xref: /openbmc/qemu/migration/rdma.c (revision 9c489ea6)
1 /*
2  * RDMA protocol and interfaces
3  *
4  * Copyright IBM, Corp. 2010-2013
5  * Copyright Red Hat, Inc. 2015-2016
6  *
7  * Authors:
8  *  Michael R. Hines <mrhines@us.ibm.com>
9  *  Jiuxing Liu <jl@us.ibm.com>
10  *  Daniel P. Berrange <berrange@redhat.com>
11  *
12  * This work is licensed under the terms of the GNU GPL, version 2 or
13  * later.  See the COPYING file in the top-level directory.
14  *
15  */
16 #include "qemu/osdep.h"
17 #include "qapi/error.h"
18 #include "qemu-common.h"
19 #include "qemu/cutils.h"
20 #include "rdma.h"
21 #include "migration.h"
22 #include "qemu-file.h"
23 #include "ram.h"
24 #include "qemu-file-channel.h"
25 #include "qemu/error-report.h"
26 #include "qemu/main-loop.h"
27 #include "qemu/sockets.h"
28 #include "qemu/bitmap.h"
29 #include "qemu/coroutine.h"
30 #include <sys/socket.h>
31 #include <netdb.h>
32 #include <arpa/inet.h>
33 #include <rdma/rdma_cma.h>
34 #include "trace.h"
35 
36 /*
37  * Print and error on both the Monitor and the Log file.
38  */
39 #define ERROR(errp, fmt, ...) \
40     do { \
41         fprintf(stderr, "RDMA ERROR: " fmt "\n", ## __VA_ARGS__); \
42         if (errp && (*(errp) == NULL)) { \
43             error_setg(errp, "RDMA ERROR: " fmt, ## __VA_ARGS__); \
44         } \
45     } while (0)
46 
47 #define RDMA_RESOLVE_TIMEOUT_MS 10000
48 
49 /* Do not merge data if larger than this. */
50 #define RDMA_MERGE_MAX (2 * 1024 * 1024)
51 #define RDMA_SIGNALED_SEND_MAX (RDMA_MERGE_MAX / 4096)
52 
53 #define RDMA_REG_CHUNK_SHIFT 20 /* 1 MB */
54 
55 /*
56  * This is only for non-live state being migrated.
57  * Instead of RDMA_WRITE messages, we use RDMA_SEND
58  * messages for that state, which requires a different
59  * delivery design than main memory.
60  */
61 #define RDMA_SEND_INCREMENT 32768
62 
63 /*
64  * Maximum size infiniband SEND message
65  */
66 #define RDMA_CONTROL_MAX_BUFFER (512 * 1024)
67 #define RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE 4096
68 
69 #define RDMA_CONTROL_VERSION_CURRENT 1
70 /*
71  * Capabilities for negotiation.
72  */
73 #define RDMA_CAPABILITY_PIN_ALL 0x01
74 
75 /*
76  * Add the other flags above to this list of known capabilities
77  * as they are introduced.
78  */
79 static uint32_t known_capabilities = RDMA_CAPABILITY_PIN_ALL;
80 
81 #define CHECK_ERROR_STATE() \
82     do { \
83         if (rdma->error_state) { \
84             if (!rdma->error_reported) { \
85                 error_report("RDMA is in an error state waiting migration" \
86                                 " to abort!"); \
87                 rdma->error_reported = 1; \
88             } \
89             return rdma->error_state; \
90         } \
91     } while (0);
92 
93 /*
94  * A work request ID is 64-bits and we split up these bits
95  * into 3 parts:
96  *
97  * bits 0-15 : type of control message, 2^16
98  * bits 16-29: ram block index, 2^14
99  * bits 30-63: ram block chunk number, 2^34
100  *
101  * The last two bit ranges are only used for RDMA writes,
102  * in order to track their completion and potentially
103  * also track unregistration status of the message.
104  */
105 #define RDMA_WRID_TYPE_SHIFT  0UL
106 #define RDMA_WRID_BLOCK_SHIFT 16UL
107 #define RDMA_WRID_CHUNK_SHIFT 30UL
108 
109 #define RDMA_WRID_TYPE_MASK \
110     ((1UL << RDMA_WRID_BLOCK_SHIFT) - 1UL)
111 
112 #define RDMA_WRID_BLOCK_MASK \
113     (~RDMA_WRID_TYPE_MASK & ((1UL << RDMA_WRID_CHUNK_SHIFT) - 1UL))
114 
115 #define RDMA_WRID_CHUNK_MASK (~RDMA_WRID_BLOCK_MASK & ~RDMA_WRID_TYPE_MASK)
116 
117 /*
118  * RDMA migration protocol:
119  * 1. RDMA Writes (data messages, i.e. RAM)
120  * 2. IB Send/Recv (control channel messages)
121  */
122 enum {
123     RDMA_WRID_NONE = 0,
124     RDMA_WRID_RDMA_WRITE = 1,
125     RDMA_WRID_SEND_CONTROL = 2000,
126     RDMA_WRID_RECV_CONTROL = 4000,
127 };
128 
129 static const char *wrid_desc[] = {
130     [RDMA_WRID_NONE] = "NONE",
131     [RDMA_WRID_RDMA_WRITE] = "WRITE RDMA",
132     [RDMA_WRID_SEND_CONTROL] = "CONTROL SEND",
133     [RDMA_WRID_RECV_CONTROL] = "CONTROL RECV",
134 };
135 
136 /*
137  * Work request IDs for IB SEND messages only (not RDMA writes).
138  * This is used by the migration protocol to transmit
139  * control messages (such as device state and registration commands)
140  *
141  * We could use more WRs, but we have enough for now.
142  */
143 enum {
144     RDMA_WRID_READY = 0,
145     RDMA_WRID_DATA,
146     RDMA_WRID_CONTROL,
147     RDMA_WRID_MAX,
148 };
149 
150 /*
151  * SEND/RECV IB Control Messages.
152  */
153 enum {
154     RDMA_CONTROL_NONE = 0,
155     RDMA_CONTROL_ERROR,
156     RDMA_CONTROL_READY,               /* ready to receive */
157     RDMA_CONTROL_QEMU_FILE,           /* QEMUFile-transmitted bytes */
158     RDMA_CONTROL_RAM_BLOCKS_REQUEST,  /* RAMBlock synchronization */
159     RDMA_CONTROL_RAM_BLOCKS_RESULT,   /* RAMBlock synchronization */
160     RDMA_CONTROL_COMPRESS,            /* page contains repeat values */
161     RDMA_CONTROL_REGISTER_REQUEST,    /* dynamic page registration */
162     RDMA_CONTROL_REGISTER_RESULT,     /* key to use after registration */
163     RDMA_CONTROL_REGISTER_FINISHED,   /* current iteration finished */
164     RDMA_CONTROL_UNREGISTER_REQUEST,  /* dynamic UN-registration */
165     RDMA_CONTROL_UNREGISTER_FINISHED, /* unpinning finished */
166 };
167 
168 
169 /*
170  * Memory and MR structures used to represent an IB Send/Recv work request.
171  * This is *not* used for RDMA writes, only IB Send/Recv.
172  */
173 typedef struct {
174     uint8_t  control[RDMA_CONTROL_MAX_BUFFER]; /* actual buffer to register */
175     struct   ibv_mr *control_mr;               /* registration metadata */
176     size_t   control_len;                      /* length of the message */
177     uint8_t *control_curr;                     /* start of unconsumed bytes */
178 } RDMAWorkRequestData;
179 
180 /*
181  * Negotiate RDMA capabilities during connection-setup time.
182  */
183 typedef struct {
184     uint32_t version;
185     uint32_t flags;
186 } RDMACapabilities;
187 
188 static void caps_to_network(RDMACapabilities *cap)
189 {
190     cap->version = htonl(cap->version);
191     cap->flags = htonl(cap->flags);
192 }
193 
194 static void network_to_caps(RDMACapabilities *cap)
195 {
196     cap->version = ntohl(cap->version);
197     cap->flags = ntohl(cap->flags);
198 }
199 
200 /*
201  * Representation of a RAMBlock from an RDMA perspective.
202  * This is not transmitted, only local.
203  * This and subsequent structures cannot be linked lists
204  * because we're using a single IB message to transmit
205  * the information. It's small anyway, so a list is overkill.
206  */
207 typedef struct RDMALocalBlock {
208     char          *block_name;
209     uint8_t       *local_host_addr; /* local virtual address */
210     uint64_t       remote_host_addr; /* remote virtual address */
211     uint64_t       offset;
212     uint64_t       length;
213     struct         ibv_mr **pmr;    /* MRs for chunk-level registration */
214     struct         ibv_mr *mr;      /* MR for non-chunk-level registration */
215     uint32_t      *remote_keys;     /* rkeys for chunk-level registration */
216     uint32_t       remote_rkey;     /* rkeys for non-chunk-level registration */
217     int            index;           /* which block are we */
218     unsigned int   src_index;       /* (Only used on dest) */
219     bool           is_ram_block;
220     int            nb_chunks;
221     unsigned long *transit_bitmap;
222     unsigned long *unregister_bitmap;
223 } RDMALocalBlock;
224 
225 /*
226  * Also represents a RAMblock, but only on the dest.
227  * This gets transmitted by the dest during connection-time
228  * to the source VM and then is used to populate the
229  * corresponding RDMALocalBlock with
230  * the information needed to perform the actual RDMA.
231  */
232 typedef struct QEMU_PACKED RDMADestBlock {
233     uint64_t remote_host_addr;
234     uint64_t offset;
235     uint64_t length;
236     uint32_t remote_rkey;
237     uint32_t padding;
238 } RDMADestBlock;
239 
240 static const char *control_desc(unsigned int rdma_control)
241 {
242     static const char *strs[] = {
243         [RDMA_CONTROL_NONE] = "NONE",
244         [RDMA_CONTROL_ERROR] = "ERROR",
245         [RDMA_CONTROL_READY] = "READY",
246         [RDMA_CONTROL_QEMU_FILE] = "QEMU FILE",
247         [RDMA_CONTROL_RAM_BLOCKS_REQUEST] = "RAM BLOCKS REQUEST",
248         [RDMA_CONTROL_RAM_BLOCKS_RESULT] = "RAM BLOCKS RESULT",
249         [RDMA_CONTROL_COMPRESS] = "COMPRESS",
250         [RDMA_CONTROL_REGISTER_REQUEST] = "REGISTER REQUEST",
251         [RDMA_CONTROL_REGISTER_RESULT] = "REGISTER RESULT",
252         [RDMA_CONTROL_REGISTER_FINISHED] = "REGISTER FINISHED",
253         [RDMA_CONTROL_UNREGISTER_REQUEST] = "UNREGISTER REQUEST",
254         [RDMA_CONTROL_UNREGISTER_FINISHED] = "UNREGISTER FINISHED",
255     };
256 
257     if (rdma_control > RDMA_CONTROL_UNREGISTER_FINISHED) {
258         return "??BAD CONTROL VALUE??";
259     }
260 
261     return strs[rdma_control];
262 }
263 
264 static uint64_t htonll(uint64_t v)
265 {
266     union { uint32_t lv[2]; uint64_t llv; } u;
267     u.lv[0] = htonl(v >> 32);
268     u.lv[1] = htonl(v & 0xFFFFFFFFULL);
269     return u.llv;
270 }
271 
272 static uint64_t ntohll(uint64_t v) {
273     union { uint32_t lv[2]; uint64_t llv; } u;
274     u.llv = v;
275     return ((uint64_t)ntohl(u.lv[0]) << 32) | (uint64_t) ntohl(u.lv[1]);
276 }
277 
278 static void dest_block_to_network(RDMADestBlock *db)
279 {
280     db->remote_host_addr = htonll(db->remote_host_addr);
281     db->offset = htonll(db->offset);
282     db->length = htonll(db->length);
283     db->remote_rkey = htonl(db->remote_rkey);
284 }
285 
286 static void network_to_dest_block(RDMADestBlock *db)
287 {
288     db->remote_host_addr = ntohll(db->remote_host_addr);
289     db->offset = ntohll(db->offset);
290     db->length = ntohll(db->length);
291     db->remote_rkey = ntohl(db->remote_rkey);
292 }
293 
294 /*
295  * Virtual address of the above structures used for transmitting
296  * the RAMBlock descriptions at connection-time.
297  * This structure is *not* transmitted.
298  */
299 typedef struct RDMALocalBlocks {
300     int nb_blocks;
301     bool     init;             /* main memory init complete */
302     RDMALocalBlock *block;
303 } RDMALocalBlocks;
304 
305 /*
306  * Main data structure for RDMA state.
307  * While there is only one copy of this structure being allocated right now,
308  * this is the place where one would start if you wanted to consider
309  * having more than one RDMA connection open at the same time.
310  */
311 typedef struct RDMAContext {
312     char *host;
313     int port;
314 
315     RDMAWorkRequestData wr_data[RDMA_WRID_MAX];
316 
317     /*
318      * This is used by *_exchange_send() to figure out whether or not
319      * the initial "READY" message has already been received or not.
320      * This is because other functions may potentially poll() and detect
321      * the READY message before send() does, in which case we need to
322      * know if it completed.
323      */
324     int control_ready_expected;
325 
326     /* number of outstanding writes */
327     int nb_sent;
328 
329     /* store info about current buffer so that we can
330        merge it with future sends */
331     uint64_t current_addr;
332     uint64_t current_length;
333     /* index of ram block the current buffer belongs to */
334     int current_index;
335     /* index of the chunk in the current ram block */
336     int current_chunk;
337 
338     bool pin_all;
339 
340     /*
341      * infiniband-specific variables for opening the device
342      * and maintaining connection state and so forth.
343      *
344      * cm_id also has ibv_context, rdma_event_channel, and ibv_qp in
345      * cm_id->verbs, cm_id->channel, and cm_id->qp.
346      */
347     struct rdma_cm_id *cm_id;               /* connection manager ID */
348     struct rdma_cm_id *listen_id;
349     bool connected;
350 
351     struct ibv_context          *verbs;
352     struct rdma_event_channel   *channel;
353     struct ibv_qp *qp;                      /* queue pair */
354     struct ibv_comp_channel *comp_channel;  /* completion channel */
355     struct ibv_pd *pd;                      /* protection domain */
356     struct ibv_cq *cq;                      /* completion queue */
357 
358     /*
359      * If a previous write failed (perhaps because of a failed
360      * memory registration, then do not attempt any future work
361      * and remember the error state.
362      */
363     int error_state;
364     int error_reported;
365     int received_error;
366 
367     /*
368      * Description of ram blocks used throughout the code.
369      */
370     RDMALocalBlocks local_ram_blocks;
371     RDMADestBlock  *dest_blocks;
372 
373     /* Index of the next RAMBlock received during block registration */
374     unsigned int    next_src_index;
375 
376     /*
377      * Migration on *destination* started.
378      * Then use coroutine yield function.
379      * Source runs in a thread, so we don't care.
380      */
381     int migration_started_on_destination;
382 
383     int total_registrations;
384     int total_writes;
385 
386     int unregister_current, unregister_next;
387     uint64_t unregistrations[RDMA_SIGNALED_SEND_MAX];
388 
389     GHashTable *blockmap;
390 } RDMAContext;
391 
392 #define TYPE_QIO_CHANNEL_RDMA "qio-channel-rdma"
393 #define QIO_CHANNEL_RDMA(obj)                                     \
394     OBJECT_CHECK(QIOChannelRDMA, (obj), TYPE_QIO_CHANNEL_RDMA)
395 
396 typedef struct QIOChannelRDMA QIOChannelRDMA;
397 
398 
399 struct QIOChannelRDMA {
400     QIOChannel parent;
401     RDMAContext *rdma;
402     QEMUFile *file;
403     size_t len;
404     bool blocking; /* XXX we don't actually honour this yet */
405 };
406 
407 /*
408  * Main structure for IB Send/Recv control messages.
409  * This gets prepended at the beginning of every Send/Recv.
410  */
411 typedef struct QEMU_PACKED {
412     uint32_t len;     /* Total length of data portion */
413     uint32_t type;    /* which control command to perform */
414     uint32_t repeat;  /* number of commands in data portion of same type */
415     uint32_t padding;
416 } RDMAControlHeader;
417 
418 static void control_to_network(RDMAControlHeader *control)
419 {
420     control->type = htonl(control->type);
421     control->len = htonl(control->len);
422     control->repeat = htonl(control->repeat);
423 }
424 
425 static void network_to_control(RDMAControlHeader *control)
426 {
427     control->type = ntohl(control->type);
428     control->len = ntohl(control->len);
429     control->repeat = ntohl(control->repeat);
430 }
431 
432 /*
433  * Register a single Chunk.
434  * Information sent by the source VM to inform the dest
435  * to register an single chunk of memory before we can perform
436  * the actual RDMA operation.
437  */
438 typedef struct QEMU_PACKED {
439     union QEMU_PACKED {
440         uint64_t current_addr;  /* offset into the ram_addr_t space */
441         uint64_t chunk;         /* chunk to lookup if unregistering */
442     } key;
443     uint32_t current_index; /* which ramblock the chunk belongs to */
444     uint32_t padding;
445     uint64_t chunks;            /* how many sequential chunks to register */
446 } RDMARegister;
447 
448 static void register_to_network(RDMAContext *rdma, RDMARegister *reg)
449 {
450     RDMALocalBlock *local_block;
451     local_block  = &rdma->local_ram_blocks.block[reg->current_index];
452 
453     if (local_block->is_ram_block) {
454         /*
455          * current_addr as passed in is an address in the local ram_addr_t
456          * space, we need to translate this for the destination
457          */
458         reg->key.current_addr -= local_block->offset;
459         reg->key.current_addr += rdma->dest_blocks[reg->current_index].offset;
460     }
461     reg->key.current_addr = htonll(reg->key.current_addr);
462     reg->current_index = htonl(reg->current_index);
463     reg->chunks = htonll(reg->chunks);
464 }
465 
466 static void network_to_register(RDMARegister *reg)
467 {
468     reg->key.current_addr = ntohll(reg->key.current_addr);
469     reg->current_index = ntohl(reg->current_index);
470     reg->chunks = ntohll(reg->chunks);
471 }
472 
473 typedef struct QEMU_PACKED {
474     uint32_t value;     /* if zero, we will madvise() */
475     uint32_t block_idx; /* which ram block index */
476     uint64_t offset;    /* Address in remote ram_addr_t space */
477     uint64_t length;    /* length of the chunk */
478 } RDMACompress;
479 
480 static void compress_to_network(RDMAContext *rdma, RDMACompress *comp)
481 {
482     comp->value = htonl(comp->value);
483     /*
484      * comp->offset as passed in is an address in the local ram_addr_t
485      * space, we need to translate this for the destination
486      */
487     comp->offset -= rdma->local_ram_blocks.block[comp->block_idx].offset;
488     comp->offset += rdma->dest_blocks[comp->block_idx].offset;
489     comp->block_idx = htonl(comp->block_idx);
490     comp->offset = htonll(comp->offset);
491     comp->length = htonll(comp->length);
492 }
493 
494 static void network_to_compress(RDMACompress *comp)
495 {
496     comp->value = ntohl(comp->value);
497     comp->block_idx = ntohl(comp->block_idx);
498     comp->offset = ntohll(comp->offset);
499     comp->length = ntohll(comp->length);
500 }
501 
502 /*
503  * The result of the dest's memory registration produces an "rkey"
504  * which the source VM must reference in order to perform
505  * the RDMA operation.
506  */
507 typedef struct QEMU_PACKED {
508     uint32_t rkey;
509     uint32_t padding;
510     uint64_t host_addr;
511 } RDMARegisterResult;
512 
513 static void result_to_network(RDMARegisterResult *result)
514 {
515     result->rkey = htonl(result->rkey);
516     result->host_addr = htonll(result->host_addr);
517 };
518 
519 static void network_to_result(RDMARegisterResult *result)
520 {
521     result->rkey = ntohl(result->rkey);
522     result->host_addr = ntohll(result->host_addr);
523 };
524 
525 const char *print_wrid(int wrid);
526 static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head,
527                                    uint8_t *data, RDMAControlHeader *resp,
528                                    int *resp_idx,
529                                    int (*callback)(RDMAContext *rdma));
530 
531 static inline uint64_t ram_chunk_index(const uint8_t *start,
532                                        const uint8_t *host)
533 {
534     return ((uintptr_t) host - (uintptr_t) start) >> RDMA_REG_CHUNK_SHIFT;
535 }
536 
537 static inline uint8_t *ram_chunk_start(const RDMALocalBlock *rdma_ram_block,
538                                        uint64_t i)
539 {
540     return (uint8_t *)(uintptr_t)(rdma_ram_block->local_host_addr +
541                                   (i << RDMA_REG_CHUNK_SHIFT));
542 }
543 
544 static inline uint8_t *ram_chunk_end(const RDMALocalBlock *rdma_ram_block,
545                                      uint64_t i)
546 {
547     uint8_t *result = ram_chunk_start(rdma_ram_block, i) +
548                                          (1UL << RDMA_REG_CHUNK_SHIFT);
549 
550     if (result > (rdma_ram_block->local_host_addr + rdma_ram_block->length)) {
551         result = rdma_ram_block->local_host_addr + rdma_ram_block->length;
552     }
553 
554     return result;
555 }
556 
557 static int rdma_add_block(RDMAContext *rdma, const char *block_name,
558                          void *host_addr,
559                          ram_addr_t block_offset, uint64_t length)
560 {
561     RDMALocalBlocks *local = &rdma->local_ram_blocks;
562     RDMALocalBlock *block;
563     RDMALocalBlock *old = local->block;
564 
565     local->block = g_new0(RDMALocalBlock, local->nb_blocks + 1);
566 
567     if (local->nb_blocks) {
568         int x;
569 
570         if (rdma->blockmap) {
571             for (x = 0; x < local->nb_blocks; x++) {
572                 g_hash_table_remove(rdma->blockmap,
573                                     (void *)(uintptr_t)old[x].offset);
574                 g_hash_table_insert(rdma->blockmap,
575                                     (void *)(uintptr_t)old[x].offset,
576                                     &local->block[x]);
577             }
578         }
579         memcpy(local->block, old, sizeof(RDMALocalBlock) * local->nb_blocks);
580         g_free(old);
581     }
582 
583     block = &local->block[local->nb_blocks];
584 
585     block->block_name = g_strdup(block_name);
586     block->local_host_addr = host_addr;
587     block->offset = block_offset;
588     block->length = length;
589     block->index = local->nb_blocks;
590     block->src_index = ~0U; /* Filled in by the receipt of the block list */
591     block->nb_chunks = ram_chunk_index(host_addr, host_addr + length) + 1UL;
592     block->transit_bitmap = bitmap_new(block->nb_chunks);
593     bitmap_clear(block->transit_bitmap, 0, block->nb_chunks);
594     block->unregister_bitmap = bitmap_new(block->nb_chunks);
595     bitmap_clear(block->unregister_bitmap, 0, block->nb_chunks);
596     block->remote_keys = g_new0(uint32_t, block->nb_chunks);
597 
598     block->is_ram_block = local->init ? false : true;
599 
600     if (rdma->blockmap) {
601         g_hash_table_insert(rdma->blockmap, (void *)(uintptr_t)block_offset, block);
602     }
603 
604     trace_rdma_add_block(block_name, local->nb_blocks,
605                          (uintptr_t) block->local_host_addr,
606                          block->offset, block->length,
607                          (uintptr_t) (block->local_host_addr + block->length),
608                          BITS_TO_LONGS(block->nb_chunks) *
609                              sizeof(unsigned long) * 8,
610                          block->nb_chunks);
611 
612     local->nb_blocks++;
613 
614     return 0;
615 }
616 
617 /*
618  * Memory regions need to be registered with the device and queue pairs setup
619  * in advanced before the migration starts. This tells us where the RAM blocks
620  * are so that we can register them individually.
621  */
622 static int qemu_rdma_init_one_block(const char *block_name, void *host_addr,
623     ram_addr_t block_offset, ram_addr_t length, void *opaque)
624 {
625     return rdma_add_block(opaque, block_name, host_addr, block_offset, length);
626 }
627 
628 /*
629  * Identify the RAMBlocks and their quantity. They will be references to
630  * identify chunk boundaries inside each RAMBlock and also be referenced
631  * during dynamic page registration.
632  */
633 static int qemu_rdma_init_ram_blocks(RDMAContext *rdma)
634 {
635     RDMALocalBlocks *local = &rdma->local_ram_blocks;
636 
637     assert(rdma->blockmap == NULL);
638     memset(local, 0, sizeof *local);
639     qemu_ram_foreach_block(qemu_rdma_init_one_block, rdma);
640     trace_qemu_rdma_init_ram_blocks(local->nb_blocks);
641     rdma->dest_blocks = g_new0(RDMADestBlock,
642                                rdma->local_ram_blocks.nb_blocks);
643     local->init = true;
644     return 0;
645 }
646 
647 /*
648  * Note: If used outside of cleanup, the caller must ensure that the destination
649  * block structures are also updated
650  */
651 static int rdma_delete_block(RDMAContext *rdma, RDMALocalBlock *block)
652 {
653     RDMALocalBlocks *local = &rdma->local_ram_blocks;
654     RDMALocalBlock *old = local->block;
655     int x;
656 
657     if (rdma->blockmap) {
658         g_hash_table_remove(rdma->blockmap, (void *)(uintptr_t)block->offset);
659     }
660     if (block->pmr) {
661         int j;
662 
663         for (j = 0; j < block->nb_chunks; j++) {
664             if (!block->pmr[j]) {
665                 continue;
666             }
667             ibv_dereg_mr(block->pmr[j]);
668             rdma->total_registrations--;
669         }
670         g_free(block->pmr);
671         block->pmr = NULL;
672     }
673 
674     if (block->mr) {
675         ibv_dereg_mr(block->mr);
676         rdma->total_registrations--;
677         block->mr = NULL;
678     }
679 
680     g_free(block->transit_bitmap);
681     block->transit_bitmap = NULL;
682 
683     g_free(block->unregister_bitmap);
684     block->unregister_bitmap = NULL;
685 
686     g_free(block->remote_keys);
687     block->remote_keys = NULL;
688 
689     g_free(block->block_name);
690     block->block_name = NULL;
691 
692     if (rdma->blockmap) {
693         for (x = 0; x < local->nb_blocks; x++) {
694             g_hash_table_remove(rdma->blockmap,
695                                 (void *)(uintptr_t)old[x].offset);
696         }
697     }
698 
699     if (local->nb_blocks > 1) {
700 
701         local->block = g_new0(RDMALocalBlock, local->nb_blocks - 1);
702 
703         if (block->index) {
704             memcpy(local->block, old, sizeof(RDMALocalBlock) * block->index);
705         }
706 
707         if (block->index < (local->nb_blocks - 1)) {
708             memcpy(local->block + block->index, old + (block->index + 1),
709                 sizeof(RDMALocalBlock) *
710                     (local->nb_blocks - (block->index + 1)));
711         }
712     } else {
713         assert(block == local->block);
714         local->block = NULL;
715     }
716 
717     trace_rdma_delete_block(block, (uintptr_t)block->local_host_addr,
718                            block->offset, block->length,
719                             (uintptr_t)(block->local_host_addr + block->length),
720                            BITS_TO_LONGS(block->nb_chunks) *
721                                sizeof(unsigned long) * 8, block->nb_chunks);
722 
723     g_free(old);
724 
725     local->nb_blocks--;
726 
727     if (local->nb_blocks && rdma->blockmap) {
728         for (x = 0; x < local->nb_blocks; x++) {
729             g_hash_table_insert(rdma->blockmap,
730                                 (void *)(uintptr_t)local->block[x].offset,
731                                 &local->block[x]);
732         }
733     }
734 
735     return 0;
736 }
737 
738 /*
739  * Put in the log file which RDMA device was opened and the details
740  * associated with that device.
741  */
742 static void qemu_rdma_dump_id(const char *who, struct ibv_context *verbs)
743 {
744     struct ibv_port_attr port;
745 
746     if (ibv_query_port(verbs, 1, &port)) {
747         error_report("Failed to query port information");
748         return;
749     }
750 
751     printf("%s RDMA Device opened: kernel name %s "
752            "uverbs device name %s, "
753            "infiniband_verbs class device path %s, "
754            "infiniband class device path %s, "
755            "transport: (%d) %s\n",
756                 who,
757                 verbs->device->name,
758                 verbs->device->dev_name,
759                 verbs->device->dev_path,
760                 verbs->device->ibdev_path,
761                 port.link_layer,
762                 (port.link_layer == IBV_LINK_LAYER_INFINIBAND) ? "Infiniband" :
763                  ((port.link_layer == IBV_LINK_LAYER_ETHERNET)
764                     ? "Ethernet" : "Unknown"));
765 }
766 
767 /*
768  * Put in the log file the RDMA gid addressing information,
769  * useful for folks who have trouble understanding the
770  * RDMA device hierarchy in the kernel.
771  */
772 static void qemu_rdma_dump_gid(const char *who, struct rdma_cm_id *id)
773 {
774     char sgid[33];
775     char dgid[33];
776     inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.sgid, sgid, sizeof sgid);
777     inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.dgid, dgid, sizeof dgid);
778     trace_qemu_rdma_dump_gid(who, sgid, dgid);
779 }
780 
781 /*
782  * As of now, IPv6 over RoCE / iWARP is not supported by linux.
783  * We will try the next addrinfo struct, and fail if there are
784  * no other valid addresses to bind against.
785  *
786  * If user is listening on '[::]', then we will not have a opened a device
787  * yet and have no way of verifying if the device is RoCE or not.
788  *
789  * In this case, the source VM will throw an error for ALL types of
790  * connections (both IPv4 and IPv6) if the destination machine does not have
791  * a regular infiniband network available for use.
792  *
793  * The only way to guarantee that an error is thrown for broken kernels is
794  * for the management software to choose a *specific* interface at bind time
795  * and validate what time of hardware it is.
796  *
797  * Unfortunately, this puts the user in a fix:
798  *
799  *  If the source VM connects with an IPv4 address without knowing that the
800  *  destination has bound to '[::]' the migration will unconditionally fail
801  *  unless the management software is explicitly listening on the IPv4
802  *  address while using a RoCE-based device.
803  *
804  *  If the source VM connects with an IPv6 address, then we're OK because we can
805  *  throw an error on the source (and similarly on the destination).
806  *
807  *  But in mixed environments, this will be broken for a while until it is fixed
808  *  inside linux.
809  *
810  * We do provide a *tiny* bit of help in this function: We can list all of the
811  * devices in the system and check to see if all the devices are RoCE or
812  * Infiniband.
813  *
814  * If we detect that we have a *pure* RoCE environment, then we can safely
815  * thrown an error even if the management software has specified '[::]' as the
816  * bind address.
817  *
818  * However, if there is are multiple hetergeneous devices, then we cannot make
819  * this assumption and the user just has to be sure they know what they are
820  * doing.
821  *
822  * Patches are being reviewed on linux-rdma.
823  */
824 static int qemu_rdma_broken_ipv6_kernel(struct ibv_context *verbs, Error **errp)
825 {
826     struct ibv_port_attr port_attr;
827 
828     /* This bug only exists in linux, to our knowledge. */
829 #ifdef CONFIG_LINUX
830 
831     /*
832      * Verbs are only NULL if management has bound to '[::]'.
833      *
834      * Let's iterate through all the devices and see if there any pure IB
835      * devices (non-ethernet).
836      *
837      * If not, then we can safely proceed with the migration.
838      * Otherwise, there are no guarantees until the bug is fixed in linux.
839      */
840     if (!verbs) {
841         int num_devices, x;
842         struct ibv_device ** dev_list = ibv_get_device_list(&num_devices);
843         bool roce_found = false;
844         bool ib_found = false;
845 
846         for (x = 0; x < num_devices; x++) {
847             verbs = ibv_open_device(dev_list[x]);
848             if (!verbs) {
849                 if (errno == EPERM) {
850                     continue;
851                 } else {
852                     return -EINVAL;
853                 }
854             }
855 
856             if (ibv_query_port(verbs, 1, &port_attr)) {
857                 ibv_close_device(verbs);
858                 ERROR(errp, "Could not query initial IB port");
859                 return -EINVAL;
860             }
861 
862             if (port_attr.link_layer == IBV_LINK_LAYER_INFINIBAND) {
863                 ib_found = true;
864             } else if (port_attr.link_layer == IBV_LINK_LAYER_ETHERNET) {
865                 roce_found = true;
866             }
867 
868             ibv_close_device(verbs);
869 
870         }
871 
872         if (roce_found) {
873             if (ib_found) {
874                 fprintf(stderr, "WARN: migrations may fail:"
875                                 " IPv6 over RoCE / iWARP in linux"
876                                 " is broken. But since you appear to have a"
877                                 " mixed RoCE / IB environment, be sure to only"
878                                 " migrate over the IB fabric until the kernel "
879                                 " fixes the bug.\n");
880             } else {
881                 ERROR(errp, "You only have RoCE / iWARP devices in your systems"
882                             " and your management software has specified '[::]'"
883                             ", but IPv6 over RoCE / iWARP is not supported in Linux.");
884                 return -ENONET;
885             }
886         }
887 
888         return 0;
889     }
890 
891     /*
892      * If we have a verbs context, that means that some other than '[::]' was
893      * used by the management software for binding. In which case we can
894      * actually warn the user about a potentially broken kernel.
895      */
896 
897     /* IB ports start with 1, not 0 */
898     if (ibv_query_port(verbs, 1, &port_attr)) {
899         ERROR(errp, "Could not query initial IB port");
900         return -EINVAL;
901     }
902 
903     if (port_attr.link_layer == IBV_LINK_LAYER_ETHERNET) {
904         ERROR(errp, "Linux kernel's RoCE / iWARP does not support IPv6 "
905                     "(but patches on linux-rdma in progress)");
906         return -ENONET;
907     }
908 
909 #endif
910 
911     return 0;
912 }
913 
914 /*
915  * Figure out which RDMA device corresponds to the requested IP hostname
916  * Also create the initial connection manager identifiers for opening
917  * the connection.
918  */
919 static int qemu_rdma_resolve_host(RDMAContext *rdma, Error **errp)
920 {
921     int ret;
922     struct rdma_addrinfo *res;
923     char port_str[16];
924     struct rdma_cm_event *cm_event;
925     char ip[40] = "unknown";
926     struct rdma_addrinfo *e;
927 
928     if (rdma->host == NULL || !strcmp(rdma->host, "")) {
929         ERROR(errp, "RDMA hostname has not been set");
930         return -EINVAL;
931     }
932 
933     /* create CM channel */
934     rdma->channel = rdma_create_event_channel();
935     if (!rdma->channel) {
936         ERROR(errp, "could not create CM channel");
937         return -EINVAL;
938     }
939 
940     /* create CM id */
941     ret = rdma_create_id(rdma->channel, &rdma->cm_id, NULL, RDMA_PS_TCP);
942     if (ret) {
943         ERROR(errp, "could not create channel id");
944         goto err_resolve_create_id;
945     }
946 
947     snprintf(port_str, 16, "%d", rdma->port);
948     port_str[15] = '\0';
949 
950     ret = rdma_getaddrinfo(rdma->host, port_str, NULL, &res);
951     if (ret < 0) {
952         ERROR(errp, "could not rdma_getaddrinfo address %s", rdma->host);
953         goto err_resolve_get_addr;
954     }
955 
956     for (e = res; e != NULL; e = e->ai_next) {
957         inet_ntop(e->ai_family,
958             &((struct sockaddr_in *) e->ai_dst_addr)->sin_addr, ip, sizeof ip);
959         trace_qemu_rdma_resolve_host_trying(rdma->host, ip);
960 
961         ret = rdma_resolve_addr(rdma->cm_id, NULL, e->ai_dst_addr,
962                 RDMA_RESOLVE_TIMEOUT_MS);
963         if (!ret) {
964             if (e->ai_family == AF_INET6) {
965                 ret = qemu_rdma_broken_ipv6_kernel(rdma->cm_id->verbs, errp);
966                 if (ret) {
967                     continue;
968                 }
969             }
970             goto route;
971         }
972     }
973 
974     ERROR(errp, "could not resolve address %s", rdma->host);
975     goto err_resolve_get_addr;
976 
977 route:
978     qemu_rdma_dump_gid("source_resolve_addr", rdma->cm_id);
979 
980     ret = rdma_get_cm_event(rdma->channel, &cm_event);
981     if (ret) {
982         ERROR(errp, "could not perform event_addr_resolved");
983         goto err_resolve_get_addr;
984     }
985 
986     if (cm_event->event != RDMA_CM_EVENT_ADDR_RESOLVED) {
987         ERROR(errp, "result not equal to event_addr_resolved %s",
988                 rdma_event_str(cm_event->event));
989         perror("rdma_resolve_addr");
990         rdma_ack_cm_event(cm_event);
991         ret = -EINVAL;
992         goto err_resolve_get_addr;
993     }
994     rdma_ack_cm_event(cm_event);
995 
996     /* resolve route */
997     ret = rdma_resolve_route(rdma->cm_id, RDMA_RESOLVE_TIMEOUT_MS);
998     if (ret) {
999         ERROR(errp, "could not resolve rdma route");
1000         goto err_resolve_get_addr;
1001     }
1002 
1003     ret = rdma_get_cm_event(rdma->channel, &cm_event);
1004     if (ret) {
1005         ERROR(errp, "could not perform event_route_resolved");
1006         goto err_resolve_get_addr;
1007     }
1008     if (cm_event->event != RDMA_CM_EVENT_ROUTE_RESOLVED) {
1009         ERROR(errp, "result not equal to event_route_resolved: %s",
1010                         rdma_event_str(cm_event->event));
1011         rdma_ack_cm_event(cm_event);
1012         ret = -EINVAL;
1013         goto err_resolve_get_addr;
1014     }
1015     rdma_ack_cm_event(cm_event);
1016     rdma->verbs = rdma->cm_id->verbs;
1017     qemu_rdma_dump_id("source_resolve_host", rdma->cm_id->verbs);
1018     qemu_rdma_dump_gid("source_resolve_host", rdma->cm_id);
1019     return 0;
1020 
1021 err_resolve_get_addr:
1022     rdma_destroy_id(rdma->cm_id);
1023     rdma->cm_id = NULL;
1024 err_resolve_create_id:
1025     rdma_destroy_event_channel(rdma->channel);
1026     rdma->channel = NULL;
1027     return ret;
1028 }
1029 
1030 /*
1031  * Create protection domain and completion queues
1032  */
1033 static int qemu_rdma_alloc_pd_cq(RDMAContext *rdma)
1034 {
1035     /* allocate pd */
1036     rdma->pd = ibv_alloc_pd(rdma->verbs);
1037     if (!rdma->pd) {
1038         error_report("failed to allocate protection domain");
1039         return -1;
1040     }
1041 
1042     /* create completion channel */
1043     rdma->comp_channel = ibv_create_comp_channel(rdma->verbs);
1044     if (!rdma->comp_channel) {
1045         error_report("failed to allocate completion channel");
1046         goto err_alloc_pd_cq;
1047     }
1048 
1049     /*
1050      * Completion queue can be filled by both read and write work requests,
1051      * so must reflect the sum of both possible queue sizes.
1052      */
1053     rdma->cq = ibv_create_cq(rdma->verbs, (RDMA_SIGNALED_SEND_MAX * 3),
1054             NULL, rdma->comp_channel, 0);
1055     if (!rdma->cq) {
1056         error_report("failed to allocate completion queue");
1057         goto err_alloc_pd_cq;
1058     }
1059 
1060     return 0;
1061 
1062 err_alloc_pd_cq:
1063     if (rdma->pd) {
1064         ibv_dealloc_pd(rdma->pd);
1065     }
1066     if (rdma->comp_channel) {
1067         ibv_destroy_comp_channel(rdma->comp_channel);
1068     }
1069     rdma->pd = NULL;
1070     rdma->comp_channel = NULL;
1071     return -1;
1072 
1073 }
1074 
1075 /*
1076  * Create queue pairs.
1077  */
1078 static int qemu_rdma_alloc_qp(RDMAContext *rdma)
1079 {
1080     struct ibv_qp_init_attr attr = { 0 };
1081     int ret;
1082 
1083     attr.cap.max_send_wr = RDMA_SIGNALED_SEND_MAX;
1084     attr.cap.max_recv_wr = 3;
1085     attr.cap.max_send_sge = 1;
1086     attr.cap.max_recv_sge = 1;
1087     attr.send_cq = rdma->cq;
1088     attr.recv_cq = rdma->cq;
1089     attr.qp_type = IBV_QPT_RC;
1090 
1091     ret = rdma_create_qp(rdma->cm_id, rdma->pd, &attr);
1092     if (ret) {
1093         return -1;
1094     }
1095 
1096     rdma->qp = rdma->cm_id->qp;
1097     return 0;
1098 }
1099 
1100 static int qemu_rdma_reg_whole_ram_blocks(RDMAContext *rdma)
1101 {
1102     int i;
1103     RDMALocalBlocks *local = &rdma->local_ram_blocks;
1104 
1105     for (i = 0; i < local->nb_blocks; i++) {
1106         local->block[i].mr =
1107             ibv_reg_mr(rdma->pd,
1108                     local->block[i].local_host_addr,
1109                     local->block[i].length,
1110                     IBV_ACCESS_LOCAL_WRITE |
1111                     IBV_ACCESS_REMOTE_WRITE
1112                     );
1113         if (!local->block[i].mr) {
1114             perror("Failed to register local dest ram block!\n");
1115             break;
1116         }
1117         rdma->total_registrations++;
1118     }
1119 
1120     if (i >= local->nb_blocks) {
1121         return 0;
1122     }
1123 
1124     for (i--; i >= 0; i--) {
1125         ibv_dereg_mr(local->block[i].mr);
1126         rdma->total_registrations--;
1127     }
1128 
1129     return -1;
1130 
1131 }
1132 
1133 /*
1134  * Find the ram block that corresponds to the page requested to be
1135  * transmitted by QEMU.
1136  *
1137  * Once the block is found, also identify which 'chunk' within that
1138  * block that the page belongs to.
1139  *
1140  * This search cannot fail or the migration will fail.
1141  */
1142 static int qemu_rdma_search_ram_block(RDMAContext *rdma,
1143                                       uintptr_t block_offset,
1144                                       uint64_t offset,
1145                                       uint64_t length,
1146                                       uint64_t *block_index,
1147                                       uint64_t *chunk_index)
1148 {
1149     uint64_t current_addr = block_offset + offset;
1150     RDMALocalBlock *block = g_hash_table_lookup(rdma->blockmap,
1151                                                 (void *) block_offset);
1152     assert(block);
1153     assert(current_addr >= block->offset);
1154     assert((current_addr + length) <= (block->offset + block->length));
1155 
1156     *block_index = block->index;
1157     *chunk_index = ram_chunk_index(block->local_host_addr,
1158                 block->local_host_addr + (current_addr - block->offset));
1159 
1160     return 0;
1161 }
1162 
1163 /*
1164  * Register a chunk with IB. If the chunk was already registered
1165  * previously, then skip.
1166  *
1167  * Also return the keys associated with the registration needed
1168  * to perform the actual RDMA operation.
1169  */
1170 static int qemu_rdma_register_and_get_keys(RDMAContext *rdma,
1171         RDMALocalBlock *block, uintptr_t host_addr,
1172         uint32_t *lkey, uint32_t *rkey, int chunk,
1173         uint8_t *chunk_start, uint8_t *chunk_end)
1174 {
1175     if (block->mr) {
1176         if (lkey) {
1177             *lkey = block->mr->lkey;
1178         }
1179         if (rkey) {
1180             *rkey = block->mr->rkey;
1181         }
1182         return 0;
1183     }
1184 
1185     /* allocate memory to store chunk MRs */
1186     if (!block->pmr) {
1187         block->pmr = g_new0(struct ibv_mr *, block->nb_chunks);
1188     }
1189 
1190     /*
1191      * If 'rkey', then we're the destination, so grant access to the source.
1192      *
1193      * If 'lkey', then we're the source VM, so grant access only to ourselves.
1194      */
1195     if (!block->pmr[chunk]) {
1196         uint64_t len = chunk_end - chunk_start;
1197 
1198         trace_qemu_rdma_register_and_get_keys(len, chunk_start);
1199 
1200         block->pmr[chunk] = ibv_reg_mr(rdma->pd,
1201                 chunk_start, len,
1202                 (rkey ? (IBV_ACCESS_LOCAL_WRITE |
1203                         IBV_ACCESS_REMOTE_WRITE) : 0));
1204 
1205         if (!block->pmr[chunk]) {
1206             perror("Failed to register chunk!");
1207             fprintf(stderr, "Chunk details: block: %d chunk index %d"
1208                             " start %" PRIuPTR " end %" PRIuPTR
1209                             " host %" PRIuPTR
1210                             " local %" PRIuPTR " registrations: %d\n",
1211                             block->index, chunk, (uintptr_t)chunk_start,
1212                             (uintptr_t)chunk_end, host_addr,
1213                             (uintptr_t)block->local_host_addr,
1214                             rdma->total_registrations);
1215             return -1;
1216         }
1217         rdma->total_registrations++;
1218     }
1219 
1220     if (lkey) {
1221         *lkey = block->pmr[chunk]->lkey;
1222     }
1223     if (rkey) {
1224         *rkey = block->pmr[chunk]->rkey;
1225     }
1226     return 0;
1227 }
1228 
1229 /*
1230  * Register (at connection time) the memory used for control
1231  * channel messages.
1232  */
1233 static int qemu_rdma_reg_control(RDMAContext *rdma, int idx)
1234 {
1235     rdma->wr_data[idx].control_mr = ibv_reg_mr(rdma->pd,
1236             rdma->wr_data[idx].control, RDMA_CONTROL_MAX_BUFFER,
1237             IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE);
1238     if (rdma->wr_data[idx].control_mr) {
1239         rdma->total_registrations++;
1240         return 0;
1241     }
1242     error_report("qemu_rdma_reg_control failed");
1243     return -1;
1244 }
1245 
1246 const char *print_wrid(int wrid)
1247 {
1248     if (wrid >= RDMA_WRID_RECV_CONTROL) {
1249         return wrid_desc[RDMA_WRID_RECV_CONTROL];
1250     }
1251     return wrid_desc[wrid];
1252 }
1253 
1254 /*
1255  * RDMA requires memory registration (mlock/pinning), but this is not good for
1256  * overcommitment.
1257  *
1258  * In preparation for the future where LRU information or workload-specific
1259  * writable writable working set memory access behavior is available to QEMU
1260  * it would be nice to have in place the ability to UN-register/UN-pin
1261  * particular memory regions from the RDMA hardware when it is determine that
1262  * those regions of memory will likely not be accessed again in the near future.
1263  *
1264  * While we do not yet have such information right now, the following
1265  * compile-time option allows us to perform a non-optimized version of this
1266  * behavior.
1267  *
1268  * By uncommenting this option, you will cause *all* RDMA transfers to be
1269  * unregistered immediately after the transfer completes on both sides of the
1270  * connection. This has no effect in 'rdma-pin-all' mode, only regular mode.
1271  *
1272  * This will have a terrible impact on migration performance, so until future
1273  * workload information or LRU information is available, do not attempt to use
1274  * this feature except for basic testing.
1275  */
1276 //#define RDMA_UNREGISTRATION_EXAMPLE
1277 
1278 /*
1279  * Perform a non-optimized memory unregistration after every transfer
1280  * for demonstration purposes, only if pin-all is not requested.
1281  *
1282  * Potential optimizations:
1283  * 1. Start a new thread to run this function continuously
1284         - for bit clearing
1285         - and for receipt of unregister messages
1286  * 2. Use an LRU.
1287  * 3. Use workload hints.
1288  */
1289 static int qemu_rdma_unregister_waiting(RDMAContext *rdma)
1290 {
1291     while (rdma->unregistrations[rdma->unregister_current]) {
1292         int ret;
1293         uint64_t wr_id = rdma->unregistrations[rdma->unregister_current];
1294         uint64_t chunk =
1295             (wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT;
1296         uint64_t index =
1297             (wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT;
1298         RDMALocalBlock *block =
1299             &(rdma->local_ram_blocks.block[index]);
1300         RDMARegister reg = { .current_index = index };
1301         RDMAControlHeader resp = { .type = RDMA_CONTROL_UNREGISTER_FINISHED,
1302                                  };
1303         RDMAControlHeader head = { .len = sizeof(RDMARegister),
1304                                    .type = RDMA_CONTROL_UNREGISTER_REQUEST,
1305                                    .repeat = 1,
1306                                  };
1307 
1308         trace_qemu_rdma_unregister_waiting_proc(chunk,
1309                                                 rdma->unregister_current);
1310 
1311         rdma->unregistrations[rdma->unregister_current] = 0;
1312         rdma->unregister_current++;
1313 
1314         if (rdma->unregister_current == RDMA_SIGNALED_SEND_MAX) {
1315             rdma->unregister_current = 0;
1316         }
1317 
1318 
1319         /*
1320          * Unregistration is speculative (because migration is single-threaded
1321          * and we cannot break the protocol's inifinband message ordering).
1322          * Thus, if the memory is currently being used for transmission,
1323          * then abort the attempt to unregister and try again
1324          * later the next time a completion is received for this memory.
1325          */
1326         clear_bit(chunk, block->unregister_bitmap);
1327 
1328         if (test_bit(chunk, block->transit_bitmap)) {
1329             trace_qemu_rdma_unregister_waiting_inflight(chunk);
1330             continue;
1331         }
1332 
1333         trace_qemu_rdma_unregister_waiting_send(chunk);
1334 
1335         ret = ibv_dereg_mr(block->pmr[chunk]);
1336         block->pmr[chunk] = NULL;
1337         block->remote_keys[chunk] = 0;
1338 
1339         if (ret != 0) {
1340             perror("unregistration chunk failed");
1341             return -ret;
1342         }
1343         rdma->total_registrations--;
1344 
1345         reg.key.chunk = chunk;
1346         register_to_network(rdma, &reg);
1347         ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) &reg,
1348                                 &resp, NULL, NULL);
1349         if (ret < 0) {
1350             return ret;
1351         }
1352 
1353         trace_qemu_rdma_unregister_waiting_complete(chunk);
1354     }
1355 
1356     return 0;
1357 }
1358 
1359 static uint64_t qemu_rdma_make_wrid(uint64_t wr_id, uint64_t index,
1360                                          uint64_t chunk)
1361 {
1362     uint64_t result = wr_id & RDMA_WRID_TYPE_MASK;
1363 
1364     result |= (index << RDMA_WRID_BLOCK_SHIFT);
1365     result |= (chunk << RDMA_WRID_CHUNK_SHIFT);
1366 
1367     return result;
1368 }
1369 
1370 /*
1371  * Set bit for unregistration in the next iteration.
1372  * We cannot transmit right here, but will unpin later.
1373  */
1374 static void qemu_rdma_signal_unregister(RDMAContext *rdma, uint64_t index,
1375                                         uint64_t chunk, uint64_t wr_id)
1376 {
1377     if (rdma->unregistrations[rdma->unregister_next] != 0) {
1378         error_report("rdma migration: queue is full");
1379     } else {
1380         RDMALocalBlock *block = &(rdma->local_ram_blocks.block[index]);
1381 
1382         if (!test_and_set_bit(chunk, block->unregister_bitmap)) {
1383             trace_qemu_rdma_signal_unregister_append(chunk,
1384                                                      rdma->unregister_next);
1385 
1386             rdma->unregistrations[rdma->unregister_next++] =
1387                     qemu_rdma_make_wrid(wr_id, index, chunk);
1388 
1389             if (rdma->unregister_next == RDMA_SIGNALED_SEND_MAX) {
1390                 rdma->unregister_next = 0;
1391             }
1392         } else {
1393             trace_qemu_rdma_signal_unregister_already(chunk);
1394         }
1395     }
1396 }
1397 
1398 /*
1399  * Consult the connection manager to see a work request
1400  * (of any kind) has completed.
1401  * Return the work request ID that completed.
1402  */
1403 static uint64_t qemu_rdma_poll(RDMAContext *rdma, uint64_t *wr_id_out,
1404                                uint32_t *byte_len)
1405 {
1406     int ret;
1407     struct ibv_wc wc;
1408     uint64_t wr_id;
1409 
1410     ret = ibv_poll_cq(rdma->cq, 1, &wc);
1411 
1412     if (!ret) {
1413         *wr_id_out = RDMA_WRID_NONE;
1414         return 0;
1415     }
1416 
1417     if (ret < 0) {
1418         error_report("ibv_poll_cq return %d", ret);
1419         return ret;
1420     }
1421 
1422     wr_id = wc.wr_id & RDMA_WRID_TYPE_MASK;
1423 
1424     if (wc.status != IBV_WC_SUCCESS) {
1425         fprintf(stderr, "ibv_poll_cq wc.status=%d %s!\n",
1426                         wc.status, ibv_wc_status_str(wc.status));
1427         fprintf(stderr, "ibv_poll_cq wrid=%s!\n", wrid_desc[wr_id]);
1428 
1429         return -1;
1430     }
1431 
1432     if (rdma->control_ready_expected &&
1433         (wr_id >= RDMA_WRID_RECV_CONTROL)) {
1434         trace_qemu_rdma_poll_recv(wrid_desc[RDMA_WRID_RECV_CONTROL],
1435                   wr_id - RDMA_WRID_RECV_CONTROL, wr_id, rdma->nb_sent);
1436         rdma->control_ready_expected = 0;
1437     }
1438 
1439     if (wr_id == RDMA_WRID_RDMA_WRITE) {
1440         uint64_t chunk =
1441             (wc.wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT;
1442         uint64_t index =
1443             (wc.wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT;
1444         RDMALocalBlock *block = &(rdma->local_ram_blocks.block[index]);
1445 
1446         trace_qemu_rdma_poll_write(print_wrid(wr_id), wr_id, rdma->nb_sent,
1447                                    index, chunk, block->local_host_addr,
1448                                    (void *)(uintptr_t)block->remote_host_addr);
1449 
1450         clear_bit(chunk, block->transit_bitmap);
1451 
1452         if (rdma->nb_sent > 0) {
1453             rdma->nb_sent--;
1454         }
1455 
1456         if (!rdma->pin_all) {
1457             /*
1458              * FYI: If one wanted to signal a specific chunk to be unregistered
1459              * using LRU or workload-specific information, this is the function
1460              * you would call to do so. That chunk would then get asynchronously
1461              * unregistered later.
1462              */
1463 #ifdef RDMA_UNREGISTRATION_EXAMPLE
1464             qemu_rdma_signal_unregister(rdma, index, chunk, wc.wr_id);
1465 #endif
1466         }
1467     } else {
1468         trace_qemu_rdma_poll_other(print_wrid(wr_id), wr_id, rdma->nb_sent);
1469     }
1470 
1471     *wr_id_out = wc.wr_id;
1472     if (byte_len) {
1473         *byte_len = wc.byte_len;
1474     }
1475 
1476     return  0;
1477 }
1478 
1479 /* Wait for activity on the completion channel.
1480  * Returns 0 on success, none-0 on error.
1481  */
1482 static int qemu_rdma_wait_comp_channel(RDMAContext *rdma)
1483 {
1484     /*
1485      * Coroutine doesn't start until migration_fd_process_incoming()
1486      * so don't yield unless we know we're running inside of a coroutine.
1487      */
1488     if (rdma->migration_started_on_destination) {
1489         yield_until_fd_readable(rdma->comp_channel->fd);
1490     } else {
1491         /* This is the source side, we're in a separate thread
1492          * or destination prior to migration_fd_process_incoming()
1493          * we can't yield; so we have to poll the fd.
1494          * But we need to be able to handle 'cancel' or an error
1495          * without hanging forever.
1496          */
1497         while (!rdma->error_state  && !rdma->received_error) {
1498             GPollFD pfds[1];
1499             pfds[0].fd = rdma->comp_channel->fd;
1500             pfds[0].events = G_IO_IN | G_IO_HUP | G_IO_ERR;
1501             /* 0.1s timeout, should be fine for a 'cancel' */
1502             switch (qemu_poll_ns(pfds, 1, 100 * 1000 * 1000)) {
1503             case 1: /* fd active */
1504                 return 0;
1505 
1506             case 0: /* Timeout, go around again */
1507                 break;
1508 
1509             default: /* Error of some type -
1510                       * I don't trust errno from qemu_poll_ns
1511                      */
1512                 error_report("%s: poll failed", __func__);
1513                 return -EPIPE;
1514             }
1515 
1516             if (migrate_get_current()->state == MIGRATION_STATUS_CANCELLING) {
1517                 /* Bail out and let the cancellation happen */
1518                 return -EPIPE;
1519             }
1520         }
1521     }
1522 
1523     if (rdma->received_error) {
1524         return -EPIPE;
1525     }
1526     return rdma->error_state;
1527 }
1528 
1529 /*
1530  * Block until the next work request has completed.
1531  *
1532  * First poll to see if a work request has already completed,
1533  * otherwise block.
1534  *
1535  * If we encounter completed work requests for IDs other than
1536  * the one we're interested in, then that's generally an error.
1537  *
1538  * The only exception is actual RDMA Write completions. These
1539  * completions only need to be recorded, but do not actually
1540  * need further processing.
1541  */
1542 static int qemu_rdma_block_for_wrid(RDMAContext *rdma, int wrid_requested,
1543                                     uint32_t *byte_len)
1544 {
1545     int num_cq_events = 0, ret = 0;
1546     struct ibv_cq *cq;
1547     void *cq_ctx;
1548     uint64_t wr_id = RDMA_WRID_NONE, wr_id_in;
1549 
1550     if (ibv_req_notify_cq(rdma->cq, 0)) {
1551         return -1;
1552     }
1553     /* poll cq first */
1554     while (wr_id != wrid_requested) {
1555         ret = qemu_rdma_poll(rdma, &wr_id_in, byte_len);
1556         if (ret < 0) {
1557             return ret;
1558         }
1559 
1560         wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
1561 
1562         if (wr_id == RDMA_WRID_NONE) {
1563             break;
1564         }
1565         if (wr_id != wrid_requested) {
1566             trace_qemu_rdma_block_for_wrid_miss(print_wrid(wrid_requested),
1567                        wrid_requested, print_wrid(wr_id), wr_id);
1568         }
1569     }
1570 
1571     if (wr_id == wrid_requested) {
1572         return 0;
1573     }
1574 
1575     while (1) {
1576         ret = qemu_rdma_wait_comp_channel(rdma);
1577         if (ret) {
1578             goto err_block_for_wrid;
1579         }
1580 
1581         ret = ibv_get_cq_event(rdma->comp_channel, &cq, &cq_ctx);
1582         if (ret) {
1583             perror("ibv_get_cq_event");
1584             goto err_block_for_wrid;
1585         }
1586 
1587         num_cq_events++;
1588 
1589         ret = -ibv_req_notify_cq(cq, 0);
1590         if (ret) {
1591             goto err_block_for_wrid;
1592         }
1593 
1594         while (wr_id != wrid_requested) {
1595             ret = qemu_rdma_poll(rdma, &wr_id_in, byte_len);
1596             if (ret < 0) {
1597                 goto err_block_for_wrid;
1598             }
1599 
1600             wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
1601 
1602             if (wr_id == RDMA_WRID_NONE) {
1603                 break;
1604             }
1605             if (wr_id != wrid_requested) {
1606                 trace_qemu_rdma_block_for_wrid_miss(print_wrid(wrid_requested),
1607                                    wrid_requested, print_wrid(wr_id), wr_id);
1608             }
1609         }
1610 
1611         if (wr_id == wrid_requested) {
1612             goto success_block_for_wrid;
1613         }
1614     }
1615 
1616 success_block_for_wrid:
1617     if (num_cq_events) {
1618         ibv_ack_cq_events(cq, num_cq_events);
1619     }
1620     return 0;
1621 
1622 err_block_for_wrid:
1623     if (num_cq_events) {
1624         ibv_ack_cq_events(cq, num_cq_events);
1625     }
1626 
1627     rdma->error_state = ret;
1628     return ret;
1629 }
1630 
1631 /*
1632  * Post a SEND message work request for the control channel
1633  * containing some data and block until the post completes.
1634  */
1635 static int qemu_rdma_post_send_control(RDMAContext *rdma, uint8_t *buf,
1636                                        RDMAControlHeader *head)
1637 {
1638     int ret = 0;
1639     RDMAWorkRequestData *wr = &rdma->wr_data[RDMA_WRID_CONTROL];
1640     struct ibv_send_wr *bad_wr;
1641     struct ibv_sge sge = {
1642                            .addr = (uintptr_t)(wr->control),
1643                            .length = head->len + sizeof(RDMAControlHeader),
1644                            .lkey = wr->control_mr->lkey,
1645                          };
1646     struct ibv_send_wr send_wr = {
1647                                    .wr_id = RDMA_WRID_SEND_CONTROL,
1648                                    .opcode = IBV_WR_SEND,
1649                                    .send_flags = IBV_SEND_SIGNALED,
1650                                    .sg_list = &sge,
1651                                    .num_sge = 1,
1652                                 };
1653 
1654     trace_qemu_rdma_post_send_control(control_desc(head->type));
1655 
1656     /*
1657      * We don't actually need to do a memcpy() in here if we used
1658      * the "sge" properly, but since we're only sending control messages
1659      * (not RAM in a performance-critical path), then its OK for now.
1660      *
1661      * The copy makes the RDMAControlHeader simpler to manipulate
1662      * for the time being.
1663      */
1664     assert(head->len <= RDMA_CONTROL_MAX_BUFFER - sizeof(*head));
1665     memcpy(wr->control, head, sizeof(RDMAControlHeader));
1666     control_to_network((void *) wr->control);
1667 
1668     if (buf) {
1669         memcpy(wr->control + sizeof(RDMAControlHeader), buf, head->len);
1670     }
1671 
1672 
1673     ret = ibv_post_send(rdma->qp, &send_wr, &bad_wr);
1674 
1675     if (ret > 0) {
1676         error_report("Failed to use post IB SEND for control");
1677         return -ret;
1678     }
1679 
1680     ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_SEND_CONTROL, NULL);
1681     if (ret < 0) {
1682         error_report("rdma migration: send polling control error");
1683     }
1684 
1685     return ret;
1686 }
1687 
1688 /*
1689  * Post a RECV work request in anticipation of some future receipt
1690  * of data on the control channel.
1691  */
1692 static int qemu_rdma_post_recv_control(RDMAContext *rdma, int idx)
1693 {
1694     struct ibv_recv_wr *bad_wr;
1695     struct ibv_sge sge = {
1696                             .addr = (uintptr_t)(rdma->wr_data[idx].control),
1697                             .length = RDMA_CONTROL_MAX_BUFFER,
1698                             .lkey = rdma->wr_data[idx].control_mr->lkey,
1699                          };
1700 
1701     struct ibv_recv_wr recv_wr = {
1702                                     .wr_id = RDMA_WRID_RECV_CONTROL + idx,
1703                                     .sg_list = &sge,
1704                                     .num_sge = 1,
1705                                  };
1706 
1707 
1708     if (ibv_post_recv(rdma->qp, &recv_wr, &bad_wr)) {
1709         return -1;
1710     }
1711 
1712     return 0;
1713 }
1714 
1715 /*
1716  * Block and wait for a RECV control channel message to arrive.
1717  */
1718 static int qemu_rdma_exchange_get_response(RDMAContext *rdma,
1719                 RDMAControlHeader *head, int expecting, int idx)
1720 {
1721     uint32_t byte_len;
1722     int ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RECV_CONTROL + idx,
1723                                        &byte_len);
1724 
1725     if (ret < 0) {
1726         error_report("rdma migration: recv polling control error!");
1727         return ret;
1728     }
1729 
1730     network_to_control((void *) rdma->wr_data[idx].control);
1731     memcpy(head, rdma->wr_data[idx].control, sizeof(RDMAControlHeader));
1732 
1733     trace_qemu_rdma_exchange_get_response_start(control_desc(expecting));
1734 
1735     if (expecting == RDMA_CONTROL_NONE) {
1736         trace_qemu_rdma_exchange_get_response_none(control_desc(head->type),
1737                                              head->type);
1738     } else if (head->type != expecting || head->type == RDMA_CONTROL_ERROR) {
1739         error_report("Was expecting a %s (%d) control message"
1740                 ", but got: %s (%d), length: %d",
1741                 control_desc(expecting), expecting,
1742                 control_desc(head->type), head->type, head->len);
1743         if (head->type == RDMA_CONTROL_ERROR) {
1744             rdma->received_error = true;
1745         }
1746         return -EIO;
1747     }
1748     if (head->len > RDMA_CONTROL_MAX_BUFFER - sizeof(*head)) {
1749         error_report("too long length: %d", head->len);
1750         return -EINVAL;
1751     }
1752     if (sizeof(*head) + head->len != byte_len) {
1753         error_report("Malformed length: %d byte_len %d", head->len, byte_len);
1754         return -EINVAL;
1755     }
1756 
1757     return 0;
1758 }
1759 
1760 /*
1761  * When a RECV work request has completed, the work request's
1762  * buffer is pointed at the header.
1763  *
1764  * This will advance the pointer to the data portion
1765  * of the control message of the work request's buffer that
1766  * was populated after the work request finished.
1767  */
1768 static void qemu_rdma_move_header(RDMAContext *rdma, int idx,
1769                                   RDMAControlHeader *head)
1770 {
1771     rdma->wr_data[idx].control_len = head->len;
1772     rdma->wr_data[idx].control_curr =
1773         rdma->wr_data[idx].control + sizeof(RDMAControlHeader);
1774 }
1775 
1776 /*
1777  * This is an 'atomic' high-level operation to deliver a single, unified
1778  * control-channel message.
1779  *
1780  * Additionally, if the user is expecting some kind of reply to this message,
1781  * they can request a 'resp' response message be filled in by posting an
1782  * additional work request on behalf of the user and waiting for an additional
1783  * completion.
1784  *
1785  * The extra (optional) response is used during registration to us from having
1786  * to perform an *additional* exchange of message just to provide a response by
1787  * instead piggy-backing on the acknowledgement.
1788  */
1789 static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head,
1790                                    uint8_t *data, RDMAControlHeader *resp,
1791                                    int *resp_idx,
1792                                    int (*callback)(RDMAContext *rdma))
1793 {
1794     int ret = 0;
1795 
1796     /*
1797      * Wait until the dest is ready before attempting to deliver the message
1798      * by waiting for a READY message.
1799      */
1800     if (rdma->control_ready_expected) {
1801         RDMAControlHeader resp;
1802         ret = qemu_rdma_exchange_get_response(rdma,
1803                                     &resp, RDMA_CONTROL_READY, RDMA_WRID_READY);
1804         if (ret < 0) {
1805             return ret;
1806         }
1807     }
1808 
1809     /*
1810      * If the user is expecting a response, post a WR in anticipation of it.
1811      */
1812     if (resp) {
1813         ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_DATA);
1814         if (ret) {
1815             error_report("rdma migration: error posting"
1816                     " extra control recv for anticipated result!");
1817             return ret;
1818         }
1819     }
1820 
1821     /*
1822      * Post a WR to replace the one we just consumed for the READY message.
1823      */
1824     ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
1825     if (ret) {
1826         error_report("rdma migration: error posting first control recv!");
1827         return ret;
1828     }
1829 
1830     /*
1831      * Deliver the control message that was requested.
1832      */
1833     ret = qemu_rdma_post_send_control(rdma, data, head);
1834 
1835     if (ret < 0) {
1836         error_report("Failed to send control buffer!");
1837         return ret;
1838     }
1839 
1840     /*
1841      * If we're expecting a response, block and wait for it.
1842      */
1843     if (resp) {
1844         if (callback) {
1845             trace_qemu_rdma_exchange_send_issue_callback();
1846             ret = callback(rdma);
1847             if (ret < 0) {
1848                 return ret;
1849             }
1850         }
1851 
1852         trace_qemu_rdma_exchange_send_waiting(control_desc(resp->type));
1853         ret = qemu_rdma_exchange_get_response(rdma, resp,
1854                                               resp->type, RDMA_WRID_DATA);
1855 
1856         if (ret < 0) {
1857             return ret;
1858         }
1859 
1860         qemu_rdma_move_header(rdma, RDMA_WRID_DATA, resp);
1861         if (resp_idx) {
1862             *resp_idx = RDMA_WRID_DATA;
1863         }
1864         trace_qemu_rdma_exchange_send_received(control_desc(resp->type));
1865     }
1866 
1867     rdma->control_ready_expected = 1;
1868 
1869     return 0;
1870 }
1871 
1872 /*
1873  * This is an 'atomic' high-level operation to receive a single, unified
1874  * control-channel message.
1875  */
1876 static int qemu_rdma_exchange_recv(RDMAContext *rdma, RDMAControlHeader *head,
1877                                 int expecting)
1878 {
1879     RDMAControlHeader ready = {
1880                                 .len = 0,
1881                                 .type = RDMA_CONTROL_READY,
1882                                 .repeat = 1,
1883                               };
1884     int ret;
1885 
1886     /*
1887      * Inform the source that we're ready to receive a message.
1888      */
1889     ret = qemu_rdma_post_send_control(rdma, NULL, &ready);
1890 
1891     if (ret < 0) {
1892         error_report("Failed to send control buffer!");
1893         return ret;
1894     }
1895 
1896     /*
1897      * Block and wait for the message.
1898      */
1899     ret = qemu_rdma_exchange_get_response(rdma, head,
1900                                           expecting, RDMA_WRID_READY);
1901 
1902     if (ret < 0) {
1903         return ret;
1904     }
1905 
1906     qemu_rdma_move_header(rdma, RDMA_WRID_READY, head);
1907 
1908     /*
1909      * Post a new RECV work request to replace the one we just consumed.
1910      */
1911     ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
1912     if (ret) {
1913         error_report("rdma migration: error posting second control recv!");
1914         return ret;
1915     }
1916 
1917     return 0;
1918 }
1919 
1920 /*
1921  * Write an actual chunk of memory using RDMA.
1922  *
1923  * If we're using dynamic registration on the dest-side, we have to
1924  * send a registration command first.
1925  */
1926 static int qemu_rdma_write_one(QEMUFile *f, RDMAContext *rdma,
1927                                int current_index, uint64_t current_addr,
1928                                uint64_t length)
1929 {
1930     struct ibv_sge sge;
1931     struct ibv_send_wr send_wr = { 0 };
1932     struct ibv_send_wr *bad_wr;
1933     int reg_result_idx, ret, count = 0;
1934     uint64_t chunk, chunks;
1935     uint8_t *chunk_start, *chunk_end;
1936     RDMALocalBlock *block = &(rdma->local_ram_blocks.block[current_index]);
1937     RDMARegister reg;
1938     RDMARegisterResult *reg_result;
1939     RDMAControlHeader resp = { .type = RDMA_CONTROL_REGISTER_RESULT };
1940     RDMAControlHeader head = { .len = sizeof(RDMARegister),
1941                                .type = RDMA_CONTROL_REGISTER_REQUEST,
1942                                .repeat = 1,
1943                              };
1944 
1945 retry:
1946     sge.addr = (uintptr_t)(block->local_host_addr +
1947                             (current_addr - block->offset));
1948     sge.length = length;
1949 
1950     chunk = ram_chunk_index(block->local_host_addr,
1951                             (uint8_t *)(uintptr_t)sge.addr);
1952     chunk_start = ram_chunk_start(block, chunk);
1953 
1954     if (block->is_ram_block) {
1955         chunks = length / (1UL << RDMA_REG_CHUNK_SHIFT);
1956 
1957         if (chunks && ((length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) {
1958             chunks--;
1959         }
1960     } else {
1961         chunks = block->length / (1UL << RDMA_REG_CHUNK_SHIFT);
1962 
1963         if (chunks && ((block->length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) {
1964             chunks--;
1965         }
1966     }
1967 
1968     trace_qemu_rdma_write_one_top(chunks + 1,
1969                                   (chunks + 1) *
1970                                   (1UL << RDMA_REG_CHUNK_SHIFT) / 1024 / 1024);
1971 
1972     chunk_end = ram_chunk_end(block, chunk + chunks);
1973 
1974     if (!rdma->pin_all) {
1975 #ifdef RDMA_UNREGISTRATION_EXAMPLE
1976         qemu_rdma_unregister_waiting(rdma);
1977 #endif
1978     }
1979 
1980     while (test_bit(chunk, block->transit_bitmap)) {
1981         (void)count;
1982         trace_qemu_rdma_write_one_block(count++, current_index, chunk,
1983                 sge.addr, length, rdma->nb_sent, block->nb_chunks);
1984 
1985         ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
1986 
1987         if (ret < 0) {
1988             error_report("Failed to Wait for previous write to complete "
1989                     "block %d chunk %" PRIu64
1990                     " current %" PRIu64 " len %" PRIu64 " %d",
1991                     current_index, chunk, sge.addr, length, rdma->nb_sent);
1992             return ret;
1993         }
1994     }
1995 
1996     if (!rdma->pin_all || !block->is_ram_block) {
1997         if (!block->remote_keys[chunk]) {
1998             /*
1999              * This chunk has not yet been registered, so first check to see
2000              * if the entire chunk is zero. If so, tell the other size to
2001              * memset() + madvise() the entire chunk without RDMA.
2002              */
2003 
2004             if (buffer_is_zero((void *)(uintptr_t)sge.addr, length)) {
2005                 RDMACompress comp = {
2006                                         .offset = current_addr,
2007                                         .value = 0,
2008                                         .block_idx = current_index,
2009                                         .length = length,
2010                                     };
2011 
2012                 head.len = sizeof(comp);
2013                 head.type = RDMA_CONTROL_COMPRESS;
2014 
2015                 trace_qemu_rdma_write_one_zero(chunk, sge.length,
2016                                                current_index, current_addr);
2017 
2018                 compress_to_network(rdma, &comp);
2019                 ret = qemu_rdma_exchange_send(rdma, &head,
2020                                 (uint8_t *) &comp, NULL, NULL, NULL);
2021 
2022                 if (ret < 0) {
2023                     return -EIO;
2024                 }
2025 
2026                 acct_update_position(f, sge.length, true);
2027 
2028                 return 1;
2029             }
2030 
2031             /*
2032              * Otherwise, tell other side to register.
2033              */
2034             reg.current_index = current_index;
2035             if (block->is_ram_block) {
2036                 reg.key.current_addr = current_addr;
2037             } else {
2038                 reg.key.chunk = chunk;
2039             }
2040             reg.chunks = chunks;
2041 
2042             trace_qemu_rdma_write_one_sendreg(chunk, sge.length, current_index,
2043                                               current_addr);
2044 
2045             register_to_network(rdma, &reg);
2046             ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) &reg,
2047                                     &resp, &reg_result_idx, NULL);
2048             if (ret < 0) {
2049                 return ret;
2050             }
2051 
2052             /* try to overlap this single registration with the one we sent. */
2053             if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr,
2054                                                 &sge.lkey, NULL, chunk,
2055                                                 chunk_start, chunk_end)) {
2056                 error_report("cannot get lkey");
2057                 return -EINVAL;
2058             }
2059 
2060             reg_result = (RDMARegisterResult *)
2061                     rdma->wr_data[reg_result_idx].control_curr;
2062 
2063             network_to_result(reg_result);
2064 
2065             trace_qemu_rdma_write_one_recvregres(block->remote_keys[chunk],
2066                                                  reg_result->rkey, chunk);
2067 
2068             block->remote_keys[chunk] = reg_result->rkey;
2069             block->remote_host_addr = reg_result->host_addr;
2070         } else {
2071             /* already registered before */
2072             if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr,
2073                                                 &sge.lkey, NULL, chunk,
2074                                                 chunk_start, chunk_end)) {
2075                 error_report("cannot get lkey!");
2076                 return -EINVAL;
2077             }
2078         }
2079 
2080         send_wr.wr.rdma.rkey = block->remote_keys[chunk];
2081     } else {
2082         send_wr.wr.rdma.rkey = block->remote_rkey;
2083 
2084         if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr,
2085                                                      &sge.lkey, NULL, chunk,
2086                                                      chunk_start, chunk_end)) {
2087             error_report("cannot get lkey!");
2088             return -EINVAL;
2089         }
2090     }
2091 
2092     /*
2093      * Encode the ram block index and chunk within this wrid.
2094      * We will use this information at the time of completion
2095      * to figure out which bitmap to check against and then which
2096      * chunk in the bitmap to look for.
2097      */
2098     send_wr.wr_id = qemu_rdma_make_wrid(RDMA_WRID_RDMA_WRITE,
2099                                         current_index, chunk);
2100 
2101     send_wr.opcode = IBV_WR_RDMA_WRITE;
2102     send_wr.send_flags = IBV_SEND_SIGNALED;
2103     send_wr.sg_list = &sge;
2104     send_wr.num_sge = 1;
2105     send_wr.wr.rdma.remote_addr = block->remote_host_addr +
2106                                 (current_addr - block->offset);
2107 
2108     trace_qemu_rdma_write_one_post(chunk, sge.addr, send_wr.wr.rdma.remote_addr,
2109                                    sge.length);
2110 
2111     /*
2112      * ibv_post_send() does not return negative error numbers,
2113      * per the specification they are positive - no idea why.
2114      */
2115     ret = ibv_post_send(rdma->qp, &send_wr, &bad_wr);
2116 
2117     if (ret == ENOMEM) {
2118         trace_qemu_rdma_write_one_queue_full();
2119         ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
2120         if (ret < 0) {
2121             error_report("rdma migration: failed to make "
2122                          "room in full send queue! %d", ret);
2123             return ret;
2124         }
2125 
2126         goto retry;
2127 
2128     } else if (ret > 0) {
2129         perror("rdma migration: post rdma write failed");
2130         return -ret;
2131     }
2132 
2133     set_bit(chunk, block->transit_bitmap);
2134     acct_update_position(f, sge.length, false);
2135     rdma->total_writes++;
2136 
2137     return 0;
2138 }
2139 
2140 /*
2141  * Push out any unwritten RDMA operations.
2142  *
2143  * We support sending out multiple chunks at the same time.
2144  * Not all of them need to get signaled in the completion queue.
2145  */
2146 static int qemu_rdma_write_flush(QEMUFile *f, RDMAContext *rdma)
2147 {
2148     int ret;
2149 
2150     if (!rdma->current_length) {
2151         return 0;
2152     }
2153 
2154     ret = qemu_rdma_write_one(f, rdma,
2155             rdma->current_index, rdma->current_addr, rdma->current_length);
2156 
2157     if (ret < 0) {
2158         return ret;
2159     }
2160 
2161     if (ret == 0) {
2162         rdma->nb_sent++;
2163         trace_qemu_rdma_write_flush(rdma->nb_sent);
2164     }
2165 
2166     rdma->current_length = 0;
2167     rdma->current_addr = 0;
2168 
2169     return 0;
2170 }
2171 
2172 static inline int qemu_rdma_buffer_mergable(RDMAContext *rdma,
2173                     uint64_t offset, uint64_t len)
2174 {
2175     RDMALocalBlock *block;
2176     uint8_t *host_addr;
2177     uint8_t *chunk_end;
2178 
2179     if (rdma->current_index < 0) {
2180         return 0;
2181     }
2182 
2183     if (rdma->current_chunk < 0) {
2184         return 0;
2185     }
2186 
2187     block = &(rdma->local_ram_blocks.block[rdma->current_index]);
2188     host_addr = block->local_host_addr + (offset - block->offset);
2189     chunk_end = ram_chunk_end(block, rdma->current_chunk);
2190 
2191     if (rdma->current_length == 0) {
2192         return 0;
2193     }
2194 
2195     /*
2196      * Only merge into chunk sequentially.
2197      */
2198     if (offset != (rdma->current_addr + rdma->current_length)) {
2199         return 0;
2200     }
2201 
2202     if (offset < block->offset) {
2203         return 0;
2204     }
2205 
2206     if ((offset + len) > (block->offset + block->length)) {
2207         return 0;
2208     }
2209 
2210     if ((host_addr + len) > chunk_end) {
2211         return 0;
2212     }
2213 
2214     return 1;
2215 }
2216 
2217 /*
2218  * We're not actually writing here, but doing three things:
2219  *
2220  * 1. Identify the chunk the buffer belongs to.
2221  * 2. If the chunk is full or the buffer doesn't belong to the current
2222  *    chunk, then start a new chunk and flush() the old chunk.
2223  * 3. To keep the hardware busy, we also group chunks into batches
2224  *    and only require that a batch gets acknowledged in the completion
2225  *    qeueue instead of each individual chunk.
2226  */
2227 static int qemu_rdma_write(QEMUFile *f, RDMAContext *rdma,
2228                            uint64_t block_offset, uint64_t offset,
2229                            uint64_t len)
2230 {
2231     uint64_t current_addr = block_offset + offset;
2232     uint64_t index = rdma->current_index;
2233     uint64_t chunk = rdma->current_chunk;
2234     int ret;
2235 
2236     /* If we cannot merge it, we flush the current buffer first. */
2237     if (!qemu_rdma_buffer_mergable(rdma, current_addr, len)) {
2238         ret = qemu_rdma_write_flush(f, rdma);
2239         if (ret) {
2240             return ret;
2241         }
2242         rdma->current_length = 0;
2243         rdma->current_addr = current_addr;
2244 
2245         ret = qemu_rdma_search_ram_block(rdma, block_offset,
2246                                          offset, len, &index, &chunk);
2247         if (ret) {
2248             error_report("ram block search failed");
2249             return ret;
2250         }
2251         rdma->current_index = index;
2252         rdma->current_chunk = chunk;
2253     }
2254 
2255     /* merge it */
2256     rdma->current_length += len;
2257 
2258     /* flush it if buffer is too large */
2259     if (rdma->current_length >= RDMA_MERGE_MAX) {
2260         return qemu_rdma_write_flush(f, rdma);
2261     }
2262 
2263     return 0;
2264 }
2265 
2266 static void qemu_rdma_cleanup(RDMAContext *rdma)
2267 {
2268     struct rdma_cm_event *cm_event;
2269     int ret, idx;
2270 
2271     if (rdma->cm_id && rdma->connected) {
2272         if ((rdma->error_state ||
2273              migrate_get_current()->state == MIGRATION_STATUS_CANCELLING) &&
2274             !rdma->received_error) {
2275             RDMAControlHeader head = { .len = 0,
2276                                        .type = RDMA_CONTROL_ERROR,
2277                                        .repeat = 1,
2278                                      };
2279             error_report("Early error. Sending error.");
2280             qemu_rdma_post_send_control(rdma, NULL, &head);
2281         }
2282 
2283         ret = rdma_disconnect(rdma->cm_id);
2284         if (!ret) {
2285             trace_qemu_rdma_cleanup_waiting_for_disconnect();
2286             ret = rdma_get_cm_event(rdma->channel, &cm_event);
2287             if (!ret) {
2288                 rdma_ack_cm_event(cm_event);
2289             }
2290         }
2291         trace_qemu_rdma_cleanup_disconnect();
2292         rdma->connected = false;
2293     }
2294 
2295     g_free(rdma->dest_blocks);
2296     rdma->dest_blocks = NULL;
2297 
2298     for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2299         if (rdma->wr_data[idx].control_mr) {
2300             rdma->total_registrations--;
2301             ibv_dereg_mr(rdma->wr_data[idx].control_mr);
2302         }
2303         rdma->wr_data[idx].control_mr = NULL;
2304     }
2305 
2306     if (rdma->local_ram_blocks.block) {
2307         while (rdma->local_ram_blocks.nb_blocks) {
2308             rdma_delete_block(rdma, &rdma->local_ram_blocks.block[0]);
2309         }
2310     }
2311 
2312     if (rdma->qp) {
2313         rdma_destroy_qp(rdma->cm_id);
2314         rdma->qp = NULL;
2315     }
2316     if (rdma->cq) {
2317         ibv_destroy_cq(rdma->cq);
2318         rdma->cq = NULL;
2319     }
2320     if (rdma->comp_channel) {
2321         ibv_destroy_comp_channel(rdma->comp_channel);
2322         rdma->comp_channel = NULL;
2323     }
2324     if (rdma->pd) {
2325         ibv_dealloc_pd(rdma->pd);
2326         rdma->pd = NULL;
2327     }
2328     if (rdma->cm_id) {
2329         rdma_destroy_id(rdma->cm_id);
2330         rdma->cm_id = NULL;
2331     }
2332     if (rdma->listen_id) {
2333         rdma_destroy_id(rdma->listen_id);
2334         rdma->listen_id = NULL;
2335     }
2336     if (rdma->channel) {
2337         rdma_destroy_event_channel(rdma->channel);
2338         rdma->channel = NULL;
2339     }
2340     g_free(rdma->host);
2341     rdma->host = NULL;
2342 }
2343 
2344 
2345 static int qemu_rdma_source_init(RDMAContext *rdma, bool pin_all, Error **errp)
2346 {
2347     int ret, idx;
2348     Error *local_err = NULL, **temp = &local_err;
2349 
2350     /*
2351      * Will be validated against destination's actual capabilities
2352      * after the connect() completes.
2353      */
2354     rdma->pin_all = pin_all;
2355 
2356     ret = qemu_rdma_resolve_host(rdma, temp);
2357     if (ret) {
2358         goto err_rdma_source_init;
2359     }
2360 
2361     ret = qemu_rdma_alloc_pd_cq(rdma);
2362     if (ret) {
2363         ERROR(temp, "rdma migration: error allocating pd and cq! Your mlock()"
2364                     " limits may be too low. Please check $ ulimit -a # and "
2365                     "search for 'ulimit -l' in the output");
2366         goto err_rdma_source_init;
2367     }
2368 
2369     ret = qemu_rdma_alloc_qp(rdma);
2370     if (ret) {
2371         ERROR(temp, "rdma migration: error allocating qp!");
2372         goto err_rdma_source_init;
2373     }
2374 
2375     ret = qemu_rdma_init_ram_blocks(rdma);
2376     if (ret) {
2377         ERROR(temp, "rdma migration: error initializing ram blocks!");
2378         goto err_rdma_source_init;
2379     }
2380 
2381     /* Build the hash that maps from offset to RAMBlock */
2382     rdma->blockmap = g_hash_table_new(g_direct_hash, g_direct_equal);
2383     for (idx = 0; idx < rdma->local_ram_blocks.nb_blocks; idx++) {
2384         g_hash_table_insert(rdma->blockmap,
2385                 (void *)(uintptr_t)rdma->local_ram_blocks.block[idx].offset,
2386                 &rdma->local_ram_blocks.block[idx]);
2387     }
2388 
2389     for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2390         ret = qemu_rdma_reg_control(rdma, idx);
2391         if (ret) {
2392             ERROR(temp, "rdma migration: error registering %d control!",
2393                                                             idx);
2394             goto err_rdma_source_init;
2395         }
2396     }
2397 
2398     return 0;
2399 
2400 err_rdma_source_init:
2401     error_propagate(errp, local_err);
2402     qemu_rdma_cleanup(rdma);
2403     return -1;
2404 }
2405 
2406 static int qemu_rdma_connect(RDMAContext *rdma, Error **errp)
2407 {
2408     RDMACapabilities cap = {
2409                                 .version = RDMA_CONTROL_VERSION_CURRENT,
2410                                 .flags = 0,
2411                            };
2412     struct rdma_conn_param conn_param = { .initiator_depth = 2,
2413                                           .retry_count = 5,
2414                                           .private_data = &cap,
2415                                           .private_data_len = sizeof(cap),
2416                                         };
2417     struct rdma_cm_event *cm_event;
2418     int ret;
2419 
2420     /*
2421      * Only negotiate the capability with destination if the user
2422      * on the source first requested the capability.
2423      */
2424     if (rdma->pin_all) {
2425         trace_qemu_rdma_connect_pin_all_requested();
2426         cap.flags |= RDMA_CAPABILITY_PIN_ALL;
2427     }
2428 
2429     caps_to_network(&cap);
2430 
2431     ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
2432     if (ret) {
2433         ERROR(errp, "posting second control recv");
2434         goto err_rdma_source_connect;
2435     }
2436 
2437     ret = rdma_connect(rdma->cm_id, &conn_param);
2438     if (ret) {
2439         perror("rdma_connect");
2440         ERROR(errp, "connecting to destination!");
2441         goto err_rdma_source_connect;
2442     }
2443 
2444     ret = rdma_get_cm_event(rdma->channel, &cm_event);
2445     if (ret) {
2446         perror("rdma_get_cm_event after rdma_connect");
2447         ERROR(errp, "connecting to destination!");
2448         rdma_ack_cm_event(cm_event);
2449         goto err_rdma_source_connect;
2450     }
2451 
2452     if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) {
2453         perror("rdma_get_cm_event != EVENT_ESTABLISHED after rdma_connect");
2454         ERROR(errp, "connecting to destination!");
2455         rdma_ack_cm_event(cm_event);
2456         goto err_rdma_source_connect;
2457     }
2458     rdma->connected = true;
2459 
2460     memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap));
2461     network_to_caps(&cap);
2462 
2463     /*
2464      * Verify that the *requested* capabilities are supported by the destination
2465      * and disable them otherwise.
2466      */
2467     if (rdma->pin_all && !(cap.flags & RDMA_CAPABILITY_PIN_ALL)) {
2468         ERROR(errp, "Server cannot support pinning all memory. "
2469                         "Will register memory dynamically.");
2470         rdma->pin_all = false;
2471     }
2472 
2473     trace_qemu_rdma_connect_pin_all_outcome(rdma->pin_all);
2474 
2475     rdma_ack_cm_event(cm_event);
2476 
2477     rdma->control_ready_expected = 1;
2478     rdma->nb_sent = 0;
2479     return 0;
2480 
2481 err_rdma_source_connect:
2482     qemu_rdma_cleanup(rdma);
2483     return -1;
2484 }
2485 
2486 static int qemu_rdma_dest_init(RDMAContext *rdma, Error **errp)
2487 {
2488     int ret, idx;
2489     struct rdma_cm_id *listen_id;
2490     char ip[40] = "unknown";
2491     struct rdma_addrinfo *res, *e;
2492     char port_str[16];
2493 
2494     for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2495         rdma->wr_data[idx].control_len = 0;
2496         rdma->wr_data[idx].control_curr = NULL;
2497     }
2498 
2499     if (!rdma->host || !rdma->host[0]) {
2500         ERROR(errp, "RDMA host is not set!");
2501         rdma->error_state = -EINVAL;
2502         return -1;
2503     }
2504     /* create CM channel */
2505     rdma->channel = rdma_create_event_channel();
2506     if (!rdma->channel) {
2507         ERROR(errp, "could not create rdma event channel");
2508         rdma->error_state = -EINVAL;
2509         return -1;
2510     }
2511 
2512     /* create CM id */
2513     ret = rdma_create_id(rdma->channel, &listen_id, NULL, RDMA_PS_TCP);
2514     if (ret) {
2515         ERROR(errp, "could not create cm_id!");
2516         goto err_dest_init_create_listen_id;
2517     }
2518 
2519     snprintf(port_str, 16, "%d", rdma->port);
2520     port_str[15] = '\0';
2521 
2522     ret = rdma_getaddrinfo(rdma->host, port_str, NULL, &res);
2523     if (ret < 0) {
2524         ERROR(errp, "could not rdma_getaddrinfo address %s", rdma->host);
2525         goto err_dest_init_bind_addr;
2526     }
2527 
2528     for (e = res; e != NULL; e = e->ai_next) {
2529         inet_ntop(e->ai_family,
2530             &((struct sockaddr_in *) e->ai_dst_addr)->sin_addr, ip, sizeof ip);
2531         trace_qemu_rdma_dest_init_trying(rdma->host, ip);
2532         ret = rdma_bind_addr(listen_id, e->ai_dst_addr);
2533         if (ret) {
2534             continue;
2535         }
2536         if (e->ai_family == AF_INET6) {
2537             ret = qemu_rdma_broken_ipv6_kernel(listen_id->verbs, errp);
2538             if (ret) {
2539                 continue;
2540             }
2541         }
2542         break;
2543     }
2544 
2545     if (!e) {
2546         ERROR(errp, "Error: could not rdma_bind_addr!");
2547         goto err_dest_init_bind_addr;
2548     }
2549 
2550     rdma->listen_id = listen_id;
2551     qemu_rdma_dump_gid("dest_init", listen_id);
2552     return 0;
2553 
2554 err_dest_init_bind_addr:
2555     rdma_destroy_id(listen_id);
2556 err_dest_init_create_listen_id:
2557     rdma_destroy_event_channel(rdma->channel);
2558     rdma->channel = NULL;
2559     rdma->error_state = ret;
2560     return ret;
2561 
2562 }
2563 
2564 static void *qemu_rdma_data_init(const char *host_port, Error **errp)
2565 {
2566     RDMAContext *rdma = NULL;
2567     InetSocketAddress *addr;
2568 
2569     if (host_port) {
2570         rdma = g_new0(RDMAContext, 1);
2571         rdma->current_index = -1;
2572         rdma->current_chunk = -1;
2573 
2574         addr = g_new(InetSocketAddress, 1);
2575         if (!inet_parse(addr, host_port, NULL)) {
2576             rdma->port = atoi(addr->port);
2577             rdma->host = g_strdup(addr->host);
2578         } else {
2579             ERROR(errp, "bad RDMA migration address '%s'", host_port);
2580             g_free(rdma);
2581             rdma = NULL;
2582         }
2583 
2584         qapi_free_InetSocketAddress(addr);
2585     }
2586 
2587     return rdma;
2588 }
2589 
2590 /*
2591  * QEMUFile interface to the control channel.
2592  * SEND messages for control only.
2593  * VM's ram is handled with regular RDMA messages.
2594  */
2595 static ssize_t qio_channel_rdma_writev(QIOChannel *ioc,
2596                                        const struct iovec *iov,
2597                                        size_t niov,
2598                                        int *fds,
2599                                        size_t nfds,
2600                                        Error **errp)
2601 {
2602     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
2603     QEMUFile *f = rioc->file;
2604     RDMAContext *rdma = rioc->rdma;
2605     int ret;
2606     ssize_t done = 0;
2607     size_t i;
2608 
2609     CHECK_ERROR_STATE();
2610 
2611     /*
2612      * Push out any writes that
2613      * we're queued up for VM's ram.
2614      */
2615     ret = qemu_rdma_write_flush(f, rdma);
2616     if (ret < 0) {
2617         rdma->error_state = ret;
2618         return ret;
2619     }
2620 
2621     for (i = 0; i < niov; i++) {
2622         size_t remaining = iov[i].iov_len;
2623         uint8_t * data = (void *)iov[i].iov_base;
2624         while (remaining) {
2625             RDMAControlHeader head;
2626 
2627             rioc->len = MIN(remaining, RDMA_SEND_INCREMENT);
2628             remaining -= rioc->len;
2629 
2630             head.len = rioc->len;
2631             head.type = RDMA_CONTROL_QEMU_FILE;
2632 
2633             ret = qemu_rdma_exchange_send(rdma, &head, data, NULL, NULL, NULL);
2634 
2635             if (ret < 0) {
2636                 rdma->error_state = ret;
2637                 return ret;
2638             }
2639 
2640             data += rioc->len;
2641             done += rioc->len;
2642         }
2643     }
2644 
2645     return done;
2646 }
2647 
2648 static size_t qemu_rdma_fill(RDMAContext *rdma, uint8_t *buf,
2649                              size_t size, int idx)
2650 {
2651     size_t len = 0;
2652 
2653     if (rdma->wr_data[idx].control_len) {
2654         trace_qemu_rdma_fill(rdma->wr_data[idx].control_len, size);
2655 
2656         len = MIN(size, rdma->wr_data[idx].control_len);
2657         memcpy(buf, rdma->wr_data[idx].control_curr, len);
2658         rdma->wr_data[idx].control_curr += len;
2659         rdma->wr_data[idx].control_len -= len;
2660     }
2661 
2662     return len;
2663 }
2664 
2665 /*
2666  * QEMUFile interface to the control channel.
2667  * RDMA links don't use bytestreams, so we have to
2668  * return bytes to QEMUFile opportunistically.
2669  */
2670 static ssize_t qio_channel_rdma_readv(QIOChannel *ioc,
2671                                       const struct iovec *iov,
2672                                       size_t niov,
2673                                       int **fds,
2674                                       size_t *nfds,
2675                                       Error **errp)
2676 {
2677     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
2678     RDMAContext *rdma = rioc->rdma;
2679     RDMAControlHeader head;
2680     int ret = 0;
2681     ssize_t i;
2682     size_t done = 0;
2683 
2684     CHECK_ERROR_STATE();
2685 
2686     for (i = 0; i < niov; i++) {
2687         size_t want = iov[i].iov_len;
2688         uint8_t *data = (void *)iov[i].iov_base;
2689 
2690         /*
2691          * First, we hold on to the last SEND message we
2692          * were given and dish out the bytes until we run
2693          * out of bytes.
2694          */
2695         ret = qemu_rdma_fill(rioc->rdma, data, want, 0);
2696         done += ret;
2697         want -= ret;
2698         /* Got what we needed, so go to next iovec */
2699         if (want == 0) {
2700             continue;
2701         }
2702 
2703         /* If we got any data so far, then don't wait
2704          * for more, just return what we have */
2705         if (done > 0) {
2706             break;
2707         }
2708 
2709 
2710         /* We've got nothing at all, so lets wait for
2711          * more to arrive
2712          */
2713         ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_QEMU_FILE);
2714 
2715         if (ret < 0) {
2716             rdma->error_state = ret;
2717             return ret;
2718         }
2719 
2720         /*
2721          * SEND was received with new bytes, now try again.
2722          */
2723         ret = qemu_rdma_fill(rioc->rdma, data, want, 0);
2724         done += ret;
2725         want -= ret;
2726 
2727         /* Still didn't get enough, so lets just return */
2728         if (want) {
2729             if (done == 0) {
2730                 return QIO_CHANNEL_ERR_BLOCK;
2731             } else {
2732                 break;
2733             }
2734         }
2735     }
2736     rioc->len = done;
2737     return rioc->len;
2738 }
2739 
2740 /*
2741  * Block until all the outstanding chunks have been delivered by the hardware.
2742  */
2743 static int qemu_rdma_drain_cq(QEMUFile *f, RDMAContext *rdma)
2744 {
2745     int ret;
2746 
2747     if (qemu_rdma_write_flush(f, rdma) < 0) {
2748         return -EIO;
2749     }
2750 
2751     while (rdma->nb_sent) {
2752         ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
2753         if (ret < 0) {
2754             error_report("rdma migration: complete polling error!");
2755             return -EIO;
2756         }
2757     }
2758 
2759     qemu_rdma_unregister_waiting(rdma);
2760 
2761     return 0;
2762 }
2763 
2764 
2765 static int qio_channel_rdma_set_blocking(QIOChannel *ioc,
2766                                          bool blocking,
2767                                          Error **errp)
2768 {
2769     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
2770     /* XXX we should make readv/writev actually honour this :-) */
2771     rioc->blocking = blocking;
2772     return 0;
2773 }
2774 
2775 
2776 typedef struct QIOChannelRDMASource QIOChannelRDMASource;
2777 struct QIOChannelRDMASource {
2778     GSource parent;
2779     QIOChannelRDMA *rioc;
2780     GIOCondition condition;
2781 };
2782 
2783 static gboolean
2784 qio_channel_rdma_source_prepare(GSource *source,
2785                                 gint *timeout)
2786 {
2787     QIOChannelRDMASource *rsource = (QIOChannelRDMASource *)source;
2788     RDMAContext *rdma = rsource->rioc->rdma;
2789     GIOCondition cond = 0;
2790     *timeout = -1;
2791 
2792     if (rdma->wr_data[0].control_len) {
2793         cond |= G_IO_IN;
2794     }
2795     cond |= G_IO_OUT;
2796 
2797     return cond & rsource->condition;
2798 }
2799 
2800 static gboolean
2801 qio_channel_rdma_source_check(GSource *source)
2802 {
2803     QIOChannelRDMASource *rsource = (QIOChannelRDMASource *)source;
2804     RDMAContext *rdma = rsource->rioc->rdma;
2805     GIOCondition cond = 0;
2806 
2807     if (rdma->wr_data[0].control_len) {
2808         cond |= G_IO_IN;
2809     }
2810     cond |= G_IO_OUT;
2811 
2812     return cond & rsource->condition;
2813 }
2814 
2815 static gboolean
2816 qio_channel_rdma_source_dispatch(GSource *source,
2817                                  GSourceFunc callback,
2818                                  gpointer user_data)
2819 {
2820     QIOChannelFunc func = (QIOChannelFunc)callback;
2821     QIOChannelRDMASource *rsource = (QIOChannelRDMASource *)source;
2822     RDMAContext *rdma = rsource->rioc->rdma;
2823     GIOCondition cond = 0;
2824 
2825     if (rdma->wr_data[0].control_len) {
2826         cond |= G_IO_IN;
2827     }
2828     cond |= G_IO_OUT;
2829 
2830     return (*func)(QIO_CHANNEL(rsource->rioc),
2831                    (cond & rsource->condition),
2832                    user_data);
2833 }
2834 
2835 static void
2836 qio_channel_rdma_source_finalize(GSource *source)
2837 {
2838     QIOChannelRDMASource *ssource = (QIOChannelRDMASource *)source;
2839 
2840     object_unref(OBJECT(ssource->rioc));
2841 }
2842 
2843 GSourceFuncs qio_channel_rdma_source_funcs = {
2844     qio_channel_rdma_source_prepare,
2845     qio_channel_rdma_source_check,
2846     qio_channel_rdma_source_dispatch,
2847     qio_channel_rdma_source_finalize
2848 };
2849 
2850 static GSource *qio_channel_rdma_create_watch(QIOChannel *ioc,
2851                                               GIOCondition condition)
2852 {
2853     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
2854     QIOChannelRDMASource *ssource;
2855     GSource *source;
2856 
2857     source = g_source_new(&qio_channel_rdma_source_funcs,
2858                           sizeof(QIOChannelRDMASource));
2859     ssource = (QIOChannelRDMASource *)source;
2860 
2861     ssource->rioc = rioc;
2862     object_ref(OBJECT(rioc));
2863 
2864     ssource->condition = condition;
2865 
2866     return source;
2867 }
2868 
2869 
2870 static int qio_channel_rdma_close(QIOChannel *ioc,
2871                                   Error **errp)
2872 {
2873     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
2874     trace_qemu_rdma_close();
2875     if (rioc->rdma) {
2876         if (!rioc->rdma->error_state) {
2877             rioc->rdma->error_state = qemu_file_get_error(rioc->file);
2878         }
2879         qemu_rdma_cleanup(rioc->rdma);
2880         g_free(rioc->rdma);
2881         rioc->rdma = NULL;
2882     }
2883     return 0;
2884 }
2885 
2886 /*
2887  * Parameters:
2888  *    @offset == 0 :
2889  *        This means that 'block_offset' is a full virtual address that does not
2890  *        belong to a RAMBlock of the virtual machine and instead
2891  *        represents a private malloc'd memory area that the caller wishes to
2892  *        transfer.
2893  *
2894  *    @offset != 0 :
2895  *        Offset is an offset to be added to block_offset and used
2896  *        to also lookup the corresponding RAMBlock.
2897  *
2898  *    @size > 0 :
2899  *        Initiate an transfer this size.
2900  *
2901  *    @size == 0 :
2902  *        A 'hint' or 'advice' that means that we wish to speculatively
2903  *        and asynchronously unregister this memory. In this case, there is no
2904  *        guarantee that the unregister will actually happen, for example,
2905  *        if the memory is being actively transmitted. Additionally, the memory
2906  *        may be re-registered at any future time if a write within the same
2907  *        chunk was requested again, even if you attempted to unregister it
2908  *        here.
2909  *
2910  *    @size < 0 : TODO, not yet supported
2911  *        Unregister the memory NOW. This means that the caller does not
2912  *        expect there to be any future RDMA transfers and we just want to clean
2913  *        things up. This is used in case the upper layer owns the memory and
2914  *        cannot wait for qemu_fclose() to occur.
2915  *
2916  *    @bytes_sent : User-specificed pointer to indicate how many bytes were
2917  *                  sent. Usually, this will not be more than a few bytes of
2918  *                  the protocol because most transfers are sent asynchronously.
2919  */
2920 static size_t qemu_rdma_save_page(QEMUFile *f, void *opaque,
2921                                   ram_addr_t block_offset, ram_addr_t offset,
2922                                   size_t size, uint64_t *bytes_sent)
2923 {
2924     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(opaque);
2925     RDMAContext *rdma = rioc->rdma;
2926     int ret;
2927 
2928     CHECK_ERROR_STATE();
2929 
2930     qemu_fflush(f);
2931 
2932     if (size > 0) {
2933         /*
2934          * Add this page to the current 'chunk'. If the chunk
2935          * is full, or the page doen't belong to the current chunk,
2936          * an actual RDMA write will occur and a new chunk will be formed.
2937          */
2938         ret = qemu_rdma_write(f, rdma, block_offset, offset, size);
2939         if (ret < 0) {
2940             error_report("rdma migration: write error! %d", ret);
2941             goto err;
2942         }
2943 
2944         /*
2945          * We always return 1 bytes because the RDMA
2946          * protocol is completely asynchronous. We do not yet know
2947          * whether an  identified chunk is zero or not because we're
2948          * waiting for other pages to potentially be merged with
2949          * the current chunk. So, we have to call qemu_update_position()
2950          * later on when the actual write occurs.
2951          */
2952         if (bytes_sent) {
2953             *bytes_sent = 1;
2954         }
2955     } else {
2956         uint64_t index, chunk;
2957 
2958         /* TODO: Change QEMUFileOps prototype to be signed: size_t => long
2959         if (size < 0) {
2960             ret = qemu_rdma_drain_cq(f, rdma);
2961             if (ret < 0) {
2962                 fprintf(stderr, "rdma: failed to synchronously drain"
2963                                 " completion queue before unregistration.\n");
2964                 goto err;
2965             }
2966         }
2967         */
2968 
2969         ret = qemu_rdma_search_ram_block(rdma, block_offset,
2970                                          offset, size, &index, &chunk);
2971 
2972         if (ret) {
2973             error_report("ram block search failed");
2974             goto err;
2975         }
2976 
2977         qemu_rdma_signal_unregister(rdma, index, chunk, 0);
2978 
2979         /*
2980          * TODO: Synchronous, guaranteed unregistration (should not occur during
2981          * fast-path). Otherwise, unregisters will process on the next call to
2982          * qemu_rdma_drain_cq()
2983         if (size < 0) {
2984             qemu_rdma_unregister_waiting(rdma);
2985         }
2986         */
2987     }
2988 
2989     /*
2990      * Drain the Completion Queue if possible, but do not block,
2991      * just poll.
2992      *
2993      * If nothing to poll, the end of the iteration will do this
2994      * again to make sure we don't overflow the request queue.
2995      */
2996     while (1) {
2997         uint64_t wr_id, wr_id_in;
2998         int ret = qemu_rdma_poll(rdma, &wr_id_in, NULL);
2999         if (ret < 0) {
3000             error_report("rdma migration: polling error! %d", ret);
3001             goto err;
3002         }
3003 
3004         wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
3005 
3006         if (wr_id == RDMA_WRID_NONE) {
3007             break;
3008         }
3009     }
3010 
3011     return RAM_SAVE_CONTROL_DELAYED;
3012 err:
3013     rdma->error_state = ret;
3014     return ret;
3015 }
3016 
3017 static int qemu_rdma_accept(RDMAContext *rdma)
3018 {
3019     RDMACapabilities cap;
3020     struct rdma_conn_param conn_param = {
3021                                             .responder_resources = 2,
3022                                             .private_data = &cap,
3023                                             .private_data_len = sizeof(cap),
3024                                          };
3025     struct rdma_cm_event *cm_event;
3026     struct ibv_context *verbs;
3027     int ret = -EINVAL;
3028     int idx;
3029 
3030     ret = rdma_get_cm_event(rdma->channel, &cm_event);
3031     if (ret) {
3032         goto err_rdma_dest_wait;
3033     }
3034 
3035     if (cm_event->event != RDMA_CM_EVENT_CONNECT_REQUEST) {
3036         rdma_ack_cm_event(cm_event);
3037         goto err_rdma_dest_wait;
3038     }
3039 
3040     memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap));
3041 
3042     network_to_caps(&cap);
3043 
3044     if (cap.version < 1 || cap.version > RDMA_CONTROL_VERSION_CURRENT) {
3045             error_report("Unknown source RDMA version: %d, bailing...",
3046                             cap.version);
3047             rdma_ack_cm_event(cm_event);
3048             goto err_rdma_dest_wait;
3049     }
3050 
3051     /*
3052      * Respond with only the capabilities this version of QEMU knows about.
3053      */
3054     cap.flags &= known_capabilities;
3055 
3056     /*
3057      * Enable the ones that we do know about.
3058      * Add other checks here as new ones are introduced.
3059      */
3060     if (cap.flags & RDMA_CAPABILITY_PIN_ALL) {
3061         rdma->pin_all = true;
3062     }
3063 
3064     rdma->cm_id = cm_event->id;
3065     verbs = cm_event->id->verbs;
3066 
3067     rdma_ack_cm_event(cm_event);
3068 
3069     trace_qemu_rdma_accept_pin_state(rdma->pin_all);
3070 
3071     caps_to_network(&cap);
3072 
3073     trace_qemu_rdma_accept_pin_verbsc(verbs);
3074 
3075     if (!rdma->verbs) {
3076         rdma->verbs = verbs;
3077     } else if (rdma->verbs != verbs) {
3078             error_report("ibv context not matching %p, %p!", rdma->verbs,
3079                          verbs);
3080             goto err_rdma_dest_wait;
3081     }
3082 
3083     qemu_rdma_dump_id("dest_init", verbs);
3084 
3085     ret = qemu_rdma_alloc_pd_cq(rdma);
3086     if (ret) {
3087         error_report("rdma migration: error allocating pd and cq!");
3088         goto err_rdma_dest_wait;
3089     }
3090 
3091     ret = qemu_rdma_alloc_qp(rdma);
3092     if (ret) {
3093         error_report("rdma migration: error allocating qp!");
3094         goto err_rdma_dest_wait;
3095     }
3096 
3097     ret = qemu_rdma_init_ram_blocks(rdma);
3098     if (ret) {
3099         error_report("rdma migration: error initializing ram blocks!");
3100         goto err_rdma_dest_wait;
3101     }
3102 
3103     for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
3104         ret = qemu_rdma_reg_control(rdma, idx);
3105         if (ret) {
3106             error_report("rdma: error registering %d control", idx);
3107             goto err_rdma_dest_wait;
3108         }
3109     }
3110 
3111     qemu_set_fd_handler(rdma->channel->fd, NULL, NULL, NULL);
3112 
3113     ret = rdma_accept(rdma->cm_id, &conn_param);
3114     if (ret) {
3115         error_report("rdma_accept returns %d", ret);
3116         goto err_rdma_dest_wait;
3117     }
3118 
3119     ret = rdma_get_cm_event(rdma->channel, &cm_event);
3120     if (ret) {
3121         error_report("rdma_accept get_cm_event failed %d", ret);
3122         goto err_rdma_dest_wait;
3123     }
3124 
3125     if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) {
3126         error_report("rdma_accept not event established");
3127         rdma_ack_cm_event(cm_event);
3128         goto err_rdma_dest_wait;
3129     }
3130 
3131     rdma_ack_cm_event(cm_event);
3132     rdma->connected = true;
3133 
3134     ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
3135     if (ret) {
3136         error_report("rdma migration: error posting second control recv");
3137         goto err_rdma_dest_wait;
3138     }
3139 
3140     qemu_rdma_dump_gid("dest_connect", rdma->cm_id);
3141 
3142     return 0;
3143 
3144 err_rdma_dest_wait:
3145     rdma->error_state = ret;
3146     qemu_rdma_cleanup(rdma);
3147     return ret;
3148 }
3149 
3150 static int dest_ram_sort_func(const void *a, const void *b)
3151 {
3152     unsigned int a_index = ((const RDMALocalBlock *)a)->src_index;
3153     unsigned int b_index = ((const RDMALocalBlock *)b)->src_index;
3154 
3155     return (a_index < b_index) ? -1 : (a_index != b_index);
3156 }
3157 
3158 /*
3159  * During each iteration of the migration, we listen for instructions
3160  * by the source VM to perform dynamic page registrations before they
3161  * can perform RDMA operations.
3162  *
3163  * We respond with the 'rkey'.
3164  *
3165  * Keep doing this until the source tells us to stop.
3166  */
3167 static int qemu_rdma_registration_handle(QEMUFile *f, void *opaque)
3168 {
3169     RDMAControlHeader reg_resp = { .len = sizeof(RDMARegisterResult),
3170                                .type = RDMA_CONTROL_REGISTER_RESULT,
3171                                .repeat = 0,
3172                              };
3173     RDMAControlHeader unreg_resp = { .len = 0,
3174                                .type = RDMA_CONTROL_UNREGISTER_FINISHED,
3175                                .repeat = 0,
3176                              };
3177     RDMAControlHeader blocks = { .type = RDMA_CONTROL_RAM_BLOCKS_RESULT,
3178                                  .repeat = 1 };
3179     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(opaque);
3180     RDMAContext *rdma = rioc->rdma;
3181     RDMALocalBlocks *local = &rdma->local_ram_blocks;
3182     RDMAControlHeader head;
3183     RDMARegister *reg, *registers;
3184     RDMACompress *comp;
3185     RDMARegisterResult *reg_result;
3186     static RDMARegisterResult results[RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE];
3187     RDMALocalBlock *block;
3188     void *host_addr;
3189     int ret = 0;
3190     int idx = 0;
3191     int count = 0;
3192     int i = 0;
3193 
3194     CHECK_ERROR_STATE();
3195 
3196     do {
3197         trace_qemu_rdma_registration_handle_wait();
3198 
3199         ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_NONE);
3200 
3201         if (ret < 0) {
3202             break;
3203         }
3204 
3205         if (head.repeat > RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE) {
3206             error_report("rdma: Too many requests in this message (%d)."
3207                             "Bailing.", head.repeat);
3208             ret = -EIO;
3209             break;
3210         }
3211 
3212         switch (head.type) {
3213         case RDMA_CONTROL_COMPRESS:
3214             comp = (RDMACompress *) rdma->wr_data[idx].control_curr;
3215             network_to_compress(comp);
3216 
3217             trace_qemu_rdma_registration_handle_compress(comp->length,
3218                                                          comp->block_idx,
3219                                                          comp->offset);
3220             if (comp->block_idx >= rdma->local_ram_blocks.nb_blocks) {
3221                 error_report("rdma: 'compress' bad block index %u (vs %d)",
3222                              (unsigned int)comp->block_idx,
3223                              rdma->local_ram_blocks.nb_blocks);
3224                 ret = -EIO;
3225                 goto out;
3226             }
3227             block = &(rdma->local_ram_blocks.block[comp->block_idx]);
3228 
3229             host_addr = block->local_host_addr +
3230                             (comp->offset - block->offset);
3231 
3232             ram_handle_compressed(host_addr, comp->value, comp->length);
3233             break;
3234 
3235         case RDMA_CONTROL_REGISTER_FINISHED:
3236             trace_qemu_rdma_registration_handle_finished();
3237             goto out;
3238 
3239         case RDMA_CONTROL_RAM_BLOCKS_REQUEST:
3240             trace_qemu_rdma_registration_handle_ram_blocks();
3241 
3242             /* Sort our local RAM Block list so it's the same as the source,
3243              * we can do this since we've filled in a src_index in the list
3244              * as we received the RAMBlock list earlier.
3245              */
3246             qsort(rdma->local_ram_blocks.block,
3247                   rdma->local_ram_blocks.nb_blocks,
3248                   sizeof(RDMALocalBlock), dest_ram_sort_func);
3249             if (rdma->pin_all) {
3250                 ret = qemu_rdma_reg_whole_ram_blocks(rdma);
3251                 if (ret) {
3252                     error_report("rdma migration: error dest "
3253                                     "registering ram blocks");
3254                     goto out;
3255                 }
3256             }
3257 
3258             /*
3259              * Dest uses this to prepare to transmit the RAMBlock descriptions
3260              * to the source VM after connection setup.
3261              * Both sides use the "remote" structure to communicate and update
3262              * their "local" descriptions with what was sent.
3263              */
3264             for (i = 0; i < local->nb_blocks; i++) {
3265                 rdma->dest_blocks[i].remote_host_addr =
3266                     (uintptr_t)(local->block[i].local_host_addr);
3267 
3268                 if (rdma->pin_all) {
3269                     rdma->dest_blocks[i].remote_rkey = local->block[i].mr->rkey;
3270                 }
3271 
3272                 rdma->dest_blocks[i].offset = local->block[i].offset;
3273                 rdma->dest_blocks[i].length = local->block[i].length;
3274 
3275                 dest_block_to_network(&rdma->dest_blocks[i]);
3276                 trace_qemu_rdma_registration_handle_ram_blocks_loop(
3277                     local->block[i].block_name,
3278                     local->block[i].offset,
3279                     local->block[i].length,
3280                     local->block[i].local_host_addr,
3281                     local->block[i].src_index);
3282             }
3283 
3284             blocks.len = rdma->local_ram_blocks.nb_blocks
3285                                                 * sizeof(RDMADestBlock);
3286 
3287 
3288             ret = qemu_rdma_post_send_control(rdma,
3289                                         (uint8_t *) rdma->dest_blocks, &blocks);
3290 
3291             if (ret < 0) {
3292                 error_report("rdma migration: error sending remote info");
3293                 goto out;
3294             }
3295 
3296             break;
3297         case RDMA_CONTROL_REGISTER_REQUEST:
3298             trace_qemu_rdma_registration_handle_register(head.repeat);
3299 
3300             reg_resp.repeat = head.repeat;
3301             registers = (RDMARegister *) rdma->wr_data[idx].control_curr;
3302 
3303             for (count = 0; count < head.repeat; count++) {
3304                 uint64_t chunk;
3305                 uint8_t *chunk_start, *chunk_end;
3306 
3307                 reg = &registers[count];
3308                 network_to_register(reg);
3309 
3310                 reg_result = &results[count];
3311 
3312                 trace_qemu_rdma_registration_handle_register_loop(count,
3313                          reg->current_index, reg->key.current_addr, reg->chunks);
3314 
3315                 if (reg->current_index >= rdma->local_ram_blocks.nb_blocks) {
3316                     error_report("rdma: 'register' bad block index %u (vs %d)",
3317                                  (unsigned int)reg->current_index,
3318                                  rdma->local_ram_blocks.nb_blocks);
3319                     ret = -ENOENT;
3320                     goto out;
3321                 }
3322                 block = &(rdma->local_ram_blocks.block[reg->current_index]);
3323                 if (block->is_ram_block) {
3324                     if (block->offset > reg->key.current_addr) {
3325                         error_report("rdma: bad register address for block %s"
3326                             " offset: %" PRIx64 " current_addr: %" PRIx64,
3327                             block->block_name, block->offset,
3328                             reg->key.current_addr);
3329                         ret = -ERANGE;
3330                         goto out;
3331                     }
3332                     host_addr = (block->local_host_addr +
3333                                 (reg->key.current_addr - block->offset));
3334                     chunk = ram_chunk_index(block->local_host_addr,
3335                                             (uint8_t *) host_addr);
3336                 } else {
3337                     chunk = reg->key.chunk;
3338                     host_addr = block->local_host_addr +
3339                         (reg->key.chunk * (1UL << RDMA_REG_CHUNK_SHIFT));
3340                     /* Check for particularly bad chunk value */
3341                     if (host_addr < (void *)block->local_host_addr) {
3342                         error_report("rdma: bad chunk for block %s"
3343                             " chunk: %" PRIx64,
3344                             block->block_name, reg->key.chunk);
3345                         ret = -ERANGE;
3346                         goto out;
3347                     }
3348                 }
3349                 chunk_start = ram_chunk_start(block, chunk);
3350                 chunk_end = ram_chunk_end(block, chunk + reg->chunks);
3351                 if (qemu_rdma_register_and_get_keys(rdma, block,
3352                             (uintptr_t)host_addr, NULL, &reg_result->rkey,
3353                             chunk, chunk_start, chunk_end)) {
3354                     error_report("cannot get rkey");
3355                     ret = -EINVAL;
3356                     goto out;
3357                 }
3358 
3359                 reg_result->host_addr = (uintptr_t)block->local_host_addr;
3360 
3361                 trace_qemu_rdma_registration_handle_register_rkey(
3362                                                            reg_result->rkey);
3363 
3364                 result_to_network(reg_result);
3365             }
3366 
3367             ret = qemu_rdma_post_send_control(rdma,
3368                             (uint8_t *) results, &reg_resp);
3369 
3370             if (ret < 0) {
3371                 error_report("Failed to send control buffer");
3372                 goto out;
3373             }
3374             break;
3375         case RDMA_CONTROL_UNREGISTER_REQUEST:
3376             trace_qemu_rdma_registration_handle_unregister(head.repeat);
3377             unreg_resp.repeat = head.repeat;
3378             registers = (RDMARegister *) rdma->wr_data[idx].control_curr;
3379 
3380             for (count = 0; count < head.repeat; count++) {
3381                 reg = &registers[count];
3382                 network_to_register(reg);
3383 
3384                 trace_qemu_rdma_registration_handle_unregister_loop(count,
3385                            reg->current_index, reg->key.chunk);
3386 
3387                 block = &(rdma->local_ram_blocks.block[reg->current_index]);
3388 
3389                 ret = ibv_dereg_mr(block->pmr[reg->key.chunk]);
3390                 block->pmr[reg->key.chunk] = NULL;
3391 
3392                 if (ret != 0) {
3393                     perror("rdma unregistration chunk failed");
3394                     ret = -ret;
3395                     goto out;
3396                 }
3397 
3398                 rdma->total_registrations--;
3399 
3400                 trace_qemu_rdma_registration_handle_unregister_success(
3401                                                        reg->key.chunk);
3402             }
3403 
3404             ret = qemu_rdma_post_send_control(rdma, NULL, &unreg_resp);
3405 
3406             if (ret < 0) {
3407                 error_report("Failed to send control buffer");
3408                 goto out;
3409             }
3410             break;
3411         case RDMA_CONTROL_REGISTER_RESULT:
3412             error_report("Invalid RESULT message at dest.");
3413             ret = -EIO;
3414             goto out;
3415         default:
3416             error_report("Unknown control message %s", control_desc(head.type));
3417             ret = -EIO;
3418             goto out;
3419         }
3420     } while (1);
3421 out:
3422     if (ret < 0) {
3423         rdma->error_state = ret;
3424     }
3425     return ret;
3426 }
3427 
3428 /* Destination:
3429  * Called via a ram_control_load_hook during the initial RAM load section which
3430  * lists the RAMBlocks by name.  This lets us know the order of the RAMBlocks
3431  * on the source.
3432  * We've already built our local RAMBlock list, but not yet sent the list to
3433  * the source.
3434  */
3435 static int
3436 rdma_block_notification_handle(QIOChannelRDMA *rioc, const char *name)
3437 {
3438     RDMAContext *rdma = rioc->rdma;
3439     int curr;
3440     int found = -1;
3441 
3442     /* Find the matching RAMBlock in our local list */
3443     for (curr = 0; curr < rdma->local_ram_blocks.nb_blocks; curr++) {
3444         if (!strcmp(rdma->local_ram_blocks.block[curr].block_name, name)) {
3445             found = curr;
3446             break;
3447         }
3448     }
3449 
3450     if (found == -1) {
3451         error_report("RAMBlock '%s' not found on destination", name);
3452         return -ENOENT;
3453     }
3454 
3455     rdma->local_ram_blocks.block[curr].src_index = rdma->next_src_index;
3456     trace_rdma_block_notification_handle(name, rdma->next_src_index);
3457     rdma->next_src_index++;
3458 
3459     return 0;
3460 }
3461 
3462 static int rdma_load_hook(QEMUFile *f, void *opaque, uint64_t flags, void *data)
3463 {
3464     switch (flags) {
3465     case RAM_CONTROL_BLOCK_REG:
3466         return rdma_block_notification_handle(opaque, data);
3467 
3468     case RAM_CONTROL_HOOK:
3469         return qemu_rdma_registration_handle(f, opaque);
3470 
3471     default:
3472         /* Shouldn't be called with any other values */
3473         abort();
3474     }
3475 }
3476 
3477 static int qemu_rdma_registration_start(QEMUFile *f, void *opaque,
3478                                         uint64_t flags, void *data)
3479 {
3480     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(opaque);
3481     RDMAContext *rdma = rioc->rdma;
3482 
3483     CHECK_ERROR_STATE();
3484 
3485     trace_qemu_rdma_registration_start(flags);
3486     qemu_put_be64(f, RAM_SAVE_FLAG_HOOK);
3487     qemu_fflush(f);
3488 
3489     return 0;
3490 }
3491 
3492 /*
3493  * Inform dest that dynamic registrations are done for now.
3494  * First, flush writes, if any.
3495  */
3496 static int qemu_rdma_registration_stop(QEMUFile *f, void *opaque,
3497                                        uint64_t flags, void *data)
3498 {
3499     Error *local_err = NULL, **errp = &local_err;
3500     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(opaque);
3501     RDMAContext *rdma = rioc->rdma;
3502     RDMAControlHeader head = { .len = 0, .repeat = 1 };
3503     int ret = 0;
3504 
3505     CHECK_ERROR_STATE();
3506 
3507     qemu_fflush(f);
3508     ret = qemu_rdma_drain_cq(f, rdma);
3509 
3510     if (ret < 0) {
3511         goto err;
3512     }
3513 
3514     if (flags == RAM_CONTROL_SETUP) {
3515         RDMAControlHeader resp = {.type = RDMA_CONTROL_RAM_BLOCKS_RESULT };
3516         RDMALocalBlocks *local = &rdma->local_ram_blocks;
3517         int reg_result_idx, i, nb_dest_blocks;
3518 
3519         head.type = RDMA_CONTROL_RAM_BLOCKS_REQUEST;
3520         trace_qemu_rdma_registration_stop_ram();
3521 
3522         /*
3523          * Make sure that we parallelize the pinning on both sides.
3524          * For very large guests, doing this serially takes a really
3525          * long time, so we have to 'interleave' the pinning locally
3526          * with the control messages by performing the pinning on this
3527          * side before we receive the control response from the other
3528          * side that the pinning has completed.
3529          */
3530         ret = qemu_rdma_exchange_send(rdma, &head, NULL, &resp,
3531                     &reg_result_idx, rdma->pin_all ?
3532                     qemu_rdma_reg_whole_ram_blocks : NULL);
3533         if (ret < 0) {
3534             ERROR(errp, "receiving remote info!");
3535             return ret;
3536         }
3537 
3538         nb_dest_blocks = resp.len / sizeof(RDMADestBlock);
3539 
3540         /*
3541          * The protocol uses two different sets of rkeys (mutually exclusive):
3542          * 1. One key to represent the virtual address of the entire ram block.
3543          *    (dynamic chunk registration disabled - pin everything with one rkey.)
3544          * 2. One to represent individual chunks within a ram block.
3545          *    (dynamic chunk registration enabled - pin individual chunks.)
3546          *
3547          * Once the capability is successfully negotiated, the destination transmits
3548          * the keys to use (or sends them later) including the virtual addresses
3549          * and then propagates the remote ram block descriptions to his local copy.
3550          */
3551 
3552         if (local->nb_blocks != nb_dest_blocks) {
3553             ERROR(errp, "ram blocks mismatch (Number of blocks %d vs %d) "
3554                         "Your QEMU command line parameters are probably "
3555                         "not identical on both the source and destination.",
3556                         local->nb_blocks, nb_dest_blocks);
3557             rdma->error_state = -EINVAL;
3558             return -EINVAL;
3559         }
3560 
3561         qemu_rdma_move_header(rdma, reg_result_idx, &resp);
3562         memcpy(rdma->dest_blocks,
3563             rdma->wr_data[reg_result_idx].control_curr, resp.len);
3564         for (i = 0; i < nb_dest_blocks; i++) {
3565             network_to_dest_block(&rdma->dest_blocks[i]);
3566 
3567             /* We require that the blocks are in the same order */
3568             if (rdma->dest_blocks[i].length != local->block[i].length) {
3569                 ERROR(errp, "Block %s/%d has a different length %" PRIu64
3570                             "vs %" PRIu64, local->block[i].block_name, i,
3571                             local->block[i].length,
3572                             rdma->dest_blocks[i].length);
3573                 rdma->error_state = -EINVAL;
3574                 return -EINVAL;
3575             }
3576             local->block[i].remote_host_addr =
3577                     rdma->dest_blocks[i].remote_host_addr;
3578             local->block[i].remote_rkey = rdma->dest_blocks[i].remote_rkey;
3579         }
3580     }
3581 
3582     trace_qemu_rdma_registration_stop(flags);
3583 
3584     head.type = RDMA_CONTROL_REGISTER_FINISHED;
3585     ret = qemu_rdma_exchange_send(rdma, &head, NULL, NULL, NULL, NULL);
3586 
3587     if (ret < 0) {
3588         goto err;
3589     }
3590 
3591     return 0;
3592 err:
3593     rdma->error_state = ret;
3594     return ret;
3595 }
3596 
3597 static const QEMUFileHooks rdma_read_hooks = {
3598     .hook_ram_load = rdma_load_hook,
3599 };
3600 
3601 static const QEMUFileHooks rdma_write_hooks = {
3602     .before_ram_iterate = qemu_rdma_registration_start,
3603     .after_ram_iterate  = qemu_rdma_registration_stop,
3604     .save_page          = qemu_rdma_save_page,
3605 };
3606 
3607 
3608 static void qio_channel_rdma_finalize(Object *obj)
3609 {
3610     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(obj);
3611     if (rioc->rdma) {
3612         qemu_rdma_cleanup(rioc->rdma);
3613         g_free(rioc->rdma);
3614         rioc->rdma = NULL;
3615     }
3616 }
3617 
3618 static void qio_channel_rdma_class_init(ObjectClass *klass,
3619                                         void *class_data G_GNUC_UNUSED)
3620 {
3621     QIOChannelClass *ioc_klass = QIO_CHANNEL_CLASS(klass);
3622 
3623     ioc_klass->io_writev = qio_channel_rdma_writev;
3624     ioc_klass->io_readv = qio_channel_rdma_readv;
3625     ioc_klass->io_set_blocking = qio_channel_rdma_set_blocking;
3626     ioc_klass->io_close = qio_channel_rdma_close;
3627     ioc_klass->io_create_watch = qio_channel_rdma_create_watch;
3628 }
3629 
3630 static const TypeInfo qio_channel_rdma_info = {
3631     .parent = TYPE_QIO_CHANNEL,
3632     .name = TYPE_QIO_CHANNEL_RDMA,
3633     .instance_size = sizeof(QIOChannelRDMA),
3634     .instance_finalize = qio_channel_rdma_finalize,
3635     .class_init = qio_channel_rdma_class_init,
3636 };
3637 
3638 static void qio_channel_rdma_register_types(void)
3639 {
3640     type_register_static(&qio_channel_rdma_info);
3641 }
3642 
3643 type_init(qio_channel_rdma_register_types);
3644 
3645 static QEMUFile *qemu_fopen_rdma(RDMAContext *rdma, const char *mode)
3646 {
3647     QIOChannelRDMA *rioc;
3648 
3649     if (qemu_file_mode_is_not_valid(mode)) {
3650         return NULL;
3651     }
3652 
3653     rioc = QIO_CHANNEL_RDMA(object_new(TYPE_QIO_CHANNEL_RDMA));
3654     rioc->rdma = rdma;
3655 
3656     if (mode[0] == 'w') {
3657         rioc->file = qemu_fopen_channel_output(QIO_CHANNEL(rioc));
3658         qemu_file_set_hooks(rioc->file, &rdma_write_hooks);
3659     } else {
3660         rioc->file = qemu_fopen_channel_input(QIO_CHANNEL(rioc));
3661         qemu_file_set_hooks(rioc->file, &rdma_read_hooks);
3662     }
3663 
3664     return rioc->file;
3665 }
3666 
3667 static void rdma_accept_incoming_migration(void *opaque)
3668 {
3669     RDMAContext *rdma = opaque;
3670     int ret;
3671     QEMUFile *f;
3672     Error *local_err = NULL, **errp = &local_err;
3673 
3674     trace_qemu_rdma_accept_incoming_migration();
3675     ret = qemu_rdma_accept(rdma);
3676 
3677     if (ret) {
3678         ERROR(errp, "RDMA Migration initialization failed!");
3679         return;
3680     }
3681 
3682     trace_qemu_rdma_accept_incoming_migration_accepted();
3683 
3684     f = qemu_fopen_rdma(rdma, "rb");
3685     if (f == NULL) {
3686         ERROR(errp, "could not qemu_fopen_rdma!");
3687         qemu_rdma_cleanup(rdma);
3688         return;
3689     }
3690 
3691     rdma->migration_started_on_destination = 1;
3692     migration_fd_process_incoming(f);
3693 }
3694 
3695 void rdma_start_incoming_migration(const char *host_port, Error **errp)
3696 {
3697     int ret;
3698     RDMAContext *rdma;
3699     Error *local_err = NULL;
3700 
3701     trace_rdma_start_incoming_migration();
3702     rdma = qemu_rdma_data_init(host_port, &local_err);
3703 
3704     if (rdma == NULL) {
3705         goto err;
3706     }
3707 
3708     ret = qemu_rdma_dest_init(rdma, &local_err);
3709 
3710     if (ret) {
3711         goto err;
3712     }
3713 
3714     trace_rdma_start_incoming_migration_after_dest_init();
3715 
3716     ret = rdma_listen(rdma->listen_id, 5);
3717 
3718     if (ret) {
3719         ERROR(errp, "listening on socket!");
3720         goto err;
3721     }
3722 
3723     trace_rdma_start_incoming_migration_after_rdma_listen();
3724 
3725     qemu_set_fd_handler(rdma->channel->fd, rdma_accept_incoming_migration,
3726                         NULL, (void *)(intptr_t)rdma);
3727     return;
3728 err:
3729     error_propagate(errp, local_err);
3730     g_free(rdma);
3731 }
3732 
3733 void rdma_start_outgoing_migration(void *opaque,
3734                             const char *host_port, Error **errp)
3735 {
3736     MigrationState *s = opaque;
3737     RDMAContext *rdma = qemu_rdma_data_init(host_port, errp);
3738     int ret = 0;
3739 
3740     if (rdma == NULL) {
3741         goto err;
3742     }
3743 
3744     ret = qemu_rdma_source_init(rdma,
3745         s->enabled_capabilities[MIGRATION_CAPABILITY_RDMA_PIN_ALL], errp);
3746 
3747     if (ret) {
3748         goto err;
3749     }
3750 
3751     trace_rdma_start_outgoing_migration_after_rdma_source_init();
3752     ret = qemu_rdma_connect(rdma, errp);
3753 
3754     if (ret) {
3755         goto err;
3756     }
3757 
3758     trace_rdma_start_outgoing_migration_after_rdma_connect();
3759 
3760     s->to_dst_file = qemu_fopen_rdma(rdma, "wb");
3761     migrate_fd_connect(s);
3762     return;
3763 err:
3764     g_free(rdma);
3765 }
3766