsource->condition;
3037 }
3038 
3039 static gboolean
3040 qio_channel_rdma_source_dispatch(GSource *source,
3041                                  GSourceFunc callback,
3042                                  gpointer user_data)
3043 {
3044     QIOChannelFunc func = (QIOChannelFunc)callback;
3045     QIOChannelRDMASource *rsource = (QIOChannelRDMASource *)source;
3046     RDMAContext *rdma;
3047     GIOCondition cond = 0;
3048 
3049     RCU_READ_LOCK_GUARD();
3050     if (rsource->condition == G_IO_IN) {
3051         rdma = qatomic_rcu_read(&rsource->rioc->rdmain);
3052     } else {
3053         rdma = qatomic_rcu_read(&rsource->rioc->rdmaout);
3054     }
3055 
3056     if (!rdma) {
3057         error_report("RDMAContext is NULL when dispatch Gsource");
3058         return FALSE;
3059     }
3060 
3061     if (rdma->wr_data[0].control_len) {
3062         cond |= G_IO_IN;
3063     }
3064     cond |= G_IO_OUT;
3065 
3066     return (*func)(QIO_CHANNEL(rsource->rioc),
3067                    (cond & rsource->condition),
3068                    user_data);
3069 }
3070 
3071 static void
3072 qio_channel_rdma_source_finalize(GSource *source)
3073 {
3074     QIOChannelRDMASource *ssource = (QIOChannelRDMASource *)source;
3075 
3076     object_unref(OBJECT(ssource->rioc));
3077 }
3078 
3079 GSourceFuncs qio_channel_rdma_source_funcs = {
3080     qio_channel_rdma_source_prepare,
3081     qio_channel_rdma_source_check,
3082     qio_channel_rdma_source_dispatch,
3083     qio_channel_rdma_source_finalize
3084 };
3085 
3086 static GSource *qio_channel_rdma_create_watch(QIOChannel *ioc,
3087                                               GIOCondition condition)
3088 {
3089     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
3090     QIOChannelRDMASource *ssource;
3091     GSource *source;
3092 
3093     source = g_source_new(&qio_channel_rdma_source_funcs,
3094                           sizeof(QIOChannelRDMASource));
3095     ssource = (QIOChannelRDMASource *)source;
3096 
3097     ssource->rioc = rioc;
3098     object_ref(OBJECT(rioc));
3099 
3100     ssource->condition = condition;
3101 
3102     return source;
3103 }
3104 
3105 static void qio_channel_rdma_set_aio_fd_handler(QIOChannel *ioc,
3106                                                 AioContext *read_ctx,
3107                                                 IOHandler *io_read,
3108                                                 AioContext *write_ctx,
3109                                                 IOHandler *io_write,
3110                                                 void *opaque)
3111 {
3112     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
3113     if (io_read) {
3114         aio_set_fd_handler(read_ctx, rioc->rdmain->recv_comp_channel->fd,
3115                            io_read, io_write, NULL, NULL, opaque);
3116         aio_set_fd_handler(read_ctx, rioc->rdmain->send_comp_channel->fd,
3117                            io_read, io_write, NULL, NULL, opaque);
3118     } else {
3119         aio_set_fd_handler(write_ctx, rioc->rdmaout->recv_comp_channel->fd,
3120                            io_read, io_write, NULL, NULL, opaque);
3121         aio_set_fd_handler(write_ctx, rioc->rdmaout->send_comp_channel->fd,
3122                            io_read, io_write, NULL, NULL, opaque);
3123     }
3124 }
3125 
3126 struct rdma_close_rcu {
3127     struct rcu_head rcu;
3128     RDMAContext *rdmain;
3129     RDMAContext *rdmaout;
3130 };
3131 
3132 /* callback from qio_channel_rdma_close via call_rcu */
3133 static void qio_channel_rdma_close_rcu(struct rdma_close_rcu *rcu)
3134 {
3135     if (rcu->rdmain) {
3136         qemu_rdma_cleanup(rcu->rdmain);
3137     }
3138 
3139     if (rcu->rdmaout) {
3140         qemu_rdma_cleanup(rcu->rdmaout);
3141     }
3142 
3143     g_free(rcu->rdmain);
3144     g_free(rcu->rdmaout);
3145     g_free(rcu);
3146 }
3147 
3148 static int qio_channel_rdma_close(QIOChannel *ioc,
3149                                   Error **errp)
3150 {
3151     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
3152     RDMAContext *rdmain, *rdmaout;
3153     struct rdma_close_rcu *rcu = g_new(struct rdma_close_rcu, 1);
3154 
3155     trace_qemu_rdma_close();
3156 
3157     rdmain = rioc->rdmain;
3158     if (rdmain) {
3159         qatomic_rcu_set(&rioc->rdmain, NULL);
3160     }
3161 
3162     rdmaout = rioc->rdmaout;
3163     if (rdmaout) {
3164         qatomic_rcu_set(&rioc->rdmaout, NULL);
3165     }
3166 
3167     rcu->rdmain = rdmain;
3168     rcu->rdmaout = rdmaout;
3169     call_rcu(rcu, qio_channel_rdma_close_rcu, rcu);
3170 
3171     return 0;
3172 }
3173 
3174 static int
3175 qio_channel_rdma_shutdown(QIOChannel *ioc,
3176                             QIOChannelShutdown how,
3177                             Error **errp)
3178 {
3179     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
3180     RDMAContext *rdmain, *rdmaout;
3181 
3182     RCU_READ_LOCK_GUARD();
3183 
3184     rdmain = qatomic_rcu_read(&rioc->rdmain);
3185     rdmaout = qatomic_rcu_read(&rioc->rdmain);
3186 
3187     switch (how) {
3188     case QIO_CHANNEL_SHUTDOWN_READ:
3189         if (rdmain) {
3190             rdmain->error_state = -1;
3191         }
3192         break;
3193     case QIO_CHANNEL_SHUTDOWN_WRITE:
3194         if (rdmaout) {
3195             rdmaout->error_state = -1;
3196         }
3197         break;
3198     case QIO_CHANNEL_SHUTDOWN_BOTH:
3199     default:
3200         if (rdmain) {
3201             rdmain->error_state = -1;
3202         }
3203         if (rdmaout) {
3204             rdmaout->error_state = -1;
3205         }
3206         break;
3207     }
3208 
3209     return 0;
3210 }
3211 
3212 /*
3213  * Parameters:
3214  *    @offset == 0 :
3215  *        This means that 'block_offset' is a full virtual address that does not
3216  *        belong to a RAMBlock of the virtual machine and instead
3217  *        represents a private malloc'd memory area that the caller wishes to
3218  *        transfer.
3219  *
3220  *    @offset != 0 :
3221  *        Offset is an offset to be added to block_offset and used
3222  *        to also lookup the corresponding RAMBlock.
3223  *
3224  *    @size : Number of bytes to transfer
3225  *
3226  *    @bytes_sent : User-specificed pointer to indicate how many bytes were
3227  *                  sent. Usually, this will not be more than a few bytes of
3228  *                  the protocol because most transfers are sent asynchronously.
3229  */
3230 static size_t qemu_rdma_save_page(QEMUFile *f,
3231                                   ram_addr_t block_offset, ram_addr_t offset,
3232                                   size_t size, uint64_t *bytes_sent)
3233 {
3234     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(qemu_file_get_ioc(f));
3235     RDMAContext *rdma;
3236     int ret;
3237 
3238     if (migration_in_postcopy()) {
3239         return RAM_SAVE_CONTROL_NOT_SUPP;
3240     }
3241 
3242     RCU_READ_LOCK_GUARD();
3243     rdma = qatomic_rcu_read(&rioc->rdmaout);
3244 
3245     if (!rdma) {
3246         return -EIO;
3247     }
3248 
3249     CHECK_ERROR_STATE();
3250 
3251     qemu_fflush(f);
3252 
3253     /*
3254      * Add this page to the current 'chunk'. If the chunk
3255      * is full, or the page doesn't belong to the current chunk,
3256      * an actual RDMA write will occur and a new chunk will be formed.
3257      */
3258     ret = qemu_rdma_write(f, rdma, block_offset, offset, size);
3259     if (ret < 0) {
3260         error_report("rdma migration: write error! %d", ret);
3261         goto err;
3262     }
3263 
3264     /*
3265      * We always return 1 bytes because the RDMA
3266      * protocol is completely asynchronous. We do not yet know
3267      * whether an  identified chunk is zero or not because we're
3268      * waiting for other pages to potentially be merged with
3269      * the current chunk. So, we have to call qemu_update_position()
3270      * later on when the actual write occurs.
3271      */
3272     if (bytes_sent) {
3273         *bytes_sent = 1;
3274     }
3275 
3276     /*
3277      * Drain the Completion Queue if possible, but do not block,
3278      * just poll.
3279      *
3280      * If nothing to poll, the end of the iteration will do this
3281      * again to make sure we don't overflow the request queue.
3282      */
3283     while (1) {
3284         uint64_t wr_id, wr_id_in;
3285         int ret = qemu_rdma_poll(rdma, rdma->recv_cq, &wr_id_in, NULL);
3286         if (ret < 0) {
3287             error_report("rdma migration: polling error! %d", ret);
3288             goto err;
3289         }
3290 
3291         wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
3292 
3293         if (wr_id == RDMA_WRID_NONE) {
3294             break;
3295         }
3296     }
3297 
3298     while (1) {
3299         uint64_t wr_id, wr_id_in;
3300         int ret = qemu_rdma_poll(rdma, rdma->send_cq, &wr_id_in, NULL);
3301         if (ret < 0) {
3302             error_report("rdma migration: polling error! %d", ret);
3303             goto err;
3304         }
3305 
3306         wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
3307 
3308         if (wr_id == RDMA_WRID_NONE) {
3309             break;
3310         }
3311     }
3312 
3313     return RAM_SAVE_CONTROL_DELAYED;
3314 err:
3315     rdma->error_state = ret;
3316     return ret;
3317 }
3318 
3319 static void rdma_accept_incoming_migration(void *opaque);
3320 
3321 static void rdma_cm_poll_handler(void *opaque)
3322 {
3323     RDMAContext *rdma = opaque;
3324     int ret;
3325     struct rdma_cm_event *cm_event;
3326     MigrationIncomingState *mis = migration_incoming_get_current();
3327 
3328     ret = rdma_get_cm_event(rdma->channel, &cm_event);
3329     if (ret) {
3330         error_report("get_cm_event failed %d", errno);
3331         return;
3332     }
3333 
3334     if (cm_event->event == RDMA_CM_EVENT_DISCONNECTED ||
3335         cm_event->event == RDMA_CM_EVENT_DEVICE_REMOVAL) {
3336         if (!rdma->error_state &&
3337             migration_incoming_get_current()->state !=
3338               MIGRATION_STATUS_COMPLETED) {
3339             error_report("receive cm event, cm event is %d", cm_event->event);
3340             rdma->error_state = -EPIPE;
3341             if (rdma->return_path) {
3342                 rdma->return_path->error_state = -EPIPE;
3343             }
3344         }
3345         rdma_ack_cm_event(cm_event);
3346         if (mis->loadvm_co) {
3347             qemu_coroutine_enter(mis->loadvm_co);
3348         }
3349         return;
3350     }
3351     rdma_ack_cm_event(cm_event);
3352 }
3353 
3354 static int qemu_rdma_accept(RDMAContext *rdma)
3355 {
3356     RDMACapabilities cap;
3357     struct rdma_conn_param conn_param = {
3358                                             .responder_resources = 2,
3359                                             .private_data = &cap,
3360                                             .private_data_len = sizeof(cap),
3361                                          };
3362     RDMAContext *rdma_return_path = NULL;
3363     struct rdma_cm_event *cm_event;
3364     struct ibv_context *verbs;
3365     int ret = -EINVAL;
3366     int idx;
3367 
3368     ret = rdma_get_cm_event(rdma->channel, &cm_event);
3369     if (ret) {
3370         goto err_rdma_dest_wait;
3371     }
3372 
3373     if (cm_event->event != RDMA_CM_EVENT_CONNECT_REQUEST) {
3374         rdma_ack_cm_event(cm_event);
3375         goto err_rdma_dest_wait;
3376     }
3377 
3378     /*
3379      * initialize the RDMAContext for return path for postcopy after first
3380      * connection request reached.
3381      */
3382     if ((migrate_postcopy() || migrate_return_path())
3383         && !rdma->is_return_path) {
3384         rdma_return_path = qemu_rdma_data_init(rdma->host_port, NULL);
3385         if (rdma_return_path == NULL) {
3386             rdma_ack_cm_event(cm_event);
3387             goto err_rdma_dest_wait;
3388         }
3389 
3390         qemu_rdma_return_path_dest_init(rdma_return_path, rdma);
3391     }
3392 
3393     memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap));
3394 
3395     network_to_caps(&cap);
3396 
3397     if (cap.version < 1 || cap.version > RDMA_CONTROL_VERSION_CURRENT) {
3398             error_report("Unknown source RDMA version: %d, bailing...",
3399                             cap.version);
3400             rdma_ack_cm_event(cm_event);
3401             goto err_rdma_dest_wait;
3402     }
3403 
3404     /*
3405      * Respond with only the capabilities this version of QEMU knows about.
3406      */
3407     cap.flags &= known_capabilities;
3408 
3409     /*
3410      * Enable the ones that we do know about.
3411      * Add other checks here as new ones are introduced.
3412      */
3413     if (cap.flags & RDMA_CAPABILITY_PIN_ALL) {
3414         rdma->pin_all = true;
3415     }
3416 
3417     rdma->cm_id = cm_event->id;
3418     verbs = cm_event->id->verbs;
3419 
3420     rdma_ack_cm_event(cm_event);
3421 
3422     trace_qemu_rdma_accept_pin_state(rdma->pin_all);
3423 
3424     caps_to_network(&cap);
3425 
3426     trace_qemu_rdma_accept_pin_verbsc(verbs);
3427 
3428     if (!rdma->verbs) {
3429         rdma->verbs = verbs;
3430     } else if (rdma->verbs != verbs) {
3431             error_report("ibv context not matching %p, %p!", rdma->verbs,
3432                          verbs);
3433             goto err_rdma_dest_wait;
3434     }
3435 
3436     qemu_rdma_dump_id("dest_init", verbs);
3437 
3438     ret = qemu_rdma_alloc_pd_cq(rdma);
3439     if (ret) {
3440         error_report("rdma migration: error allocating pd and cq!");
3441         goto err_rdma_dest_wait;
3442     }
3443 
3444     ret = qemu_rdma_alloc_qp(rdma);
3445     if (ret) {
3446         error_report("rdma migration: error allocating qp!");
3447         goto err_rdma_dest_wait;
3448     }
3449 
3450     ret = qemu_rdma_init_ram_blocks(rdma);
3451     if (ret) {
3452         error_report("rdma migration: error initializing ram blocks!");
3453         goto err_rdma_dest_wait;
3454     }
3455 
3456     for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
3457         ret = qemu_rdma_reg_control(rdma, idx);
3458         if (ret) {
3459             error_report("rdma: error registering %d control", idx);
3460             goto err_rdma_dest_wait;
3461         }
3462     }
3463 
3464     /* Accept the second connection request for return path */
3465     if ((migrate_postcopy() || migrate_return_path())
3466         && !rdma->is_return_path) {
3467         qemu_set_fd_handler(rdma->channel->fd, rdma_accept_incoming_migration,
3468                             NULL,
3469                             (void *)(intptr_t)rdma->return_path);
3470     } else {
3471         qemu_set_fd_handler(rdma->channel->fd, rdma_cm_poll_handler,
3472                             NULL, rdma);
3473     }
3474 
3475     ret = rdma_accept(rdma->cm_id, &conn_param);
3476     if (ret) {
3477         error_report("rdma_accept returns %d", ret);
3478         goto err_rdma_dest_wait;
3479     }
3480 
3481     ret = rdma_get_cm_event(rdma->channel, &cm_event);
3482     if (ret) {
3483         error_report("rdma_accept get_cm_event failed %d", ret);
3484         goto err_rdma_dest_wait;
3485     }
3486 
3487     if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) {
3488         error_report("rdma_accept not event established");
3489         rdma_ack_cm_event(cm_event);
3490         goto err_rdma_dest_wait;
3491     }
3492 
3493     rdma_ack_cm_event(cm_event);
3494     rdma->connected = true;
3495 
3496     ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
3497     if (ret) {
3498         error_report("rdma migration: error posting second control recv");
3499         goto err_rdma_dest_wait;
3500     }
3501 
3502     qemu_rdma_dump_gid("dest_connect", rdma->cm_id);
3503 
3504     return 0;
3505 
3506 err_rdma_dest_wait:
3507     rdma->error_state = ret;
3508     qemu_rdma_cleanup(rdma);
3509     g_free(rdma_return_path);
3510     return ret;
3511 }
3512 
3513 static int dest_ram_sort_func(const void *a, const void *b)
3514 {
3515     unsigned int a_index = ((const RDMALocalBlock *)a)->src_index;
3516     unsigned int b_index = ((const RDMALocalBlock *)b)->src_index;
3517 
3518     return (a_index < b_index) ? -1 : (a_index != b_index);
3519 }
3520 
3521 /*
3522  * During each iteration of the migration, we listen for instructions
3523  * by the source VM to perform dynamic page registrations before they
3524  * can perform RDMA operations.
3525  *
3526  * We respond with the 'rkey'.
3527  *
3528  * Keep doing this until the source tells us to stop.
3529  */
3530 static int qemu_rdma_registration_handle(QEMUFile *f)
3531 {
3532     RDMAControlHeader reg_resp = { .len = sizeof(RDMARegisterResult),
3533                                .type = RDMA_CONTROL_REGISTER_RESULT,
3534                                .repeat = 0,
3535                              };
3536     RDMAControlHeader unreg_resp = { .len = 0,
3537                                .type = RDMA_CONTROL_UNREGISTER_FINISHED,
3538                                .repeat = 0,
3539                              };
3540     RDMAControlHeader blocks = { .type = RDMA_CONTROL_RAM_BLOCKS_RESULT,
3541                                  .repeat = 1 };
3542     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(qemu_file_get_ioc(f));
3543     RDMAContext *rdma;
3544     RDMALocalBlocks *local;
3545     RDMAControlHeader head;
3546     RDMARegister *reg, *registers;
3547     RDMACompress *comp;
3548     RDMARegisterResult *reg_result;
3549     static RDMARegisterResult results[RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE];
3550     RDMALocalBlock *block;
3551     void *host_addr;
3552     int ret = 0;
3553     int idx = 0;
3554     int count = 0;
3555     int i = 0;
3556 
3557     RCU_READ_LOCK_GUARD();
3558     rdma = qatomic_rcu_read(&rioc->rdmain);
3559 
3560     if (!rdma) {
3561         return -EIO;
3562     }
3563 
3564     CHECK_ERROR_STATE();
3565 
3566     local = &rdma->local_ram_blocks;
3567     do {
3568         trace_qemu_rdma_registration_handle_wait();
3569 
3570         ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_NONE);
3571 
3572         if (ret < 0) {
3573             break;
3574         }
3575 
3576         if (head.repeat > RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE) {
3577             error_report("rdma: Too many requests in this message (%d)."
3578                             "Bailing.", head.repeat);
3579             ret = -EIO;
3580             break;
3581         }
3582 
3583         switch (head.type) {
3584         case RDMA_CONTROL_COMPRESS:
3585             comp = (RDMACompress *) rdma->wr_data[idx].control_curr;
3586             network_to_compress(comp);
3587 
3588             trace_qemu_rdma_registration_handle_compress(comp->length,
3589                                                          comp->block_idx,
3590                                                          comp->offset);
3591             if (comp->block_idx >= rdma->local_ram_blocks.nb_blocks) {
3592                 error_report("rdma: 'compress' bad block index %u (vs %d)",
3593                              (unsigned int)comp->block_idx,
3594                              rdma->local_ram_blocks.nb_blocks);
3595                 ret = -EIO;
3596                 goto out;
3597             }
3598             block = &(rdma->local_ram_blocks.block[comp->block_idx]);
3599 
3600             host_addr = block->local_host_addr +
3601                             (comp->offset - block->offset);
3602 
3603             ram_handle_compressed(host_addr, comp->value, comp->length);
3604             break;
3605 
3606         case RDMA_CONTROL_REGISTER_FINISHED:
3607             trace_qemu_rdma_registration_handle_finished();
3608             goto out;
3609 
3610         case RDMA_CONTROL_RAM_BLOCKS_REQUEST:
3611             trace_qemu_rdma_registration_handle_ram_blocks();
3612 
3613             /* Sort our local RAM Block list so it's the same as the source,
3614              * we can do this since we've filled in a src_index in the list
3615              * as we received the RAMBlock list earlier.
3616              */
3617             qsort(rdma->local_ram_blocks.block,
3618                   rdma->local_ram_blocks.nb_blocks,
3619                   sizeof(RDMALocalBlock), dest_ram_sort_func);
3620             for (i = 0; i < local->nb_blocks; i++) {
3621                 local->block[i].index = i;
3622             }
3623 
3624             if (rdma->pin_all) {
3625                 ret = qemu_rdma_reg_whole_ram_blocks(rdma);
3626                 if (ret) {
3627                     error_report("rdma migration: error dest "
3628                                     "registering ram blocks");
3629                     goto out;
3630                 }
3631             }
3632 
3633             /*
3634              * Dest uses this to prepare to transmit the RAMBlock descriptions
3635              * to the source VM after connection setup.
3636              * Both sides use the "remote" structure to communicate and update
3637              * their "local" descriptions with what was sent.
3638              */
3639             for (i = 0; i < local->nb_blocks; i++) {
3640                 rdma->dest_blocks[i].remote_host_addr =
3641                     (uintptr_t)(local->block[i].local_host_addr);
3642 
3643                 if (rdma->pin_all) {
3644                     rdma->dest_blocks[i].remote_rkey = local->block[i].mr->rkey;
3645                 }
3646 
3647                 rdma->dest_blocks[i].offset = local->block[i].offset;
3648                 rdma->dest_blocks[i].length = local->block[i].length;
3649 
3650                 dest_block_to_network(&rdma->dest_blocks[i]);
3651                 trace_qemu_rdma_registration_handle_ram_blocks_loop(
3652                     local->block[i].block_name,
3653                     local->block[i].offset,
3654                     local->block[i].length,
3655                     local->block[i].local_host_addr,
3656                     local->block[i].src_index);
3657             }
3658 
3659             blocks.len = rdma->local_ram_blocks.nb_blocks
3660                                                 * sizeof(RDMADestBlock);
3661 
3662 
3663             ret = qemu_rdma_post_send_control(rdma,
3664                                         (uint8_t *) rdma->dest_blocks, &blocks);
3665 
3666             if (ret < 0) {
3667                 error_report("rdma migration: error sending remote info");
3668                 goto out;
3669             }
3670 
3671             break;
3672         case RDMA_CONTROL_REGISTER_REQUEST:
3673             trace_qemu_rdma_registration_handle_register(head.repeat);
3674 
3675             reg_resp.repeat = head.repeat;
3676             registers = (RDMARegister *) rdma->wr_data[idx].control_curr;
3677 
3678             for (count = 0; count < head.repeat; count++) {
3679                 uint64_t chunk;
3680                 uint8_t *chunk_start, *chunk_end;
3681 
3682                 reg = &registers[count];
3683                 network_to_register(reg);
3684 
3685                 reg_result = &results[count];
3686 
3687                 trace_qemu_rdma_registration_handle_register_loop(count,
3688                          reg->current_index, reg->key.current_addr, reg->chunks);
3689 
3690                 if (reg->current_index >= rdma->local_ram_blocks.nb_blocks) {
3691                     error_report("rdma: 'register' bad block index %u (vs %d)",
3692                                  (unsigned int)reg->current_index,
3693                                  rdma->local_ram_blocks.nb_blocks);
3694                     ret = -ENOENT;
3695                     goto out;
3696                 }
3697                 block = &(rdma->local_ram_blocks.block[reg->current_index]);
3698                 if (block->is_ram_block) {
3699                     if (block->offset > reg->key.current_addr) {
3700                         error_report("rdma: bad register address for block %s"
3701                             " offset: %" PRIx64 " current_addr: %" PRIx64,
3702                             block->block_name, block->offset,
3703                             reg->key.current_addr);
3704                         ret = -ERANGE;
3705                         goto out;
3706                     }
3707                     host_addr = (block->local_host_addr +
3708                                 (reg->key.current_addr - block->offset));
3709                     chunk = ram_chunk_index(block->local_host_addr,
3710                                             (uint8_t *) host_addr);
3711                 } else {
3712                     chunk = reg->key.chunk;
3713                     host_addr = block->local_host_addr +
3714                         (reg->key.chunk * (1UL << RDMA_REG_CHUNK_SHIFT));
3715                     /* Check for particularly bad chunk value */
3716                     if (host_addr < (void *)block->local_host_addr) {
3717                         error_report("rdma: bad chunk for block %s"
3718                             " chunk: %" PRIx64,
3719                             block->block_name, reg->key.chunk);
3720                         ret = -ERANGE;
3721                         goto out;
3722                     }
3723                 }
3724                 chunk_start = ram_chunk_start(block, chunk);
3725                 chunk_end = ram_chunk_end(block, chunk + reg->chunks);
3726                 /* avoid "-Waddress-of-packed-member" warning */
3727                 uint32_t tmp_rkey = 0;
3728                 if (qemu_rdma_register_and_get_keys(rdma, block,
3729                             (uintptr_t)host_addr, NULL, &tmp_rkey,
3730                             chunk, chunk_start, chunk_end)) {
3731                     error_report("cannot get rkey");
3732                     ret = -EINVAL;
3733                     goto out;
3734                 }
3735                 reg_result->rkey = tmp_rkey;
3736 
3737                 reg_result->host_addr = (uintptr_t)block->local_host_addr;
3738 
3739                 trace_qemu_rdma_registration_handle_register_rkey(
3740                                                            reg_result->rkey);
3741 
3742                 result_to_network(reg_result);
3743             }
3744 
3745             ret = qemu_rdma_post_send_control(rdma,
3746                             (uint8_t *) results, &reg_resp);
3747 
3748             if (ret < 0) {
3749                 error_report("Failed to send control buffer");
3750                 goto out;
3751             }
3752             break;
3753         case RDMA_CONTROL_UNREGISTER_REQUEST:
3754             trace_qemu_rdma_registration_handle_unregister(head.repeat);
3755             unreg_resp.repeat = head.repeat;
3756             registers = (RDMARegister *) rdma->wr_data[idx].control_curr;
3757 
3758             for (count = 0; count < head.repeat; count++) {
3759                 reg = &registers[count];
3760                 network_to_register(reg);
3761 
3762                 trace_qemu_rdma_registration_handle_unregister_loop(count,
3763                            reg->current_index, reg->key.chunk);
3764 
3765                 block = &(rdma->local_ram_blocks.block[reg->current_index]);
3766 
3767                 ret = ibv_dereg_mr(block->pmr[reg->key.chunk]);
3768                 block->pmr[reg->key.chunk] = NULL;
3769 
3770                 if (ret != 0) {
3771                     perror("rdma unregistration chunk failed");
3772                     ret = -ret;
3773                     goto out;
3774                 }
3775 
3776                 rdma->total_registrations--;
3777 
3778                 trace_qemu_rdma_registration_handle_unregister_success(
3779                                                        reg->key.chunk);
3780             }
3781 
3782             ret = qemu_rdma_post_send_control(rdma, NULL, &unreg_resp);
3783 
3784             if (ret < 0) {
3785                 error_report("Failed to send control buffer");
3786                 goto out;
3787             }
3788             break;
3789         case RDMA_CONTROL_REGISTER_RESULT:
3790             error_report("Invalid RESULT message at dest.");
3791             ret = -EIO;
3792             goto out;
3793         default:
3794             error_report("Unknown control message %s", control_desc(head.type));
3795             ret = -EIO;
3796             goto out;
3797         }
3798     } while (1);
3799 out:
3800     if (ret < 0) {
3801         rdma->error_state = ret;
3802     }
3803     return ret;
3804 }
3805 
3806 /* Destination:
3807  * Called via a ram_control_load_hook during the initial RAM load section which
3808  * lists the RAMBlocks by name.  This lets us know the order of the RAMBlocks
3809  * on the source.
3810  * We've already built our local RAMBlock list, but not yet sent the list to
3811  * the source.
3812  */
3813 static int
3814 rdma_block_notification_handle(QEMUFile *f, const char *name)
3815 {
3816     RDMAContext *rdma;
3817     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(qemu_file_get_ioc(f));
3818     int curr;
3819     int found = -1;
3820 
3821     RCU_READ_LOCK_GUARD();
3822     rdma = qatomic_rcu_read(&rioc->rdmain);
3823 
3824     if (!rdma) {
3825         return -EIO;
3826     }
3827 
3828     /* Find the matching RAMBlock in our local list */
3829     for (curr = 0; curr < rdma->local_ram_blocks.nb_blocks; curr++) {
3830         if (!strcmp(rdma->local_ram_blocks.block[curr].block_name, name)) {
3831             found = curr;
3832             break;
3833         }
3834     }
3835 
3836     if (found == -1) {
3837         error_report("RAMBlock '%s' not found on destination", name);
3838         return -ENOENT;
3839     }
3840 
3841     rdma->local_ram_blocks.block[curr].src_index = rdma->next_src_index;
3842     trace_rdma_block_notification_handle(name, rdma->next_src_index);
3843     rdma->next_src_index++;
3844 
3845     return 0;
3846 }
3847 
3848 static int rdma_load_hook(QEMUFile *f, uint64_t flags, void *data)
3849 {
3850     switch (flags) {
3851     case RAM_CONTROL_BLOCK_REG:
3852         return rdma_block_notification_handle(f, data);
3853 
3854     case RAM_CONTROL_HOOK:
3855         return qemu_rdma_registration_handle(f);
3856 
3857     default:
3858         /* Shouldn't be called with any other values */
3859         abort();
3860     }
3861 }
3862 
3863 static int qemu_rdma_registration_start(QEMUFile *f,
3864                                         uint64_t flags, void *data)
3865 {
3866     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(qemu_file_get_ioc(f));
3867     RDMAContext *rdma;
3868 
3869     if (migration_in_postcopy()) {
3870         return 0;
3871     }
3872 
3873     RCU_READ_LOCK_GUARD();
3874     rdma = qatomic_rcu_read(&rioc->rdmaout);
3875     if (!rdma) {
3876         return -EIO;
3877     }
3878 
3879     CHECK_ERROR_STATE();
3880 
3881     trace_qemu_rdma_registration_start(flags);
3882     qemu_put_be64(f, RAM_SAVE_FLAG_HOOK);
3883     qemu_fflush(f);
3884 
3885     return 0;
3886 }
3887 
3888 /*
3889  * Inform dest that dynamic registrations are done for now.
3890  * First, flush writes, if any.
3891  */
3892 static int qemu_rdma_registration_stop(QEMUFile *f,
3893                                        uint64_t flags, void *data)
3894 {
3895     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(qemu_file_get_ioc(f));
3896     RDMAContext *rdma;
3897     RDMAControlHeader head = { .len = 0, .repeat = 1 };
3898     int ret = 0;
3899 
3900     if (migration_in_postcopy()) {
3901         return 0;
3902     }
3903 
3904     RCU_READ_LOCK_GUARD();
3905     rdma = qatomic_rcu_read(&rioc->rdmaout);
3906     if (!rdma) {
3907         return -EIO;
3908     }
3909 
3910     CHECK_ERROR_STATE();
3911 
3912     qemu_fflush(f);
3913     ret = qemu_rdma_drain_cq(f, rdma);
3914 
3915     if (ret < 0) {
3916         goto err;
3917     }
3918 
3919     if (flags == RAM_CONTROL_SETUP) {
3920         RDMAControlHeader resp = {.type = RDMA_CONTROL_RAM_BLOCKS_RESULT };
3921         RDMALocalBlocks *local = &rdma->local_ram_blocks;
3922         int reg_result_idx, i, nb_dest_blocks;
3923 
3924         head.type = RDMA_CONTROL_RAM_BLOCKS_REQUEST;
3925         trace_qemu_rdma_registration_stop_ram();
3926 
3927         /*
3928          * Make sure that we parallelize the pinning on both sides.
3929          * For very large guests, doing this serially takes a really
3930          * long time, so we have to 'interleave' the pinning locally
3931          * with the control messages by performing the pinning on this
3932          * side before we receive the control response from the other
3933          * side that the pinning has completed.
3934          */
3935         ret = qemu_rdma_exchange_send(rdma, &head, NULL, &resp,
3936                     &reg_result_idx, rdma->pin_all ?
3937                     qemu_rdma_reg_whole_ram_blocks : NULL);
3938         if (ret < 0) {
3939             fprintf(stderr, "receiving remote info!");
3940             return ret;
3941         }
3942 
3943         nb_dest_blocks = resp.len / sizeof(RDMADestBlock);
3944 
3945         /*
3946          * The protocol uses two different sets of rkeys (mutually exclusive):
3947          * 1. One key to represent the virtual address of the entire ram block.
3948          *    (dynamic chunk registration disabled - pin everything with one rkey.)
3949          * 2. One to represent individual chunks within a ram block.
3950          *    (dynamic chunk registration enabled - pin individual chunks.)
3951          *
3952          * Once the capability is successfully negotiated, the destination transmits
3953          * the keys to use (or sends them later) including the virtual addresses
3954          * and then propagates the remote ram block descriptions to his local copy.
3955          */
3956 
3957         if (local->nb_blocks != nb_dest_blocks) {
3958             fprintf(stderr, "ram blocks mismatch (Number of blocks %d vs %d) "
3959                     "Your QEMU command line parameters are probably "
3960                     "not identical on both the source and destination.",
3961                     local->nb_blocks, nb_dest_blocks);
3962             rdma->error_state = -EINVAL;
3963             return -EINVAL;
3964         }
3965 
3966         qemu_rdma_move_header(rdma, reg_result_idx, &resp);
3967         memcpy(rdma->dest_blocks,
3968             rdma->wr_data[reg_result_idx].control_curr, resp.len);
3969         for (i = 0; i < nb_dest_blocks; i++) {
3970             network_to_dest_block(&rdma->dest_blocks[i]);
3971 
3972             /* We require that the blocks are in the same order */
3973             if (rdma->dest_blocks[i].length != local->block[i].length) {
3974                 fprintf(stderr, "Block %s/%d has a different length %" PRIu64
3975                         "vs %" PRIu64, local->block[i].block_name, i,
3976                         local->block[i].length,
3977                         rdma->dest_blocks[i].length);
3978                 rdma->error_state = -EINVAL;
3979                 return -EINVAL;
3980             }
3981             local->block[i].remote_host_addr =
3982                     rdma->dest_blocks[i].remote_host_addr;
3983             local->block[i].remote_rkey = rdma->dest_blocks[i].remote_rkey;
3984         }
3985     }
3986 
3987     trace_qemu_rdma_registration_stop(flags);
3988 
3989     head.type = RDMA_CONTROL_REGISTER_FINISHED;
3990     ret = qemu_rdma_exchange_send(rdma, &head, NULL, NULL, NULL, NULL);
3991 
3992     if (ret < 0) {
3993         goto err;
3994     }
3995 
3996     return 0;
3997 err:
3998     rdma->error_state = ret;
3999     return ret;
4000 }
4001 
4002 static const QEMUFileHooks rdma_read_hooks = {
4003     .hook_ram_load = rdma_load_hook,
4004 };
4005 
4006 static const QEMUFileHooks rdma_write_hooks = {
4007     .before_ram_iterate = qemu_rdma_registration_start,
4008     .after_ram_iterate  = qemu_rdma_registration_stop,
4009     .save_page          = qemu_rdma_save_page,
4010 };
4011 
4012 
4013 static void qio_channel_rdma_finalize(Object *obj)
4014 {
4015     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(obj);
4016     if (rioc->rdmain) {
4017         qemu_rdma_cleanup(rioc->rdmain);
4018         g_free(rioc->rdmain);
4019         rioc->rdmain = NULL;
4020     }
4021     if (rioc->rdmaout) {
4022         qemu_rdma_cleanup(rioc->rdmaout);
4023         g_free(rioc->rdmaout);
4024         rioc->rdmaout = NULL;
4025     }
4026 }
4027 
4028 static void qio_channel_rdma_class_init(ObjectClass *klass,
4029                                         void *class_data G_GNUC_UNUSED)
4030 {
4031     QIOChannelClass *ioc_klass = QIO_CHANNEL_CLASS(klass);
4032 
4033     ioc_klass->io_writev = qio_channel_rdma_writev;
4034     ioc_klass->io_readv = qio_channel_rdma_readv;
4035     ioc_klass->io_set_blocking = qio_channel_rdma_set_blocking;
4036     ioc_klass->io_close = qio_channel_rdma_close;
4037     ioc_klass->io_create_watch = qio_channel_rdma_create_watch;
4038     ioc_klass->io_set_aio_fd_handler = qio_channel_rdma_set_aio_fd_handler;
4039     ioc_klass->io_shutdown = qio_channel_rdma_shutdown;
4040 }
4041 
4042 static const TypeInfo qio_channel_rdma_info = {
4043     .parent = TYPE_QIO_CHANNEL,
4044     .name = TYPE_QIO_CHANNEL_RDMA,
4045     .instance_size = sizeof(QIOChannelRDMA),
4046     .instance_finalize = qio_channel_rdma_finalize,
4047     .class_init = qio_channel_rdma_class_init,
4048 };
4049 
4050 static void qio_channel_rdma_register_types(void)
4051 {
4052     type_register_static(&qio_channel_rdma_info);
4053 }
4054 
4055 type_init(qio_channel_rdma_register_types);
4056 
4057 static QEMUFile *rdma_new_input(RDMAContext *rdma)
4058 {
4059     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(object_new(TYPE_QIO_CHANNEL_RDMA));
4060 
4061     rioc->file = qemu_file_new_input(QIO_CHANNEL(rioc));
4062     rioc->rdmain = rdma;
4063     rioc->rdmaout = rdma->return_path;
4064     qemu_file_set_hooks(rioc->file, &rdma_read_hooks);
4065 
4066     return rioc->file;
4067 }
4068 
4069 static QEMUFile *rdma_new_output(RDMAContext *rdma)
4070 {
4071     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(object_new(TYPE_QIO_CHANNEL_RDMA));
4072 
4073     rioc->file = qemu_file_new_output(QIO_CHANNEL(rioc));
4074     rioc->rdmaout = rdma;
4075     rioc->rdmain = rdma->return_path;
4076     qemu_file_set_hooks(rioc->file, &rdma_write_hooks);
4077 
4078     return rioc->file;
4079 }
4080 
4081 static void rdma_accept_incoming_migration(void *opaque)
4082 {
4083     RDMAContext *rdma = opaque;
4084     int ret;
4085     QEMUFile *f;
4086     Error *local_err = NULL;
4087 
4088     trace_qemu_rdma_accept_incoming_migration();
4089     ret = qemu_rdma_accept(rdma);
4090 
4091     if (ret) {
4092         fprintf(stderr, "RDMA ERROR: Migration initialization failed\n");
4093         return;
4094     }
4095 
4096     trace_qemu_rdma_accept_incoming_migration_accepted();
4097 
4098     if (rdma->is_return_path) {
4099         return;
4100     }
4101 
4102     f = rdma_new_input(rdma);
4103     if (f == NULL) {
4104         fprintf(stderr, "RDMA ERROR: could not open RDMA for input\n");
4105         qemu_rdma_cleanup(rdma);
4106         return;
4107     }
4108 
4109     rdma->migration_started_on_destination = 1;
4110     migration_fd_process_incoming(f, &local_err);
4111     if (local_err) {
4112         error_reportf_err(local_err, "RDMA ERROR:");
4113     }
4114 }
4115 
4116 void rdma_start_incoming_migration(const char *host_port, Error **errp)
4117 {
4118     int ret;
4119     RDMAContext *rdma;
4120     Error *local_err = NULL;
4121 
4122     trace_rdma_start_incoming_migration();
4123 
4124     /* Avoid ram_block_discard_disable(), cannot change during migration. */
4125     if (ram_block_discard_is_required()) {
4126         error_setg(errp, "RDMA: cannot disable RAM discard");
4127         return;
4128     }
4129 
4130     rdma = qemu_rdma_data_init(host_port, &local_err);
4131     if (rdma == NULL) {
4132         goto err;
4133     }
4134 
4135     ret = qemu_rdma_dest_init(rdma, &local_err);
4136 
4137     if (ret) {
4138         goto err;
4139     }
4140 
4141     trace_rdma_start_incoming_migration_after_dest_init();
4142 
4143     ret = rdma_listen(rdma->listen_id, 5);
4144 
4145     if (ret) {
4146         ERROR(errp, "listening on socket!");
4147         goto cleanup_rdma;
4148     }
4149 
4150     trace_rdma_start_incoming_migration_after_rdma_listen();
4151 
4152     qemu_set_fd_handler(rdma->channel->fd, rdma_accept_incoming_migration,
4153                         NULL, (void *)(intptr_t)rdma);
4154     return;
4155 
4156 cleanup_rdma:
4157     qemu_rdma_cleanup(rdma);
4158 err:
4159     error_propagate(errp, local_err);
4160     if (rdma) {
4161         g_free(rdma->host);
4162         g_free(rdma->host_port);
4163     }
4164     g_free(rdma);
4165 }
4166 
4167 void rdma_start_outgoing_migration(void *opaque,
4168                             const char *host_port, Error **errp)
4169 {
4170     MigrationState *s = opaque;
4171     RDMAContext *rdma_return_path = NULL;
4172     RDMAContext *rdma;
4173     int ret = 0;
4174 
4175     /* Avoid ram_block_discard_disable(), cannot change during migration. */
4176     if (ram_block_discard_is_required()) {
4177         error_setg(errp, "RDMA: cannot disable RAM discard");
4178         return;
4179     }
4180 
4181     rdma = qemu_rdma_data_init(host_port, errp);
4182     if (rdma == NULL) {
4183         goto err;
4184     }
4185 
4186     ret = qemu_rdma_source_init(rdma, migrate_rdma_pin_all(), errp);
4187 
4188     if (ret) {
4189         goto err;
4190     }
4191 
4192     trace_rdma_start_outgoing_migration_after_rdma_source_init();
4193     ret = qemu_rdma_connect(rdma, errp, false);
4194 
4195     if (ret) {
4196         goto err;
4197     }
4198 
4199     /* RDMA postcopy need a separate queue pair for return path */
4200     if (migrate_postcopy() || migrate_return_path()) {
4201         rdma_return_path = qemu_rdma_data_init(host_port, errp);
4202 
4203         if (rdma_return_path == NULL) {
4204             goto return_path_err;
4205         }
4206 
4207         ret = qemu_rdma_source_init(rdma_return_path,
4208                                     migrate_rdma_pin_all(), errp);
4209 
4210         if (ret) {
4211             goto return_path_err;
4212         }
4213 
4214         ret = qemu_rdma_connect(rdma_return_path, errp, true);
4215 
4216         if (ret) {
4217             goto return_path_err;
4218         }
4219 
4220         rdma->return_path = rdma_return_path;
4221         rdma_return_path->return_path = rdma;
4222         rdma_return_path->is_return_path = true;
4223     }
4224 
4225     trace_rdma_start_outgoing_migration_after_rdma_connect();
4226 
4227     s->to_dst_file = rdma_new_output(rdma);
4228     migrate_fd_connect(s, NULL);
4229     return;
4230 return_path_err:
4231     qemu_rdma_cleanup(rdma);
4232 err:
4233     g_free(rdma);
4234     g_free(rdma_return_path);
4235 }
4236