1 /* 2 * RDMA protocol and interfaces 3 * 4 * Copyright IBM, Corp. 2010-2013 5 * Copyright Red Hat, Inc. 2015-2016 6 * 7 * Authors: 8 * Michael R. Hines <mrhines@us.ibm.com> 9 * Jiuxing Liu <jl@us.ibm.com> 10 * Daniel P. Berrange <berrange@redhat.com> 11 * 12 * This work is licensed under the terms of the GNU GPL, version 2 or 13 * later. See the COPYING file in the top-level directory. 14 * 15 */ 16 17 #include "qemu/osdep.h" 18 #include "qapi/error.h" 19 #include "qemu/cutils.h" 20 #include "exec/target_page.h" 21 #include "rdma.h" 22 #include "migration.h" 23 #include "migration-stats.h" 24 #include "qemu-file.h" 25 #include "ram.h" 26 #include "qemu/error-report.h" 27 #include "qemu/main-loop.h" 28 #include "qemu/module.h" 29 #include "qemu/rcu.h" 30 #include "qemu/sockets.h" 31 #include "qemu/bitmap.h" 32 #include "qemu/coroutine.h" 33 #include "exec/memory.h" 34 #include <sys/socket.h> 35 #include <netdb.h> 36 #include <arpa/inet.h> 37 #include <rdma/rdma_cma.h> 38 #include "trace.h" 39 #include "qom/object.h" 40 #include "options.h" 41 #include <poll.h> 42 43 /* 44 * Print and error on both the Monitor and the Log file. 45 */ 46 #define ERROR(errp, fmt, ...) \ 47 do { \ 48 fprintf(stderr, "RDMA ERROR: " fmt "\n", ## __VA_ARGS__); \ 49 if (errp && (*(errp) == NULL)) { \ 50 error_setg(errp, "RDMA ERROR: " fmt, ## __VA_ARGS__); \ 51 } \ 52 } while (0) 53 54 #define RDMA_RESOLVE_TIMEOUT_MS 10000 55 56 /* Do not merge data if larger than this. */ 57 #define RDMA_MERGE_MAX (2 * 1024 * 1024) 58 #define RDMA_SIGNALED_SEND_MAX (RDMA_MERGE_MAX / 4096) 59 60 #define RDMA_REG_CHUNK_SHIFT 20 /* 1 MB */ 61 62 /* 63 * This is only for non-live state being migrated. 64 * Instead of RDMA_WRITE messages, we use RDMA_SEND 65 * messages for that state, which requires a different 66 * delivery design than main memory. 67 */ 68 #define RDMA_SEND_INCREMENT 32768 69 70 /* 71 * Maximum size infiniband SEND message 72 */ 73 #define RDMA_CONTROL_MAX_BUFFER (512 * 1024) 74 #define RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE 4096 75 76 #define RDMA_CONTROL_VERSION_CURRENT 1 77 /* 78 * Capabilities for negotiation. 79 */ 80 #define RDMA_CAPABILITY_PIN_ALL 0x01 81 82 /* 83 * Add the other flags above to this list of known capabilities 84 * as they are introduced. 85 */ 86 static uint32_t known_capabilities = RDMA_CAPABILITY_PIN_ALL; 87 88 #define CHECK_ERROR_STATE() \ 89 do { \ 90 if (rdma->error_state) { \ 91 if (!rdma->error_reported) { \ 92 error_report("RDMA is in an error state waiting migration" \ 93 " to abort!"); \ 94 rdma->error_reported = 1; \ 95 } \ 96 return rdma->error_state; \ 97 } \ 98 } while (0) 99 100 /* 101 * A work request ID is 64-bits and we split up these bits 102 * into 3 parts: 103 * 104 * bits 0-15 : type of control message, 2^16 105 * bits 16-29: ram block index, 2^14 106 * bits 30-63: ram block chunk number, 2^34 107 * 108 * The last two bit ranges are only used for RDMA writes, 109 * in order to track their completion and potentially 110 * also track unregistration status of the message. 111 */ 112 #define RDMA_WRID_TYPE_SHIFT 0UL 113 #define RDMA_WRID_BLOCK_SHIFT 16UL 114 #define RDMA_WRID_CHUNK_SHIFT 30UL 115 116 #define RDMA_WRID_TYPE_MASK \ 117 ((1UL << RDMA_WRID_BLOCK_SHIFT) - 1UL) 118 119 #define RDMA_WRID_BLOCK_MASK \ 120 (~RDMA_WRID_TYPE_MASK & ((1UL << RDMA_WRID_CHUNK_SHIFT) - 1UL)) 121 122 #define RDMA_WRID_CHUNK_MASK (~RDMA_WRID_BLOCK_MASK & ~RDMA_WRID_TYPE_MASK) 123 124 /* 125 * RDMA migration protocol: 126 * 1. RDMA Writes (data messages, i.e. RAM) 127 * 2. IB Send/Recv (control channel messages) 128 */ 129 enum { 130 RDMA_WRID_NONE = 0, 131 RDMA_WRID_RDMA_WRITE = 1, 132 RDMA_WRID_SEND_CONTROL = 2000, 133 RDMA_WRID_RECV_CONTROL = 4000, 134 }; 135 136 static const char *wrid_desc[] = { 137 [RDMA_WRID_NONE] = "NONE", 138 [RDMA_WRID_RDMA_WRITE] = "WRITE RDMA", 139 [RDMA_WRID_SEND_CONTROL] = "CONTROL SEND", 140 [RDMA_WRID_RECV_CONTROL] = "CONTROL RECV", 141 }; 142 143 /* 144 * Work request IDs for IB SEND messages only (not RDMA writes). 145 * This is used by the migration protocol to transmit 146 * control messages (such as device state and registration commands) 147 * 148 * We could use more WRs, but we have enough for now. 149 */ 150 enum { 151 RDMA_WRID_READY = 0, 152 RDMA_WRID_DATA, 153 RDMA_WRID_CONTROL, 154 RDMA_WRID_MAX, 155 }; 156 157 /* 158 * SEND/RECV IB Control Messages. 159 */ 160 enum { 161 RDMA_CONTROL_NONE = 0, 162 RDMA_CONTROL_ERROR, 163 RDMA_CONTROL_READY, /* ready to receive */ 164 RDMA_CONTROL_QEMU_FILE, /* QEMUFile-transmitted bytes */ 165 RDMA_CONTROL_RAM_BLOCKS_REQUEST, /* RAMBlock synchronization */ 166 RDMA_CONTROL_RAM_BLOCKS_RESULT, /* RAMBlock synchronization */ 167 RDMA_CONTROL_COMPRESS, /* page contains repeat values */ 168 RDMA_CONTROL_REGISTER_REQUEST, /* dynamic page registration */ 169 RDMA_CONTROL_REGISTER_RESULT, /* key to use after registration */ 170 RDMA_CONTROL_REGISTER_FINISHED, /* current iteration finished */ 171 RDMA_CONTROL_UNREGISTER_REQUEST, /* dynamic UN-registration */ 172 RDMA_CONTROL_UNREGISTER_FINISHED, /* unpinning finished */ 173 }; 174 175 176 /* 177 * Memory and MR structures used to represent an IB Send/Recv work request. 178 * This is *not* used for RDMA writes, only IB Send/Recv. 179 */ 180 typedef struct { 181 uint8_t control[RDMA_CONTROL_MAX_BUFFER]; /* actual buffer to register */ 182 struct ibv_mr *control_mr; /* registration metadata */ 183 size_t control_len; /* length of the message */ 184 uint8_t *control_curr; /* start of unconsumed bytes */ 185 } RDMAWorkRequestData; 186 187 /* 188 * Negotiate RDMA capabilities during connection-setup time. 189 */ 190 typedef struct { 191 uint32_t version; 192 uint32_t flags; 193 } RDMACapabilities; 194 195 static void caps_to_network(RDMACapabilities *cap) 196 { 197 cap->version = htonl(cap->version); 198 cap->flags = htonl(cap->flags); 199 } 200 201 static void network_to_caps(RDMACapabilities *cap) 202 { 203 cap->version = ntohl(cap->version); 204 cap->flags = ntohl(cap->flags); 205 } 206 207 /* 208 * Representation of a RAMBlock from an RDMA perspective. 209 * This is not transmitted, only local. 210 * This and subsequent structures cannot be linked lists 211 * because we're using a single IB message to transmit 212 * the information. It's small anyway, so a list is overkill. 213 */ 214 typedef struct RDMALocalBlock { 215 char *block_name; 216 uint8_t *local_host_addr; /* local virtual address */ 217 uint64_t remote_host_addr; /* remote virtual address */ 218 uint64_t offset; 219 uint64_t length; 220 struct ibv_mr **pmr; /* MRs for chunk-level registration */ 221 struct ibv_mr *mr; /* MR for non-chunk-level registration */ 222 uint32_t *remote_keys; /* rkeys for chunk-level registration */ 223 uint32_t remote_rkey; /* rkeys for non-chunk-level registration */ 224 int index; /* which block are we */ 225 unsigned int src_index; /* (Only used on dest) */ 226 bool is_ram_block; 227 int nb_chunks; 228 unsigned long *transit_bitmap; 229 unsigned long *unregister_bitmap; 230 } RDMALocalBlock; 231 232 /* 233 * Also represents a RAMblock, but only on the dest. 234 * This gets transmitted by the dest during connection-time 235 * to the source VM and then is used to populate the 236 * corresponding RDMALocalBlock with 237 * the information needed to perform the actual RDMA. 238 */ 239 typedef struct QEMU_PACKED RDMADestBlock { 240 uint64_t remote_host_addr; 241 uint64_t offset; 242 uint64_t length; 243 uint32_t remote_rkey; 244 uint32_t padding; 245 } RDMADestBlock; 246 247 static const char *control_desc(unsigned int rdma_control) 248 { 249 static const char *strs[] = { 250 [RDMA_CONTROL_NONE] = "NONE", 251 [RDMA_CONTROL_ERROR] = "ERROR", 252 [RDMA_CONTROL_READY] = "READY", 253 [RDMA_CONTROL_QEMU_FILE] = "QEMU FILE", 254 [RDMA_CONTROL_RAM_BLOCKS_REQUEST] = "RAM BLOCKS REQUEST", 255 [RDMA_CONTROL_RAM_BLOCKS_RESULT] = "RAM BLOCKS RESULT", 256 [RDMA_CONTROL_COMPRESS] = "COMPRESS", 257 [RDMA_CONTROL_REGISTER_REQUEST] = "REGISTER REQUEST", 258 [RDMA_CONTROL_REGISTER_RESULT] = "REGISTER RESULT", 259 [RDMA_CONTROL_REGISTER_FINISHED] = "REGISTER FINISHED", 260 [RDMA_CONTROL_UNREGISTER_REQUEST] = "UNREGISTER REQUEST", 261 [RDMA_CONTROL_UNREGISTER_FINISHED] = "UNREGISTER FINISHED", 262 }; 263 264 if (rdma_control > RDMA_CONTROL_UNREGISTER_FINISHED) { 265 return "??BAD CONTROL VALUE??"; 266 } 267 268 return strs[rdma_control]; 269 } 270 271 static uint64_t htonll(uint64_t v) 272 { 273 union { uint32_t lv[2]; uint64_t llv; } u; 274 u.lv[0] = htonl(v >> 32); 275 u.lv[1] = htonl(v & 0xFFFFFFFFULL); 276 return u.llv; 277 } 278 279 static uint64_t ntohll(uint64_t v) 280 { 281 union { uint32_t lv[2]; uint64_t llv; } u; 282 u.llv = v; 283 return ((uint64_t)ntohl(u.lv[0]) << 32) | (uint64_t) ntohl(u.lv[1]); 284 } 285 286 static void dest_block_to_network(RDMADestBlock *db) 287 { 288 db->remote_host_addr = htonll(db->remote_host_addr); 289 db->offset = htonll(db->offset); 290 db->length = htonll(db->length); 291 db->remote_rkey = htonl(db->remote_rkey); 292 } 293 294 static void network_to_dest_block(RDMADestBlock *db) 295 { 296 db->remote_host_addr = ntohll(db->remote_host_addr); 297 db->offset = ntohll(db->offset); 298 db->length = ntohll(db->length); 299 db->remote_rkey = ntohl(db->remote_rkey); 300 } 301 302 /* 303 * Virtual address of the above structures used for transmitting 304 * the RAMBlock descriptions at connection-time. 305 * This structure is *not* transmitted. 306 */ 307 typedef struct RDMALocalBlocks { 308 int nb_blocks; 309 bool init; /* main memory init complete */ 310 RDMALocalBlock *block; 311 } RDMALocalBlocks; 312 313 /* 314 * Main data structure for RDMA state. 315 * While there is only one copy of this structure being allocated right now, 316 * this is the place where one would start if you wanted to consider 317 * having more than one RDMA connection open at the same time. 318 */ 319 typedef struct RDMAContext { 320 char *host; 321 int port; 322 char *host_port; 323 324 RDMAWorkRequestData wr_data[RDMA_WRID_MAX]; 325 326 /* 327 * This is used by *_exchange_send() to figure out whether or not 328 * the initial "READY" message has already been received or not. 329 * This is because other functions may potentially poll() and detect 330 * the READY message before send() does, in which case we need to 331 * know if it completed. 332 */ 333 int control_ready_expected; 334 335 /* number of outstanding writes */ 336 int nb_sent; 337 338 /* store info about current buffer so that we can 339 merge it with future sends */ 340 uint64_t current_addr; 341 uint64_t current_length; 342 /* index of ram block the current buffer belongs to */ 343 int current_index; 344 /* index of the chunk in the current ram block */ 345 int current_chunk; 346 347 bool pin_all; 348 349 /* 350 * infiniband-specific variables for opening the device 351 * and maintaining connection state and so forth. 352 * 353 * cm_id also has ibv_context, rdma_event_channel, and ibv_qp in 354 * cm_id->verbs, cm_id->channel, and cm_id->qp. 355 */ 356 struct rdma_cm_id *cm_id; /* connection manager ID */ 357 struct rdma_cm_id *listen_id; 358 bool connected; 359 360 struct ibv_context *verbs; 361 struct rdma_event_channel *channel; 362 struct ibv_qp *qp; /* queue pair */ 363 struct ibv_comp_channel *recv_comp_channel; /* recv completion channel */ 364 struct ibv_comp_channel *send_comp_channel; /* send completion channel */ 365 struct ibv_pd *pd; /* protection domain */ 366 struct ibv_cq *recv_cq; /* recvieve completion queue */ 367 struct ibv_cq *send_cq; /* send completion queue */ 368 369 /* 370 * If a previous write failed (perhaps because of a failed 371 * memory registration, then do not attempt any future work 372 * and remember the error state. 373 */ 374 int error_state; 375 int error_reported; 376 int received_error; 377 378 /* 379 * Description of ram blocks used throughout the code. 380 */ 381 RDMALocalBlocks local_ram_blocks; 382 RDMADestBlock *dest_blocks; 383 384 /* Index of the next RAMBlock received during block registration */ 385 unsigned int next_src_index; 386 387 /* 388 * Migration on *destination* started. 389 * Then use coroutine yield function. 390 * Source runs in a thread, so we don't care. 391 */ 392 int migration_started_on_destination; 393 394 int total_registrations; 395 int total_writes; 396 397 int unregister_current, unregister_next; 398 uint64_t unregistrations[RDMA_SIGNALED_SEND_MAX]; 399 400 GHashTable *blockmap; 401 402 /* the RDMAContext for return path */ 403 struct RDMAContext *return_path; 404 bool is_return_path; 405 } RDMAContext; 406 407 #define TYPE_QIO_CHANNEL_RDMA "qio-channel-rdma" 408 OBJECT_DECLARE_SIMPLE_TYPE(QIOChannelRDMA, QIO_CHANNEL_RDMA) 409 410 411 412 struct QIOChannelRDMA { 413 QIOChannel parent; 414 RDMAContext *rdmain; 415 RDMAContext *rdmaout; 416 QEMUFile *file; 417 bool blocking; /* XXX we don't actually honour this yet */ 418 }; 419 420 /* 421 * Main structure for IB Send/Recv control messages. 422 * This gets prepended at the beginning of every Send/Recv. 423 */ 424 typedef struct QEMU_PACKED { 425 uint32_t len; /* Total length of data portion */ 426 uint32_t type; /* which control command to perform */ 427 uint32_t repeat; /* number of commands in data portion of same type */ 428 uint32_t padding; 429 } RDMAControlHeader; 430 431 static void control_to_network(RDMAControlHeader *control) 432 { 433 control->type = htonl(control->type); 434 control->len = htonl(control->len); 435 control->repeat = htonl(control->repeat); 436 } 437 438 static void network_to_control(RDMAControlHeader *control) 439 { 440 control->type = ntohl(control->type); 441 control->len = ntohl(control->len); 442 control->repeat = ntohl(control->repeat); 443 } 444 445 /* 446 * Register a single Chunk. 447 * Information sent by the source VM to inform the dest 448 * to register an single chunk of memory before we can perform 449 * the actual RDMA operation. 450 */ 451 typedef struct QEMU_PACKED { 452 union QEMU_PACKED { 453 uint64_t current_addr; /* offset into the ram_addr_t space */ 454 uint64_t chunk; /* chunk to lookup if unregistering */ 455 } key; 456 uint32_t current_index; /* which ramblock the chunk belongs to */ 457 uint32_t padding; 458 uint64_t chunks; /* how many sequential chunks to register */ 459 } RDMARegister; 460 461 static void register_to_network(RDMAContext *rdma, RDMARegister *reg) 462 { 463 RDMALocalBlock *local_block; 464 local_block = &rdma->local_ram_blocks.block[reg->current_index]; 465 466 if (local_block->is_ram_block) { 467 /* 468 * current_addr as passed in is an address in the local ram_addr_t 469 * space, we need to translate this for the destination 470 */ 471 reg->key.current_addr -= local_block->offset; 472 reg->key.current_addr += rdma->dest_blocks[reg->current_index].offset; 473 } 474 reg->key.current_addr = htonll(reg->key.current_addr); 475 reg->current_index = htonl(reg->current_index); 476 reg->chunks = htonll(reg->chunks); 477 } 478 479 static void network_to_register(RDMARegister *reg) 480 { 481 reg->key.current_addr = ntohll(reg->key.current_addr); 482 reg->current_index = ntohl(reg->current_index); 483 reg->chunks = ntohll(reg->chunks); 484 } 485 486 typedef struct QEMU_PACKED { 487 uint32_t value; /* if zero, we will madvise() */ 488 uint32_t block_idx; /* which ram block index */ 489 uint64_t offset; /* Address in remote ram_addr_t space */ 490 uint64_t length; /* length of the chunk */ 491 } RDMACompress; 492 493 static void compress_to_network(RDMAContext *rdma, RDMACompress *comp) 494 { 495 comp->value = htonl(comp->value); 496 /* 497 * comp->offset as passed in is an address in the local ram_addr_t 498 * space, we need to translate this for the destination 499 */ 500 comp->offset -= rdma->local_ram_blocks.block[comp->block_idx].offset; 501 comp->offset += rdma->dest_blocks[comp->block_idx].offset; 502 comp->block_idx = htonl(comp->block_idx); 503 comp->offset = htonll(comp->offset); 504 comp->length = htonll(comp->length); 505 } 506 507 static void network_to_compress(RDMACompress *comp) 508 { 509 comp->value = ntohl(comp->value); 510 comp->block_idx = ntohl(comp->block_idx); 511 comp->offset = ntohll(comp->offset); 512 comp->length = ntohll(comp->length); 513 } 514 515 /* 516 * The result of the dest's memory registration produces an "rkey" 517 * which the source VM must reference in order to perform 518 * the RDMA operation. 519 */ 520 typedef struct QEMU_PACKED { 521 uint32_t rkey; 522 uint32_t padding; 523 uint64_t host_addr; 524 } RDMARegisterResult; 525 526 static void result_to_network(RDMARegisterResult *result) 527 { 528 result->rkey = htonl(result->rkey); 529 result->host_addr = htonll(result->host_addr); 530 }; 531 532 static void network_to_result(RDMARegisterResult *result) 533 { 534 result->rkey = ntohl(result->rkey); 535 result->host_addr = ntohll(result->host_addr); 536 }; 537 538 const char *print_wrid(int wrid); 539 static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head, 540 uint8_t *data, RDMAControlHeader *resp, 541 int *resp_idx, 542 int (*callback)(RDMAContext *rdma)); 543 544 static inline uint64_t ram_chunk_index(const uint8_t *start, 545 const uint8_t *host) 546 { 547 return ((uintptr_t) host - (uintptr_t) start) >> RDMA_REG_CHUNK_SHIFT; 548 } 549 550 static inline uint8_t *ram_chunk_start(const RDMALocalBlock *rdma_ram_block, 551 uint64_t i) 552 { 553 return (uint8_t *)(uintptr_t)(rdma_ram_block->local_host_addr + 554 (i << RDMA_REG_CHUNK_SHIFT)); 555 } 556 557 static inline uint8_t *ram_chunk_end(const RDMALocalBlock *rdma_ram_block, 558 uint64_t i) 559 { 560 uint8_t *result = ram_chunk_start(rdma_ram_block, i) + 561 (1UL << RDMA_REG_CHUNK_SHIFT); 562 563 if (result > (rdma_ram_block->local_host_addr + rdma_ram_block->length)) { 564 result = rdma_ram_block->local_host_addr + rdma_ram_block->length; 565 } 566 567 return result; 568 } 569 570 static int rdma_add_block(RDMAContext *rdma, const char *block_name, 571 void *host_addr, 572 ram_addr_t block_offset, uint64_t length) 573 { 574 RDMALocalBlocks *local = &rdma->local_ram_blocks; 575 RDMALocalBlock *block; 576 RDMALocalBlock *old = local->block; 577 578 local->block = g_new0(RDMALocalBlock, local->nb_blocks + 1); 579 580 if (local->nb_blocks) { 581 int x; 582 583 if (rdma->blockmap) { 584 for (x = 0; x < local->nb_blocks; x++) { 585 g_hash_table_remove(rdma->blockmap, 586 (void *)(uintptr_t)old[x].offset); 587 g_hash_table_insert(rdma->blockmap, 588 (void *)(uintptr_t)old[x].offset, 589 &local->block[x]); 590 } 591 } 592 memcpy(local->block, old, sizeof(RDMALocalBlock) * local->nb_blocks); 593 g_free(old); 594 } 595 596 block = &local->block[local->nb_blocks]; 597 598 block->block_name = g_strdup(block_name); 599 block->local_host_addr = host_addr; 600 block->offset = block_offset; 601 block->length = length; 602 block->index = local->nb_blocks; 603 block->src_index = ~0U; /* Filled in by the receipt of the block list */ 604 block->nb_chunks = ram_chunk_index(host_addr, host_addr + length) + 1UL; 605 block->transit_bitmap = bitmap_new(block->nb_chunks); 606 bitmap_clear(block->transit_bitmap, 0, block->nb_chunks); 607 block->unregister_bitmap = bitmap_new(block->nb_chunks); 608 bitmap_clear(block->unregister_bitmap, 0, block->nb_chunks); 609 block->remote_keys = g_new0(uint32_t, block->nb_chunks); 610 611 block->is_ram_block = local->init ? false : true; 612 613 if (rdma->blockmap) { 614 g_hash_table_insert(rdma->blockmap, (void *)(uintptr_t)block_offset, block); 615 } 616 617 trace_rdma_add_block(block_name, local->nb_blocks, 618 (uintptr_t) block->local_host_addr, 619 block->offset, block->length, 620 (uintptr_t) (block->local_host_addr + block->length), 621 BITS_TO_LONGS(block->nb_chunks) * 622 sizeof(unsigned long) * 8, 623 block->nb_chunks); 624 625 local->nb_blocks++; 626 627 return 0; 628 } 629 630 /* 631 * Memory regions need to be registered with the device and queue pairs setup 632 * in advanced before the migration starts. This tells us where the RAM blocks 633 * are so that we can register them individually. 634 */ 635 static int qemu_rdma_init_one_block(RAMBlock *rb, void *opaque) 636 { 637 const char *block_name = qemu_ram_get_idstr(rb); 638 void *host_addr = qemu_ram_get_host_addr(rb); 639 ram_addr_t block_offset = qemu_ram_get_offset(rb); 640 ram_addr_t length = qemu_ram_get_used_length(rb); 641 return rdma_add_block(opaque, block_name, host_addr, block_offset, length); 642 } 643 644 /* 645 * Identify the RAMBlocks and their quantity. They will be references to 646 * identify chunk boundaries inside each RAMBlock and also be referenced 647 * during dynamic page registration. 648 */ 649 static int qemu_rdma_init_ram_blocks(RDMAContext *rdma) 650 { 651 RDMALocalBlocks *local = &rdma->local_ram_blocks; 652 int ret; 653 654 assert(rdma->blockmap == NULL); 655 memset(local, 0, sizeof *local); 656 ret = foreach_not_ignored_block(qemu_rdma_init_one_block, rdma); 657 if (ret) { 658 return ret; 659 } 660 trace_qemu_rdma_init_ram_blocks(local->nb_blocks); 661 rdma->dest_blocks = g_new0(RDMADestBlock, 662 rdma->local_ram_blocks.nb_blocks); 663 local->init = true; 664 return 0; 665 } 666 667 /* 668 * Note: If used outside of cleanup, the caller must ensure that the destination 669 * block structures are also updated 670 */ 671 static int rdma_delete_block(RDMAContext *rdma, RDMALocalBlock *block) 672 { 673 RDMALocalBlocks *local = &rdma->local_ram_blocks; 674 RDMALocalBlock *old = local->block; 675 int x; 676 677 if (rdma->blockmap) { 678 g_hash_table_remove(rdma->blockmap, (void *)(uintptr_t)block->offset); 679 } 680 if (block->pmr) { 681 int j; 682 683 for (j = 0; j < block->nb_chunks; j++) { 684 if (!block->pmr[j]) { 685 continue; 686 } 687 ibv_dereg_mr(block->pmr[j]); 688 rdma->total_registrations--; 689 } 690 g_free(block->pmr); 691 block->pmr = NULL; 692 } 693 694 if (block->mr) { 695 ibv_dereg_mr(block->mr); 696 rdma->total_registrations--; 697 block->mr = NULL; 698 } 699 700 g_free(block->transit_bitmap); 701 block->transit_bitmap = NULL; 702 703 g_free(block->unregister_bitmap); 704 block->unregister_bitmap = NULL; 705 706 g_free(block->remote_keys); 707 block->remote_keys = NULL; 708 709 g_free(block->block_name); 710 block->block_name = NULL; 711 712 if (rdma->blockmap) { 713 for (x = 0; x < local->nb_blocks; x++) { 714 g_hash_table_remove(rdma->blockmap, 715 (void *)(uintptr_t)old[x].offset); 716 } 717 } 718 719 if (local->nb_blocks > 1) { 720 721 local->block = g_new0(RDMALocalBlock, local->nb_blocks - 1); 722 723 if (block->index) { 724 memcpy(local->block, old, sizeof(RDMALocalBlock) * block->index); 725 } 726 727 if (block->index < (local->nb_blocks - 1)) { 728 memcpy(local->block + block->index, old + (block->index + 1), 729 sizeof(RDMALocalBlock) * 730 (local->nb_blocks - (block->index + 1))); 731 for (x = block->index; x < local->nb_blocks - 1; x++) { 732 local->block[x].index--; 733 } 734 } 735 } else { 736 assert(block == local->block); 737 local->block = NULL; 738 } 739 740 trace_rdma_delete_block(block, (uintptr_t)block->local_host_addr, 741 block->offset, block->length, 742 (uintptr_t)(block->local_host_addr + block->length), 743 BITS_TO_LONGS(block->nb_chunks) * 744 sizeof(unsigned long) * 8, block->nb_chunks); 745 746 g_free(old); 747 748 local->nb_blocks--; 749 750 if (local->nb_blocks && rdma->blockmap) { 751 for (x = 0; x < local->nb_blocks; x++) { 752 g_hash_table_insert(rdma->blockmap, 753 (void *)(uintptr_t)local->block[x].offset, 754 &local->block[x]); 755 } 756 } 757 758 return 0; 759 } 760 761 /* 762 * Put in the log file which RDMA device was opened and the details 763 * associated with that device. 764 */ 765 static void qemu_rdma_dump_id(const char *who, struct ibv_context *verbs) 766 { 767 struct ibv_port_attr port; 768 769 if (ibv_query_port(verbs, 1, &port)) { 770 error_report("Failed to query port information"); 771 return; 772 } 773 774 printf("%s RDMA Device opened: kernel name %s " 775 "uverbs device name %s, " 776 "infiniband_verbs class device path %s, " 777 "infiniband class device path %s, " 778 "transport: (%d) %s\n", 779 who, 780 verbs->device->name, 781 verbs->device->dev_name, 782 verbs->device->dev_path, 783 verbs->device->ibdev_path, 784 port.link_layer, 785 (port.link_layer == IBV_LINK_LAYER_INFINIBAND) ? "Infiniband" : 786 ((port.link_layer == IBV_LINK_LAYER_ETHERNET) 787 ? "Ethernet" : "Unknown")); 788 } 789 790 /* 791 * Put in the log file the RDMA gid addressing information, 792 * useful for folks who have trouble understanding the 793 * RDMA device hierarchy in the kernel. 794 */ 795 static void qemu_rdma_dump_gid(const char *who, struct rdma_cm_id *id) 796 { 797 char sgid[33]; 798 char dgid[33]; 799 inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.sgid, sgid, sizeof sgid); 800 inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.dgid, dgid, sizeof dgid); 801 trace_qemu_rdma_dump_gid(who, sgid, dgid); 802 } 803 804 /* 805 * As of now, IPv6 over RoCE / iWARP is not supported by linux. 806 * We will try the next addrinfo struct, and fail if there are 807 * no other valid addresses to bind against. 808 * 809 * If user is listening on '[::]', then we will not have a opened a device 810 * yet and have no way of verifying if the device is RoCE or not. 811 * 812 * In this case, the source VM will throw an error for ALL types of 813 * connections (both IPv4 and IPv6) if the destination machine does not have 814 * a regular infiniband network available for use. 815 * 816 * The only way to guarantee that an error is thrown for broken kernels is 817 * for the management software to choose a *specific* interface at bind time 818 * and validate what time of hardware it is. 819 * 820 * Unfortunately, this puts the user in a fix: 821 * 822 * If the source VM connects with an IPv4 address without knowing that the 823 * destination has bound to '[::]' the migration will unconditionally fail 824 * unless the management software is explicitly listening on the IPv4 825 * address while using a RoCE-based device. 826 * 827 * If the source VM connects with an IPv6 address, then we're OK because we can 828 * throw an error on the source (and similarly on the destination). 829 * 830 * But in mixed environments, this will be broken for a while until it is fixed 831 * inside linux. 832 * 833 * We do provide a *tiny* bit of help in this function: We can list all of the 834 * devices in the system and check to see if all the devices are RoCE or 835 * Infiniband. 836 * 837 * If we detect that we have a *pure* RoCE environment, then we can safely 838 * thrown an error even if the management software has specified '[::]' as the 839 * bind address. 840 * 841 * However, if there is are multiple hetergeneous devices, then we cannot make 842 * this assumption and the user just has to be sure they know what they are 843 * doing. 844 * 845 * Patches are being reviewed on linux-rdma. 846 */ 847 static int qemu_rdma_broken_ipv6_kernel(struct ibv_context *verbs, Error **errp) 848 { 849 /* This bug only exists in linux, to our knowledge. */ 850 #ifdef CONFIG_LINUX 851 struct ibv_port_attr port_attr; 852 853 /* 854 * Verbs are only NULL if management has bound to '[::]'. 855 * 856 * Let's iterate through all the devices and see if there any pure IB 857 * devices (non-ethernet). 858 * 859 * If not, then we can safely proceed with the migration. 860 * Otherwise, there are no guarantees until the bug is fixed in linux. 861 */ 862 if (!verbs) { 863 int num_devices, x; 864 struct ibv_device **dev_list = ibv_get_device_list(&num_devices); 865 bool roce_found = false; 866 bool ib_found = false; 867 868 for (x = 0; x < num_devices; x++) { 869 verbs = ibv_open_device(dev_list[x]); 870 if (!verbs) { 871 if (errno == EPERM) { 872 continue; 873 } else { 874 return -EINVAL; 875 } 876 } 877 878 if (ibv_query_port(verbs, 1, &port_attr)) { 879 ibv_close_device(verbs); 880 ERROR(errp, "Could not query initial IB port"); 881 return -EINVAL; 882 } 883 884 if (port_attr.link_layer == IBV_LINK_LAYER_INFINIBAND) { 885 ib_found = true; 886 } else if (port_attr.link_layer == IBV_LINK_LAYER_ETHERNET) { 887 roce_found = true; 888 } 889 890 ibv_close_device(verbs); 891 892 } 893 894 if (roce_found) { 895 if (ib_found) { 896 fprintf(stderr, "WARN: migrations may fail:" 897 " IPv6 over RoCE / iWARP in linux" 898 " is broken. But since you appear to have a" 899 " mixed RoCE / IB environment, be sure to only" 900 " migrate over the IB fabric until the kernel " 901 " fixes the bug.\n"); 902 } else { 903 ERROR(errp, "You only have RoCE / iWARP devices in your systems" 904 " and your management software has specified '[::]'" 905 ", but IPv6 over RoCE / iWARP is not supported in Linux."); 906 return -ENONET; 907 } 908 } 909 910 return 0; 911 } 912 913 /* 914 * If we have a verbs context, that means that some other than '[::]' was 915 * used by the management software for binding. In which case we can 916 * actually warn the user about a potentially broken kernel. 917 */ 918 919 /* IB ports start with 1, not 0 */ 920 if (ibv_query_port(verbs, 1, &port_attr)) { 921 ERROR(errp, "Could not query initial IB port"); 922 return -EINVAL; 923 } 924 925 if (port_attr.link_layer == IBV_LINK_LAYER_ETHERNET) { 926 ERROR(errp, "Linux kernel's RoCE / iWARP does not support IPv6 " 927 "(but patches on linux-rdma in progress)"); 928 return -ENONET; 929 } 930 931 #endif 932 933 return 0; 934 } 935 936 /* 937 * Figure out which RDMA device corresponds to the requested IP hostname 938 * Also create the initial connection manager identifiers for opening 939 * the connection. 940 */ 941 static int qemu_rdma_resolve_host(RDMAContext *rdma, Error **errp) 942 { 943 int ret; 944 struct rdma_addrinfo *res; 945 char port_str[16]; 946 struct rdma_cm_event *cm_event; 947 char ip[40] = "unknown"; 948 struct rdma_addrinfo *e; 949 950 if (rdma->host == NULL || !strcmp(rdma->host, "")) { 951 ERROR(errp, "RDMA hostname has not been set"); 952 return -EINVAL; 953 } 954 955 /* create CM channel */ 956 rdma->channel = rdma_create_event_channel(); 957 if (!rdma->channel) { 958 ERROR(errp, "could not create CM channel"); 959 return -EINVAL; 960 } 961 962 /* create CM id */ 963 ret = rdma_create_id(rdma->channel, &rdma->cm_id, NULL, RDMA_PS_TCP); 964 if (ret) { 965 ERROR(errp, "could not create channel id"); 966 goto err_resolve_create_id; 967 } 968 969 snprintf(port_str, 16, "%d", rdma->port); 970 port_str[15] = '\0'; 971 972 ret = rdma_getaddrinfo(rdma->host, port_str, NULL, &res); 973 if (ret < 0) { 974 ERROR(errp, "could not rdma_getaddrinfo address %s", rdma->host); 975 goto err_resolve_get_addr; 976 } 977 978 for (e = res; e != NULL; e = e->ai_next) { 979 inet_ntop(e->ai_family, 980 &((struct sockaddr_in *) e->ai_dst_addr)->sin_addr, ip, sizeof ip); 981 trace_qemu_rdma_resolve_host_trying(rdma->host, ip); 982 983 ret = rdma_resolve_addr(rdma->cm_id, NULL, e->ai_dst_addr, 984 RDMA_RESOLVE_TIMEOUT_MS); 985 if (!ret) { 986 if (e->ai_family == AF_INET6) { 987 ret = qemu_rdma_broken_ipv6_kernel(rdma->cm_id->verbs, errp); 988 if (ret) { 989 continue; 990 } 991 } 992 goto route; 993 } 994 } 995 996 rdma_freeaddrinfo(res); 997 ERROR(errp, "could not resolve address %s", rdma->host); 998 goto err_resolve_get_addr; 999 1000 route: 1001 rdma_freeaddrinfo(res); 1002 qemu_rdma_dump_gid("source_resolve_addr", rdma->cm_id); 1003 1004 ret = rdma_get_cm_event(rdma->channel, &cm_event); 1005 if (ret) { 1006 ERROR(errp, "could not perform event_addr_resolved"); 1007 goto err_resolve_get_addr; 1008 } 1009 1010 if (cm_event->event != RDMA_CM_EVENT_ADDR_RESOLVED) { 1011 ERROR(errp, "result not equal to event_addr_resolved %s", 1012 rdma_event_str(cm_event->event)); 1013 error_report("rdma_resolve_addr"); 1014 rdma_ack_cm_event(cm_event); 1015 ret = -EINVAL; 1016 goto err_resolve_get_addr; 1017 } 1018 rdma_ack_cm_event(cm_event); 1019 1020 /* resolve route */ 1021 ret = rdma_resolve_route(rdma->cm_id, RDMA_RESOLVE_TIMEOUT_MS); 1022 if (ret) { 1023 ERROR(errp, "could not resolve rdma route"); 1024 goto err_resolve_get_addr; 1025 } 1026 1027 ret = rdma_get_cm_event(rdma->channel, &cm_event); 1028 if (ret) { 1029 ERROR(errp, "could not perform event_route_resolved"); 1030 goto err_resolve_get_addr; 1031 } 1032 if (cm_event->event != RDMA_CM_EVENT_ROUTE_RESOLVED) { 1033 ERROR(errp, "result not equal to event_route_resolved: %s", 1034 rdma_event_str(cm_event->event)); 1035 rdma_ack_cm_event(cm_event); 1036 ret = -EINVAL; 1037 goto err_resolve_get_addr; 1038 } 1039 rdma_ack_cm_event(cm_event); 1040 rdma->verbs = rdma->cm_id->verbs; 1041 qemu_rdma_dump_id("source_resolve_host", rdma->cm_id->verbs); 1042 qemu_rdma_dump_gid("source_resolve_host", rdma->cm_id); 1043 return 0; 1044 1045 err_resolve_get_addr: 1046 rdma_destroy_id(rdma->cm_id); 1047 rdma->cm_id = NULL; 1048 err_resolve_create_id: 1049 rdma_destroy_event_channel(rdma->channel); 1050 rdma->channel = NULL; 1051 return ret; 1052 } 1053 1054 /* 1055 * Create protection domain and completion queues 1056 */ 1057 static int qemu_rdma_alloc_pd_cq(RDMAContext *rdma) 1058 { 1059 /* allocate pd */ 1060 rdma->pd = ibv_alloc_pd(rdma->verbs); 1061 if (!rdma->pd) { 1062 error_report("failed to allocate protection domain"); 1063 return -1; 1064 } 1065 1066 /* create receive completion channel */ 1067 rdma->recv_comp_channel = ibv_create_comp_channel(rdma->verbs); 1068 if (!rdma->recv_comp_channel) { 1069 error_report("failed to allocate receive completion channel"); 1070 goto err_alloc_pd_cq; 1071 } 1072 1073 /* 1074 * Completion queue can be filled by read work requests. 1075 */ 1076 rdma->recv_cq = ibv_create_cq(rdma->verbs, (RDMA_SIGNALED_SEND_MAX * 3), 1077 NULL, rdma->recv_comp_channel, 0); 1078 if (!rdma->recv_cq) { 1079 error_report("failed to allocate receive completion queue"); 1080 goto err_alloc_pd_cq; 1081 } 1082 1083 /* create send completion channel */ 1084 rdma->send_comp_channel = ibv_create_comp_channel(rdma->verbs); 1085 if (!rdma->send_comp_channel) { 1086 error_report("failed to allocate send completion channel"); 1087 goto err_alloc_pd_cq; 1088 } 1089 1090 rdma->send_cq = ibv_create_cq(rdma->verbs, (RDMA_SIGNALED_SEND_MAX * 3), 1091 NULL, rdma->send_comp_channel, 0); 1092 if (!rdma->send_cq) { 1093 error_report("failed to allocate send completion queue"); 1094 goto err_alloc_pd_cq; 1095 } 1096 1097 return 0; 1098 1099 err_alloc_pd_cq: 1100 if (rdma->pd) { 1101 ibv_dealloc_pd(rdma->pd); 1102 } 1103 if (rdma->recv_comp_channel) { 1104 ibv_destroy_comp_channel(rdma->recv_comp_channel); 1105 } 1106 if (rdma->send_comp_channel) { 1107 ibv_destroy_comp_channel(rdma->send_comp_channel); 1108 } 1109 if (rdma->recv_cq) { 1110 ibv_destroy_cq(rdma->recv_cq); 1111 rdma->recv_cq = NULL; 1112 } 1113 rdma->pd = NULL; 1114 rdma->recv_comp_channel = NULL; 1115 rdma->send_comp_channel = NULL; 1116 return -1; 1117 1118 } 1119 1120 /* 1121 * Create queue pairs. 1122 */ 1123 static int qemu_rdma_alloc_qp(RDMAContext *rdma) 1124 { 1125 struct ibv_qp_init_attr attr = { 0 }; 1126 int ret; 1127 1128 attr.cap.max_send_wr = RDMA_SIGNALED_SEND_MAX; 1129 attr.cap.max_recv_wr = 3; 1130 attr.cap.max_send_sge = 1; 1131 attr.cap.max_recv_sge = 1; 1132 attr.send_cq = rdma->send_cq; 1133 attr.recv_cq = rdma->recv_cq; 1134 attr.qp_type = IBV_QPT_RC; 1135 1136 ret = rdma_create_qp(rdma->cm_id, rdma->pd, &attr); 1137 if (ret) { 1138 return -1; 1139 } 1140 1141 rdma->qp = rdma->cm_id->qp; 1142 return 0; 1143 } 1144 1145 /* Check whether On-Demand Paging is supported by RDAM device */ 1146 static bool rdma_support_odp(struct ibv_context *dev) 1147 { 1148 struct ibv_device_attr_ex attr = {0}; 1149 int ret = ibv_query_device_ex(dev, NULL, &attr); 1150 if (ret) { 1151 return false; 1152 } 1153 1154 if (attr.odp_caps.general_caps & IBV_ODP_SUPPORT) { 1155 return true; 1156 } 1157 1158 return false; 1159 } 1160 1161 /* 1162 * ibv_advise_mr to avoid RNR NAK error as far as possible. 1163 * The responder mr registering with ODP will sent RNR NAK back to 1164 * the requester in the face of the page fault. 1165 */ 1166 static void qemu_rdma_advise_prefetch_mr(struct ibv_pd *pd, uint64_t addr, 1167 uint32_t len, uint32_t lkey, 1168 const char *name, bool wr) 1169 { 1170 #ifdef HAVE_IBV_ADVISE_MR 1171 int ret; 1172 int advice = wr ? IBV_ADVISE_MR_ADVICE_PREFETCH_WRITE : 1173 IBV_ADVISE_MR_ADVICE_PREFETCH; 1174 struct ibv_sge sg_list = {.lkey = lkey, .addr = addr, .length = len}; 1175 1176 ret = ibv_advise_mr(pd, advice, 1177 IBV_ADVISE_MR_FLAG_FLUSH, &sg_list, 1); 1178 /* ignore the error */ 1179 if (ret) { 1180 trace_qemu_rdma_advise_mr(name, len, addr, strerror(errno)); 1181 } else { 1182 trace_qemu_rdma_advise_mr(name, len, addr, "successed"); 1183 } 1184 #endif 1185 } 1186 1187 static int qemu_rdma_reg_whole_ram_blocks(RDMAContext *rdma) 1188 { 1189 int i; 1190 RDMALocalBlocks *local = &rdma->local_ram_blocks; 1191 1192 for (i = 0; i < local->nb_blocks; i++) { 1193 int access = IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE; 1194 1195 local->block[i].mr = 1196 ibv_reg_mr(rdma->pd, 1197 local->block[i].local_host_addr, 1198 local->block[i].length, access 1199 ); 1200 1201 if (!local->block[i].mr && 1202 errno == ENOTSUP && rdma_support_odp(rdma->verbs)) { 1203 access |= IBV_ACCESS_ON_DEMAND; 1204 /* register ODP mr */ 1205 local->block[i].mr = 1206 ibv_reg_mr(rdma->pd, 1207 local->block[i].local_host_addr, 1208 local->block[i].length, access); 1209 trace_qemu_rdma_register_odp_mr(local->block[i].block_name); 1210 1211 if (local->block[i].mr) { 1212 qemu_rdma_advise_prefetch_mr(rdma->pd, 1213 (uintptr_t)local->block[i].local_host_addr, 1214 local->block[i].length, 1215 local->block[i].mr->lkey, 1216 local->block[i].block_name, 1217 true); 1218 } 1219 } 1220 1221 if (!local->block[i].mr) { 1222 perror("Failed to register local dest ram block!"); 1223 break; 1224 } 1225 rdma->total_registrations++; 1226 } 1227 1228 if (i >= local->nb_blocks) { 1229 return 0; 1230 } 1231 1232 for (i--; i >= 0; i--) { 1233 ibv_dereg_mr(local->block[i].mr); 1234 local->block[i].mr = NULL; 1235 rdma->total_registrations--; 1236 } 1237 1238 return -1; 1239 1240 } 1241 1242 /* 1243 * Find the ram block that corresponds to the page requested to be 1244 * transmitted by QEMU. 1245 * 1246 * Once the block is found, also identify which 'chunk' within that 1247 * block that the page belongs to. 1248 * 1249 * This search cannot fail or the migration will fail. 1250 */ 1251 static int qemu_rdma_search_ram_block(RDMAContext *rdma, 1252 uintptr_t block_offset, 1253 uint64_t offset, 1254 uint64_t length, 1255 uint64_t *block_index, 1256 uint64_t *chunk_index) 1257 { 1258 uint64_t current_addr = block_offset + offset; 1259 RDMALocalBlock *block = g_hash_table_lookup(rdma->blockmap, 1260 (void *) block_offset); 1261 assert(block); 1262 assert(current_addr >= block->offset); 1263 assert((current_addr + length) <= (block->offset + block->length)); 1264 1265 *block_index = block->index; 1266 *chunk_index = ram_chunk_index(block->local_host_addr, 1267 block->local_host_addr + (current_addr - block->offset)); 1268 1269 return 0; 1270 } 1271 1272 /* 1273 * Register a chunk with IB. If the chunk was already registered 1274 * previously, then skip. 1275 * 1276 * Also return the keys associated with the registration needed 1277 * to perform the actual RDMA operation. 1278 */ 1279 static int qemu_rdma_register_and_get_keys(RDMAContext *rdma, 1280 RDMALocalBlock *block, uintptr_t host_addr, 1281 uint32_t *lkey, uint32_t *rkey, int chunk, 1282 uint8_t *chunk_start, uint8_t *chunk_end) 1283 { 1284 if (block->mr) { 1285 if (lkey) { 1286 *lkey = block->mr->lkey; 1287 } 1288 if (rkey) { 1289 *rkey = block->mr->rkey; 1290 } 1291 return 0; 1292 } 1293 1294 /* allocate memory to store chunk MRs */ 1295 if (!block->pmr) { 1296 block->pmr = g_new0(struct ibv_mr *, block->nb_chunks); 1297 } 1298 1299 /* 1300 * If 'rkey', then we're the destination, so grant access to the source. 1301 * 1302 * If 'lkey', then we're the source VM, so grant access only to ourselves. 1303 */ 1304 if (!block->pmr[chunk]) { 1305 uint64_t len = chunk_end - chunk_start; 1306 int access = rkey ? IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE : 1307 0; 1308 1309 trace_qemu_rdma_register_and_get_keys(len, chunk_start); 1310 1311 block->pmr[chunk] = ibv_reg_mr(rdma->pd, chunk_start, len, access); 1312 if (!block->pmr[chunk] && 1313 errno == ENOTSUP && rdma_support_odp(rdma->verbs)) { 1314 access |= IBV_ACCESS_ON_DEMAND; 1315 /* register ODP mr */ 1316 block->pmr[chunk] = ibv_reg_mr(rdma->pd, chunk_start, len, access); 1317 trace_qemu_rdma_register_odp_mr(block->block_name); 1318 1319 if (block->pmr[chunk]) { 1320 qemu_rdma_advise_prefetch_mr(rdma->pd, (uintptr_t)chunk_start, 1321 len, block->pmr[chunk]->lkey, 1322 block->block_name, rkey); 1323 1324 } 1325 } 1326 } 1327 if (!block->pmr[chunk]) { 1328 perror("Failed to register chunk!"); 1329 fprintf(stderr, "Chunk details: block: %d chunk index %d" 1330 " start %" PRIuPTR " end %" PRIuPTR 1331 " host %" PRIuPTR 1332 " local %" PRIuPTR " registrations: %d\n", 1333 block->index, chunk, (uintptr_t)chunk_start, 1334 (uintptr_t)chunk_end, host_addr, 1335 (uintptr_t)block->local_host_addr, 1336 rdma->total_registrations); 1337 return -1; 1338 } 1339 rdma->total_registrations++; 1340 1341 if (lkey) { 1342 *lkey = block->pmr[chunk]->lkey; 1343 } 1344 if (rkey) { 1345 *rkey = block->pmr[chunk]->rkey; 1346 } 1347 return 0; 1348 } 1349 1350 /* 1351 * Register (at connection time) the memory used for control 1352 * channel messages. 1353 */ 1354 static int qemu_rdma_reg_control(RDMAContext *rdma, int idx) 1355 { 1356 rdma->wr_data[idx].control_mr = ibv_reg_mr(rdma->pd, 1357 rdma->wr_data[idx].control, RDMA_CONTROL_MAX_BUFFER, 1358 IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE); 1359 if (rdma->wr_data[idx].control_mr) { 1360 rdma->total_registrations++; 1361 return 0; 1362 } 1363 error_report("qemu_rdma_reg_control failed"); 1364 return -1; 1365 } 1366 1367 const char *print_wrid(int wrid) 1368 { 1369 if (wrid >= RDMA_WRID_RECV_CONTROL) { 1370 return wrid_desc[RDMA_WRID_RECV_CONTROL]; 1371 } 1372 return wrid_desc[wrid]; 1373 } 1374 1375 /* 1376 * Perform a non-optimized memory unregistration after every transfer 1377 * for demonstration purposes, only if pin-all is not requested. 1378 * 1379 * Potential optimizations: 1380 * 1. Start a new thread to run this function continuously 1381 - for bit clearing 1382 - and for receipt of unregister messages 1383 * 2. Use an LRU. 1384 * 3. Use workload hints. 1385 */ 1386 static int qemu_rdma_unregister_waiting(RDMAContext *rdma) 1387 { 1388 while (rdma->unregistrations[rdma->unregister_current]) { 1389 int ret; 1390 uint64_t wr_id = rdma->unregistrations[rdma->unregister_current]; 1391 uint64_t chunk = 1392 (wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT; 1393 uint64_t index = 1394 (wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT; 1395 RDMALocalBlock *block = 1396 &(rdma->local_ram_blocks.block[index]); 1397 RDMARegister reg = { .current_index = index }; 1398 RDMAControlHeader resp = { .type = RDMA_CONTROL_UNREGISTER_FINISHED, 1399 }; 1400 RDMAControlHeader head = { .len = sizeof(RDMARegister), 1401 .type = RDMA_CONTROL_UNREGISTER_REQUEST, 1402 .repeat = 1, 1403 }; 1404 1405 trace_qemu_rdma_unregister_waiting_proc(chunk, 1406 rdma->unregister_current); 1407 1408 rdma->unregistrations[rdma->unregister_current] = 0; 1409 rdma->unregister_current++; 1410 1411 if (rdma->unregister_current == RDMA_SIGNALED_SEND_MAX) { 1412 rdma->unregister_current = 0; 1413 } 1414 1415 1416 /* 1417 * Unregistration is speculative (because migration is single-threaded 1418 * and we cannot break the protocol's inifinband message ordering). 1419 * Thus, if the memory is currently being used for transmission, 1420 * then abort the attempt to unregister and try again 1421 * later the next time a completion is received for this memory. 1422 */ 1423 clear_bit(chunk, block->unregister_bitmap); 1424 1425 if (test_bit(chunk, block->transit_bitmap)) { 1426 trace_qemu_rdma_unregister_waiting_inflight(chunk); 1427 continue; 1428 } 1429 1430 trace_qemu_rdma_unregister_waiting_send(chunk); 1431 1432 ret = ibv_dereg_mr(block->pmr[chunk]); 1433 block->pmr[chunk] = NULL; 1434 block->remote_keys[chunk] = 0; 1435 1436 if (ret != 0) { 1437 perror("unregistration chunk failed"); 1438 return -ret; 1439 } 1440 rdma->total_registrations--; 1441 1442 reg.key.chunk = chunk; 1443 register_to_network(rdma, ®); 1444 ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) ®, 1445 &resp, NULL, NULL); 1446 if (ret < 0) { 1447 return ret; 1448 } 1449 1450 trace_qemu_rdma_unregister_waiting_complete(chunk); 1451 } 1452 1453 return 0; 1454 } 1455 1456 static uint64_t qemu_rdma_make_wrid(uint64_t wr_id, uint64_t index, 1457 uint64_t chunk) 1458 { 1459 uint64_t result = wr_id & RDMA_WRID_TYPE_MASK; 1460 1461 result |= (index << RDMA_WRID_BLOCK_SHIFT); 1462 result |= (chunk << RDMA_WRID_CHUNK_SHIFT); 1463 1464 return result; 1465 } 1466 1467 /* 1468 * Consult the connection manager to see a work request 1469 * (of any kind) has completed. 1470 * Return the work request ID that completed. 1471 */ 1472 static uint64_t qemu_rdma_poll(RDMAContext *rdma, struct ibv_cq *cq, 1473 uint64_t *wr_id_out, uint32_t *byte_len) 1474 { 1475 int ret; 1476 struct ibv_wc wc; 1477 uint64_t wr_id; 1478 1479 ret = ibv_poll_cq(cq, 1, &wc); 1480 1481 if (!ret) { 1482 *wr_id_out = RDMA_WRID_NONE; 1483 return 0; 1484 } 1485 1486 if (ret < 0) { 1487 error_report("ibv_poll_cq return %d", ret); 1488 return ret; 1489 } 1490 1491 wr_id = wc.wr_id & RDMA_WRID_TYPE_MASK; 1492 1493 if (wc.status != IBV_WC_SUCCESS) { 1494 fprintf(stderr, "ibv_poll_cq wc.status=%d %s!\n", 1495 wc.status, ibv_wc_status_str(wc.status)); 1496 fprintf(stderr, "ibv_poll_cq wrid=%s!\n", wrid_desc[wr_id]); 1497 1498 return -1; 1499 } 1500 1501 if (rdma->control_ready_expected && 1502 (wr_id >= RDMA_WRID_RECV_CONTROL)) { 1503 trace_qemu_rdma_poll_recv(wrid_desc[RDMA_WRID_RECV_CONTROL], 1504 wr_id - RDMA_WRID_RECV_CONTROL, wr_id, rdma->nb_sent); 1505 rdma->control_ready_expected = 0; 1506 } 1507 1508 if (wr_id == RDMA_WRID_RDMA_WRITE) { 1509 uint64_t chunk = 1510 (wc.wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT; 1511 uint64_t index = 1512 (wc.wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT; 1513 RDMALocalBlock *block = &(rdma->local_ram_blocks.block[index]); 1514 1515 trace_qemu_rdma_poll_write(print_wrid(wr_id), wr_id, rdma->nb_sent, 1516 index, chunk, block->local_host_addr, 1517 (void *)(uintptr_t)block->remote_host_addr); 1518 1519 clear_bit(chunk, block->transit_bitmap); 1520 1521 if (rdma->nb_sent > 0) { 1522 rdma->nb_sent--; 1523 } 1524 } else { 1525 trace_qemu_rdma_poll_other(print_wrid(wr_id), wr_id, rdma->nb_sent); 1526 } 1527 1528 *wr_id_out = wc.wr_id; 1529 if (byte_len) { 1530 *byte_len = wc.byte_len; 1531 } 1532 1533 return 0; 1534 } 1535 1536 /* Wait for activity on the completion channel. 1537 * Returns 0 on success, none-0 on error. 1538 */ 1539 static int qemu_rdma_wait_comp_channel(RDMAContext *rdma, 1540 struct ibv_comp_channel *comp_channel) 1541 { 1542 struct rdma_cm_event *cm_event; 1543 int ret = -1; 1544 1545 /* 1546 * Coroutine doesn't start until migration_fd_process_incoming() 1547 * so don't yield unless we know we're running inside of a coroutine. 1548 */ 1549 if (rdma->migration_started_on_destination && 1550 migration_incoming_get_current()->state == MIGRATION_STATUS_ACTIVE) { 1551 yield_until_fd_readable(comp_channel->fd); 1552 } else { 1553 /* This is the source side, we're in a separate thread 1554 * or destination prior to migration_fd_process_incoming() 1555 * after postcopy, the destination also in a separate thread. 1556 * we can't yield; so we have to poll the fd. 1557 * But we need to be able to handle 'cancel' or an error 1558 * without hanging forever. 1559 */ 1560 while (!rdma->error_state && !rdma->received_error) { 1561 GPollFD pfds[2]; 1562 pfds[0].fd = comp_channel->fd; 1563 pfds[0].events = G_IO_IN | G_IO_HUP | G_IO_ERR; 1564 pfds[0].revents = 0; 1565 1566 pfds[1].fd = rdma->channel->fd; 1567 pfds[1].events = G_IO_IN | G_IO_HUP | G_IO_ERR; 1568 pfds[1].revents = 0; 1569 1570 /* 0.1s timeout, should be fine for a 'cancel' */ 1571 switch (qemu_poll_ns(pfds, 2, 100 * 1000 * 1000)) { 1572 case 2: 1573 case 1: /* fd active */ 1574 if (pfds[0].revents) { 1575 return 0; 1576 } 1577 1578 if (pfds[1].revents) { 1579 ret = rdma_get_cm_event(rdma->channel, &cm_event); 1580 if (ret) { 1581 error_report("failed to get cm event while wait " 1582 "completion channel"); 1583 return -EPIPE; 1584 } 1585 1586 error_report("receive cm event while wait comp channel," 1587 "cm event is %d", cm_event->event); 1588 if (cm_event->event == RDMA_CM_EVENT_DISCONNECTED || 1589 cm_event->event == RDMA_CM_EVENT_DEVICE_REMOVAL) { 1590 rdma_ack_cm_event(cm_event); 1591 return -EPIPE; 1592 } 1593 rdma_ack_cm_event(cm_event); 1594 } 1595 break; 1596 1597 case 0: /* Timeout, go around again */ 1598 break; 1599 1600 default: /* Error of some type - 1601 * I don't trust errno from qemu_poll_ns 1602 */ 1603 error_report("%s: poll failed", __func__); 1604 return -EPIPE; 1605 } 1606 1607 if (migrate_get_current()->state == MIGRATION_STATUS_CANCELLING) { 1608 /* Bail out and let the cancellation happen */ 1609 return -EPIPE; 1610 } 1611 } 1612 } 1613 1614 if (rdma->received_error) { 1615 return -EPIPE; 1616 } 1617 return rdma->error_state; 1618 } 1619 1620 static struct ibv_comp_channel *to_channel(RDMAContext *rdma, int wrid) 1621 { 1622 return wrid < RDMA_WRID_RECV_CONTROL ? rdma->send_comp_channel : 1623 rdma->recv_comp_channel; 1624 } 1625 1626 static struct ibv_cq *to_cq(RDMAContext *rdma, int wrid) 1627 { 1628 return wrid < RDMA_WRID_RECV_CONTROL ? rdma->send_cq : rdma->recv_cq; 1629 } 1630 1631 /* 1632 * Block until the next work request has completed. 1633 * 1634 * First poll to see if a work request has already completed, 1635 * otherwise block. 1636 * 1637 * If we encounter completed work requests for IDs other than 1638 * the one we're interested in, then that's generally an error. 1639 * 1640 * The only exception is actual RDMA Write completions. These 1641 * completions only need to be recorded, but do not actually 1642 * need further processing. 1643 */ 1644 static int qemu_rdma_block_for_wrid(RDMAContext *rdma, int wrid_requested, 1645 uint32_t *byte_len) 1646 { 1647 int num_cq_events = 0, ret = 0; 1648 struct ibv_cq *cq; 1649 void *cq_ctx; 1650 uint64_t wr_id = RDMA_WRID_NONE, wr_id_in; 1651 struct ibv_comp_channel *ch = to_channel(rdma, wrid_requested); 1652 struct ibv_cq *poll_cq = to_cq(rdma, wrid_requested); 1653 1654 if (ibv_req_notify_cq(poll_cq, 0)) { 1655 return -1; 1656 } 1657 /* poll cq first */ 1658 while (wr_id != wrid_requested) { 1659 ret = qemu_rdma_poll(rdma, poll_cq, &wr_id_in, byte_len); 1660 if (ret < 0) { 1661 return ret; 1662 } 1663 1664 wr_id = wr_id_in & RDMA_WRID_TYPE_MASK; 1665 1666 if (wr_id == RDMA_WRID_NONE) { 1667 break; 1668 } 1669 if (wr_id != wrid_requested) { 1670 trace_qemu_rdma_block_for_wrid_miss(print_wrid(wrid_requested), 1671 wrid_requested, print_wrid(wr_id), wr_id); 1672 } 1673 } 1674 1675 if (wr_id == wrid_requested) { 1676 return 0; 1677 } 1678 1679 while (1) { 1680 ret = qemu_rdma_wait_comp_channel(rdma, ch); 1681 if (ret) { 1682 goto err_block_for_wrid; 1683 } 1684 1685 ret = ibv_get_cq_event(ch, &cq, &cq_ctx); 1686 if (ret) { 1687 perror("ibv_get_cq_event"); 1688 goto err_block_for_wrid; 1689 } 1690 1691 num_cq_events++; 1692 1693 ret = -ibv_req_notify_cq(cq, 0); 1694 if (ret) { 1695 goto err_block_for_wrid; 1696 } 1697 1698 while (wr_id != wrid_requested) { 1699 ret = qemu_rdma_poll(rdma, poll_cq, &wr_id_in, byte_len); 1700 if (ret < 0) { 1701 goto err_block_for_wrid; 1702 } 1703 1704 wr_id = wr_id_in & RDMA_WRID_TYPE_MASK; 1705 1706 if (wr_id == RDMA_WRID_NONE) { 1707 break; 1708 } 1709 if (wr_id != wrid_requested) { 1710 trace_qemu_rdma_block_for_wrid_miss(print_wrid(wrid_requested), 1711 wrid_requested, print_wrid(wr_id), wr_id); 1712 } 1713 } 1714 1715 if (wr_id == wrid_requested) { 1716 goto success_block_for_wrid; 1717 } 1718 } 1719 1720 success_block_for_wrid: 1721 if (num_cq_events) { 1722 ibv_ack_cq_events(cq, num_cq_events); 1723 } 1724 return 0; 1725 1726 err_block_for_wrid: 1727 if (num_cq_events) { 1728 ibv_ack_cq_events(cq, num_cq_events); 1729 } 1730 1731 rdma->error_state = ret; 1732 return ret; 1733 } 1734 1735 /* 1736 * Post a SEND message work request for the control channel 1737 * containing some data and block until the post completes. 1738 */ 1739 static int qemu_rdma_post_send_control(RDMAContext *rdma, uint8_t *buf, 1740 RDMAControlHeader *head) 1741 { 1742 int ret = 0; 1743 RDMAWorkRequestData *wr = &rdma->wr_data[RDMA_WRID_CONTROL]; 1744 struct ibv_send_wr *bad_wr; 1745 struct ibv_sge sge = { 1746 .addr = (uintptr_t)(wr->control), 1747 .length = head->len + sizeof(RDMAControlHeader), 1748 .lkey = wr->control_mr->lkey, 1749 }; 1750 struct ibv_send_wr send_wr = { 1751 .wr_id = RDMA_WRID_SEND_CONTROL, 1752 .opcode = IBV_WR_SEND, 1753 .send_flags = IBV_SEND_SIGNALED, 1754 .sg_list = &sge, 1755 .num_sge = 1, 1756 }; 1757 1758 trace_qemu_rdma_post_send_control(control_desc(head->type)); 1759 1760 /* 1761 * We don't actually need to do a memcpy() in here if we used 1762 * the "sge" properly, but since we're only sending control messages 1763 * (not RAM in a performance-critical path), then its OK for now. 1764 * 1765 * The copy makes the RDMAControlHeader simpler to manipulate 1766 * for the time being. 1767 */ 1768 assert(head->len <= RDMA_CONTROL_MAX_BUFFER - sizeof(*head)); 1769 memcpy(wr->control, head, sizeof(RDMAControlHeader)); 1770 control_to_network((void *) wr->control); 1771 1772 if (buf) { 1773 memcpy(wr->control + sizeof(RDMAControlHeader), buf, head->len); 1774 } 1775 1776 1777 ret = ibv_post_send(rdma->qp, &send_wr, &bad_wr); 1778 1779 if (ret > 0) { 1780 error_report("Failed to use post IB SEND for control"); 1781 return -ret; 1782 } 1783 1784 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_SEND_CONTROL, NULL); 1785 if (ret < 0) { 1786 error_report("rdma migration: send polling control error"); 1787 } 1788 1789 return ret; 1790 } 1791 1792 /* 1793 * Post a RECV work request in anticipation of some future receipt 1794 * of data on the control channel. 1795 */ 1796 static int qemu_rdma_post_recv_control(RDMAContext *rdma, int idx) 1797 { 1798 struct ibv_recv_wr *bad_wr; 1799 struct ibv_sge sge = { 1800 .addr = (uintptr_t)(rdma->wr_data[idx].control), 1801 .length = RDMA_CONTROL_MAX_BUFFER, 1802 .lkey = rdma->wr_data[idx].control_mr->lkey, 1803 }; 1804 1805 struct ibv_recv_wr recv_wr = { 1806 .wr_id = RDMA_WRID_RECV_CONTROL + idx, 1807 .sg_list = &sge, 1808 .num_sge = 1, 1809 }; 1810 1811 1812 if (ibv_post_recv(rdma->qp, &recv_wr, &bad_wr)) { 1813 return -1; 1814 } 1815 1816 return 0; 1817 } 1818 1819 /* 1820 * Block and wait for a RECV control channel message to arrive. 1821 */ 1822 static int qemu_rdma_exchange_get_response(RDMAContext *rdma, 1823 RDMAControlHeader *head, int expecting, int idx) 1824 { 1825 uint32_t byte_len; 1826 int ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RECV_CONTROL + idx, 1827 &byte_len); 1828 1829 if (ret < 0) { 1830 error_report("rdma migration: recv polling control error!"); 1831 return ret; 1832 } 1833 1834 network_to_control((void *) rdma->wr_data[idx].control); 1835 memcpy(head, rdma->wr_data[idx].control, sizeof(RDMAControlHeader)); 1836 1837 trace_qemu_rdma_exchange_get_response_start(control_desc(expecting)); 1838 1839 if (expecting == RDMA_CONTROL_NONE) { 1840 trace_qemu_rdma_exchange_get_response_none(control_desc(head->type), 1841 head->type); 1842 } else if (head->type != expecting || head->type == RDMA_CONTROL_ERROR) { 1843 error_report("Was expecting a %s (%d) control message" 1844 ", but got: %s (%d), length: %d", 1845 control_desc(expecting), expecting, 1846 control_desc(head->type), head->type, head->len); 1847 if (head->type == RDMA_CONTROL_ERROR) { 1848 rdma->received_error = true; 1849 } 1850 return -EIO; 1851 } 1852 if (head->len > RDMA_CONTROL_MAX_BUFFER - sizeof(*head)) { 1853 error_report("too long length: %d", head->len); 1854 return -EINVAL; 1855 } 1856 if (sizeof(*head) + head->len != byte_len) { 1857 error_report("Malformed length: %d byte_len %d", head->len, byte_len); 1858 return -EINVAL; 1859 } 1860 1861 return 0; 1862 } 1863 1864 /* 1865 * When a RECV work request has completed, the work request's 1866 * buffer is pointed at the header. 1867 * 1868 * This will advance the pointer to the data portion 1869 * of the control message of the work request's buffer that 1870 * was populated after the work request finished. 1871 */ 1872 static void qemu_rdma_move_header(RDMAContext *rdma, int idx, 1873 RDMAControlHeader *head) 1874 { 1875 rdma->wr_data[idx].control_len = head->len; 1876 rdma->wr_data[idx].control_curr = 1877 rdma->wr_data[idx].control + sizeof(RDMAControlHeader); 1878 } 1879 1880 /* 1881 * This is an 'atomic' high-level operation to deliver a single, unified 1882 * control-channel message. 1883 * 1884 * Additionally, if the user is expecting some kind of reply to this message, 1885 * they can request a 'resp' response message be filled in by posting an 1886 * additional work request on behalf of the user and waiting for an additional 1887 * completion. 1888 * 1889 * The extra (optional) response is used during registration to us from having 1890 * to perform an *additional* exchange of message just to provide a response by 1891 * instead piggy-backing on the acknowledgement. 1892 */ 1893 static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head, 1894 uint8_t *data, RDMAControlHeader *resp, 1895 int *resp_idx, 1896 int (*callback)(RDMAContext *rdma)) 1897 { 1898 int ret = 0; 1899 1900 /* 1901 * Wait until the dest is ready before attempting to deliver the message 1902 * by waiting for a READY message. 1903 */ 1904 if (rdma->control_ready_expected) { 1905 RDMAControlHeader resp; 1906 ret = qemu_rdma_exchange_get_response(rdma, 1907 &resp, RDMA_CONTROL_READY, RDMA_WRID_READY); 1908 if (ret < 0) { 1909 return ret; 1910 } 1911 } 1912 1913 /* 1914 * If the user is expecting a response, post a WR in anticipation of it. 1915 */ 1916 if (resp) { 1917 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_DATA); 1918 if (ret) { 1919 error_report("rdma migration: error posting" 1920 " extra control recv for anticipated result!"); 1921 return ret; 1922 } 1923 } 1924 1925 /* 1926 * Post a WR to replace the one we just consumed for the READY message. 1927 */ 1928 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY); 1929 if (ret) { 1930 error_report("rdma migration: error posting first control recv!"); 1931 return ret; 1932 } 1933 1934 /* 1935 * Deliver the control message that was requested. 1936 */ 1937 ret = qemu_rdma_post_send_control(rdma, data, head); 1938 1939 if (ret < 0) { 1940 error_report("Failed to send control buffer!"); 1941 return ret; 1942 } 1943 1944 /* 1945 * If we're expecting a response, block and wait for it. 1946 */ 1947 if (resp) { 1948 if (callback) { 1949 trace_qemu_rdma_exchange_send_issue_callback(); 1950 ret = callback(rdma); 1951 if (ret < 0) { 1952 return ret; 1953 } 1954 } 1955 1956 trace_qemu_rdma_exchange_send_waiting(control_desc(resp->type)); 1957 ret = qemu_rdma_exchange_get_response(rdma, resp, 1958 resp->type, RDMA_WRID_DATA); 1959 1960 if (ret < 0) { 1961 return ret; 1962 } 1963 1964 qemu_rdma_move_header(rdma, RDMA_WRID_DATA, resp); 1965 if (resp_idx) { 1966 *resp_idx = RDMA_WRID_DATA; 1967 } 1968 trace_qemu_rdma_exchange_send_received(control_desc(resp->type)); 1969 } 1970 1971 rdma->control_ready_expected = 1; 1972 1973 return 0; 1974 } 1975 1976 /* 1977 * This is an 'atomic' high-level operation to receive a single, unified 1978 * control-channel message. 1979 */ 1980 static int qemu_rdma_exchange_recv(RDMAContext *rdma, RDMAControlHeader *head, 1981 int expecting) 1982 { 1983 RDMAControlHeader ready = { 1984 .len = 0, 1985 .type = RDMA_CONTROL_READY, 1986 .repeat = 1, 1987 }; 1988 int ret; 1989 1990 /* 1991 * Inform the source that we're ready to receive a message. 1992 */ 1993 ret = qemu_rdma_post_send_control(rdma, NULL, &ready); 1994 1995 if (ret < 0) { 1996 error_report("Failed to send control buffer!"); 1997 return ret; 1998 } 1999 2000 /* 2001 * Block and wait for the message. 2002 */ 2003 ret = qemu_rdma_exchange_get_response(rdma, head, 2004 expecting, RDMA_WRID_READY); 2005 2006 if (ret < 0) { 2007 return ret; 2008 } 2009 2010 qemu_rdma_move_header(rdma, RDMA_WRID_READY, head); 2011 2012 /* 2013 * Post a new RECV work request to replace the one we just consumed. 2014 */ 2015 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY); 2016 if (ret) { 2017 error_report("rdma migration: error posting second control recv!"); 2018 return ret; 2019 } 2020 2021 return 0; 2022 } 2023 2024 /* 2025 * Write an actual chunk of memory using RDMA. 2026 * 2027 * If we're using dynamic registration on the dest-side, we have to 2028 * send a registration command first. 2029 */ 2030 static int qemu_rdma_write_one(QEMUFile *f, RDMAContext *rdma, 2031 int current_index, uint64_t current_addr, 2032 uint64_t length) 2033 { 2034 struct ibv_sge sge; 2035 struct ibv_send_wr send_wr = { 0 }; 2036 struct ibv_send_wr *bad_wr; 2037 int reg_result_idx, ret, count = 0; 2038 uint64_t chunk, chunks; 2039 uint8_t *chunk_start, *chunk_end; 2040 RDMALocalBlock *block = &(rdma->local_ram_blocks.block[current_index]); 2041 RDMARegister reg; 2042 RDMARegisterResult *reg_result; 2043 RDMAControlHeader resp = { .type = RDMA_CONTROL_REGISTER_RESULT }; 2044 RDMAControlHeader head = { .len = sizeof(RDMARegister), 2045 .type = RDMA_CONTROL_REGISTER_REQUEST, 2046 .repeat = 1, 2047 }; 2048 2049 retry: 2050 sge.addr = (uintptr_t)(block->local_host_addr + 2051 (current_addr - block->offset)); 2052 sge.length = length; 2053 2054 chunk = ram_chunk_index(block->local_host_addr, 2055 (uint8_t *)(uintptr_t)sge.addr); 2056 chunk_start = ram_chunk_start(block, chunk); 2057 2058 if (block->is_ram_block) { 2059 chunks = length / (1UL << RDMA_REG_CHUNK_SHIFT); 2060 2061 if (chunks && ((length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) { 2062 chunks--; 2063 } 2064 } else { 2065 chunks = block->length / (1UL << RDMA_REG_CHUNK_SHIFT); 2066 2067 if (chunks && ((block->length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) { 2068 chunks--; 2069 } 2070 } 2071 2072 trace_qemu_rdma_write_one_top(chunks + 1, 2073 (chunks + 1) * 2074 (1UL << RDMA_REG_CHUNK_SHIFT) / 1024 / 1024); 2075 2076 chunk_end = ram_chunk_end(block, chunk + chunks); 2077 2078 2079 while (test_bit(chunk, block->transit_bitmap)) { 2080 (void)count; 2081 trace_qemu_rdma_write_one_block(count++, current_index, chunk, 2082 sge.addr, length, rdma->nb_sent, block->nb_chunks); 2083 2084 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL); 2085 2086 if (ret < 0) { 2087 error_report("Failed to Wait for previous write to complete " 2088 "block %d chunk %" PRIu64 2089 " current %" PRIu64 " len %" PRIu64 " %d", 2090 current_index, chunk, sge.addr, length, rdma->nb_sent); 2091 return ret; 2092 } 2093 } 2094 2095 if (!rdma->pin_all || !block->is_ram_block) { 2096 if (!block->remote_keys[chunk]) { 2097 /* 2098 * This chunk has not yet been registered, so first check to see 2099 * if the entire chunk is zero. If so, tell the other size to 2100 * memset() + madvise() the entire chunk without RDMA. 2101 */ 2102 2103 if (buffer_is_zero((void *)(uintptr_t)sge.addr, length)) { 2104 RDMACompress comp = { 2105 .offset = current_addr, 2106 .value = 0, 2107 .block_idx = current_index, 2108 .length = length, 2109 }; 2110 2111 head.len = sizeof(comp); 2112 head.type = RDMA_CONTROL_COMPRESS; 2113 2114 trace_qemu_rdma_write_one_zero(chunk, sge.length, 2115 current_index, current_addr); 2116 2117 compress_to_network(rdma, &comp); 2118 ret = qemu_rdma_exchange_send(rdma, &head, 2119 (uint8_t *) &comp, NULL, NULL, NULL); 2120 2121 if (ret < 0) { 2122 return -EIO; 2123 } 2124 2125 stat64_add(&mig_stats.zero_pages, 2126 sge.length / qemu_target_page_size()); 2127 2128 return 1; 2129 } 2130 2131 /* 2132 * Otherwise, tell other side to register. 2133 */ 2134 reg.current_index = current_index; 2135 if (block->is_ram_block) { 2136 reg.key.current_addr = current_addr; 2137 } else { 2138 reg.key.chunk = chunk; 2139 } 2140 reg.chunks = chunks; 2141 2142 trace_qemu_rdma_write_one_sendreg(chunk, sge.length, current_index, 2143 current_addr); 2144 2145 register_to_network(rdma, ®); 2146 ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) ®, 2147 &resp, ®_result_idx, NULL); 2148 if (ret < 0) { 2149 return ret; 2150 } 2151 2152 /* try to overlap this single registration with the one we sent. */ 2153 if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr, 2154 &sge.lkey, NULL, chunk, 2155 chunk_start, chunk_end)) { 2156 error_report("cannot get lkey"); 2157 return -EINVAL; 2158 } 2159 2160 reg_result = (RDMARegisterResult *) 2161 rdma->wr_data[reg_result_idx].control_curr; 2162 2163 network_to_result(reg_result); 2164 2165 trace_qemu_rdma_write_one_recvregres(block->remote_keys[chunk], 2166 reg_result->rkey, chunk); 2167 2168 block->remote_keys[chunk] = reg_result->rkey; 2169 block->remote_host_addr = reg_result->host_addr; 2170 } else { 2171 /* already registered before */ 2172 if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr, 2173 &sge.lkey, NULL, chunk, 2174 chunk_start, chunk_end)) { 2175 error_report("cannot get lkey!"); 2176 return -EINVAL; 2177 } 2178 } 2179 2180 send_wr.wr.rdma.rkey = block->remote_keys[chunk]; 2181 } else { 2182 send_wr.wr.rdma.rkey = block->remote_rkey; 2183 2184 if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr, 2185 &sge.lkey, NULL, chunk, 2186 chunk_start, chunk_end)) { 2187 error_report("cannot get lkey!"); 2188 return -EINVAL; 2189 } 2190 } 2191 2192 /* 2193 * Encode the ram block index and chunk within this wrid. 2194 * We will use this information at the time of completion 2195 * to figure out which bitmap to check against and then which 2196 * chunk in the bitmap to look for. 2197 */ 2198 send_wr.wr_id = qemu_rdma_make_wrid(RDMA_WRID_RDMA_WRITE, 2199 current_index, chunk); 2200 2201 send_wr.opcode = IBV_WR_RDMA_WRITE; 2202 send_wr.send_flags = IBV_SEND_SIGNALED; 2203 send_wr.sg_list = &sge; 2204 send_wr.num_sge = 1; 2205 send_wr.wr.rdma.remote_addr = block->remote_host_addr + 2206 (current_addr - block->offset); 2207 2208 trace_qemu_rdma_write_one_post(chunk, sge.addr, send_wr.wr.rdma.remote_addr, 2209 sge.length); 2210 2211 /* 2212 * ibv_post_send() does not return negative error numbers, 2213 * per the specification they are positive - no idea why. 2214 */ 2215 ret = ibv_post_send(rdma->qp, &send_wr, &bad_wr); 2216 2217 if (ret == ENOMEM) { 2218 trace_qemu_rdma_write_one_queue_full(); 2219 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL); 2220 if (ret < 0) { 2221 error_report("rdma migration: failed to make " 2222 "room in full send queue! %d", ret); 2223 return ret; 2224 } 2225 2226 goto retry; 2227 2228 } else if (ret > 0) { 2229 perror("rdma migration: post rdma write failed"); 2230 return -ret; 2231 } 2232 2233 set_bit(chunk, block->transit_bitmap); 2234 stat64_add(&mig_stats.normal_pages, sge.length / qemu_target_page_size()); 2235 ram_transferred_add(sge.length); 2236 qemu_file_credit_transfer(f, sge.length); 2237 rdma->total_writes++; 2238 2239 return 0; 2240 } 2241 2242 /* 2243 * Push out any unwritten RDMA operations. 2244 * 2245 * We support sending out multiple chunks at the same time. 2246 * Not all of them need to get signaled in the completion queue. 2247 */ 2248 static int qemu_rdma_write_flush(QEMUFile *f, RDMAContext *rdma) 2249 { 2250 int ret; 2251 2252 if (!rdma->current_length) { 2253 return 0; 2254 } 2255 2256 ret = qemu_rdma_write_one(f, rdma, 2257 rdma->current_index, rdma->current_addr, rdma->current_length); 2258 2259 if (ret < 0) { 2260 return ret; 2261 } 2262 2263 if (ret == 0) { 2264 rdma->nb_sent++; 2265 trace_qemu_rdma_write_flush(rdma->nb_sent); 2266 } 2267 2268 rdma->current_length = 0; 2269 rdma->current_addr = 0; 2270 2271 return 0; 2272 } 2273 2274 static inline int qemu_rdma_buffer_mergable(RDMAContext *rdma, 2275 uint64_t offset, uint64_t len) 2276 { 2277 RDMALocalBlock *block; 2278 uint8_t *host_addr; 2279 uint8_t *chunk_end; 2280 2281 if (rdma->current_index < 0) { 2282 return 0; 2283 } 2284 2285 if (rdma->current_chunk < 0) { 2286 return 0; 2287 } 2288 2289 block = &(rdma->local_ram_blocks.block[rdma->current_index]); 2290 host_addr = block->local_host_addr + (offset - block->offset); 2291 chunk_end = ram_chunk_end(block, rdma->current_chunk); 2292 2293 if (rdma->current_length == 0) { 2294 return 0; 2295 } 2296 2297 /* 2298 * Only merge into chunk sequentially. 2299 */ 2300 if (offset != (rdma->current_addr + rdma->current_length)) { 2301 return 0; 2302 } 2303 2304 if (offset < block->offset) { 2305 return 0; 2306 } 2307 2308 if ((offset + len) > (block->offset + block->length)) { 2309 return 0; 2310 } 2311 2312 if ((host_addr + len) > chunk_end) { 2313 return 0; 2314 } 2315 2316 return 1; 2317 } 2318 2319 /* 2320 * We're not actually writing here, but doing three things: 2321 * 2322 * 1. Identify the chunk the buffer belongs to. 2323 * 2. If the chunk is full or the buffer doesn't belong to the current 2324 * chunk, then start a new chunk and flush() the old chunk. 2325 * 3. To keep the hardware busy, we also group chunks into batches 2326 * and only require that a batch gets acknowledged in the completion 2327 * queue instead of each individual chunk. 2328 */ 2329 static int qemu_rdma_write(QEMUFile *f, RDMAContext *rdma, 2330 uint64_t block_offset, uint64_t offset, 2331 uint64_t len) 2332 { 2333 uint64_t current_addr = block_offset + offset; 2334 uint64_t index = rdma->current_index; 2335 uint64_t chunk = rdma->current_chunk; 2336 int ret; 2337 2338 /* If we cannot merge it, we flush the current buffer first. */ 2339 if (!qemu_rdma_buffer_mergable(rdma, current_addr, len)) { 2340 ret = qemu_rdma_write_flush(f, rdma); 2341 if (ret) { 2342 return ret; 2343 } 2344 rdma->current_length = 0; 2345 rdma->current_addr = current_addr; 2346 2347 ret = qemu_rdma_search_ram_block(rdma, block_offset, 2348 offset, len, &index, &chunk); 2349 if (ret) { 2350 error_report("ram block search failed"); 2351 return ret; 2352 } 2353 rdma->current_index = index; 2354 rdma->current_chunk = chunk; 2355 } 2356 2357 /* merge it */ 2358 rdma->current_length += len; 2359 2360 /* flush it if buffer is too large */ 2361 if (rdma->current_length >= RDMA_MERGE_MAX) { 2362 return qemu_rdma_write_flush(f, rdma); 2363 } 2364 2365 return 0; 2366 } 2367 2368 static void qemu_rdma_cleanup(RDMAContext *rdma) 2369 { 2370 int idx; 2371 2372 if (rdma->cm_id && rdma->connected) { 2373 if ((rdma->error_state || 2374 migrate_get_current()->state == MIGRATION_STATUS_CANCELLING) && 2375 !rdma->received_error) { 2376 RDMAControlHeader head = { .len = 0, 2377 .type = RDMA_CONTROL_ERROR, 2378 .repeat = 1, 2379 }; 2380 error_report("Early error. Sending error."); 2381 qemu_rdma_post_send_control(rdma, NULL, &head); 2382 } 2383 2384 rdma_disconnect(rdma->cm_id); 2385 trace_qemu_rdma_cleanup_disconnect(); 2386 rdma->connected = false; 2387 } 2388 2389 if (rdma->channel) { 2390 qemu_set_fd_handler(rdma->channel->fd, NULL, NULL, NULL); 2391 } 2392 g_free(rdma->dest_blocks); 2393 rdma->dest_blocks = NULL; 2394 2395 for (idx = 0; idx < RDMA_WRID_MAX; idx++) { 2396 if (rdma->wr_data[idx].control_mr) { 2397 rdma->total_registrations--; 2398 ibv_dereg_mr(rdma->wr_data[idx].control_mr); 2399 } 2400 rdma->wr_data[idx].control_mr = NULL; 2401 } 2402 2403 if (rdma->local_ram_blocks.block) { 2404 while (rdma->local_ram_blocks.nb_blocks) { 2405 rdma_delete_block(rdma, &rdma->local_ram_blocks.block[0]); 2406 } 2407 } 2408 2409 if (rdma->qp) { 2410 rdma_destroy_qp(rdma->cm_id); 2411 rdma->qp = NULL; 2412 } 2413 if (rdma->recv_cq) { 2414 ibv_destroy_cq(rdma->recv_cq); 2415 rdma->recv_cq = NULL; 2416 } 2417 if (rdma->send_cq) { 2418 ibv_destroy_cq(rdma->send_cq); 2419 rdma->send_cq = NULL; 2420 } 2421 if (rdma->recv_comp_channel) { 2422 ibv_destroy_comp_channel(rdma->recv_comp_channel); 2423 rdma->recv_comp_channel = NULL; 2424 } 2425 if (rdma->send_comp_channel) { 2426 ibv_destroy_comp_channel(rdma->send_comp_channel); 2427 rdma->send_comp_channel = NULL; 2428 } 2429 if (rdma->pd) { 2430 ibv_dealloc_pd(rdma->pd); 2431 rdma->pd = NULL; 2432 } 2433 if (rdma->cm_id) { 2434 rdma_destroy_id(rdma->cm_id); 2435 rdma->cm_id = NULL; 2436 } 2437 2438 /* the destination side, listen_id and channel is shared */ 2439 if (rdma->listen_id) { 2440 if (!rdma->is_return_path) { 2441 rdma_destroy_id(rdma->listen_id); 2442 } 2443 rdma->listen_id = NULL; 2444 2445 if (rdma->channel) { 2446 if (!rdma->is_return_path) { 2447 rdma_destroy_event_channel(rdma->channel); 2448 } 2449 rdma->channel = NULL; 2450 } 2451 } 2452 2453 if (rdma->channel) { 2454 rdma_destroy_event_channel(rdma->channel); 2455 rdma->channel = NULL; 2456 } 2457 g_free(rdma->host); 2458 g_free(rdma->host_port); 2459 rdma->host = NULL; 2460 rdma->host_port = NULL; 2461 } 2462 2463 2464 static int qemu_rdma_source_init(RDMAContext *rdma, bool pin_all, Error **errp) 2465 { 2466 int ret, idx; 2467 Error *local_err = NULL, **temp = &local_err; 2468 2469 /* 2470 * Will be validated against destination's actual capabilities 2471 * after the connect() completes. 2472 */ 2473 rdma->pin_all = pin_all; 2474 2475 ret = qemu_rdma_resolve_host(rdma, temp); 2476 if (ret) { 2477 goto err_rdma_source_init; 2478 } 2479 2480 ret = qemu_rdma_alloc_pd_cq(rdma); 2481 if (ret) { 2482 ERROR(temp, "rdma migration: error allocating pd and cq! Your mlock()" 2483 " limits may be too low. Please check $ ulimit -a # and " 2484 "search for 'ulimit -l' in the output"); 2485 goto err_rdma_source_init; 2486 } 2487 2488 ret = qemu_rdma_alloc_qp(rdma); 2489 if (ret) { 2490 ERROR(temp, "rdma migration: error allocating qp!"); 2491 goto err_rdma_source_init; 2492 } 2493 2494 ret = qemu_rdma_init_ram_blocks(rdma); 2495 if (ret) { 2496 ERROR(temp, "rdma migration: error initializing ram blocks!"); 2497 goto err_rdma_source_init; 2498 } 2499 2500 /* Build the hash that maps from offset to RAMBlock */ 2501 rdma->blockmap = g_hash_table_new(g_direct_hash, g_direct_equal); 2502 for (idx = 0; idx < rdma->local_ram_blocks.nb_blocks; idx++) { 2503 g_hash_table_insert(rdma->blockmap, 2504 (void *)(uintptr_t)rdma->local_ram_blocks.block[idx].offset, 2505 &rdma->local_ram_blocks.block[idx]); 2506 } 2507 2508 for (idx = 0; idx < RDMA_WRID_MAX; idx++) { 2509 ret = qemu_rdma_reg_control(rdma, idx); 2510 if (ret) { 2511 ERROR(temp, "rdma migration: error registering %d control!", 2512 idx); 2513 goto err_rdma_source_init; 2514 } 2515 } 2516 2517 return 0; 2518 2519 err_rdma_source_init: 2520 error_propagate(errp, local_err); 2521 qemu_rdma_cleanup(rdma); 2522 return -1; 2523 } 2524 2525 static int qemu_get_cm_event_timeout(RDMAContext *rdma, 2526 struct rdma_cm_event **cm_event, 2527 long msec, Error **errp) 2528 { 2529 int ret; 2530 struct pollfd poll_fd = { 2531 .fd = rdma->channel->fd, 2532 .events = POLLIN, 2533 .revents = 0 2534 }; 2535 2536 do { 2537 ret = poll(&poll_fd, 1, msec); 2538 } while (ret < 0 && errno == EINTR); 2539 2540 if (ret == 0) { 2541 ERROR(errp, "poll cm event timeout"); 2542 return -1; 2543 } else if (ret < 0) { 2544 ERROR(errp, "failed to poll cm event, errno=%i", errno); 2545 return -1; 2546 } else if (poll_fd.revents & POLLIN) { 2547 return rdma_get_cm_event(rdma->channel, cm_event); 2548 } else { 2549 ERROR(errp, "no POLLIN event, revent=%x", poll_fd.revents); 2550 return -1; 2551 } 2552 } 2553 2554 static int qemu_rdma_connect(RDMAContext *rdma, Error **errp, bool return_path) 2555 { 2556 RDMACapabilities cap = { 2557 .version = RDMA_CONTROL_VERSION_CURRENT, 2558 .flags = 0, 2559 }; 2560 struct rdma_conn_param conn_param = { .initiator_depth = 2, 2561 .retry_count = 5, 2562 .private_data = &cap, 2563 .private_data_len = sizeof(cap), 2564 }; 2565 struct rdma_cm_event *cm_event; 2566 int ret; 2567 2568 /* 2569 * Only negotiate the capability with destination if the user 2570 * on the source first requested the capability. 2571 */ 2572 if (rdma->pin_all) { 2573 trace_qemu_rdma_connect_pin_all_requested(); 2574 cap.flags |= RDMA_CAPABILITY_PIN_ALL; 2575 } 2576 2577 caps_to_network(&cap); 2578 2579 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY); 2580 if (ret) { 2581 ERROR(errp, "posting second control recv"); 2582 goto err_rdma_source_connect; 2583 } 2584 2585 ret = rdma_connect(rdma->cm_id, &conn_param); 2586 if (ret) { 2587 perror("rdma_connect"); 2588 ERROR(errp, "connecting to destination!"); 2589 goto err_rdma_source_connect; 2590 } 2591 2592 if (return_path) { 2593 ret = qemu_get_cm_event_timeout(rdma, &cm_event, 5000, errp); 2594 } else { 2595 ret = rdma_get_cm_event(rdma->channel, &cm_event); 2596 } 2597 if (ret) { 2598 perror("rdma_get_cm_event after rdma_connect"); 2599 ERROR(errp, "connecting to destination!"); 2600 goto err_rdma_source_connect; 2601 } 2602 2603 if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) { 2604 error_report("rdma_get_cm_event != EVENT_ESTABLISHED after rdma_connect"); 2605 ERROR(errp, "connecting to destination!"); 2606 rdma_ack_cm_event(cm_event); 2607 goto err_rdma_source_connect; 2608 } 2609 rdma->connected = true; 2610 2611 memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap)); 2612 network_to_caps(&cap); 2613 2614 /* 2615 * Verify that the *requested* capabilities are supported by the destination 2616 * and disable them otherwise. 2617 */ 2618 if (rdma->pin_all && !(cap.flags & RDMA_CAPABILITY_PIN_ALL)) { 2619 ERROR(errp, "Server cannot support pinning all memory. " 2620 "Will register memory dynamically."); 2621 rdma->pin_all = false; 2622 } 2623 2624 trace_qemu_rdma_connect_pin_all_outcome(rdma->pin_all); 2625 2626 rdma_ack_cm_event(cm_event); 2627 2628 rdma->control_ready_expected = 1; 2629 rdma->nb_sent = 0; 2630 return 0; 2631 2632 err_rdma_source_connect: 2633 qemu_rdma_cleanup(rdma); 2634 return -1; 2635 } 2636 2637 static int qemu_rdma_dest_init(RDMAContext *rdma, Error **errp) 2638 { 2639 int ret, idx; 2640 struct rdma_cm_id *listen_id; 2641 char ip[40] = "unknown"; 2642 struct rdma_addrinfo *res, *e; 2643 char port_str[16]; 2644 int reuse = 1; 2645 2646 for (idx = 0; idx < RDMA_WRID_MAX; idx++) { 2647 rdma->wr_data[idx].control_len = 0; 2648 rdma->wr_data[idx].control_curr = NULL; 2649 } 2650 2651 if (!rdma->host || !rdma->host[0]) { 2652 ERROR(errp, "RDMA host is not set!"); 2653 rdma->error_state = -EINVAL; 2654 return -1; 2655 } 2656 /* create CM channel */ 2657 rdma->channel = rdma_create_event_channel(); 2658 if (!rdma->channel) { 2659 ERROR(errp, "could not create rdma event channel"); 2660 rdma->error_state = -EINVAL; 2661 return -1; 2662 } 2663 2664 /* create CM id */ 2665 ret = rdma_create_id(rdma->channel, &listen_id, NULL, RDMA_PS_TCP); 2666 if (ret) { 2667 ERROR(errp, "could not create cm_id!"); 2668 goto err_dest_init_create_listen_id; 2669 } 2670 2671 snprintf(port_str, 16, "%d", rdma->port); 2672 port_str[15] = '\0'; 2673 2674 ret = rdma_getaddrinfo(rdma->host, port_str, NULL, &res); 2675 if (ret < 0) { 2676 ERROR(errp, "could not rdma_getaddrinfo address %s", rdma->host); 2677 goto err_dest_init_bind_addr; 2678 } 2679 2680 ret = rdma_set_option(listen_id, RDMA_OPTION_ID, RDMA_OPTION_ID_REUSEADDR, 2681 &reuse, sizeof reuse); 2682 if (ret) { 2683 ERROR(errp, "Error: could not set REUSEADDR option"); 2684 goto err_dest_init_bind_addr; 2685 } 2686 for (e = res; e != NULL; e = e->ai_next) { 2687 inet_ntop(e->ai_family, 2688 &((struct sockaddr_in *) e->ai_dst_addr)->sin_addr, ip, sizeof ip); 2689 trace_qemu_rdma_dest_init_trying(rdma->host, ip); 2690 ret = rdma_bind_addr(listen_id, e->ai_dst_addr); 2691 if (ret) { 2692 continue; 2693 } 2694 if (e->ai_family == AF_INET6) { 2695 ret = qemu_rdma_broken_ipv6_kernel(listen_id->verbs, errp); 2696 if (ret) { 2697 continue; 2698 } 2699 } 2700 break; 2701 } 2702 2703 rdma_freeaddrinfo(res); 2704 if (!e) { 2705 ERROR(errp, "Error: could not rdma_bind_addr!"); 2706 goto err_dest_init_bind_addr; 2707 } 2708 2709 rdma->listen_id = listen_id; 2710 qemu_rdma_dump_gid("dest_init", listen_id); 2711 return 0; 2712 2713 err_dest_init_bind_addr: 2714 rdma_destroy_id(listen_id); 2715 err_dest_init_create_listen_id: 2716 rdma_destroy_event_channel(rdma->channel); 2717 rdma->channel = NULL; 2718 rdma->error_state = ret; 2719 return ret; 2720 2721 } 2722 2723 static void qemu_rdma_return_path_dest_init(RDMAContext *rdma_return_path, 2724 RDMAContext *rdma) 2725 { 2726 int idx; 2727 2728 for (idx = 0; idx < RDMA_WRID_MAX; idx++) { 2729 rdma_return_path->wr_data[idx].control_len = 0; 2730 rdma_return_path->wr_data[idx].control_curr = NULL; 2731 } 2732 2733 /*the CM channel and CM id is shared*/ 2734 rdma_return_path->channel = rdma->channel; 2735 rdma_return_path->listen_id = rdma->listen_id; 2736 2737 rdma->return_path = rdma_return_path; 2738 rdma_return_path->return_path = rdma; 2739 rdma_return_path->is_return_path = true; 2740 } 2741 2742 static void *qemu_rdma_data_init(const char *host_port, Error **errp) 2743 { 2744 RDMAContext *rdma = NULL; 2745 InetSocketAddress *addr; 2746 2747 if (host_port) { 2748 rdma = g_new0(RDMAContext, 1); 2749 rdma->current_index = -1; 2750 rdma->current_chunk = -1; 2751 2752 addr = g_new(InetSocketAddress, 1); 2753 if (!inet_parse(addr, host_port, NULL)) { 2754 rdma->port = atoi(addr->port); 2755 rdma->host = g_strdup(addr->host); 2756 rdma->host_port = g_strdup(host_port); 2757 } else { 2758 ERROR(errp, "bad RDMA migration address '%s'", host_port); 2759 g_free(rdma); 2760 rdma = NULL; 2761 } 2762 2763 qapi_free_InetSocketAddress(addr); 2764 } 2765 2766 return rdma; 2767 } 2768 2769 /* 2770 * QEMUFile interface to the control channel. 2771 * SEND messages for control only. 2772 * VM's ram is handled with regular RDMA messages. 2773 */ 2774 static ssize_t qio_channel_rdma_writev(QIOChannel *ioc, 2775 const struct iovec *iov, 2776 size_t niov, 2777 int *fds, 2778 size_t nfds, 2779 int flags, 2780 Error **errp) 2781 { 2782 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc); 2783 QEMUFile *f = rioc->file; 2784 RDMAContext *rdma; 2785 int ret; 2786 ssize_t done = 0; 2787 size_t i; 2788 size_t len = 0; 2789 2790 RCU_READ_LOCK_GUARD(); 2791 rdma = qatomic_rcu_read(&rioc->rdmaout); 2792 2793 if (!rdma) { 2794 error_setg(errp, "RDMA control channel output is not set"); 2795 return -1; 2796 } 2797 2798 CHECK_ERROR_STATE(); 2799 2800 /* 2801 * Push out any writes that 2802 * we're queued up for VM's ram. 2803 */ 2804 ret = qemu_rdma_write_flush(f, rdma); 2805 if (ret < 0) { 2806 rdma->error_state = ret; 2807 error_setg(errp, "qemu_rdma_write_flush returned %d", ret); 2808 return -1; 2809 } 2810 2811 for (i = 0; i < niov; i++) { 2812 size_t remaining = iov[i].iov_len; 2813 uint8_t * data = (void *)iov[i].iov_base; 2814 while (remaining) { 2815 RDMAControlHeader head; 2816 2817 len = MIN(remaining, RDMA_SEND_INCREMENT); 2818 remaining -= len; 2819 2820 head.len = len; 2821 head.type = RDMA_CONTROL_QEMU_FILE; 2822 2823 ret = qemu_rdma_exchange_send(rdma, &head, data, NULL, NULL, NULL); 2824 2825 if (ret < 0) { 2826 rdma->error_state = ret; 2827 error_setg(errp, "qemu_rdma_exchange_send returned %d", ret); 2828 return -1; 2829 } 2830 2831 data += len; 2832 done += len; 2833 } 2834 } 2835 2836 return done; 2837 } 2838 2839 static size_t qemu_rdma_fill(RDMAContext *rdma, uint8_t *buf, 2840 size_t size, int idx) 2841 { 2842 size_t len = 0; 2843 2844 if (rdma->wr_data[idx].control_len) { 2845 trace_qemu_rdma_fill(rdma->wr_data[idx].control_len, size); 2846 2847 len = MIN(size, rdma->wr_data[idx].control_len); 2848 memcpy(buf, rdma->wr_data[idx].control_curr, len); 2849 rdma->wr_data[idx].control_curr += len; 2850 rdma->wr_data[idx].control_len -= len; 2851 } 2852 2853 return len; 2854 } 2855 2856 /* 2857 * QEMUFile interface to the control channel. 2858 * RDMA links don't use bytestreams, so we have to 2859 * return bytes to QEMUFile opportunistically. 2860 */ 2861 static ssize_t qio_channel_rdma_readv(QIOChannel *ioc, 2862 const struct iovec *iov, 2863 size_t niov, 2864 int **fds, 2865 size_t *nfds, 2866 int flags, 2867 Error **errp) 2868 { 2869 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc); 2870 RDMAContext *rdma; 2871 RDMAControlHeader head; 2872 int ret = 0; 2873 ssize_t i; 2874 size_t done = 0; 2875 2876 RCU_READ_LOCK_GUARD(); 2877 rdma = qatomic_rcu_read(&rioc->rdmain); 2878 2879 if (!rdma) { 2880 error_setg(errp, "RDMA control channel input is not set"); 2881 return -1; 2882 } 2883 2884 CHECK_ERROR_STATE(); 2885 2886 for (i = 0; i < niov; i++) { 2887 size_t want = iov[i].iov_len; 2888 uint8_t *data = (void *)iov[i].iov_base; 2889 2890 /* 2891 * First, we hold on to the last SEND message we 2892 * were given and dish out the bytes until we run 2893 * out of bytes. 2894 */ 2895 ret = qemu_rdma_fill(rdma, data, want, 0); 2896 done += ret; 2897 want -= ret; 2898 /* Got what we needed, so go to next iovec */ 2899 if (want == 0) { 2900 continue; 2901 } 2902 2903 /* If we got any data so far, then don't wait 2904 * for more, just return what we have */ 2905 if (done > 0) { 2906 break; 2907 } 2908 2909 2910 /* We've got nothing at all, so lets wait for 2911 * more to arrive 2912 */ 2913 ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_QEMU_FILE); 2914 2915 if (ret < 0) { 2916 rdma->error_state = ret; 2917 error_setg(errp, "qemu_rdma_exchange_recv returned %d", ret); 2918 return -1; 2919 } 2920 2921 /* 2922 * SEND was received with new bytes, now try again. 2923 */ 2924 ret = qemu_rdma_fill(rdma, data, want, 0); 2925 done += ret; 2926 want -= ret; 2927 2928 /* Still didn't get enough, so lets just return */ 2929 if (want) { 2930 if (done == 0) { 2931 return QIO_CHANNEL_ERR_BLOCK; 2932 } else { 2933 break; 2934 } 2935 } 2936 } 2937 return done; 2938 } 2939 2940 /* 2941 * Block until all the outstanding chunks have been delivered by the hardware. 2942 */ 2943 static int qemu_rdma_drain_cq(QEMUFile *f, RDMAContext *rdma) 2944 { 2945 int ret; 2946 2947 if (qemu_rdma_write_flush(f, rdma) < 0) { 2948 return -EIO; 2949 } 2950 2951 while (rdma->nb_sent) { 2952 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL); 2953 if (ret < 0) { 2954 error_report("rdma migration: complete polling error!"); 2955 return -EIO; 2956 } 2957 } 2958 2959 qemu_rdma_unregister_waiting(rdma); 2960 2961 return 0; 2962 } 2963 2964 2965 static int qio_channel_rdma_set_blocking(QIOChannel *ioc, 2966 bool blocking, 2967 Error **errp) 2968 { 2969 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc); 2970 /* XXX we should make readv/writev actually honour this :-) */ 2971 rioc->blocking = blocking; 2972 return 0; 2973 } 2974 2975 2976 typedef struct QIOChannelRDMASource QIOChannelRDMASource; 2977 struct QIOChannelRDMASource { 2978 GSource parent; 2979 QIOChannelRDMA *rioc; 2980 GIOCondition condition; 2981 }; 2982 2983 static gboolean 2984 qio_channel_rdma_source_prepare(GSource *source, 2985 gint *timeout) 2986 { 2987 QIOChannelRDMASource *rsource = (QIOChannelRDMASource *)source; 2988 RDMAContext *rdma; 2989 GIOCondition cond = 0; 2990 *timeout = -1; 2991 2992 RCU_READ_LOCK_GUARD(); 2993 if (rsource->condition == G_IO_IN) { 2994 rdma = qatomic_rcu_read(&rsource->rioc->rdmain); 2995 } else { 2996 rdma = qatomic_rcu_read(&rsource->rioc->rdmaout); 2997 } 2998 2999 if (!rdma) { 3000 error_report("RDMAContext is NULL when prepare Gsource"); 3001 return FALSE; 3002 } 3003 3004 if (rdma->wr_data[0].control_len) { 3005 cond |= G_IO_IN; 3006 } 3007 cond |= G_IO_OUT; 3008 3009 return cond & rsource->condition; 3010 } 3011 3012 static gboolean 3013 qio_channel_rdma_source_check(GSource *source) 3014 { 3015 QIOChannelRDMASource *rsource = (QIOChannelRDMASource *)source; 3016 RDMAContext *rdma; 3017 GIOCondition cond = 0; 3018 3019 RCU_READ_LOCK_GUARD(); 3020 if (rsource->condition == G_IO_IN) { 3021 rdma = qatomic_rcu_read(&rsource->rioc->rdmain); 3022 } else { 3023 rdma = qatomic_rcu_read(&rsource->rioc->rdmaout); 3024 } 3025 3026 if (!rdma) { 3027 error_report("RDMAContext is NULL when check Gsource"); 3028 return FALSE; 3029 } 3030 3031 if (rdma->wr_data[0].control_len) { 3032 cond |= G_IO_IN; 3033 } 3034 cond |= G_IO_OUT; 3035 3036 return cond & rsource->condition; 3037 } 3038 3039 static gboolean 3040 qio_channel_rdma_source_dispatch(GSource *source, 3041 GSourceFunc callback, 3042 gpointer user_data) 3043 { 3044 QIOChannelFunc func = (QIOChannelFunc)callback; 3045 QIOChannelRDMASource *rsource = (QIOChannelRDMASource *)source; 3046 RDMAContext *rdma; 3047 GIOCondition cond = 0; 3048 3049 RCU_READ_LOCK_GUARD(); 3050 if (rsource->condition == G_IO_IN) { 3051 rdma = qatomic_rcu_read(&rsource->rioc->rdmain); 3052 } else { 3053 rdma = qatomic_rcu_read(&rsource->rioc->rdmaout); 3054 } 3055 3056 if (!rdma) { 3057 error_report("RDMAContext is NULL when dispatch Gsource"); 3058 return FALSE; 3059 } 3060 3061 if (rdma->wr_data[0].control_len) { 3062 cond |= G_IO_IN; 3063 } 3064 cond |= G_IO_OUT; 3065 3066 return (*func)(QIO_CHANNEL(rsource->rioc), 3067 (cond & rsource->condition), 3068 user_data); 3069 } 3070 3071 static void 3072 qio_channel_rdma_source_finalize(GSource *source) 3073 { 3074 QIOChannelRDMASource *ssource = (QIOChannelRDMASource *)source; 3075 3076 object_unref(OBJECT(ssource->rioc)); 3077 } 3078 3079 GSourceFuncs qio_channel_rdma_source_funcs = { 3080 qio_channel_rdma_source_prepare, 3081 qio_channel_rdma_source_check, 3082 qio_channel_rdma_source_dispatch, 3083 qio_channel_rdma_source_finalize 3084 }; 3085 3086 static GSource *qio_channel_rdma_create_watch(QIOChannel *ioc, 3087 GIOCondition condition) 3088 { 3089 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc); 3090 QIOChannelRDMASource *ssource; 3091 GSource *source; 3092 3093 source = g_source_new(&qio_channel_rdma_source_funcs, 3094 sizeof(QIOChannelRDMASource)); 3095 ssource = (QIOChannelRDMASource *)source; 3096 3097 ssource->rioc = rioc; 3098 object_ref(OBJECT(rioc)); 3099 3100 ssource->condition = condition; 3101 3102 return source; 3103 } 3104 3105 static void qio_channel_rdma_set_aio_fd_handler(QIOChannel *ioc, 3106 AioContext *read_ctx, 3107 IOHandler *io_read, 3108 AioContext *write_ctx, 3109 IOHandler *io_write, 3110 void *opaque) 3111 { 3112 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc); 3113 if (io_read) { 3114 aio_set_fd_handler(read_ctx, rioc->rdmain->recv_comp_channel->fd, 3115 io_read, io_write, NULL, NULL, opaque); 3116 aio_set_fd_handler(read_ctx, rioc->rdmain->send_comp_channel->fd, 3117 io_read, io_write, NULL, NULL, opaque); 3118 } else { 3119 aio_set_fd_handler(write_ctx, rioc->rdmaout->recv_comp_channel->fd, 3120 io_read, io_write, NULL, NULL, opaque); 3121 aio_set_fd_handler(write_ctx, rioc->rdmaout->send_comp_channel->fd, 3122 io_read, io_write, NULL, NULL, opaque); 3123 } 3124 } 3125 3126 struct rdma_close_rcu { 3127 struct rcu_head rcu; 3128 RDMAContext *rdmain; 3129 RDMAContext *rdmaout; 3130 }; 3131 3132 /* callback from qio_channel_rdma_close via call_rcu */ 3133 static void qio_channel_rdma_close_rcu(struct rdma_close_rcu *rcu) 3134 { 3135 if (rcu->rdmain) { 3136 qemu_rdma_cleanup(rcu->rdmain); 3137 } 3138 3139 if (rcu->rdmaout) { 3140 qemu_rdma_cleanup(rcu->rdmaout); 3141 } 3142 3143 g_free(rcu->rdmain); 3144 g_free(rcu->rdmaout); 3145 g_free(rcu); 3146 } 3147 3148 static int qio_channel_rdma_close(QIOChannel *ioc, 3149 Error **errp) 3150 { 3151 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc); 3152 RDMAContext *rdmain, *rdmaout; 3153 struct rdma_close_rcu *rcu = g_new(struct rdma_close_rcu, 1); 3154 3155 trace_qemu_rdma_close(); 3156 3157 rdmain = rioc->rdmain; 3158 if (rdmain) { 3159 qatomic_rcu_set(&rioc->rdmain, NULL); 3160 } 3161 3162 rdmaout = rioc->rdmaout; 3163 if (rdmaout) { 3164 qatomic_rcu_set(&rioc->rdmaout, NULL); 3165 } 3166 3167 rcu->rdmain = rdmain; 3168 rcu->rdmaout = rdmaout; 3169 call_rcu(rcu, qio_channel_rdma_close_rcu, rcu); 3170 3171 return 0; 3172 } 3173 3174 static int 3175 qio_channel_rdma_shutdown(QIOChannel *ioc, 3176 QIOChannelShutdown how, 3177 Error **errp) 3178 { 3179 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc); 3180 RDMAContext *rdmain, *rdmaout; 3181 3182 RCU_READ_LOCK_GUARD(); 3183 3184 rdmain = qatomic_rcu_read(&rioc->rdmain); 3185 rdmaout = qatomic_rcu_read(&rioc->rdmain); 3186 3187 switch (how) { 3188 case QIO_CHANNEL_SHUTDOWN_READ: 3189 if (rdmain) { 3190 rdmain->error_state = -1; 3191 } 3192 break; 3193 case QIO_CHANNEL_SHUTDOWN_WRITE: 3194 if (rdmaout) { 3195 rdmaout->error_state = -1; 3196 } 3197 break; 3198 case QIO_CHANNEL_SHUTDOWN_BOTH: 3199 default: 3200 if (rdmain) { 3201 rdmain->error_state = -1; 3202 } 3203 if (rdmaout) { 3204 rdmaout->error_state = -1; 3205 } 3206 break; 3207 } 3208 3209 return 0; 3210 } 3211 3212 /* 3213 * Parameters: 3214 * @offset == 0 : 3215 * This means that 'block_offset' is a full virtual address that does not 3216 * belong to a RAMBlock of the virtual machine and instead 3217 * represents a private malloc'd memory area that the caller wishes to 3218 * transfer. 3219 * 3220 * @offset != 0 : 3221 * Offset is an offset to be added to block_offset and used 3222 * to also lookup the corresponding RAMBlock. 3223 * 3224 * @size : Number of bytes to transfer 3225 * 3226 * @bytes_sent : User-specificed pointer to indicate how many bytes were 3227 * sent. Usually, this will not be more than a few bytes of 3228 * the protocol because most transfers are sent asynchronously. 3229 */ 3230 static size_t qemu_rdma_save_page(QEMUFile *f, 3231 ram_addr_t block_offset, ram_addr_t offset, 3232 size_t size, uint64_t *bytes_sent) 3233 { 3234 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(qemu_file_get_ioc(f)); 3235 RDMAContext *rdma; 3236 int ret; 3237 3238 if (migration_in_postcopy()) { 3239 return RAM_SAVE_CONTROL_NOT_SUPP; 3240 } 3241 3242 RCU_READ_LOCK_GUARD(); 3243 rdma = qatomic_rcu_read(&rioc->rdmaout); 3244 3245 if (!rdma) { 3246 return -EIO; 3247 } 3248 3249 CHECK_ERROR_STATE(); 3250 3251 qemu_fflush(f); 3252 3253 /* 3254 * Add this page to the current 'chunk'. If the chunk 3255 * is full, or the page doesn't belong to the current chunk, 3256 * an actual RDMA write will occur and a new chunk will be formed. 3257 */ 3258 ret = qemu_rdma_write(f, rdma, block_offset, offset, size); 3259 if (ret < 0) { 3260 error_report("rdma migration: write error! %d", ret); 3261 goto err; 3262 } 3263 3264 /* 3265 * We always return 1 bytes because the RDMA 3266 * protocol is completely asynchronous. We do not yet know 3267 * whether an identified chunk is zero or not because we're 3268 * waiting for other pages to potentially be merged with 3269 * the current chunk. So, we have to call qemu_update_position() 3270 * later on when the actual write occurs. 3271 */ 3272 if (bytes_sent) { 3273 *bytes_sent = 1; 3274 } 3275 3276 /* 3277 * Drain the Completion Queue if possible, but do not block, 3278 * just poll. 3279 * 3280 * If nothing to poll, the end of the iteration will do this 3281 * again to make sure we don't overflow the request queue. 3282 */ 3283 while (1) { 3284 uint64_t wr_id, wr_id_in; 3285 int ret = qemu_rdma_poll(rdma, rdma->recv_cq, &wr_id_in, NULL); 3286 if (ret < 0) { 3287 error_report("rdma migration: polling error! %d", ret); 3288 goto err; 3289 } 3290 3291 wr_id = wr_id_in & RDMA_WRID_TYPE_MASK; 3292 3293 if (wr_id == RDMA_WRID_NONE) { 3294 break; 3295 } 3296 } 3297 3298 while (1) { 3299 uint64_t wr_id, wr_id_in; 3300 int ret = qemu_rdma_poll(rdma, rdma->send_cq, &wr_id_in, NULL); 3301 if (ret < 0) { 3302 error_report("rdma migration: polling error! %d", ret); 3303 goto err; 3304 } 3305 3306 wr_id = wr_id_in & RDMA_WRID_TYPE_MASK; 3307 3308 if (wr_id == RDMA_WRID_NONE) { 3309 break; 3310 } 3311 } 3312 3313 return RAM_SAVE_CONTROL_DELAYED; 3314 err: 3315 rdma->error_state = ret; 3316 return ret; 3317 } 3318 3319 static void rdma_accept_incoming_migration(void *opaque); 3320 3321 static void rdma_cm_poll_handler(void *opaque) 3322 { 3323 RDMAContext *rdma = opaque; 3324 int ret; 3325 struct rdma_cm_event *cm_event; 3326 MigrationIncomingState *mis = migration_incoming_get_current(); 3327 3328 ret = rdma_get_cm_event(rdma->channel, &cm_event); 3329 if (ret) { 3330 error_report("get_cm_event failed %d", errno); 3331 return; 3332 } 3333 3334 if (cm_event->event == RDMA_CM_EVENT_DISCONNECTED || 3335 cm_event->event == RDMA_CM_EVENT_DEVICE_REMOVAL) { 3336 if (!rdma->error_state && 3337 migration_incoming_get_current()->state != 3338 MIGRATION_STATUS_COMPLETED) { 3339 error_report("receive cm event, cm event is %d", cm_event->event); 3340 rdma->error_state = -EPIPE; 3341 if (rdma->return_path) { 3342 rdma->return_path->error_state = -EPIPE; 3343 } 3344 } 3345 rdma_ack_cm_event(cm_event); 3346 if (mis->loadvm_co) { 3347 qemu_coroutine_enter(mis->loadvm_co); 3348 } 3349 return; 3350 } 3351 rdma_ack_cm_event(cm_event); 3352 } 3353 3354 static int qemu_rdma_accept(RDMAContext *rdma) 3355 { 3356 RDMACapabilities cap; 3357 struct rdma_conn_param conn_param = { 3358 .responder_resources = 2, 3359 .private_data = &cap, 3360 .private_data_len = sizeof(cap), 3361 }; 3362 RDMAContext *rdma_return_path = NULL; 3363 struct rdma_cm_event *cm_event; 3364 struct ibv_context *verbs; 3365 int ret = -EINVAL; 3366 int idx; 3367 3368 ret = rdma_get_cm_event(rdma->channel, &cm_event); 3369 if (ret) { 3370 goto err_rdma_dest_wait; 3371 } 3372 3373 if (cm_event->event != RDMA_CM_EVENT_CONNECT_REQUEST) { 3374 rdma_ack_cm_event(cm_event); 3375 goto err_rdma_dest_wait; 3376 } 3377 3378 /* 3379 * initialize the RDMAContext for return path for postcopy after first 3380 * connection request reached. 3381 */ 3382 if ((migrate_postcopy() || migrate_return_path()) 3383 && !rdma->is_return_path) { 3384 rdma_return_path = qemu_rdma_data_init(rdma->host_port, NULL); 3385 if (rdma_return_path == NULL) { 3386 rdma_ack_cm_event(cm_event); 3387 goto err_rdma_dest_wait; 3388 } 3389 3390 qemu_rdma_return_path_dest_init(rdma_return_path, rdma); 3391 } 3392 3393 memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap)); 3394 3395 network_to_caps(&cap); 3396 3397 if (cap.version < 1 || cap.version > RDMA_CONTROL_VERSION_CURRENT) { 3398 error_report("Unknown source RDMA version: %d, bailing...", 3399 cap.version); 3400 rdma_ack_cm_event(cm_event); 3401 goto err_rdma_dest_wait; 3402 } 3403 3404 /* 3405 * Respond with only the capabilities this version of QEMU knows about. 3406 */ 3407 cap.flags &= known_capabilities; 3408 3409 /* 3410 * Enable the ones that we do know about. 3411 * Add other checks here as new ones are introduced. 3412 */ 3413 if (cap.flags & RDMA_CAPABILITY_PIN_ALL) { 3414 rdma->pin_all = true; 3415 } 3416 3417 rdma->cm_id = cm_event->id; 3418 verbs = cm_event->id->verbs; 3419 3420 rdma_ack_cm_event(cm_event); 3421 3422 trace_qemu_rdma_accept_pin_state(rdma->pin_all); 3423 3424 caps_to_network(&cap); 3425 3426 trace_qemu_rdma_accept_pin_verbsc(verbs); 3427 3428 if (!rdma->verbs) { 3429 rdma->verbs = verbs; 3430 } else if (rdma->verbs != verbs) { 3431 error_report("ibv context not matching %p, %p!", rdma->verbs, 3432 verbs); 3433 goto err_rdma_dest_wait; 3434 } 3435 3436 qemu_rdma_dump_id("dest_init", verbs); 3437 3438 ret = qemu_rdma_alloc_pd_cq(rdma); 3439 if (ret) { 3440 error_report("rdma migration: error allocating pd and cq!"); 3441 goto err_rdma_dest_wait; 3442 } 3443 3444 ret = qemu_rdma_alloc_qp(rdma); 3445 if (ret) { 3446 error_report("rdma migration: error allocating qp!"); 3447 goto err_rdma_dest_wait; 3448 } 3449 3450 ret = qemu_rdma_init_ram_blocks(rdma); 3451 if (ret) { 3452 error_report("rdma migration: error initializing ram blocks!"); 3453 goto err_rdma_dest_wait; 3454 } 3455 3456 for (idx = 0; idx < RDMA_WRID_MAX; idx++) { 3457 ret = qemu_rdma_reg_control(rdma, idx); 3458 if (ret) { 3459 error_report("rdma: error registering %d control", idx); 3460 goto err_rdma_dest_wait; 3461 } 3462 } 3463 3464 /* Accept the second connection request for return path */ 3465 if ((migrate_postcopy() || migrate_return_path()) 3466 && !rdma->is_return_path) { 3467 qemu_set_fd_handler(rdma->channel->fd, rdma_accept_incoming_migration, 3468 NULL, 3469 (void *)(intptr_t)rdma->return_path); 3470 } else { 3471 qemu_set_fd_handler(rdma->channel->fd, rdma_cm_poll_handler, 3472 NULL, rdma); 3473 } 3474 3475 ret = rdma_accept(rdma->cm_id, &conn_param); 3476 if (ret) { 3477 error_report("rdma_accept returns %d", ret); 3478 goto err_rdma_dest_wait; 3479 } 3480 3481 ret = rdma_get_cm_event(rdma->channel, &cm_event); 3482 if (ret) { 3483 error_report("rdma_accept get_cm_event failed %d", ret); 3484 goto err_rdma_dest_wait; 3485 } 3486 3487 if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) { 3488 error_report("rdma_accept not event established"); 3489 rdma_ack_cm_event(cm_event); 3490 goto err_rdma_dest_wait; 3491 } 3492 3493 rdma_ack_cm_event(cm_event); 3494 rdma->connected = true; 3495 3496 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY); 3497 if (ret) { 3498 error_report("rdma migration: error posting second control recv"); 3499 goto err_rdma_dest_wait; 3500 } 3501 3502 qemu_rdma_dump_gid("dest_connect", rdma->cm_id); 3503 3504 return 0; 3505 3506 err_rdma_dest_wait: 3507 rdma->error_state = ret; 3508 qemu_rdma_cleanup(rdma); 3509 g_free(rdma_return_path); 3510 return ret; 3511 } 3512 3513 static int dest_ram_sort_func(const void *a, const void *b) 3514 { 3515 unsigned int a_index = ((const RDMALocalBlock *)a)->src_index; 3516 unsigned int b_index = ((const RDMALocalBlock *)b)->src_index; 3517 3518 return (a_index < b_index) ? -1 : (a_index != b_index); 3519 } 3520 3521 /* 3522 * During each iteration of the migration, we listen for instructions 3523 * by the source VM to perform dynamic page registrations before they 3524 * can perform RDMA operations. 3525 * 3526 * We respond with the 'rkey'. 3527 * 3528 * Keep doing this until the source tells us to stop. 3529 */ 3530 static int qemu_rdma_registration_handle(QEMUFile *f) 3531 { 3532 RDMAControlHeader reg_resp = { .len = sizeof(RDMARegisterResult), 3533 .type = RDMA_CONTROL_REGISTER_RESULT, 3534 .repeat = 0, 3535 }; 3536 RDMAControlHeader unreg_resp = { .len = 0, 3537 .type = RDMA_CONTROL_UNREGISTER_FINISHED, 3538 .repeat = 0, 3539 }; 3540 RDMAControlHeader blocks = { .type = RDMA_CONTROL_RAM_BLOCKS_RESULT, 3541 .repeat = 1 }; 3542 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(qemu_file_get_ioc(f)); 3543 RDMAContext *rdma; 3544 RDMALocalBlocks *local; 3545 RDMAControlHeader head; 3546 RDMARegister *reg, *registers; 3547 RDMACompress *comp; 3548 RDMARegisterResult *reg_result; 3549 static RDMARegisterResult results[RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE]; 3550 RDMALocalBlock *block; 3551 void *host_addr; 3552 int ret = 0; 3553 int idx = 0; 3554 int count = 0; 3555 int i = 0; 3556 3557 RCU_READ_LOCK_GUARD(); 3558 rdma = qatomic_rcu_read(&rioc->rdmain); 3559 3560 if (!rdma) { 3561 return -EIO; 3562 } 3563 3564 CHECK_ERROR_STATE(); 3565 3566 local = &rdma->local_ram_blocks; 3567 do { 3568 trace_qemu_rdma_registration_handle_wait(); 3569 3570 ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_NONE); 3571 3572 if (ret < 0) { 3573 break; 3574 } 3575 3576 if (head.repeat > RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE) { 3577 error_report("rdma: Too many requests in this message (%d)." 3578 "Bailing.", head.repeat); 3579 ret = -EIO; 3580 break; 3581 } 3582 3583 switch (head.type) { 3584 case RDMA_CONTROL_COMPRESS: 3585 comp = (RDMACompress *) rdma->wr_data[idx].control_curr; 3586 network_to_compress(comp); 3587 3588 trace_qemu_rdma_registration_handle_compress(comp->length, 3589 comp->block_idx, 3590 comp->offset); 3591 if (comp->block_idx >= rdma->local_ram_blocks.nb_blocks) { 3592 error_report("rdma: 'compress' bad block index %u (vs %d)", 3593 (unsigned int)comp->block_idx, 3594 rdma->local_ram_blocks.nb_blocks); 3595 ret = -EIO; 3596 goto out; 3597 } 3598 block = &(rdma->local_ram_blocks.block[comp->block_idx]); 3599 3600 host_addr = block->local_host_addr + 3601 (comp->offset - block->offset); 3602 3603 ram_handle_compressed(host_addr, comp->value, comp->length); 3604 break; 3605 3606 case RDMA_CONTROL_REGISTER_FINISHED: 3607 trace_qemu_rdma_registration_handle_finished(); 3608 goto out; 3609 3610 case RDMA_CONTROL_RAM_BLOCKS_REQUEST: 3611 trace_qemu_rdma_registration_handle_ram_blocks(); 3612 3613 /* Sort our local RAM Block list so it's the same as the source, 3614 * we can do this since we've filled in a src_index in the list 3615 * as we received the RAMBlock list earlier. 3616 */ 3617 qsort(rdma->local_ram_blocks.block, 3618 rdma->local_ram_blocks.nb_blocks, 3619 sizeof(RDMALocalBlock), dest_ram_sort_func); 3620 for (i = 0; i < local->nb_blocks; i++) { 3621 local->block[i].index = i; 3622 } 3623 3624 if (rdma->pin_all) { 3625 ret = qemu_rdma_reg_whole_ram_blocks(rdma); 3626 if (ret) { 3627 error_report("rdma migration: error dest " 3628 "registering ram blocks"); 3629 goto out; 3630 } 3631 } 3632 3633 /* 3634 * Dest uses this to prepare to transmit the RAMBlock descriptions 3635 * to the source VM after connection setup. 3636 * Both sides use the "remote" structure to communicate and update 3637 * their "local" descriptions with what was sent. 3638 */ 3639 for (i = 0; i < local->nb_blocks; i++) { 3640 rdma->dest_blocks[i].remote_host_addr = 3641 (uintptr_t)(local->block[i].local_host_addr); 3642 3643 if (rdma->pin_all) { 3644 rdma->dest_blocks[i].remote_rkey = local->block[i].mr->rkey; 3645 } 3646 3647 rdma->dest_blocks[i].offset = local->block[i].offset; 3648 rdma->dest_blocks[i].length = local->block[i].length; 3649 3650 dest_block_to_network(&rdma->dest_blocks[i]); 3651 trace_qemu_rdma_registration_handle_ram_blocks_loop( 3652 local->block[i].block_name, 3653 local->block[i].offset, 3654 local->block[i].length, 3655 local->block[i].local_host_addr, 3656 local->block[i].src_index); 3657 } 3658 3659 blocks.len = rdma->local_ram_blocks.nb_blocks 3660 * sizeof(RDMADestBlock); 3661 3662 3663 ret = qemu_rdma_post_send_control(rdma, 3664 (uint8_t *) rdma->dest_blocks, &blocks); 3665 3666 if (ret < 0) { 3667 error_report("rdma migration: error sending remote info"); 3668 goto out; 3669 } 3670 3671 break; 3672 case RDMA_CONTROL_REGISTER_REQUEST: 3673 trace_qemu_rdma_registration_handle_register(head.repeat); 3674 3675 reg_resp.repeat = head.repeat; 3676 registers = (RDMARegister *) rdma->wr_data[idx].control_curr; 3677 3678 for (count = 0; count < head.repeat; count++) { 3679 uint64_t chunk; 3680 uint8_t *chunk_start, *chunk_end; 3681 3682 reg = ®isters[count]; 3683 network_to_register(reg); 3684 3685 reg_result = &results[count]; 3686 3687 trace_qemu_rdma_registration_handle_register_loop(count, 3688 reg->current_index, reg->key.current_addr, reg->chunks); 3689 3690 if (reg->current_index >= rdma->local_ram_blocks.nb_blocks) { 3691 error_report("rdma: 'register' bad block index %u (vs %d)", 3692 (unsigned int)reg->current_index, 3693 rdma->local_ram_blocks.nb_blocks); 3694 ret = -ENOENT; 3695 goto out; 3696 } 3697 block = &(rdma->local_ram_blocks.block[reg->current_index]); 3698 if (block->is_ram_block) { 3699 if (block->offset > reg->key.current_addr) { 3700 error_report("rdma: bad register address for block %s" 3701 " offset: %" PRIx64 " current_addr: %" PRIx64, 3702 block->block_name, block->offset, 3703 reg->key.current_addr); 3704 ret = -ERANGE; 3705 goto out; 3706 } 3707 host_addr = (block->local_host_addr + 3708 (reg->key.current_addr - block->offset)); 3709 chunk = ram_chunk_index(block->local_host_addr, 3710 (uint8_t *) host_addr); 3711 } else { 3712 chunk = reg->key.chunk; 3713 host_addr = block->local_host_addr + 3714 (reg->key.chunk * (1UL << RDMA_REG_CHUNK_SHIFT)); 3715 /* Check for particularly bad chunk value */ 3716 if (host_addr < (void *)block->local_host_addr) { 3717 error_report("rdma: bad chunk for block %s" 3718 " chunk: %" PRIx64, 3719 block->block_name, reg->key.chunk); 3720 ret = -ERANGE; 3721 goto out; 3722 } 3723 } 3724 chunk_start = ram_chunk_start(block, chunk); 3725 chunk_end = ram_chunk_end(block, chunk + reg->chunks); 3726 /* avoid "-Waddress-of-packed-member" warning */ 3727 uint32_t tmp_rkey = 0; 3728 if (qemu_rdma_register_and_get_keys(rdma, block, 3729 (uintptr_t)host_addr, NULL, &tmp_rkey, 3730 chunk, chunk_start, chunk_end)) { 3731 error_report("cannot get rkey"); 3732 ret = -EINVAL; 3733 goto out; 3734 } 3735 reg_result->rkey = tmp_rkey; 3736 3737 reg_result->host_addr = (uintptr_t)block->local_host_addr; 3738 3739 trace_qemu_rdma_registration_handle_register_rkey( 3740 reg_result->rkey); 3741 3742 result_to_network(reg_result); 3743 } 3744 3745 ret = qemu_rdma_post_send_control(rdma, 3746 (uint8_t *) results, ®_resp); 3747 3748 if (ret < 0) { 3749 error_report("Failed to send control buffer"); 3750 goto out; 3751 } 3752 break; 3753 case RDMA_CONTROL_UNREGISTER_REQUEST: 3754 trace_qemu_rdma_registration_handle_unregister(head.repeat); 3755 unreg_resp.repeat = head.repeat; 3756 registers = (RDMARegister *) rdma->wr_data[idx].control_curr; 3757 3758 for (count = 0; count < head.repeat; count++) { 3759 reg = ®isters[count]; 3760 network_to_register(reg); 3761 3762 trace_qemu_rdma_registration_handle_unregister_loop(count, 3763 reg->current_index, reg->key.chunk); 3764 3765 block = &(rdma->local_ram_blocks.block[reg->current_index]); 3766 3767 ret = ibv_dereg_mr(block->pmr[reg->key.chunk]); 3768 block->pmr[reg->key.chunk] = NULL; 3769 3770 if (ret != 0) { 3771 perror("rdma unregistration chunk failed"); 3772 ret = -ret; 3773 goto out; 3774 } 3775 3776 rdma->total_registrations--; 3777 3778 trace_qemu_rdma_registration_handle_unregister_success( 3779 reg->key.chunk); 3780 } 3781 3782 ret = qemu_rdma_post_send_control(rdma, NULL, &unreg_resp); 3783 3784 if (ret < 0) { 3785 error_report("Failed to send control buffer"); 3786 goto out; 3787 } 3788 break; 3789 case RDMA_CONTROL_REGISTER_RESULT: 3790 error_report("Invalid RESULT message at dest."); 3791 ret = -EIO; 3792 goto out; 3793 default: 3794 error_report("Unknown control message %s", control_desc(head.type)); 3795 ret = -EIO; 3796 goto out; 3797 } 3798 } while (1); 3799 out: 3800 if (ret < 0) { 3801 rdma->error_state = ret; 3802 } 3803 return ret; 3804 } 3805 3806 /* Destination: 3807 * Called via a ram_control_load_hook during the initial RAM load section which 3808 * lists the RAMBlocks by name. This lets us know the order of the RAMBlocks 3809 * on the source. 3810 * We've already built our local RAMBlock list, but not yet sent the list to 3811 * the source. 3812 */ 3813 static int 3814 rdma_block_notification_handle(QEMUFile *f, const char *name) 3815 { 3816 RDMAContext *rdma; 3817 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(qemu_file_get_ioc(f)); 3818 int curr; 3819 int found = -1; 3820 3821 RCU_READ_LOCK_GUARD(); 3822 rdma = qatomic_rcu_read(&rioc->rdmain); 3823 3824 if (!rdma) { 3825 return -EIO; 3826 } 3827 3828 /* Find the matching RAMBlock in our local list */ 3829 for (curr = 0; curr < rdma->local_ram_blocks.nb_blocks; curr++) { 3830 if (!strcmp(rdma->local_ram_blocks.block[curr].block_name, name)) { 3831 found = curr; 3832 break; 3833 } 3834 } 3835 3836 if (found == -1) { 3837 error_report("RAMBlock '%s' not found on destination", name); 3838 return -ENOENT; 3839 } 3840 3841 rdma->local_ram_blocks.block[curr].src_index = rdma->next_src_index; 3842 trace_rdma_block_notification_handle(name, rdma->next_src_index); 3843 rdma->next_src_index++; 3844 3845 return 0; 3846 } 3847 3848 static int rdma_load_hook(QEMUFile *f, uint64_t flags, void *data) 3849 { 3850 switch (flags) { 3851 case RAM_CONTROL_BLOCK_REG: 3852 return rdma_block_notification_handle(f, data); 3853 3854 case RAM_CONTROL_HOOK: 3855 return qemu_rdma_registration_handle(f); 3856 3857 default: 3858 /* Shouldn't be called with any other values */ 3859 abort(); 3860 } 3861 } 3862 3863 static int qemu_rdma_registration_start(QEMUFile *f, 3864 uint64_t flags, void *data) 3865 { 3866 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(qemu_file_get_ioc(f)); 3867 RDMAContext *rdma; 3868 3869 if (migration_in_postcopy()) { 3870 return 0; 3871 } 3872 3873 RCU_READ_LOCK_GUARD(); 3874 rdma = qatomic_rcu_read(&rioc->rdmaout); 3875 if (!rdma) { 3876 return -EIO; 3877 } 3878 3879 CHECK_ERROR_STATE(); 3880 3881 trace_qemu_rdma_registration_start(flags); 3882 qemu_put_be64(f, RAM_SAVE_FLAG_HOOK); 3883 qemu_fflush(f); 3884 3885 return 0; 3886 } 3887 3888 /* 3889 * Inform dest that dynamic registrations are done for now. 3890 * First, flush writes, if any. 3891 */ 3892 static int qemu_rdma_registration_stop(QEMUFile *f, 3893 uint64_t flags, void *data) 3894 { 3895 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(qemu_file_get_ioc(f)); 3896 RDMAContext *rdma; 3897 RDMAControlHeader head = { .len = 0, .repeat = 1 }; 3898 int ret = 0; 3899 3900 if (migration_in_postcopy()) { 3901 return 0; 3902 } 3903 3904 RCU_READ_LOCK_GUARD(); 3905 rdma = qatomic_rcu_read(&rioc->rdmaout); 3906 if (!rdma) { 3907 return -EIO; 3908 } 3909 3910 CHECK_ERROR_STATE(); 3911 3912 qemu_fflush(f); 3913 ret = qemu_rdma_drain_cq(f, rdma); 3914 3915 if (ret < 0) { 3916 goto err; 3917 } 3918 3919 if (flags == RAM_CONTROL_SETUP) { 3920 RDMAControlHeader resp = {.type = RDMA_CONTROL_RAM_BLOCKS_RESULT }; 3921 RDMALocalBlocks *local = &rdma->local_ram_blocks; 3922 int reg_result_idx, i, nb_dest_blocks; 3923 3924 head.type = RDMA_CONTROL_RAM_BLOCKS_REQUEST; 3925 trace_qemu_rdma_registration_stop_ram(); 3926 3927 /* 3928 * Make sure that we parallelize the pinning on both sides. 3929 * For very large guests, doing this serially takes a really 3930 * long time, so we have to 'interleave' the pinning locally 3931 * with the control messages by performing the pinning on this 3932 * side before we receive the control response from the other 3933 * side that the pinning has completed. 3934 */ 3935 ret = qemu_rdma_exchange_send(rdma, &head, NULL, &resp, 3936 ®_result_idx, rdma->pin_all ? 3937 qemu_rdma_reg_whole_ram_blocks : NULL); 3938 if (ret < 0) { 3939 fprintf(stderr, "receiving remote info!"); 3940 return ret; 3941 } 3942 3943 nb_dest_blocks = resp.len / sizeof(RDMADestBlock); 3944 3945 /* 3946 * The protocol uses two different sets of rkeys (mutually exclusive): 3947 * 1. One key to represent the virtual address of the entire ram block. 3948 * (dynamic chunk registration disabled - pin everything with one rkey.) 3949 * 2. One to represent individual chunks within a ram block. 3950 * (dynamic chunk registration enabled - pin individual chunks.) 3951 * 3952 * Once the capability is successfully negotiated, the destination transmits 3953 * the keys to use (or sends them later) including the virtual addresses 3954 * and then propagates the remote ram block descriptions to his local copy. 3955 */ 3956 3957 if (local->nb_blocks != nb_dest_blocks) { 3958 fprintf(stderr, "ram blocks mismatch (Number of blocks %d vs %d) " 3959 "Your QEMU command line parameters are probably " 3960 "not identical on both the source and destination.", 3961 local->nb_blocks, nb_dest_blocks); 3962 rdma->error_state = -EINVAL; 3963 return -EINVAL; 3964 } 3965 3966 qemu_rdma_move_header(rdma, reg_result_idx, &resp); 3967 memcpy(rdma->dest_blocks, 3968 rdma->wr_data[reg_result_idx].control_curr, resp.len); 3969 for (i = 0; i < nb_dest_blocks; i++) { 3970 network_to_dest_block(&rdma->dest_blocks[i]); 3971 3972 /* We require that the blocks are in the same order */ 3973 if (rdma->dest_blocks[i].length != local->block[i].length) { 3974 fprintf(stderr, "Block %s/%d has a different length %" PRIu64 3975 "vs %" PRIu64, local->block[i].block_name, i, 3976 local->block[i].length, 3977 rdma->dest_blocks[i].length); 3978 rdma->error_state = -EINVAL; 3979 return -EINVAL; 3980 } 3981 local->block[i].remote_host_addr = 3982 rdma->dest_blocks[i].remote_host_addr; 3983 local->block[i].remote_rkey = rdma->dest_blocks[i].remote_rkey; 3984 } 3985 } 3986 3987 trace_qemu_rdma_registration_stop(flags); 3988 3989 head.type = RDMA_CONTROL_REGISTER_FINISHED; 3990 ret = qemu_rdma_exchange_send(rdma, &head, NULL, NULL, NULL, NULL); 3991 3992 if (ret < 0) { 3993 goto err; 3994 } 3995 3996 return 0; 3997 err: 3998 rdma->error_state = ret; 3999 return ret; 4000 } 4001 4002 static const QEMUFileHooks rdma_read_hooks = { 4003 .hook_ram_load = rdma_load_hook, 4004 }; 4005 4006 static const QEMUFileHooks rdma_write_hooks = { 4007 .before_ram_iterate = qemu_rdma_registration_start, 4008 .after_ram_iterate = qemu_rdma_registration_stop, 4009 .save_page = qemu_rdma_save_page, 4010 }; 4011 4012 4013 static void qio_channel_rdma_finalize(Object *obj) 4014 { 4015 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(obj); 4016 if (rioc->rdmain) { 4017 qemu_rdma_cleanup(rioc->rdmain); 4018 g_free(rioc->rdmain); 4019 rioc->rdmain = NULL; 4020 } 4021 if (rioc->rdmaout) { 4022 qemu_rdma_cleanup(rioc->rdmaout); 4023 g_free(rioc->rdmaout); 4024 rioc->rdmaout = NULL; 4025 } 4026 } 4027 4028 static void qio_channel_rdma_class_init(ObjectClass *klass, 4029 void *class_data G_GNUC_UNUSED) 4030 { 4031 QIOChannelClass *ioc_klass = QIO_CHANNEL_CLASS(klass); 4032 4033 ioc_klass->io_writev = qio_channel_rdma_writev; 4034 ioc_klass->io_readv = qio_channel_rdma_readv; 4035 ioc_klass->io_set_blocking = qio_channel_rdma_set_blocking; 4036 ioc_klass->io_close = qio_channel_rdma_close; 4037 ioc_klass->io_create_watch = qio_channel_rdma_create_watch; 4038 ioc_klass->io_set_aio_fd_handler = qio_channel_rdma_set_aio_fd_handler; 4039 ioc_klass->io_shutdown = qio_channel_rdma_shutdown; 4040 } 4041 4042 static const TypeInfo qio_channel_rdma_info = { 4043 .parent = TYPE_QIO_CHANNEL, 4044 .name = TYPE_QIO_CHANNEL_RDMA, 4045 .instance_size = sizeof(QIOChannelRDMA), 4046 .instance_finalize = qio_channel_rdma_finalize, 4047 .class_init = qio_channel_rdma_class_init, 4048 }; 4049 4050 static void qio_channel_rdma_register_types(void) 4051 { 4052 type_register_static(&qio_channel_rdma_info); 4053 } 4054 4055 type_init(qio_channel_rdma_register_types); 4056 4057 static QEMUFile *rdma_new_input(RDMAContext *rdma) 4058 { 4059 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(object_new(TYPE_QIO_CHANNEL_RDMA)); 4060 4061 rioc->file = qemu_file_new_input(QIO_CHANNEL(rioc)); 4062 rioc->rdmain = rdma; 4063 rioc->rdmaout = rdma->return_path; 4064 qemu_file_set_hooks(rioc->file, &rdma_read_hooks); 4065 4066 return rioc->file; 4067 } 4068 4069 static QEMUFile *rdma_new_output(RDMAContext *rdma) 4070 { 4071 QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(object_new(TYPE_QIO_CHANNEL_RDMA)); 4072 4073 rioc->file = qemu_file_new_output(QIO_CHANNEL(rioc)); 4074 rioc->rdmaout = rdma; 4075 rioc->rdmain = rdma->return_path; 4076 qemu_file_set_hooks(rioc->file, &rdma_write_hooks); 4077 4078 return rioc->file; 4079 } 4080 4081 static void rdma_accept_incoming_migration(void *opaque) 4082 { 4083 RDMAContext *rdma = opaque; 4084 int ret; 4085 QEMUFile *f; 4086 Error *local_err = NULL; 4087 4088 trace_qemu_rdma_accept_incoming_migration(); 4089 ret = qemu_rdma_accept(rdma); 4090 4091 if (ret) { 4092 fprintf(stderr, "RDMA ERROR: Migration initialization failed\n"); 4093 return; 4094 } 4095 4096 trace_qemu_rdma_accept_incoming_migration_accepted(); 4097 4098 if (rdma->is_return_path) { 4099 return; 4100 } 4101 4102 f = rdma_new_input(rdma); 4103 if (f == NULL) { 4104 fprintf(stderr, "RDMA ERROR: could not open RDMA for input\n"); 4105 qemu_rdma_cleanup(rdma); 4106 return; 4107 } 4108 4109 rdma->migration_started_on_destination = 1; 4110 migration_fd_process_incoming(f, &local_err); 4111 if (local_err) { 4112 error_reportf_err(local_err, "RDMA ERROR:"); 4113 } 4114 } 4115 4116 void rdma_start_incoming_migration(const char *host_port, Error **errp) 4117 { 4118 int ret; 4119 RDMAContext *rdma; 4120 Error *local_err = NULL; 4121 4122 trace_rdma_start_incoming_migration(); 4123 4124 /* Avoid ram_block_discard_disable(), cannot change during migration. */ 4125 if (ram_block_discard_is_required()) { 4126 error_setg(errp, "RDMA: cannot disable RAM discard"); 4127 return; 4128 } 4129 4130 rdma = qemu_rdma_data_init(host_port, &local_err); 4131 if (rdma == NULL) { 4132 goto err; 4133 } 4134 4135 ret = qemu_rdma_dest_init(rdma, &local_err); 4136 4137 if (ret) { 4138 goto err; 4139 } 4140 4141 trace_rdma_start_incoming_migration_after_dest_init(); 4142 4143 ret = rdma_listen(rdma->listen_id, 5); 4144 4145 if (ret) { 4146 ERROR(errp, "listening on socket!"); 4147 goto cleanup_rdma; 4148 } 4149 4150 trace_rdma_start_incoming_migration_after_rdma_listen(); 4151 4152 qemu_set_fd_handler(rdma->channel->fd, rdma_accept_incoming_migration, 4153 NULL, (void *)(intptr_t)rdma); 4154 return; 4155 4156 cleanup_rdma: 4157 qemu_rdma_cleanup(rdma); 4158 err: 4159 error_propagate(errp, local_err); 4160 if (rdma) { 4161 g_free(rdma->host); 4162 g_free(rdma->host_port); 4163 } 4164 g_free(rdma); 4165 } 4166 4167 void rdma_start_outgoing_migration(void *opaque, 4168 const char *host_port, Error **errp) 4169 { 4170 MigrationState *s = opaque; 4171 RDMAContext *rdma_return_path = NULL; 4172 RDMAContext *rdma; 4173 int ret = 0; 4174 4175 /* Avoid ram_block_discard_disable(), cannot change during migration. */ 4176 if (ram_block_discard_is_required()) { 4177 error_setg(errp, "RDMA: cannot disable RAM discard"); 4178 return; 4179 } 4180 4181 rdma = qemu_rdma_data_init(host_port, errp); 4182 if (rdma == NULL) { 4183 goto err; 4184 } 4185 4186 ret = qemu_rdma_source_init(rdma, migrate_rdma_pin_all(), errp); 4187 4188 if (ret) { 4189 goto err; 4190 } 4191 4192 trace_rdma_start_outgoing_migration_after_rdma_source_init(); 4193 ret = qemu_rdma_connect(rdma, errp, false); 4194 4195 if (ret) { 4196 goto err; 4197 } 4198 4199 /* RDMA postcopy need a separate queue pair for return path */ 4200 if (migrate_postcopy() || migrate_return_path()) { 4201 rdma_return_path = qemu_rdma_data_init(host_port, errp); 4202 4203 if (rdma_return_path == NULL) { 4204 goto return_path_err; 4205 } 4206 4207 ret = qemu_rdma_source_init(rdma_return_path, 4208 migrate_rdma_pin_all(), errp); 4209 4210 if (ret) { 4211 goto return_path_err; 4212 } 4213 4214 ret = qemu_rdma_connect(rdma_return_path, errp, true); 4215 4216 if (ret) { 4217 goto return_path_err; 4218 } 4219 4220 rdma->return_path = rdma_return_path; 4221 rdma_return_path->return_path = rdma; 4222 rdma_return_path->is_return_path = true; 4223 } 4224 4225 trace_rdma_start_outgoing_migration_after_rdma_connect(); 4226 4227 s->to_dst_file = rdma_new_output(rdma); 4228 migrate_fd_connect(s, NULL); 4229 return; 4230 return_path_err: 4231 qemu_rdma_cleanup(rdma); 4232 err: 4233 g_free(rdma); 4234 g_free(rdma_return_path); 4235 } 4236