1 /* 2 * RDMA protocol and interfaces 3 * 4 * Copyright IBM, Corp. 2010-2013 5 * 6 * Authors: 7 * Michael R. Hines <mrhines@us.ibm.com> 8 * Jiuxing Liu <jl@us.ibm.com> 9 * 10 * This work is licensed under the terms of the GNU GPL, version 2 or 11 * later. See the COPYING file in the top-level directory. 12 * 13 */ 14 #include "qemu-common.h" 15 #include "migration/migration.h" 16 #include "migration/qemu-file.h" 17 #include "exec/cpu-common.h" 18 #include "qemu/main-loop.h" 19 #include "qemu/sockets.h" 20 #include "qemu/bitmap.h" 21 #include "block/coroutine.h" 22 #include <stdio.h> 23 #include <sys/types.h> 24 #include <sys/socket.h> 25 #include <netdb.h> 26 #include <arpa/inet.h> 27 #include <string.h> 28 #include <rdma/rdma_cma.h> 29 #include "trace.h" 30 31 /* 32 * Print and error on both the Monitor and the Log file. 33 */ 34 #define ERROR(errp, fmt, ...) \ 35 do { \ 36 fprintf(stderr, "RDMA ERROR: " fmt "\n", ## __VA_ARGS__); \ 37 if (errp && (*(errp) == NULL)) { \ 38 error_setg(errp, "RDMA ERROR: " fmt, ## __VA_ARGS__); \ 39 } \ 40 } while (0) 41 42 #define RDMA_RESOLVE_TIMEOUT_MS 10000 43 44 /* Do not merge data if larger than this. */ 45 #define RDMA_MERGE_MAX (2 * 1024 * 1024) 46 #define RDMA_SIGNALED_SEND_MAX (RDMA_MERGE_MAX / 4096) 47 48 #define RDMA_REG_CHUNK_SHIFT 20 /* 1 MB */ 49 50 /* 51 * This is only for non-live state being migrated. 52 * Instead of RDMA_WRITE messages, we use RDMA_SEND 53 * messages for that state, which requires a different 54 * delivery design than main memory. 55 */ 56 #define RDMA_SEND_INCREMENT 32768 57 58 /* 59 * Maximum size infiniband SEND message 60 */ 61 #define RDMA_CONTROL_MAX_BUFFER (512 * 1024) 62 #define RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE 4096 63 64 #define RDMA_CONTROL_VERSION_CURRENT 1 65 /* 66 * Capabilities for negotiation. 67 */ 68 #define RDMA_CAPABILITY_PIN_ALL 0x01 69 70 /* 71 * Add the other flags above to this list of known capabilities 72 * as they are introduced. 73 */ 74 static uint32_t known_capabilities = RDMA_CAPABILITY_PIN_ALL; 75 76 #define CHECK_ERROR_STATE() \ 77 do { \ 78 if (rdma->error_state) { \ 79 if (!rdma->error_reported) { \ 80 error_report("RDMA is in an error state waiting migration" \ 81 " to abort!"); \ 82 rdma->error_reported = 1; \ 83 } \ 84 return rdma->error_state; \ 85 } \ 86 } while (0); 87 88 /* 89 * A work request ID is 64-bits and we split up these bits 90 * into 3 parts: 91 * 92 * bits 0-15 : type of control message, 2^16 93 * bits 16-29: ram block index, 2^14 94 * bits 30-63: ram block chunk number, 2^34 95 * 96 * The last two bit ranges are only used for RDMA writes, 97 * in order to track their completion and potentially 98 * also track unregistration status of the message. 99 */ 100 #define RDMA_WRID_TYPE_SHIFT 0UL 101 #define RDMA_WRID_BLOCK_SHIFT 16UL 102 #define RDMA_WRID_CHUNK_SHIFT 30UL 103 104 #define RDMA_WRID_TYPE_MASK \ 105 ((1UL << RDMA_WRID_BLOCK_SHIFT) - 1UL) 106 107 #define RDMA_WRID_BLOCK_MASK \ 108 (~RDMA_WRID_TYPE_MASK & ((1UL << RDMA_WRID_CHUNK_SHIFT) - 1UL)) 109 110 #define RDMA_WRID_CHUNK_MASK (~RDMA_WRID_BLOCK_MASK & ~RDMA_WRID_TYPE_MASK) 111 112 /* 113 * RDMA migration protocol: 114 * 1. RDMA Writes (data messages, i.e. RAM) 115 * 2. IB Send/Recv (control channel messages) 116 */ 117 enum { 118 RDMA_WRID_NONE = 0, 119 RDMA_WRID_RDMA_WRITE = 1, 120 RDMA_WRID_SEND_CONTROL = 2000, 121 RDMA_WRID_RECV_CONTROL = 4000, 122 }; 123 124 static const char *wrid_desc[] = { 125 [RDMA_WRID_NONE] = "NONE", 126 [RDMA_WRID_RDMA_WRITE] = "WRITE RDMA", 127 [RDMA_WRID_SEND_CONTROL] = "CONTROL SEND", 128 [RDMA_WRID_RECV_CONTROL] = "CONTROL RECV", 129 }; 130 131 /* 132 * Work request IDs for IB SEND messages only (not RDMA writes). 133 * This is used by the migration protocol to transmit 134 * control messages (such as device state and registration commands) 135 * 136 * We could use more WRs, but we have enough for now. 137 */ 138 enum { 139 RDMA_WRID_READY = 0, 140 RDMA_WRID_DATA, 141 RDMA_WRID_CONTROL, 142 RDMA_WRID_MAX, 143 }; 144 145 /* 146 * SEND/RECV IB Control Messages. 147 */ 148 enum { 149 RDMA_CONTROL_NONE = 0, 150 RDMA_CONTROL_ERROR, 151 RDMA_CONTROL_READY, /* ready to receive */ 152 RDMA_CONTROL_QEMU_FILE, /* QEMUFile-transmitted bytes */ 153 RDMA_CONTROL_RAM_BLOCKS_REQUEST, /* RAMBlock synchronization */ 154 RDMA_CONTROL_RAM_BLOCKS_RESULT, /* RAMBlock synchronization */ 155 RDMA_CONTROL_COMPRESS, /* page contains repeat values */ 156 RDMA_CONTROL_REGISTER_REQUEST, /* dynamic page registration */ 157 RDMA_CONTROL_REGISTER_RESULT, /* key to use after registration */ 158 RDMA_CONTROL_REGISTER_FINISHED, /* current iteration finished */ 159 RDMA_CONTROL_UNREGISTER_REQUEST, /* dynamic UN-registration */ 160 RDMA_CONTROL_UNREGISTER_FINISHED, /* unpinning finished */ 161 }; 162 163 static const char *control_desc[] = { 164 [RDMA_CONTROL_NONE] = "NONE", 165 [RDMA_CONTROL_ERROR] = "ERROR", 166 [RDMA_CONTROL_READY] = "READY", 167 [RDMA_CONTROL_QEMU_FILE] = "QEMU FILE", 168 [RDMA_CONTROL_RAM_BLOCKS_REQUEST] = "RAM BLOCKS REQUEST", 169 [RDMA_CONTROL_RAM_BLOCKS_RESULT] = "RAM BLOCKS RESULT", 170 [RDMA_CONTROL_COMPRESS] = "COMPRESS", 171 [RDMA_CONTROL_REGISTER_REQUEST] = "REGISTER REQUEST", 172 [RDMA_CONTROL_REGISTER_RESULT] = "REGISTER RESULT", 173 [RDMA_CONTROL_REGISTER_FINISHED] = "REGISTER FINISHED", 174 [RDMA_CONTROL_UNREGISTER_REQUEST] = "UNREGISTER REQUEST", 175 [RDMA_CONTROL_UNREGISTER_FINISHED] = "UNREGISTER FINISHED", 176 }; 177 178 /* 179 * Memory and MR structures used to represent an IB Send/Recv work request. 180 * This is *not* used for RDMA writes, only IB Send/Recv. 181 */ 182 typedef struct { 183 uint8_t control[RDMA_CONTROL_MAX_BUFFER]; /* actual buffer to register */ 184 struct ibv_mr *control_mr; /* registration metadata */ 185 size_t control_len; /* length of the message */ 186 uint8_t *control_curr; /* start of unconsumed bytes */ 187 } RDMAWorkRequestData; 188 189 /* 190 * Negotiate RDMA capabilities during connection-setup time. 191 */ 192 typedef struct { 193 uint32_t version; 194 uint32_t flags; 195 } RDMACapabilities; 196 197 static void caps_to_network(RDMACapabilities *cap) 198 { 199 cap->version = htonl(cap->version); 200 cap->flags = htonl(cap->flags); 201 } 202 203 static void network_to_caps(RDMACapabilities *cap) 204 { 205 cap->version = ntohl(cap->version); 206 cap->flags = ntohl(cap->flags); 207 } 208 209 /* 210 * Representation of a RAMBlock from an RDMA perspective. 211 * This is not transmitted, only local. 212 * This and subsequent structures cannot be linked lists 213 * because we're using a single IB message to transmit 214 * the information. It's small anyway, so a list is overkill. 215 */ 216 typedef struct RDMALocalBlock { 217 uint8_t *local_host_addr; /* local virtual address */ 218 uint64_t remote_host_addr; /* remote virtual address */ 219 uint64_t offset; 220 uint64_t length; 221 struct ibv_mr **pmr; /* MRs for chunk-level registration */ 222 struct ibv_mr *mr; /* MR for non-chunk-level registration */ 223 uint32_t *remote_keys; /* rkeys for chunk-level registration */ 224 uint32_t remote_rkey; /* rkeys for non-chunk-level registration */ 225 int index; /* which block are we */ 226 bool is_ram_block; 227 int nb_chunks; 228 unsigned long *transit_bitmap; 229 unsigned long *unregister_bitmap; 230 } RDMALocalBlock; 231 232 /* 233 * Also represents a RAMblock, but only on the dest. 234 * This gets transmitted by the dest during connection-time 235 * to the source VM and then is used to populate the 236 * corresponding RDMALocalBlock with 237 * the information needed to perform the actual RDMA. 238 */ 239 typedef struct QEMU_PACKED RDMARemoteBlock { 240 uint64_t remote_host_addr; 241 uint64_t offset; 242 uint64_t length; 243 uint32_t remote_rkey; 244 uint32_t padding; 245 } RDMARemoteBlock; 246 247 static uint64_t htonll(uint64_t v) 248 { 249 union { uint32_t lv[2]; uint64_t llv; } u; 250 u.lv[0] = htonl(v >> 32); 251 u.lv[1] = htonl(v & 0xFFFFFFFFULL); 252 return u.llv; 253 } 254 255 static uint64_t ntohll(uint64_t v) { 256 union { uint32_t lv[2]; uint64_t llv; } u; 257 u.llv = v; 258 return ((uint64_t)ntohl(u.lv[0]) << 32) | (uint64_t) ntohl(u.lv[1]); 259 } 260 261 static void remote_block_to_network(RDMARemoteBlock *rb) 262 { 263 rb->remote_host_addr = htonll(rb->remote_host_addr); 264 rb->offset = htonll(rb->offset); 265 rb->length = htonll(rb->length); 266 rb->remote_rkey = htonl(rb->remote_rkey); 267 } 268 269 static void network_to_remote_block(RDMARemoteBlock *rb) 270 { 271 rb->remote_host_addr = ntohll(rb->remote_host_addr); 272 rb->offset = ntohll(rb->offset); 273 rb->length = ntohll(rb->length); 274 rb->remote_rkey = ntohl(rb->remote_rkey); 275 } 276 277 /* 278 * Virtual address of the above structures used for transmitting 279 * the RAMBlock descriptions at connection-time. 280 * This structure is *not* transmitted. 281 */ 282 typedef struct RDMALocalBlocks { 283 int nb_blocks; 284 bool init; /* main memory init complete */ 285 RDMALocalBlock *block; 286 } RDMALocalBlocks; 287 288 /* 289 * Main data structure for RDMA state. 290 * While there is only one copy of this structure being allocated right now, 291 * this is the place where one would start if you wanted to consider 292 * having more than one RDMA connection open at the same time. 293 */ 294 typedef struct RDMAContext { 295 char *host; 296 int port; 297 298 RDMAWorkRequestData wr_data[RDMA_WRID_MAX]; 299 300 /* 301 * This is used by *_exchange_send() to figure out whether or not 302 * the initial "READY" message has already been received or not. 303 * This is because other functions may potentially poll() and detect 304 * the READY message before send() does, in which case we need to 305 * know if it completed. 306 */ 307 int control_ready_expected; 308 309 /* number of outstanding writes */ 310 int nb_sent; 311 312 /* store info about current buffer so that we can 313 merge it with future sends */ 314 uint64_t current_addr; 315 uint64_t current_length; 316 /* index of ram block the current buffer belongs to */ 317 int current_index; 318 /* index of the chunk in the current ram block */ 319 int current_chunk; 320 321 bool pin_all; 322 323 /* 324 * infiniband-specific variables for opening the device 325 * and maintaining connection state and so forth. 326 * 327 * cm_id also has ibv_context, rdma_event_channel, and ibv_qp in 328 * cm_id->verbs, cm_id->channel, and cm_id->qp. 329 */ 330 struct rdma_cm_id *cm_id; /* connection manager ID */ 331 struct rdma_cm_id *listen_id; 332 bool connected; 333 334 struct ibv_context *verbs; 335 struct rdma_event_channel *channel; 336 struct ibv_qp *qp; /* queue pair */ 337 struct ibv_comp_channel *comp_channel; /* completion channel */ 338 struct ibv_pd *pd; /* protection domain */ 339 struct ibv_cq *cq; /* completion queue */ 340 341 /* 342 * If a previous write failed (perhaps because of a failed 343 * memory registration, then do not attempt any future work 344 * and remember the error state. 345 */ 346 int error_state; 347 int error_reported; 348 349 /* 350 * Description of ram blocks used throughout the code. 351 */ 352 RDMALocalBlocks local_ram_blocks; 353 RDMARemoteBlock *block; 354 355 /* 356 * Migration on *destination* started. 357 * Then use coroutine yield function. 358 * Source runs in a thread, so we don't care. 359 */ 360 int migration_started_on_destination; 361 362 int total_registrations; 363 int total_writes; 364 365 int unregister_current, unregister_next; 366 uint64_t unregistrations[RDMA_SIGNALED_SEND_MAX]; 367 368 GHashTable *blockmap; 369 } RDMAContext; 370 371 /* 372 * Interface to the rest of the migration call stack. 373 */ 374 typedef struct QEMUFileRDMA { 375 RDMAContext *rdma; 376 size_t len; 377 void *file; 378 } QEMUFileRDMA; 379 380 /* 381 * Main structure for IB Send/Recv control messages. 382 * This gets prepended at the beginning of every Send/Recv. 383 */ 384 typedef struct QEMU_PACKED { 385 uint32_t len; /* Total length of data portion */ 386 uint32_t type; /* which control command to perform */ 387 uint32_t repeat; /* number of commands in data portion of same type */ 388 uint32_t padding; 389 } RDMAControlHeader; 390 391 static void control_to_network(RDMAControlHeader *control) 392 { 393 control->type = htonl(control->type); 394 control->len = htonl(control->len); 395 control->repeat = htonl(control->repeat); 396 } 397 398 static void network_to_control(RDMAControlHeader *control) 399 { 400 control->type = ntohl(control->type); 401 control->len = ntohl(control->len); 402 control->repeat = ntohl(control->repeat); 403 } 404 405 /* 406 * Register a single Chunk. 407 * Information sent by the source VM to inform the dest 408 * to register an single chunk of memory before we can perform 409 * the actual RDMA operation. 410 */ 411 typedef struct QEMU_PACKED { 412 union QEMU_PACKED { 413 uint64_t current_addr; /* offset into the ramblock of the chunk */ 414 uint64_t chunk; /* chunk to lookup if unregistering */ 415 } key; 416 uint32_t current_index; /* which ramblock the chunk belongs to */ 417 uint32_t padding; 418 uint64_t chunks; /* how many sequential chunks to register */ 419 } RDMARegister; 420 421 static void register_to_network(RDMARegister *reg) 422 { 423 reg->key.current_addr = htonll(reg->key.current_addr); 424 reg->current_index = htonl(reg->current_index); 425 reg->chunks = htonll(reg->chunks); 426 } 427 428 static void network_to_register(RDMARegister *reg) 429 { 430 reg->key.current_addr = ntohll(reg->key.current_addr); 431 reg->current_index = ntohl(reg->current_index); 432 reg->chunks = ntohll(reg->chunks); 433 } 434 435 typedef struct QEMU_PACKED { 436 uint32_t value; /* if zero, we will madvise() */ 437 uint32_t block_idx; /* which ram block index */ 438 uint64_t offset; /* where in the remote ramblock this chunk */ 439 uint64_t length; /* length of the chunk */ 440 } RDMACompress; 441 442 static void compress_to_network(RDMACompress *comp) 443 { 444 comp->value = htonl(comp->value); 445 comp->block_idx = htonl(comp->block_idx); 446 comp->offset = htonll(comp->offset); 447 comp->length = htonll(comp->length); 448 } 449 450 static void network_to_compress(RDMACompress *comp) 451 { 452 comp->value = ntohl(comp->value); 453 comp->block_idx = ntohl(comp->block_idx); 454 comp->offset = ntohll(comp->offset); 455 comp->length = ntohll(comp->length); 456 } 457 458 /* 459 * The result of the dest's memory registration produces an "rkey" 460 * which the source VM must reference in order to perform 461 * the RDMA operation. 462 */ 463 typedef struct QEMU_PACKED { 464 uint32_t rkey; 465 uint32_t padding; 466 uint64_t host_addr; 467 } RDMARegisterResult; 468 469 static void result_to_network(RDMARegisterResult *result) 470 { 471 result->rkey = htonl(result->rkey); 472 result->host_addr = htonll(result->host_addr); 473 }; 474 475 static void network_to_result(RDMARegisterResult *result) 476 { 477 result->rkey = ntohl(result->rkey); 478 result->host_addr = ntohll(result->host_addr); 479 }; 480 481 const char *print_wrid(int wrid); 482 static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head, 483 uint8_t *data, RDMAControlHeader *resp, 484 int *resp_idx, 485 int (*callback)(RDMAContext *rdma)); 486 487 static inline uint64_t ram_chunk_index(const uint8_t *start, 488 const uint8_t *host) 489 { 490 return ((uintptr_t) host - (uintptr_t) start) >> RDMA_REG_CHUNK_SHIFT; 491 } 492 493 static inline uint8_t *ram_chunk_start(const RDMALocalBlock *rdma_ram_block, 494 uint64_t i) 495 { 496 return (uint8_t *) (((uintptr_t) rdma_ram_block->local_host_addr) 497 + (i << RDMA_REG_CHUNK_SHIFT)); 498 } 499 500 static inline uint8_t *ram_chunk_end(const RDMALocalBlock *rdma_ram_block, 501 uint64_t i) 502 { 503 uint8_t *result = ram_chunk_start(rdma_ram_block, i) + 504 (1UL << RDMA_REG_CHUNK_SHIFT); 505 506 if (result > (rdma_ram_block->local_host_addr + rdma_ram_block->length)) { 507 result = rdma_ram_block->local_host_addr + rdma_ram_block->length; 508 } 509 510 return result; 511 } 512 513 static int rdma_add_block(RDMAContext *rdma, void *host_addr, 514 ram_addr_t block_offset, uint64_t length) 515 { 516 RDMALocalBlocks *local = &rdma->local_ram_blocks; 517 RDMALocalBlock *block = g_hash_table_lookup(rdma->blockmap, 518 (void *) block_offset); 519 RDMALocalBlock *old = local->block; 520 521 assert(block == NULL); 522 523 local->block = g_malloc0(sizeof(RDMALocalBlock) * (local->nb_blocks + 1)); 524 525 if (local->nb_blocks) { 526 int x; 527 528 for (x = 0; x < local->nb_blocks; x++) { 529 g_hash_table_remove(rdma->blockmap, (void *)old[x].offset); 530 g_hash_table_insert(rdma->blockmap, (void *)old[x].offset, 531 &local->block[x]); 532 } 533 memcpy(local->block, old, sizeof(RDMALocalBlock) * local->nb_blocks); 534 g_free(old); 535 } 536 537 block = &local->block[local->nb_blocks]; 538 539 block->local_host_addr = host_addr; 540 block->offset = block_offset; 541 block->length = length; 542 block->index = local->nb_blocks; 543 block->nb_chunks = ram_chunk_index(host_addr, host_addr + length) + 1UL; 544 block->transit_bitmap = bitmap_new(block->nb_chunks); 545 bitmap_clear(block->transit_bitmap, 0, block->nb_chunks); 546 block->unregister_bitmap = bitmap_new(block->nb_chunks); 547 bitmap_clear(block->unregister_bitmap, 0, block->nb_chunks); 548 block->remote_keys = g_malloc0(block->nb_chunks * sizeof(uint32_t)); 549 550 block->is_ram_block = local->init ? false : true; 551 552 g_hash_table_insert(rdma->blockmap, (void *) block_offset, block); 553 554 trace_rdma_add_block(local->nb_blocks, (uint64_t) block->local_host_addr, 555 block->offset, block->length, 556 (uint64_t) (block->local_host_addr + block->length), 557 BITS_TO_LONGS(block->nb_chunks) * 558 sizeof(unsigned long) * 8, 559 block->nb_chunks); 560 561 local->nb_blocks++; 562 563 return 0; 564 } 565 566 /* 567 * Memory regions need to be registered with the device and queue pairs setup 568 * in advanced before the migration starts. This tells us where the RAM blocks 569 * are so that we can register them individually. 570 */ 571 static void qemu_rdma_init_one_block(void *host_addr, 572 ram_addr_t block_offset, ram_addr_t length, void *opaque) 573 { 574 rdma_add_block(opaque, host_addr, block_offset, length); 575 } 576 577 /* 578 * Identify the RAMBlocks and their quantity. They will be references to 579 * identify chunk boundaries inside each RAMBlock and also be referenced 580 * during dynamic page registration. 581 */ 582 static int qemu_rdma_init_ram_blocks(RDMAContext *rdma) 583 { 584 RDMALocalBlocks *local = &rdma->local_ram_blocks; 585 586 assert(rdma->blockmap == NULL); 587 rdma->blockmap = g_hash_table_new(g_direct_hash, g_direct_equal); 588 memset(local, 0, sizeof *local); 589 qemu_ram_foreach_block(qemu_rdma_init_one_block, rdma); 590 trace_qemu_rdma_init_ram_blocks(local->nb_blocks); 591 rdma->block = (RDMARemoteBlock *) g_malloc0(sizeof(RDMARemoteBlock) * 592 rdma->local_ram_blocks.nb_blocks); 593 local->init = true; 594 return 0; 595 } 596 597 static int rdma_delete_block(RDMAContext *rdma, ram_addr_t block_offset) 598 { 599 RDMALocalBlocks *local = &rdma->local_ram_blocks; 600 RDMALocalBlock *block = g_hash_table_lookup(rdma->blockmap, 601 (void *) block_offset); 602 RDMALocalBlock *old = local->block; 603 int x; 604 605 assert(block); 606 607 if (block->pmr) { 608 int j; 609 610 for (j = 0; j < block->nb_chunks; j++) { 611 if (!block->pmr[j]) { 612 continue; 613 } 614 ibv_dereg_mr(block->pmr[j]); 615 rdma->total_registrations--; 616 } 617 g_free(block->pmr); 618 block->pmr = NULL; 619 } 620 621 if (block->mr) { 622 ibv_dereg_mr(block->mr); 623 rdma->total_registrations--; 624 block->mr = NULL; 625 } 626 627 g_free(block->transit_bitmap); 628 block->transit_bitmap = NULL; 629 630 g_free(block->unregister_bitmap); 631 block->unregister_bitmap = NULL; 632 633 g_free(block->remote_keys); 634 block->remote_keys = NULL; 635 636 for (x = 0; x < local->nb_blocks; x++) { 637 g_hash_table_remove(rdma->blockmap, (void *)old[x].offset); 638 } 639 640 if (local->nb_blocks > 1) { 641 642 local->block = g_malloc0(sizeof(RDMALocalBlock) * 643 (local->nb_blocks - 1)); 644 645 if (block->index) { 646 memcpy(local->block, old, sizeof(RDMALocalBlock) * block->index); 647 } 648 649 if (block->index < (local->nb_blocks - 1)) { 650 memcpy(local->block + block->index, old + (block->index + 1), 651 sizeof(RDMALocalBlock) * 652 (local->nb_blocks - (block->index + 1))); 653 } 654 } else { 655 assert(block == local->block); 656 local->block = NULL; 657 } 658 659 trace_rdma_delete_block(local->nb_blocks, 660 (uint64_t)block->local_host_addr, 661 block->offset, block->length, 662 (uint64_t)(block->local_host_addr + block->length), 663 BITS_TO_LONGS(block->nb_chunks) * 664 sizeof(unsigned long) * 8, block->nb_chunks); 665 666 g_free(old); 667 668 local->nb_blocks--; 669 670 if (local->nb_blocks) { 671 for (x = 0; x < local->nb_blocks; x++) { 672 g_hash_table_insert(rdma->blockmap, (void *)local->block[x].offset, 673 &local->block[x]); 674 } 675 } 676 677 return 0; 678 } 679 680 /* 681 * Put in the log file which RDMA device was opened and the details 682 * associated with that device. 683 */ 684 static void qemu_rdma_dump_id(const char *who, struct ibv_context *verbs) 685 { 686 struct ibv_port_attr port; 687 688 if (ibv_query_port(verbs, 1, &port)) { 689 error_report("Failed to query port information"); 690 return; 691 } 692 693 printf("%s RDMA Device opened: kernel name %s " 694 "uverbs device name %s, " 695 "infiniband_verbs class device path %s, " 696 "infiniband class device path %s, " 697 "transport: (%d) %s\n", 698 who, 699 verbs->device->name, 700 verbs->device->dev_name, 701 verbs->device->dev_path, 702 verbs->device->ibdev_path, 703 port.link_layer, 704 (port.link_layer == IBV_LINK_LAYER_INFINIBAND) ? "Infiniband" : 705 ((port.link_layer == IBV_LINK_LAYER_ETHERNET) 706 ? "Ethernet" : "Unknown")); 707 } 708 709 /* 710 * Put in the log file the RDMA gid addressing information, 711 * useful for folks who have trouble understanding the 712 * RDMA device hierarchy in the kernel. 713 */ 714 static void qemu_rdma_dump_gid(const char *who, struct rdma_cm_id *id) 715 { 716 char sgid[33]; 717 char dgid[33]; 718 inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.sgid, sgid, sizeof sgid); 719 inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.dgid, dgid, sizeof dgid); 720 trace_qemu_rdma_dump_gid(who, sgid, dgid); 721 } 722 723 /* 724 * As of now, IPv6 over RoCE / iWARP is not supported by linux. 725 * We will try the next addrinfo struct, and fail if there are 726 * no other valid addresses to bind against. 727 * 728 * If user is listening on '[::]', then we will not have a opened a device 729 * yet and have no way of verifying if the device is RoCE or not. 730 * 731 * In this case, the source VM will throw an error for ALL types of 732 * connections (both IPv4 and IPv6) if the destination machine does not have 733 * a regular infiniband network available for use. 734 * 735 * The only way to guarantee that an error is thrown for broken kernels is 736 * for the management software to choose a *specific* interface at bind time 737 * and validate what time of hardware it is. 738 * 739 * Unfortunately, this puts the user in a fix: 740 * 741 * If the source VM connects with an IPv4 address without knowing that the 742 * destination has bound to '[::]' the migration will unconditionally fail 743 * unless the management software is explicitly listening on the the IPv4 744 * address while using a RoCE-based device. 745 * 746 * If the source VM connects with an IPv6 address, then we're OK because we can 747 * throw an error on the source (and similarly on the destination). 748 * 749 * But in mixed environments, this will be broken for a while until it is fixed 750 * inside linux. 751 * 752 * We do provide a *tiny* bit of help in this function: We can list all of the 753 * devices in the system and check to see if all the devices are RoCE or 754 * Infiniband. 755 * 756 * If we detect that we have a *pure* RoCE environment, then we can safely 757 * thrown an error even if the management software has specified '[::]' as the 758 * bind address. 759 * 760 * However, if there is are multiple hetergeneous devices, then we cannot make 761 * this assumption and the user just has to be sure they know what they are 762 * doing. 763 * 764 * Patches are being reviewed on linux-rdma. 765 */ 766 static int qemu_rdma_broken_ipv6_kernel(Error **errp, struct ibv_context *verbs) 767 { 768 struct ibv_port_attr port_attr; 769 770 /* This bug only exists in linux, to our knowledge. */ 771 #ifdef CONFIG_LINUX 772 773 /* 774 * Verbs are only NULL if management has bound to '[::]'. 775 * 776 * Let's iterate through all the devices and see if there any pure IB 777 * devices (non-ethernet). 778 * 779 * If not, then we can safely proceed with the migration. 780 * Otherwise, there are no guarantees until the bug is fixed in linux. 781 */ 782 if (!verbs) { 783 int num_devices, x; 784 struct ibv_device ** dev_list = ibv_get_device_list(&num_devices); 785 bool roce_found = false; 786 bool ib_found = false; 787 788 for (x = 0; x < num_devices; x++) { 789 verbs = ibv_open_device(dev_list[x]); 790 791 if (ibv_query_port(verbs, 1, &port_attr)) { 792 ibv_close_device(verbs); 793 ERROR(errp, "Could not query initial IB port"); 794 return -EINVAL; 795 } 796 797 if (port_attr.link_layer == IBV_LINK_LAYER_INFINIBAND) { 798 ib_found = true; 799 } else if (port_attr.link_layer == IBV_LINK_LAYER_ETHERNET) { 800 roce_found = true; 801 } 802 803 ibv_close_device(verbs); 804 805 } 806 807 if (roce_found) { 808 if (ib_found) { 809 fprintf(stderr, "WARN: migrations may fail:" 810 " IPv6 over RoCE / iWARP in linux" 811 " is broken. But since you appear to have a" 812 " mixed RoCE / IB environment, be sure to only" 813 " migrate over the IB fabric until the kernel " 814 " fixes the bug.\n"); 815 } else { 816 ERROR(errp, "You only have RoCE / iWARP devices in your systems" 817 " and your management software has specified '[::]'" 818 ", but IPv6 over RoCE / iWARP is not supported in Linux."); 819 return -ENONET; 820 } 821 } 822 823 return 0; 824 } 825 826 /* 827 * If we have a verbs context, that means that some other than '[::]' was 828 * used by the management software for binding. In which case we can actually 829 * warn the user about a potential broken kernel; 830 */ 831 832 /* IB ports start with 1, not 0 */ 833 if (ibv_query_port(verbs, 1, &port_attr)) { 834 ERROR(errp, "Could not query initial IB port"); 835 return -EINVAL; 836 } 837 838 if (port_attr.link_layer == IBV_LINK_LAYER_ETHERNET) { 839 ERROR(errp, "Linux kernel's RoCE / iWARP does not support IPv6 " 840 "(but patches on linux-rdma in progress)"); 841 return -ENONET; 842 } 843 844 #endif 845 846 return 0; 847 } 848 849 /* 850 * Figure out which RDMA device corresponds to the requested IP hostname 851 * Also create the initial connection manager identifiers for opening 852 * the connection. 853 */ 854 static int qemu_rdma_resolve_host(RDMAContext *rdma, Error **errp) 855 { 856 int ret; 857 struct rdma_addrinfo *res; 858 char port_str[16]; 859 struct rdma_cm_event *cm_event; 860 char ip[40] = "unknown"; 861 struct rdma_addrinfo *e; 862 863 if (rdma->host == NULL || !strcmp(rdma->host, "")) { 864 ERROR(errp, "RDMA hostname has not been set"); 865 return -EINVAL; 866 } 867 868 /* create CM channel */ 869 rdma->channel = rdma_create_event_channel(); 870 if (!rdma->channel) { 871 ERROR(errp, "could not create CM channel"); 872 return -EINVAL; 873 } 874 875 /* create CM id */ 876 ret = rdma_create_id(rdma->channel, &rdma->cm_id, NULL, RDMA_PS_TCP); 877 if (ret) { 878 ERROR(errp, "could not create channel id"); 879 goto err_resolve_create_id; 880 } 881 882 snprintf(port_str, 16, "%d", rdma->port); 883 port_str[15] = '\0'; 884 885 ret = rdma_getaddrinfo(rdma->host, port_str, NULL, &res); 886 if (ret < 0) { 887 ERROR(errp, "could not rdma_getaddrinfo address %s", rdma->host); 888 goto err_resolve_get_addr; 889 } 890 891 for (e = res; e != NULL; e = e->ai_next) { 892 inet_ntop(e->ai_family, 893 &((struct sockaddr_in *) e->ai_dst_addr)->sin_addr, ip, sizeof ip); 894 trace_qemu_rdma_resolve_host_trying(rdma->host, ip); 895 896 ret = rdma_resolve_addr(rdma->cm_id, NULL, e->ai_dst_addr, 897 RDMA_RESOLVE_TIMEOUT_MS); 898 if (!ret) { 899 if (e->ai_family == AF_INET6) { 900 ret = qemu_rdma_broken_ipv6_kernel(errp, rdma->cm_id->verbs); 901 if (ret) { 902 continue; 903 } 904 } 905 goto route; 906 } 907 } 908 909 ERROR(errp, "could not resolve address %s", rdma->host); 910 goto err_resolve_get_addr; 911 912 route: 913 qemu_rdma_dump_gid("source_resolve_addr", rdma->cm_id); 914 915 ret = rdma_get_cm_event(rdma->channel, &cm_event); 916 if (ret) { 917 ERROR(errp, "could not perform event_addr_resolved"); 918 goto err_resolve_get_addr; 919 } 920 921 if (cm_event->event != RDMA_CM_EVENT_ADDR_RESOLVED) { 922 ERROR(errp, "result not equal to event_addr_resolved %s", 923 rdma_event_str(cm_event->event)); 924 perror("rdma_resolve_addr"); 925 rdma_ack_cm_event(cm_event); 926 ret = -EINVAL; 927 goto err_resolve_get_addr; 928 } 929 rdma_ack_cm_event(cm_event); 930 931 /* resolve route */ 932 ret = rdma_resolve_route(rdma->cm_id, RDMA_RESOLVE_TIMEOUT_MS); 933 if (ret) { 934 ERROR(errp, "could not resolve rdma route"); 935 goto err_resolve_get_addr; 936 } 937 938 ret = rdma_get_cm_event(rdma->channel, &cm_event); 939 if (ret) { 940 ERROR(errp, "could not perform event_route_resolved"); 941 goto err_resolve_get_addr; 942 } 943 if (cm_event->event != RDMA_CM_EVENT_ROUTE_RESOLVED) { 944 ERROR(errp, "result not equal to event_route_resolved: %s", 945 rdma_event_str(cm_event->event)); 946 rdma_ack_cm_event(cm_event); 947 ret = -EINVAL; 948 goto err_resolve_get_addr; 949 } 950 rdma_ack_cm_event(cm_event); 951 rdma->verbs = rdma->cm_id->verbs; 952 qemu_rdma_dump_id("source_resolve_host", rdma->cm_id->verbs); 953 qemu_rdma_dump_gid("source_resolve_host", rdma->cm_id); 954 return 0; 955 956 err_resolve_get_addr: 957 rdma_destroy_id(rdma->cm_id); 958 rdma->cm_id = NULL; 959 err_resolve_create_id: 960 rdma_destroy_event_channel(rdma->channel); 961 rdma->channel = NULL; 962 return ret; 963 } 964 965 /* 966 * Create protection domain and completion queues 967 */ 968 static int qemu_rdma_alloc_pd_cq(RDMAContext *rdma) 969 { 970 /* allocate pd */ 971 rdma->pd = ibv_alloc_pd(rdma->verbs); 972 if (!rdma->pd) { 973 error_report("failed to allocate protection domain"); 974 return -1; 975 } 976 977 /* create completion channel */ 978 rdma->comp_channel = ibv_create_comp_channel(rdma->verbs); 979 if (!rdma->comp_channel) { 980 error_report("failed to allocate completion channel"); 981 goto err_alloc_pd_cq; 982 } 983 984 /* 985 * Completion queue can be filled by both read and write work requests, 986 * so must reflect the sum of both possible queue sizes. 987 */ 988 rdma->cq = ibv_create_cq(rdma->verbs, (RDMA_SIGNALED_SEND_MAX * 3), 989 NULL, rdma->comp_channel, 0); 990 if (!rdma->cq) { 991 error_report("failed to allocate completion queue"); 992 goto err_alloc_pd_cq; 993 } 994 995 return 0; 996 997 err_alloc_pd_cq: 998 if (rdma->pd) { 999 ibv_dealloc_pd(rdma->pd); 1000 } 1001 if (rdma->comp_channel) { 1002 ibv_destroy_comp_channel(rdma->comp_channel); 1003 } 1004 rdma->pd = NULL; 1005 rdma->comp_channel = NULL; 1006 return -1; 1007 1008 } 1009 1010 /* 1011 * Create queue pairs. 1012 */ 1013 static int qemu_rdma_alloc_qp(RDMAContext *rdma) 1014 { 1015 struct ibv_qp_init_attr attr = { 0 }; 1016 int ret; 1017 1018 attr.cap.max_send_wr = RDMA_SIGNALED_SEND_MAX; 1019 attr.cap.max_recv_wr = 3; 1020 attr.cap.max_send_sge = 1; 1021 attr.cap.max_recv_sge = 1; 1022 attr.send_cq = rdma->cq; 1023 attr.recv_cq = rdma->cq; 1024 attr.qp_type = IBV_QPT_RC; 1025 1026 ret = rdma_create_qp(rdma->cm_id, rdma->pd, &attr); 1027 if (ret) { 1028 return -1; 1029 } 1030 1031 rdma->qp = rdma->cm_id->qp; 1032 return 0; 1033 } 1034 1035 static int qemu_rdma_reg_whole_ram_blocks(RDMAContext *rdma) 1036 { 1037 int i; 1038 RDMALocalBlocks *local = &rdma->local_ram_blocks; 1039 1040 for (i = 0; i < local->nb_blocks; i++) { 1041 local->block[i].mr = 1042 ibv_reg_mr(rdma->pd, 1043 local->block[i].local_host_addr, 1044 local->block[i].length, 1045 IBV_ACCESS_LOCAL_WRITE | 1046 IBV_ACCESS_REMOTE_WRITE 1047 ); 1048 if (!local->block[i].mr) { 1049 perror("Failed to register local dest ram block!\n"); 1050 break; 1051 } 1052 rdma->total_registrations++; 1053 } 1054 1055 if (i >= local->nb_blocks) { 1056 return 0; 1057 } 1058 1059 for (i--; i >= 0; i--) { 1060 ibv_dereg_mr(local->block[i].mr); 1061 rdma->total_registrations--; 1062 } 1063 1064 return -1; 1065 1066 } 1067 1068 /* 1069 * Find the ram block that corresponds to the page requested to be 1070 * transmitted by QEMU. 1071 * 1072 * Once the block is found, also identify which 'chunk' within that 1073 * block that the page belongs to. 1074 * 1075 * This search cannot fail or the migration will fail. 1076 */ 1077 static int qemu_rdma_search_ram_block(RDMAContext *rdma, 1078 uint64_t block_offset, 1079 uint64_t offset, 1080 uint64_t length, 1081 uint64_t *block_index, 1082 uint64_t *chunk_index) 1083 { 1084 uint64_t current_addr = block_offset + offset; 1085 RDMALocalBlock *block = g_hash_table_lookup(rdma->blockmap, 1086 (void *) block_offset); 1087 assert(block); 1088 assert(current_addr >= block->offset); 1089 assert((current_addr + length) <= (block->offset + block->length)); 1090 1091 *block_index = block->index; 1092 *chunk_index = ram_chunk_index(block->local_host_addr, 1093 block->local_host_addr + (current_addr - block->offset)); 1094 1095 return 0; 1096 } 1097 1098 /* 1099 * Register a chunk with IB. If the chunk was already registered 1100 * previously, then skip. 1101 * 1102 * Also return the keys associated with the registration needed 1103 * to perform the actual RDMA operation. 1104 */ 1105 static int qemu_rdma_register_and_get_keys(RDMAContext *rdma, 1106 RDMALocalBlock *block, uint8_t *host_addr, 1107 uint32_t *lkey, uint32_t *rkey, int chunk, 1108 uint8_t *chunk_start, uint8_t *chunk_end) 1109 { 1110 if (block->mr) { 1111 if (lkey) { 1112 *lkey = block->mr->lkey; 1113 } 1114 if (rkey) { 1115 *rkey = block->mr->rkey; 1116 } 1117 return 0; 1118 } 1119 1120 /* allocate memory to store chunk MRs */ 1121 if (!block->pmr) { 1122 block->pmr = g_malloc0(block->nb_chunks * sizeof(struct ibv_mr *)); 1123 } 1124 1125 /* 1126 * If 'rkey', then we're the destination, so grant access to the source. 1127 * 1128 * If 'lkey', then we're the source VM, so grant access only to ourselves. 1129 */ 1130 if (!block->pmr[chunk]) { 1131 uint64_t len = chunk_end - chunk_start; 1132 1133 trace_qemu_rdma_register_and_get_keys(len, chunk_start); 1134 1135 block->pmr[chunk] = ibv_reg_mr(rdma->pd, 1136 chunk_start, len, 1137 (rkey ? (IBV_ACCESS_LOCAL_WRITE | 1138 IBV_ACCESS_REMOTE_WRITE) : 0)); 1139 1140 if (!block->pmr[chunk]) { 1141 perror("Failed to register chunk!"); 1142 fprintf(stderr, "Chunk details: block: %d chunk index %d" 1143 " start %" PRIu64 " end %" PRIu64 " host %" PRIu64 1144 " local %" PRIu64 " registrations: %d\n", 1145 block->index, chunk, (uint64_t) chunk_start, 1146 (uint64_t) chunk_end, (uint64_t) host_addr, 1147 (uint64_t) block->local_host_addr, 1148 rdma->total_registrations); 1149 return -1; 1150 } 1151 rdma->total_registrations++; 1152 } 1153 1154 if (lkey) { 1155 *lkey = block->pmr[chunk]->lkey; 1156 } 1157 if (rkey) { 1158 *rkey = block->pmr[chunk]->rkey; 1159 } 1160 return 0; 1161 } 1162 1163 /* 1164 * Register (at connection time) the memory used for control 1165 * channel messages. 1166 */ 1167 static int qemu_rdma_reg_control(RDMAContext *rdma, int idx) 1168 { 1169 rdma->wr_data[idx].control_mr = ibv_reg_mr(rdma->pd, 1170 rdma->wr_data[idx].control, RDMA_CONTROL_MAX_BUFFER, 1171 IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE); 1172 if (rdma->wr_data[idx].control_mr) { 1173 rdma->total_registrations++; 1174 return 0; 1175 } 1176 error_report("qemu_rdma_reg_control failed"); 1177 return -1; 1178 } 1179 1180 const char *print_wrid(int wrid) 1181 { 1182 if (wrid >= RDMA_WRID_RECV_CONTROL) { 1183 return wrid_desc[RDMA_WRID_RECV_CONTROL]; 1184 } 1185 return wrid_desc[wrid]; 1186 } 1187 1188 /* 1189 * RDMA requires memory registration (mlock/pinning), but this is not good for 1190 * overcommitment. 1191 * 1192 * In preparation for the future where LRU information or workload-specific 1193 * writable writable working set memory access behavior is available to QEMU 1194 * it would be nice to have in place the ability to UN-register/UN-pin 1195 * particular memory regions from the RDMA hardware when it is determine that 1196 * those regions of memory will likely not be accessed again in the near future. 1197 * 1198 * While we do not yet have such information right now, the following 1199 * compile-time option allows us to perform a non-optimized version of this 1200 * behavior. 1201 * 1202 * By uncommenting this option, you will cause *all* RDMA transfers to be 1203 * unregistered immediately after the transfer completes on both sides of the 1204 * connection. This has no effect in 'rdma-pin-all' mode, only regular mode. 1205 * 1206 * This will have a terrible impact on migration performance, so until future 1207 * workload information or LRU information is available, do not attempt to use 1208 * this feature except for basic testing. 1209 */ 1210 //#define RDMA_UNREGISTRATION_EXAMPLE 1211 1212 /* 1213 * Perform a non-optimized memory unregistration after every transfer 1214 * for demonsration purposes, only if pin-all is not requested. 1215 * 1216 * Potential optimizations: 1217 * 1. Start a new thread to run this function continuously 1218 - for bit clearing 1219 - and for receipt of unregister messages 1220 * 2. Use an LRU. 1221 * 3. Use workload hints. 1222 */ 1223 static int qemu_rdma_unregister_waiting(RDMAContext *rdma) 1224 { 1225 while (rdma->unregistrations[rdma->unregister_current]) { 1226 int ret; 1227 uint64_t wr_id = rdma->unregistrations[rdma->unregister_current]; 1228 uint64_t chunk = 1229 (wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT; 1230 uint64_t index = 1231 (wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT; 1232 RDMALocalBlock *block = 1233 &(rdma->local_ram_blocks.block[index]); 1234 RDMARegister reg = { .current_index = index }; 1235 RDMAControlHeader resp = { .type = RDMA_CONTROL_UNREGISTER_FINISHED, 1236 }; 1237 RDMAControlHeader head = { .len = sizeof(RDMARegister), 1238 .type = RDMA_CONTROL_UNREGISTER_REQUEST, 1239 .repeat = 1, 1240 }; 1241 1242 trace_qemu_rdma_unregister_waiting_proc(chunk, 1243 rdma->unregister_current); 1244 1245 rdma->unregistrations[rdma->unregister_current] = 0; 1246 rdma->unregister_current++; 1247 1248 if (rdma->unregister_current == RDMA_SIGNALED_SEND_MAX) { 1249 rdma->unregister_current = 0; 1250 } 1251 1252 1253 /* 1254 * Unregistration is speculative (because migration is single-threaded 1255 * and we cannot break the protocol's inifinband message ordering). 1256 * Thus, if the memory is currently being used for transmission, 1257 * then abort the attempt to unregister and try again 1258 * later the next time a completion is received for this memory. 1259 */ 1260 clear_bit(chunk, block->unregister_bitmap); 1261 1262 if (test_bit(chunk, block->transit_bitmap)) { 1263 trace_qemu_rdma_unregister_waiting_inflight(chunk); 1264 continue; 1265 } 1266 1267 trace_qemu_rdma_unregister_waiting_send(chunk); 1268 1269 ret = ibv_dereg_mr(block->pmr[chunk]); 1270 block->pmr[chunk] = NULL; 1271 block->remote_keys[chunk] = 0; 1272 1273 if (ret != 0) { 1274 perror("unregistration chunk failed"); 1275 return -ret; 1276 } 1277 rdma->total_registrations--; 1278 1279 reg.key.chunk = chunk; 1280 register_to_network(®); 1281 ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) ®, 1282 &resp, NULL, NULL); 1283 if (ret < 0) { 1284 return ret; 1285 } 1286 1287 trace_qemu_rdma_unregister_waiting_complete(chunk); 1288 } 1289 1290 return 0; 1291 } 1292 1293 static uint64_t qemu_rdma_make_wrid(uint64_t wr_id, uint64_t index, 1294 uint64_t chunk) 1295 { 1296 uint64_t result = wr_id & RDMA_WRID_TYPE_MASK; 1297 1298 result |= (index << RDMA_WRID_BLOCK_SHIFT); 1299 result |= (chunk << RDMA_WRID_CHUNK_SHIFT); 1300 1301 return result; 1302 } 1303 1304 /* 1305 * Set bit for unregistration in the next iteration. 1306 * We cannot transmit right here, but will unpin later. 1307 */ 1308 static void qemu_rdma_signal_unregister(RDMAContext *rdma, uint64_t index, 1309 uint64_t chunk, uint64_t wr_id) 1310 { 1311 if (rdma->unregistrations[rdma->unregister_next] != 0) { 1312 error_report("rdma migration: queue is full"); 1313 } else { 1314 RDMALocalBlock *block = &(rdma->local_ram_blocks.block[index]); 1315 1316 if (!test_and_set_bit(chunk, block->unregister_bitmap)) { 1317 trace_qemu_rdma_signal_unregister_append(chunk, 1318 rdma->unregister_next); 1319 1320 rdma->unregistrations[rdma->unregister_next++] = 1321 qemu_rdma_make_wrid(wr_id, index, chunk); 1322 1323 if (rdma->unregister_next == RDMA_SIGNALED_SEND_MAX) { 1324 rdma->unregister_next = 0; 1325 } 1326 } else { 1327 trace_qemu_rdma_signal_unregister_already(chunk); 1328 } 1329 } 1330 } 1331 1332 /* 1333 * Consult the connection manager to see a work request 1334 * (of any kind) has completed. 1335 * Return the work request ID that completed. 1336 */ 1337 static uint64_t qemu_rdma_poll(RDMAContext *rdma, uint64_t *wr_id_out, 1338 uint32_t *byte_len) 1339 { 1340 int ret; 1341 struct ibv_wc wc; 1342 uint64_t wr_id; 1343 1344 ret = ibv_poll_cq(rdma->cq, 1, &wc); 1345 1346 if (!ret) { 1347 *wr_id_out = RDMA_WRID_NONE; 1348 return 0; 1349 } 1350 1351 if (ret < 0) { 1352 error_report("ibv_poll_cq return %d", ret); 1353 return ret; 1354 } 1355 1356 wr_id = wc.wr_id & RDMA_WRID_TYPE_MASK; 1357 1358 if (wc.status != IBV_WC_SUCCESS) { 1359 fprintf(stderr, "ibv_poll_cq wc.status=%d %s!\n", 1360 wc.status, ibv_wc_status_str(wc.status)); 1361 fprintf(stderr, "ibv_poll_cq wrid=%s!\n", wrid_desc[wr_id]); 1362 1363 return -1; 1364 } 1365 1366 if (rdma->control_ready_expected && 1367 (wr_id >= RDMA_WRID_RECV_CONTROL)) { 1368 trace_qemu_rdma_poll_recv(wrid_desc[RDMA_WRID_RECV_CONTROL], 1369 wr_id - RDMA_WRID_RECV_CONTROL, wr_id, rdma->nb_sent); 1370 rdma->control_ready_expected = 0; 1371 } 1372 1373 if (wr_id == RDMA_WRID_RDMA_WRITE) { 1374 uint64_t chunk = 1375 (wc.wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT; 1376 uint64_t index = 1377 (wc.wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT; 1378 RDMALocalBlock *block = &(rdma->local_ram_blocks.block[index]); 1379 1380 trace_qemu_rdma_poll_write(print_wrid(wr_id), wr_id, rdma->nb_sent, 1381 index, chunk, 1382 block->local_host_addr, (void *)block->remote_host_addr); 1383 1384 clear_bit(chunk, block->transit_bitmap); 1385 1386 if (rdma->nb_sent > 0) { 1387 rdma->nb_sent--; 1388 } 1389 1390 if (!rdma->pin_all) { 1391 /* 1392 * FYI: If one wanted to signal a specific chunk to be unregistered 1393 * using LRU or workload-specific information, this is the function 1394 * you would call to do so. That chunk would then get asynchronously 1395 * unregistered later. 1396 */ 1397 #ifdef RDMA_UNREGISTRATION_EXAMPLE 1398 qemu_rdma_signal_unregister(rdma, index, chunk, wc.wr_id); 1399 #endif 1400 } 1401 } else { 1402 trace_qemu_rdma_poll_other(print_wrid(wr_id), wr_id, rdma->nb_sent); 1403 } 1404 1405 *wr_id_out = wc.wr_id; 1406 if (byte_len) { 1407 *byte_len = wc.byte_len; 1408 } 1409 1410 return 0; 1411 } 1412 1413 /* 1414 * Block until the next work request has completed. 1415 * 1416 * First poll to see if a work request has already completed, 1417 * otherwise block. 1418 * 1419 * If we encounter completed work requests for IDs other than 1420 * the one we're interested in, then that's generally an error. 1421 * 1422 * The only exception is actual RDMA Write completions. These 1423 * completions only need to be recorded, but do not actually 1424 * need further processing. 1425 */ 1426 static int qemu_rdma_block_for_wrid(RDMAContext *rdma, int wrid_requested, 1427 uint32_t *byte_len) 1428 { 1429 int num_cq_events = 0, ret = 0; 1430 struct ibv_cq *cq; 1431 void *cq_ctx; 1432 uint64_t wr_id = RDMA_WRID_NONE, wr_id_in; 1433 1434 if (ibv_req_notify_cq(rdma->cq, 0)) { 1435 return -1; 1436 } 1437 /* poll cq first */ 1438 while (wr_id != wrid_requested) { 1439 ret = qemu_rdma_poll(rdma, &wr_id_in, byte_len); 1440 if (ret < 0) { 1441 return ret; 1442 } 1443 1444 wr_id = wr_id_in & RDMA_WRID_TYPE_MASK; 1445 1446 if (wr_id == RDMA_WRID_NONE) { 1447 break; 1448 } 1449 if (wr_id != wrid_requested) { 1450 trace_qemu_rdma_block_for_wrid_miss(print_wrid(wrid_requested), 1451 wrid_requested, print_wrid(wr_id), wr_id); 1452 } 1453 } 1454 1455 if (wr_id == wrid_requested) { 1456 return 0; 1457 } 1458 1459 while (1) { 1460 /* 1461 * Coroutine doesn't start until process_incoming_migration() 1462 * so don't yield unless we know we're running inside of a coroutine. 1463 */ 1464 if (rdma->migration_started_on_destination) { 1465 yield_until_fd_readable(rdma->comp_channel->fd); 1466 } 1467 1468 if (ibv_get_cq_event(rdma->comp_channel, &cq, &cq_ctx)) { 1469 perror("ibv_get_cq_event"); 1470 goto err_block_for_wrid; 1471 } 1472 1473 num_cq_events++; 1474 1475 if (ibv_req_notify_cq(cq, 0)) { 1476 goto err_block_for_wrid; 1477 } 1478 1479 while (wr_id != wrid_requested) { 1480 ret = qemu_rdma_poll(rdma, &wr_id_in, byte_len); 1481 if (ret < 0) { 1482 goto err_block_for_wrid; 1483 } 1484 1485 wr_id = wr_id_in & RDMA_WRID_TYPE_MASK; 1486 1487 if (wr_id == RDMA_WRID_NONE) { 1488 break; 1489 } 1490 if (wr_id != wrid_requested) { 1491 trace_qemu_rdma_block_for_wrid_miss(print_wrid(wrid_requested), 1492 wrid_requested, print_wrid(wr_id), wr_id); 1493 } 1494 } 1495 1496 if (wr_id == wrid_requested) { 1497 goto success_block_for_wrid; 1498 } 1499 } 1500 1501 success_block_for_wrid: 1502 if (num_cq_events) { 1503 ibv_ack_cq_events(cq, num_cq_events); 1504 } 1505 return 0; 1506 1507 err_block_for_wrid: 1508 if (num_cq_events) { 1509 ibv_ack_cq_events(cq, num_cq_events); 1510 } 1511 return ret; 1512 } 1513 1514 /* 1515 * Post a SEND message work request for the control channel 1516 * containing some data and block until the post completes. 1517 */ 1518 static int qemu_rdma_post_send_control(RDMAContext *rdma, uint8_t *buf, 1519 RDMAControlHeader *head) 1520 { 1521 int ret = 0; 1522 RDMAWorkRequestData *wr = &rdma->wr_data[RDMA_WRID_CONTROL]; 1523 struct ibv_send_wr *bad_wr; 1524 struct ibv_sge sge = { 1525 .addr = (uint64_t)(wr->control), 1526 .length = head->len + sizeof(RDMAControlHeader), 1527 .lkey = wr->control_mr->lkey, 1528 }; 1529 struct ibv_send_wr send_wr = { 1530 .wr_id = RDMA_WRID_SEND_CONTROL, 1531 .opcode = IBV_WR_SEND, 1532 .send_flags = IBV_SEND_SIGNALED, 1533 .sg_list = &sge, 1534 .num_sge = 1, 1535 }; 1536 1537 trace_qemu_rdma_post_send_control(control_desc[head->type]); 1538 1539 /* 1540 * We don't actually need to do a memcpy() in here if we used 1541 * the "sge" properly, but since we're only sending control messages 1542 * (not RAM in a performance-critical path), then its OK for now. 1543 * 1544 * The copy makes the RDMAControlHeader simpler to manipulate 1545 * for the time being. 1546 */ 1547 assert(head->len <= RDMA_CONTROL_MAX_BUFFER - sizeof(*head)); 1548 memcpy(wr->control, head, sizeof(RDMAControlHeader)); 1549 control_to_network((void *) wr->control); 1550 1551 if (buf) { 1552 memcpy(wr->control + sizeof(RDMAControlHeader), buf, head->len); 1553 } 1554 1555 1556 ret = ibv_post_send(rdma->qp, &send_wr, &bad_wr); 1557 1558 if (ret > 0) { 1559 error_report("Failed to use post IB SEND for control"); 1560 return -ret; 1561 } 1562 1563 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_SEND_CONTROL, NULL); 1564 if (ret < 0) { 1565 error_report("rdma migration: send polling control error"); 1566 } 1567 1568 return ret; 1569 } 1570 1571 /* 1572 * Post a RECV work request in anticipation of some future receipt 1573 * of data on the control channel. 1574 */ 1575 static int qemu_rdma_post_recv_control(RDMAContext *rdma, int idx) 1576 { 1577 struct ibv_recv_wr *bad_wr; 1578 struct ibv_sge sge = { 1579 .addr = (uint64_t)(rdma->wr_data[idx].control), 1580 .length = RDMA_CONTROL_MAX_BUFFER, 1581 .lkey = rdma->wr_data[idx].control_mr->lkey, 1582 }; 1583 1584 struct ibv_recv_wr recv_wr = { 1585 .wr_id = RDMA_WRID_RECV_CONTROL + idx, 1586 .sg_list = &sge, 1587 .num_sge = 1, 1588 }; 1589 1590 1591 if (ibv_post_recv(rdma->qp, &recv_wr, &bad_wr)) { 1592 return -1; 1593 } 1594 1595 return 0; 1596 } 1597 1598 /* 1599 * Block and wait for a RECV control channel message to arrive. 1600 */ 1601 static int qemu_rdma_exchange_get_response(RDMAContext *rdma, 1602 RDMAControlHeader *head, int expecting, int idx) 1603 { 1604 uint32_t byte_len; 1605 int ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RECV_CONTROL + idx, 1606 &byte_len); 1607 1608 if (ret < 0) { 1609 error_report("rdma migration: recv polling control error!"); 1610 return ret; 1611 } 1612 1613 network_to_control((void *) rdma->wr_data[idx].control); 1614 memcpy(head, rdma->wr_data[idx].control, sizeof(RDMAControlHeader)); 1615 1616 trace_qemu_rdma_exchange_get_response_start(control_desc[expecting]); 1617 1618 if (expecting == RDMA_CONTROL_NONE) { 1619 trace_qemu_rdma_exchange_get_response_none(control_desc[head->type], 1620 head->type); 1621 } else if (head->type != expecting || head->type == RDMA_CONTROL_ERROR) { 1622 error_report("Was expecting a %s (%d) control message" 1623 ", but got: %s (%d), length: %d", 1624 control_desc[expecting], expecting, 1625 control_desc[head->type], head->type, head->len); 1626 return -EIO; 1627 } 1628 if (head->len > RDMA_CONTROL_MAX_BUFFER - sizeof(*head)) { 1629 error_report("too long length: %d", head->len); 1630 return -EINVAL; 1631 } 1632 if (sizeof(*head) + head->len != byte_len) { 1633 error_report("Malformed length: %d byte_len %d", head->len, byte_len); 1634 return -EINVAL; 1635 } 1636 1637 return 0; 1638 } 1639 1640 /* 1641 * When a RECV work request has completed, the work request's 1642 * buffer is pointed at the header. 1643 * 1644 * This will advance the pointer to the data portion 1645 * of the control message of the work request's buffer that 1646 * was populated after the work request finished. 1647 */ 1648 static void qemu_rdma_move_header(RDMAContext *rdma, int idx, 1649 RDMAControlHeader *head) 1650 { 1651 rdma->wr_data[idx].control_len = head->len; 1652 rdma->wr_data[idx].control_curr = 1653 rdma->wr_data[idx].control + sizeof(RDMAControlHeader); 1654 } 1655 1656 /* 1657 * This is an 'atomic' high-level operation to deliver a single, unified 1658 * control-channel message. 1659 * 1660 * Additionally, if the user is expecting some kind of reply to this message, 1661 * they can request a 'resp' response message be filled in by posting an 1662 * additional work request on behalf of the user and waiting for an additional 1663 * completion. 1664 * 1665 * The extra (optional) response is used during registration to us from having 1666 * to perform an *additional* exchange of message just to provide a response by 1667 * instead piggy-backing on the acknowledgement. 1668 */ 1669 static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head, 1670 uint8_t *data, RDMAControlHeader *resp, 1671 int *resp_idx, 1672 int (*callback)(RDMAContext *rdma)) 1673 { 1674 int ret = 0; 1675 1676 /* 1677 * Wait until the dest is ready before attempting to deliver the message 1678 * by waiting for a READY message. 1679 */ 1680 if (rdma->control_ready_expected) { 1681 RDMAControlHeader resp; 1682 ret = qemu_rdma_exchange_get_response(rdma, 1683 &resp, RDMA_CONTROL_READY, RDMA_WRID_READY); 1684 if (ret < 0) { 1685 return ret; 1686 } 1687 } 1688 1689 /* 1690 * If the user is expecting a response, post a WR in anticipation of it. 1691 */ 1692 if (resp) { 1693 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_DATA); 1694 if (ret) { 1695 error_report("rdma migration: error posting" 1696 " extra control recv for anticipated result!"); 1697 return ret; 1698 } 1699 } 1700 1701 /* 1702 * Post a WR to replace the one we just consumed for the READY message. 1703 */ 1704 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY); 1705 if (ret) { 1706 error_report("rdma migration: error posting first control recv!"); 1707 return ret; 1708 } 1709 1710 /* 1711 * Deliver the control message that was requested. 1712 */ 1713 ret = qemu_rdma_post_send_control(rdma, data, head); 1714 1715 if (ret < 0) { 1716 error_report("Failed to send control buffer!"); 1717 return ret; 1718 } 1719 1720 /* 1721 * If we're expecting a response, block and wait for it. 1722 */ 1723 if (resp) { 1724 if (callback) { 1725 trace_qemu_rdma_exchange_send_issue_callback(); 1726 ret = callback(rdma); 1727 if (ret < 0) { 1728 return ret; 1729 } 1730 } 1731 1732 trace_qemu_rdma_exchange_send_waiting(control_desc[resp->type]); 1733 ret = qemu_rdma_exchange_get_response(rdma, resp, 1734 resp->type, RDMA_WRID_DATA); 1735 1736 if (ret < 0) { 1737 return ret; 1738 } 1739 1740 qemu_rdma_move_header(rdma, RDMA_WRID_DATA, resp); 1741 if (resp_idx) { 1742 *resp_idx = RDMA_WRID_DATA; 1743 } 1744 trace_qemu_rdma_exchange_send_received(control_desc[resp->type]); 1745 } 1746 1747 rdma->control_ready_expected = 1; 1748 1749 return 0; 1750 } 1751 1752 /* 1753 * This is an 'atomic' high-level operation to receive a single, unified 1754 * control-channel message. 1755 */ 1756 static int qemu_rdma_exchange_recv(RDMAContext *rdma, RDMAControlHeader *head, 1757 int expecting) 1758 { 1759 RDMAControlHeader ready = { 1760 .len = 0, 1761 .type = RDMA_CONTROL_READY, 1762 .repeat = 1, 1763 }; 1764 int ret; 1765 1766 /* 1767 * Inform the source that we're ready to receive a message. 1768 */ 1769 ret = qemu_rdma_post_send_control(rdma, NULL, &ready); 1770 1771 if (ret < 0) { 1772 error_report("Failed to send control buffer!"); 1773 return ret; 1774 } 1775 1776 /* 1777 * Block and wait for the message. 1778 */ 1779 ret = qemu_rdma_exchange_get_response(rdma, head, 1780 expecting, RDMA_WRID_READY); 1781 1782 if (ret < 0) { 1783 return ret; 1784 } 1785 1786 qemu_rdma_move_header(rdma, RDMA_WRID_READY, head); 1787 1788 /* 1789 * Post a new RECV work request to replace the one we just consumed. 1790 */ 1791 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY); 1792 if (ret) { 1793 error_report("rdma migration: error posting second control recv!"); 1794 return ret; 1795 } 1796 1797 return 0; 1798 } 1799 1800 /* 1801 * Write an actual chunk of memory using RDMA. 1802 * 1803 * If we're using dynamic registration on the dest-side, we have to 1804 * send a registration command first. 1805 */ 1806 static int qemu_rdma_write_one(QEMUFile *f, RDMAContext *rdma, 1807 int current_index, uint64_t current_addr, 1808 uint64_t length) 1809 { 1810 struct ibv_sge sge; 1811 struct ibv_send_wr send_wr = { 0 }; 1812 struct ibv_send_wr *bad_wr; 1813 int reg_result_idx, ret, count = 0; 1814 uint64_t chunk, chunks; 1815 uint8_t *chunk_start, *chunk_end; 1816 RDMALocalBlock *block = &(rdma->local_ram_blocks.block[current_index]); 1817 RDMARegister reg; 1818 RDMARegisterResult *reg_result; 1819 RDMAControlHeader resp = { .type = RDMA_CONTROL_REGISTER_RESULT }; 1820 RDMAControlHeader head = { .len = sizeof(RDMARegister), 1821 .type = RDMA_CONTROL_REGISTER_REQUEST, 1822 .repeat = 1, 1823 }; 1824 1825 retry: 1826 sge.addr = (uint64_t)(block->local_host_addr + 1827 (current_addr - block->offset)); 1828 sge.length = length; 1829 1830 chunk = ram_chunk_index(block->local_host_addr, (uint8_t *) sge.addr); 1831 chunk_start = ram_chunk_start(block, chunk); 1832 1833 if (block->is_ram_block) { 1834 chunks = length / (1UL << RDMA_REG_CHUNK_SHIFT); 1835 1836 if (chunks && ((length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) { 1837 chunks--; 1838 } 1839 } else { 1840 chunks = block->length / (1UL << RDMA_REG_CHUNK_SHIFT); 1841 1842 if (chunks && ((block->length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) { 1843 chunks--; 1844 } 1845 } 1846 1847 trace_qemu_rdma_write_one_top(chunks + 1, 1848 (chunks + 1) * 1849 (1UL << RDMA_REG_CHUNK_SHIFT) / 1024 / 1024); 1850 1851 chunk_end = ram_chunk_end(block, chunk + chunks); 1852 1853 if (!rdma->pin_all) { 1854 #ifdef RDMA_UNREGISTRATION_EXAMPLE 1855 qemu_rdma_unregister_waiting(rdma); 1856 #endif 1857 } 1858 1859 while (test_bit(chunk, block->transit_bitmap)) { 1860 (void)count; 1861 trace_qemu_rdma_write_one_block(count++, current_index, chunk, 1862 sge.addr, length, rdma->nb_sent, block->nb_chunks); 1863 1864 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL); 1865 1866 if (ret < 0) { 1867 error_report("Failed to Wait for previous write to complete " 1868 "block %d chunk %" PRIu64 1869 " current %" PRIu64 " len %" PRIu64 " %d", 1870 current_index, chunk, sge.addr, length, rdma->nb_sent); 1871 return ret; 1872 } 1873 } 1874 1875 if (!rdma->pin_all || !block->is_ram_block) { 1876 if (!block->remote_keys[chunk]) { 1877 /* 1878 * This chunk has not yet been registered, so first check to see 1879 * if the entire chunk is zero. If so, tell the other size to 1880 * memset() + madvise() the entire chunk without RDMA. 1881 */ 1882 1883 if (can_use_buffer_find_nonzero_offset((void *)sge.addr, length) 1884 && buffer_find_nonzero_offset((void *)sge.addr, 1885 length) == length) { 1886 RDMACompress comp = { 1887 .offset = current_addr, 1888 .value = 0, 1889 .block_idx = current_index, 1890 .length = length, 1891 }; 1892 1893 head.len = sizeof(comp); 1894 head.type = RDMA_CONTROL_COMPRESS; 1895 1896 trace_qemu_rdma_write_one_zero(chunk, sge.length, 1897 current_index, current_addr); 1898 1899 compress_to_network(&comp); 1900 ret = qemu_rdma_exchange_send(rdma, &head, 1901 (uint8_t *) &comp, NULL, NULL, NULL); 1902 1903 if (ret < 0) { 1904 return -EIO; 1905 } 1906 1907 acct_update_position(f, sge.length, true); 1908 1909 return 1; 1910 } 1911 1912 /* 1913 * Otherwise, tell other side to register. 1914 */ 1915 reg.current_index = current_index; 1916 if (block->is_ram_block) { 1917 reg.key.current_addr = current_addr; 1918 } else { 1919 reg.key.chunk = chunk; 1920 } 1921 reg.chunks = chunks; 1922 1923 trace_qemu_rdma_write_one_sendreg(chunk, sge.length, current_index, 1924 current_addr); 1925 1926 register_to_network(®); 1927 ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) ®, 1928 &resp, ®_result_idx, NULL); 1929 if (ret < 0) { 1930 return ret; 1931 } 1932 1933 /* try to overlap this single registration with the one we sent. */ 1934 if (qemu_rdma_register_and_get_keys(rdma, block, 1935 (uint8_t *) sge.addr, 1936 &sge.lkey, NULL, chunk, 1937 chunk_start, chunk_end)) { 1938 error_report("cannot get lkey"); 1939 return -EINVAL; 1940 } 1941 1942 reg_result = (RDMARegisterResult *) 1943 rdma->wr_data[reg_result_idx].control_curr; 1944 1945 network_to_result(reg_result); 1946 1947 trace_qemu_rdma_write_one_recvregres(block->remote_keys[chunk], 1948 reg_result->rkey, chunk); 1949 1950 block->remote_keys[chunk] = reg_result->rkey; 1951 block->remote_host_addr = reg_result->host_addr; 1952 } else { 1953 /* already registered before */ 1954 if (qemu_rdma_register_and_get_keys(rdma, block, 1955 (uint8_t *)sge.addr, 1956 &sge.lkey, NULL, chunk, 1957 chunk_start, chunk_end)) { 1958 error_report("cannot get lkey!"); 1959 return -EINVAL; 1960 } 1961 } 1962 1963 send_wr.wr.rdma.rkey = block->remote_keys[chunk]; 1964 } else { 1965 send_wr.wr.rdma.rkey = block->remote_rkey; 1966 1967 if (qemu_rdma_register_and_get_keys(rdma, block, (uint8_t *)sge.addr, 1968 &sge.lkey, NULL, chunk, 1969 chunk_start, chunk_end)) { 1970 error_report("cannot get lkey!"); 1971 return -EINVAL; 1972 } 1973 } 1974 1975 /* 1976 * Encode the ram block index and chunk within this wrid. 1977 * We will use this information at the time of completion 1978 * to figure out which bitmap to check against and then which 1979 * chunk in the bitmap to look for. 1980 */ 1981 send_wr.wr_id = qemu_rdma_make_wrid(RDMA_WRID_RDMA_WRITE, 1982 current_index, chunk); 1983 1984 send_wr.opcode = IBV_WR_RDMA_WRITE; 1985 send_wr.send_flags = IBV_SEND_SIGNALED; 1986 send_wr.sg_list = &sge; 1987 send_wr.num_sge = 1; 1988 send_wr.wr.rdma.remote_addr = block->remote_host_addr + 1989 (current_addr - block->offset); 1990 1991 trace_qemu_rdma_write_one_post(chunk, sge.addr, send_wr.wr.rdma.remote_addr, 1992 sge.length); 1993 1994 /* 1995 * ibv_post_send() does not return negative error numbers, 1996 * per the specification they are positive - no idea why. 1997 */ 1998 ret = ibv_post_send(rdma->qp, &send_wr, &bad_wr); 1999 2000 if (ret == ENOMEM) { 2001 trace_qemu_rdma_write_one_queue_full(); 2002 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL); 2003 if (ret < 0) { 2004 error_report("rdma migration: failed to make " 2005 "room in full send queue! %d", ret); 2006 return ret; 2007 } 2008 2009 goto retry; 2010 2011 } else if (ret > 0) { 2012 perror("rdma migration: post rdma write failed"); 2013 return -ret; 2014 } 2015 2016 set_bit(chunk, block->transit_bitmap); 2017 acct_update_position(f, sge.length, false); 2018 rdma->total_writes++; 2019 2020 return 0; 2021 } 2022 2023 /* 2024 * Push out any unwritten RDMA operations. 2025 * 2026 * We support sending out multiple chunks at the same time. 2027 * Not all of them need to get signaled in the completion queue. 2028 */ 2029 static int qemu_rdma_write_flush(QEMUFile *f, RDMAContext *rdma) 2030 { 2031 int ret; 2032 2033 if (!rdma->current_length) { 2034 return 0; 2035 } 2036 2037 ret = qemu_rdma_write_one(f, rdma, 2038 rdma->current_index, rdma->current_addr, rdma->current_length); 2039 2040 if (ret < 0) { 2041 return ret; 2042 } 2043 2044 if (ret == 0) { 2045 rdma->nb_sent++; 2046 trace_qemu_rdma_write_flush(rdma->nb_sent); 2047 } 2048 2049 rdma->current_length = 0; 2050 rdma->current_addr = 0; 2051 2052 return 0; 2053 } 2054 2055 static inline int qemu_rdma_buffer_mergable(RDMAContext *rdma, 2056 uint64_t offset, uint64_t len) 2057 { 2058 RDMALocalBlock *block; 2059 uint8_t *host_addr; 2060 uint8_t *chunk_end; 2061 2062 if (rdma->current_index < 0) { 2063 return 0; 2064 } 2065 2066 if (rdma->current_chunk < 0) { 2067 return 0; 2068 } 2069 2070 block = &(rdma->local_ram_blocks.block[rdma->current_index]); 2071 host_addr = block->local_host_addr + (offset - block->offset); 2072 chunk_end = ram_chunk_end(block, rdma->current_chunk); 2073 2074 if (rdma->current_length == 0) { 2075 return 0; 2076 } 2077 2078 /* 2079 * Only merge into chunk sequentially. 2080 */ 2081 if (offset != (rdma->current_addr + rdma->current_length)) { 2082 return 0; 2083 } 2084 2085 if (offset < block->offset) { 2086 return 0; 2087 } 2088 2089 if ((offset + len) > (block->offset + block->length)) { 2090 return 0; 2091 } 2092 2093 if ((host_addr + len) > chunk_end) { 2094 return 0; 2095 } 2096 2097 return 1; 2098 } 2099 2100 /* 2101 * We're not actually writing here, but doing three things: 2102 * 2103 * 1. Identify the chunk the buffer belongs to. 2104 * 2. If the chunk is full or the buffer doesn't belong to the current 2105 * chunk, then start a new chunk and flush() the old chunk. 2106 * 3. To keep the hardware busy, we also group chunks into batches 2107 * and only require that a batch gets acknowledged in the completion 2108 * qeueue instead of each individual chunk. 2109 */ 2110 static int qemu_rdma_write(QEMUFile *f, RDMAContext *rdma, 2111 uint64_t block_offset, uint64_t offset, 2112 uint64_t len) 2113 { 2114 uint64_t current_addr = block_offset + offset; 2115 uint64_t index = rdma->current_index; 2116 uint64_t chunk = rdma->current_chunk; 2117 int ret; 2118 2119 /* If we cannot merge it, we flush the current buffer first. */ 2120 if (!qemu_rdma_buffer_mergable(rdma, current_addr, len)) { 2121 ret = qemu_rdma_write_flush(f, rdma); 2122 if (ret) { 2123 return ret; 2124 } 2125 rdma->current_length = 0; 2126 rdma->current_addr = current_addr; 2127 2128 ret = qemu_rdma_search_ram_block(rdma, block_offset, 2129 offset, len, &index, &chunk); 2130 if (ret) { 2131 error_report("ram block search failed"); 2132 return ret; 2133 } 2134 rdma->current_index = index; 2135 rdma->current_chunk = chunk; 2136 } 2137 2138 /* merge it */ 2139 rdma->current_length += len; 2140 2141 /* flush it if buffer is too large */ 2142 if (rdma->current_length >= RDMA_MERGE_MAX) { 2143 return qemu_rdma_write_flush(f, rdma); 2144 } 2145 2146 return 0; 2147 } 2148 2149 static void qemu_rdma_cleanup(RDMAContext *rdma) 2150 { 2151 struct rdma_cm_event *cm_event; 2152 int ret, idx; 2153 2154 if (rdma->cm_id && rdma->connected) { 2155 if (rdma->error_state) { 2156 RDMAControlHeader head = { .len = 0, 2157 .type = RDMA_CONTROL_ERROR, 2158 .repeat = 1, 2159 }; 2160 error_report("Early error. Sending error."); 2161 qemu_rdma_post_send_control(rdma, NULL, &head); 2162 } 2163 2164 ret = rdma_disconnect(rdma->cm_id); 2165 if (!ret) { 2166 trace_qemu_rdma_cleanup_waiting_for_disconnect(); 2167 ret = rdma_get_cm_event(rdma->channel, &cm_event); 2168 if (!ret) { 2169 rdma_ack_cm_event(cm_event); 2170 } 2171 } 2172 trace_qemu_rdma_cleanup_disconnect(); 2173 rdma->connected = false; 2174 } 2175 2176 g_free(rdma->block); 2177 rdma->block = NULL; 2178 2179 for (idx = 0; idx < RDMA_WRID_MAX; idx++) { 2180 if (rdma->wr_data[idx].control_mr) { 2181 rdma->total_registrations--; 2182 ibv_dereg_mr(rdma->wr_data[idx].control_mr); 2183 } 2184 rdma->wr_data[idx].control_mr = NULL; 2185 } 2186 2187 if (rdma->local_ram_blocks.block) { 2188 while (rdma->local_ram_blocks.nb_blocks) { 2189 rdma_delete_block(rdma, rdma->local_ram_blocks.block->offset); 2190 } 2191 } 2192 2193 if (rdma->cq) { 2194 ibv_destroy_cq(rdma->cq); 2195 rdma->cq = NULL; 2196 } 2197 if (rdma->comp_channel) { 2198 ibv_destroy_comp_channel(rdma->comp_channel); 2199 rdma->comp_channel = NULL; 2200 } 2201 if (rdma->pd) { 2202 ibv_dealloc_pd(rdma->pd); 2203 rdma->pd = NULL; 2204 } 2205 if (rdma->listen_id) { 2206 rdma_destroy_id(rdma->listen_id); 2207 rdma->listen_id = NULL; 2208 } 2209 if (rdma->cm_id) { 2210 if (rdma->qp) { 2211 rdma_destroy_qp(rdma->cm_id); 2212 rdma->qp = NULL; 2213 } 2214 rdma_destroy_id(rdma->cm_id); 2215 rdma->cm_id = NULL; 2216 } 2217 if (rdma->channel) { 2218 rdma_destroy_event_channel(rdma->channel); 2219 rdma->channel = NULL; 2220 } 2221 g_free(rdma->host); 2222 rdma->host = NULL; 2223 } 2224 2225 2226 static int qemu_rdma_source_init(RDMAContext *rdma, Error **errp, bool pin_all) 2227 { 2228 int ret, idx; 2229 Error *local_err = NULL, **temp = &local_err; 2230 2231 /* 2232 * Will be validated against destination's actual capabilities 2233 * after the connect() completes. 2234 */ 2235 rdma->pin_all = pin_all; 2236 2237 ret = qemu_rdma_resolve_host(rdma, temp); 2238 if (ret) { 2239 goto err_rdma_source_init; 2240 } 2241 2242 ret = qemu_rdma_alloc_pd_cq(rdma); 2243 if (ret) { 2244 ERROR(temp, "rdma migration: error allocating pd and cq! Your mlock()" 2245 " limits may be too low. Please check $ ulimit -a # and " 2246 "search for 'ulimit -l' in the output"); 2247 goto err_rdma_source_init; 2248 } 2249 2250 ret = qemu_rdma_alloc_qp(rdma); 2251 if (ret) { 2252 ERROR(temp, "rdma migration: error allocating qp!"); 2253 goto err_rdma_source_init; 2254 } 2255 2256 ret = qemu_rdma_init_ram_blocks(rdma); 2257 if (ret) { 2258 ERROR(temp, "rdma migration: error initializing ram blocks!"); 2259 goto err_rdma_source_init; 2260 } 2261 2262 for (idx = 0; idx < RDMA_WRID_MAX; idx++) { 2263 ret = qemu_rdma_reg_control(rdma, idx); 2264 if (ret) { 2265 ERROR(temp, "rdma migration: error registering %d control!", 2266 idx); 2267 goto err_rdma_source_init; 2268 } 2269 } 2270 2271 return 0; 2272 2273 err_rdma_source_init: 2274 error_propagate(errp, local_err); 2275 qemu_rdma_cleanup(rdma); 2276 return -1; 2277 } 2278 2279 static int qemu_rdma_connect(RDMAContext *rdma, Error **errp) 2280 { 2281 RDMACapabilities cap = { 2282 .version = RDMA_CONTROL_VERSION_CURRENT, 2283 .flags = 0, 2284 }; 2285 struct rdma_conn_param conn_param = { .initiator_depth = 2, 2286 .retry_count = 5, 2287 .private_data = &cap, 2288 .private_data_len = sizeof(cap), 2289 }; 2290 struct rdma_cm_event *cm_event; 2291 int ret; 2292 2293 /* 2294 * Only negotiate the capability with destination if the user 2295 * on the source first requested the capability. 2296 */ 2297 if (rdma->pin_all) { 2298 trace_qemu_rdma_connect_pin_all_requested(); 2299 cap.flags |= RDMA_CAPABILITY_PIN_ALL; 2300 } 2301 2302 caps_to_network(&cap); 2303 2304 ret = rdma_connect(rdma->cm_id, &conn_param); 2305 if (ret) { 2306 perror("rdma_connect"); 2307 ERROR(errp, "connecting to destination!"); 2308 rdma_destroy_id(rdma->cm_id); 2309 rdma->cm_id = NULL; 2310 goto err_rdma_source_connect; 2311 } 2312 2313 ret = rdma_get_cm_event(rdma->channel, &cm_event); 2314 if (ret) { 2315 perror("rdma_get_cm_event after rdma_connect"); 2316 ERROR(errp, "connecting to destination!"); 2317 rdma_ack_cm_event(cm_event); 2318 rdma_destroy_id(rdma->cm_id); 2319 rdma->cm_id = NULL; 2320 goto err_rdma_source_connect; 2321 } 2322 2323 if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) { 2324 perror("rdma_get_cm_event != EVENT_ESTABLISHED after rdma_connect"); 2325 ERROR(errp, "connecting to destination!"); 2326 rdma_ack_cm_event(cm_event); 2327 rdma_destroy_id(rdma->cm_id); 2328 rdma->cm_id = NULL; 2329 goto err_rdma_source_connect; 2330 } 2331 rdma->connected = true; 2332 2333 memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap)); 2334 network_to_caps(&cap); 2335 2336 /* 2337 * Verify that the *requested* capabilities are supported by the destination 2338 * and disable them otherwise. 2339 */ 2340 if (rdma->pin_all && !(cap.flags & RDMA_CAPABILITY_PIN_ALL)) { 2341 ERROR(errp, "Server cannot support pinning all memory. " 2342 "Will register memory dynamically."); 2343 rdma->pin_all = false; 2344 } 2345 2346 trace_qemu_rdma_connect_pin_all_outcome(rdma->pin_all); 2347 2348 rdma_ack_cm_event(cm_event); 2349 2350 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY); 2351 if (ret) { 2352 ERROR(errp, "posting second control recv!"); 2353 goto err_rdma_source_connect; 2354 } 2355 2356 rdma->control_ready_expected = 1; 2357 rdma->nb_sent = 0; 2358 return 0; 2359 2360 err_rdma_source_connect: 2361 qemu_rdma_cleanup(rdma); 2362 return -1; 2363 } 2364 2365 static int qemu_rdma_dest_init(RDMAContext *rdma, Error **errp) 2366 { 2367 int ret = -EINVAL, idx; 2368 struct rdma_cm_id *listen_id; 2369 char ip[40] = "unknown"; 2370 struct rdma_addrinfo *res; 2371 char port_str[16]; 2372 2373 for (idx = 0; idx < RDMA_WRID_MAX; idx++) { 2374 rdma->wr_data[idx].control_len = 0; 2375 rdma->wr_data[idx].control_curr = NULL; 2376 } 2377 2378 if (rdma->host == NULL) { 2379 ERROR(errp, "RDMA host is not set!"); 2380 rdma->error_state = -EINVAL; 2381 return -1; 2382 } 2383 /* create CM channel */ 2384 rdma->channel = rdma_create_event_channel(); 2385 if (!rdma->channel) { 2386 ERROR(errp, "could not create rdma event channel"); 2387 rdma->error_state = -EINVAL; 2388 return -1; 2389 } 2390 2391 /* create CM id */ 2392 ret = rdma_create_id(rdma->channel, &listen_id, NULL, RDMA_PS_TCP); 2393 if (ret) { 2394 ERROR(errp, "could not create cm_id!"); 2395 goto err_dest_init_create_listen_id; 2396 } 2397 2398 snprintf(port_str, 16, "%d", rdma->port); 2399 port_str[15] = '\0'; 2400 2401 if (rdma->host && strcmp("", rdma->host)) { 2402 struct rdma_addrinfo *e; 2403 2404 ret = rdma_getaddrinfo(rdma->host, port_str, NULL, &res); 2405 if (ret < 0) { 2406 ERROR(errp, "could not rdma_getaddrinfo address %s", rdma->host); 2407 goto err_dest_init_bind_addr; 2408 } 2409 2410 for (e = res; e != NULL; e = e->ai_next) { 2411 inet_ntop(e->ai_family, 2412 &((struct sockaddr_in *) e->ai_dst_addr)->sin_addr, ip, sizeof ip); 2413 trace_qemu_rdma_dest_init_trying(rdma->host, ip); 2414 ret = rdma_bind_addr(listen_id, e->ai_dst_addr); 2415 if (!ret) { 2416 if (e->ai_family == AF_INET6) { 2417 ret = qemu_rdma_broken_ipv6_kernel(errp, listen_id->verbs); 2418 if (ret) { 2419 continue; 2420 } 2421 } 2422 2423 goto listen; 2424 } 2425 } 2426 2427 ERROR(errp, "Error: could not rdma_bind_addr!"); 2428 goto err_dest_init_bind_addr; 2429 } else { 2430 ERROR(errp, "migration host and port not specified!"); 2431 ret = -EINVAL; 2432 goto err_dest_init_bind_addr; 2433 } 2434 listen: 2435 2436 rdma->listen_id = listen_id; 2437 qemu_rdma_dump_gid("dest_init", listen_id); 2438 return 0; 2439 2440 err_dest_init_bind_addr: 2441 rdma_destroy_id(listen_id); 2442 err_dest_init_create_listen_id: 2443 rdma_destroy_event_channel(rdma->channel); 2444 rdma->channel = NULL; 2445 rdma->error_state = ret; 2446 return ret; 2447 2448 } 2449 2450 static void *qemu_rdma_data_init(const char *host_port, Error **errp) 2451 { 2452 RDMAContext *rdma = NULL; 2453 InetSocketAddress *addr; 2454 2455 if (host_port) { 2456 rdma = g_malloc0(sizeof(RDMAContext)); 2457 memset(rdma, 0, sizeof(RDMAContext)); 2458 rdma->current_index = -1; 2459 rdma->current_chunk = -1; 2460 2461 addr = inet_parse(host_port, NULL); 2462 if (addr != NULL) { 2463 rdma->port = atoi(addr->port); 2464 rdma->host = g_strdup(addr->host); 2465 } else { 2466 ERROR(errp, "bad RDMA migration address '%s'", host_port); 2467 g_free(rdma); 2468 rdma = NULL; 2469 } 2470 2471 qapi_free_InetSocketAddress(addr); 2472 } 2473 2474 return rdma; 2475 } 2476 2477 /* 2478 * QEMUFile interface to the control channel. 2479 * SEND messages for control only. 2480 * VM's ram is handled with regular RDMA messages. 2481 */ 2482 static int qemu_rdma_put_buffer(void *opaque, const uint8_t *buf, 2483 int64_t pos, int size) 2484 { 2485 QEMUFileRDMA *r = opaque; 2486 QEMUFile *f = r->file; 2487 RDMAContext *rdma = r->rdma; 2488 size_t remaining = size; 2489 uint8_t * data = (void *) buf; 2490 int ret; 2491 2492 CHECK_ERROR_STATE(); 2493 2494 /* 2495 * Push out any writes that 2496 * we're queued up for VM's ram. 2497 */ 2498 ret = qemu_rdma_write_flush(f, rdma); 2499 if (ret < 0) { 2500 rdma->error_state = ret; 2501 return ret; 2502 } 2503 2504 while (remaining) { 2505 RDMAControlHeader head; 2506 2507 r->len = MIN(remaining, RDMA_SEND_INCREMENT); 2508 remaining -= r->len; 2509 2510 head.len = r->len; 2511 head.type = RDMA_CONTROL_QEMU_FILE; 2512 2513 ret = qemu_rdma_exchange_send(rdma, &head, data, NULL, NULL, NULL); 2514 2515 if (ret < 0) { 2516 rdma->error_state = ret; 2517 return ret; 2518 } 2519 2520 data += r->len; 2521 } 2522 2523 return size; 2524 } 2525 2526 static size_t qemu_rdma_fill(RDMAContext *rdma, uint8_t *buf, 2527 int size, int idx) 2528 { 2529 size_t len = 0; 2530 2531 if (rdma->wr_data[idx].control_len) { 2532 trace_qemu_rdma_fill(rdma->wr_data[idx].control_len, size); 2533 2534 len = MIN(size, rdma->wr_data[idx].control_len); 2535 memcpy(buf, rdma->wr_data[idx].control_curr, len); 2536 rdma->wr_data[idx].control_curr += len; 2537 rdma->wr_data[idx].control_len -= len; 2538 } 2539 2540 return len; 2541 } 2542 2543 /* 2544 * QEMUFile interface to the control channel. 2545 * RDMA links don't use bytestreams, so we have to 2546 * return bytes to QEMUFile opportunistically. 2547 */ 2548 static int qemu_rdma_get_buffer(void *opaque, uint8_t *buf, 2549 int64_t pos, int size) 2550 { 2551 QEMUFileRDMA *r = opaque; 2552 RDMAContext *rdma = r->rdma; 2553 RDMAControlHeader head; 2554 int ret = 0; 2555 2556 CHECK_ERROR_STATE(); 2557 2558 /* 2559 * First, we hold on to the last SEND message we 2560 * were given and dish out the bytes until we run 2561 * out of bytes. 2562 */ 2563 r->len = qemu_rdma_fill(r->rdma, buf, size, 0); 2564 if (r->len) { 2565 return r->len; 2566 } 2567 2568 /* 2569 * Once we run out, we block and wait for another 2570 * SEND message to arrive. 2571 */ 2572 ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_QEMU_FILE); 2573 2574 if (ret < 0) { 2575 rdma->error_state = ret; 2576 return ret; 2577 } 2578 2579 /* 2580 * SEND was received with new bytes, now try again. 2581 */ 2582 return qemu_rdma_fill(r->rdma, buf, size, 0); 2583 } 2584 2585 /* 2586 * Block until all the outstanding chunks have been delivered by the hardware. 2587 */ 2588 static int qemu_rdma_drain_cq(QEMUFile *f, RDMAContext *rdma) 2589 { 2590 int ret; 2591 2592 if (qemu_rdma_write_flush(f, rdma) < 0) { 2593 return -EIO; 2594 } 2595 2596 while (rdma->nb_sent) { 2597 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL); 2598 if (ret < 0) { 2599 error_report("rdma migration: complete polling error!"); 2600 return -EIO; 2601 } 2602 } 2603 2604 qemu_rdma_unregister_waiting(rdma); 2605 2606 return 0; 2607 } 2608 2609 static int qemu_rdma_close(void *opaque) 2610 { 2611 trace_qemu_rdma_close(); 2612 QEMUFileRDMA *r = opaque; 2613 if (r->rdma) { 2614 qemu_rdma_cleanup(r->rdma); 2615 g_free(r->rdma); 2616 } 2617 g_free(r); 2618 return 0; 2619 } 2620 2621 /* 2622 * Parameters: 2623 * @offset == 0 : 2624 * This means that 'block_offset' is a full virtual address that does not 2625 * belong to a RAMBlock of the virtual machine and instead 2626 * represents a private malloc'd memory area that the caller wishes to 2627 * transfer. 2628 * 2629 * @offset != 0 : 2630 * Offset is an offset to be added to block_offset and used 2631 * to also lookup the corresponding RAMBlock. 2632 * 2633 * @size > 0 : 2634 * Initiate an transfer this size. 2635 * 2636 * @size == 0 : 2637 * A 'hint' or 'advice' that means that we wish to speculatively 2638 * and asynchronously unregister this memory. In this case, there is no 2639 * guarantee that the unregister will actually happen, for example, 2640 * if the memory is being actively transmitted. Additionally, the memory 2641 * may be re-registered at any future time if a write within the same 2642 * chunk was requested again, even if you attempted to unregister it 2643 * here. 2644 * 2645 * @size < 0 : TODO, not yet supported 2646 * Unregister the memory NOW. This means that the caller does not 2647 * expect there to be any future RDMA transfers and we just want to clean 2648 * things up. This is used in case the upper layer owns the memory and 2649 * cannot wait for qemu_fclose() to occur. 2650 * 2651 * @bytes_sent : User-specificed pointer to indicate how many bytes were 2652 * sent. Usually, this will not be more than a few bytes of 2653 * the protocol because most transfers are sent asynchronously. 2654 */ 2655 static size_t qemu_rdma_save_page(QEMUFile *f, void *opaque, 2656 ram_addr_t block_offset, ram_addr_t offset, 2657 size_t size, int *bytes_sent) 2658 { 2659 QEMUFileRDMA *rfile = opaque; 2660 RDMAContext *rdma = rfile->rdma; 2661 int ret; 2662 2663 CHECK_ERROR_STATE(); 2664 2665 qemu_fflush(f); 2666 2667 if (size > 0) { 2668 /* 2669 * Add this page to the current 'chunk'. If the chunk 2670 * is full, or the page doen't belong to the current chunk, 2671 * an actual RDMA write will occur and a new chunk will be formed. 2672 */ 2673 ret = qemu_rdma_write(f, rdma, block_offset, offset, size); 2674 if (ret < 0) { 2675 error_report("rdma migration: write error! %d", ret); 2676 goto err; 2677 } 2678 2679 /* 2680 * We always return 1 bytes because the RDMA 2681 * protocol is completely asynchronous. We do not yet know 2682 * whether an identified chunk is zero or not because we're 2683 * waiting for other pages to potentially be merged with 2684 * the current chunk. So, we have to call qemu_update_position() 2685 * later on when the actual write occurs. 2686 */ 2687 if (bytes_sent) { 2688 *bytes_sent = 1; 2689 } 2690 } else { 2691 uint64_t index, chunk; 2692 2693 /* TODO: Change QEMUFileOps prototype to be signed: size_t => long 2694 if (size < 0) { 2695 ret = qemu_rdma_drain_cq(f, rdma); 2696 if (ret < 0) { 2697 fprintf(stderr, "rdma: failed to synchronously drain" 2698 " completion queue before unregistration.\n"); 2699 goto err; 2700 } 2701 } 2702 */ 2703 2704 ret = qemu_rdma_search_ram_block(rdma, block_offset, 2705 offset, size, &index, &chunk); 2706 2707 if (ret) { 2708 error_report("ram block search failed"); 2709 goto err; 2710 } 2711 2712 qemu_rdma_signal_unregister(rdma, index, chunk, 0); 2713 2714 /* 2715 * TODO: Synchronous, guaranteed unregistration (should not occur during 2716 * fast-path). Otherwise, unregisters will process on the next call to 2717 * qemu_rdma_drain_cq() 2718 if (size < 0) { 2719 qemu_rdma_unregister_waiting(rdma); 2720 } 2721 */ 2722 } 2723 2724 /* 2725 * Drain the Completion Queue if possible, but do not block, 2726 * just poll. 2727 * 2728 * If nothing to poll, the end of the iteration will do this 2729 * again to make sure we don't overflow the request queue. 2730 */ 2731 while (1) { 2732 uint64_t wr_id, wr_id_in; 2733 int ret = qemu_rdma_poll(rdma, &wr_id_in, NULL); 2734 if (ret < 0) { 2735 error_report("rdma migration: polling error! %d", ret); 2736 goto err; 2737 } 2738 2739 wr_id = wr_id_in & RDMA_WRID_TYPE_MASK; 2740 2741 if (wr_id == RDMA_WRID_NONE) { 2742 break; 2743 } 2744 } 2745 2746 return RAM_SAVE_CONTROL_DELAYED; 2747 err: 2748 rdma->error_state = ret; 2749 return ret; 2750 } 2751 2752 static int qemu_rdma_accept(RDMAContext *rdma) 2753 { 2754 RDMACapabilities cap; 2755 struct rdma_conn_param conn_param = { 2756 .responder_resources = 2, 2757 .private_data = &cap, 2758 .private_data_len = sizeof(cap), 2759 }; 2760 struct rdma_cm_event *cm_event; 2761 struct ibv_context *verbs; 2762 int ret = -EINVAL; 2763 int idx; 2764 2765 ret = rdma_get_cm_event(rdma->channel, &cm_event); 2766 if (ret) { 2767 goto err_rdma_dest_wait; 2768 } 2769 2770 if (cm_event->event != RDMA_CM_EVENT_CONNECT_REQUEST) { 2771 rdma_ack_cm_event(cm_event); 2772 goto err_rdma_dest_wait; 2773 } 2774 2775 memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap)); 2776 2777 network_to_caps(&cap); 2778 2779 if (cap.version < 1 || cap.version > RDMA_CONTROL_VERSION_CURRENT) { 2780 error_report("Unknown source RDMA version: %d, bailing...", 2781 cap.version); 2782 rdma_ack_cm_event(cm_event); 2783 goto err_rdma_dest_wait; 2784 } 2785 2786 /* 2787 * Respond with only the capabilities this version of QEMU knows about. 2788 */ 2789 cap.flags &= known_capabilities; 2790 2791 /* 2792 * Enable the ones that we do know about. 2793 * Add other checks here as new ones are introduced. 2794 */ 2795 if (cap.flags & RDMA_CAPABILITY_PIN_ALL) { 2796 rdma->pin_all = true; 2797 } 2798 2799 rdma->cm_id = cm_event->id; 2800 verbs = cm_event->id->verbs; 2801 2802 rdma_ack_cm_event(cm_event); 2803 2804 trace_qemu_rdma_accept_pin_state(rdma->pin_all); 2805 2806 caps_to_network(&cap); 2807 2808 trace_qemu_rdma_accept_pin_verbsc(verbs); 2809 2810 if (!rdma->verbs) { 2811 rdma->verbs = verbs; 2812 } else if (rdma->verbs != verbs) { 2813 error_report("ibv context not matching %p, %p!", rdma->verbs, 2814 verbs); 2815 goto err_rdma_dest_wait; 2816 } 2817 2818 qemu_rdma_dump_id("dest_init", verbs); 2819 2820 ret = qemu_rdma_alloc_pd_cq(rdma); 2821 if (ret) { 2822 error_report("rdma migration: error allocating pd and cq!"); 2823 goto err_rdma_dest_wait; 2824 } 2825 2826 ret = qemu_rdma_alloc_qp(rdma); 2827 if (ret) { 2828 error_report("rdma migration: error allocating qp!"); 2829 goto err_rdma_dest_wait; 2830 } 2831 2832 ret = qemu_rdma_init_ram_blocks(rdma); 2833 if (ret) { 2834 error_report("rdma migration: error initializing ram blocks!"); 2835 goto err_rdma_dest_wait; 2836 } 2837 2838 for (idx = 0; idx < RDMA_WRID_MAX; idx++) { 2839 ret = qemu_rdma_reg_control(rdma, idx); 2840 if (ret) { 2841 error_report("rdma: error registering %d control", idx); 2842 goto err_rdma_dest_wait; 2843 } 2844 } 2845 2846 qemu_set_fd_handler2(rdma->channel->fd, NULL, NULL, NULL, NULL); 2847 2848 ret = rdma_accept(rdma->cm_id, &conn_param); 2849 if (ret) { 2850 error_report("rdma_accept returns %d", ret); 2851 goto err_rdma_dest_wait; 2852 } 2853 2854 ret = rdma_get_cm_event(rdma->channel, &cm_event); 2855 if (ret) { 2856 error_report("rdma_accept get_cm_event failed %d", ret); 2857 goto err_rdma_dest_wait; 2858 } 2859 2860 if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) { 2861 error_report("rdma_accept not event established"); 2862 rdma_ack_cm_event(cm_event); 2863 goto err_rdma_dest_wait; 2864 } 2865 2866 rdma_ack_cm_event(cm_event); 2867 rdma->connected = true; 2868 2869 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY); 2870 if (ret) { 2871 error_report("rdma migration: error posting second control recv"); 2872 goto err_rdma_dest_wait; 2873 } 2874 2875 qemu_rdma_dump_gid("dest_connect", rdma->cm_id); 2876 2877 return 0; 2878 2879 err_rdma_dest_wait: 2880 rdma->error_state = ret; 2881 qemu_rdma_cleanup(rdma); 2882 return ret; 2883 } 2884 2885 /* 2886 * During each iteration of the migration, we listen for instructions 2887 * by the source VM to perform dynamic page registrations before they 2888 * can perform RDMA operations. 2889 * 2890 * We respond with the 'rkey'. 2891 * 2892 * Keep doing this until the source tells us to stop. 2893 */ 2894 static int qemu_rdma_registration_handle(QEMUFile *f, void *opaque, 2895 uint64_t flags) 2896 { 2897 RDMAControlHeader reg_resp = { .len = sizeof(RDMARegisterResult), 2898 .type = RDMA_CONTROL_REGISTER_RESULT, 2899 .repeat = 0, 2900 }; 2901 RDMAControlHeader unreg_resp = { .len = 0, 2902 .type = RDMA_CONTROL_UNREGISTER_FINISHED, 2903 .repeat = 0, 2904 }; 2905 RDMAControlHeader blocks = { .type = RDMA_CONTROL_RAM_BLOCKS_RESULT, 2906 .repeat = 1 }; 2907 QEMUFileRDMA *rfile = opaque; 2908 RDMAContext *rdma = rfile->rdma; 2909 RDMALocalBlocks *local = &rdma->local_ram_blocks; 2910 RDMAControlHeader head; 2911 RDMARegister *reg, *registers; 2912 RDMACompress *comp; 2913 RDMARegisterResult *reg_result; 2914 static RDMARegisterResult results[RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE]; 2915 RDMALocalBlock *block; 2916 void *host_addr; 2917 int ret = 0; 2918 int idx = 0; 2919 int count = 0; 2920 int i = 0; 2921 2922 CHECK_ERROR_STATE(); 2923 2924 do { 2925 trace_qemu_rdma_registration_handle_wait(flags); 2926 2927 ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_NONE); 2928 2929 if (ret < 0) { 2930 break; 2931 } 2932 2933 if (head.repeat > RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE) { 2934 error_report("rdma: Too many requests in this message (%d)." 2935 "Bailing.", head.repeat); 2936 ret = -EIO; 2937 break; 2938 } 2939 2940 switch (head.type) { 2941 case RDMA_CONTROL_COMPRESS: 2942 comp = (RDMACompress *) rdma->wr_data[idx].control_curr; 2943 network_to_compress(comp); 2944 2945 trace_qemu_rdma_registration_handle_compress(comp->length, 2946 comp->block_idx, 2947 comp->offset); 2948 block = &(rdma->local_ram_blocks.block[comp->block_idx]); 2949 2950 host_addr = block->local_host_addr + 2951 (comp->offset - block->offset); 2952 2953 ram_handle_compressed(host_addr, comp->value, comp->length); 2954 break; 2955 2956 case RDMA_CONTROL_REGISTER_FINISHED: 2957 trace_qemu_rdma_registration_handle_finished(); 2958 goto out; 2959 2960 case RDMA_CONTROL_RAM_BLOCKS_REQUEST: 2961 trace_qemu_rdma_registration_handle_ram_blocks(); 2962 2963 if (rdma->pin_all) { 2964 ret = qemu_rdma_reg_whole_ram_blocks(rdma); 2965 if (ret) { 2966 error_report("rdma migration: error dest " 2967 "registering ram blocks"); 2968 goto out; 2969 } 2970 } 2971 2972 /* 2973 * Dest uses this to prepare to transmit the RAMBlock descriptions 2974 * to the source VM after connection setup. 2975 * Both sides use the "remote" structure to communicate and update 2976 * their "local" descriptions with what was sent. 2977 */ 2978 for (i = 0; i < local->nb_blocks; i++) { 2979 rdma->block[i].remote_host_addr = 2980 (uint64_t)(local->block[i].local_host_addr); 2981 2982 if (rdma->pin_all) { 2983 rdma->block[i].remote_rkey = local->block[i].mr->rkey; 2984 } 2985 2986 rdma->block[i].offset = local->block[i].offset; 2987 rdma->block[i].length = local->block[i].length; 2988 2989 remote_block_to_network(&rdma->block[i]); 2990 } 2991 2992 blocks.len = rdma->local_ram_blocks.nb_blocks 2993 * sizeof(RDMARemoteBlock); 2994 2995 2996 ret = qemu_rdma_post_send_control(rdma, 2997 (uint8_t *) rdma->block, &blocks); 2998 2999 if (ret < 0) { 3000 error_report("rdma migration: error sending remote info"); 3001 goto out; 3002 } 3003 3004 break; 3005 case RDMA_CONTROL_REGISTER_REQUEST: 3006 trace_qemu_rdma_registration_handle_register(head.repeat); 3007 3008 reg_resp.repeat = head.repeat; 3009 registers = (RDMARegister *) rdma->wr_data[idx].control_curr; 3010 3011 for (count = 0; count < head.repeat; count++) { 3012 uint64_t chunk; 3013 uint8_t *chunk_start, *chunk_end; 3014 3015 reg = ®isters[count]; 3016 network_to_register(reg); 3017 3018 reg_result = &results[count]; 3019 3020 trace_qemu_rdma_registration_handle_register_loop(count, 3021 reg->current_index, reg->key.current_addr, reg->chunks); 3022 3023 block = &(rdma->local_ram_blocks.block[reg->current_index]); 3024 if (block->is_ram_block) { 3025 host_addr = (block->local_host_addr + 3026 (reg->key.current_addr - block->offset)); 3027 chunk = ram_chunk_index(block->local_host_addr, 3028 (uint8_t *) host_addr); 3029 } else { 3030 chunk = reg->key.chunk; 3031 host_addr = block->local_host_addr + 3032 (reg->key.chunk * (1UL << RDMA_REG_CHUNK_SHIFT)); 3033 } 3034 chunk_start = ram_chunk_start(block, chunk); 3035 chunk_end = ram_chunk_end(block, chunk + reg->chunks); 3036 if (qemu_rdma_register_and_get_keys(rdma, block, 3037 (uint8_t *)host_addr, NULL, ®_result->rkey, 3038 chunk, chunk_start, chunk_end)) { 3039 error_report("cannot get rkey"); 3040 ret = -EINVAL; 3041 goto out; 3042 } 3043 3044 reg_result->host_addr = (uint64_t) block->local_host_addr; 3045 3046 trace_qemu_rdma_registration_handle_register_rkey( 3047 reg_result->rkey); 3048 3049 result_to_network(reg_result); 3050 } 3051 3052 ret = qemu_rdma_post_send_control(rdma, 3053 (uint8_t *) results, ®_resp); 3054 3055 if (ret < 0) { 3056 error_report("Failed to send control buffer"); 3057 goto out; 3058 } 3059 break; 3060 case RDMA_CONTROL_UNREGISTER_REQUEST: 3061 trace_qemu_rdma_registration_handle_unregister(head.repeat); 3062 unreg_resp.repeat = head.repeat; 3063 registers = (RDMARegister *) rdma->wr_data[idx].control_curr; 3064 3065 for (count = 0; count < head.repeat; count++) { 3066 reg = ®isters[count]; 3067 network_to_register(reg); 3068 3069 trace_qemu_rdma_registration_handle_unregister_loop(count, 3070 reg->current_index, reg->key.chunk); 3071 3072 block = &(rdma->local_ram_blocks.block[reg->current_index]); 3073 3074 ret = ibv_dereg_mr(block->pmr[reg->key.chunk]); 3075 block->pmr[reg->key.chunk] = NULL; 3076 3077 if (ret != 0) { 3078 perror("rdma unregistration chunk failed"); 3079 ret = -ret; 3080 goto out; 3081 } 3082 3083 rdma->total_registrations--; 3084 3085 trace_qemu_rdma_registration_handle_unregister_success( 3086 reg->key.chunk); 3087 } 3088 3089 ret = qemu_rdma_post_send_control(rdma, NULL, &unreg_resp); 3090 3091 if (ret < 0) { 3092 error_report("Failed to send control buffer"); 3093 goto out; 3094 } 3095 break; 3096 case RDMA_CONTROL_REGISTER_RESULT: 3097 error_report("Invalid RESULT message at dest."); 3098 ret = -EIO; 3099 goto out; 3100 default: 3101 error_report("Unknown control message %s", control_desc[head.type]); 3102 ret = -EIO; 3103 goto out; 3104 } 3105 } while (1); 3106 out: 3107 if (ret < 0) { 3108 rdma->error_state = ret; 3109 } 3110 return ret; 3111 } 3112 3113 static int qemu_rdma_registration_start(QEMUFile *f, void *opaque, 3114 uint64_t flags) 3115 { 3116 QEMUFileRDMA *rfile = opaque; 3117 RDMAContext *rdma = rfile->rdma; 3118 3119 CHECK_ERROR_STATE(); 3120 3121 trace_qemu_rdma_registration_start(flags); 3122 qemu_put_be64(f, RAM_SAVE_FLAG_HOOK); 3123 qemu_fflush(f); 3124 3125 return 0; 3126 } 3127 3128 /* 3129 * Inform dest that dynamic registrations are done for now. 3130 * First, flush writes, if any. 3131 */ 3132 static int qemu_rdma_registration_stop(QEMUFile *f, void *opaque, 3133 uint64_t flags) 3134 { 3135 Error *local_err = NULL, **errp = &local_err; 3136 QEMUFileRDMA *rfile = opaque; 3137 RDMAContext *rdma = rfile->rdma; 3138 RDMAControlHeader head = { .len = 0, .repeat = 1 }; 3139 int ret = 0; 3140 3141 CHECK_ERROR_STATE(); 3142 3143 qemu_fflush(f); 3144 ret = qemu_rdma_drain_cq(f, rdma); 3145 3146 if (ret < 0) { 3147 goto err; 3148 } 3149 3150 if (flags == RAM_CONTROL_SETUP) { 3151 RDMAControlHeader resp = {.type = RDMA_CONTROL_RAM_BLOCKS_RESULT }; 3152 RDMALocalBlocks *local = &rdma->local_ram_blocks; 3153 int reg_result_idx, i, j, nb_remote_blocks; 3154 3155 head.type = RDMA_CONTROL_RAM_BLOCKS_REQUEST; 3156 trace_qemu_rdma_registration_stop_ram(); 3157 3158 /* 3159 * Make sure that we parallelize the pinning on both sides. 3160 * For very large guests, doing this serially takes a really 3161 * long time, so we have to 'interleave' the pinning locally 3162 * with the control messages by performing the pinning on this 3163 * side before we receive the control response from the other 3164 * side that the pinning has completed. 3165 */ 3166 ret = qemu_rdma_exchange_send(rdma, &head, NULL, &resp, 3167 ®_result_idx, rdma->pin_all ? 3168 qemu_rdma_reg_whole_ram_blocks : NULL); 3169 if (ret < 0) { 3170 ERROR(errp, "receiving remote info!"); 3171 return ret; 3172 } 3173 3174 nb_remote_blocks = resp.len / sizeof(RDMARemoteBlock); 3175 3176 /* 3177 * The protocol uses two different sets of rkeys (mutually exclusive): 3178 * 1. One key to represent the virtual address of the entire ram block. 3179 * (dynamic chunk registration disabled - pin everything with one rkey.) 3180 * 2. One to represent individual chunks within a ram block. 3181 * (dynamic chunk registration enabled - pin individual chunks.) 3182 * 3183 * Once the capability is successfully negotiated, the destination transmits 3184 * the keys to use (or sends them later) including the virtual addresses 3185 * and then propagates the remote ram block descriptions to his local copy. 3186 */ 3187 3188 if (local->nb_blocks != nb_remote_blocks) { 3189 ERROR(errp, "ram blocks mismatch #1! " 3190 "Your QEMU command line parameters are probably " 3191 "not identical on both the source and destination."); 3192 return -EINVAL; 3193 } 3194 3195 qemu_rdma_move_header(rdma, reg_result_idx, &resp); 3196 memcpy(rdma->block, 3197 rdma->wr_data[reg_result_idx].control_curr, resp.len); 3198 for (i = 0; i < nb_remote_blocks; i++) { 3199 network_to_remote_block(&rdma->block[i]); 3200 3201 /* search local ram blocks */ 3202 for (j = 0; j < local->nb_blocks; j++) { 3203 if (rdma->block[i].offset != local->block[j].offset) { 3204 continue; 3205 } 3206 3207 if (rdma->block[i].length != local->block[j].length) { 3208 ERROR(errp, "ram blocks mismatch #2! " 3209 "Your QEMU command line parameters are probably " 3210 "not identical on both the source and destination."); 3211 return -EINVAL; 3212 } 3213 local->block[j].remote_host_addr = 3214 rdma->block[i].remote_host_addr; 3215 local->block[j].remote_rkey = rdma->block[i].remote_rkey; 3216 break; 3217 } 3218 3219 if (j >= local->nb_blocks) { 3220 ERROR(errp, "ram blocks mismatch #3! " 3221 "Your QEMU command line parameters are probably " 3222 "not identical on both the source and destination."); 3223 return -EINVAL; 3224 } 3225 } 3226 } 3227 3228 trace_qemu_rdma_registration_stop(flags); 3229 3230 head.type = RDMA_CONTROL_REGISTER_FINISHED; 3231 ret = qemu_rdma_exchange_send(rdma, &head, NULL, NULL, NULL, NULL); 3232 3233 if (ret < 0) { 3234 goto err; 3235 } 3236 3237 return 0; 3238 err: 3239 rdma->error_state = ret; 3240 return ret; 3241 } 3242 3243 static int qemu_rdma_get_fd(void *opaque) 3244 { 3245 QEMUFileRDMA *rfile = opaque; 3246 RDMAContext *rdma = rfile->rdma; 3247 3248 return rdma->comp_channel->fd; 3249 } 3250 3251 static const QEMUFileOps rdma_read_ops = { 3252 .get_buffer = qemu_rdma_get_buffer, 3253 .get_fd = qemu_rdma_get_fd, 3254 .close = qemu_rdma_close, 3255 .hook_ram_load = qemu_rdma_registration_handle, 3256 }; 3257 3258 static const QEMUFileOps rdma_write_ops = { 3259 .put_buffer = qemu_rdma_put_buffer, 3260 .close = qemu_rdma_close, 3261 .before_ram_iterate = qemu_rdma_registration_start, 3262 .after_ram_iterate = qemu_rdma_registration_stop, 3263 .save_page = qemu_rdma_save_page, 3264 }; 3265 3266 static void *qemu_fopen_rdma(RDMAContext *rdma, const char *mode) 3267 { 3268 QEMUFileRDMA *r = g_malloc0(sizeof(QEMUFileRDMA)); 3269 3270 if (qemu_file_mode_is_not_valid(mode)) { 3271 return NULL; 3272 } 3273 3274 r->rdma = rdma; 3275 3276 if (mode[0] == 'w') { 3277 r->file = qemu_fopen_ops(r, &rdma_write_ops); 3278 } else { 3279 r->file = qemu_fopen_ops(r, &rdma_read_ops); 3280 } 3281 3282 return r->file; 3283 } 3284 3285 static void rdma_accept_incoming_migration(void *opaque) 3286 { 3287 RDMAContext *rdma = opaque; 3288 int ret; 3289 QEMUFile *f; 3290 Error *local_err = NULL, **errp = &local_err; 3291 3292 trace_qemu_dma_accept_incoming_migration(); 3293 ret = qemu_rdma_accept(rdma); 3294 3295 if (ret) { 3296 ERROR(errp, "RDMA Migration initialization failed!"); 3297 return; 3298 } 3299 3300 trace_qemu_dma_accept_incoming_migration_accepted(); 3301 3302 f = qemu_fopen_rdma(rdma, "rb"); 3303 if (f == NULL) { 3304 ERROR(errp, "could not qemu_fopen_rdma!"); 3305 qemu_rdma_cleanup(rdma); 3306 return; 3307 } 3308 3309 rdma->migration_started_on_destination = 1; 3310 process_incoming_migration(f); 3311 } 3312 3313 void rdma_start_incoming_migration(const char *host_port, Error **errp) 3314 { 3315 int ret; 3316 RDMAContext *rdma; 3317 Error *local_err = NULL; 3318 3319 trace_rdma_start_incoming_migration(); 3320 rdma = qemu_rdma_data_init(host_port, &local_err); 3321 3322 if (rdma == NULL) { 3323 goto err; 3324 } 3325 3326 ret = qemu_rdma_dest_init(rdma, &local_err); 3327 3328 if (ret) { 3329 goto err; 3330 } 3331 3332 trace_rdma_start_incoming_migration_after_dest_init(); 3333 3334 ret = rdma_listen(rdma->listen_id, 5); 3335 3336 if (ret) { 3337 ERROR(errp, "listening on socket!"); 3338 goto err; 3339 } 3340 3341 trace_rdma_start_incoming_migration_after_rdma_listen(); 3342 3343 qemu_set_fd_handler2(rdma->channel->fd, NULL, 3344 rdma_accept_incoming_migration, NULL, 3345 (void *)(intptr_t) rdma); 3346 return; 3347 err: 3348 error_propagate(errp, local_err); 3349 g_free(rdma); 3350 } 3351 3352 void rdma_start_outgoing_migration(void *opaque, 3353 const char *host_port, Error **errp) 3354 { 3355 MigrationState *s = opaque; 3356 Error *local_err = NULL, **temp = &local_err; 3357 RDMAContext *rdma = qemu_rdma_data_init(host_port, &local_err); 3358 int ret = 0; 3359 3360 if (rdma == NULL) { 3361 ERROR(temp, "Failed to initialize RDMA data structures! %d", ret); 3362 goto err; 3363 } 3364 3365 ret = qemu_rdma_source_init(rdma, &local_err, 3366 s->enabled_capabilities[MIGRATION_CAPABILITY_RDMA_PIN_ALL]); 3367 3368 if (ret) { 3369 goto err; 3370 } 3371 3372 trace_rdma_start_outgoing_migration_after_rdma_source_init(); 3373 ret = qemu_rdma_connect(rdma, &local_err); 3374 3375 if (ret) { 3376 goto err; 3377 } 3378 3379 trace_rdma_start_outgoing_migration_after_rdma_connect(); 3380 3381 s->file = qemu_fopen_rdma(rdma, "wb"); 3382 migrate_fd_connect(s); 3383 return; 3384 err: 3385 error_propagate(errp, local_err); 3386 g_free(rdma); 3387 migrate_fd_error(s); 3388 } 3389