xref: /openbmc/qemu/migration/rdma.c (revision 719f0f60)
1 /*
2  * RDMA protocol and interfaces
3  *
4  * Copyright IBM, Corp. 2010-2013
5  * Copyright Red Hat, Inc. 2015-2016
6  *
7  * Authors:
8  *  Michael R. Hines <mrhines@us.ibm.com>
9  *  Jiuxing Liu <jl@us.ibm.com>
10  *  Daniel P. Berrange <berrange@redhat.com>
11  *
12  * This work is licensed under the terms of the GNU GPL, version 2 or
13  * later.  See the COPYING file in the top-level directory.
14  *
15  */
16 
17 #include "qemu/osdep.h"
18 #include "qapi/error.h"
19 #include "qemu/cutils.h"
20 #include "rdma.h"
21 #include "migration.h"
22 #include "qemu-file.h"
23 #include "ram.h"
24 #include "qemu-file-channel.h"
25 #include "qemu/error-report.h"
26 #include "qemu/main-loop.h"
27 #include "qemu/module.h"
28 #include "qemu/rcu.h"
29 #include "qemu/sockets.h"
30 #include "qemu/bitmap.h"
31 #include "qemu/coroutine.h"
32 #include "exec/memory.h"
33 #include <sys/socket.h>
34 #include <netdb.h>
35 #include <arpa/inet.h>
36 #include <rdma/rdma_cma.h>
37 #include "trace.h"
38 #include "qom/object.h"
39 #include <poll.h>
40 
41 /*
42  * Print and error on both the Monitor and the Log file.
43  */
44 #define ERROR(errp, fmt, ...) \
45     do { \
46         fprintf(stderr, "RDMA ERROR: " fmt "\n", ## __VA_ARGS__); \
47         if (errp && (*(errp) == NULL)) { \
48             error_setg(errp, "RDMA ERROR: " fmt, ## __VA_ARGS__); \
49         } \
50     } while (0)
51 
52 #define RDMA_RESOLVE_TIMEOUT_MS 10000
53 
54 /* Do not merge data if larger than this. */
55 #define RDMA_MERGE_MAX (2 * 1024 * 1024)
56 #define RDMA_SIGNALED_SEND_MAX (RDMA_MERGE_MAX / 4096)
57 
58 #define RDMA_REG_CHUNK_SHIFT 20 /* 1 MB */
59 
60 /*
61  * This is only for non-live state being migrated.
62  * Instead of RDMA_WRITE messages, we use RDMA_SEND
63  * messages for that state, which requires a different
64  * delivery design than main memory.
65  */
66 #define RDMA_SEND_INCREMENT 32768
67 
68 /*
69  * Maximum size infiniband SEND message
70  */
71 #define RDMA_CONTROL_MAX_BUFFER (512 * 1024)
72 #define RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE 4096
73 
74 #define RDMA_CONTROL_VERSION_CURRENT 1
75 /*
76  * Capabilities for negotiation.
77  */
78 #define RDMA_CAPABILITY_PIN_ALL 0x01
79 
80 /*
81  * Add the other flags above to this list of known capabilities
82  * as they are introduced.
83  */
84 static uint32_t known_capabilities = RDMA_CAPABILITY_PIN_ALL;
85 
86 #define CHECK_ERROR_STATE() \
87     do { \
88         if (rdma->error_state) { \
89             if (!rdma->error_reported) { \
90                 error_report("RDMA is in an error state waiting migration" \
91                                 " to abort!"); \
92                 rdma->error_reported = 1; \
93             } \
94             return rdma->error_state; \
95         } \
96     } while (0)
97 
98 /*
99  * A work request ID is 64-bits and we split up these bits
100  * into 3 parts:
101  *
102  * bits 0-15 : type of control message, 2^16
103  * bits 16-29: ram block index, 2^14
104  * bits 30-63: ram block chunk number, 2^34
105  *
106  * The last two bit ranges are only used for RDMA writes,
107  * in order to track their completion and potentially
108  * also track unregistration status of the message.
109  */
110 #define RDMA_WRID_TYPE_SHIFT  0UL
111 #define RDMA_WRID_BLOCK_SHIFT 16UL
112 #define RDMA_WRID_CHUNK_SHIFT 30UL
113 
114 #define RDMA_WRID_TYPE_MASK \
115     ((1UL << RDMA_WRID_BLOCK_SHIFT) - 1UL)
116 
117 #define RDMA_WRID_BLOCK_MASK \
118     (~RDMA_WRID_TYPE_MASK & ((1UL << RDMA_WRID_CHUNK_SHIFT) - 1UL))
119 
120 #define RDMA_WRID_CHUNK_MASK (~RDMA_WRID_BLOCK_MASK & ~RDMA_WRID_TYPE_MASK)
121 
122 /*
123  * RDMA migration protocol:
124  * 1. RDMA Writes (data messages, i.e. RAM)
125  * 2. IB Send/Recv (control channel messages)
126  */
127 enum {
128     RDMA_WRID_NONE = 0,
129     RDMA_WRID_RDMA_WRITE = 1,
130     RDMA_WRID_SEND_CONTROL = 2000,
131     RDMA_WRID_RECV_CONTROL = 4000,
132 };
133 
134 static const char *wrid_desc[] = {
135     [RDMA_WRID_NONE] = "NONE",
136     [RDMA_WRID_RDMA_WRITE] = "WRITE RDMA",
137     [RDMA_WRID_SEND_CONTROL] = "CONTROL SEND",
138     [RDMA_WRID_RECV_CONTROL] = "CONTROL RECV",
139 };
140 
141 /*
142  * Work request IDs for IB SEND messages only (not RDMA writes).
143  * This is used by the migration protocol to transmit
144  * control messages (such as device state and registration commands)
145  *
146  * We could use more WRs, but we have enough for now.
147  */
148 enum {
149     RDMA_WRID_READY = 0,
150     RDMA_WRID_DATA,
151     RDMA_WRID_CONTROL,
152     RDMA_WRID_MAX,
153 };
154 
155 /*
156  * SEND/RECV IB Control Messages.
157  */
158 enum {
159     RDMA_CONTROL_NONE = 0,
160     RDMA_CONTROL_ERROR,
161     RDMA_CONTROL_READY,               /* ready to receive */
162     RDMA_CONTROL_QEMU_FILE,           /* QEMUFile-transmitted bytes */
163     RDMA_CONTROL_RAM_BLOCKS_REQUEST,  /* RAMBlock synchronization */
164     RDMA_CONTROL_RAM_BLOCKS_RESULT,   /* RAMBlock synchronization */
165     RDMA_CONTROL_COMPRESS,            /* page contains repeat values */
166     RDMA_CONTROL_REGISTER_REQUEST,    /* dynamic page registration */
167     RDMA_CONTROL_REGISTER_RESULT,     /* key to use after registration */
168     RDMA_CONTROL_REGISTER_FINISHED,   /* current iteration finished */
169     RDMA_CONTROL_UNREGISTER_REQUEST,  /* dynamic UN-registration */
170     RDMA_CONTROL_UNREGISTER_FINISHED, /* unpinning finished */
171 };
172 
173 
174 /*
175  * Memory and MR structures used to represent an IB Send/Recv work request.
176  * This is *not* used for RDMA writes, only IB Send/Recv.
177  */
178 typedef struct {
179     uint8_t  control[RDMA_CONTROL_MAX_BUFFER]; /* actual buffer to register */
180     struct   ibv_mr *control_mr;               /* registration metadata */
181     size_t   control_len;                      /* length of the message */
182     uint8_t *control_curr;                     /* start of unconsumed bytes */
183 } RDMAWorkRequestData;
184 
185 /*
186  * Negotiate RDMA capabilities during connection-setup time.
187  */
188 typedef struct {
189     uint32_t version;
190     uint32_t flags;
191 } RDMACapabilities;
192 
193 static void caps_to_network(RDMACapabilities *cap)
194 {
195     cap->version = htonl(cap->version);
196     cap->flags = htonl(cap->flags);
197 }
198 
199 static void network_to_caps(RDMACapabilities *cap)
200 {
201     cap->version = ntohl(cap->version);
202     cap->flags = ntohl(cap->flags);
203 }
204 
205 /*
206  * Representation of a RAMBlock from an RDMA perspective.
207  * This is not transmitted, only local.
208  * This and subsequent structures cannot be linked lists
209  * because we're using a single IB message to transmit
210  * the information. It's small anyway, so a list is overkill.
211  */
212 typedef struct RDMALocalBlock {
213     char          *block_name;
214     uint8_t       *local_host_addr; /* local virtual address */
215     uint64_t       remote_host_addr; /* remote virtual address */
216     uint64_t       offset;
217     uint64_t       length;
218     struct         ibv_mr **pmr;    /* MRs for chunk-level registration */
219     struct         ibv_mr *mr;      /* MR for non-chunk-level registration */
220     uint32_t      *remote_keys;     /* rkeys for chunk-level registration */
221     uint32_t       remote_rkey;     /* rkeys for non-chunk-level registration */
222     int            index;           /* which block are we */
223     unsigned int   src_index;       /* (Only used on dest) */
224     bool           is_ram_block;
225     int            nb_chunks;
226     unsigned long *transit_bitmap;
227     unsigned long *unregister_bitmap;
228 } RDMALocalBlock;
229 
230 /*
231  * Also represents a RAMblock, but only on the dest.
232  * This gets transmitted by the dest during connection-time
233  * to the source VM and then is used to populate the
234  * corresponding RDMALocalBlock with
235  * the information needed to perform the actual RDMA.
236  */
237 typedef struct QEMU_PACKED RDMADestBlock {
238     uint64_t remote_host_addr;
239     uint64_t offset;
240     uint64_t length;
241     uint32_t remote_rkey;
242     uint32_t padding;
243 } RDMADestBlock;
244 
245 static const char *control_desc(unsigned int rdma_control)
246 {
247     static const char *strs[] = {
248         [RDMA_CONTROL_NONE] = "NONE",
249         [RDMA_CONTROL_ERROR] = "ERROR",
250         [RDMA_CONTROL_READY] = "READY",
251         [RDMA_CONTROL_QEMU_FILE] = "QEMU FILE",
252         [RDMA_CONTROL_RAM_BLOCKS_REQUEST] = "RAM BLOCKS REQUEST",
253         [RDMA_CONTROL_RAM_BLOCKS_RESULT] = "RAM BLOCKS RESULT",
254         [RDMA_CONTROL_COMPRESS] = "COMPRESS",
255         [RDMA_CONTROL_REGISTER_REQUEST] = "REGISTER REQUEST",
256         [RDMA_CONTROL_REGISTER_RESULT] = "REGISTER RESULT",
257         [RDMA_CONTROL_REGISTER_FINISHED] = "REGISTER FINISHED",
258         [RDMA_CONTROL_UNREGISTER_REQUEST] = "UNREGISTER REQUEST",
259         [RDMA_CONTROL_UNREGISTER_FINISHED] = "UNREGISTER FINISHED",
260     };
261 
262     if (rdma_control > RDMA_CONTROL_UNREGISTER_FINISHED) {
263         return "??BAD CONTROL VALUE??";
264     }
265 
266     return strs[rdma_control];
267 }
268 
269 static uint64_t htonll(uint64_t v)
270 {
271     union { uint32_t lv[2]; uint64_t llv; } u;
272     u.lv[0] = htonl(v >> 32);
273     u.lv[1] = htonl(v & 0xFFFFFFFFULL);
274     return u.llv;
275 }
276 
277 static uint64_t ntohll(uint64_t v)
278 {
279     union { uint32_t lv[2]; uint64_t llv; } u;
280     u.llv = v;
281     return ((uint64_t)ntohl(u.lv[0]) << 32) | (uint64_t) ntohl(u.lv[1]);
282 }
283 
284 static void dest_block_to_network(RDMADestBlock *db)
285 {
286     db->remote_host_addr = htonll(db->remote_host_addr);
287     db->offset = htonll(db->offset);
288     db->length = htonll(db->length);
289     db->remote_rkey = htonl(db->remote_rkey);
290 }
291 
292 static void network_to_dest_block(RDMADestBlock *db)
293 {
294     db->remote_host_addr = ntohll(db->remote_host_addr);
295     db->offset = ntohll(db->offset);
296     db->length = ntohll(db->length);
297     db->remote_rkey = ntohl(db->remote_rkey);
298 }
299 
300 /*
301  * Virtual address of the above structures used for transmitting
302  * the RAMBlock descriptions at connection-time.
303  * This structure is *not* transmitted.
304  */
305 typedef struct RDMALocalBlocks {
306     int nb_blocks;
307     bool     init;             /* main memory init complete */
308     RDMALocalBlock *block;
309 } RDMALocalBlocks;
310 
311 /*
312  * Main data structure for RDMA state.
313  * While there is only one copy of this structure being allocated right now,
314  * this is the place where one would start if you wanted to consider
315  * having more than one RDMA connection open at the same time.
316  */
317 typedef struct RDMAContext {
318     char *host;
319     int port;
320     char *host_port;
321 
322     RDMAWorkRequestData wr_data[RDMA_WRID_MAX];
323 
324     /*
325      * This is used by *_exchange_send() to figure out whether or not
326      * the initial "READY" message has already been received or not.
327      * This is because other functions may potentially poll() and detect
328      * the READY message before send() does, in which case we need to
329      * know if it completed.
330      */
331     int control_ready_expected;
332 
333     /* number of outstanding writes */
334     int nb_sent;
335 
336     /* store info about current buffer so that we can
337        merge it with future sends */
338     uint64_t current_addr;
339     uint64_t current_length;
340     /* index of ram block the current buffer belongs to */
341     int current_index;
342     /* index of the chunk in the current ram block */
343     int current_chunk;
344 
345     bool pin_all;
346 
347     /*
348      * infiniband-specific variables for opening the device
349      * and maintaining connection state and so forth.
350      *
351      * cm_id also has ibv_context, rdma_event_channel, and ibv_qp in
352      * cm_id->verbs, cm_id->channel, and cm_id->qp.
353      */
354     struct rdma_cm_id *cm_id;               /* connection manager ID */
355     struct rdma_cm_id *listen_id;
356     bool connected;
357 
358     struct ibv_context          *verbs;
359     struct rdma_event_channel   *channel;
360     struct ibv_qp *qp;                      /* queue pair */
361     struct ibv_comp_channel *comp_channel;  /* completion channel */
362     struct ibv_pd *pd;                      /* protection domain */
363     struct ibv_cq *cq;                      /* completion queue */
364 
365     /*
366      * If a previous write failed (perhaps because of a failed
367      * memory registration, then do not attempt any future work
368      * and remember the error state.
369      */
370     int error_state;
371     int error_reported;
372     int received_error;
373 
374     /*
375      * Description of ram blocks used throughout the code.
376      */
377     RDMALocalBlocks local_ram_blocks;
378     RDMADestBlock  *dest_blocks;
379 
380     /* Index of the next RAMBlock received during block registration */
381     unsigned int    next_src_index;
382 
383     /*
384      * Migration on *destination* started.
385      * Then use coroutine yield function.
386      * Source runs in a thread, so we don't care.
387      */
388     int migration_started_on_destination;
389 
390     int total_registrations;
391     int total_writes;
392 
393     int unregister_current, unregister_next;
394     uint64_t unregistrations[RDMA_SIGNALED_SEND_MAX];
395 
396     GHashTable *blockmap;
397 
398     /* the RDMAContext for return path */
399     struct RDMAContext *return_path;
400     bool is_return_path;
401 } RDMAContext;
402 
403 #define TYPE_QIO_CHANNEL_RDMA "qio-channel-rdma"
404 OBJECT_DECLARE_SIMPLE_TYPE(QIOChannelRDMA, QIO_CHANNEL_RDMA)
405 
406 
407 
408 struct QIOChannelRDMA {
409     QIOChannel parent;
410     RDMAContext *rdmain;
411     RDMAContext *rdmaout;
412     QEMUFile *file;
413     bool blocking; /* XXX we don't actually honour this yet */
414 };
415 
416 /*
417  * Main structure for IB Send/Recv control messages.
418  * This gets prepended at the beginning of every Send/Recv.
419  */
420 typedef struct QEMU_PACKED {
421     uint32_t len;     /* Total length of data portion */
422     uint32_t type;    /* which control command to perform */
423     uint32_t repeat;  /* number of commands in data portion of same type */
424     uint32_t padding;
425 } RDMAControlHeader;
426 
427 static void control_to_network(RDMAControlHeader *control)
428 {
429     control->type = htonl(control->type);
430     control->len = htonl(control->len);
431     control->repeat = htonl(control->repeat);
432 }
433 
434 static void network_to_control(RDMAControlHeader *control)
435 {
436     control->type = ntohl(control->type);
437     control->len = ntohl(control->len);
438     control->repeat = ntohl(control->repeat);
439 }
440 
441 /*
442  * Register a single Chunk.
443  * Information sent by the source VM to inform the dest
444  * to register an single chunk of memory before we can perform
445  * the actual RDMA operation.
446  */
447 typedef struct QEMU_PACKED {
448     union QEMU_PACKED {
449         uint64_t current_addr;  /* offset into the ram_addr_t space */
450         uint64_t chunk;         /* chunk to lookup if unregistering */
451     } key;
452     uint32_t current_index; /* which ramblock the chunk belongs to */
453     uint32_t padding;
454     uint64_t chunks;            /* how many sequential chunks to register */
455 } RDMARegister;
456 
457 static void register_to_network(RDMAContext *rdma, RDMARegister *reg)
458 {
459     RDMALocalBlock *local_block;
460     local_block  = &rdma->local_ram_blocks.block[reg->current_index];
461 
462     if (local_block->is_ram_block) {
463         /*
464          * current_addr as passed in is an address in the local ram_addr_t
465          * space, we need to translate this for the destination
466          */
467         reg->key.current_addr -= local_block->offset;
468         reg->key.current_addr += rdma->dest_blocks[reg->current_index].offset;
469     }
470     reg->key.current_addr = htonll(reg->key.current_addr);
471     reg->current_index = htonl(reg->current_index);
472     reg->chunks = htonll(reg->chunks);
473 }
474 
475 static void network_to_register(RDMARegister *reg)
476 {
477     reg->key.current_addr = ntohll(reg->key.current_addr);
478     reg->current_index = ntohl(reg->current_index);
479     reg->chunks = ntohll(reg->chunks);
480 }
481 
482 typedef struct QEMU_PACKED {
483     uint32_t value;     /* if zero, we will madvise() */
484     uint32_t block_idx; /* which ram block index */
485     uint64_t offset;    /* Address in remote ram_addr_t space */
486     uint64_t length;    /* length of the chunk */
487 } RDMACompress;
488 
489 static void compress_to_network(RDMAContext *rdma, RDMACompress *comp)
490 {
491     comp->value = htonl(comp->value);
492     /*
493      * comp->offset as passed in is an address in the local ram_addr_t
494      * space, we need to translate this for the destination
495      */
496     comp->offset -= rdma->local_ram_blocks.block[comp->block_idx].offset;
497     comp->offset += rdma->dest_blocks[comp->block_idx].offset;
498     comp->block_idx = htonl(comp->block_idx);
499     comp->offset = htonll(comp->offset);
500     comp->length = htonll(comp->length);
501 }
502 
503 static void network_to_compress(RDMACompress *comp)
504 {
505     comp->value = ntohl(comp->value);
506     comp->block_idx = ntohl(comp->block_idx);
507     comp->offset = ntohll(comp->offset);
508     comp->length = ntohll(comp->length);
509 }
510 
511 /*
512  * The result of the dest's memory registration produces an "rkey"
513  * which the source VM must reference in order to perform
514  * the RDMA operation.
515  */
516 typedef struct QEMU_PACKED {
517     uint32_t rkey;
518     uint32_t padding;
519     uint64_t host_addr;
520 } RDMARegisterResult;
521 
522 static void result_to_network(RDMARegisterResult *result)
523 {
524     result->rkey = htonl(result->rkey);
525     result->host_addr = htonll(result->host_addr);
526 };
527 
528 static void network_to_result(RDMARegisterResult *result)
529 {
530     result->rkey = ntohl(result->rkey);
531     result->host_addr = ntohll(result->host_addr);
532 };
533 
534 const char *print_wrid(int wrid);
535 static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head,
536                                    uint8_t *data, RDMAControlHeader *resp,
537                                    int *resp_idx,
538                                    int (*callback)(RDMAContext *rdma));
539 
540 static inline uint64_t ram_chunk_index(const uint8_t *start,
541                                        const uint8_t *host)
542 {
543     return ((uintptr_t) host - (uintptr_t) start) >> RDMA_REG_CHUNK_SHIFT;
544 }
545 
546 static inline uint8_t *ram_chunk_start(const RDMALocalBlock *rdma_ram_block,
547                                        uint64_t i)
548 {
549     return (uint8_t *)(uintptr_t)(rdma_ram_block->local_host_addr +
550                                   (i << RDMA_REG_CHUNK_SHIFT));
551 }
552 
553 static inline uint8_t *ram_chunk_end(const RDMALocalBlock *rdma_ram_block,
554                                      uint64_t i)
555 {
556     uint8_t *result = ram_chunk_start(rdma_ram_block, i) +
557                                          (1UL << RDMA_REG_CHUNK_SHIFT);
558 
559     if (result > (rdma_ram_block->local_host_addr + rdma_ram_block->length)) {
560         result = rdma_ram_block->local_host_addr + rdma_ram_block->length;
561     }
562 
563     return result;
564 }
565 
566 static int rdma_add_block(RDMAContext *rdma, const char *block_name,
567                          void *host_addr,
568                          ram_addr_t block_offset, uint64_t length)
569 {
570     RDMALocalBlocks *local = &rdma->local_ram_blocks;
571     RDMALocalBlock *block;
572     RDMALocalBlock *old = local->block;
573 
574     local->block = g_new0(RDMALocalBlock, local->nb_blocks + 1);
575 
576     if (local->nb_blocks) {
577         int x;
578 
579         if (rdma->blockmap) {
580             for (x = 0; x < local->nb_blocks; x++) {
581                 g_hash_table_remove(rdma->blockmap,
582                                     (void *)(uintptr_t)old[x].offset);
583                 g_hash_table_insert(rdma->blockmap,
584                                     (void *)(uintptr_t)old[x].offset,
585                                     &local->block[x]);
586             }
587         }
588         memcpy(local->block, old, sizeof(RDMALocalBlock) * local->nb_blocks);
589         g_free(old);
590     }
591 
592     block = &local->block[local->nb_blocks];
593 
594     block->block_name = g_strdup(block_name);
595     block->local_host_addr = host_addr;
596     block->offset = block_offset;
597     block->length = length;
598     block->index = local->nb_blocks;
599     block->src_index = ~0U; /* Filled in by the receipt of the block list */
600     block->nb_chunks = ram_chunk_index(host_addr, host_addr + length) + 1UL;
601     block->transit_bitmap = bitmap_new(block->nb_chunks);
602     bitmap_clear(block->transit_bitmap, 0, block->nb_chunks);
603     block->unregister_bitmap = bitmap_new(block->nb_chunks);
604     bitmap_clear(block->unregister_bitmap, 0, block->nb_chunks);
605     block->remote_keys = g_new0(uint32_t, block->nb_chunks);
606 
607     block->is_ram_block = local->init ? false : true;
608 
609     if (rdma->blockmap) {
610         g_hash_table_insert(rdma->blockmap, (void *)(uintptr_t)block_offset, block);
611     }
612 
613     trace_rdma_add_block(block_name, local->nb_blocks,
614                          (uintptr_t) block->local_host_addr,
615                          block->offset, block->length,
616                          (uintptr_t) (block->local_host_addr + block->length),
617                          BITS_TO_LONGS(block->nb_chunks) *
618                              sizeof(unsigned long) * 8,
619                          block->nb_chunks);
620 
621     local->nb_blocks++;
622 
623     return 0;
624 }
625 
626 /*
627  * Memory regions need to be registered with the device and queue pairs setup
628  * in advanced before the migration starts. This tells us where the RAM blocks
629  * are so that we can register them individually.
630  */
631 static int qemu_rdma_init_one_block(RAMBlock *rb, void *opaque)
632 {
633     const char *block_name = qemu_ram_get_idstr(rb);
634     void *host_addr = qemu_ram_get_host_addr(rb);
635     ram_addr_t block_offset = qemu_ram_get_offset(rb);
636     ram_addr_t length = qemu_ram_get_used_length(rb);
637     return rdma_add_block(opaque, block_name, host_addr, block_offset, length);
638 }
639 
640 /*
641  * Identify the RAMBlocks and their quantity. They will be references to
642  * identify chunk boundaries inside each RAMBlock and also be referenced
643  * during dynamic page registration.
644  */
645 static int qemu_rdma_init_ram_blocks(RDMAContext *rdma)
646 {
647     RDMALocalBlocks *local = &rdma->local_ram_blocks;
648     int ret;
649 
650     assert(rdma->blockmap == NULL);
651     memset(local, 0, sizeof *local);
652     ret = foreach_not_ignored_block(qemu_rdma_init_one_block, rdma);
653     if (ret) {
654         return ret;
655     }
656     trace_qemu_rdma_init_ram_blocks(local->nb_blocks);
657     rdma->dest_blocks = g_new0(RDMADestBlock,
658                                rdma->local_ram_blocks.nb_blocks);
659     local->init = true;
660     return 0;
661 }
662 
663 /*
664  * Note: If used outside of cleanup, the caller must ensure that the destination
665  * block structures are also updated
666  */
667 static int rdma_delete_block(RDMAContext *rdma, RDMALocalBlock *block)
668 {
669     RDMALocalBlocks *local = &rdma->local_ram_blocks;
670     RDMALocalBlock *old = local->block;
671     int x;
672 
673     if (rdma->blockmap) {
674         g_hash_table_remove(rdma->blockmap, (void *)(uintptr_t)block->offset);
675     }
676     if (block->pmr) {
677         int j;
678 
679         for (j = 0; j < block->nb_chunks; j++) {
680             if (!block->pmr[j]) {
681                 continue;
682             }
683             ibv_dereg_mr(block->pmr[j]);
684             rdma->total_registrations--;
685         }
686         g_free(block->pmr);
687         block->pmr = NULL;
688     }
689 
690     if (block->mr) {
691         ibv_dereg_mr(block->mr);
692         rdma->total_registrations--;
693         block->mr = NULL;
694     }
695 
696     g_free(block->transit_bitmap);
697     block->transit_bitmap = NULL;
698 
699     g_free(block->unregister_bitmap);
700     block->unregister_bitmap = NULL;
701 
702     g_free(block->remote_keys);
703     block->remote_keys = NULL;
704 
705     g_free(block->block_name);
706     block->block_name = NULL;
707 
708     if (rdma->blockmap) {
709         for (x = 0; x < local->nb_blocks; x++) {
710             g_hash_table_remove(rdma->blockmap,
711                                 (void *)(uintptr_t)old[x].offset);
712         }
713     }
714 
715     if (local->nb_blocks > 1) {
716 
717         local->block = g_new0(RDMALocalBlock, local->nb_blocks - 1);
718 
719         if (block->index) {
720             memcpy(local->block, old, sizeof(RDMALocalBlock) * block->index);
721         }
722 
723         if (block->index < (local->nb_blocks - 1)) {
724             memcpy(local->block + block->index, old + (block->index + 1),
725                 sizeof(RDMALocalBlock) *
726                     (local->nb_blocks - (block->index + 1)));
727             for (x = block->index; x < local->nb_blocks - 1; x++) {
728                 local->block[x].index--;
729             }
730         }
731     } else {
732         assert(block == local->block);
733         local->block = NULL;
734     }
735 
736     trace_rdma_delete_block(block, (uintptr_t)block->local_host_addr,
737                            block->offset, block->length,
738                             (uintptr_t)(block->local_host_addr + block->length),
739                            BITS_TO_LONGS(block->nb_chunks) *
740                                sizeof(unsigned long) * 8, block->nb_chunks);
741 
742     g_free(old);
743 
744     local->nb_blocks--;
745 
746     if (local->nb_blocks && rdma->blockmap) {
747         for (x = 0; x < local->nb_blocks; x++) {
748             g_hash_table_insert(rdma->blockmap,
749                                 (void *)(uintptr_t)local->block[x].offset,
750                                 &local->block[x]);
751         }
752     }
753 
754     return 0;
755 }
756 
757 /*
758  * Put in the log file which RDMA device was opened and the details
759  * associated with that device.
760  */
761 static void qemu_rdma_dump_id(const char *who, struct ibv_context *verbs)
762 {
763     struct ibv_port_attr port;
764 
765     if (ibv_query_port(verbs, 1, &port)) {
766         error_report("Failed to query port information");
767         return;
768     }
769 
770     printf("%s RDMA Device opened: kernel name %s "
771            "uverbs device name %s, "
772            "infiniband_verbs class device path %s, "
773            "infiniband class device path %s, "
774            "transport: (%d) %s\n",
775                 who,
776                 verbs->device->name,
777                 verbs->device->dev_name,
778                 verbs->device->dev_path,
779                 verbs->device->ibdev_path,
780                 port.link_layer,
781                 (port.link_layer == IBV_LINK_LAYER_INFINIBAND) ? "Infiniband" :
782                  ((port.link_layer == IBV_LINK_LAYER_ETHERNET)
783                     ? "Ethernet" : "Unknown"));
784 }
785 
786 /*
787  * Put in the log file the RDMA gid addressing information,
788  * useful for folks who have trouble understanding the
789  * RDMA device hierarchy in the kernel.
790  */
791 static void qemu_rdma_dump_gid(const char *who, struct rdma_cm_id *id)
792 {
793     char sgid[33];
794     char dgid[33];
795     inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.sgid, sgid, sizeof sgid);
796     inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.dgid, dgid, sizeof dgid);
797     trace_qemu_rdma_dump_gid(who, sgid, dgid);
798 }
799 
800 /*
801  * As of now, IPv6 over RoCE / iWARP is not supported by linux.
802  * We will try the next addrinfo struct, and fail if there are
803  * no other valid addresses to bind against.
804  *
805  * If user is listening on '[::]', then we will not have a opened a device
806  * yet and have no way of verifying if the device is RoCE or not.
807  *
808  * In this case, the source VM will throw an error for ALL types of
809  * connections (both IPv4 and IPv6) if the destination machine does not have
810  * a regular infiniband network available for use.
811  *
812  * The only way to guarantee that an error is thrown for broken kernels is
813  * for the management software to choose a *specific* interface at bind time
814  * and validate what time of hardware it is.
815  *
816  * Unfortunately, this puts the user in a fix:
817  *
818  *  If the source VM connects with an IPv4 address without knowing that the
819  *  destination has bound to '[::]' the migration will unconditionally fail
820  *  unless the management software is explicitly listening on the IPv4
821  *  address while using a RoCE-based device.
822  *
823  *  If the source VM connects with an IPv6 address, then we're OK because we can
824  *  throw an error on the source (and similarly on the destination).
825  *
826  *  But in mixed environments, this will be broken for a while until it is fixed
827  *  inside linux.
828  *
829  * We do provide a *tiny* bit of help in this function: We can list all of the
830  * devices in the system and check to see if all the devices are RoCE or
831  * Infiniband.
832  *
833  * If we detect that we have a *pure* RoCE environment, then we can safely
834  * thrown an error even if the management software has specified '[::]' as the
835  * bind address.
836  *
837  * However, if there is are multiple hetergeneous devices, then we cannot make
838  * this assumption and the user just has to be sure they know what they are
839  * doing.
840  *
841  * Patches are being reviewed on linux-rdma.
842  */
843 static int qemu_rdma_broken_ipv6_kernel(struct ibv_context *verbs, Error **errp)
844 {
845     /* This bug only exists in linux, to our knowledge. */
846 #ifdef CONFIG_LINUX
847     struct ibv_port_attr port_attr;
848 
849     /*
850      * Verbs are only NULL if management has bound to '[::]'.
851      *
852      * Let's iterate through all the devices and see if there any pure IB
853      * devices (non-ethernet).
854      *
855      * If not, then we can safely proceed with the migration.
856      * Otherwise, there are no guarantees until the bug is fixed in linux.
857      */
858     if (!verbs) {
859         int num_devices, x;
860         struct ibv_device **dev_list = ibv_get_device_list(&num_devices);
861         bool roce_found = false;
862         bool ib_found = false;
863 
864         for (x = 0; x < num_devices; x++) {
865             verbs = ibv_open_device(dev_list[x]);
866             if (!verbs) {
867                 if (errno == EPERM) {
868                     continue;
869                 } else {
870                     return -EINVAL;
871                 }
872             }
873 
874             if (ibv_query_port(verbs, 1, &port_attr)) {
875                 ibv_close_device(verbs);
876                 ERROR(errp, "Could not query initial IB port");
877                 return -EINVAL;
878             }
879 
880             if (port_attr.link_layer == IBV_LINK_LAYER_INFINIBAND) {
881                 ib_found = true;
882             } else if (port_attr.link_layer == IBV_LINK_LAYER_ETHERNET) {
883                 roce_found = true;
884             }
885 
886             ibv_close_device(verbs);
887 
888         }
889 
890         if (roce_found) {
891             if (ib_found) {
892                 fprintf(stderr, "WARN: migrations may fail:"
893                                 " IPv6 over RoCE / iWARP in linux"
894                                 " is broken. But since you appear to have a"
895                                 " mixed RoCE / IB environment, be sure to only"
896                                 " migrate over the IB fabric until the kernel "
897                                 " fixes the bug.\n");
898             } else {
899                 ERROR(errp, "You only have RoCE / iWARP devices in your systems"
900                             " and your management software has specified '[::]'"
901                             ", but IPv6 over RoCE / iWARP is not supported in Linux.");
902                 return -ENONET;
903             }
904         }
905 
906         return 0;
907     }
908 
909     /*
910      * If we have a verbs context, that means that some other than '[::]' was
911      * used by the management software for binding. In which case we can
912      * actually warn the user about a potentially broken kernel.
913      */
914 
915     /* IB ports start with 1, not 0 */
916     if (ibv_query_port(verbs, 1, &port_attr)) {
917         ERROR(errp, "Could not query initial IB port");
918         return -EINVAL;
919     }
920 
921     if (port_attr.link_layer == IBV_LINK_LAYER_ETHERNET) {
922         ERROR(errp, "Linux kernel's RoCE / iWARP does not support IPv6 "
923                     "(but patches on linux-rdma in progress)");
924         return -ENONET;
925     }
926 
927 #endif
928 
929     return 0;
930 }
931 
932 /*
933  * Figure out which RDMA device corresponds to the requested IP hostname
934  * Also create the initial connection manager identifiers for opening
935  * the connection.
936  */
937 static int qemu_rdma_resolve_host(RDMAContext *rdma, Error **errp)
938 {
939     int ret;
940     struct rdma_addrinfo *res;
941     char port_str[16];
942     struct rdma_cm_event *cm_event;
943     char ip[40] = "unknown";
944     struct rdma_addrinfo *e;
945 
946     if (rdma->host == NULL || !strcmp(rdma->host, "")) {
947         ERROR(errp, "RDMA hostname has not been set");
948         return -EINVAL;
949     }
950 
951     /* create CM channel */
952     rdma->channel = rdma_create_event_channel();
953     if (!rdma->channel) {
954         ERROR(errp, "could not create CM channel");
955         return -EINVAL;
956     }
957 
958     /* create CM id */
959     ret = rdma_create_id(rdma->channel, &rdma->cm_id, NULL, RDMA_PS_TCP);
960     if (ret) {
961         ERROR(errp, "could not create channel id");
962         goto err_resolve_create_id;
963     }
964 
965     snprintf(port_str, 16, "%d", rdma->port);
966     port_str[15] = '\0';
967 
968     ret = rdma_getaddrinfo(rdma->host, port_str, NULL, &res);
969     if (ret < 0) {
970         ERROR(errp, "could not rdma_getaddrinfo address %s", rdma->host);
971         goto err_resolve_get_addr;
972     }
973 
974     for (e = res; e != NULL; e = e->ai_next) {
975         inet_ntop(e->ai_family,
976             &((struct sockaddr_in *) e->ai_dst_addr)->sin_addr, ip, sizeof ip);
977         trace_qemu_rdma_resolve_host_trying(rdma->host, ip);
978 
979         ret = rdma_resolve_addr(rdma->cm_id, NULL, e->ai_dst_addr,
980                 RDMA_RESOLVE_TIMEOUT_MS);
981         if (!ret) {
982             if (e->ai_family == AF_INET6) {
983                 ret = qemu_rdma_broken_ipv6_kernel(rdma->cm_id->verbs, errp);
984                 if (ret) {
985                     continue;
986                 }
987             }
988             goto route;
989         }
990     }
991 
992     rdma_freeaddrinfo(res);
993     ERROR(errp, "could not resolve address %s", rdma->host);
994     goto err_resolve_get_addr;
995 
996 route:
997     rdma_freeaddrinfo(res);
998     qemu_rdma_dump_gid("source_resolve_addr", rdma->cm_id);
999 
1000     ret = rdma_get_cm_event(rdma->channel, &cm_event);
1001     if (ret) {
1002         ERROR(errp, "could not perform event_addr_resolved");
1003         goto err_resolve_get_addr;
1004     }
1005 
1006     if (cm_event->event != RDMA_CM_EVENT_ADDR_RESOLVED) {
1007         ERROR(errp, "result not equal to event_addr_resolved %s",
1008                 rdma_event_str(cm_event->event));
1009         perror("rdma_resolve_addr");
1010         rdma_ack_cm_event(cm_event);
1011         ret = -EINVAL;
1012         goto err_resolve_get_addr;
1013     }
1014     rdma_ack_cm_event(cm_event);
1015 
1016     /* resolve route */
1017     ret = rdma_resolve_route(rdma->cm_id, RDMA_RESOLVE_TIMEOUT_MS);
1018     if (ret) {
1019         ERROR(errp, "could not resolve rdma route");
1020         goto err_resolve_get_addr;
1021     }
1022 
1023     ret = rdma_get_cm_event(rdma->channel, &cm_event);
1024     if (ret) {
1025         ERROR(errp, "could not perform event_route_resolved");
1026         goto err_resolve_get_addr;
1027     }
1028     if (cm_event->event != RDMA_CM_EVENT_ROUTE_RESOLVED) {
1029         ERROR(errp, "result not equal to event_route_resolved: %s",
1030                         rdma_event_str(cm_event->event));
1031         rdma_ack_cm_event(cm_event);
1032         ret = -EINVAL;
1033         goto err_resolve_get_addr;
1034     }
1035     rdma_ack_cm_event(cm_event);
1036     rdma->verbs = rdma->cm_id->verbs;
1037     qemu_rdma_dump_id("source_resolve_host", rdma->cm_id->verbs);
1038     qemu_rdma_dump_gid("source_resolve_host", rdma->cm_id);
1039     return 0;
1040 
1041 err_resolve_get_addr:
1042     rdma_destroy_id(rdma->cm_id);
1043     rdma->cm_id = NULL;
1044 err_resolve_create_id:
1045     rdma_destroy_event_channel(rdma->channel);
1046     rdma->channel = NULL;
1047     return ret;
1048 }
1049 
1050 /*
1051  * Create protection domain and completion queues
1052  */
1053 static int qemu_rdma_alloc_pd_cq(RDMAContext *rdma)
1054 {
1055     /* allocate pd */
1056     rdma->pd = ibv_alloc_pd(rdma->verbs);
1057     if (!rdma->pd) {
1058         error_report("failed to allocate protection domain");
1059         return -1;
1060     }
1061 
1062     /* create completion channel */
1063     rdma->comp_channel = ibv_create_comp_channel(rdma->verbs);
1064     if (!rdma->comp_channel) {
1065         error_report("failed to allocate completion channel");
1066         goto err_alloc_pd_cq;
1067     }
1068 
1069     /*
1070      * Completion queue can be filled by both read and write work requests,
1071      * so must reflect the sum of both possible queue sizes.
1072      */
1073     rdma->cq = ibv_create_cq(rdma->verbs, (RDMA_SIGNALED_SEND_MAX * 3),
1074             NULL, rdma->comp_channel, 0);
1075     if (!rdma->cq) {
1076         error_report("failed to allocate completion queue");
1077         goto err_alloc_pd_cq;
1078     }
1079 
1080     return 0;
1081 
1082 err_alloc_pd_cq:
1083     if (rdma->pd) {
1084         ibv_dealloc_pd(rdma->pd);
1085     }
1086     if (rdma->comp_channel) {
1087         ibv_destroy_comp_channel(rdma->comp_channel);
1088     }
1089     rdma->pd = NULL;
1090     rdma->comp_channel = NULL;
1091     return -1;
1092 
1093 }
1094 
1095 /*
1096  * Create queue pairs.
1097  */
1098 static int qemu_rdma_alloc_qp(RDMAContext *rdma)
1099 {
1100     struct ibv_qp_init_attr attr = { 0 };
1101     int ret;
1102 
1103     attr.cap.max_send_wr = RDMA_SIGNALED_SEND_MAX;
1104     attr.cap.max_recv_wr = 3;
1105     attr.cap.max_send_sge = 1;
1106     attr.cap.max_recv_sge = 1;
1107     attr.send_cq = rdma->cq;
1108     attr.recv_cq = rdma->cq;
1109     attr.qp_type = IBV_QPT_RC;
1110 
1111     ret = rdma_create_qp(rdma->cm_id, rdma->pd, &attr);
1112     if (ret) {
1113         return -1;
1114     }
1115 
1116     rdma->qp = rdma->cm_id->qp;
1117     return 0;
1118 }
1119 
1120 static int qemu_rdma_reg_whole_ram_blocks(RDMAContext *rdma)
1121 {
1122     int i;
1123     RDMALocalBlocks *local = &rdma->local_ram_blocks;
1124 
1125     for (i = 0; i < local->nb_blocks; i++) {
1126         local->block[i].mr =
1127             ibv_reg_mr(rdma->pd,
1128                     local->block[i].local_host_addr,
1129                     local->block[i].length,
1130                     IBV_ACCESS_LOCAL_WRITE |
1131                     IBV_ACCESS_REMOTE_WRITE
1132                     );
1133         if (!local->block[i].mr) {
1134             perror("Failed to register local dest ram block!\n");
1135             break;
1136         }
1137         rdma->total_registrations++;
1138     }
1139 
1140     if (i >= local->nb_blocks) {
1141         return 0;
1142     }
1143 
1144     for (i--; i >= 0; i--) {
1145         ibv_dereg_mr(local->block[i].mr);
1146         rdma->total_registrations--;
1147     }
1148 
1149     return -1;
1150 
1151 }
1152 
1153 /*
1154  * Find the ram block that corresponds to the page requested to be
1155  * transmitted by QEMU.
1156  *
1157  * Once the block is found, also identify which 'chunk' within that
1158  * block that the page belongs to.
1159  *
1160  * This search cannot fail or the migration will fail.
1161  */
1162 static int qemu_rdma_search_ram_block(RDMAContext *rdma,
1163                                       uintptr_t block_offset,
1164                                       uint64_t offset,
1165                                       uint64_t length,
1166                                       uint64_t *block_index,
1167                                       uint64_t *chunk_index)
1168 {
1169     uint64_t current_addr = block_offset + offset;
1170     RDMALocalBlock *block = g_hash_table_lookup(rdma->blockmap,
1171                                                 (void *) block_offset);
1172     assert(block);
1173     assert(current_addr >= block->offset);
1174     assert((current_addr + length) <= (block->offset + block->length));
1175 
1176     *block_index = block->index;
1177     *chunk_index = ram_chunk_index(block->local_host_addr,
1178                 block->local_host_addr + (current_addr - block->offset));
1179 
1180     return 0;
1181 }
1182 
1183 /*
1184  * Register a chunk with IB. If the chunk was already registered
1185  * previously, then skip.
1186  *
1187  * Also return the keys associated with the registration needed
1188  * to perform the actual RDMA operation.
1189  */
1190 static int qemu_rdma_register_and_get_keys(RDMAContext *rdma,
1191         RDMALocalBlock *block, uintptr_t host_addr,
1192         uint32_t *lkey, uint32_t *rkey, int chunk,
1193         uint8_t *chunk_start, uint8_t *chunk_end)
1194 {
1195     if (block->mr) {
1196         if (lkey) {
1197             *lkey = block->mr->lkey;
1198         }
1199         if (rkey) {
1200             *rkey = block->mr->rkey;
1201         }
1202         return 0;
1203     }
1204 
1205     /* allocate memory to store chunk MRs */
1206     if (!block->pmr) {
1207         block->pmr = g_new0(struct ibv_mr *, block->nb_chunks);
1208     }
1209 
1210     /*
1211      * If 'rkey', then we're the destination, so grant access to the source.
1212      *
1213      * If 'lkey', then we're the source VM, so grant access only to ourselves.
1214      */
1215     if (!block->pmr[chunk]) {
1216         uint64_t len = chunk_end - chunk_start;
1217 
1218         trace_qemu_rdma_register_and_get_keys(len, chunk_start);
1219 
1220         block->pmr[chunk] = ibv_reg_mr(rdma->pd,
1221                 chunk_start, len,
1222                 (rkey ? (IBV_ACCESS_LOCAL_WRITE |
1223                         IBV_ACCESS_REMOTE_WRITE) : 0));
1224 
1225         if (!block->pmr[chunk]) {
1226             perror("Failed to register chunk!");
1227             fprintf(stderr, "Chunk details: block: %d chunk index %d"
1228                             " start %" PRIuPTR " end %" PRIuPTR
1229                             " host %" PRIuPTR
1230                             " local %" PRIuPTR " registrations: %d\n",
1231                             block->index, chunk, (uintptr_t)chunk_start,
1232                             (uintptr_t)chunk_end, host_addr,
1233                             (uintptr_t)block->local_host_addr,
1234                             rdma->total_registrations);
1235             return -1;
1236         }
1237         rdma->total_registrations++;
1238     }
1239 
1240     if (lkey) {
1241         *lkey = block->pmr[chunk]->lkey;
1242     }
1243     if (rkey) {
1244         *rkey = block->pmr[chunk]->rkey;
1245     }
1246     return 0;
1247 }
1248 
1249 /*
1250  * Register (at connection time) the memory used for control
1251  * channel messages.
1252  */
1253 static int qemu_rdma_reg_control(RDMAContext *rdma, int idx)
1254 {
1255     rdma->wr_data[idx].control_mr = ibv_reg_mr(rdma->pd,
1256             rdma->wr_data[idx].control, RDMA_CONTROL_MAX_BUFFER,
1257             IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE);
1258     if (rdma->wr_data[idx].control_mr) {
1259         rdma->total_registrations++;
1260         return 0;
1261     }
1262     error_report("qemu_rdma_reg_control failed");
1263     return -1;
1264 }
1265 
1266 const char *print_wrid(int wrid)
1267 {
1268     if (wrid >= RDMA_WRID_RECV_CONTROL) {
1269         return wrid_desc[RDMA_WRID_RECV_CONTROL];
1270     }
1271     return wrid_desc[wrid];
1272 }
1273 
1274 /*
1275  * RDMA requires memory registration (mlock/pinning), but this is not good for
1276  * overcommitment.
1277  *
1278  * In preparation for the future where LRU information or workload-specific
1279  * writable writable working set memory access behavior is available to QEMU
1280  * it would be nice to have in place the ability to UN-register/UN-pin
1281  * particular memory regions from the RDMA hardware when it is determine that
1282  * those regions of memory will likely not be accessed again in the near future.
1283  *
1284  * While we do not yet have such information right now, the following
1285  * compile-time option allows us to perform a non-optimized version of this
1286  * behavior.
1287  *
1288  * By uncommenting this option, you will cause *all* RDMA transfers to be
1289  * unregistered immediately after the transfer completes on both sides of the
1290  * connection. This has no effect in 'rdma-pin-all' mode, only regular mode.
1291  *
1292  * This will have a terrible impact on migration performance, so until future
1293  * workload information or LRU information is available, do not attempt to use
1294  * this feature except for basic testing.
1295  */
1296 /* #define RDMA_UNREGISTRATION_EXAMPLE */
1297 
1298 /*
1299  * Perform a non-optimized memory unregistration after every transfer
1300  * for demonstration purposes, only if pin-all is not requested.
1301  *
1302  * Potential optimizations:
1303  * 1. Start a new thread to run this function continuously
1304         - for bit clearing
1305         - and for receipt of unregister messages
1306  * 2. Use an LRU.
1307  * 3. Use workload hints.
1308  */
1309 static int qemu_rdma_unregister_waiting(RDMAContext *rdma)
1310 {
1311     while (rdma->unregistrations[rdma->unregister_current]) {
1312         int ret;
1313         uint64_t wr_id = rdma->unregistrations[rdma->unregister_current];
1314         uint64_t chunk =
1315             (wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT;
1316         uint64_t index =
1317             (wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT;
1318         RDMALocalBlock *block =
1319             &(rdma->local_ram_blocks.block[index]);
1320         RDMARegister reg = { .current_index = index };
1321         RDMAControlHeader resp = { .type = RDMA_CONTROL_UNREGISTER_FINISHED,
1322                                  };
1323         RDMAControlHeader head = { .len = sizeof(RDMARegister),
1324                                    .type = RDMA_CONTROL_UNREGISTER_REQUEST,
1325                                    .repeat = 1,
1326                                  };
1327 
1328         trace_qemu_rdma_unregister_waiting_proc(chunk,
1329                                                 rdma->unregister_current);
1330 
1331         rdma->unregistrations[rdma->unregister_current] = 0;
1332         rdma->unregister_current++;
1333 
1334         if (rdma->unregister_current == RDMA_SIGNALED_SEND_MAX) {
1335             rdma->unregister_current = 0;
1336         }
1337 
1338 
1339         /*
1340          * Unregistration is speculative (because migration is single-threaded
1341          * and we cannot break the protocol's inifinband message ordering).
1342          * Thus, if the memory is currently being used for transmission,
1343          * then abort the attempt to unregister and try again
1344          * later the next time a completion is received for this memory.
1345          */
1346         clear_bit(chunk, block->unregister_bitmap);
1347 
1348         if (test_bit(chunk, block->transit_bitmap)) {
1349             trace_qemu_rdma_unregister_waiting_inflight(chunk);
1350             continue;
1351         }
1352 
1353         trace_qemu_rdma_unregister_waiting_send(chunk);
1354 
1355         ret = ibv_dereg_mr(block->pmr[chunk]);
1356         block->pmr[chunk] = NULL;
1357         block->remote_keys[chunk] = 0;
1358 
1359         if (ret != 0) {
1360             perror("unregistration chunk failed");
1361             return -ret;
1362         }
1363         rdma->total_registrations--;
1364 
1365         reg.key.chunk = chunk;
1366         register_to_network(rdma, &reg);
1367         ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) &reg,
1368                                 &resp, NULL, NULL);
1369         if (ret < 0) {
1370             return ret;
1371         }
1372 
1373         trace_qemu_rdma_unregister_waiting_complete(chunk);
1374     }
1375 
1376     return 0;
1377 }
1378 
1379 static uint64_t qemu_rdma_make_wrid(uint64_t wr_id, uint64_t index,
1380                                          uint64_t chunk)
1381 {
1382     uint64_t result = wr_id & RDMA_WRID_TYPE_MASK;
1383 
1384     result |= (index << RDMA_WRID_BLOCK_SHIFT);
1385     result |= (chunk << RDMA_WRID_CHUNK_SHIFT);
1386 
1387     return result;
1388 }
1389 
1390 /*
1391  * Set bit for unregistration in the next iteration.
1392  * We cannot transmit right here, but will unpin later.
1393  */
1394 static void qemu_rdma_signal_unregister(RDMAContext *rdma, uint64_t index,
1395                                         uint64_t chunk, uint64_t wr_id)
1396 {
1397     if (rdma->unregistrations[rdma->unregister_next] != 0) {
1398         error_report("rdma migration: queue is full");
1399     } else {
1400         RDMALocalBlock *block = &(rdma->local_ram_blocks.block[index]);
1401 
1402         if (!test_and_set_bit(chunk, block->unregister_bitmap)) {
1403             trace_qemu_rdma_signal_unregister_append(chunk,
1404                                                      rdma->unregister_next);
1405 
1406             rdma->unregistrations[rdma->unregister_next++] =
1407                     qemu_rdma_make_wrid(wr_id, index, chunk);
1408 
1409             if (rdma->unregister_next == RDMA_SIGNALED_SEND_MAX) {
1410                 rdma->unregister_next = 0;
1411             }
1412         } else {
1413             trace_qemu_rdma_signal_unregister_already(chunk);
1414         }
1415     }
1416 }
1417 
1418 /*
1419  * Consult the connection manager to see a work request
1420  * (of any kind) has completed.
1421  * Return the work request ID that completed.
1422  */
1423 static uint64_t qemu_rdma_poll(RDMAContext *rdma, uint64_t *wr_id_out,
1424                                uint32_t *byte_len)
1425 {
1426     int ret;
1427     struct ibv_wc wc;
1428     uint64_t wr_id;
1429 
1430     ret = ibv_poll_cq(rdma->cq, 1, &wc);
1431 
1432     if (!ret) {
1433         *wr_id_out = RDMA_WRID_NONE;
1434         return 0;
1435     }
1436 
1437     if (ret < 0) {
1438         error_report("ibv_poll_cq return %d", ret);
1439         return ret;
1440     }
1441 
1442     wr_id = wc.wr_id & RDMA_WRID_TYPE_MASK;
1443 
1444     if (wc.status != IBV_WC_SUCCESS) {
1445         fprintf(stderr, "ibv_poll_cq wc.status=%d %s!\n",
1446                         wc.status, ibv_wc_status_str(wc.status));
1447         fprintf(stderr, "ibv_poll_cq wrid=%s!\n", wrid_desc[wr_id]);
1448 
1449         return -1;
1450     }
1451 
1452     if (rdma->control_ready_expected &&
1453         (wr_id >= RDMA_WRID_RECV_CONTROL)) {
1454         trace_qemu_rdma_poll_recv(wrid_desc[RDMA_WRID_RECV_CONTROL],
1455                   wr_id - RDMA_WRID_RECV_CONTROL, wr_id, rdma->nb_sent);
1456         rdma->control_ready_expected = 0;
1457     }
1458 
1459     if (wr_id == RDMA_WRID_RDMA_WRITE) {
1460         uint64_t chunk =
1461             (wc.wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT;
1462         uint64_t index =
1463             (wc.wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT;
1464         RDMALocalBlock *block = &(rdma->local_ram_blocks.block[index]);
1465 
1466         trace_qemu_rdma_poll_write(print_wrid(wr_id), wr_id, rdma->nb_sent,
1467                                    index, chunk, block->local_host_addr,
1468                                    (void *)(uintptr_t)block->remote_host_addr);
1469 
1470         clear_bit(chunk, block->transit_bitmap);
1471 
1472         if (rdma->nb_sent > 0) {
1473             rdma->nb_sent--;
1474         }
1475 
1476         if (!rdma->pin_all) {
1477             /*
1478              * FYI: If one wanted to signal a specific chunk to be unregistered
1479              * using LRU or workload-specific information, this is the function
1480              * you would call to do so. That chunk would then get asynchronously
1481              * unregistered later.
1482              */
1483 #ifdef RDMA_UNREGISTRATION_EXAMPLE
1484             qemu_rdma_signal_unregister(rdma, index, chunk, wc.wr_id);
1485 #endif
1486         }
1487     } else {
1488         trace_qemu_rdma_poll_other(print_wrid(wr_id), wr_id, rdma->nb_sent);
1489     }
1490 
1491     *wr_id_out = wc.wr_id;
1492     if (byte_len) {
1493         *byte_len = wc.byte_len;
1494     }
1495 
1496     return  0;
1497 }
1498 
1499 /* Wait for activity on the completion channel.
1500  * Returns 0 on success, none-0 on error.
1501  */
1502 static int qemu_rdma_wait_comp_channel(RDMAContext *rdma)
1503 {
1504     struct rdma_cm_event *cm_event;
1505     int ret = -1;
1506 
1507     /*
1508      * Coroutine doesn't start until migration_fd_process_incoming()
1509      * so don't yield unless we know we're running inside of a coroutine.
1510      */
1511     if (rdma->migration_started_on_destination &&
1512         migration_incoming_get_current()->state == MIGRATION_STATUS_ACTIVE) {
1513         yield_until_fd_readable(rdma->comp_channel->fd);
1514     } else {
1515         /* This is the source side, we're in a separate thread
1516          * or destination prior to migration_fd_process_incoming()
1517          * after postcopy, the destination also in a separate thread.
1518          * we can't yield; so we have to poll the fd.
1519          * But we need to be able to handle 'cancel' or an error
1520          * without hanging forever.
1521          */
1522         while (!rdma->error_state  && !rdma->received_error) {
1523             GPollFD pfds[2];
1524             pfds[0].fd = rdma->comp_channel->fd;
1525             pfds[0].events = G_IO_IN | G_IO_HUP | G_IO_ERR;
1526             pfds[0].revents = 0;
1527 
1528             pfds[1].fd = rdma->channel->fd;
1529             pfds[1].events = G_IO_IN | G_IO_HUP | G_IO_ERR;
1530             pfds[1].revents = 0;
1531 
1532             /* 0.1s timeout, should be fine for a 'cancel' */
1533             switch (qemu_poll_ns(pfds, 2, 100 * 1000 * 1000)) {
1534             case 2:
1535             case 1: /* fd active */
1536                 if (pfds[0].revents) {
1537                     return 0;
1538                 }
1539 
1540                 if (pfds[1].revents) {
1541                     ret = rdma_get_cm_event(rdma->channel, &cm_event);
1542                     if (!ret) {
1543                         rdma_ack_cm_event(cm_event);
1544                     }
1545 
1546                     error_report("receive cm event while wait comp channel,"
1547                                  "cm event is %d", cm_event->event);
1548                     if (cm_event->event == RDMA_CM_EVENT_DISCONNECTED ||
1549                         cm_event->event == RDMA_CM_EVENT_DEVICE_REMOVAL) {
1550                         return -EPIPE;
1551                     }
1552                 }
1553                 break;
1554 
1555             case 0: /* Timeout, go around again */
1556                 break;
1557 
1558             default: /* Error of some type -
1559                       * I don't trust errno from qemu_poll_ns
1560                      */
1561                 error_report("%s: poll failed", __func__);
1562                 return -EPIPE;
1563             }
1564 
1565             if (migrate_get_current()->state == MIGRATION_STATUS_CANCELLING) {
1566                 /* Bail out and let the cancellation happen */
1567                 return -EPIPE;
1568             }
1569         }
1570     }
1571 
1572     if (rdma->received_error) {
1573         return -EPIPE;
1574     }
1575     return rdma->error_state;
1576 }
1577 
1578 /*
1579  * Block until the next work request has completed.
1580  *
1581  * First poll to see if a work request has already completed,
1582  * otherwise block.
1583  *
1584  * If we encounter completed work requests for IDs other than
1585  * the one we're interested in, then that's generally an error.
1586  *
1587  * The only exception is actual RDMA Write completions. These
1588  * completions only need to be recorded, but do not actually
1589  * need further processing.
1590  */
1591 static int qemu_rdma_block_for_wrid(RDMAContext *rdma, int wrid_requested,
1592                                     uint32_t *byte_len)
1593 {
1594     int num_cq_events = 0, ret = 0;
1595     struct ibv_cq *cq;
1596     void *cq_ctx;
1597     uint64_t wr_id = RDMA_WRID_NONE, wr_id_in;
1598 
1599     if (ibv_req_notify_cq(rdma->cq, 0)) {
1600         return -1;
1601     }
1602     /* poll cq first */
1603     while (wr_id != wrid_requested) {
1604         ret = qemu_rdma_poll(rdma, &wr_id_in, byte_len);
1605         if (ret < 0) {
1606             return ret;
1607         }
1608 
1609         wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
1610 
1611         if (wr_id == RDMA_WRID_NONE) {
1612             break;
1613         }
1614         if (wr_id != wrid_requested) {
1615             trace_qemu_rdma_block_for_wrid_miss(print_wrid(wrid_requested),
1616                        wrid_requested, print_wrid(wr_id), wr_id);
1617         }
1618     }
1619 
1620     if (wr_id == wrid_requested) {
1621         return 0;
1622     }
1623 
1624     while (1) {
1625         ret = qemu_rdma_wait_comp_channel(rdma);
1626         if (ret) {
1627             goto err_block_for_wrid;
1628         }
1629 
1630         ret = ibv_get_cq_event(rdma->comp_channel, &cq, &cq_ctx);
1631         if (ret) {
1632             perror("ibv_get_cq_event");
1633             goto err_block_for_wrid;
1634         }
1635 
1636         num_cq_events++;
1637 
1638         ret = -ibv_req_notify_cq(cq, 0);
1639         if (ret) {
1640             goto err_block_for_wrid;
1641         }
1642 
1643         while (wr_id != wrid_requested) {
1644             ret = qemu_rdma_poll(rdma, &wr_id_in, byte_len);
1645             if (ret < 0) {
1646                 goto err_block_for_wrid;
1647             }
1648 
1649             wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
1650 
1651             if (wr_id == RDMA_WRID_NONE) {
1652                 break;
1653             }
1654             if (wr_id != wrid_requested) {
1655                 trace_qemu_rdma_block_for_wrid_miss(print_wrid(wrid_requested),
1656                                    wrid_requested, print_wrid(wr_id), wr_id);
1657             }
1658         }
1659 
1660         if (wr_id == wrid_requested) {
1661             goto success_block_for_wrid;
1662         }
1663     }
1664 
1665 success_block_for_wrid:
1666     if (num_cq_events) {
1667         ibv_ack_cq_events(cq, num_cq_events);
1668     }
1669     return 0;
1670 
1671 err_block_for_wrid:
1672     if (num_cq_events) {
1673         ibv_ack_cq_events(cq, num_cq_events);
1674     }
1675 
1676     rdma->error_state = ret;
1677     return ret;
1678 }
1679 
1680 /*
1681  * Post a SEND message work request for the control channel
1682  * containing some data and block until the post completes.
1683  */
1684 static int qemu_rdma_post_send_control(RDMAContext *rdma, uint8_t *buf,
1685                                        RDMAControlHeader *head)
1686 {
1687     int ret = 0;
1688     RDMAWorkRequestData *wr = &rdma->wr_data[RDMA_WRID_CONTROL];
1689     struct ibv_send_wr *bad_wr;
1690     struct ibv_sge sge = {
1691                            .addr = (uintptr_t)(wr->control),
1692                            .length = head->len + sizeof(RDMAControlHeader),
1693                            .lkey = wr->control_mr->lkey,
1694                          };
1695     struct ibv_send_wr send_wr = {
1696                                    .wr_id = RDMA_WRID_SEND_CONTROL,
1697                                    .opcode = IBV_WR_SEND,
1698                                    .send_flags = IBV_SEND_SIGNALED,
1699                                    .sg_list = &sge,
1700                                    .num_sge = 1,
1701                                 };
1702 
1703     trace_qemu_rdma_post_send_control(control_desc(head->type));
1704 
1705     /*
1706      * We don't actually need to do a memcpy() in here if we used
1707      * the "sge" properly, but since we're only sending control messages
1708      * (not RAM in a performance-critical path), then its OK for now.
1709      *
1710      * The copy makes the RDMAControlHeader simpler to manipulate
1711      * for the time being.
1712      */
1713     assert(head->len <= RDMA_CONTROL_MAX_BUFFER - sizeof(*head));
1714     memcpy(wr->control, head, sizeof(RDMAControlHeader));
1715     control_to_network((void *) wr->control);
1716 
1717     if (buf) {
1718         memcpy(wr->control + sizeof(RDMAControlHeader), buf, head->len);
1719     }
1720 
1721 
1722     ret = ibv_post_send(rdma->qp, &send_wr, &bad_wr);
1723 
1724     if (ret > 0) {
1725         error_report("Failed to use post IB SEND for control");
1726         return -ret;
1727     }
1728 
1729     ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_SEND_CONTROL, NULL);
1730     if (ret < 0) {
1731         error_report("rdma migration: send polling control error");
1732     }
1733 
1734     return ret;
1735 }
1736 
1737 /*
1738  * Post a RECV work request in anticipation of some future receipt
1739  * of data on the control channel.
1740  */
1741 static int qemu_rdma_post_recv_control(RDMAContext *rdma, int idx)
1742 {
1743     struct ibv_recv_wr *bad_wr;
1744     struct ibv_sge sge = {
1745                             .addr = (uintptr_t)(rdma->wr_data[idx].control),
1746                             .length = RDMA_CONTROL_MAX_BUFFER,
1747                             .lkey = rdma->wr_data[idx].control_mr->lkey,
1748                          };
1749 
1750     struct ibv_recv_wr recv_wr = {
1751                                     .wr_id = RDMA_WRID_RECV_CONTROL + idx,
1752                                     .sg_list = &sge,
1753                                     .num_sge = 1,
1754                                  };
1755 
1756 
1757     if (ibv_post_recv(rdma->qp, &recv_wr, &bad_wr)) {
1758         return -1;
1759     }
1760 
1761     return 0;
1762 }
1763 
1764 /*
1765  * Block and wait for a RECV control channel message to arrive.
1766  */
1767 static int qemu_rdma_exchange_get_response(RDMAContext *rdma,
1768                 RDMAControlHeader *head, int expecting, int idx)
1769 {
1770     uint32_t byte_len;
1771     int ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RECV_CONTROL + idx,
1772                                        &byte_len);
1773 
1774     if (ret < 0) {
1775         error_report("rdma migration: recv polling control error!");
1776         return ret;
1777     }
1778 
1779     network_to_control((void *) rdma->wr_data[idx].control);
1780     memcpy(head, rdma->wr_data[idx].control, sizeof(RDMAControlHeader));
1781 
1782     trace_qemu_rdma_exchange_get_response_start(control_desc(expecting));
1783 
1784     if (expecting == RDMA_CONTROL_NONE) {
1785         trace_qemu_rdma_exchange_get_response_none(control_desc(head->type),
1786                                              head->type);
1787     } else if (head->type != expecting || head->type == RDMA_CONTROL_ERROR) {
1788         error_report("Was expecting a %s (%d) control message"
1789                 ", but got: %s (%d), length: %d",
1790                 control_desc(expecting), expecting,
1791                 control_desc(head->type), head->type, head->len);
1792         if (head->type == RDMA_CONTROL_ERROR) {
1793             rdma->received_error = true;
1794         }
1795         return -EIO;
1796     }
1797     if (head->len > RDMA_CONTROL_MAX_BUFFER - sizeof(*head)) {
1798         error_report("too long length: %d", head->len);
1799         return -EINVAL;
1800     }
1801     if (sizeof(*head) + head->len != byte_len) {
1802         error_report("Malformed length: %d byte_len %d", head->len, byte_len);
1803         return -EINVAL;
1804     }
1805 
1806     return 0;
1807 }
1808 
1809 /*
1810  * When a RECV work request has completed, the work request's
1811  * buffer is pointed at the header.
1812  *
1813  * This will advance the pointer to the data portion
1814  * of the control message of the work request's buffer that
1815  * was populated after the work request finished.
1816  */
1817 static void qemu_rdma_move_header(RDMAContext *rdma, int idx,
1818                                   RDMAControlHeader *head)
1819 {
1820     rdma->wr_data[idx].control_len = head->len;
1821     rdma->wr_data[idx].control_curr =
1822         rdma->wr_data[idx].control + sizeof(RDMAControlHeader);
1823 }
1824 
1825 /*
1826  * This is an 'atomic' high-level operation to deliver a single, unified
1827  * control-channel message.
1828  *
1829  * Additionally, if the user is expecting some kind of reply to this message,
1830  * they can request a 'resp' response message be filled in by posting an
1831  * additional work request on behalf of the user and waiting for an additional
1832  * completion.
1833  *
1834  * The extra (optional) response is used during registration to us from having
1835  * to perform an *additional* exchange of message just to provide a response by
1836  * instead piggy-backing on the acknowledgement.
1837  */
1838 static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head,
1839                                    uint8_t *data, RDMAControlHeader *resp,
1840                                    int *resp_idx,
1841                                    int (*callback)(RDMAContext *rdma))
1842 {
1843     int ret = 0;
1844 
1845     /*
1846      * Wait until the dest is ready before attempting to deliver the message
1847      * by waiting for a READY message.
1848      */
1849     if (rdma->control_ready_expected) {
1850         RDMAControlHeader resp;
1851         ret = qemu_rdma_exchange_get_response(rdma,
1852                                     &resp, RDMA_CONTROL_READY, RDMA_WRID_READY);
1853         if (ret < 0) {
1854             return ret;
1855         }
1856     }
1857 
1858     /*
1859      * If the user is expecting a response, post a WR in anticipation of it.
1860      */
1861     if (resp) {
1862         ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_DATA);
1863         if (ret) {
1864             error_report("rdma migration: error posting"
1865                     " extra control recv for anticipated result!");
1866             return ret;
1867         }
1868     }
1869 
1870     /*
1871      * Post a WR to replace the one we just consumed for the READY message.
1872      */
1873     ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
1874     if (ret) {
1875         error_report("rdma migration: error posting first control recv!");
1876         return ret;
1877     }
1878 
1879     /*
1880      * Deliver the control message that was requested.
1881      */
1882     ret = qemu_rdma_post_send_control(rdma, data, head);
1883 
1884     if (ret < 0) {
1885         error_report("Failed to send control buffer!");
1886         return ret;
1887     }
1888 
1889     /*
1890      * If we're expecting a response, block and wait for it.
1891      */
1892     if (resp) {
1893         if (callback) {
1894             trace_qemu_rdma_exchange_send_issue_callback();
1895             ret = callback(rdma);
1896             if (ret < 0) {
1897                 return ret;
1898             }
1899         }
1900 
1901         trace_qemu_rdma_exchange_send_waiting(control_desc(resp->type));
1902         ret = qemu_rdma_exchange_get_response(rdma, resp,
1903                                               resp->type, RDMA_WRID_DATA);
1904 
1905         if (ret < 0) {
1906             return ret;
1907         }
1908 
1909         qemu_rdma_move_header(rdma, RDMA_WRID_DATA, resp);
1910         if (resp_idx) {
1911             *resp_idx = RDMA_WRID_DATA;
1912         }
1913         trace_qemu_rdma_exchange_send_received(control_desc(resp->type));
1914     }
1915 
1916     rdma->control_ready_expected = 1;
1917 
1918     return 0;
1919 }
1920 
1921 /*
1922  * This is an 'atomic' high-level operation to receive a single, unified
1923  * control-channel message.
1924  */
1925 static int qemu_rdma_exchange_recv(RDMAContext *rdma, RDMAControlHeader *head,
1926                                 int expecting)
1927 {
1928     RDMAControlHeader ready = {
1929                                 .len = 0,
1930                                 .type = RDMA_CONTROL_READY,
1931                                 .repeat = 1,
1932                               };
1933     int ret;
1934 
1935     /*
1936      * Inform the source that we're ready to receive a message.
1937      */
1938     ret = qemu_rdma_post_send_control(rdma, NULL, &ready);
1939 
1940     if (ret < 0) {
1941         error_report("Failed to send control buffer!");
1942         return ret;
1943     }
1944 
1945     /*
1946      * Block and wait for the message.
1947      */
1948     ret = qemu_rdma_exchange_get_response(rdma, head,
1949                                           expecting, RDMA_WRID_READY);
1950 
1951     if (ret < 0) {
1952         return ret;
1953     }
1954 
1955     qemu_rdma_move_header(rdma, RDMA_WRID_READY, head);
1956 
1957     /*
1958      * Post a new RECV work request to replace the one we just consumed.
1959      */
1960     ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
1961     if (ret) {
1962         error_report("rdma migration: error posting second control recv!");
1963         return ret;
1964     }
1965 
1966     return 0;
1967 }
1968 
1969 /*
1970  * Write an actual chunk of memory using RDMA.
1971  *
1972  * If we're using dynamic registration on the dest-side, we have to
1973  * send a registration command first.
1974  */
1975 static int qemu_rdma_write_one(QEMUFile *f, RDMAContext *rdma,
1976                                int current_index, uint64_t current_addr,
1977                                uint64_t length)
1978 {
1979     struct ibv_sge sge;
1980     struct ibv_send_wr send_wr = { 0 };
1981     struct ibv_send_wr *bad_wr;
1982     int reg_result_idx, ret, count = 0;
1983     uint64_t chunk, chunks;
1984     uint8_t *chunk_start, *chunk_end;
1985     RDMALocalBlock *block = &(rdma->local_ram_blocks.block[current_index]);
1986     RDMARegister reg;
1987     RDMARegisterResult *reg_result;
1988     RDMAControlHeader resp = { .type = RDMA_CONTROL_REGISTER_RESULT };
1989     RDMAControlHeader head = { .len = sizeof(RDMARegister),
1990                                .type = RDMA_CONTROL_REGISTER_REQUEST,
1991                                .repeat = 1,
1992                              };
1993 
1994 retry:
1995     sge.addr = (uintptr_t)(block->local_host_addr +
1996                             (current_addr - block->offset));
1997     sge.length = length;
1998 
1999     chunk = ram_chunk_index(block->local_host_addr,
2000                             (uint8_t *)(uintptr_t)sge.addr);
2001     chunk_start = ram_chunk_start(block, chunk);
2002 
2003     if (block->is_ram_block) {
2004         chunks = length / (1UL << RDMA_REG_CHUNK_SHIFT);
2005 
2006         if (chunks && ((length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) {
2007             chunks--;
2008         }
2009     } else {
2010         chunks = block->length / (1UL << RDMA_REG_CHUNK_SHIFT);
2011 
2012         if (chunks && ((block->length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) {
2013             chunks--;
2014         }
2015     }
2016 
2017     trace_qemu_rdma_write_one_top(chunks + 1,
2018                                   (chunks + 1) *
2019                                   (1UL << RDMA_REG_CHUNK_SHIFT) / 1024 / 1024);
2020 
2021     chunk_end = ram_chunk_end(block, chunk + chunks);
2022 
2023     if (!rdma->pin_all) {
2024 #ifdef RDMA_UNREGISTRATION_EXAMPLE
2025         qemu_rdma_unregister_waiting(rdma);
2026 #endif
2027     }
2028 
2029     while (test_bit(chunk, block->transit_bitmap)) {
2030         (void)count;
2031         trace_qemu_rdma_write_one_block(count++, current_index, chunk,
2032                 sge.addr, length, rdma->nb_sent, block->nb_chunks);
2033 
2034         ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
2035 
2036         if (ret < 0) {
2037             error_report("Failed to Wait for previous write to complete "
2038                     "block %d chunk %" PRIu64
2039                     " current %" PRIu64 " len %" PRIu64 " %d",
2040                     current_index, chunk, sge.addr, length, rdma->nb_sent);
2041             return ret;
2042         }
2043     }
2044 
2045     if (!rdma->pin_all || !block->is_ram_block) {
2046         if (!block->remote_keys[chunk]) {
2047             /*
2048              * This chunk has not yet been registered, so first check to see
2049              * if the entire chunk is zero. If so, tell the other size to
2050              * memset() + madvise() the entire chunk without RDMA.
2051              */
2052 
2053             if (buffer_is_zero((void *)(uintptr_t)sge.addr, length)) {
2054                 RDMACompress comp = {
2055                                         .offset = current_addr,
2056                                         .value = 0,
2057                                         .block_idx = current_index,
2058                                         .length = length,
2059                                     };
2060 
2061                 head.len = sizeof(comp);
2062                 head.type = RDMA_CONTROL_COMPRESS;
2063 
2064                 trace_qemu_rdma_write_one_zero(chunk, sge.length,
2065                                                current_index, current_addr);
2066 
2067                 compress_to_network(rdma, &comp);
2068                 ret = qemu_rdma_exchange_send(rdma, &head,
2069                                 (uint8_t *) &comp, NULL, NULL, NULL);
2070 
2071                 if (ret < 0) {
2072                     return -EIO;
2073                 }
2074 
2075                 acct_update_position(f, sge.length, true);
2076 
2077                 return 1;
2078             }
2079 
2080             /*
2081              * Otherwise, tell other side to register.
2082              */
2083             reg.current_index = current_index;
2084             if (block->is_ram_block) {
2085                 reg.key.current_addr = current_addr;
2086             } else {
2087                 reg.key.chunk = chunk;
2088             }
2089             reg.chunks = chunks;
2090 
2091             trace_qemu_rdma_write_one_sendreg(chunk, sge.length, current_index,
2092                                               current_addr);
2093 
2094             register_to_network(rdma, &reg);
2095             ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) &reg,
2096                                     &resp, &reg_result_idx, NULL);
2097             if (ret < 0) {
2098                 return ret;
2099             }
2100 
2101             /* try to overlap this single registration with the one we sent. */
2102             if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr,
2103                                                 &sge.lkey, NULL, chunk,
2104                                                 chunk_start, chunk_end)) {
2105                 error_report("cannot get lkey");
2106                 return -EINVAL;
2107             }
2108 
2109             reg_result = (RDMARegisterResult *)
2110                     rdma->wr_data[reg_result_idx].control_curr;
2111 
2112             network_to_result(reg_result);
2113 
2114             trace_qemu_rdma_write_one_recvregres(block->remote_keys[chunk],
2115                                                  reg_result->rkey, chunk);
2116 
2117             block->remote_keys[chunk] = reg_result->rkey;
2118             block->remote_host_addr = reg_result->host_addr;
2119         } else {
2120             /* already registered before */
2121             if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr,
2122                                                 &sge.lkey, NULL, chunk,
2123                                                 chunk_start, chunk_end)) {
2124                 error_report("cannot get lkey!");
2125                 return -EINVAL;
2126             }
2127         }
2128 
2129         send_wr.wr.rdma.rkey = block->remote_keys[chunk];
2130     } else {
2131         send_wr.wr.rdma.rkey = block->remote_rkey;
2132 
2133         if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr,
2134                                                      &sge.lkey, NULL, chunk,
2135                                                      chunk_start, chunk_end)) {
2136             error_report("cannot get lkey!");
2137             return -EINVAL;
2138         }
2139     }
2140 
2141     /*
2142      * Encode the ram block index and chunk within this wrid.
2143      * We will use this information at the time of completion
2144      * to figure out which bitmap to check against and then which
2145      * chunk in the bitmap to look for.
2146      */
2147     send_wr.wr_id = qemu_rdma_make_wrid(RDMA_WRID_RDMA_WRITE,
2148                                         current_index, chunk);
2149 
2150     send_wr.opcode = IBV_WR_RDMA_WRITE;
2151     send_wr.send_flags = IBV_SEND_SIGNALED;
2152     send_wr.sg_list = &sge;
2153     send_wr.num_sge = 1;
2154     send_wr.wr.rdma.remote_addr = block->remote_host_addr +
2155                                 (current_addr - block->offset);
2156 
2157     trace_qemu_rdma_write_one_post(chunk, sge.addr, send_wr.wr.rdma.remote_addr,
2158                                    sge.length);
2159 
2160     /*
2161      * ibv_post_send() does not return negative error numbers,
2162      * per the specification they are positive - no idea why.
2163      */
2164     ret = ibv_post_send(rdma->qp, &send_wr, &bad_wr);
2165 
2166     if (ret == ENOMEM) {
2167         trace_qemu_rdma_write_one_queue_full();
2168         ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
2169         if (ret < 0) {
2170             error_report("rdma migration: failed to make "
2171                          "room in full send queue! %d", ret);
2172             return ret;
2173         }
2174 
2175         goto retry;
2176 
2177     } else if (ret > 0) {
2178         perror("rdma migration: post rdma write failed");
2179         return -ret;
2180     }
2181 
2182     set_bit(chunk, block->transit_bitmap);
2183     acct_update_position(f, sge.length, false);
2184     rdma->total_writes++;
2185 
2186     return 0;
2187 }
2188 
2189 /*
2190  * Push out any unwritten RDMA operations.
2191  *
2192  * We support sending out multiple chunks at the same time.
2193  * Not all of them need to get signaled in the completion queue.
2194  */
2195 static int qemu_rdma_write_flush(QEMUFile *f, RDMAContext *rdma)
2196 {
2197     int ret;
2198 
2199     if (!rdma->current_length) {
2200         return 0;
2201     }
2202 
2203     ret = qemu_rdma_write_one(f, rdma,
2204             rdma->current_index, rdma->current_addr, rdma->current_length);
2205 
2206     if (ret < 0) {
2207         return ret;
2208     }
2209 
2210     if (ret == 0) {
2211         rdma->nb_sent++;
2212         trace_qemu_rdma_write_flush(rdma->nb_sent);
2213     }
2214 
2215     rdma->current_length = 0;
2216     rdma->current_addr = 0;
2217 
2218     return 0;
2219 }
2220 
2221 static inline int qemu_rdma_buffer_mergable(RDMAContext *rdma,
2222                     uint64_t offset, uint64_t len)
2223 {
2224     RDMALocalBlock *block;
2225     uint8_t *host_addr;
2226     uint8_t *chunk_end;
2227 
2228     if (rdma->current_index < 0) {
2229         return 0;
2230     }
2231 
2232     if (rdma->current_chunk < 0) {
2233         return 0;
2234     }
2235 
2236     block = &(rdma->local_ram_blocks.block[rdma->current_index]);
2237     host_addr = block->local_host_addr + (offset - block->offset);
2238     chunk_end = ram_chunk_end(block, rdma->current_chunk);
2239 
2240     if (rdma->current_length == 0) {
2241         return 0;
2242     }
2243 
2244     /*
2245      * Only merge into chunk sequentially.
2246      */
2247     if (offset != (rdma->current_addr + rdma->current_length)) {
2248         return 0;
2249     }
2250 
2251     if (offset < block->offset) {
2252         return 0;
2253     }
2254 
2255     if ((offset + len) > (block->offset + block->length)) {
2256         return 0;
2257     }
2258 
2259     if ((host_addr + len) > chunk_end) {
2260         return 0;
2261     }
2262 
2263     return 1;
2264 }
2265 
2266 /*
2267  * We're not actually writing here, but doing three things:
2268  *
2269  * 1. Identify the chunk the buffer belongs to.
2270  * 2. If the chunk is full or the buffer doesn't belong to the current
2271  *    chunk, then start a new chunk and flush() the old chunk.
2272  * 3. To keep the hardware busy, we also group chunks into batches
2273  *    and only require that a batch gets acknowledged in the completion
2274  *    queue instead of each individual chunk.
2275  */
2276 static int qemu_rdma_write(QEMUFile *f, RDMAContext *rdma,
2277                            uint64_t block_offset, uint64_t offset,
2278                            uint64_t len)
2279 {
2280     uint64_t current_addr = block_offset + offset;
2281     uint64_t index = rdma->current_index;
2282     uint64_t chunk = rdma->current_chunk;
2283     int ret;
2284 
2285     /* If we cannot merge it, we flush the current buffer first. */
2286     if (!qemu_rdma_buffer_mergable(rdma, current_addr, len)) {
2287         ret = qemu_rdma_write_flush(f, rdma);
2288         if (ret) {
2289             return ret;
2290         }
2291         rdma->current_length = 0;
2292         rdma->current_addr = current_addr;
2293 
2294         ret = qemu_rdma_search_ram_block(rdma, block_offset,
2295                                          offset, len, &index, &chunk);
2296         if (ret) {
2297             error_report("ram block search failed");
2298             return ret;
2299         }
2300         rdma->current_index = index;
2301         rdma->current_chunk = chunk;
2302     }
2303 
2304     /* merge it */
2305     rdma->current_length += len;
2306 
2307     /* flush it if buffer is too large */
2308     if (rdma->current_length >= RDMA_MERGE_MAX) {
2309         return qemu_rdma_write_flush(f, rdma);
2310     }
2311 
2312     return 0;
2313 }
2314 
2315 static void qemu_rdma_cleanup(RDMAContext *rdma)
2316 {
2317     int idx;
2318 
2319     if (rdma->cm_id && rdma->connected) {
2320         if ((rdma->error_state ||
2321              migrate_get_current()->state == MIGRATION_STATUS_CANCELLING) &&
2322             !rdma->received_error) {
2323             RDMAControlHeader head = { .len = 0,
2324                                        .type = RDMA_CONTROL_ERROR,
2325                                        .repeat = 1,
2326                                      };
2327             error_report("Early error. Sending error.");
2328             qemu_rdma_post_send_control(rdma, NULL, &head);
2329         }
2330 
2331         rdma_disconnect(rdma->cm_id);
2332         trace_qemu_rdma_cleanup_disconnect();
2333         rdma->connected = false;
2334     }
2335 
2336     if (rdma->channel) {
2337         qemu_set_fd_handler(rdma->channel->fd, NULL, NULL, NULL);
2338     }
2339     g_free(rdma->dest_blocks);
2340     rdma->dest_blocks = NULL;
2341 
2342     for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2343         if (rdma->wr_data[idx].control_mr) {
2344             rdma->total_registrations--;
2345             ibv_dereg_mr(rdma->wr_data[idx].control_mr);
2346         }
2347         rdma->wr_data[idx].control_mr = NULL;
2348     }
2349 
2350     if (rdma->local_ram_blocks.block) {
2351         while (rdma->local_ram_blocks.nb_blocks) {
2352             rdma_delete_block(rdma, &rdma->local_ram_blocks.block[0]);
2353         }
2354     }
2355 
2356     if (rdma->qp) {
2357         rdma_destroy_qp(rdma->cm_id);
2358         rdma->qp = NULL;
2359     }
2360     if (rdma->cq) {
2361         ibv_destroy_cq(rdma->cq);
2362         rdma->cq = NULL;
2363     }
2364     if (rdma->comp_channel) {
2365         ibv_destroy_comp_channel(rdma->comp_channel);
2366         rdma->comp_channel = NULL;
2367     }
2368     if (rdma->pd) {
2369         ibv_dealloc_pd(rdma->pd);
2370         rdma->pd = NULL;
2371     }
2372     if (rdma->cm_id) {
2373         rdma_destroy_id(rdma->cm_id);
2374         rdma->cm_id = NULL;
2375     }
2376 
2377     /* the destination side, listen_id and channel is shared */
2378     if (rdma->listen_id) {
2379         if (!rdma->is_return_path) {
2380             rdma_destroy_id(rdma->listen_id);
2381         }
2382         rdma->listen_id = NULL;
2383 
2384         if (rdma->channel) {
2385             if (!rdma->is_return_path) {
2386                 rdma_destroy_event_channel(rdma->channel);
2387             }
2388             rdma->channel = NULL;
2389         }
2390     }
2391 
2392     if (rdma->channel) {
2393         rdma_destroy_event_channel(rdma->channel);
2394         rdma->channel = NULL;
2395     }
2396     g_free(rdma->host);
2397     g_free(rdma->host_port);
2398     rdma->host = NULL;
2399     rdma->host_port = NULL;
2400 }
2401 
2402 
2403 static int qemu_rdma_source_init(RDMAContext *rdma, bool pin_all, Error **errp)
2404 {
2405     int ret, idx;
2406     Error *local_err = NULL, **temp = &local_err;
2407 
2408     /*
2409      * Will be validated against destination's actual capabilities
2410      * after the connect() completes.
2411      */
2412     rdma->pin_all = pin_all;
2413 
2414     ret = qemu_rdma_resolve_host(rdma, temp);
2415     if (ret) {
2416         goto err_rdma_source_init;
2417     }
2418 
2419     ret = qemu_rdma_alloc_pd_cq(rdma);
2420     if (ret) {
2421         ERROR(temp, "rdma migration: error allocating pd and cq! Your mlock()"
2422                     " limits may be too low. Please check $ ulimit -a # and "
2423                     "search for 'ulimit -l' in the output");
2424         goto err_rdma_source_init;
2425     }
2426 
2427     ret = qemu_rdma_alloc_qp(rdma);
2428     if (ret) {
2429         ERROR(temp, "rdma migration: error allocating qp!");
2430         goto err_rdma_source_init;
2431     }
2432 
2433     ret = qemu_rdma_init_ram_blocks(rdma);
2434     if (ret) {
2435         ERROR(temp, "rdma migration: error initializing ram blocks!");
2436         goto err_rdma_source_init;
2437     }
2438 
2439     /* Build the hash that maps from offset to RAMBlock */
2440     rdma->blockmap = g_hash_table_new(g_direct_hash, g_direct_equal);
2441     for (idx = 0; idx < rdma->local_ram_blocks.nb_blocks; idx++) {
2442         g_hash_table_insert(rdma->blockmap,
2443                 (void *)(uintptr_t)rdma->local_ram_blocks.block[idx].offset,
2444                 &rdma->local_ram_blocks.block[idx]);
2445     }
2446 
2447     for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2448         ret = qemu_rdma_reg_control(rdma, idx);
2449         if (ret) {
2450             ERROR(temp, "rdma migration: error registering %d control!",
2451                                                             idx);
2452             goto err_rdma_source_init;
2453         }
2454     }
2455 
2456     return 0;
2457 
2458 err_rdma_source_init:
2459     error_propagate(errp, local_err);
2460     qemu_rdma_cleanup(rdma);
2461     return -1;
2462 }
2463 
2464 static int qemu_get_cm_event_timeout(RDMAContext *rdma,
2465                                      struct rdma_cm_event **cm_event,
2466                                      long msec, Error **errp)
2467 {
2468     int ret;
2469     struct pollfd poll_fd = {
2470                                 .fd = rdma->channel->fd,
2471                                 .events = POLLIN,
2472                                 .revents = 0
2473                             };
2474 
2475     do {
2476         ret = poll(&poll_fd, 1, msec);
2477     } while (ret < 0 && errno == EINTR);
2478 
2479     if (ret == 0) {
2480         ERROR(errp, "poll cm event timeout");
2481         return -1;
2482     } else if (ret < 0) {
2483         ERROR(errp, "failed to poll cm event, errno=%i", errno);
2484         return -1;
2485     } else if (poll_fd.revents & POLLIN) {
2486         return rdma_get_cm_event(rdma->channel, cm_event);
2487     } else {
2488         ERROR(errp, "no POLLIN event, revent=%x", poll_fd.revents);
2489         return -1;
2490     }
2491 }
2492 
2493 static int qemu_rdma_connect(RDMAContext *rdma, Error **errp, bool return_path)
2494 {
2495     RDMACapabilities cap = {
2496                                 .version = RDMA_CONTROL_VERSION_CURRENT,
2497                                 .flags = 0,
2498                            };
2499     struct rdma_conn_param conn_param = { .initiator_depth = 2,
2500                                           .retry_count = 5,
2501                                           .private_data = &cap,
2502                                           .private_data_len = sizeof(cap),
2503                                         };
2504     struct rdma_cm_event *cm_event;
2505     int ret;
2506 
2507     /*
2508      * Only negotiate the capability with destination if the user
2509      * on the source first requested the capability.
2510      */
2511     if (rdma->pin_all) {
2512         trace_qemu_rdma_connect_pin_all_requested();
2513         cap.flags |= RDMA_CAPABILITY_PIN_ALL;
2514     }
2515 
2516     caps_to_network(&cap);
2517 
2518     ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
2519     if (ret) {
2520         ERROR(errp, "posting second control recv");
2521         goto err_rdma_source_connect;
2522     }
2523 
2524     ret = rdma_connect(rdma->cm_id, &conn_param);
2525     if (ret) {
2526         perror("rdma_connect");
2527         ERROR(errp, "connecting to destination!");
2528         goto err_rdma_source_connect;
2529     }
2530 
2531     if (return_path) {
2532         ret = qemu_get_cm_event_timeout(rdma, &cm_event, 5000, errp);
2533     } else {
2534         ret = rdma_get_cm_event(rdma->channel, &cm_event);
2535     }
2536     if (ret) {
2537         perror("rdma_get_cm_event after rdma_connect");
2538         ERROR(errp, "connecting to destination!");
2539         goto err_rdma_source_connect;
2540     }
2541 
2542     if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) {
2543         perror("rdma_get_cm_event != EVENT_ESTABLISHED after rdma_connect");
2544         ERROR(errp, "connecting to destination!");
2545         rdma_ack_cm_event(cm_event);
2546         goto err_rdma_source_connect;
2547     }
2548     rdma->connected = true;
2549 
2550     memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap));
2551     network_to_caps(&cap);
2552 
2553     /*
2554      * Verify that the *requested* capabilities are supported by the destination
2555      * and disable them otherwise.
2556      */
2557     if (rdma->pin_all && !(cap.flags & RDMA_CAPABILITY_PIN_ALL)) {
2558         ERROR(errp, "Server cannot support pinning all memory. "
2559                         "Will register memory dynamically.");
2560         rdma->pin_all = false;
2561     }
2562 
2563     trace_qemu_rdma_connect_pin_all_outcome(rdma->pin_all);
2564 
2565     rdma_ack_cm_event(cm_event);
2566 
2567     rdma->control_ready_expected = 1;
2568     rdma->nb_sent = 0;
2569     return 0;
2570 
2571 err_rdma_source_connect:
2572     qemu_rdma_cleanup(rdma);
2573     return -1;
2574 }
2575 
2576 static int qemu_rdma_dest_init(RDMAContext *rdma, Error **errp)
2577 {
2578     int ret, idx;
2579     struct rdma_cm_id *listen_id;
2580     char ip[40] = "unknown";
2581     struct rdma_addrinfo *res, *e;
2582     char port_str[16];
2583 
2584     for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2585         rdma->wr_data[idx].control_len = 0;
2586         rdma->wr_data[idx].control_curr = NULL;
2587     }
2588 
2589     if (!rdma->host || !rdma->host[0]) {
2590         ERROR(errp, "RDMA host is not set!");
2591         rdma->error_state = -EINVAL;
2592         return -1;
2593     }
2594     /* create CM channel */
2595     rdma->channel = rdma_create_event_channel();
2596     if (!rdma->channel) {
2597         ERROR(errp, "could not create rdma event channel");
2598         rdma->error_state = -EINVAL;
2599         return -1;
2600     }
2601 
2602     /* create CM id */
2603     ret = rdma_create_id(rdma->channel, &listen_id, NULL, RDMA_PS_TCP);
2604     if (ret) {
2605         ERROR(errp, "could not create cm_id!");
2606         goto err_dest_init_create_listen_id;
2607     }
2608 
2609     snprintf(port_str, 16, "%d", rdma->port);
2610     port_str[15] = '\0';
2611 
2612     ret = rdma_getaddrinfo(rdma->host, port_str, NULL, &res);
2613     if (ret < 0) {
2614         ERROR(errp, "could not rdma_getaddrinfo address %s", rdma->host);
2615         goto err_dest_init_bind_addr;
2616     }
2617 
2618     for (e = res; e != NULL; e = e->ai_next) {
2619         inet_ntop(e->ai_family,
2620             &((struct sockaddr_in *) e->ai_dst_addr)->sin_addr, ip, sizeof ip);
2621         trace_qemu_rdma_dest_init_trying(rdma->host, ip);
2622         ret = rdma_bind_addr(listen_id, e->ai_dst_addr);
2623         if (ret) {
2624             continue;
2625         }
2626         if (e->ai_family == AF_INET6) {
2627             ret = qemu_rdma_broken_ipv6_kernel(listen_id->verbs, errp);
2628             if (ret) {
2629                 continue;
2630             }
2631         }
2632         break;
2633     }
2634 
2635     rdma_freeaddrinfo(res);
2636     if (!e) {
2637         ERROR(errp, "Error: could not rdma_bind_addr!");
2638         goto err_dest_init_bind_addr;
2639     }
2640 
2641     rdma->listen_id = listen_id;
2642     qemu_rdma_dump_gid("dest_init", listen_id);
2643     return 0;
2644 
2645 err_dest_init_bind_addr:
2646     rdma_destroy_id(listen_id);
2647 err_dest_init_create_listen_id:
2648     rdma_destroy_event_channel(rdma->channel);
2649     rdma->channel = NULL;
2650     rdma->error_state = ret;
2651     return ret;
2652 
2653 }
2654 
2655 static void qemu_rdma_return_path_dest_init(RDMAContext *rdma_return_path,
2656                                             RDMAContext *rdma)
2657 {
2658     int idx;
2659 
2660     for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2661         rdma_return_path->wr_data[idx].control_len = 0;
2662         rdma_return_path->wr_data[idx].control_curr = NULL;
2663     }
2664 
2665     /*the CM channel and CM id is shared*/
2666     rdma_return_path->channel = rdma->channel;
2667     rdma_return_path->listen_id = rdma->listen_id;
2668 
2669     rdma->return_path = rdma_return_path;
2670     rdma_return_path->return_path = rdma;
2671     rdma_return_path->is_return_path = true;
2672 }
2673 
2674 static void *qemu_rdma_data_init(const char *host_port, Error **errp)
2675 {
2676     RDMAContext *rdma = NULL;
2677     InetSocketAddress *addr;
2678 
2679     if (host_port) {
2680         rdma = g_new0(RDMAContext, 1);
2681         rdma->current_index = -1;
2682         rdma->current_chunk = -1;
2683 
2684         addr = g_new(InetSocketAddress, 1);
2685         if (!inet_parse(addr, host_port, NULL)) {
2686             rdma->port = atoi(addr->port);
2687             rdma->host = g_strdup(addr->host);
2688             rdma->host_port = g_strdup(host_port);
2689         } else {
2690             ERROR(errp, "bad RDMA migration address '%s'", host_port);
2691             g_free(rdma);
2692             rdma = NULL;
2693         }
2694 
2695         qapi_free_InetSocketAddress(addr);
2696     }
2697 
2698     return rdma;
2699 }
2700 
2701 /*
2702  * QEMUFile interface to the control channel.
2703  * SEND messages for control only.
2704  * VM's ram is handled with regular RDMA messages.
2705  */
2706 static ssize_t qio_channel_rdma_writev(QIOChannel *ioc,
2707                                        const struct iovec *iov,
2708                                        size_t niov,
2709                                        int *fds,
2710                                        size_t nfds,
2711                                        Error **errp)
2712 {
2713     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
2714     QEMUFile *f = rioc->file;
2715     RDMAContext *rdma;
2716     int ret;
2717     ssize_t done = 0;
2718     size_t i;
2719     size_t len = 0;
2720 
2721     RCU_READ_LOCK_GUARD();
2722     rdma = qatomic_rcu_read(&rioc->rdmaout);
2723 
2724     if (!rdma) {
2725         return -EIO;
2726     }
2727 
2728     CHECK_ERROR_STATE();
2729 
2730     /*
2731      * Push out any writes that
2732      * we're queued up for VM's ram.
2733      */
2734     ret = qemu_rdma_write_flush(f, rdma);
2735     if (ret < 0) {
2736         rdma->error_state = ret;
2737         return ret;
2738     }
2739 
2740     for (i = 0; i < niov; i++) {
2741         size_t remaining = iov[i].iov_len;
2742         uint8_t * data = (void *)iov[i].iov_base;
2743         while (remaining) {
2744             RDMAControlHeader head;
2745 
2746             len = MIN(remaining, RDMA_SEND_INCREMENT);
2747             remaining -= len;
2748 
2749             head.len = len;
2750             head.type = RDMA_CONTROL_QEMU_FILE;
2751 
2752             ret = qemu_rdma_exchange_send(rdma, &head, data, NULL, NULL, NULL);
2753 
2754             if (ret < 0) {
2755                 rdma->error_state = ret;
2756                 return ret;
2757             }
2758 
2759             data += len;
2760             done += len;
2761         }
2762     }
2763 
2764     return done;
2765 }
2766 
2767 static size_t qemu_rdma_fill(RDMAContext *rdma, uint8_t *buf,
2768                              size_t size, int idx)
2769 {
2770     size_t len = 0;
2771 
2772     if (rdma->wr_data[idx].control_len) {
2773         trace_qemu_rdma_fill(rdma->wr_data[idx].control_len, size);
2774 
2775         len = MIN(size, rdma->wr_data[idx].control_len);
2776         memcpy(buf, rdma->wr_data[idx].control_curr, len);
2777         rdma->wr_data[idx].control_curr += len;
2778         rdma->wr_data[idx].control_len -= len;
2779     }
2780 
2781     return len;
2782 }
2783 
2784 /*
2785  * QEMUFile interface to the control channel.
2786  * RDMA links don't use bytestreams, so we have to
2787  * return bytes to QEMUFile opportunistically.
2788  */
2789 static ssize_t qio_channel_rdma_readv(QIOChannel *ioc,
2790                                       const struct iovec *iov,
2791                                       size_t niov,
2792                                       int **fds,
2793                                       size_t *nfds,
2794                                       Error **errp)
2795 {
2796     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
2797     RDMAContext *rdma;
2798     RDMAControlHeader head;
2799     int ret = 0;
2800     ssize_t i;
2801     size_t done = 0;
2802 
2803     RCU_READ_LOCK_GUARD();
2804     rdma = qatomic_rcu_read(&rioc->rdmain);
2805 
2806     if (!rdma) {
2807         return -EIO;
2808     }
2809 
2810     CHECK_ERROR_STATE();
2811 
2812     for (i = 0; i < niov; i++) {
2813         size_t want = iov[i].iov_len;
2814         uint8_t *data = (void *)iov[i].iov_base;
2815 
2816         /*
2817          * First, we hold on to the last SEND message we
2818          * were given and dish out the bytes until we run
2819          * out of bytes.
2820          */
2821         ret = qemu_rdma_fill(rdma, data, want, 0);
2822         done += ret;
2823         want -= ret;
2824         /* Got what we needed, so go to next iovec */
2825         if (want == 0) {
2826             continue;
2827         }
2828 
2829         /* If we got any data so far, then don't wait
2830          * for more, just return what we have */
2831         if (done > 0) {
2832             break;
2833         }
2834 
2835 
2836         /* We've got nothing at all, so lets wait for
2837          * more to arrive
2838          */
2839         ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_QEMU_FILE);
2840 
2841         if (ret < 0) {
2842             rdma->error_state = ret;
2843             return ret;
2844         }
2845 
2846         /*
2847          * SEND was received with new bytes, now try again.
2848          */
2849         ret = qemu_rdma_fill(rdma, data, want, 0);
2850         done += ret;
2851         want -= ret;
2852 
2853         /* Still didn't get enough, so lets just return */
2854         if (want) {
2855             if (done == 0) {
2856                 return QIO_CHANNEL_ERR_BLOCK;
2857             } else {
2858                 break;
2859             }
2860         }
2861     }
2862     return done;
2863 }
2864 
2865 /*
2866  * Block until all the outstanding chunks have been delivered by the hardware.
2867  */
2868 static int qemu_rdma_drain_cq(QEMUFile *f, RDMAContext *rdma)
2869 {
2870     int ret;
2871 
2872     if (qemu_rdma_write_flush(f, rdma) < 0) {
2873         return -EIO;
2874     }
2875 
2876     while (rdma->nb_sent) {
2877         ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
2878         if (ret < 0) {
2879             error_report("rdma migration: complete polling error!");
2880             return -EIO;
2881         }
2882     }
2883 
2884     qemu_rdma_unregister_waiting(rdma);
2885 
2886     return 0;
2887 }
2888 
2889 
2890 static int qio_channel_rdma_set_blocking(QIOChannel *ioc,
2891                                          bool blocking,
2892                                          Error **errp)
2893 {
2894     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
2895     /* XXX we should make readv/writev actually honour this :-) */
2896     rioc->blocking = blocking;
2897     return 0;
2898 }
2899 
2900 
2901 typedef struct QIOChannelRDMASource QIOChannelRDMASource;
2902 struct QIOChannelRDMASource {
2903     GSource parent;
2904     QIOChannelRDMA *rioc;
2905     GIOCondition condition;
2906 };
2907 
2908 static gboolean
2909 qio_channel_rdma_source_prepare(GSource *source,
2910                                 gint *timeout)
2911 {
2912     QIOChannelRDMASource *rsource = (QIOChannelRDMASource *)source;
2913     RDMAContext *rdma;
2914     GIOCondition cond = 0;
2915     *timeout = -1;
2916 
2917     RCU_READ_LOCK_GUARD();
2918     if (rsource->condition == G_IO_IN) {
2919         rdma = qatomic_rcu_read(&rsource->rioc->rdmain);
2920     } else {
2921         rdma = qatomic_rcu_read(&rsource->rioc->rdmaout);
2922     }
2923 
2924     if (!rdma) {
2925         error_report("RDMAContext is NULL when prepare Gsource");
2926         return FALSE;
2927     }
2928 
2929     if (rdma->wr_data[0].control_len) {
2930         cond |= G_IO_IN;
2931     }
2932     cond |= G_IO_OUT;
2933 
2934     return cond & rsource->condition;
2935 }
2936 
2937 static gboolean
2938 qio_channel_rdma_source_check(GSource *source)
2939 {
2940     QIOChannelRDMASource *rsource = (QIOChannelRDMASource *)source;
2941     RDMAContext *rdma;
2942     GIOCondition cond = 0;
2943 
2944     RCU_READ_LOCK_GUARD();
2945     if (rsource->condition == G_IO_IN) {
2946         rdma = qatomic_rcu_read(&rsource->rioc->rdmain);
2947     } else {
2948         rdma = qatomic_rcu_read(&rsource->rioc->rdmaout);
2949     }
2950 
2951     if (!rdma) {
2952         error_report("RDMAContext is NULL when check Gsource");
2953         return FALSE;
2954     }
2955 
2956     if (rdma->wr_data[0].control_len) {
2957         cond |= G_IO_IN;
2958     }
2959     cond |= G_IO_OUT;
2960 
2961     return cond & rsource->condition;
2962 }
2963 
2964 static gboolean
2965 qio_channel_rdma_source_dispatch(GSource *source,
2966                                  GSourceFunc callback,
2967                                  gpointer user_data)
2968 {
2969     QIOChannelFunc func = (QIOChannelFunc)callback;
2970     QIOChannelRDMASource *rsource = (QIOChannelRDMASource *)source;
2971     RDMAContext *rdma;
2972     GIOCondition cond = 0;
2973 
2974     RCU_READ_LOCK_GUARD();
2975     if (rsource->condition == G_IO_IN) {
2976         rdma = qatomic_rcu_read(&rsource->rioc->rdmain);
2977     } else {
2978         rdma = qatomic_rcu_read(&rsource->rioc->rdmaout);
2979     }
2980 
2981     if (!rdma) {
2982         error_report("RDMAContext is NULL when dispatch Gsource");
2983         return FALSE;
2984     }
2985 
2986     if (rdma->wr_data[0].control_len) {
2987         cond |= G_IO_IN;
2988     }
2989     cond |= G_IO_OUT;
2990 
2991     return (*func)(QIO_CHANNEL(rsource->rioc),
2992                    (cond & rsource->condition),
2993                    user_data);
2994 }
2995 
2996 static void
2997 qio_channel_rdma_source_finalize(GSource *source)
2998 {
2999     QIOChannelRDMASource *ssource = (QIOChannelRDMASource *)source;
3000 
3001     object_unref(OBJECT(ssource->rioc));
3002 }
3003 
3004 GSourceFuncs qio_channel_rdma_source_funcs = {
3005     qio_channel_rdma_source_prepare,
3006     qio_channel_rdma_source_check,
3007     qio_channel_rdma_source_dispatch,
3008     qio_channel_rdma_source_finalize
3009 };
3010 
3011 static GSource *qio_channel_rdma_create_watch(QIOChannel *ioc,
3012                                               GIOCondition condition)
3013 {
3014     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
3015     QIOChannelRDMASource *ssource;
3016     GSource *source;
3017 
3018     source = g_source_new(&qio_channel_rdma_source_funcs,
3019                           sizeof(QIOChannelRDMASource));
3020     ssource = (QIOChannelRDMASource *)source;
3021 
3022     ssource->rioc = rioc;
3023     object_ref(OBJECT(rioc));
3024 
3025     ssource->condition = condition;
3026 
3027     return source;
3028 }
3029 
3030 static void qio_channel_rdma_set_aio_fd_handler(QIOChannel *ioc,
3031                                                   AioContext *ctx,
3032                                                   IOHandler *io_read,
3033                                                   IOHandler *io_write,
3034                                                   void *opaque)
3035 {
3036     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
3037     if (io_read) {
3038         aio_set_fd_handler(ctx, rioc->rdmain->comp_channel->fd,
3039                            false, io_read, io_write, NULL, opaque);
3040     } else {
3041         aio_set_fd_handler(ctx, rioc->rdmaout->comp_channel->fd,
3042                            false, io_read, io_write, NULL, opaque);
3043     }
3044 }
3045 
3046 struct rdma_close_rcu {
3047     struct rcu_head rcu;
3048     RDMAContext *rdmain;
3049     RDMAContext *rdmaout;
3050 };
3051 
3052 /* callback from qio_channel_rdma_close via call_rcu */
3053 static void qio_channel_rdma_close_rcu(struct rdma_close_rcu *rcu)
3054 {
3055     if (rcu->rdmain) {
3056         qemu_rdma_cleanup(rcu->rdmain);
3057     }
3058 
3059     if (rcu->rdmaout) {
3060         qemu_rdma_cleanup(rcu->rdmaout);
3061     }
3062 
3063     g_free(rcu->rdmain);
3064     g_free(rcu->rdmaout);
3065     g_free(rcu);
3066 }
3067 
3068 static int qio_channel_rdma_close(QIOChannel *ioc,
3069                                   Error **errp)
3070 {
3071     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
3072     RDMAContext *rdmain, *rdmaout;
3073     struct rdma_close_rcu *rcu = g_new(struct rdma_close_rcu, 1);
3074 
3075     trace_qemu_rdma_close();
3076 
3077     rdmain = rioc->rdmain;
3078     if (rdmain) {
3079         qatomic_rcu_set(&rioc->rdmain, NULL);
3080     }
3081 
3082     rdmaout = rioc->rdmaout;
3083     if (rdmaout) {
3084         qatomic_rcu_set(&rioc->rdmaout, NULL);
3085     }
3086 
3087     rcu->rdmain = rdmain;
3088     rcu->rdmaout = rdmaout;
3089     call_rcu(rcu, qio_channel_rdma_close_rcu, rcu);
3090 
3091     return 0;
3092 }
3093 
3094 static int
3095 qio_channel_rdma_shutdown(QIOChannel *ioc,
3096                             QIOChannelShutdown how,
3097                             Error **errp)
3098 {
3099     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
3100     RDMAContext *rdmain, *rdmaout;
3101 
3102     RCU_READ_LOCK_GUARD();
3103 
3104     rdmain = qatomic_rcu_read(&rioc->rdmain);
3105     rdmaout = qatomic_rcu_read(&rioc->rdmain);
3106 
3107     switch (how) {
3108     case QIO_CHANNEL_SHUTDOWN_READ:
3109         if (rdmain) {
3110             rdmain->error_state = -1;
3111         }
3112         break;
3113     case QIO_CHANNEL_SHUTDOWN_WRITE:
3114         if (rdmaout) {
3115             rdmaout->error_state = -1;
3116         }
3117         break;
3118     case QIO_CHANNEL_SHUTDOWN_BOTH:
3119     default:
3120         if (rdmain) {
3121             rdmain->error_state = -1;
3122         }
3123         if (rdmaout) {
3124             rdmaout->error_state = -1;
3125         }
3126         break;
3127     }
3128 
3129     return 0;
3130 }
3131 
3132 /*
3133  * Parameters:
3134  *    @offset == 0 :
3135  *        This means that 'block_offset' is a full virtual address that does not
3136  *        belong to a RAMBlock of the virtual machine and instead
3137  *        represents a private malloc'd memory area that the caller wishes to
3138  *        transfer.
3139  *
3140  *    @offset != 0 :
3141  *        Offset is an offset to be added to block_offset and used
3142  *        to also lookup the corresponding RAMBlock.
3143  *
3144  *    @size > 0 :
3145  *        Initiate an transfer this size.
3146  *
3147  *    @size == 0 :
3148  *        A 'hint' or 'advice' that means that we wish to speculatively
3149  *        and asynchronously unregister this memory. In this case, there is no
3150  *        guarantee that the unregister will actually happen, for example,
3151  *        if the memory is being actively transmitted. Additionally, the memory
3152  *        may be re-registered at any future time if a write within the same
3153  *        chunk was requested again, even if you attempted to unregister it
3154  *        here.
3155  *
3156  *    @size < 0 : TODO, not yet supported
3157  *        Unregister the memory NOW. This means that the caller does not
3158  *        expect there to be any future RDMA transfers and we just want to clean
3159  *        things up. This is used in case the upper layer owns the memory and
3160  *        cannot wait for qemu_fclose() to occur.
3161  *
3162  *    @bytes_sent : User-specificed pointer to indicate how many bytes were
3163  *                  sent. Usually, this will not be more than a few bytes of
3164  *                  the protocol because most transfers are sent asynchronously.
3165  */
3166 static size_t qemu_rdma_save_page(QEMUFile *f, void *opaque,
3167                                   ram_addr_t block_offset, ram_addr_t offset,
3168                                   size_t size, uint64_t *bytes_sent)
3169 {
3170     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(opaque);
3171     RDMAContext *rdma;
3172     int ret;
3173 
3174     RCU_READ_LOCK_GUARD();
3175     rdma = qatomic_rcu_read(&rioc->rdmaout);
3176 
3177     if (!rdma) {
3178         return -EIO;
3179     }
3180 
3181     CHECK_ERROR_STATE();
3182 
3183     if (migration_in_postcopy()) {
3184         return RAM_SAVE_CONTROL_NOT_SUPP;
3185     }
3186 
3187     qemu_fflush(f);
3188 
3189     if (size > 0) {
3190         /*
3191          * Add this page to the current 'chunk'. If the chunk
3192          * is full, or the page doesn't belong to the current chunk,
3193          * an actual RDMA write will occur and a new chunk will be formed.
3194          */
3195         ret = qemu_rdma_write(f, rdma, block_offset, offset, size);
3196         if (ret < 0) {
3197             error_report("rdma migration: write error! %d", ret);
3198             goto err;
3199         }
3200 
3201         /*
3202          * We always return 1 bytes because the RDMA
3203          * protocol is completely asynchronous. We do not yet know
3204          * whether an  identified chunk is zero or not because we're
3205          * waiting for other pages to potentially be merged with
3206          * the current chunk. So, we have to call qemu_update_position()
3207          * later on when the actual write occurs.
3208          */
3209         if (bytes_sent) {
3210             *bytes_sent = 1;
3211         }
3212     } else {
3213         uint64_t index, chunk;
3214 
3215         /* TODO: Change QEMUFileOps prototype to be signed: size_t => long
3216         if (size < 0) {
3217             ret = qemu_rdma_drain_cq(f, rdma);
3218             if (ret < 0) {
3219                 fprintf(stderr, "rdma: failed to synchronously drain"
3220                                 " completion queue before unregistration.\n");
3221                 goto err;
3222             }
3223         }
3224         */
3225 
3226         ret = qemu_rdma_search_ram_block(rdma, block_offset,
3227                                          offset, size, &index, &chunk);
3228 
3229         if (ret) {
3230             error_report("ram block search failed");
3231             goto err;
3232         }
3233 
3234         qemu_rdma_signal_unregister(rdma, index, chunk, 0);
3235 
3236         /*
3237          * TODO: Synchronous, guaranteed unregistration (should not occur during
3238          * fast-path). Otherwise, unregisters will process on the next call to
3239          * qemu_rdma_drain_cq()
3240         if (size < 0) {
3241             qemu_rdma_unregister_waiting(rdma);
3242         }
3243         */
3244     }
3245 
3246     /*
3247      * Drain the Completion Queue if possible, but do not block,
3248      * just poll.
3249      *
3250      * If nothing to poll, the end of the iteration will do this
3251      * again to make sure we don't overflow the request queue.
3252      */
3253     while (1) {
3254         uint64_t wr_id, wr_id_in;
3255         int ret = qemu_rdma_poll(rdma, &wr_id_in, NULL);
3256         if (ret < 0) {
3257             error_report("rdma migration: polling error! %d", ret);
3258             goto err;
3259         }
3260 
3261         wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
3262 
3263         if (wr_id == RDMA_WRID_NONE) {
3264             break;
3265         }
3266     }
3267 
3268     return RAM_SAVE_CONTROL_DELAYED;
3269 err:
3270     rdma->error_state = ret;
3271     return ret;
3272 }
3273 
3274 static void rdma_accept_incoming_migration(void *opaque);
3275 
3276 static void rdma_cm_poll_handler(void *opaque)
3277 {
3278     RDMAContext *rdma = opaque;
3279     int ret;
3280     struct rdma_cm_event *cm_event;
3281     MigrationIncomingState *mis = migration_incoming_get_current();
3282 
3283     ret = rdma_get_cm_event(rdma->channel, &cm_event);
3284     if (ret) {
3285         error_report("get_cm_event failed %d", errno);
3286         return;
3287     }
3288     rdma_ack_cm_event(cm_event);
3289 
3290     if (cm_event->event == RDMA_CM_EVENT_DISCONNECTED ||
3291         cm_event->event == RDMA_CM_EVENT_DEVICE_REMOVAL) {
3292         if (!rdma->error_state &&
3293             migration_incoming_get_current()->state !=
3294               MIGRATION_STATUS_COMPLETED) {
3295             error_report("receive cm event, cm event is %d", cm_event->event);
3296             rdma->error_state = -EPIPE;
3297             if (rdma->return_path) {
3298                 rdma->return_path->error_state = -EPIPE;
3299             }
3300         }
3301 
3302         if (mis->migration_incoming_co) {
3303             qemu_coroutine_enter(mis->migration_incoming_co);
3304         }
3305         return;
3306     }
3307 }
3308 
3309 static int qemu_rdma_accept(RDMAContext *rdma)
3310 {
3311     RDMACapabilities cap;
3312     struct rdma_conn_param conn_param = {
3313                                             .responder_resources = 2,
3314                                             .private_data = &cap,
3315                                             .private_data_len = sizeof(cap),
3316                                          };
3317     RDMAContext *rdma_return_path = NULL;
3318     struct rdma_cm_event *cm_event;
3319     struct ibv_context *verbs;
3320     int ret = -EINVAL;
3321     int idx;
3322 
3323     ret = rdma_get_cm_event(rdma->channel, &cm_event);
3324     if (ret) {
3325         goto err_rdma_dest_wait;
3326     }
3327 
3328     if (cm_event->event != RDMA_CM_EVENT_CONNECT_REQUEST) {
3329         rdma_ack_cm_event(cm_event);
3330         goto err_rdma_dest_wait;
3331     }
3332 
3333     /*
3334      * initialize the RDMAContext for return path for postcopy after first
3335      * connection request reached.
3336      */
3337     if (migrate_postcopy() && !rdma->is_return_path) {
3338         rdma_return_path = qemu_rdma_data_init(rdma->host_port, NULL);
3339         if (rdma_return_path == NULL) {
3340             rdma_ack_cm_event(cm_event);
3341             goto err_rdma_dest_wait;
3342         }
3343 
3344         qemu_rdma_return_path_dest_init(rdma_return_path, rdma);
3345     }
3346 
3347     memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap));
3348 
3349     network_to_caps(&cap);
3350 
3351     if (cap.version < 1 || cap.version > RDMA_CONTROL_VERSION_CURRENT) {
3352             error_report("Unknown source RDMA version: %d, bailing...",
3353                             cap.version);
3354             rdma_ack_cm_event(cm_event);
3355             goto err_rdma_dest_wait;
3356     }
3357 
3358     /*
3359      * Respond with only the capabilities this version of QEMU knows about.
3360      */
3361     cap.flags &= known_capabilities;
3362 
3363     /*
3364      * Enable the ones that we do know about.
3365      * Add other checks here as new ones are introduced.
3366      */
3367     if (cap.flags & RDMA_CAPABILITY_PIN_ALL) {
3368         rdma->pin_all = true;
3369     }
3370 
3371     rdma->cm_id = cm_event->id;
3372     verbs = cm_event->id->verbs;
3373 
3374     rdma_ack_cm_event(cm_event);
3375 
3376     trace_qemu_rdma_accept_pin_state(rdma->pin_all);
3377 
3378     caps_to_network(&cap);
3379 
3380     trace_qemu_rdma_accept_pin_verbsc(verbs);
3381 
3382     if (!rdma->verbs) {
3383         rdma->verbs = verbs;
3384     } else if (rdma->verbs != verbs) {
3385             error_report("ibv context not matching %p, %p!", rdma->verbs,
3386                          verbs);
3387             goto err_rdma_dest_wait;
3388     }
3389 
3390     qemu_rdma_dump_id("dest_init", verbs);
3391 
3392     ret = qemu_rdma_alloc_pd_cq(rdma);
3393     if (ret) {
3394         error_report("rdma migration: error allocating pd and cq!");
3395         goto err_rdma_dest_wait;
3396     }
3397 
3398     ret = qemu_rdma_alloc_qp(rdma);
3399     if (ret) {
3400         error_report("rdma migration: error allocating qp!");
3401         goto err_rdma_dest_wait;
3402     }
3403 
3404     ret = qemu_rdma_init_ram_blocks(rdma);
3405     if (ret) {
3406         error_report("rdma migration: error initializing ram blocks!");
3407         goto err_rdma_dest_wait;
3408     }
3409 
3410     for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
3411         ret = qemu_rdma_reg_control(rdma, idx);
3412         if (ret) {
3413             error_report("rdma: error registering %d control", idx);
3414             goto err_rdma_dest_wait;
3415         }
3416     }
3417 
3418     /* Accept the second connection request for return path */
3419     if (migrate_postcopy() && !rdma->is_return_path) {
3420         qemu_set_fd_handler(rdma->channel->fd, rdma_accept_incoming_migration,
3421                             NULL,
3422                             (void *)(intptr_t)rdma->return_path);
3423     } else {
3424         qemu_set_fd_handler(rdma->channel->fd, rdma_cm_poll_handler,
3425                             NULL, rdma);
3426     }
3427 
3428     ret = rdma_accept(rdma->cm_id, &conn_param);
3429     if (ret) {
3430         error_report("rdma_accept returns %d", ret);
3431         goto err_rdma_dest_wait;
3432     }
3433 
3434     ret = rdma_get_cm_event(rdma->channel, &cm_event);
3435     if (ret) {
3436         error_report("rdma_accept get_cm_event failed %d", ret);
3437         goto err_rdma_dest_wait;
3438     }
3439 
3440     if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) {
3441         error_report("rdma_accept not event established");
3442         rdma_ack_cm_event(cm_event);
3443         goto err_rdma_dest_wait;
3444     }
3445 
3446     rdma_ack_cm_event(cm_event);
3447     rdma->connected = true;
3448 
3449     ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
3450     if (ret) {
3451         error_report("rdma migration: error posting second control recv");
3452         goto err_rdma_dest_wait;
3453     }
3454 
3455     qemu_rdma_dump_gid("dest_connect", rdma->cm_id);
3456 
3457     return 0;
3458 
3459 err_rdma_dest_wait:
3460     rdma->error_state = ret;
3461     qemu_rdma_cleanup(rdma);
3462     g_free(rdma_return_path);
3463     return ret;
3464 }
3465 
3466 static int dest_ram_sort_func(const void *a, const void *b)
3467 {
3468     unsigned int a_index = ((const RDMALocalBlock *)a)->src_index;
3469     unsigned int b_index = ((const RDMALocalBlock *)b)->src_index;
3470 
3471     return (a_index < b_index) ? -1 : (a_index != b_index);
3472 }
3473 
3474 /*
3475  * During each iteration of the migration, we listen for instructions
3476  * by the source VM to perform dynamic page registrations before they
3477  * can perform RDMA operations.
3478  *
3479  * We respond with the 'rkey'.
3480  *
3481  * Keep doing this until the source tells us to stop.
3482  */
3483 static int qemu_rdma_registration_handle(QEMUFile *f, void *opaque)
3484 {
3485     RDMAControlHeader reg_resp = { .len = sizeof(RDMARegisterResult),
3486                                .type = RDMA_CONTROL_REGISTER_RESULT,
3487                                .repeat = 0,
3488                              };
3489     RDMAControlHeader unreg_resp = { .len = 0,
3490                                .type = RDMA_CONTROL_UNREGISTER_FINISHED,
3491                                .repeat = 0,
3492                              };
3493     RDMAControlHeader blocks = { .type = RDMA_CONTROL_RAM_BLOCKS_RESULT,
3494                                  .repeat = 1 };
3495     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(opaque);
3496     RDMAContext *rdma;
3497     RDMALocalBlocks *local;
3498     RDMAControlHeader head;
3499     RDMARegister *reg, *registers;
3500     RDMACompress *comp;
3501     RDMARegisterResult *reg_result;
3502     static RDMARegisterResult results[RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE];
3503     RDMALocalBlock *block;
3504     void *host_addr;
3505     int ret = 0;
3506     int idx = 0;
3507     int count = 0;
3508     int i = 0;
3509 
3510     RCU_READ_LOCK_GUARD();
3511     rdma = qatomic_rcu_read(&rioc->rdmain);
3512 
3513     if (!rdma) {
3514         return -EIO;
3515     }
3516 
3517     CHECK_ERROR_STATE();
3518 
3519     local = &rdma->local_ram_blocks;
3520     do {
3521         trace_qemu_rdma_registration_handle_wait();
3522 
3523         ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_NONE);
3524 
3525         if (ret < 0) {
3526             break;
3527         }
3528 
3529         if (head.repeat > RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE) {
3530             error_report("rdma: Too many requests in this message (%d)."
3531                             "Bailing.", head.repeat);
3532             ret = -EIO;
3533             break;
3534         }
3535 
3536         switch (head.type) {
3537         case RDMA_CONTROL_COMPRESS:
3538             comp = (RDMACompress *) rdma->wr_data[idx].control_curr;
3539             network_to_compress(comp);
3540 
3541             trace_qemu_rdma_registration_handle_compress(comp->length,
3542                                                          comp->block_idx,
3543                                                          comp->offset);
3544             if (comp->block_idx >= rdma->local_ram_blocks.nb_blocks) {
3545                 error_report("rdma: 'compress' bad block index %u (vs %d)",
3546                              (unsigned int)comp->block_idx,
3547                              rdma->local_ram_blocks.nb_blocks);
3548                 ret = -EIO;
3549                 goto out;
3550             }
3551             block = &(rdma->local_ram_blocks.block[comp->block_idx]);
3552 
3553             host_addr = block->local_host_addr +
3554                             (comp->offset - block->offset);
3555 
3556             ram_handle_compressed(host_addr, comp->value, comp->length);
3557             break;
3558 
3559         case RDMA_CONTROL_REGISTER_FINISHED:
3560             trace_qemu_rdma_registration_handle_finished();
3561             goto out;
3562 
3563         case RDMA_CONTROL_RAM_BLOCKS_REQUEST:
3564             trace_qemu_rdma_registration_handle_ram_blocks();
3565 
3566             /* Sort our local RAM Block list so it's the same as the source,
3567              * we can do this since we've filled in a src_index in the list
3568              * as we received the RAMBlock list earlier.
3569              */
3570             qsort(rdma->local_ram_blocks.block,
3571                   rdma->local_ram_blocks.nb_blocks,
3572                   sizeof(RDMALocalBlock), dest_ram_sort_func);
3573             for (i = 0; i < local->nb_blocks; i++) {
3574                 local->block[i].index = i;
3575             }
3576 
3577             if (rdma->pin_all) {
3578                 ret = qemu_rdma_reg_whole_ram_blocks(rdma);
3579                 if (ret) {
3580                     error_report("rdma migration: error dest "
3581                                     "registering ram blocks");
3582                     goto out;
3583                 }
3584             }
3585 
3586             /*
3587              * Dest uses this to prepare to transmit the RAMBlock descriptions
3588              * to the source VM after connection setup.
3589              * Both sides use the "remote" structure to communicate and update
3590              * their "local" descriptions with what was sent.
3591              */
3592             for (i = 0; i < local->nb_blocks; i++) {
3593                 rdma->dest_blocks[i].remote_host_addr =
3594                     (uintptr_t)(local->block[i].local_host_addr);
3595 
3596                 if (rdma->pin_all) {
3597                     rdma->dest_blocks[i].remote_rkey = local->block[i].mr->rkey;
3598                 }
3599 
3600                 rdma->dest_blocks[i].offset = local->block[i].offset;
3601                 rdma->dest_blocks[i].length = local->block[i].length;
3602 
3603                 dest_block_to_network(&rdma->dest_blocks[i]);
3604                 trace_qemu_rdma_registration_handle_ram_blocks_loop(
3605                     local->block[i].block_name,
3606                     local->block[i].offset,
3607                     local->block[i].length,
3608                     local->block[i].local_host_addr,
3609                     local->block[i].src_index);
3610             }
3611 
3612             blocks.len = rdma->local_ram_blocks.nb_blocks
3613                                                 * sizeof(RDMADestBlock);
3614 
3615 
3616             ret = qemu_rdma_post_send_control(rdma,
3617                                         (uint8_t *) rdma->dest_blocks, &blocks);
3618 
3619             if (ret < 0) {
3620                 error_report("rdma migration: error sending remote info");
3621                 goto out;
3622             }
3623 
3624             break;
3625         case RDMA_CONTROL_REGISTER_REQUEST:
3626             trace_qemu_rdma_registration_handle_register(head.repeat);
3627 
3628             reg_resp.repeat = head.repeat;
3629             registers = (RDMARegister *) rdma->wr_data[idx].control_curr;
3630 
3631             for (count = 0; count < head.repeat; count++) {
3632                 uint64_t chunk;
3633                 uint8_t *chunk_start, *chunk_end;
3634 
3635                 reg = &registers[count];
3636                 network_to_register(reg);
3637 
3638                 reg_result = &results[count];
3639 
3640                 trace_qemu_rdma_registration_handle_register_loop(count,
3641                          reg->current_index, reg->key.current_addr, reg->chunks);
3642 
3643                 if (reg->current_index >= rdma->local_ram_blocks.nb_blocks) {
3644                     error_report("rdma: 'register' bad block index %u (vs %d)",
3645                                  (unsigned int)reg->current_index,
3646                                  rdma->local_ram_blocks.nb_blocks);
3647                     ret = -ENOENT;
3648                     goto out;
3649                 }
3650                 block = &(rdma->local_ram_blocks.block[reg->current_index]);
3651                 if (block->is_ram_block) {
3652                     if (block->offset > reg->key.current_addr) {
3653                         error_report("rdma: bad register address for block %s"
3654                             " offset: %" PRIx64 " current_addr: %" PRIx64,
3655                             block->block_name, block->offset,
3656                             reg->key.current_addr);
3657                         ret = -ERANGE;
3658                         goto out;
3659                     }
3660                     host_addr = (block->local_host_addr +
3661                                 (reg->key.current_addr - block->offset));
3662                     chunk = ram_chunk_index(block->local_host_addr,
3663                                             (uint8_t *) host_addr);
3664                 } else {
3665                     chunk = reg->key.chunk;
3666                     host_addr = block->local_host_addr +
3667                         (reg->key.chunk * (1UL << RDMA_REG_CHUNK_SHIFT));
3668                     /* Check for particularly bad chunk value */
3669                     if (host_addr < (void *)block->local_host_addr) {
3670                         error_report("rdma: bad chunk for block %s"
3671                             " chunk: %" PRIx64,
3672                             block->block_name, reg->key.chunk);
3673                         ret = -ERANGE;
3674                         goto out;
3675                     }
3676                 }
3677                 chunk_start = ram_chunk_start(block, chunk);
3678                 chunk_end = ram_chunk_end(block, chunk + reg->chunks);
3679                 /* avoid "-Waddress-of-packed-member" warning */
3680                 uint32_t tmp_rkey = 0;
3681                 if (qemu_rdma_register_and_get_keys(rdma, block,
3682                             (uintptr_t)host_addr, NULL, &tmp_rkey,
3683                             chunk, chunk_start, chunk_end)) {
3684                     error_report("cannot get rkey");
3685                     ret = -EINVAL;
3686                     goto out;
3687                 }
3688                 reg_result->rkey = tmp_rkey;
3689 
3690                 reg_result->host_addr = (uintptr_t)block->local_host_addr;
3691 
3692                 trace_qemu_rdma_registration_handle_register_rkey(
3693                                                            reg_result->rkey);
3694 
3695                 result_to_network(reg_result);
3696             }
3697 
3698             ret = qemu_rdma_post_send_control(rdma,
3699                             (uint8_t *) results, &reg_resp);
3700 
3701             if (ret < 0) {
3702                 error_report("Failed to send control buffer");
3703                 goto out;
3704             }
3705             break;
3706         case RDMA_CONTROL_UNREGISTER_REQUEST:
3707             trace_qemu_rdma_registration_handle_unregister(head.repeat);
3708             unreg_resp.repeat = head.repeat;
3709             registers = (RDMARegister *) rdma->wr_data[idx].control_curr;
3710 
3711             for (count = 0; count < head.repeat; count++) {
3712                 reg = &registers[count];
3713                 network_to_register(reg);
3714 
3715                 trace_qemu_rdma_registration_handle_unregister_loop(count,
3716                            reg->current_index, reg->key.chunk);
3717 
3718                 block = &(rdma->local_ram_blocks.block[reg->current_index]);
3719 
3720                 ret = ibv_dereg_mr(block->pmr[reg->key.chunk]);
3721                 block->pmr[reg->key.chunk] = NULL;
3722 
3723                 if (ret != 0) {
3724                     perror("rdma unregistration chunk failed");
3725                     ret = -ret;
3726                     goto out;
3727                 }
3728 
3729                 rdma->total_registrations--;
3730 
3731                 trace_qemu_rdma_registration_handle_unregister_success(
3732                                                        reg->key.chunk);
3733             }
3734 
3735             ret = qemu_rdma_post_send_control(rdma, NULL, &unreg_resp);
3736 
3737             if (ret < 0) {
3738                 error_report("Failed to send control buffer");
3739                 goto out;
3740             }
3741             break;
3742         case RDMA_CONTROL_REGISTER_RESULT:
3743             error_report("Invalid RESULT message at dest.");
3744             ret = -EIO;
3745             goto out;
3746         default:
3747             error_report("Unknown control message %s", control_desc(head.type));
3748             ret = -EIO;
3749             goto out;
3750         }
3751     } while (1);
3752 out:
3753     if (ret < 0) {
3754         rdma->error_state = ret;
3755     }
3756     return ret;
3757 }
3758 
3759 /* Destination:
3760  * Called via a ram_control_load_hook during the initial RAM load section which
3761  * lists the RAMBlocks by name.  This lets us know the order of the RAMBlocks
3762  * on the source.
3763  * We've already built our local RAMBlock list, but not yet sent the list to
3764  * the source.
3765  */
3766 static int
3767 rdma_block_notification_handle(QIOChannelRDMA *rioc, const char *name)
3768 {
3769     RDMAContext *rdma;
3770     int curr;
3771     int found = -1;
3772 
3773     RCU_READ_LOCK_GUARD();
3774     rdma = qatomic_rcu_read(&rioc->rdmain);
3775 
3776     if (!rdma) {
3777         return -EIO;
3778     }
3779 
3780     /* Find the matching RAMBlock in our local list */
3781     for (curr = 0; curr < rdma->local_ram_blocks.nb_blocks; curr++) {
3782         if (!strcmp(rdma->local_ram_blocks.block[curr].block_name, name)) {
3783             found = curr;
3784             break;
3785         }
3786     }
3787 
3788     if (found == -1) {
3789         error_report("RAMBlock '%s' not found on destination", name);
3790         return -ENOENT;
3791     }
3792 
3793     rdma->local_ram_blocks.block[curr].src_index = rdma->next_src_index;
3794     trace_rdma_block_notification_handle(name, rdma->next_src_index);
3795     rdma->next_src_index++;
3796 
3797     return 0;
3798 }
3799 
3800 static int rdma_load_hook(QEMUFile *f, void *opaque, uint64_t flags, void *data)
3801 {
3802     switch (flags) {
3803     case RAM_CONTROL_BLOCK_REG:
3804         return rdma_block_notification_handle(opaque, data);
3805 
3806     case RAM_CONTROL_HOOK:
3807         return qemu_rdma_registration_handle(f, opaque);
3808 
3809     default:
3810         /* Shouldn't be called with any other values */
3811         abort();
3812     }
3813 }
3814 
3815 static int qemu_rdma_registration_start(QEMUFile *f, void *opaque,
3816                                         uint64_t flags, void *data)
3817 {
3818     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(opaque);
3819     RDMAContext *rdma;
3820 
3821     RCU_READ_LOCK_GUARD();
3822     rdma = qatomic_rcu_read(&rioc->rdmaout);
3823     if (!rdma) {
3824         return -EIO;
3825     }
3826 
3827     CHECK_ERROR_STATE();
3828 
3829     if (migration_in_postcopy()) {
3830         return 0;
3831     }
3832 
3833     trace_qemu_rdma_registration_start(flags);
3834     qemu_put_be64(f, RAM_SAVE_FLAG_HOOK);
3835     qemu_fflush(f);
3836 
3837     return 0;
3838 }
3839 
3840 /*
3841  * Inform dest that dynamic registrations are done for now.
3842  * First, flush writes, if any.
3843  */
3844 static int qemu_rdma_registration_stop(QEMUFile *f, void *opaque,
3845                                        uint64_t flags, void *data)
3846 {
3847     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(opaque);
3848     RDMAContext *rdma;
3849     RDMAControlHeader head = { .len = 0, .repeat = 1 };
3850     int ret = 0;
3851 
3852     RCU_READ_LOCK_GUARD();
3853     rdma = qatomic_rcu_read(&rioc->rdmaout);
3854     if (!rdma) {
3855         return -EIO;
3856     }
3857 
3858     CHECK_ERROR_STATE();
3859 
3860     if (migration_in_postcopy()) {
3861         return 0;
3862     }
3863 
3864     qemu_fflush(f);
3865     ret = qemu_rdma_drain_cq(f, rdma);
3866 
3867     if (ret < 0) {
3868         goto err;
3869     }
3870 
3871     if (flags == RAM_CONTROL_SETUP) {
3872         RDMAControlHeader resp = {.type = RDMA_CONTROL_RAM_BLOCKS_RESULT };
3873         RDMALocalBlocks *local = &rdma->local_ram_blocks;
3874         int reg_result_idx, i, nb_dest_blocks;
3875 
3876         head.type = RDMA_CONTROL_RAM_BLOCKS_REQUEST;
3877         trace_qemu_rdma_registration_stop_ram();
3878 
3879         /*
3880          * Make sure that we parallelize the pinning on both sides.
3881          * For very large guests, doing this serially takes a really
3882          * long time, so we have to 'interleave' the pinning locally
3883          * with the control messages by performing the pinning on this
3884          * side before we receive the control response from the other
3885          * side that the pinning has completed.
3886          */
3887         ret = qemu_rdma_exchange_send(rdma, &head, NULL, &resp,
3888                     &reg_result_idx, rdma->pin_all ?
3889                     qemu_rdma_reg_whole_ram_blocks : NULL);
3890         if (ret < 0) {
3891             fprintf(stderr, "receiving remote info!");
3892             return ret;
3893         }
3894 
3895         nb_dest_blocks = resp.len / sizeof(RDMADestBlock);
3896 
3897         /*
3898          * The protocol uses two different sets of rkeys (mutually exclusive):
3899          * 1. One key to represent the virtual address of the entire ram block.
3900          *    (dynamic chunk registration disabled - pin everything with one rkey.)
3901          * 2. One to represent individual chunks within a ram block.
3902          *    (dynamic chunk registration enabled - pin individual chunks.)
3903          *
3904          * Once the capability is successfully negotiated, the destination transmits
3905          * the keys to use (or sends them later) including the virtual addresses
3906          * and then propagates the remote ram block descriptions to his local copy.
3907          */
3908 
3909         if (local->nb_blocks != nb_dest_blocks) {
3910             fprintf(stderr, "ram blocks mismatch (Number of blocks %d vs %d) "
3911                     "Your QEMU command line parameters are probably "
3912                     "not identical on both the source and destination.",
3913                     local->nb_blocks, nb_dest_blocks);
3914             rdma->error_state = -EINVAL;
3915             return -EINVAL;
3916         }
3917 
3918         qemu_rdma_move_header(rdma, reg_result_idx, &resp);
3919         memcpy(rdma->dest_blocks,
3920             rdma->wr_data[reg_result_idx].control_curr, resp.len);
3921         for (i = 0; i < nb_dest_blocks; i++) {
3922             network_to_dest_block(&rdma->dest_blocks[i]);
3923 
3924             /* We require that the blocks are in the same order */
3925             if (rdma->dest_blocks[i].length != local->block[i].length) {
3926                 fprintf(stderr, "Block %s/%d has a different length %" PRIu64
3927                         "vs %" PRIu64, local->block[i].block_name, i,
3928                         local->block[i].length,
3929                         rdma->dest_blocks[i].length);
3930                 rdma->error_state = -EINVAL;
3931                 return -EINVAL;
3932             }
3933             local->block[i].remote_host_addr =
3934                     rdma->dest_blocks[i].remote_host_addr;
3935             local->block[i].remote_rkey = rdma->dest_blocks[i].remote_rkey;
3936         }
3937     }
3938 
3939     trace_qemu_rdma_registration_stop(flags);
3940 
3941     head.type = RDMA_CONTROL_REGISTER_FINISHED;
3942     ret = qemu_rdma_exchange_send(rdma, &head, NULL, NULL, NULL, NULL);
3943 
3944     if (ret < 0) {
3945         goto err;
3946     }
3947 
3948     return 0;
3949 err:
3950     rdma->error_state = ret;
3951     return ret;
3952 }
3953 
3954 static const QEMUFileHooks rdma_read_hooks = {
3955     .hook_ram_load = rdma_load_hook,
3956 };
3957 
3958 static const QEMUFileHooks rdma_write_hooks = {
3959     .before_ram_iterate = qemu_rdma_registration_start,
3960     .after_ram_iterate  = qemu_rdma_registration_stop,
3961     .save_page          = qemu_rdma_save_page,
3962 };
3963 
3964 
3965 static void qio_channel_rdma_finalize(Object *obj)
3966 {
3967     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(obj);
3968     if (rioc->rdmain) {
3969         qemu_rdma_cleanup(rioc->rdmain);
3970         g_free(rioc->rdmain);
3971         rioc->rdmain = NULL;
3972     }
3973     if (rioc->rdmaout) {
3974         qemu_rdma_cleanup(rioc->rdmaout);
3975         g_free(rioc->rdmaout);
3976         rioc->rdmaout = NULL;
3977     }
3978 }
3979 
3980 static void qio_channel_rdma_class_init(ObjectClass *klass,
3981                                         void *class_data G_GNUC_UNUSED)
3982 {
3983     QIOChannelClass *ioc_klass = QIO_CHANNEL_CLASS(klass);
3984 
3985     ioc_klass->io_writev = qio_channel_rdma_writev;
3986     ioc_klass->io_readv = qio_channel_rdma_readv;
3987     ioc_klass->io_set_blocking = qio_channel_rdma_set_blocking;
3988     ioc_klass->io_close = qio_channel_rdma_close;
3989     ioc_klass->io_create_watch = qio_channel_rdma_create_watch;
3990     ioc_klass->io_set_aio_fd_handler = qio_channel_rdma_set_aio_fd_handler;
3991     ioc_klass->io_shutdown = qio_channel_rdma_shutdown;
3992 }
3993 
3994 static const TypeInfo qio_channel_rdma_info = {
3995     .parent = TYPE_QIO_CHANNEL,
3996     .name = TYPE_QIO_CHANNEL_RDMA,
3997     .instance_size = sizeof(QIOChannelRDMA),
3998     .instance_finalize = qio_channel_rdma_finalize,
3999     .class_init = qio_channel_rdma_class_init,
4000 };
4001 
4002 static void qio_channel_rdma_register_types(void)
4003 {
4004     type_register_static(&qio_channel_rdma_info);
4005 }
4006 
4007 type_init(qio_channel_rdma_register_types);
4008 
4009 static QEMUFile *qemu_fopen_rdma(RDMAContext *rdma, const char *mode)
4010 {
4011     QIOChannelRDMA *rioc;
4012 
4013     if (qemu_file_mode_is_not_valid(mode)) {
4014         return NULL;
4015     }
4016 
4017     rioc = QIO_CHANNEL_RDMA(object_new(TYPE_QIO_CHANNEL_RDMA));
4018 
4019     if (mode[0] == 'w') {
4020         rioc->file = qemu_fopen_channel_output(QIO_CHANNEL(rioc));
4021         rioc->rdmaout = rdma;
4022         rioc->rdmain = rdma->return_path;
4023         qemu_file_set_hooks(rioc->file, &rdma_write_hooks);
4024     } else {
4025         rioc->file = qemu_fopen_channel_input(QIO_CHANNEL(rioc));
4026         rioc->rdmain = rdma;
4027         rioc->rdmaout = rdma->return_path;
4028         qemu_file_set_hooks(rioc->file, &rdma_read_hooks);
4029     }
4030 
4031     return rioc->file;
4032 }
4033 
4034 static void rdma_accept_incoming_migration(void *opaque)
4035 {
4036     RDMAContext *rdma = opaque;
4037     int ret;
4038     QEMUFile *f;
4039     Error *local_err = NULL;
4040 
4041     trace_qemu_rdma_accept_incoming_migration();
4042     ret = qemu_rdma_accept(rdma);
4043 
4044     if (ret) {
4045         fprintf(stderr, "RDMA ERROR: Migration initialization failed\n");
4046         return;
4047     }
4048 
4049     trace_qemu_rdma_accept_incoming_migration_accepted();
4050 
4051     if (rdma->is_return_path) {
4052         return;
4053     }
4054 
4055     f = qemu_fopen_rdma(rdma, "rb");
4056     if (f == NULL) {
4057         fprintf(stderr, "RDMA ERROR: could not qemu_fopen_rdma\n");
4058         qemu_rdma_cleanup(rdma);
4059         return;
4060     }
4061 
4062     rdma->migration_started_on_destination = 1;
4063     migration_fd_process_incoming(f, &local_err);
4064     if (local_err) {
4065         error_reportf_err(local_err, "RDMA ERROR:");
4066     }
4067 }
4068 
4069 void rdma_start_incoming_migration(const char *host_port, Error **errp)
4070 {
4071     int ret;
4072     RDMAContext *rdma, *rdma_return_path = NULL;
4073     Error *local_err = NULL;
4074 
4075     trace_rdma_start_incoming_migration();
4076 
4077     /* Avoid ram_block_discard_disable(), cannot change during migration. */
4078     if (ram_block_discard_is_required()) {
4079         error_setg(errp, "RDMA: cannot disable RAM discard");
4080         return;
4081     }
4082 
4083     rdma = qemu_rdma_data_init(host_port, &local_err);
4084     if (rdma == NULL) {
4085         goto err;
4086     }
4087 
4088     ret = qemu_rdma_dest_init(rdma, &local_err);
4089 
4090     if (ret) {
4091         goto err;
4092     }
4093 
4094     trace_rdma_start_incoming_migration_after_dest_init();
4095 
4096     ret = rdma_listen(rdma->listen_id, 5);
4097 
4098     if (ret) {
4099         ERROR(errp, "listening on socket!");
4100         goto cleanup_rdma;
4101     }
4102 
4103     trace_rdma_start_incoming_migration_after_rdma_listen();
4104 
4105     qemu_set_fd_handler(rdma->channel->fd, rdma_accept_incoming_migration,
4106                         NULL, (void *)(intptr_t)rdma);
4107     return;
4108 
4109 cleanup_rdma:
4110     qemu_rdma_cleanup(rdma);
4111 err:
4112     error_propagate(errp, local_err);
4113     if (rdma) {
4114         g_free(rdma->host);
4115         g_free(rdma->host_port);
4116     }
4117     g_free(rdma);
4118     g_free(rdma_return_path);
4119 }
4120 
4121 void rdma_start_outgoing_migration(void *opaque,
4122                             const char *host_port, Error **errp)
4123 {
4124     MigrationState *s = opaque;
4125     RDMAContext *rdma_return_path = NULL;
4126     RDMAContext *rdma;
4127     int ret = 0;
4128 
4129     /* Avoid ram_block_discard_disable(), cannot change during migration. */
4130     if (ram_block_discard_is_required()) {
4131         error_setg(errp, "RDMA: cannot disable RAM discard");
4132         return;
4133     }
4134 
4135     rdma = qemu_rdma_data_init(host_port, errp);
4136     if (rdma == NULL) {
4137         goto err;
4138     }
4139 
4140     ret = qemu_rdma_source_init(rdma,
4141         s->enabled_capabilities[MIGRATION_CAPABILITY_RDMA_PIN_ALL], errp);
4142 
4143     if (ret) {
4144         goto err;
4145     }
4146 
4147     trace_rdma_start_outgoing_migration_after_rdma_source_init();
4148     ret = qemu_rdma_connect(rdma, errp, false);
4149 
4150     if (ret) {
4151         goto err;
4152     }
4153 
4154     /* RDMA postcopy need a separate queue pair for return path */
4155     if (migrate_postcopy()) {
4156         rdma_return_path = qemu_rdma_data_init(host_port, errp);
4157 
4158         if (rdma_return_path == NULL) {
4159             goto return_path_err;
4160         }
4161 
4162         ret = qemu_rdma_source_init(rdma_return_path,
4163             s->enabled_capabilities[MIGRATION_CAPABILITY_RDMA_PIN_ALL], errp);
4164 
4165         if (ret) {
4166             goto return_path_err;
4167         }
4168 
4169         ret = qemu_rdma_connect(rdma_return_path, errp, true);
4170 
4171         if (ret) {
4172             goto return_path_err;
4173         }
4174 
4175         rdma->return_path = rdma_return_path;
4176         rdma_return_path->return_path = rdma;
4177         rdma_return_path->is_return_path = true;
4178     }
4179 
4180     trace_rdma_start_outgoing_migration_after_rdma_connect();
4181 
4182     s->to_dst_file = qemu_fopen_rdma(rdma, "wb");
4183     migrate_fd_connect(s, NULL);
4184     return;
4185 return_path_err:
4186     qemu_rdma_cleanup(rdma);
4187 err:
4188     g_free(rdma);
4189     g_free(rdma_return_path);
4190 }
4191