xref: /openbmc/qemu/migration/rdma.c (revision 3cfafd31)
1 /*
2  * RDMA protocol and interfaces
3  *
4  * Copyright IBM, Corp. 2010-2013
5  * Copyright Red Hat, Inc. 2015-2016
6  *
7  * Authors:
8  *  Michael R. Hines <mrhines@us.ibm.com>
9  *  Jiuxing Liu <jl@us.ibm.com>
10  *  Daniel P. Berrange <berrange@redhat.com>
11  *
12  * This work is licensed under the terms of the GNU GPL, version 2 or
13  * later.  See the COPYING file in the top-level directory.
14  *
15  */
16 
17 #include "qemu/osdep.h"
18 #include "qapi/error.h"
19 #include "qemu/cutils.h"
20 #include "rdma.h"
21 #include "migration.h"
22 #include "qemu-file.h"
23 #include "ram.h"
24 #include "qemu-file-channel.h"
25 #include "qemu/error-report.h"
26 #include "qemu/main-loop.h"
27 #include "qemu/module.h"
28 #include "qemu/rcu.h"
29 #include "qemu/sockets.h"
30 #include "qemu/bitmap.h"
31 #include "qemu/coroutine.h"
32 #include "exec/memory.h"
33 #include <sys/socket.h>
34 #include <netdb.h>
35 #include <arpa/inet.h>
36 #include <rdma/rdma_cma.h>
37 #include "trace.h"
38 #include "qom/object.h"
39 #include <poll.h>
40 
41 /*
42  * Print and error on both the Monitor and the Log file.
43  */
44 #define ERROR(errp, fmt, ...) \
45     do { \
46         fprintf(stderr, "RDMA ERROR: " fmt "\n", ## __VA_ARGS__); \
47         if (errp && (*(errp) == NULL)) { \
48             error_setg(errp, "RDMA ERROR: " fmt, ## __VA_ARGS__); \
49         } \
50     } while (0)
51 
52 #define RDMA_RESOLVE_TIMEOUT_MS 10000
53 
54 /* Do not merge data if larger than this. */
55 #define RDMA_MERGE_MAX (2 * 1024 * 1024)
56 #define RDMA_SIGNALED_SEND_MAX (RDMA_MERGE_MAX / 4096)
57 
58 #define RDMA_REG_CHUNK_SHIFT 20 /* 1 MB */
59 
60 /*
61  * This is only for non-live state being migrated.
62  * Instead of RDMA_WRITE messages, we use RDMA_SEND
63  * messages for that state, which requires a different
64  * delivery design than main memory.
65  */
66 #define RDMA_SEND_INCREMENT 32768
67 
68 /*
69  * Maximum size infiniband SEND message
70  */
71 #define RDMA_CONTROL_MAX_BUFFER (512 * 1024)
72 #define RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE 4096
73 
74 #define RDMA_CONTROL_VERSION_CURRENT 1
75 /*
76  * Capabilities for negotiation.
77  */
78 #define RDMA_CAPABILITY_PIN_ALL 0x01
79 
80 /*
81  * Add the other flags above to this list of known capabilities
82  * as they are introduced.
83  */
84 static uint32_t known_capabilities = RDMA_CAPABILITY_PIN_ALL;
85 
86 #define CHECK_ERROR_STATE() \
87     do { \
88         if (rdma->error_state) { \
89             if (!rdma->error_reported) { \
90                 error_report("RDMA is in an error state waiting migration" \
91                                 " to abort!"); \
92                 rdma->error_reported = 1; \
93             } \
94             return rdma->error_state; \
95         } \
96     } while (0)
97 
98 /*
99  * A work request ID is 64-bits and we split up these bits
100  * into 3 parts:
101  *
102  * bits 0-15 : type of control message, 2^16
103  * bits 16-29: ram block index, 2^14
104  * bits 30-63: ram block chunk number, 2^34
105  *
106  * The last two bit ranges are only used for RDMA writes,
107  * in order to track their completion and potentially
108  * also track unregistration status of the message.
109  */
110 #define RDMA_WRID_TYPE_SHIFT  0UL
111 #define RDMA_WRID_BLOCK_SHIFT 16UL
112 #define RDMA_WRID_CHUNK_SHIFT 30UL
113 
114 #define RDMA_WRID_TYPE_MASK \
115     ((1UL << RDMA_WRID_BLOCK_SHIFT) - 1UL)
116 
117 #define RDMA_WRID_BLOCK_MASK \
118     (~RDMA_WRID_TYPE_MASK & ((1UL << RDMA_WRID_CHUNK_SHIFT) - 1UL))
119 
120 #define RDMA_WRID_CHUNK_MASK (~RDMA_WRID_BLOCK_MASK & ~RDMA_WRID_TYPE_MASK)
121 
122 /*
123  * RDMA migration protocol:
124  * 1. RDMA Writes (data messages, i.e. RAM)
125  * 2. IB Send/Recv (control channel messages)
126  */
127 enum {
128     RDMA_WRID_NONE = 0,
129     RDMA_WRID_RDMA_WRITE = 1,
130     RDMA_WRID_SEND_CONTROL = 2000,
131     RDMA_WRID_RECV_CONTROL = 4000,
132 };
133 
134 static const char *wrid_desc[] = {
135     [RDMA_WRID_NONE] = "NONE",
136     [RDMA_WRID_RDMA_WRITE] = "WRITE RDMA",
137     [RDMA_WRID_SEND_CONTROL] = "CONTROL SEND",
138     [RDMA_WRID_RECV_CONTROL] = "CONTROL RECV",
139 };
140 
141 /*
142  * Work request IDs for IB SEND messages only (not RDMA writes).
143  * This is used by the migration protocol to transmit
144  * control messages (such as device state and registration commands)
145  *
146  * We could use more WRs, but we have enough for now.
147  */
148 enum {
149     RDMA_WRID_READY = 0,
150     RDMA_WRID_DATA,
151     RDMA_WRID_CONTROL,
152     RDMA_WRID_MAX,
153 };
154 
155 /*
156  * SEND/RECV IB Control Messages.
157  */
158 enum {
159     RDMA_CONTROL_NONE = 0,
160     RDMA_CONTROL_ERROR,
161     RDMA_CONTROL_READY,               /* ready to receive */
162     RDMA_CONTROL_QEMU_FILE,           /* QEMUFile-transmitted bytes */
163     RDMA_CONTROL_RAM_BLOCKS_REQUEST,  /* RAMBlock synchronization */
164     RDMA_CONTROL_RAM_BLOCKS_RESULT,   /* RAMBlock synchronization */
165     RDMA_CONTROL_COMPRESS,            /* page contains repeat values */
166     RDMA_CONTROL_REGISTER_REQUEST,    /* dynamic page registration */
167     RDMA_CONTROL_REGISTER_RESULT,     /* key to use after registration */
168     RDMA_CONTROL_REGISTER_FINISHED,   /* current iteration finished */
169     RDMA_CONTROL_UNREGISTER_REQUEST,  /* dynamic UN-registration */
170     RDMA_CONTROL_UNREGISTER_FINISHED, /* unpinning finished */
171 };
172 
173 
174 /*
175  * Memory and MR structures used to represent an IB Send/Recv work request.
176  * This is *not* used for RDMA writes, only IB Send/Recv.
177  */
178 typedef struct {
179     uint8_t  control[RDMA_CONTROL_MAX_BUFFER]; /* actual buffer to register */
180     struct   ibv_mr *control_mr;               /* registration metadata */
181     size_t   control_len;                      /* length of the message */
182     uint8_t *control_curr;                     /* start of unconsumed bytes */
183 } RDMAWorkRequestData;
184 
185 /*
186  * Negotiate RDMA capabilities during connection-setup time.
187  */
188 typedef struct {
189     uint32_t version;
190     uint32_t flags;
191 } RDMACapabilities;
192 
193 static void caps_to_network(RDMACapabilities *cap)
194 {
195     cap->version = htonl(cap->version);
196     cap->flags = htonl(cap->flags);
197 }
198 
199 static void network_to_caps(RDMACapabilities *cap)
200 {
201     cap->version = ntohl(cap->version);
202     cap->flags = ntohl(cap->flags);
203 }
204 
205 /*
206  * Representation of a RAMBlock from an RDMA perspective.
207  * This is not transmitted, only local.
208  * This and subsequent structures cannot be linked lists
209  * because we're using a single IB message to transmit
210  * the information. It's small anyway, so a list is overkill.
211  */
212 typedef struct RDMALocalBlock {
213     char          *block_name;
214     uint8_t       *local_host_addr; /* local virtual address */
215     uint64_t       remote_host_addr; /* remote virtual address */
216     uint64_t       offset;
217     uint64_t       length;
218     struct         ibv_mr **pmr;    /* MRs for chunk-level registration */
219     struct         ibv_mr *mr;      /* MR for non-chunk-level registration */
220     uint32_t      *remote_keys;     /* rkeys for chunk-level registration */
221     uint32_t       remote_rkey;     /* rkeys for non-chunk-level registration */
222     int            index;           /* which block are we */
223     unsigned int   src_index;       /* (Only used on dest) */
224     bool           is_ram_block;
225     int            nb_chunks;
226     unsigned long *transit_bitmap;
227     unsigned long *unregister_bitmap;
228 } RDMALocalBlock;
229 
230 /*
231  * Also represents a RAMblock, but only on the dest.
232  * This gets transmitted by the dest during connection-time
233  * to the source VM and then is used to populate the
234  * corresponding RDMALocalBlock with
235  * the information needed to perform the actual RDMA.
236  */
237 typedef struct QEMU_PACKED RDMADestBlock {
238     uint64_t remote_host_addr;
239     uint64_t offset;
240     uint64_t length;
241     uint32_t remote_rkey;
242     uint32_t padding;
243 } RDMADestBlock;
244 
245 static const char *control_desc(unsigned int rdma_control)
246 {
247     static const char *strs[] = {
248         [RDMA_CONTROL_NONE] = "NONE",
249         [RDMA_CONTROL_ERROR] = "ERROR",
250         [RDMA_CONTROL_READY] = "READY",
251         [RDMA_CONTROL_QEMU_FILE] = "QEMU FILE",
252         [RDMA_CONTROL_RAM_BLOCKS_REQUEST] = "RAM BLOCKS REQUEST",
253         [RDMA_CONTROL_RAM_BLOCKS_RESULT] = "RAM BLOCKS RESULT",
254         [RDMA_CONTROL_COMPRESS] = "COMPRESS",
255         [RDMA_CONTROL_REGISTER_REQUEST] = "REGISTER REQUEST",
256         [RDMA_CONTROL_REGISTER_RESULT] = "REGISTER RESULT",
257         [RDMA_CONTROL_REGISTER_FINISHED] = "REGISTER FINISHED",
258         [RDMA_CONTROL_UNREGISTER_REQUEST] = "UNREGISTER REQUEST",
259         [RDMA_CONTROL_UNREGISTER_FINISHED] = "UNREGISTER FINISHED",
260     };
261 
262     if (rdma_control > RDMA_CONTROL_UNREGISTER_FINISHED) {
263         return "??BAD CONTROL VALUE??";
264     }
265 
266     return strs[rdma_control];
267 }
268 
269 static uint64_t htonll(uint64_t v)
270 {
271     union { uint32_t lv[2]; uint64_t llv; } u;
272     u.lv[0] = htonl(v >> 32);
273     u.lv[1] = htonl(v & 0xFFFFFFFFULL);
274     return u.llv;
275 }
276 
277 static uint64_t ntohll(uint64_t v)
278 {
279     union { uint32_t lv[2]; uint64_t llv; } u;
280     u.llv = v;
281     return ((uint64_t)ntohl(u.lv[0]) << 32) | (uint64_t) ntohl(u.lv[1]);
282 }
283 
284 static void dest_block_to_network(RDMADestBlock *db)
285 {
286     db->remote_host_addr = htonll(db->remote_host_addr);
287     db->offset = htonll(db->offset);
288     db->length = htonll(db->length);
289     db->remote_rkey = htonl(db->remote_rkey);
290 }
291 
292 static void network_to_dest_block(RDMADestBlock *db)
293 {
294     db->remote_host_addr = ntohll(db->remote_host_addr);
295     db->offset = ntohll(db->offset);
296     db->length = ntohll(db->length);
297     db->remote_rkey = ntohl(db->remote_rkey);
298 }
299 
300 /*
301  * Virtual address of the above structures used for transmitting
302  * the RAMBlock descriptions at connection-time.
303  * This structure is *not* transmitted.
304  */
305 typedef struct RDMALocalBlocks {
306     int nb_blocks;
307     bool     init;             /* main memory init complete */
308     RDMALocalBlock *block;
309 } RDMALocalBlocks;
310 
311 /*
312  * Main data structure for RDMA state.
313  * While there is only one copy of this structure being allocated right now,
314  * this is the place where one would start if you wanted to consider
315  * having more than one RDMA connection open at the same time.
316  */
317 typedef struct RDMAContext {
318     char *host;
319     int port;
320     char *host_port;
321 
322     RDMAWorkRequestData wr_data[RDMA_WRID_MAX];
323 
324     /*
325      * This is used by *_exchange_send() to figure out whether or not
326      * the initial "READY" message has already been received or not.
327      * This is because other functions may potentially poll() and detect
328      * the READY message before send() does, in which case we need to
329      * know if it completed.
330      */
331     int control_ready_expected;
332 
333     /* number of outstanding writes */
334     int nb_sent;
335 
336     /* store info about current buffer so that we can
337        merge it with future sends */
338     uint64_t current_addr;
339     uint64_t current_length;
340     /* index of ram block the current buffer belongs to */
341     int current_index;
342     /* index of the chunk in the current ram block */
343     int current_chunk;
344 
345     bool pin_all;
346 
347     /*
348      * infiniband-specific variables for opening the device
349      * and maintaining connection state and so forth.
350      *
351      * cm_id also has ibv_context, rdma_event_channel, and ibv_qp in
352      * cm_id->verbs, cm_id->channel, and cm_id->qp.
353      */
354     struct rdma_cm_id *cm_id;               /* connection manager ID */
355     struct rdma_cm_id *listen_id;
356     bool connected;
357 
358     struct ibv_context          *verbs;
359     struct rdma_event_channel   *channel;
360     struct ibv_qp *qp;                      /* queue pair */
361     struct ibv_comp_channel *comp_channel;  /* completion channel */
362     struct ibv_pd *pd;                      /* protection domain */
363     struct ibv_cq *cq;                      /* completion queue */
364 
365     /*
366      * If a previous write failed (perhaps because of a failed
367      * memory registration, then do not attempt any future work
368      * and remember the error state.
369      */
370     int error_state;
371     int error_reported;
372     int received_error;
373 
374     /*
375      * Description of ram blocks used throughout the code.
376      */
377     RDMALocalBlocks local_ram_blocks;
378     RDMADestBlock  *dest_blocks;
379 
380     /* Index of the next RAMBlock received during block registration */
381     unsigned int    next_src_index;
382 
383     /*
384      * Migration on *destination* started.
385      * Then use coroutine yield function.
386      * Source runs in a thread, so we don't care.
387      */
388     int migration_started_on_destination;
389 
390     int total_registrations;
391     int total_writes;
392 
393     int unregister_current, unregister_next;
394     uint64_t unregistrations[RDMA_SIGNALED_SEND_MAX];
395 
396     GHashTable *blockmap;
397 
398     /* the RDMAContext for return path */
399     struct RDMAContext *return_path;
400     bool is_return_path;
401 } RDMAContext;
402 
403 #define TYPE_QIO_CHANNEL_RDMA "qio-channel-rdma"
404 OBJECT_DECLARE_SIMPLE_TYPE(QIOChannelRDMA, QIO_CHANNEL_RDMA)
405 
406 
407 
408 struct QIOChannelRDMA {
409     QIOChannel parent;
410     RDMAContext *rdmain;
411     RDMAContext *rdmaout;
412     QEMUFile *file;
413     bool blocking; /* XXX we don't actually honour this yet */
414 };
415 
416 /*
417  * Main structure for IB Send/Recv control messages.
418  * This gets prepended at the beginning of every Send/Recv.
419  */
420 typedef struct QEMU_PACKED {
421     uint32_t len;     /* Total length of data portion */
422     uint32_t type;    /* which control command to perform */
423     uint32_t repeat;  /* number of commands in data portion of same type */
424     uint32_t padding;
425 } RDMAControlHeader;
426 
427 static void control_to_network(RDMAControlHeader *control)
428 {
429     control->type = htonl(control->type);
430     control->len = htonl(control->len);
431     control->repeat = htonl(control->repeat);
432 }
433 
434 static void network_to_control(RDMAControlHeader *control)
435 {
436     control->type = ntohl(control->type);
437     control->len = ntohl(control->len);
438     control->repeat = ntohl(control->repeat);
439 }
440 
441 /*
442  * Register a single Chunk.
443  * Information sent by the source VM to inform the dest
444  * to register an single chunk of memory before we can perform
445  * the actual RDMA operation.
446  */
447 typedef struct QEMU_PACKED {
448     union QEMU_PACKED {
449         uint64_t current_addr;  /* offset into the ram_addr_t space */
450         uint64_t chunk;         /* chunk to lookup if unregistering */
451     } key;
452     uint32_t current_index; /* which ramblock the chunk belongs to */
453     uint32_t padding;
454     uint64_t chunks;            /* how many sequential chunks to register */
455 } RDMARegister;
456 
457 static void register_to_network(RDMAContext *rdma, RDMARegister *reg)
458 {
459     RDMALocalBlock *local_block;
460     local_block  = &rdma->local_ram_blocks.block[reg->current_index];
461 
462     if (local_block->is_ram_block) {
463         /*
464          * current_addr as passed in is an address in the local ram_addr_t
465          * space, we need to translate this for the destination
466          */
467         reg->key.current_addr -= local_block->offset;
468         reg->key.current_addr += rdma->dest_blocks[reg->current_index].offset;
469     }
470     reg->key.current_addr = htonll(reg->key.current_addr);
471     reg->current_index = htonl(reg->current_index);
472     reg->chunks = htonll(reg->chunks);
473 }
474 
475 static void network_to_register(RDMARegister *reg)
476 {
477     reg->key.current_addr = ntohll(reg->key.current_addr);
478     reg->current_index = ntohl(reg->current_index);
479     reg->chunks = ntohll(reg->chunks);
480 }
481 
482 typedef struct QEMU_PACKED {
483     uint32_t value;     /* if zero, we will madvise() */
484     uint32_t block_idx; /* which ram block index */
485     uint64_t offset;    /* Address in remote ram_addr_t space */
486     uint64_t length;    /* length of the chunk */
487 } RDMACompress;
488 
489 static void compress_to_network(RDMAContext *rdma, RDMACompress *comp)
490 {
491     comp->value = htonl(comp->value);
492     /*
493      * comp->offset as passed in is an address in the local ram_addr_t
494      * space, we need to translate this for the destination
495      */
496     comp->offset -= rdma->local_ram_blocks.block[comp->block_idx].offset;
497     comp->offset += rdma->dest_blocks[comp->block_idx].offset;
498     comp->block_idx = htonl(comp->block_idx);
499     comp->offset = htonll(comp->offset);
500     comp->length = htonll(comp->length);
501 }
502 
503 static void network_to_compress(RDMACompress *comp)
504 {
505     comp->value = ntohl(comp->value);
506     comp->block_idx = ntohl(comp->block_idx);
507     comp->offset = ntohll(comp->offset);
508     comp->length = ntohll(comp->length);
509 }
510 
511 /*
512  * The result of the dest's memory registration produces an "rkey"
513  * which the source VM must reference in order to perform
514  * the RDMA operation.
515  */
516 typedef struct QEMU_PACKED {
517     uint32_t rkey;
518     uint32_t padding;
519     uint64_t host_addr;
520 } RDMARegisterResult;
521 
522 static void result_to_network(RDMARegisterResult *result)
523 {
524     result->rkey = htonl(result->rkey);
525     result->host_addr = htonll(result->host_addr);
526 };
527 
528 static void network_to_result(RDMARegisterResult *result)
529 {
530     result->rkey = ntohl(result->rkey);
531     result->host_addr = ntohll(result->host_addr);
532 };
533 
534 const char *print_wrid(int wrid);
535 static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head,
536                                    uint8_t *data, RDMAControlHeader *resp,
537                                    int *resp_idx,
538                                    int (*callback)(RDMAContext *rdma));
539 
540 static inline uint64_t ram_chunk_index(const uint8_t *start,
541                                        const uint8_t *host)
542 {
543     return ((uintptr_t) host - (uintptr_t) start) >> RDMA_REG_CHUNK_SHIFT;
544 }
545 
546 static inline uint8_t *ram_chunk_start(const RDMALocalBlock *rdma_ram_block,
547                                        uint64_t i)
548 {
549     return (uint8_t *)(uintptr_t)(rdma_ram_block->local_host_addr +
550                                   (i << RDMA_REG_CHUNK_SHIFT));
551 }
552 
553 static inline uint8_t *ram_chunk_end(const RDMALocalBlock *rdma_ram_block,
554                                      uint64_t i)
555 {
556     uint8_t *result = ram_chunk_start(rdma_ram_block, i) +
557                                          (1UL << RDMA_REG_CHUNK_SHIFT);
558 
559     if (result > (rdma_ram_block->local_host_addr + rdma_ram_block->length)) {
560         result = rdma_ram_block->local_host_addr + rdma_ram_block->length;
561     }
562 
563     return result;
564 }
565 
566 static int rdma_add_block(RDMAContext *rdma, const char *block_name,
567                          void *host_addr,
568                          ram_addr_t block_offset, uint64_t length)
569 {
570     RDMALocalBlocks *local = &rdma->local_ram_blocks;
571     RDMALocalBlock *block;
572     RDMALocalBlock *old = local->block;
573 
574     local->block = g_new0(RDMALocalBlock, local->nb_blocks + 1);
575 
576     if (local->nb_blocks) {
577         int x;
578 
579         if (rdma->blockmap) {
580             for (x = 0; x < local->nb_blocks; x++) {
581                 g_hash_table_remove(rdma->blockmap,
582                                     (void *)(uintptr_t)old[x].offset);
583                 g_hash_table_insert(rdma->blockmap,
584                                     (void *)(uintptr_t)old[x].offset,
585                                     &local->block[x]);
586             }
587         }
588         memcpy(local->block, old, sizeof(RDMALocalBlock) * local->nb_blocks);
589         g_free(old);
590     }
591 
592     block = &local->block[local->nb_blocks];
593 
594     block->block_name = g_strdup(block_name);
595     block->local_host_addr = host_addr;
596     block->offset = block_offset;
597     block->length = length;
598     block->index = local->nb_blocks;
599     block->src_index = ~0U; /* Filled in by the receipt of the block list */
600     block->nb_chunks = ram_chunk_index(host_addr, host_addr + length) + 1UL;
601     block->transit_bitmap = bitmap_new(block->nb_chunks);
602     bitmap_clear(block->transit_bitmap, 0, block->nb_chunks);
603     block->unregister_bitmap = bitmap_new(block->nb_chunks);
604     bitmap_clear(block->unregister_bitmap, 0, block->nb_chunks);
605     block->remote_keys = g_new0(uint32_t, block->nb_chunks);
606 
607     block->is_ram_block = local->init ? false : true;
608 
609     if (rdma->blockmap) {
610         g_hash_table_insert(rdma->blockmap, (void *)(uintptr_t)block_offset, block);
611     }
612 
613     trace_rdma_add_block(block_name, local->nb_blocks,
614                          (uintptr_t) block->local_host_addr,
615                          block->offset, block->length,
616                          (uintptr_t) (block->local_host_addr + block->length),
617                          BITS_TO_LONGS(block->nb_chunks) *
618                              sizeof(unsigned long) * 8,
619                          block->nb_chunks);
620 
621     local->nb_blocks++;
622 
623     return 0;
624 }
625 
626 /*
627  * Memory regions need to be registered with the device and queue pairs setup
628  * in advanced before the migration starts. This tells us where the RAM blocks
629  * are so that we can register them individually.
630  */
631 static int qemu_rdma_init_one_block(RAMBlock *rb, void *opaque)
632 {
633     const char *block_name = qemu_ram_get_idstr(rb);
634     void *host_addr = qemu_ram_get_host_addr(rb);
635     ram_addr_t block_offset = qemu_ram_get_offset(rb);
636     ram_addr_t length = qemu_ram_get_used_length(rb);
637     return rdma_add_block(opaque, block_name, host_addr, block_offset, length);
638 }
639 
640 /*
641  * Identify the RAMBlocks and their quantity. They will be references to
642  * identify chunk boundaries inside each RAMBlock and also be referenced
643  * during dynamic page registration.
644  */
645 static int qemu_rdma_init_ram_blocks(RDMAContext *rdma)
646 {
647     RDMALocalBlocks *local = &rdma->local_ram_blocks;
648     int ret;
649 
650     assert(rdma->blockmap == NULL);
651     memset(local, 0, sizeof *local);
652     ret = foreach_not_ignored_block(qemu_rdma_init_one_block, rdma);
653     if (ret) {
654         return ret;
655     }
656     trace_qemu_rdma_init_ram_blocks(local->nb_blocks);
657     rdma->dest_blocks = g_new0(RDMADestBlock,
658                                rdma->local_ram_blocks.nb_blocks);
659     local->init = true;
660     return 0;
661 }
662 
663 /*
664  * Note: If used outside of cleanup, the caller must ensure that the destination
665  * block structures are also updated
666  */
667 static int rdma_delete_block(RDMAContext *rdma, RDMALocalBlock *block)
668 {
669     RDMALocalBlocks *local = &rdma->local_ram_blocks;
670     RDMALocalBlock *old = local->block;
671     int x;
672 
673     if (rdma->blockmap) {
674         g_hash_table_remove(rdma->blockmap, (void *)(uintptr_t)block->offset);
675     }
676     if (block->pmr) {
677         int j;
678 
679         for (j = 0; j < block->nb_chunks; j++) {
680             if (!block->pmr[j]) {
681                 continue;
682             }
683             ibv_dereg_mr(block->pmr[j]);
684             rdma->total_registrations--;
685         }
686         g_free(block->pmr);
687         block->pmr = NULL;
688     }
689 
690     if (block->mr) {
691         ibv_dereg_mr(block->mr);
692         rdma->total_registrations--;
693         block->mr = NULL;
694     }
695 
696     g_free(block->transit_bitmap);
697     block->transit_bitmap = NULL;
698 
699     g_free(block->unregister_bitmap);
700     block->unregister_bitmap = NULL;
701 
702     g_free(block->remote_keys);
703     block->remote_keys = NULL;
704 
705     g_free(block->block_name);
706     block->block_name = NULL;
707 
708     if (rdma->blockmap) {
709         for (x = 0; x < local->nb_blocks; x++) {
710             g_hash_table_remove(rdma->blockmap,
711                                 (void *)(uintptr_t)old[x].offset);
712         }
713     }
714 
715     if (local->nb_blocks > 1) {
716 
717         local->block = g_new0(RDMALocalBlock, local->nb_blocks - 1);
718 
719         if (block->index) {
720             memcpy(local->block, old, sizeof(RDMALocalBlock) * block->index);
721         }
722 
723         if (block->index < (local->nb_blocks - 1)) {
724             memcpy(local->block + block->index, old + (block->index + 1),
725                 sizeof(RDMALocalBlock) *
726                     (local->nb_blocks - (block->index + 1)));
727             for (x = block->index; x < local->nb_blocks - 1; x++) {
728                 local->block[x].index--;
729             }
730         }
731     } else {
732         assert(block == local->block);
733         local->block = NULL;
734     }
735 
736     trace_rdma_delete_block(block, (uintptr_t)block->local_host_addr,
737                            block->offset, block->length,
738                             (uintptr_t)(block->local_host_addr + block->length),
739                            BITS_TO_LONGS(block->nb_chunks) *
740                                sizeof(unsigned long) * 8, block->nb_chunks);
741 
742     g_free(old);
743 
744     local->nb_blocks--;
745 
746     if (local->nb_blocks && rdma->blockmap) {
747         for (x = 0; x < local->nb_blocks; x++) {
748             g_hash_table_insert(rdma->blockmap,
749                                 (void *)(uintptr_t)local->block[x].offset,
750                                 &local->block[x]);
751         }
752     }
753 
754     return 0;
755 }
756 
757 /*
758  * Put in the log file which RDMA device was opened and the details
759  * associated with that device.
760  */
761 static void qemu_rdma_dump_id(const char *who, struct ibv_context *verbs)
762 {
763     struct ibv_port_attr port;
764 
765     if (ibv_query_port(verbs, 1, &port)) {
766         error_report("Failed to query port information");
767         return;
768     }
769 
770     printf("%s RDMA Device opened: kernel name %s "
771            "uverbs device name %s, "
772            "infiniband_verbs class device path %s, "
773            "infiniband class device path %s, "
774            "transport: (%d) %s\n",
775                 who,
776                 verbs->device->name,
777                 verbs->device->dev_name,
778                 verbs->device->dev_path,
779                 verbs->device->ibdev_path,
780                 port.link_layer,
781                 (port.link_layer == IBV_LINK_LAYER_INFINIBAND) ? "Infiniband" :
782                  ((port.link_layer == IBV_LINK_LAYER_ETHERNET)
783                     ? "Ethernet" : "Unknown"));
784 }
785 
786 /*
787  * Put in the log file the RDMA gid addressing information,
788  * useful for folks who have trouble understanding the
789  * RDMA device hierarchy in the kernel.
790  */
791 static void qemu_rdma_dump_gid(const char *who, struct rdma_cm_id *id)
792 {
793     char sgid[33];
794     char dgid[33];
795     inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.sgid, sgid, sizeof sgid);
796     inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.dgid, dgid, sizeof dgid);
797     trace_qemu_rdma_dump_gid(who, sgid, dgid);
798 }
799 
800 /*
801  * As of now, IPv6 over RoCE / iWARP is not supported by linux.
802  * We will try the next addrinfo struct, and fail if there are
803  * no other valid addresses to bind against.
804  *
805  * If user is listening on '[::]', then we will not have a opened a device
806  * yet and have no way of verifying if the device is RoCE or not.
807  *
808  * In this case, the source VM will throw an error for ALL types of
809  * connections (both IPv4 and IPv6) if the destination machine does not have
810  * a regular infiniband network available for use.
811  *
812  * The only way to guarantee that an error is thrown for broken kernels is
813  * for the management software to choose a *specific* interface at bind time
814  * and validate what time of hardware it is.
815  *
816  * Unfortunately, this puts the user in a fix:
817  *
818  *  If the source VM connects with an IPv4 address without knowing that the
819  *  destination has bound to '[::]' the migration will unconditionally fail
820  *  unless the management software is explicitly listening on the IPv4
821  *  address while using a RoCE-based device.
822  *
823  *  If the source VM connects with an IPv6 address, then we're OK because we can
824  *  throw an error on the source (and similarly on the destination).
825  *
826  *  But in mixed environments, this will be broken for a while until it is fixed
827  *  inside linux.
828  *
829  * We do provide a *tiny* bit of help in this function: We can list all of the
830  * devices in the system and check to see if all the devices are RoCE or
831  * Infiniband.
832  *
833  * If we detect that we have a *pure* RoCE environment, then we can safely
834  * thrown an error even if the management software has specified '[::]' as the
835  * bind address.
836  *
837  * However, if there is are multiple hetergeneous devices, then we cannot make
838  * this assumption and the user just has to be sure they know what they are
839  * doing.
840  *
841  * Patches are being reviewed on linux-rdma.
842  */
843 static int qemu_rdma_broken_ipv6_kernel(struct ibv_context *verbs, Error **errp)
844 {
845     /* This bug only exists in linux, to our knowledge. */
846 #ifdef CONFIG_LINUX
847     struct ibv_port_attr port_attr;
848 
849     /*
850      * Verbs are only NULL if management has bound to '[::]'.
851      *
852      * Let's iterate through all the devices and see if there any pure IB
853      * devices (non-ethernet).
854      *
855      * If not, then we can safely proceed with the migration.
856      * Otherwise, there are no guarantees until the bug is fixed in linux.
857      */
858     if (!verbs) {
859         int num_devices, x;
860         struct ibv_device **dev_list = ibv_get_device_list(&num_devices);
861         bool roce_found = false;
862         bool ib_found = false;
863 
864         for (x = 0; x < num_devices; x++) {
865             verbs = ibv_open_device(dev_list[x]);
866             if (!verbs) {
867                 if (errno == EPERM) {
868                     continue;
869                 } else {
870                     return -EINVAL;
871                 }
872             }
873 
874             if (ibv_query_port(verbs, 1, &port_attr)) {
875                 ibv_close_device(verbs);
876                 ERROR(errp, "Could not query initial IB port");
877                 return -EINVAL;
878             }
879 
880             if (port_attr.link_layer == IBV_LINK_LAYER_INFINIBAND) {
881                 ib_found = true;
882             } else if (port_attr.link_layer == IBV_LINK_LAYER_ETHERNET) {
883                 roce_found = true;
884             }
885 
886             ibv_close_device(verbs);
887 
888         }
889 
890         if (roce_found) {
891             if (ib_found) {
892                 fprintf(stderr, "WARN: migrations may fail:"
893                                 " IPv6 over RoCE / iWARP in linux"
894                                 " is broken. But since you appear to have a"
895                                 " mixed RoCE / IB environment, be sure to only"
896                                 " migrate over the IB fabric until the kernel "
897                                 " fixes the bug.\n");
898             } else {
899                 ERROR(errp, "You only have RoCE / iWARP devices in your systems"
900                             " and your management software has specified '[::]'"
901                             ", but IPv6 over RoCE / iWARP is not supported in Linux.");
902                 return -ENONET;
903             }
904         }
905 
906         return 0;
907     }
908 
909     /*
910      * If we have a verbs context, that means that some other than '[::]' was
911      * used by the management software for binding. In which case we can
912      * actually warn the user about a potentially broken kernel.
913      */
914 
915     /* IB ports start with 1, not 0 */
916     if (ibv_query_port(verbs, 1, &port_attr)) {
917         ERROR(errp, "Could not query initial IB port");
918         return -EINVAL;
919     }
920 
921     if (port_attr.link_layer == IBV_LINK_LAYER_ETHERNET) {
922         ERROR(errp, "Linux kernel's RoCE / iWARP does not support IPv6 "
923                     "(but patches on linux-rdma in progress)");
924         return -ENONET;
925     }
926 
927 #endif
928 
929     return 0;
930 }
931 
932 /*
933  * Figure out which RDMA device corresponds to the requested IP hostname
934  * Also create the initial connection manager identifiers for opening
935  * the connection.
936  */
937 static int qemu_rdma_resolve_host(RDMAContext *rdma, Error **errp)
938 {
939     int ret;
940     struct rdma_addrinfo *res;
941     char port_str[16];
942     struct rdma_cm_event *cm_event;
943     char ip[40] = "unknown";
944     struct rdma_addrinfo *e;
945 
946     if (rdma->host == NULL || !strcmp(rdma->host, "")) {
947         ERROR(errp, "RDMA hostname has not been set");
948         return -EINVAL;
949     }
950 
951     /* create CM channel */
952     rdma->channel = rdma_create_event_channel();
953     if (!rdma->channel) {
954         ERROR(errp, "could not create CM channel");
955         return -EINVAL;
956     }
957 
958     /* create CM id */
959     ret = rdma_create_id(rdma->channel, &rdma->cm_id, NULL, RDMA_PS_TCP);
960     if (ret) {
961         ERROR(errp, "could not create channel id");
962         goto err_resolve_create_id;
963     }
964 
965     snprintf(port_str, 16, "%d", rdma->port);
966     port_str[15] = '\0';
967 
968     ret = rdma_getaddrinfo(rdma->host, port_str, NULL, &res);
969     if (ret < 0) {
970         ERROR(errp, "could not rdma_getaddrinfo address %s", rdma->host);
971         goto err_resolve_get_addr;
972     }
973 
974     for (e = res; e != NULL; e = e->ai_next) {
975         inet_ntop(e->ai_family,
976             &((struct sockaddr_in *) e->ai_dst_addr)->sin_addr, ip, sizeof ip);
977         trace_qemu_rdma_resolve_host_trying(rdma->host, ip);
978 
979         ret = rdma_resolve_addr(rdma->cm_id, NULL, e->ai_dst_addr,
980                 RDMA_RESOLVE_TIMEOUT_MS);
981         if (!ret) {
982             if (e->ai_family == AF_INET6) {
983                 ret = qemu_rdma_broken_ipv6_kernel(rdma->cm_id->verbs, errp);
984                 if (ret) {
985                     continue;
986                 }
987             }
988             goto route;
989         }
990     }
991 
992     rdma_freeaddrinfo(res);
993     ERROR(errp, "could not resolve address %s", rdma->host);
994     goto err_resolve_get_addr;
995 
996 route:
997     rdma_freeaddrinfo(res);
998     qemu_rdma_dump_gid("source_resolve_addr", rdma->cm_id);
999 
1000     ret = rdma_get_cm_event(rdma->channel, &cm_event);
1001     if (ret) {
1002         ERROR(errp, "could not perform event_addr_resolved");
1003         goto err_resolve_get_addr;
1004     }
1005 
1006     if (cm_event->event != RDMA_CM_EVENT_ADDR_RESOLVED) {
1007         ERROR(errp, "result not equal to event_addr_resolved %s",
1008                 rdma_event_str(cm_event->event));
1009         error_report("rdma_resolve_addr");
1010         rdma_ack_cm_event(cm_event);
1011         ret = -EINVAL;
1012         goto err_resolve_get_addr;
1013     }
1014     rdma_ack_cm_event(cm_event);
1015 
1016     /* resolve route */
1017     ret = rdma_resolve_route(rdma->cm_id, RDMA_RESOLVE_TIMEOUT_MS);
1018     if (ret) {
1019         ERROR(errp, "could not resolve rdma route");
1020         goto err_resolve_get_addr;
1021     }
1022 
1023     ret = rdma_get_cm_event(rdma->channel, &cm_event);
1024     if (ret) {
1025         ERROR(errp, "could not perform event_route_resolved");
1026         goto err_resolve_get_addr;
1027     }
1028     if (cm_event->event != RDMA_CM_EVENT_ROUTE_RESOLVED) {
1029         ERROR(errp, "result not equal to event_route_resolved: %s",
1030                         rdma_event_str(cm_event->event));
1031         rdma_ack_cm_event(cm_event);
1032         ret = -EINVAL;
1033         goto err_resolve_get_addr;
1034     }
1035     rdma_ack_cm_event(cm_event);
1036     rdma->verbs = rdma->cm_id->verbs;
1037     qemu_rdma_dump_id("source_resolve_host", rdma->cm_id->verbs);
1038     qemu_rdma_dump_gid("source_resolve_host", rdma->cm_id);
1039     return 0;
1040 
1041 err_resolve_get_addr:
1042     rdma_destroy_id(rdma->cm_id);
1043     rdma->cm_id = NULL;
1044 err_resolve_create_id:
1045     rdma_destroy_event_channel(rdma->channel);
1046     rdma->channel = NULL;
1047     return ret;
1048 }
1049 
1050 /*
1051  * Create protection domain and completion queues
1052  */
1053 static int qemu_rdma_alloc_pd_cq(RDMAContext *rdma)
1054 {
1055     /* allocate pd */
1056     rdma->pd = ibv_alloc_pd(rdma->verbs);
1057     if (!rdma->pd) {
1058         error_report("failed to allocate protection domain");
1059         return -1;
1060     }
1061 
1062     /* create completion channel */
1063     rdma->comp_channel = ibv_create_comp_channel(rdma->verbs);
1064     if (!rdma->comp_channel) {
1065         error_report("failed to allocate completion channel");
1066         goto err_alloc_pd_cq;
1067     }
1068 
1069     /*
1070      * Completion queue can be filled by both read and write work requests,
1071      * so must reflect the sum of both possible queue sizes.
1072      */
1073     rdma->cq = ibv_create_cq(rdma->verbs, (RDMA_SIGNALED_SEND_MAX * 3),
1074             NULL, rdma->comp_channel, 0);
1075     if (!rdma->cq) {
1076         error_report("failed to allocate completion queue");
1077         goto err_alloc_pd_cq;
1078     }
1079 
1080     return 0;
1081 
1082 err_alloc_pd_cq:
1083     if (rdma->pd) {
1084         ibv_dealloc_pd(rdma->pd);
1085     }
1086     if (rdma->comp_channel) {
1087         ibv_destroy_comp_channel(rdma->comp_channel);
1088     }
1089     rdma->pd = NULL;
1090     rdma->comp_channel = NULL;
1091     return -1;
1092 
1093 }
1094 
1095 /*
1096  * Create queue pairs.
1097  */
1098 static int qemu_rdma_alloc_qp(RDMAContext *rdma)
1099 {
1100     struct ibv_qp_init_attr attr = { 0 };
1101     int ret;
1102 
1103     attr.cap.max_send_wr = RDMA_SIGNALED_SEND_MAX;
1104     attr.cap.max_recv_wr = 3;
1105     attr.cap.max_send_sge = 1;
1106     attr.cap.max_recv_sge = 1;
1107     attr.send_cq = rdma->cq;
1108     attr.recv_cq = rdma->cq;
1109     attr.qp_type = IBV_QPT_RC;
1110 
1111     ret = rdma_create_qp(rdma->cm_id, rdma->pd, &attr);
1112     if (ret) {
1113         return -1;
1114     }
1115 
1116     rdma->qp = rdma->cm_id->qp;
1117     return 0;
1118 }
1119 
1120 static int qemu_rdma_reg_whole_ram_blocks(RDMAContext *rdma)
1121 {
1122     int i;
1123     RDMALocalBlocks *local = &rdma->local_ram_blocks;
1124 
1125     for (i = 0; i < local->nb_blocks; i++) {
1126         local->block[i].mr =
1127             ibv_reg_mr(rdma->pd,
1128                     local->block[i].local_host_addr,
1129                     local->block[i].length,
1130                     IBV_ACCESS_LOCAL_WRITE |
1131                     IBV_ACCESS_REMOTE_WRITE
1132                     );
1133         if (!local->block[i].mr) {
1134             perror("Failed to register local dest ram block!");
1135             break;
1136         }
1137         rdma->total_registrations++;
1138     }
1139 
1140     if (i >= local->nb_blocks) {
1141         return 0;
1142     }
1143 
1144     for (i--; i >= 0; i--) {
1145         ibv_dereg_mr(local->block[i].mr);
1146         local->block[i].mr = NULL;
1147         rdma->total_registrations--;
1148     }
1149 
1150     return -1;
1151 
1152 }
1153 
1154 /*
1155  * Find the ram block that corresponds to the page requested to be
1156  * transmitted by QEMU.
1157  *
1158  * Once the block is found, also identify which 'chunk' within that
1159  * block that the page belongs to.
1160  *
1161  * This search cannot fail or the migration will fail.
1162  */
1163 static int qemu_rdma_search_ram_block(RDMAContext *rdma,
1164                                       uintptr_t block_offset,
1165                                       uint64_t offset,
1166                                       uint64_t length,
1167                                       uint64_t *block_index,
1168                                       uint64_t *chunk_index)
1169 {
1170     uint64_t current_addr = block_offset + offset;
1171     RDMALocalBlock *block = g_hash_table_lookup(rdma->blockmap,
1172                                                 (void *) block_offset);
1173     assert(block);
1174     assert(current_addr >= block->offset);
1175     assert((current_addr + length) <= (block->offset + block->length));
1176 
1177     *block_index = block->index;
1178     *chunk_index = ram_chunk_index(block->local_host_addr,
1179                 block->local_host_addr + (current_addr - block->offset));
1180 
1181     return 0;
1182 }
1183 
1184 /*
1185  * Register a chunk with IB. If the chunk was already registered
1186  * previously, then skip.
1187  *
1188  * Also return the keys associated with the registration needed
1189  * to perform the actual RDMA operation.
1190  */
1191 static int qemu_rdma_register_and_get_keys(RDMAContext *rdma,
1192         RDMALocalBlock *block, uintptr_t host_addr,
1193         uint32_t *lkey, uint32_t *rkey, int chunk,
1194         uint8_t *chunk_start, uint8_t *chunk_end)
1195 {
1196     if (block->mr) {
1197         if (lkey) {
1198             *lkey = block->mr->lkey;
1199         }
1200         if (rkey) {
1201             *rkey = block->mr->rkey;
1202         }
1203         return 0;
1204     }
1205 
1206     /* allocate memory to store chunk MRs */
1207     if (!block->pmr) {
1208         block->pmr = g_new0(struct ibv_mr *, block->nb_chunks);
1209     }
1210 
1211     /*
1212      * If 'rkey', then we're the destination, so grant access to the source.
1213      *
1214      * If 'lkey', then we're the source VM, so grant access only to ourselves.
1215      */
1216     if (!block->pmr[chunk]) {
1217         uint64_t len = chunk_end - chunk_start;
1218 
1219         trace_qemu_rdma_register_and_get_keys(len, chunk_start);
1220 
1221         block->pmr[chunk] = ibv_reg_mr(rdma->pd,
1222                 chunk_start, len,
1223                 (rkey ? (IBV_ACCESS_LOCAL_WRITE |
1224                         IBV_ACCESS_REMOTE_WRITE) : 0));
1225 
1226         if (!block->pmr[chunk]) {
1227             perror("Failed to register chunk!");
1228             fprintf(stderr, "Chunk details: block: %d chunk index %d"
1229                             " start %" PRIuPTR " end %" PRIuPTR
1230                             " host %" PRIuPTR
1231                             " local %" PRIuPTR " registrations: %d\n",
1232                             block->index, chunk, (uintptr_t)chunk_start,
1233                             (uintptr_t)chunk_end, host_addr,
1234                             (uintptr_t)block->local_host_addr,
1235                             rdma->total_registrations);
1236             return -1;
1237         }
1238         rdma->total_registrations++;
1239     }
1240 
1241     if (lkey) {
1242         *lkey = block->pmr[chunk]->lkey;
1243     }
1244     if (rkey) {
1245         *rkey = block->pmr[chunk]->rkey;
1246     }
1247     return 0;
1248 }
1249 
1250 /*
1251  * Register (at connection time) the memory used for control
1252  * channel messages.
1253  */
1254 static int qemu_rdma_reg_control(RDMAContext *rdma, int idx)
1255 {
1256     rdma->wr_data[idx].control_mr = ibv_reg_mr(rdma->pd,
1257             rdma->wr_data[idx].control, RDMA_CONTROL_MAX_BUFFER,
1258             IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE);
1259     if (rdma->wr_data[idx].control_mr) {
1260         rdma->total_registrations++;
1261         return 0;
1262     }
1263     error_report("qemu_rdma_reg_control failed");
1264     return -1;
1265 }
1266 
1267 const char *print_wrid(int wrid)
1268 {
1269     if (wrid >= RDMA_WRID_RECV_CONTROL) {
1270         return wrid_desc[RDMA_WRID_RECV_CONTROL];
1271     }
1272     return wrid_desc[wrid];
1273 }
1274 
1275 /*
1276  * RDMA requires memory registration (mlock/pinning), but this is not good for
1277  * overcommitment.
1278  *
1279  * In preparation for the future where LRU information or workload-specific
1280  * writable writable working set memory access behavior is available to QEMU
1281  * it would be nice to have in place the ability to UN-register/UN-pin
1282  * particular memory regions from the RDMA hardware when it is determine that
1283  * those regions of memory will likely not be accessed again in the near future.
1284  *
1285  * While we do not yet have such information right now, the following
1286  * compile-time option allows us to perform a non-optimized version of this
1287  * behavior.
1288  *
1289  * By uncommenting this option, you will cause *all* RDMA transfers to be
1290  * unregistered immediately after the transfer completes on both sides of the
1291  * connection. This has no effect in 'rdma-pin-all' mode, only regular mode.
1292  *
1293  * This will have a terrible impact on migration performance, so until future
1294  * workload information or LRU information is available, do not attempt to use
1295  * this feature except for basic testing.
1296  */
1297 /* #define RDMA_UNREGISTRATION_EXAMPLE */
1298 
1299 /*
1300  * Perform a non-optimized memory unregistration after every transfer
1301  * for demonstration purposes, only if pin-all is not requested.
1302  *
1303  * Potential optimizations:
1304  * 1. Start a new thread to run this function continuously
1305         - for bit clearing
1306         - and for receipt of unregister messages
1307  * 2. Use an LRU.
1308  * 3. Use workload hints.
1309  */
1310 static int qemu_rdma_unregister_waiting(RDMAContext *rdma)
1311 {
1312     while (rdma->unregistrations[rdma->unregister_current]) {
1313         int ret;
1314         uint64_t wr_id = rdma->unregistrations[rdma->unregister_current];
1315         uint64_t chunk =
1316             (wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT;
1317         uint64_t index =
1318             (wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT;
1319         RDMALocalBlock *block =
1320             &(rdma->local_ram_blocks.block[index]);
1321         RDMARegister reg = { .current_index = index };
1322         RDMAControlHeader resp = { .type = RDMA_CONTROL_UNREGISTER_FINISHED,
1323                                  };
1324         RDMAControlHeader head = { .len = sizeof(RDMARegister),
1325                                    .type = RDMA_CONTROL_UNREGISTER_REQUEST,
1326                                    .repeat = 1,
1327                                  };
1328 
1329         trace_qemu_rdma_unregister_waiting_proc(chunk,
1330                                                 rdma->unregister_current);
1331 
1332         rdma->unregistrations[rdma->unregister_current] = 0;
1333         rdma->unregister_current++;
1334 
1335         if (rdma->unregister_current == RDMA_SIGNALED_SEND_MAX) {
1336             rdma->unregister_current = 0;
1337         }
1338 
1339 
1340         /*
1341          * Unregistration is speculative (because migration is single-threaded
1342          * and we cannot break the protocol's inifinband message ordering).
1343          * Thus, if the memory is currently being used for transmission,
1344          * then abort the attempt to unregister and try again
1345          * later the next time a completion is received for this memory.
1346          */
1347         clear_bit(chunk, block->unregister_bitmap);
1348 
1349         if (test_bit(chunk, block->transit_bitmap)) {
1350             trace_qemu_rdma_unregister_waiting_inflight(chunk);
1351             continue;
1352         }
1353 
1354         trace_qemu_rdma_unregister_waiting_send(chunk);
1355 
1356         ret = ibv_dereg_mr(block->pmr[chunk]);
1357         block->pmr[chunk] = NULL;
1358         block->remote_keys[chunk] = 0;
1359 
1360         if (ret != 0) {
1361             perror("unregistration chunk failed");
1362             return -ret;
1363         }
1364         rdma->total_registrations--;
1365 
1366         reg.key.chunk = chunk;
1367         register_to_network(rdma, &reg);
1368         ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) &reg,
1369                                 &resp, NULL, NULL);
1370         if (ret < 0) {
1371             return ret;
1372         }
1373 
1374         trace_qemu_rdma_unregister_waiting_complete(chunk);
1375     }
1376 
1377     return 0;
1378 }
1379 
1380 static uint64_t qemu_rdma_make_wrid(uint64_t wr_id, uint64_t index,
1381                                          uint64_t chunk)
1382 {
1383     uint64_t result = wr_id & RDMA_WRID_TYPE_MASK;
1384 
1385     result |= (index << RDMA_WRID_BLOCK_SHIFT);
1386     result |= (chunk << RDMA_WRID_CHUNK_SHIFT);
1387 
1388     return result;
1389 }
1390 
1391 /*
1392  * Set bit for unregistration in the next iteration.
1393  * We cannot transmit right here, but will unpin later.
1394  */
1395 static void qemu_rdma_signal_unregister(RDMAContext *rdma, uint64_t index,
1396                                         uint64_t chunk, uint64_t wr_id)
1397 {
1398     if (rdma->unregistrations[rdma->unregister_next] != 0) {
1399         error_report("rdma migration: queue is full");
1400     } else {
1401         RDMALocalBlock *block = &(rdma->local_ram_blocks.block[index]);
1402 
1403         if (!test_and_set_bit(chunk, block->unregister_bitmap)) {
1404             trace_qemu_rdma_signal_unregister_append(chunk,
1405                                                      rdma->unregister_next);
1406 
1407             rdma->unregistrations[rdma->unregister_next++] =
1408                     qemu_rdma_make_wrid(wr_id, index, chunk);
1409 
1410             if (rdma->unregister_next == RDMA_SIGNALED_SEND_MAX) {
1411                 rdma->unregister_next = 0;
1412             }
1413         } else {
1414             trace_qemu_rdma_signal_unregister_already(chunk);
1415         }
1416     }
1417 }
1418 
1419 /*
1420  * Consult the connection manager to see a work request
1421  * (of any kind) has completed.
1422  * Return the work request ID that completed.
1423  */
1424 static uint64_t qemu_rdma_poll(RDMAContext *rdma, uint64_t *wr_id_out,
1425                                uint32_t *byte_len)
1426 {
1427     int ret;
1428     struct ibv_wc wc;
1429     uint64_t wr_id;
1430 
1431     ret = ibv_poll_cq(rdma->cq, 1, &wc);
1432 
1433     if (!ret) {
1434         *wr_id_out = RDMA_WRID_NONE;
1435         return 0;
1436     }
1437 
1438     if (ret < 0) {
1439         error_report("ibv_poll_cq return %d", ret);
1440         return ret;
1441     }
1442 
1443     wr_id = wc.wr_id & RDMA_WRID_TYPE_MASK;
1444 
1445     if (wc.status != IBV_WC_SUCCESS) {
1446         fprintf(stderr, "ibv_poll_cq wc.status=%d %s!\n",
1447                         wc.status, ibv_wc_status_str(wc.status));
1448         fprintf(stderr, "ibv_poll_cq wrid=%s!\n", wrid_desc[wr_id]);
1449 
1450         return -1;
1451     }
1452 
1453     if (rdma->control_ready_expected &&
1454         (wr_id >= RDMA_WRID_RECV_CONTROL)) {
1455         trace_qemu_rdma_poll_recv(wrid_desc[RDMA_WRID_RECV_CONTROL],
1456                   wr_id - RDMA_WRID_RECV_CONTROL, wr_id, rdma->nb_sent);
1457         rdma->control_ready_expected = 0;
1458     }
1459 
1460     if (wr_id == RDMA_WRID_RDMA_WRITE) {
1461         uint64_t chunk =
1462             (wc.wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT;
1463         uint64_t index =
1464             (wc.wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT;
1465         RDMALocalBlock *block = &(rdma->local_ram_blocks.block[index]);
1466 
1467         trace_qemu_rdma_poll_write(print_wrid(wr_id), wr_id, rdma->nb_sent,
1468                                    index, chunk, block->local_host_addr,
1469                                    (void *)(uintptr_t)block->remote_host_addr);
1470 
1471         clear_bit(chunk, block->transit_bitmap);
1472 
1473         if (rdma->nb_sent > 0) {
1474             rdma->nb_sent--;
1475         }
1476 
1477         if (!rdma->pin_all) {
1478             /*
1479              * FYI: If one wanted to signal a specific chunk to be unregistered
1480              * using LRU or workload-specific information, this is the function
1481              * you would call to do so. That chunk would then get asynchronously
1482              * unregistered later.
1483              */
1484 #ifdef RDMA_UNREGISTRATION_EXAMPLE
1485             qemu_rdma_signal_unregister(rdma, index, chunk, wc.wr_id);
1486 #endif
1487         }
1488     } else {
1489         trace_qemu_rdma_poll_other(print_wrid(wr_id), wr_id, rdma->nb_sent);
1490     }
1491 
1492     *wr_id_out = wc.wr_id;
1493     if (byte_len) {
1494         *byte_len = wc.byte_len;
1495     }
1496 
1497     return  0;
1498 }
1499 
1500 /* Wait for activity on the completion channel.
1501  * Returns 0 on success, none-0 on error.
1502  */
1503 static int qemu_rdma_wait_comp_channel(RDMAContext *rdma)
1504 {
1505     struct rdma_cm_event *cm_event;
1506     int ret = -1;
1507 
1508     /*
1509      * Coroutine doesn't start until migration_fd_process_incoming()
1510      * so don't yield unless we know we're running inside of a coroutine.
1511      */
1512     if (rdma->migration_started_on_destination &&
1513         migration_incoming_get_current()->state == MIGRATION_STATUS_ACTIVE) {
1514         yield_until_fd_readable(rdma->comp_channel->fd);
1515     } else {
1516         /* This is the source side, we're in a separate thread
1517          * or destination prior to migration_fd_process_incoming()
1518          * after postcopy, the destination also in a separate thread.
1519          * we can't yield; so we have to poll the fd.
1520          * But we need to be able to handle 'cancel' or an error
1521          * without hanging forever.
1522          */
1523         while (!rdma->error_state  && !rdma->received_error) {
1524             GPollFD pfds[2];
1525             pfds[0].fd = rdma->comp_channel->fd;
1526             pfds[0].events = G_IO_IN | G_IO_HUP | G_IO_ERR;
1527             pfds[0].revents = 0;
1528 
1529             pfds[1].fd = rdma->channel->fd;
1530             pfds[1].events = G_IO_IN | G_IO_HUP | G_IO_ERR;
1531             pfds[1].revents = 0;
1532 
1533             /* 0.1s timeout, should be fine for a 'cancel' */
1534             switch (qemu_poll_ns(pfds, 2, 100 * 1000 * 1000)) {
1535             case 2:
1536             case 1: /* fd active */
1537                 if (pfds[0].revents) {
1538                     return 0;
1539                 }
1540 
1541                 if (pfds[1].revents) {
1542                     ret = rdma_get_cm_event(rdma->channel, &cm_event);
1543                     if (ret) {
1544                         error_report("failed to get cm event while wait "
1545                                      "completion channel");
1546                         return -EPIPE;
1547                     }
1548 
1549                     error_report("receive cm event while wait comp channel,"
1550                                  "cm event is %d", cm_event->event);
1551                     if (cm_event->event == RDMA_CM_EVENT_DISCONNECTED ||
1552                         cm_event->event == RDMA_CM_EVENT_DEVICE_REMOVAL) {
1553                         rdma_ack_cm_event(cm_event);
1554                         return -EPIPE;
1555                     }
1556                     rdma_ack_cm_event(cm_event);
1557                 }
1558                 break;
1559 
1560             case 0: /* Timeout, go around again */
1561                 break;
1562 
1563             default: /* Error of some type -
1564                       * I don't trust errno from qemu_poll_ns
1565                      */
1566                 error_report("%s: poll failed", __func__);
1567                 return -EPIPE;
1568             }
1569 
1570             if (migrate_get_current()->state == MIGRATION_STATUS_CANCELLING) {
1571                 /* Bail out and let the cancellation happen */
1572                 return -EPIPE;
1573             }
1574         }
1575     }
1576 
1577     if (rdma->received_error) {
1578         return -EPIPE;
1579     }
1580     return rdma->error_state;
1581 }
1582 
1583 /*
1584  * Block until the next work request has completed.
1585  *
1586  * First poll to see if a work request has already completed,
1587  * otherwise block.
1588  *
1589  * If we encounter completed work requests for IDs other than
1590  * the one we're interested in, then that's generally an error.
1591  *
1592  * The only exception is actual RDMA Write completions. These
1593  * completions only need to be recorded, but do not actually
1594  * need further processing.
1595  */
1596 static int qemu_rdma_block_for_wrid(RDMAContext *rdma, int wrid_requested,
1597                                     uint32_t *byte_len)
1598 {
1599     int num_cq_events = 0, ret = 0;
1600     struct ibv_cq *cq;
1601     void *cq_ctx;
1602     uint64_t wr_id = RDMA_WRID_NONE, wr_id_in;
1603 
1604     if (ibv_req_notify_cq(rdma->cq, 0)) {
1605         return -1;
1606     }
1607     /* poll cq first */
1608     while (wr_id != wrid_requested) {
1609         ret = qemu_rdma_poll(rdma, &wr_id_in, byte_len);
1610         if (ret < 0) {
1611             return ret;
1612         }
1613 
1614         wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
1615 
1616         if (wr_id == RDMA_WRID_NONE) {
1617             break;
1618         }
1619         if (wr_id != wrid_requested) {
1620             trace_qemu_rdma_block_for_wrid_miss(print_wrid(wrid_requested),
1621                        wrid_requested, print_wrid(wr_id), wr_id);
1622         }
1623     }
1624 
1625     if (wr_id == wrid_requested) {
1626         return 0;
1627     }
1628 
1629     while (1) {
1630         ret = qemu_rdma_wait_comp_channel(rdma);
1631         if (ret) {
1632             goto err_block_for_wrid;
1633         }
1634 
1635         ret = ibv_get_cq_event(rdma->comp_channel, &cq, &cq_ctx);
1636         if (ret) {
1637             perror("ibv_get_cq_event");
1638             goto err_block_for_wrid;
1639         }
1640 
1641         num_cq_events++;
1642 
1643         ret = -ibv_req_notify_cq(cq, 0);
1644         if (ret) {
1645             goto err_block_for_wrid;
1646         }
1647 
1648         while (wr_id != wrid_requested) {
1649             ret = qemu_rdma_poll(rdma, &wr_id_in, byte_len);
1650             if (ret < 0) {
1651                 goto err_block_for_wrid;
1652             }
1653 
1654             wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
1655 
1656             if (wr_id == RDMA_WRID_NONE) {
1657                 break;
1658             }
1659             if (wr_id != wrid_requested) {
1660                 trace_qemu_rdma_block_for_wrid_miss(print_wrid(wrid_requested),
1661                                    wrid_requested, print_wrid(wr_id), wr_id);
1662             }
1663         }
1664 
1665         if (wr_id == wrid_requested) {
1666             goto success_block_for_wrid;
1667         }
1668     }
1669 
1670 success_block_for_wrid:
1671     if (num_cq_events) {
1672         ibv_ack_cq_events(cq, num_cq_events);
1673     }
1674     return 0;
1675 
1676 err_block_for_wrid:
1677     if (num_cq_events) {
1678         ibv_ack_cq_events(cq, num_cq_events);
1679     }
1680 
1681     rdma->error_state = ret;
1682     return ret;
1683 }
1684 
1685 /*
1686  * Post a SEND message work request for the control channel
1687  * containing some data and block until the post completes.
1688  */
1689 static int qemu_rdma_post_send_control(RDMAContext *rdma, uint8_t *buf,
1690                                        RDMAControlHeader *head)
1691 {
1692     int ret = 0;
1693     RDMAWorkRequestData *wr = &rdma->wr_data[RDMA_WRID_CONTROL];
1694     struct ibv_send_wr *bad_wr;
1695     struct ibv_sge sge = {
1696                            .addr = (uintptr_t)(wr->control),
1697                            .length = head->len + sizeof(RDMAControlHeader),
1698                            .lkey = wr->control_mr->lkey,
1699                          };
1700     struct ibv_send_wr send_wr = {
1701                                    .wr_id = RDMA_WRID_SEND_CONTROL,
1702                                    .opcode = IBV_WR_SEND,
1703                                    .send_flags = IBV_SEND_SIGNALED,
1704                                    .sg_list = &sge,
1705                                    .num_sge = 1,
1706                                 };
1707 
1708     trace_qemu_rdma_post_send_control(control_desc(head->type));
1709 
1710     /*
1711      * We don't actually need to do a memcpy() in here if we used
1712      * the "sge" properly, but since we're only sending control messages
1713      * (not RAM in a performance-critical path), then its OK for now.
1714      *
1715      * The copy makes the RDMAControlHeader simpler to manipulate
1716      * for the time being.
1717      */
1718     assert(head->len <= RDMA_CONTROL_MAX_BUFFER - sizeof(*head));
1719     memcpy(wr->control, head, sizeof(RDMAControlHeader));
1720     control_to_network((void *) wr->control);
1721 
1722     if (buf) {
1723         memcpy(wr->control + sizeof(RDMAControlHeader), buf, head->len);
1724     }
1725 
1726 
1727     ret = ibv_post_send(rdma->qp, &send_wr, &bad_wr);
1728 
1729     if (ret > 0) {
1730         error_report("Failed to use post IB SEND for control");
1731         return -ret;
1732     }
1733 
1734     ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_SEND_CONTROL, NULL);
1735     if (ret < 0) {
1736         error_report("rdma migration: send polling control error");
1737     }
1738 
1739     return ret;
1740 }
1741 
1742 /*
1743  * Post a RECV work request in anticipation of some future receipt
1744  * of data on the control channel.
1745  */
1746 static int qemu_rdma_post_recv_control(RDMAContext *rdma, int idx)
1747 {
1748     struct ibv_recv_wr *bad_wr;
1749     struct ibv_sge sge = {
1750                             .addr = (uintptr_t)(rdma->wr_data[idx].control),
1751                             .length = RDMA_CONTROL_MAX_BUFFER,
1752                             .lkey = rdma->wr_data[idx].control_mr->lkey,
1753                          };
1754 
1755     struct ibv_recv_wr recv_wr = {
1756                                     .wr_id = RDMA_WRID_RECV_CONTROL + idx,
1757                                     .sg_list = &sge,
1758                                     .num_sge = 1,
1759                                  };
1760 
1761 
1762     if (ibv_post_recv(rdma->qp, &recv_wr, &bad_wr)) {
1763         return -1;
1764     }
1765 
1766     return 0;
1767 }
1768 
1769 /*
1770  * Block and wait for a RECV control channel message to arrive.
1771  */
1772 static int qemu_rdma_exchange_get_response(RDMAContext *rdma,
1773                 RDMAControlHeader *head, int expecting, int idx)
1774 {
1775     uint32_t byte_len;
1776     int ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RECV_CONTROL + idx,
1777                                        &byte_len);
1778 
1779     if (ret < 0) {
1780         error_report("rdma migration: recv polling control error!");
1781         return ret;
1782     }
1783 
1784     network_to_control((void *) rdma->wr_data[idx].control);
1785     memcpy(head, rdma->wr_data[idx].control, sizeof(RDMAControlHeader));
1786 
1787     trace_qemu_rdma_exchange_get_response_start(control_desc(expecting));
1788 
1789     if (expecting == RDMA_CONTROL_NONE) {
1790         trace_qemu_rdma_exchange_get_response_none(control_desc(head->type),
1791                                              head->type);
1792     } else if (head->type != expecting || head->type == RDMA_CONTROL_ERROR) {
1793         error_report("Was expecting a %s (%d) control message"
1794                 ", but got: %s (%d), length: %d",
1795                 control_desc(expecting), expecting,
1796                 control_desc(head->type), head->type, head->len);
1797         if (head->type == RDMA_CONTROL_ERROR) {
1798             rdma->received_error = true;
1799         }
1800         return -EIO;
1801     }
1802     if (head->len > RDMA_CONTROL_MAX_BUFFER - sizeof(*head)) {
1803         error_report("too long length: %d", head->len);
1804         return -EINVAL;
1805     }
1806     if (sizeof(*head) + head->len != byte_len) {
1807         error_report("Malformed length: %d byte_len %d", head->len, byte_len);
1808         return -EINVAL;
1809     }
1810 
1811     return 0;
1812 }
1813 
1814 /*
1815  * When a RECV work request has completed, the work request's
1816  * buffer is pointed at the header.
1817  *
1818  * This will advance the pointer to the data portion
1819  * of the control message of the work request's buffer that
1820  * was populated after the work request finished.
1821  */
1822 static void qemu_rdma_move_header(RDMAContext *rdma, int idx,
1823                                   RDMAControlHeader *head)
1824 {
1825     rdma->wr_data[idx].control_len = head->len;
1826     rdma->wr_data[idx].control_curr =
1827         rdma->wr_data[idx].control + sizeof(RDMAControlHeader);
1828 }
1829 
1830 /*
1831  * This is an 'atomic' high-level operation to deliver a single, unified
1832  * control-channel message.
1833  *
1834  * Additionally, if the user is expecting some kind of reply to this message,
1835  * they can request a 'resp' response message be filled in by posting an
1836  * additional work request on behalf of the user and waiting for an additional
1837  * completion.
1838  *
1839  * The extra (optional) response is used during registration to us from having
1840  * to perform an *additional* exchange of message just to provide a response by
1841  * instead piggy-backing on the acknowledgement.
1842  */
1843 static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head,
1844                                    uint8_t *data, RDMAControlHeader *resp,
1845                                    int *resp_idx,
1846                                    int (*callback)(RDMAContext *rdma))
1847 {
1848     int ret = 0;
1849 
1850     /*
1851      * Wait until the dest is ready before attempting to deliver the message
1852      * by waiting for a READY message.
1853      */
1854     if (rdma->control_ready_expected) {
1855         RDMAControlHeader resp;
1856         ret = qemu_rdma_exchange_get_response(rdma,
1857                                     &resp, RDMA_CONTROL_READY, RDMA_WRID_READY);
1858         if (ret < 0) {
1859             return ret;
1860         }
1861     }
1862 
1863     /*
1864      * If the user is expecting a response, post a WR in anticipation of it.
1865      */
1866     if (resp) {
1867         ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_DATA);
1868         if (ret) {
1869             error_report("rdma migration: error posting"
1870                     " extra control recv for anticipated result!");
1871             return ret;
1872         }
1873     }
1874 
1875     /*
1876      * Post a WR to replace the one we just consumed for the READY message.
1877      */
1878     ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
1879     if (ret) {
1880         error_report("rdma migration: error posting first control recv!");
1881         return ret;
1882     }
1883 
1884     /*
1885      * Deliver the control message that was requested.
1886      */
1887     ret = qemu_rdma_post_send_control(rdma, data, head);
1888 
1889     if (ret < 0) {
1890         error_report("Failed to send control buffer!");
1891         return ret;
1892     }
1893 
1894     /*
1895      * If we're expecting a response, block and wait for it.
1896      */
1897     if (resp) {
1898         if (callback) {
1899             trace_qemu_rdma_exchange_send_issue_callback();
1900             ret = callback(rdma);
1901             if (ret < 0) {
1902                 return ret;
1903             }
1904         }
1905 
1906         trace_qemu_rdma_exchange_send_waiting(control_desc(resp->type));
1907         ret = qemu_rdma_exchange_get_response(rdma, resp,
1908                                               resp->type, RDMA_WRID_DATA);
1909 
1910         if (ret < 0) {
1911             return ret;
1912         }
1913 
1914         qemu_rdma_move_header(rdma, RDMA_WRID_DATA, resp);
1915         if (resp_idx) {
1916             *resp_idx = RDMA_WRID_DATA;
1917         }
1918         trace_qemu_rdma_exchange_send_received(control_desc(resp->type));
1919     }
1920 
1921     rdma->control_ready_expected = 1;
1922 
1923     return 0;
1924 }
1925 
1926 /*
1927  * This is an 'atomic' high-level operation to receive a single, unified
1928  * control-channel message.
1929  */
1930 static int qemu_rdma_exchange_recv(RDMAContext *rdma, RDMAControlHeader *head,
1931                                 int expecting)
1932 {
1933     RDMAControlHeader ready = {
1934                                 .len = 0,
1935                                 .type = RDMA_CONTROL_READY,
1936                                 .repeat = 1,
1937                               };
1938     int ret;
1939 
1940     /*
1941      * Inform the source that we're ready to receive a message.
1942      */
1943     ret = qemu_rdma_post_send_control(rdma, NULL, &ready);
1944 
1945     if (ret < 0) {
1946         error_report("Failed to send control buffer!");
1947         return ret;
1948     }
1949 
1950     /*
1951      * Block and wait for the message.
1952      */
1953     ret = qemu_rdma_exchange_get_response(rdma, head,
1954                                           expecting, RDMA_WRID_READY);
1955 
1956     if (ret < 0) {
1957         return ret;
1958     }
1959 
1960     qemu_rdma_move_header(rdma, RDMA_WRID_READY, head);
1961 
1962     /*
1963      * Post a new RECV work request to replace the one we just consumed.
1964      */
1965     ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
1966     if (ret) {
1967         error_report("rdma migration: error posting second control recv!");
1968         return ret;
1969     }
1970 
1971     return 0;
1972 }
1973 
1974 /*
1975  * Write an actual chunk of memory using RDMA.
1976  *
1977  * If we're using dynamic registration on the dest-side, we have to
1978  * send a registration command first.
1979  */
1980 static int qemu_rdma_write_one(QEMUFile *f, RDMAContext *rdma,
1981                                int current_index, uint64_t current_addr,
1982                                uint64_t length)
1983 {
1984     struct ibv_sge sge;
1985     struct ibv_send_wr send_wr = { 0 };
1986     struct ibv_send_wr *bad_wr;
1987     int reg_result_idx, ret, count = 0;
1988     uint64_t chunk, chunks;
1989     uint8_t *chunk_start, *chunk_end;
1990     RDMALocalBlock *block = &(rdma->local_ram_blocks.block[current_index]);
1991     RDMARegister reg;
1992     RDMARegisterResult *reg_result;
1993     RDMAControlHeader resp = { .type = RDMA_CONTROL_REGISTER_RESULT };
1994     RDMAControlHeader head = { .len = sizeof(RDMARegister),
1995                                .type = RDMA_CONTROL_REGISTER_REQUEST,
1996                                .repeat = 1,
1997                              };
1998 
1999 retry:
2000     sge.addr = (uintptr_t)(block->local_host_addr +
2001                             (current_addr - block->offset));
2002     sge.length = length;
2003 
2004     chunk = ram_chunk_index(block->local_host_addr,
2005                             (uint8_t *)(uintptr_t)sge.addr);
2006     chunk_start = ram_chunk_start(block, chunk);
2007 
2008     if (block->is_ram_block) {
2009         chunks = length / (1UL << RDMA_REG_CHUNK_SHIFT);
2010 
2011         if (chunks && ((length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) {
2012             chunks--;
2013         }
2014     } else {
2015         chunks = block->length / (1UL << RDMA_REG_CHUNK_SHIFT);
2016 
2017         if (chunks && ((block->length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) {
2018             chunks--;
2019         }
2020     }
2021 
2022     trace_qemu_rdma_write_one_top(chunks + 1,
2023                                   (chunks + 1) *
2024                                   (1UL << RDMA_REG_CHUNK_SHIFT) / 1024 / 1024);
2025 
2026     chunk_end = ram_chunk_end(block, chunk + chunks);
2027 
2028     if (!rdma->pin_all) {
2029 #ifdef RDMA_UNREGISTRATION_EXAMPLE
2030         qemu_rdma_unregister_waiting(rdma);
2031 #endif
2032     }
2033 
2034     while (test_bit(chunk, block->transit_bitmap)) {
2035         (void)count;
2036         trace_qemu_rdma_write_one_block(count++, current_index, chunk,
2037                 sge.addr, length, rdma->nb_sent, block->nb_chunks);
2038 
2039         ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
2040 
2041         if (ret < 0) {
2042             error_report("Failed to Wait for previous write to complete "
2043                     "block %d chunk %" PRIu64
2044                     " current %" PRIu64 " len %" PRIu64 " %d",
2045                     current_index, chunk, sge.addr, length, rdma->nb_sent);
2046             return ret;
2047         }
2048     }
2049 
2050     if (!rdma->pin_all || !block->is_ram_block) {
2051         if (!block->remote_keys[chunk]) {
2052             /*
2053              * This chunk has not yet been registered, so first check to see
2054              * if the entire chunk is zero. If so, tell the other size to
2055              * memset() + madvise() the entire chunk without RDMA.
2056              */
2057 
2058             if (buffer_is_zero((void *)(uintptr_t)sge.addr, length)) {
2059                 RDMACompress comp = {
2060                                         .offset = current_addr,
2061                                         .value = 0,
2062                                         .block_idx = current_index,
2063                                         .length = length,
2064                                     };
2065 
2066                 head.len = sizeof(comp);
2067                 head.type = RDMA_CONTROL_COMPRESS;
2068 
2069                 trace_qemu_rdma_write_one_zero(chunk, sge.length,
2070                                                current_index, current_addr);
2071 
2072                 compress_to_network(rdma, &comp);
2073                 ret = qemu_rdma_exchange_send(rdma, &head,
2074                                 (uint8_t *) &comp, NULL, NULL, NULL);
2075 
2076                 if (ret < 0) {
2077                     return -EIO;
2078                 }
2079 
2080                 acct_update_position(f, sge.length, true);
2081 
2082                 return 1;
2083             }
2084 
2085             /*
2086              * Otherwise, tell other side to register.
2087              */
2088             reg.current_index = current_index;
2089             if (block->is_ram_block) {
2090                 reg.key.current_addr = current_addr;
2091             } else {
2092                 reg.key.chunk = chunk;
2093             }
2094             reg.chunks = chunks;
2095 
2096             trace_qemu_rdma_write_one_sendreg(chunk, sge.length, current_index,
2097                                               current_addr);
2098 
2099             register_to_network(rdma, &reg);
2100             ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) &reg,
2101                                     &resp, &reg_result_idx, NULL);
2102             if (ret < 0) {
2103                 return ret;
2104             }
2105 
2106             /* try to overlap this single registration with the one we sent. */
2107             if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr,
2108                                                 &sge.lkey, NULL, chunk,
2109                                                 chunk_start, chunk_end)) {
2110                 error_report("cannot get lkey");
2111                 return -EINVAL;
2112             }
2113 
2114             reg_result = (RDMARegisterResult *)
2115                     rdma->wr_data[reg_result_idx].control_curr;
2116 
2117             network_to_result(reg_result);
2118 
2119             trace_qemu_rdma_write_one_recvregres(block->remote_keys[chunk],
2120                                                  reg_result->rkey, chunk);
2121 
2122             block->remote_keys[chunk] = reg_result->rkey;
2123             block->remote_host_addr = reg_result->host_addr;
2124         } else {
2125             /* already registered before */
2126             if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr,
2127                                                 &sge.lkey, NULL, chunk,
2128                                                 chunk_start, chunk_end)) {
2129                 error_report("cannot get lkey!");
2130                 return -EINVAL;
2131             }
2132         }
2133 
2134         send_wr.wr.rdma.rkey = block->remote_keys[chunk];
2135     } else {
2136         send_wr.wr.rdma.rkey = block->remote_rkey;
2137 
2138         if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr,
2139                                                      &sge.lkey, NULL, chunk,
2140                                                      chunk_start, chunk_end)) {
2141             error_report("cannot get lkey!");
2142             return -EINVAL;
2143         }
2144     }
2145 
2146     /*
2147      * Encode the ram block index and chunk within this wrid.
2148      * We will use this information at the time of completion
2149      * to figure out which bitmap to check against and then which
2150      * chunk in the bitmap to look for.
2151      */
2152     send_wr.wr_id = qemu_rdma_make_wrid(RDMA_WRID_RDMA_WRITE,
2153                                         current_index, chunk);
2154 
2155     send_wr.opcode = IBV_WR_RDMA_WRITE;
2156     send_wr.send_flags = IBV_SEND_SIGNALED;
2157     send_wr.sg_list = &sge;
2158     send_wr.num_sge = 1;
2159     send_wr.wr.rdma.remote_addr = block->remote_host_addr +
2160                                 (current_addr - block->offset);
2161 
2162     trace_qemu_rdma_write_one_post(chunk, sge.addr, send_wr.wr.rdma.remote_addr,
2163                                    sge.length);
2164 
2165     /*
2166      * ibv_post_send() does not return negative error numbers,
2167      * per the specification they are positive - no idea why.
2168      */
2169     ret = ibv_post_send(rdma->qp, &send_wr, &bad_wr);
2170 
2171     if (ret == ENOMEM) {
2172         trace_qemu_rdma_write_one_queue_full();
2173         ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
2174         if (ret < 0) {
2175             error_report("rdma migration: failed to make "
2176                          "room in full send queue! %d", ret);
2177             return ret;
2178         }
2179 
2180         goto retry;
2181 
2182     } else if (ret > 0) {
2183         perror("rdma migration: post rdma write failed");
2184         return -ret;
2185     }
2186 
2187     set_bit(chunk, block->transit_bitmap);
2188     acct_update_position(f, sge.length, false);
2189     rdma->total_writes++;
2190 
2191     return 0;
2192 }
2193 
2194 /*
2195  * Push out any unwritten RDMA operations.
2196  *
2197  * We support sending out multiple chunks at the same time.
2198  * Not all of them need to get signaled in the completion queue.
2199  */
2200 static int qemu_rdma_write_flush(QEMUFile *f, RDMAContext *rdma)
2201 {
2202     int ret;
2203 
2204     if (!rdma->current_length) {
2205         return 0;
2206     }
2207 
2208     ret = qemu_rdma_write_one(f, rdma,
2209             rdma->current_index, rdma->current_addr, rdma->current_length);
2210 
2211     if (ret < 0) {
2212         return ret;
2213     }
2214 
2215     if (ret == 0) {
2216         rdma->nb_sent++;
2217         trace_qemu_rdma_write_flush(rdma->nb_sent);
2218     }
2219 
2220     rdma->current_length = 0;
2221     rdma->current_addr = 0;
2222 
2223     return 0;
2224 }
2225 
2226 static inline int qemu_rdma_buffer_mergable(RDMAContext *rdma,
2227                     uint64_t offset, uint64_t len)
2228 {
2229     RDMALocalBlock *block;
2230     uint8_t *host_addr;
2231     uint8_t *chunk_end;
2232 
2233     if (rdma->current_index < 0) {
2234         return 0;
2235     }
2236 
2237     if (rdma->current_chunk < 0) {
2238         return 0;
2239     }
2240 
2241     block = &(rdma->local_ram_blocks.block[rdma->current_index]);
2242     host_addr = block->local_host_addr + (offset - block->offset);
2243     chunk_end = ram_chunk_end(block, rdma->current_chunk);
2244 
2245     if (rdma->current_length == 0) {
2246         return 0;
2247     }
2248 
2249     /*
2250      * Only merge into chunk sequentially.
2251      */
2252     if (offset != (rdma->current_addr + rdma->current_length)) {
2253         return 0;
2254     }
2255 
2256     if (offset < block->offset) {
2257         return 0;
2258     }
2259 
2260     if ((offset + len) > (block->offset + block->length)) {
2261         return 0;
2262     }
2263 
2264     if ((host_addr + len) > chunk_end) {
2265         return 0;
2266     }
2267 
2268     return 1;
2269 }
2270 
2271 /*
2272  * We're not actually writing here, but doing three things:
2273  *
2274  * 1. Identify the chunk the buffer belongs to.
2275  * 2. If the chunk is full or the buffer doesn't belong to the current
2276  *    chunk, then start a new chunk and flush() the old chunk.
2277  * 3. To keep the hardware busy, we also group chunks into batches
2278  *    and only require that a batch gets acknowledged in the completion
2279  *    queue instead of each individual chunk.
2280  */
2281 static int qemu_rdma_write(QEMUFile *f, RDMAContext *rdma,
2282                            uint64_t block_offset, uint64_t offset,
2283                            uint64_t len)
2284 {
2285     uint64_t current_addr = block_offset + offset;
2286     uint64_t index = rdma->current_index;
2287     uint64_t chunk = rdma->current_chunk;
2288     int ret;
2289 
2290     /* If we cannot merge it, we flush the current buffer first. */
2291     if (!qemu_rdma_buffer_mergable(rdma, current_addr, len)) {
2292         ret = qemu_rdma_write_flush(f, rdma);
2293         if (ret) {
2294             return ret;
2295         }
2296         rdma->current_length = 0;
2297         rdma->current_addr = current_addr;
2298 
2299         ret = qemu_rdma_search_ram_block(rdma, block_offset,
2300                                          offset, len, &index, &chunk);
2301         if (ret) {
2302             error_report("ram block search failed");
2303             return ret;
2304         }
2305         rdma->current_index = index;
2306         rdma->current_chunk = chunk;
2307     }
2308 
2309     /* merge it */
2310     rdma->current_length += len;
2311 
2312     /* flush it if buffer is too large */
2313     if (rdma->current_length >= RDMA_MERGE_MAX) {
2314         return qemu_rdma_write_flush(f, rdma);
2315     }
2316 
2317     return 0;
2318 }
2319 
2320 static void qemu_rdma_cleanup(RDMAContext *rdma)
2321 {
2322     int idx;
2323 
2324     if (rdma->cm_id && rdma->connected) {
2325         if ((rdma->error_state ||
2326              migrate_get_current()->state == MIGRATION_STATUS_CANCELLING) &&
2327             !rdma->received_error) {
2328             RDMAControlHeader head = { .len = 0,
2329                                        .type = RDMA_CONTROL_ERROR,
2330                                        .repeat = 1,
2331                                      };
2332             error_report("Early error. Sending error.");
2333             qemu_rdma_post_send_control(rdma, NULL, &head);
2334         }
2335 
2336         rdma_disconnect(rdma->cm_id);
2337         trace_qemu_rdma_cleanup_disconnect();
2338         rdma->connected = false;
2339     }
2340 
2341     if (rdma->channel) {
2342         qemu_set_fd_handler(rdma->channel->fd, NULL, NULL, NULL);
2343     }
2344     g_free(rdma->dest_blocks);
2345     rdma->dest_blocks = NULL;
2346 
2347     for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2348         if (rdma->wr_data[idx].control_mr) {
2349             rdma->total_registrations--;
2350             ibv_dereg_mr(rdma->wr_data[idx].control_mr);
2351         }
2352         rdma->wr_data[idx].control_mr = NULL;
2353     }
2354 
2355     if (rdma->local_ram_blocks.block) {
2356         while (rdma->local_ram_blocks.nb_blocks) {
2357             rdma_delete_block(rdma, &rdma->local_ram_blocks.block[0]);
2358         }
2359     }
2360 
2361     if (rdma->qp) {
2362         rdma_destroy_qp(rdma->cm_id);
2363         rdma->qp = NULL;
2364     }
2365     if (rdma->cq) {
2366         ibv_destroy_cq(rdma->cq);
2367         rdma->cq = NULL;
2368     }
2369     if (rdma->comp_channel) {
2370         ibv_destroy_comp_channel(rdma->comp_channel);
2371         rdma->comp_channel = NULL;
2372     }
2373     if (rdma->pd) {
2374         ibv_dealloc_pd(rdma->pd);
2375         rdma->pd = NULL;
2376     }
2377     if (rdma->cm_id) {
2378         rdma_destroy_id(rdma->cm_id);
2379         rdma->cm_id = NULL;
2380     }
2381 
2382     /* the destination side, listen_id and channel is shared */
2383     if (rdma->listen_id) {
2384         if (!rdma->is_return_path) {
2385             rdma_destroy_id(rdma->listen_id);
2386         }
2387         rdma->listen_id = NULL;
2388 
2389         if (rdma->channel) {
2390             if (!rdma->is_return_path) {
2391                 rdma_destroy_event_channel(rdma->channel);
2392             }
2393             rdma->channel = NULL;
2394         }
2395     }
2396 
2397     if (rdma->channel) {
2398         rdma_destroy_event_channel(rdma->channel);
2399         rdma->channel = NULL;
2400     }
2401     g_free(rdma->host);
2402     g_free(rdma->host_port);
2403     rdma->host = NULL;
2404     rdma->host_port = NULL;
2405 }
2406 
2407 
2408 static int qemu_rdma_source_init(RDMAContext *rdma, bool pin_all, Error **errp)
2409 {
2410     int ret, idx;
2411     Error *local_err = NULL, **temp = &local_err;
2412 
2413     /*
2414      * Will be validated against destination's actual capabilities
2415      * after the connect() completes.
2416      */
2417     rdma->pin_all = pin_all;
2418 
2419     ret = qemu_rdma_resolve_host(rdma, temp);
2420     if (ret) {
2421         goto err_rdma_source_init;
2422     }
2423 
2424     ret = qemu_rdma_alloc_pd_cq(rdma);
2425     if (ret) {
2426         ERROR(temp, "rdma migration: error allocating pd and cq! Your mlock()"
2427                     " limits may be too low. Please check $ ulimit -a # and "
2428                     "search for 'ulimit -l' in the output");
2429         goto err_rdma_source_init;
2430     }
2431 
2432     ret = qemu_rdma_alloc_qp(rdma);
2433     if (ret) {
2434         ERROR(temp, "rdma migration: error allocating qp!");
2435         goto err_rdma_source_init;
2436     }
2437 
2438     ret = qemu_rdma_init_ram_blocks(rdma);
2439     if (ret) {
2440         ERROR(temp, "rdma migration: error initializing ram blocks!");
2441         goto err_rdma_source_init;
2442     }
2443 
2444     /* Build the hash that maps from offset to RAMBlock */
2445     rdma->blockmap = g_hash_table_new(g_direct_hash, g_direct_equal);
2446     for (idx = 0; idx < rdma->local_ram_blocks.nb_blocks; idx++) {
2447         g_hash_table_insert(rdma->blockmap,
2448                 (void *)(uintptr_t)rdma->local_ram_blocks.block[idx].offset,
2449                 &rdma->local_ram_blocks.block[idx]);
2450     }
2451 
2452     for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2453         ret = qemu_rdma_reg_control(rdma, idx);
2454         if (ret) {
2455             ERROR(temp, "rdma migration: error registering %d control!",
2456                                                             idx);
2457             goto err_rdma_source_init;
2458         }
2459     }
2460 
2461     return 0;
2462 
2463 err_rdma_source_init:
2464     error_propagate(errp, local_err);
2465     qemu_rdma_cleanup(rdma);
2466     return -1;
2467 }
2468 
2469 static int qemu_get_cm_event_timeout(RDMAContext *rdma,
2470                                      struct rdma_cm_event **cm_event,
2471                                      long msec, Error **errp)
2472 {
2473     int ret;
2474     struct pollfd poll_fd = {
2475                                 .fd = rdma->channel->fd,
2476                                 .events = POLLIN,
2477                                 .revents = 0
2478                             };
2479 
2480     do {
2481         ret = poll(&poll_fd, 1, msec);
2482     } while (ret < 0 && errno == EINTR);
2483 
2484     if (ret == 0) {
2485         ERROR(errp, "poll cm event timeout");
2486         return -1;
2487     } else if (ret < 0) {
2488         ERROR(errp, "failed to poll cm event, errno=%i", errno);
2489         return -1;
2490     } else if (poll_fd.revents & POLLIN) {
2491         return rdma_get_cm_event(rdma->channel, cm_event);
2492     } else {
2493         ERROR(errp, "no POLLIN event, revent=%x", poll_fd.revents);
2494         return -1;
2495     }
2496 }
2497 
2498 static int qemu_rdma_connect(RDMAContext *rdma, Error **errp, bool return_path)
2499 {
2500     RDMACapabilities cap = {
2501                                 .version = RDMA_CONTROL_VERSION_CURRENT,
2502                                 .flags = 0,
2503                            };
2504     struct rdma_conn_param conn_param = { .initiator_depth = 2,
2505                                           .retry_count = 5,
2506                                           .private_data = &cap,
2507                                           .private_data_len = sizeof(cap),
2508                                         };
2509     struct rdma_cm_event *cm_event;
2510     int ret;
2511 
2512     /*
2513      * Only negotiate the capability with destination if the user
2514      * on the source first requested the capability.
2515      */
2516     if (rdma->pin_all) {
2517         trace_qemu_rdma_connect_pin_all_requested();
2518         cap.flags |= RDMA_CAPABILITY_PIN_ALL;
2519     }
2520 
2521     caps_to_network(&cap);
2522 
2523     ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
2524     if (ret) {
2525         ERROR(errp, "posting second control recv");
2526         goto err_rdma_source_connect;
2527     }
2528 
2529     ret = rdma_connect(rdma->cm_id, &conn_param);
2530     if (ret) {
2531         perror("rdma_connect");
2532         ERROR(errp, "connecting to destination!");
2533         goto err_rdma_source_connect;
2534     }
2535 
2536     if (return_path) {
2537         ret = qemu_get_cm_event_timeout(rdma, &cm_event, 5000, errp);
2538     } else {
2539         ret = rdma_get_cm_event(rdma->channel, &cm_event);
2540     }
2541     if (ret) {
2542         perror("rdma_get_cm_event after rdma_connect");
2543         ERROR(errp, "connecting to destination!");
2544         goto err_rdma_source_connect;
2545     }
2546 
2547     if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) {
2548         error_report("rdma_get_cm_event != EVENT_ESTABLISHED after rdma_connect");
2549         ERROR(errp, "connecting to destination!");
2550         rdma_ack_cm_event(cm_event);
2551         goto err_rdma_source_connect;
2552     }
2553     rdma->connected = true;
2554 
2555     memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap));
2556     network_to_caps(&cap);
2557 
2558     /*
2559      * Verify that the *requested* capabilities are supported by the destination
2560      * and disable them otherwise.
2561      */
2562     if (rdma->pin_all && !(cap.flags & RDMA_CAPABILITY_PIN_ALL)) {
2563         ERROR(errp, "Server cannot support pinning all memory. "
2564                         "Will register memory dynamically.");
2565         rdma->pin_all = false;
2566     }
2567 
2568     trace_qemu_rdma_connect_pin_all_outcome(rdma->pin_all);
2569 
2570     rdma_ack_cm_event(cm_event);
2571 
2572     rdma->control_ready_expected = 1;
2573     rdma->nb_sent = 0;
2574     return 0;
2575 
2576 err_rdma_source_connect:
2577     qemu_rdma_cleanup(rdma);
2578     return -1;
2579 }
2580 
2581 static int qemu_rdma_dest_init(RDMAContext *rdma, Error **errp)
2582 {
2583     int ret, idx;
2584     struct rdma_cm_id *listen_id;
2585     char ip[40] = "unknown";
2586     struct rdma_addrinfo *res, *e;
2587     char port_str[16];
2588 
2589     for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2590         rdma->wr_data[idx].control_len = 0;
2591         rdma->wr_data[idx].control_curr = NULL;
2592     }
2593 
2594     if (!rdma->host || !rdma->host[0]) {
2595         ERROR(errp, "RDMA host is not set!");
2596         rdma->error_state = -EINVAL;
2597         return -1;
2598     }
2599     /* create CM channel */
2600     rdma->channel = rdma_create_event_channel();
2601     if (!rdma->channel) {
2602         ERROR(errp, "could not create rdma event channel");
2603         rdma->error_state = -EINVAL;
2604         return -1;
2605     }
2606 
2607     /* create CM id */
2608     ret = rdma_create_id(rdma->channel, &listen_id, NULL, RDMA_PS_TCP);
2609     if (ret) {
2610         ERROR(errp, "could not create cm_id!");
2611         goto err_dest_init_create_listen_id;
2612     }
2613 
2614     snprintf(port_str, 16, "%d", rdma->port);
2615     port_str[15] = '\0';
2616 
2617     ret = rdma_getaddrinfo(rdma->host, port_str, NULL, &res);
2618     if (ret < 0) {
2619         ERROR(errp, "could not rdma_getaddrinfo address %s", rdma->host);
2620         goto err_dest_init_bind_addr;
2621     }
2622 
2623     for (e = res; e != NULL; e = e->ai_next) {
2624         inet_ntop(e->ai_family,
2625             &((struct sockaddr_in *) e->ai_dst_addr)->sin_addr, ip, sizeof ip);
2626         trace_qemu_rdma_dest_init_trying(rdma->host, ip);
2627         ret = rdma_bind_addr(listen_id, e->ai_dst_addr);
2628         if (ret) {
2629             continue;
2630         }
2631         if (e->ai_family == AF_INET6) {
2632             ret = qemu_rdma_broken_ipv6_kernel(listen_id->verbs, errp);
2633             if (ret) {
2634                 continue;
2635             }
2636         }
2637         break;
2638     }
2639 
2640     rdma_freeaddrinfo(res);
2641     if (!e) {
2642         ERROR(errp, "Error: could not rdma_bind_addr!");
2643         goto err_dest_init_bind_addr;
2644     }
2645 
2646     rdma->listen_id = listen_id;
2647     qemu_rdma_dump_gid("dest_init", listen_id);
2648     return 0;
2649 
2650 err_dest_init_bind_addr:
2651     rdma_destroy_id(listen_id);
2652 err_dest_init_create_listen_id:
2653     rdma_destroy_event_channel(rdma->channel);
2654     rdma->channel = NULL;
2655     rdma->error_state = ret;
2656     return ret;
2657 
2658 }
2659 
2660 static void qemu_rdma_return_path_dest_init(RDMAContext *rdma_return_path,
2661                                             RDMAContext *rdma)
2662 {
2663     int idx;
2664 
2665     for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
2666         rdma_return_path->wr_data[idx].control_len = 0;
2667         rdma_return_path->wr_data[idx].control_curr = NULL;
2668     }
2669 
2670     /*the CM channel and CM id is shared*/
2671     rdma_return_path->channel = rdma->channel;
2672     rdma_return_path->listen_id = rdma->listen_id;
2673 
2674     rdma->return_path = rdma_return_path;
2675     rdma_return_path->return_path = rdma;
2676     rdma_return_path->is_return_path = true;
2677 }
2678 
2679 static void *qemu_rdma_data_init(const char *host_port, Error **errp)
2680 {
2681     RDMAContext *rdma = NULL;
2682     InetSocketAddress *addr;
2683 
2684     if (host_port) {
2685         rdma = g_new0(RDMAContext, 1);
2686         rdma->current_index = -1;
2687         rdma->current_chunk = -1;
2688 
2689         addr = g_new(InetSocketAddress, 1);
2690         if (!inet_parse(addr, host_port, NULL)) {
2691             rdma->port = atoi(addr->port);
2692             rdma->host = g_strdup(addr->host);
2693             rdma->host_port = g_strdup(host_port);
2694         } else {
2695             ERROR(errp, "bad RDMA migration address '%s'", host_port);
2696             g_free(rdma);
2697             rdma = NULL;
2698         }
2699 
2700         qapi_free_InetSocketAddress(addr);
2701     }
2702 
2703     return rdma;
2704 }
2705 
2706 /*
2707  * QEMUFile interface to the control channel.
2708  * SEND messages for control only.
2709  * VM's ram is handled with regular RDMA messages.
2710  */
2711 static ssize_t qio_channel_rdma_writev(QIOChannel *ioc,
2712                                        const struct iovec *iov,
2713                                        size_t niov,
2714                                        int *fds,
2715                                        size_t nfds,
2716                                        Error **errp)
2717 {
2718     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
2719     QEMUFile *f = rioc->file;
2720     RDMAContext *rdma;
2721     int ret;
2722     ssize_t done = 0;
2723     size_t i;
2724     size_t len = 0;
2725 
2726     RCU_READ_LOCK_GUARD();
2727     rdma = qatomic_rcu_read(&rioc->rdmaout);
2728 
2729     if (!rdma) {
2730         return -EIO;
2731     }
2732 
2733     CHECK_ERROR_STATE();
2734 
2735     /*
2736      * Push out any writes that
2737      * we're queued up for VM's ram.
2738      */
2739     ret = qemu_rdma_write_flush(f, rdma);
2740     if (ret < 0) {
2741         rdma->error_state = ret;
2742         return ret;
2743     }
2744 
2745     for (i = 0; i < niov; i++) {
2746         size_t remaining = iov[i].iov_len;
2747         uint8_t * data = (void *)iov[i].iov_base;
2748         while (remaining) {
2749             RDMAControlHeader head;
2750 
2751             len = MIN(remaining, RDMA_SEND_INCREMENT);
2752             remaining -= len;
2753 
2754             head.len = len;
2755             head.type = RDMA_CONTROL_QEMU_FILE;
2756 
2757             ret = qemu_rdma_exchange_send(rdma, &head, data, NULL, NULL, NULL);
2758 
2759             if (ret < 0) {
2760                 rdma->error_state = ret;
2761                 return ret;
2762             }
2763 
2764             data += len;
2765             done += len;
2766         }
2767     }
2768 
2769     return done;
2770 }
2771 
2772 static size_t qemu_rdma_fill(RDMAContext *rdma, uint8_t *buf,
2773                              size_t size, int idx)
2774 {
2775     size_t len = 0;
2776 
2777     if (rdma->wr_data[idx].control_len) {
2778         trace_qemu_rdma_fill(rdma->wr_data[idx].control_len, size);
2779 
2780         len = MIN(size, rdma->wr_data[idx].control_len);
2781         memcpy(buf, rdma->wr_data[idx].control_curr, len);
2782         rdma->wr_data[idx].control_curr += len;
2783         rdma->wr_data[idx].control_len -= len;
2784     }
2785 
2786     return len;
2787 }
2788 
2789 /*
2790  * QEMUFile interface to the control channel.
2791  * RDMA links don't use bytestreams, so we have to
2792  * return bytes to QEMUFile opportunistically.
2793  */
2794 static ssize_t qio_channel_rdma_readv(QIOChannel *ioc,
2795                                       const struct iovec *iov,
2796                                       size_t niov,
2797                                       int **fds,
2798                                       size_t *nfds,
2799                                       Error **errp)
2800 {
2801     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
2802     RDMAContext *rdma;
2803     RDMAControlHeader head;
2804     int ret = 0;
2805     ssize_t i;
2806     size_t done = 0;
2807 
2808     RCU_READ_LOCK_GUARD();
2809     rdma = qatomic_rcu_read(&rioc->rdmain);
2810 
2811     if (!rdma) {
2812         return -EIO;
2813     }
2814 
2815     CHECK_ERROR_STATE();
2816 
2817     for (i = 0; i < niov; i++) {
2818         size_t want = iov[i].iov_len;
2819         uint8_t *data = (void *)iov[i].iov_base;
2820 
2821         /*
2822          * First, we hold on to the last SEND message we
2823          * were given and dish out the bytes until we run
2824          * out of bytes.
2825          */
2826         ret = qemu_rdma_fill(rdma, data, want, 0);
2827         done += ret;
2828         want -= ret;
2829         /* Got what we needed, so go to next iovec */
2830         if (want == 0) {
2831             continue;
2832         }
2833 
2834         /* If we got any data so far, then don't wait
2835          * for more, just return what we have */
2836         if (done > 0) {
2837             break;
2838         }
2839 
2840 
2841         /* We've got nothing at all, so lets wait for
2842          * more to arrive
2843          */
2844         ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_QEMU_FILE);
2845 
2846         if (ret < 0) {
2847             rdma->error_state = ret;
2848             return ret;
2849         }
2850 
2851         /*
2852          * SEND was received with new bytes, now try again.
2853          */
2854         ret = qemu_rdma_fill(rdma, data, want, 0);
2855         done += ret;
2856         want -= ret;
2857 
2858         /* Still didn't get enough, so lets just return */
2859         if (want) {
2860             if (done == 0) {
2861                 return QIO_CHANNEL_ERR_BLOCK;
2862             } else {
2863                 break;
2864             }
2865         }
2866     }
2867     return done;
2868 }
2869 
2870 /*
2871  * Block until all the outstanding chunks have been delivered by the hardware.
2872  */
2873 static int qemu_rdma_drain_cq(QEMUFile *f, RDMAContext *rdma)
2874 {
2875     int ret;
2876 
2877     if (qemu_rdma_write_flush(f, rdma) < 0) {
2878         return -EIO;
2879     }
2880 
2881     while (rdma->nb_sent) {
2882         ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
2883         if (ret < 0) {
2884             error_report("rdma migration: complete polling error!");
2885             return -EIO;
2886         }
2887     }
2888 
2889     qemu_rdma_unregister_waiting(rdma);
2890 
2891     return 0;
2892 }
2893 
2894 
2895 static int qio_channel_rdma_set_blocking(QIOChannel *ioc,
2896                                          bool blocking,
2897                                          Error **errp)
2898 {
2899     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
2900     /* XXX we should make readv/writev actually honour this :-) */
2901     rioc->blocking = blocking;
2902     return 0;
2903 }
2904 
2905 
2906 typedef struct QIOChannelRDMASource QIOChannelRDMASource;
2907 struct QIOChannelRDMASource {
2908     GSource parent;
2909     QIOChannelRDMA *rioc;
2910     GIOCondition condition;
2911 };
2912 
2913 static gboolean
2914 qio_channel_rdma_source_prepare(GSource *source,
2915                                 gint *timeout)
2916 {
2917     QIOChannelRDMASource *rsource = (QIOChannelRDMASource *)source;
2918     RDMAContext *rdma;
2919     GIOCondition cond = 0;
2920     *timeout = -1;
2921 
2922     RCU_READ_LOCK_GUARD();
2923     if (rsource->condition == G_IO_IN) {
2924         rdma = qatomic_rcu_read(&rsource->rioc->rdmain);
2925     } else {
2926         rdma = qatomic_rcu_read(&rsource->rioc->rdmaout);
2927     }
2928 
2929     if (!rdma) {
2930         error_report("RDMAContext is NULL when prepare Gsource");
2931         return FALSE;
2932     }
2933 
2934     if (rdma->wr_data[0].control_len) {
2935         cond |= G_IO_IN;
2936     }
2937     cond |= G_IO_OUT;
2938 
2939     return cond & rsource->condition;
2940 }
2941 
2942 static gboolean
2943 qio_channel_rdma_source_check(GSource *source)
2944 {
2945     QIOChannelRDMASource *rsource = (QIOChannelRDMASource *)source;
2946     RDMAContext *rdma;
2947     GIOCondition cond = 0;
2948 
2949     RCU_READ_LOCK_GUARD();
2950     if (rsource->condition == G_IO_IN) {
2951         rdma = qatomic_rcu_read(&rsource->rioc->rdmain);
2952     } else {
2953         rdma = qatomic_rcu_read(&rsource->rioc->rdmaout);
2954     }
2955 
2956     if (!rdma) {
2957         error_report("RDMAContext is NULL when check Gsource");
2958         return FALSE;
2959     }
2960 
2961     if (rdma->wr_data[0].control_len) {
2962         cond |= G_IO_IN;
2963     }
2964     cond |= G_IO_OUT;
2965 
2966     return cond & rsource->condition;
2967 }
2968 
2969 static gboolean
2970 qio_channel_rdma_source_dispatch(GSource *source,
2971                                  GSourceFunc callback,
2972                                  gpointer user_data)
2973 {
2974     QIOChannelFunc func = (QIOChannelFunc)callback;
2975     QIOChannelRDMASource *rsource = (QIOChannelRDMASource *)source;
2976     RDMAContext *rdma;
2977     GIOCondition cond = 0;
2978 
2979     RCU_READ_LOCK_GUARD();
2980     if (rsource->condition == G_IO_IN) {
2981         rdma = qatomic_rcu_read(&rsource->rioc->rdmain);
2982     } else {
2983         rdma = qatomic_rcu_read(&rsource->rioc->rdmaout);
2984     }
2985 
2986     if (!rdma) {
2987         error_report("RDMAContext is NULL when dispatch Gsource");
2988         return FALSE;
2989     }
2990 
2991     if (rdma->wr_data[0].control_len) {
2992         cond |= G_IO_IN;
2993     }
2994     cond |= G_IO_OUT;
2995 
2996     return (*func)(QIO_CHANNEL(rsource->rioc),
2997                    (cond & rsource->condition),
2998                    user_data);
2999 }
3000 
3001 static void
3002 qio_channel_rdma_source_finalize(GSource *source)
3003 {
3004     QIOChannelRDMASource *ssource = (QIOChannelRDMASource *)source;
3005 
3006     object_unref(OBJECT(ssource->rioc));
3007 }
3008 
3009 GSourceFuncs qio_channel_rdma_source_funcs = {
3010     qio_channel_rdma_source_prepare,
3011     qio_channel_rdma_source_check,
3012     qio_channel_rdma_source_dispatch,
3013     qio_channel_rdma_source_finalize
3014 };
3015 
3016 static GSource *qio_channel_rdma_create_watch(QIOChannel *ioc,
3017                                               GIOCondition condition)
3018 {
3019     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
3020     QIOChannelRDMASource *ssource;
3021     GSource *source;
3022 
3023     source = g_source_new(&qio_channel_rdma_source_funcs,
3024                           sizeof(QIOChannelRDMASource));
3025     ssource = (QIOChannelRDMASource *)source;
3026 
3027     ssource->rioc = rioc;
3028     object_ref(OBJECT(rioc));
3029 
3030     ssource->condition = condition;
3031 
3032     return source;
3033 }
3034 
3035 static void qio_channel_rdma_set_aio_fd_handler(QIOChannel *ioc,
3036                                                   AioContext *ctx,
3037                                                   IOHandler *io_read,
3038                                                   IOHandler *io_write,
3039                                                   void *opaque)
3040 {
3041     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
3042     if (io_read) {
3043         aio_set_fd_handler(ctx, rioc->rdmain->comp_channel->fd,
3044                            false, io_read, io_write, NULL, opaque);
3045     } else {
3046         aio_set_fd_handler(ctx, rioc->rdmaout->comp_channel->fd,
3047                            false, io_read, io_write, NULL, opaque);
3048     }
3049 }
3050 
3051 struct rdma_close_rcu {
3052     struct rcu_head rcu;
3053     RDMAContext *rdmain;
3054     RDMAContext *rdmaout;
3055 };
3056 
3057 /* callback from qio_channel_rdma_close via call_rcu */
3058 static void qio_channel_rdma_close_rcu(struct rdma_close_rcu *rcu)
3059 {
3060     if (rcu->rdmain) {
3061         qemu_rdma_cleanup(rcu->rdmain);
3062     }
3063 
3064     if (rcu->rdmaout) {
3065         qemu_rdma_cleanup(rcu->rdmaout);
3066     }
3067 
3068     g_free(rcu->rdmain);
3069     g_free(rcu->rdmaout);
3070     g_free(rcu);
3071 }
3072 
3073 static int qio_channel_rdma_close(QIOChannel *ioc,
3074                                   Error **errp)
3075 {
3076     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
3077     RDMAContext *rdmain, *rdmaout;
3078     struct rdma_close_rcu *rcu = g_new(struct rdma_close_rcu, 1);
3079 
3080     trace_qemu_rdma_close();
3081 
3082     rdmain = rioc->rdmain;
3083     if (rdmain) {
3084         qatomic_rcu_set(&rioc->rdmain, NULL);
3085     }
3086 
3087     rdmaout = rioc->rdmaout;
3088     if (rdmaout) {
3089         qatomic_rcu_set(&rioc->rdmaout, NULL);
3090     }
3091 
3092     rcu->rdmain = rdmain;
3093     rcu->rdmaout = rdmaout;
3094     call_rcu(rcu, qio_channel_rdma_close_rcu, rcu);
3095 
3096     return 0;
3097 }
3098 
3099 static int
3100 qio_channel_rdma_shutdown(QIOChannel *ioc,
3101                             QIOChannelShutdown how,
3102                             Error **errp)
3103 {
3104     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
3105     RDMAContext *rdmain, *rdmaout;
3106 
3107     RCU_READ_LOCK_GUARD();
3108 
3109     rdmain = qatomic_rcu_read(&rioc->rdmain);
3110     rdmaout = qatomic_rcu_read(&rioc->rdmain);
3111 
3112     switch (how) {
3113     case QIO_CHANNEL_SHUTDOWN_READ:
3114         if (rdmain) {
3115             rdmain->error_state = -1;
3116         }
3117         break;
3118     case QIO_CHANNEL_SHUTDOWN_WRITE:
3119         if (rdmaout) {
3120             rdmaout->error_state = -1;
3121         }
3122         break;
3123     case QIO_CHANNEL_SHUTDOWN_BOTH:
3124     default:
3125         if (rdmain) {
3126             rdmain->error_state = -1;
3127         }
3128         if (rdmaout) {
3129             rdmaout->error_state = -1;
3130         }
3131         break;
3132     }
3133 
3134     return 0;
3135 }
3136 
3137 /*
3138  * Parameters:
3139  *    @offset == 0 :
3140  *        This means that 'block_offset' is a full virtual address that does not
3141  *        belong to a RAMBlock of the virtual machine and instead
3142  *        represents a private malloc'd memory area that the caller wishes to
3143  *        transfer.
3144  *
3145  *    @offset != 0 :
3146  *        Offset is an offset to be added to block_offset and used
3147  *        to also lookup the corresponding RAMBlock.
3148  *
3149  *    @size > 0 :
3150  *        Initiate an transfer this size.
3151  *
3152  *    @size == 0 :
3153  *        A 'hint' or 'advice' that means that we wish to speculatively
3154  *        and asynchronously unregister this memory. In this case, there is no
3155  *        guarantee that the unregister will actually happen, for example,
3156  *        if the memory is being actively transmitted. Additionally, the memory
3157  *        may be re-registered at any future time if a write within the same
3158  *        chunk was requested again, even if you attempted to unregister it
3159  *        here.
3160  *
3161  *    @size < 0 : TODO, not yet supported
3162  *        Unregister the memory NOW. This means that the caller does not
3163  *        expect there to be any future RDMA transfers and we just want to clean
3164  *        things up. This is used in case the upper layer owns the memory and
3165  *        cannot wait for qemu_fclose() to occur.
3166  *
3167  *    @bytes_sent : User-specificed pointer to indicate how many bytes were
3168  *                  sent. Usually, this will not be more than a few bytes of
3169  *                  the protocol because most transfers are sent asynchronously.
3170  */
3171 static size_t qemu_rdma_save_page(QEMUFile *f, void *opaque,
3172                                   ram_addr_t block_offset, ram_addr_t offset,
3173                                   size_t size, uint64_t *bytes_sent)
3174 {
3175     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(opaque);
3176     RDMAContext *rdma;
3177     int ret;
3178 
3179     RCU_READ_LOCK_GUARD();
3180     rdma = qatomic_rcu_read(&rioc->rdmaout);
3181 
3182     if (!rdma) {
3183         return -EIO;
3184     }
3185 
3186     CHECK_ERROR_STATE();
3187 
3188     if (migration_in_postcopy()) {
3189         return RAM_SAVE_CONTROL_NOT_SUPP;
3190     }
3191 
3192     qemu_fflush(f);
3193 
3194     if (size > 0) {
3195         /*
3196          * Add this page to the current 'chunk'. If the chunk
3197          * is full, or the page doesn't belong to the current chunk,
3198          * an actual RDMA write will occur and a new chunk will be formed.
3199          */
3200         ret = qemu_rdma_write(f, rdma, block_offset, offset, size);
3201         if (ret < 0) {
3202             error_report("rdma migration: write error! %d", ret);
3203             goto err;
3204         }
3205 
3206         /*
3207          * We always return 1 bytes because the RDMA
3208          * protocol is completely asynchronous. We do not yet know
3209          * whether an  identified chunk is zero or not because we're
3210          * waiting for other pages to potentially be merged with
3211          * the current chunk. So, we have to call qemu_update_position()
3212          * later on when the actual write occurs.
3213          */
3214         if (bytes_sent) {
3215             *bytes_sent = 1;
3216         }
3217     } else {
3218         uint64_t index, chunk;
3219 
3220         /* TODO: Change QEMUFileOps prototype to be signed: size_t => long
3221         if (size < 0) {
3222             ret = qemu_rdma_drain_cq(f, rdma);
3223             if (ret < 0) {
3224                 fprintf(stderr, "rdma: failed to synchronously drain"
3225                                 " completion queue before unregistration.\n");
3226                 goto err;
3227             }
3228         }
3229         */
3230 
3231         ret = qemu_rdma_search_ram_block(rdma, block_offset,
3232                                          offset, size, &index, &chunk);
3233 
3234         if (ret) {
3235             error_report("ram block search failed");
3236             goto err;
3237         }
3238 
3239         qemu_rdma_signal_unregister(rdma, index, chunk, 0);
3240 
3241         /*
3242          * TODO: Synchronous, guaranteed unregistration (should not occur during
3243          * fast-path). Otherwise, unregisters will process on the next call to
3244          * qemu_rdma_drain_cq()
3245         if (size < 0) {
3246             qemu_rdma_unregister_waiting(rdma);
3247         }
3248         */
3249     }
3250 
3251     /*
3252      * Drain the Completion Queue if possible, but do not block,
3253      * just poll.
3254      *
3255      * If nothing to poll, the end of the iteration will do this
3256      * again to make sure we don't overflow the request queue.
3257      */
3258     while (1) {
3259         uint64_t wr_id, wr_id_in;
3260         int ret = qemu_rdma_poll(rdma, &wr_id_in, NULL);
3261         if (ret < 0) {
3262             error_report("rdma migration: polling error! %d", ret);
3263             goto err;
3264         }
3265 
3266         wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
3267 
3268         if (wr_id == RDMA_WRID_NONE) {
3269             break;
3270         }
3271     }
3272 
3273     return RAM_SAVE_CONTROL_DELAYED;
3274 err:
3275     rdma->error_state = ret;
3276     return ret;
3277 }
3278 
3279 static void rdma_accept_incoming_migration(void *opaque);
3280 
3281 static void rdma_cm_poll_handler(void *opaque)
3282 {
3283     RDMAContext *rdma = opaque;
3284     int ret;
3285     struct rdma_cm_event *cm_event;
3286     MigrationIncomingState *mis = migration_incoming_get_current();
3287 
3288     ret = rdma_get_cm_event(rdma->channel, &cm_event);
3289     if (ret) {
3290         error_report("get_cm_event failed %d", errno);
3291         return;
3292     }
3293 
3294     if (cm_event->event == RDMA_CM_EVENT_DISCONNECTED ||
3295         cm_event->event == RDMA_CM_EVENT_DEVICE_REMOVAL) {
3296         if (!rdma->error_state &&
3297             migration_incoming_get_current()->state !=
3298               MIGRATION_STATUS_COMPLETED) {
3299             error_report("receive cm event, cm event is %d", cm_event->event);
3300             rdma->error_state = -EPIPE;
3301             if (rdma->return_path) {
3302                 rdma->return_path->error_state = -EPIPE;
3303             }
3304         }
3305         rdma_ack_cm_event(cm_event);
3306 
3307         if (mis->migration_incoming_co) {
3308             qemu_coroutine_enter(mis->migration_incoming_co);
3309         }
3310         return;
3311     }
3312     rdma_ack_cm_event(cm_event);
3313 }
3314 
3315 static int qemu_rdma_accept(RDMAContext *rdma)
3316 {
3317     RDMACapabilities cap;
3318     struct rdma_conn_param conn_param = {
3319                                             .responder_resources = 2,
3320                                             .private_data = &cap,
3321                                             .private_data_len = sizeof(cap),
3322                                          };
3323     RDMAContext *rdma_return_path = NULL;
3324     struct rdma_cm_event *cm_event;
3325     struct ibv_context *verbs;
3326     int ret = -EINVAL;
3327     int idx;
3328 
3329     ret = rdma_get_cm_event(rdma->channel, &cm_event);
3330     if (ret) {
3331         goto err_rdma_dest_wait;
3332     }
3333 
3334     if (cm_event->event != RDMA_CM_EVENT_CONNECT_REQUEST) {
3335         rdma_ack_cm_event(cm_event);
3336         goto err_rdma_dest_wait;
3337     }
3338 
3339     /*
3340      * initialize the RDMAContext for return path for postcopy after first
3341      * connection request reached.
3342      */
3343     if (migrate_postcopy() && !rdma->is_return_path) {
3344         rdma_return_path = qemu_rdma_data_init(rdma->host_port, NULL);
3345         if (rdma_return_path == NULL) {
3346             rdma_ack_cm_event(cm_event);
3347             goto err_rdma_dest_wait;
3348         }
3349 
3350         qemu_rdma_return_path_dest_init(rdma_return_path, rdma);
3351     }
3352 
3353     memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap));
3354 
3355     network_to_caps(&cap);
3356 
3357     if (cap.version < 1 || cap.version > RDMA_CONTROL_VERSION_CURRENT) {
3358             error_report("Unknown source RDMA version: %d, bailing...",
3359                             cap.version);
3360             rdma_ack_cm_event(cm_event);
3361             goto err_rdma_dest_wait;
3362     }
3363 
3364     /*
3365      * Respond with only the capabilities this version of QEMU knows about.
3366      */
3367     cap.flags &= known_capabilities;
3368 
3369     /*
3370      * Enable the ones that we do know about.
3371      * Add other checks here as new ones are introduced.
3372      */
3373     if (cap.flags & RDMA_CAPABILITY_PIN_ALL) {
3374         rdma->pin_all = true;
3375     }
3376 
3377     rdma->cm_id = cm_event->id;
3378     verbs = cm_event->id->verbs;
3379 
3380     rdma_ack_cm_event(cm_event);
3381 
3382     trace_qemu_rdma_accept_pin_state(rdma->pin_all);
3383 
3384     caps_to_network(&cap);
3385 
3386     trace_qemu_rdma_accept_pin_verbsc(verbs);
3387 
3388     if (!rdma->verbs) {
3389         rdma->verbs = verbs;
3390     } else if (rdma->verbs != verbs) {
3391             error_report("ibv context not matching %p, %p!", rdma->verbs,
3392                          verbs);
3393             goto err_rdma_dest_wait;
3394     }
3395 
3396     qemu_rdma_dump_id("dest_init", verbs);
3397 
3398     ret = qemu_rdma_alloc_pd_cq(rdma);
3399     if (ret) {
3400         error_report("rdma migration: error allocating pd and cq!");
3401         goto err_rdma_dest_wait;
3402     }
3403 
3404     ret = qemu_rdma_alloc_qp(rdma);
3405     if (ret) {
3406         error_report("rdma migration: error allocating qp!");
3407         goto err_rdma_dest_wait;
3408     }
3409 
3410     ret = qemu_rdma_init_ram_blocks(rdma);
3411     if (ret) {
3412         error_report("rdma migration: error initializing ram blocks!");
3413         goto err_rdma_dest_wait;
3414     }
3415 
3416     for (idx = 0; idx < RDMA_WRID_MAX; idx++) {
3417         ret = qemu_rdma_reg_control(rdma, idx);
3418         if (ret) {
3419             error_report("rdma: error registering %d control", idx);
3420             goto err_rdma_dest_wait;
3421         }
3422     }
3423 
3424     /* Accept the second connection request for return path */
3425     if (migrate_postcopy() && !rdma->is_return_path) {
3426         qemu_set_fd_handler(rdma->channel->fd, rdma_accept_incoming_migration,
3427                             NULL,
3428                             (void *)(intptr_t)rdma->return_path);
3429     } else {
3430         qemu_set_fd_handler(rdma->channel->fd, rdma_cm_poll_handler,
3431                             NULL, rdma);
3432     }
3433 
3434     ret = rdma_accept(rdma->cm_id, &conn_param);
3435     if (ret) {
3436         error_report("rdma_accept returns %d", ret);
3437         goto err_rdma_dest_wait;
3438     }
3439 
3440     ret = rdma_get_cm_event(rdma->channel, &cm_event);
3441     if (ret) {
3442         error_report("rdma_accept get_cm_event failed %d", ret);
3443         goto err_rdma_dest_wait;
3444     }
3445 
3446     if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) {
3447         error_report("rdma_accept not event established");
3448         rdma_ack_cm_event(cm_event);
3449         goto err_rdma_dest_wait;
3450     }
3451 
3452     rdma_ack_cm_event(cm_event);
3453     rdma->connected = true;
3454 
3455     ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY);
3456     if (ret) {
3457         error_report("rdma migration: error posting second control recv");
3458         goto err_rdma_dest_wait;
3459     }
3460 
3461     qemu_rdma_dump_gid("dest_connect", rdma->cm_id);
3462 
3463     return 0;
3464 
3465 err_rdma_dest_wait:
3466     rdma->error_state = ret;
3467     qemu_rdma_cleanup(rdma);
3468     g_free(rdma_return_path);
3469     return ret;
3470 }
3471 
3472 static int dest_ram_sort_func(const void *a, const void *b)
3473 {
3474     unsigned int a_index = ((const RDMALocalBlock *)a)->src_index;
3475     unsigned int b_index = ((const RDMALocalBlock *)b)->src_index;
3476 
3477     return (a_index < b_index) ? -1 : (a_index != b_index);
3478 }
3479 
3480 /*
3481  * During each iteration of the migration, we listen for instructions
3482  * by the source VM to perform dynamic page registrations before they
3483  * can perform RDMA operations.
3484  *
3485  * We respond with the 'rkey'.
3486  *
3487  * Keep doing this until the source tells us to stop.
3488  */
3489 static int qemu_rdma_registration_handle(QEMUFile *f, void *opaque)
3490 {
3491     RDMAControlHeader reg_resp = { .len = sizeof(RDMARegisterResult),
3492                                .type = RDMA_CONTROL_REGISTER_RESULT,
3493                                .repeat = 0,
3494                              };
3495     RDMAControlHeader unreg_resp = { .len = 0,
3496                                .type = RDMA_CONTROL_UNREGISTER_FINISHED,
3497                                .repeat = 0,
3498                              };
3499     RDMAControlHeader blocks = { .type = RDMA_CONTROL_RAM_BLOCKS_RESULT,
3500                                  .repeat = 1 };
3501     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(opaque);
3502     RDMAContext *rdma;
3503     RDMALocalBlocks *local;
3504     RDMAControlHeader head;
3505     RDMARegister *reg, *registers;
3506     RDMACompress *comp;
3507     RDMARegisterResult *reg_result;
3508     static RDMARegisterResult results[RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE];
3509     RDMALocalBlock *block;
3510     void *host_addr;
3511     int ret = 0;
3512     int idx = 0;
3513     int count = 0;
3514     int i = 0;
3515 
3516     RCU_READ_LOCK_GUARD();
3517     rdma = qatomic_rcu_read(&rioc->rdmain);
3518 
3519     if (!rdma) {
3520         return -EIO;
3521     }
3522 
3523     CHECK_ERROR_STATE();
3524 
3525     local = &rdma->local_ram_blocks;
3526     do {
3527         trace_qemu_rdma_registration_handle_wait();
3528 
3529         ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_NONE);
3530 
3531         if (ret < 0) {
3532             break;
3533         }
3534 
3535         if (head.repeat > RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE) {
3536             error_report("rdma: Too many requests in this message (%d)."
3537                             "Bailing.", head.repeat);
3538             ret = -EIO;
3539             break;
3540         }
3541 
3542         switch (head.type) {
3543         case RDMA_CONTROL_COMPRESS:
3544             comp = (RDMACompress *) rdma->wr_data[idx].control_curr;
3545             network_to_compress(comp);
3546 
3547             trace_qemu_rdma_registration_handle_compress(comp->length,
3548                                                          comp->block_idx,
3549                                                          comp->offset);
3550             if (comp->block_idx >= rdma->local_ram_blocks.nb_blocks) {
3551                 error_report("rdma: 'compress' bad block index %u (vs %d)",
3552                              (unsigned int)comp->block_idx,
3553                              rdma->local_ram_blocks.nb_blocks);
3554                 ret = -EIO;
3555                 goto out;
3556             }
3557             block = &(rdma->local_ram_blocks.block[comp->block_idx]);
3558 
3559             host_addr = block->local_host_addr +
3560                             (comp->offset - block->offset);
3561 
3562             ram_handle_compressed(host_addr, comp->value, comp->length);
3563             break;
3564 
3565         case RDMA_CONTROL_REGISTER_FINISHED:
3566             trace_qemu_rdma_registration_handle_finished();
3567             goto out;
3568 
3569         case RDMA_CONTROL_RAM_BLOCKS_REQUEST:
3570             trace_qemu_rdma_registration_handle_ram_blocks();
3571 
3572             /* Sort our local RAM Block list so it's the same as the source,
3573              * we can do this since we've filled in a src_index in the list
3574              * as we received the RAMBlock list earlier.
3575              */
3576             qsort(rdma->local_ram_blocks.block,
3577                   rdma->local_ram_blocks.nb_blocks,
3578                   sizeof(RDMALocalBlock), dest_ram_sort_func);
3579             for (i = 0; i < local->nb_blocks; i++) {
3580                 local->block[i].index = i;
3581             }
3582 
3583             if (rdma->pin_all) {
3584                 ret = qemu_rdma_reg_whole_ram_blocks(rdma);
3585                 if (ret) {
3586                     error_report("rdma migration: error dest "
3587                                     "registering ram blocks");
3588                     goto out;
3589                 }
3590             }
3591 
3592             /*
3593              * Dest uses this to prepare to transmit the RAMBlock descriptions
3594              * to the source VM after connection setup.
3595              * Both sides use the "remote" structure to communicate and update
3596              * their "local" descriptions with what was sent.
3597              */
3598             for (i = 0; i < local->nb_blocks; i++) {
3599                 rdma->dest_blocks[i].remote_host_addr =
3600                     (uintptr_t)(local->block[i].local_host_addr);
3601 
3602                 if (rdma->pin_all) {
3603                     rdma->dest_blocks[i].remote_rkey = local->block[i].mr->rkey;
3604                 }
3605 
3606                 rdma->dest_blocks[i].offset = local->block[i].offset;
3607                 rdma->dest_blocks[i].length = local->block[i].length;
3608 
3609                 dest_block_to_network(&rdma->dest_blocks[i]);
3610                 trace_qemu_rdma_registration_handle_ram_blocks_loop(
3611                     local->block[i].block_name,
3612                     local->block[i].offset,
3613                     local->block[i].length,
3614                     local->block[i].local_host_addr,
3615                     local->block[i].src_index);
3616             }
3617 
3618             blocks.len = rdma->local_ram_blocks.nb_blocks
3619                                                 * sizeof(RDMADestBlock);
3620 
3621 
3622             ret = qemu_rdma_post_send_control(rdma,
3623                                         (uint8_t *) rdma->dest_blocks, &blocks);
3624 
3625             if (ret < 0) {
3626                 error_report("rdma migration: error sending remote info");
3627                 goto out;
3628             }
3629 
3630             break;
3631         case RDMA_CONTROL_REGISTER_REQUEST:
3632             trace_qemu_rdma_registration_handle_register(head.repeat);
3633 
3634             reg_resp.repeat = head.repeat;
3635             registers = (RDMARegister *) rdma->wr_data[idx].control_curr;
3636 
3637             for (count = 0; count < head.repeat; count++) {
3638                 uint64_t chunk;
3639                 uint8_t *chunk_start, *chunk_end;
3640 
3641                 reg = &registers[count];
3642                 network_to_register(reg);
3643 
3644                 reg_result = &results[count];
3645 
3646                 trace_qemu_rdma_registration_handle_register_loop(count,
3647                          reg->current_index, reg->key.current_addr, reg->chunks);
3648 
3649                 if (reg->current_index >= rdma->local_ram_blocks.nb_blocks) {
3650                     error_report("rdma: 'register' bad block index %u (vs %d)",
3651                                  (unsigned int)reg->current_index,
3652                                  rdma->local_ram_blocks.nb_blocks);
3653                     ret = -ENOENT;
3654                     goto out;
3655                 }
3656                 block = &(rdma->local_ram_blocks.block[reg->current_index]);
3657                 if (block->is_ram_block) {
3658                     if (block->offset > reg->key.current_addr) {
3659                         error_report("rdma: bad register address for block %s"
3660                             " offset: %" PRIx64 " current_addr: %" PRIx64,
3661                             block->block_name, block->offset,
3662                             reg->key.current_addr);
3663                         ret = -ERANGE;
3664                         goto out;
3665                     }
3666                     host_addr = (block->local_host_addr +
3667                                 (reg->key.current_addr - block->offset));
3668                     chunk = ram_chunk_index(block->local_host_addr,
3669                                             (uint8_t *) host_addr);
3670                 } else {
3671                     chunk = reg->key.chunk;
3672                     host_addr = block->local_host_addr +
3673                         (reg->key.chunk * (1UL << RDMA_REG_CHUNK_SHIFT));
3674                     /* Check for particularly bad chunk value */
3675                     if (host_addr < (void *)block->local_host_addr) {
3676                         error_report("rdma: bad chunk for block %s"
3677                             " chunk: %" PRIx64,
3678                             block->block_name, reg->key.chunk);
3679                         ret = -ERANGE;
3680                         goto out;
3681                     }
3682                 }
3683                 chunk_start = ram_chunk_start(block, chunk);
3684                 chunk_end = ram_chunk_end(block, chunk + reg->chunks);
3685                 /* avoid "-Waddress-of-packed-member" warning */
3686                 uint32_t tmp_rkey = 0;
3687                 if (qemu_rdma_register_and_get_keys(rdma, block,
3688                             (uintptr_t)host_addr, NULL, &tmp_rkey,
3689                             chunk, chunk_start, chunk_end)) {
3690                     error_report("cannot get rkey");
3691                     ret = -EINVAL;
3692                     goto out;
3693                 }
3694                 reg_result->rkey = tmp_rkey;
3695 
3696                 reg_result->host_addr = (uintptr_t)block->local_host_addr;
3697 
3698                 trace_qemu_rdma_registration_handle_register_rkey(
3699                                                            reg_result->rkey);
3700 
3701                 result_to_network(reg_result);
3702             }
3703 
3704             ret = qemu_rdma_post_send_control(rdma,
3705                             (uint8_t *) results, &reg_resp);
3706 
3707             if (ret < 0) {
3708                 error_report("Failed to send control buffer");
3709                 goto out;
3710             }
3711             break;
3712         case RDMA_CONTROL_UNREGISTER_REQUEST:
3713             trace_qemu_rdma_registration_handle_unregister(head.repeat);
3714             unreg_resp.repeat = head.repeat;
3715             registers = (RDMARegister *) rdma->wr_data[idx].control_curr;
3716 
3717             for (count = 0; count < head.repeat; count++) {
3718                 reg = &registers[count];
3719                 network_to_register(reg);
3720 
3721                 trace_qemu_rdma_registration_handle_unregister_loop(count,
3722                            reg->current_index, reg->key.chunk);
3723 
3724                 block = &(rdma->local_ram_blocks.block[reg->current_index]);
3725 
3726                 ret = ibv_dereg_mr(block->pmr[reg->key.chunk]);
3727                 block->pmr[reg->key.chunk] = NULL;
3728 
3729                 if (ret != 0) {
3730                     perror("rdma unregistration chunk failed");
3731                     ret = -ret;
3732                     goto out;
3733                 }
3734 
3735                 rdma->total_registrations--;
3736 
3737                 trace_qemu_rdma_registration_handle_unregister_success(
3738                                                        reg->key.chunk);
3739             }
3740 
3741             ret = qemu_rdma_post_send_control(rdma, NULL, &unreg_resp);
3742 
3743             if (ret < 0) {
3744                 error_report("Failed to send control buffer");
3745                 goto out;
3746             }
3747             break;
3748         case RDMA_CONTROL_REGISTER_RESULT:
3749             error_report("Invalid RESULT message at dest.");
3750             ret = -EIO;
3751             goto out;
3752         default:
3753             error_report("Unknown control message %s", control_desc(head.type));
3754             ret = -EIO;
3755             goto out;
3756         }
3757     } while (1);
3758 out:
3759     if (ret < 0) {
3760         rdma->error_state = ret;
3761     }
3762     return ret;
3763 }
3764 
3765 /* Destination:
3766  * Called via a ram_control_load_hook during the initial RAM load section which
3767  * lists the RAMBlocks by name.  This lets us know the order of the RAMBlocks
3768  * on the source.
3769  * We've already built our local RAMBlock list, but not yet sent the list to
3770  * the source.
3771  */
3772 static int
3773 rdma_block_notification_handle(QIOChannelRDMA *rioc, const char *name)
3774 {
3775     RDMAContext *rdma;
3776     int curr;
3777     int found = -1;
3778 
3779     RCU_READ_LOCK_GUARD();
3780     rdma = qatomic_rcu_read(&rioc->rdmain);
3781 
3782     if (!rdma) {
3783         return -EIO;
3784     }
3785 
3786     /* Find the matching RAMBlock in our local list */
3787     for (curr = 0; curr < rdma->local_ram_blocks.nb_blocks; curr++) {
3788         if (!strcmp(rdma->local_ram_blocks.block[curr].block_name, name)) {
3789             found = curr;
3790             break;
3791         }
3792     }
3793 
3794     if (found == -1) {
3795         error_report("RAMBlock '%s' not found on destination", name);
3796         return -ENOENT;
3797     }
3798 
3799     rdma->local_ram_blocks.block[curr].src_index = rdma->next_src_index;
3800     trace_rdma_block_notification_handle(name, rdma->next_src_index);
3801     rdma->next_src_index++;
3802 
3803     return 0;
3804 }
3805 
3806 static int rdma_load_hook(QEMUFile *f, void *opaque, uint64_t flags, void *data)
3807 {
3808     switch (flags) {
3809     case RAM_CONTROL_BLOCK_REG:
3810         return rdma_block_notification_handle(opaque, data);
3811 
3812     case RAM_CONTROL_HOOK:
3813         return qemu_rdma_registration_handle(f, opaque);
3814 
3815     default:
3816         /* Shouldn't be called with any other values */
3817         abort();
3818     }
3819 }
3820 
3821 static int qemu_rdma_registration_start(QEMUFile *f, void *opaque,
3822                                         uint64_t flags, void *data)
3823 {
3824     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(opaque);
3825     RDMAContext *rdma;
3826 
3827     RCU_READ_LOCK_GUARD();
3828     rdma = qatomic_rcu_read(&rioc->rdmaout);
3829     if (!rdma) {
3830         return -EIO;
3831     }
3832 
3833     CHECK_ERROR_STATE();
3834 
3835     if (migration_in_postcopy()) {
3836         return 0;
3837     }
3838 
3839     trace_qemu_rdma_registration_start(flags);
3840     qemu_put_be64(f, RAM_SAVE_FLAG_HOOK);
3841     qemu_fflush(f);
3842 
3843     return 0;
3844 }
3845 
3846 /*
3847  * Inform dest that dynamic registrations are done for now.
3848  * First, flush writes, if any.
3849  */
3850 static int qemu_rdma_registration_stop(QEMUFile *f, void *opaque,
3851                                        uint64_t flags, void *data)
3852 {
3853     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(opaque);
3854     RDMAContext *rdma;
3855     RDMAControlHeader head = { .len = 0, .repeat = 1 };
3856     int ret = 0;
3857 
3858     RCU_READ_LOCK_GUARD();
3859     rdma = qatomic_rcu_read(&rioc->rdmaout);
3860     if (!rdma) {
3861         return -EIO;
3862     }
3863 
3864     CHECK_ERROR_STATE();
3865 
3866     if (migration_in_postcopy()) {
3867         return 0;
3868     }
3869 
3870     qemu_fflush(f);
3871     ret = qemu_rdma_drain_cq(f, rdma);
3872 
3873     if (ret < 0) {
3874         goto err;
3875     }
3876 
3877     if (flags == RAM_CONTROL_SETUP) {
3878         RDMAControlHeader resp = {.type = RDMA_CONTROL_RAM_BLOCKS_RESULT };
3879         RDMALocalBlocks *local = &rdma->local_ram_blocks;
3880         int reg_result_idx, i, nb_dest_blocks;
3881 
3882         head.type = RDMA_CONTROL_RAM_BLOCKS_REQUEST;
3883         trace_qemu_rdma_registration_stop_ram();
3884 
3885         /*
3886          * Make sure that we parallelize the pinning on both sides.
3887          * For very large guests, doing this serially takes a really
3888          * long time, so we have to 'interleave' the pinning locally
3889          * with the control messages by performing the pinning on this
3890          * side before we receive the control response from the other
3891          * side that the pinning has completed.
3892          */
3893         ret = qemu_rdma_exchange_send(rdma, &head, NULL, &resp,
3894                     &reg_result_idx, rdma->pin_all ?
3895                     qemu_rdma_reg_whole_ram_blocks : NULL);
3896         if (ret < 0) {
3897             fprintf(stderr, "receiving remote info!");
3898             return ret;
3899         }
3900 
3901         nb_dest_blocks = resp.len / sizeof(RDMADestBlock);
3902 
3903         /*
3904          * The protocol uses two different sets of rkeys (mutually exclusive):
3905          * 1. One key to represent the virtual address of the entire ram block.
3906          *    (dynamic chunk registration disabled - pin everything with one rkey.)
3907          * 2. One to represent individual chunks within a ram block.
3908          *    (dynamic chunk registration enabled - pin individual chunks.)
3909          *
3910          * Once the capability is successfully negotiated, the destination transmits
3911          * the keys to use (or sends them later) including the virtual addresses
3912          * and then propagates the remote ram block descriptions to his local copy.
3913          */
3914 
3915         if (local->nb_blocks != nb_dest_blocks) {
3916             fprintf(stderr, "ram blocks mismatch (Number of blocks %d vs %d) "
3917                     "Your QEMU command line parameters are probably "
3918                     "not identical on both the source and destination.",
3919                     local->nb_blocks, nb_dest_blocks);
3920             rdma->error_state = -EINVAL;
3921             return -EINVAL;
3922         }
3923 
3924         qemu_rdma_move_header(rdma, reg_result_idx, &resp);
3925         memcpy(rdma->dest_blocks,
3926             rdma->wr_data[reg_result_idx].control_curr, resp.len);
3927         for (i = 0; i < nb_dest_blocks; i++) {
3928             network_to_dest_block(&rdma->dest_blocks[i]);
3929 
3930             /* We require that the blocks are in the same order */
3931             if (rdma->dest_blocks[i].length != local->block[i].length) {
3932                 fprintf(stderr, "Block %s/%d has a different length %" PRIu64
3933                         "vs %" PRIu64, local->block[i].block_name, i,
3934                         local->block[i].length,
3935                         rdma->dest_blocks[i].length);
3936                 rdma->error_state = -EINVAL;
3937                 return -EINVAL;
3938             }
3939             local->block[i].remote_host_addr =
3940                     rdma->dest_blocks[i].remote_host_addr;
3941             local->block[i].remote_rkey = rdma->dest_blocks[i].remote_rkey;
3942         }
3943     }
3944 
3945     trace_qemu_rdma_registration_stop(flags);
3946 
3947     head.type = RDMA_CONTROL_REGISTER_FINISHED;
3948     ret = qemu_rdma_exchange_send(rdma, &head, NULL, NULL, NULL, NULL);
3949 
3950     if (ret < 0) {
3951         goto err;
3952     }
3953 
3954     return 0;
3955 err:
3956     rdma->error_state = ret;
3957     return ret;
3958 }
3959 
3960 static const QEMUFileHooks rdma_read_hooks = {
3961     .hook_ram_load = rdma_load_hook,
3962 };
3963 
3964 static const QEMUFileHooks rdma_write_hooks = {
3965     .before_ram_iterate = qemu_rdma_registration_start,
3966     .after_ram_iterate  = qemu_rdma_registration_stop,
3967     .save_page          = qemu_rdma_save_page,
3968 };
3969 
3970 
3971 static void qio_channel_rdma_finalize(Object *obj)
3972 {
3973     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(obj);
3974     if (rioc->rdmain) {
3975         qemu_rdma_cleanup(rioc->rdmain);
3976         g_free(rioc->rdmain);
3977         rioc->rdmain = NULL;
3978     }
3979     if (rioc->rdmaout) {
3980         qemu_rdma_cleanup(rioc->rdmaout);
3981         g_free(rioc->rdmaout);
3982         rioc->rdmaout = NULL;
3983     }
3984 }
3985 
3986 static void qio_channel_rdma_class_init(ObjectClass *klass,
3987                                         void *class_data G_GNUC_UNUSED)
3988 {
3989     QIOChannelClass *ioc_klass = QIO_CHANNEL_CLASS(klass);
3990 
3991     ioc_klass->io_writev = qio_channel_rdma_writev;
3992     ioc_klass->io_readv = qio_channel_rdma_readv;
3993     ioc_klass->io_set_blocking = qio_channel_rdma_set_blocking;
3994     ioc_klass->io_close = qio_channel_rdma_close;
3995     ioc_klass->io_create_watch = qio_channel_rdma_create_watch;
3996     ioc_klass->io_set_aio_fd_handler = qio_channel_rdma_set_aio_fd_handler;
3997     ioc_klass->io_shutdown = qio_channel_rdma_shutdown;
3998 }
3999 
4000 static const TypeInfo qio_channel_rdma_info = {
4001     .parent = TYPE_QIO_CHANNEL,
4002     .name = TYPE_QIO_CHANNEL_RDMA,
4003     .instance_size = sizeof(QIOChannelRDMA),
4004     .instance_finalize = qio_channel_rdma_finalize,
4005     .class_init = qio_channel_rdma_class_init,
4006 };
4007 
4008 static void qio_channel_rdma_register_types(void)
4009 {
4010     type_register_static(&qio_channel_rdma_info);
4011 }
4012 
4013 type_init(qio_channel_rdma_register_types);
4014 
4015 static QEMUFile *qemu_fopen_rdma(RDMAContext *rdma, const char *mode)
4016 {
4017     QIOChannelRDMA *rioc;
4018 
4019     if (qemu_file_mode_is_not_valid(mode)) {
4020         return NULL;
4021     }
4022 
4023     rioc = QIO_CHANNEL_RDMA(object_new(TYPE_QIO_CHANNEL_RDMA));
4024 
4025     if (mode[0] == 'w') {
4026         rioc->file = qemu_fopen_channel_output(QIO_CHANNEL(rioc));
4027         rioc->rdmaout = rdma;
4028         rioc->rdmain = rdma->return_path;
4029         qemu_file_set_hooks(rioc->file, &rdma_write_hooks);
4030     } else {
4031         rioc->file = qemu_fopen_channel_input(QIO_CHANNEL(rioc));
4032         rioc->rdmain = rdma;
4033         rioc->rdmaout = rdma->return_path;
4034         qemu_file_set_hooks(rioc->file, &rdma_read_hooks);
4035     }
4036 
4037     return rioc->file;
4038 }
4039 
4040 static void rdma_accept_incoming_migration(void *opaque)
4041 {
4042     RDMAContext *rdma = opaque;
4043     int ret;
4044     QEMUFile *f;
4045     Error *local_err = NULL;
4046 
4047     trace_qemu_rdma_accept_incoming_migration();
4048     ret = qemu_rdma_accept(rdma);
4049 
4050     if (ret) {
4051         fprintf(stderr, "RDMA ERROR: Migration initialization failed\n");
4052         return;
4053     }
4054 
4055     trace_qemu_rdma_accept_incoming_migration_accepted();
4056 
4057     if (rdma->is_return_path) {
4058         return;
4059     }
4060 
4061     f = qemu_fopen_rdma(rdma, "rb");
4062     if (f == NULL) {
4063         fprintf(stderr, "RDMA ERROR: could not qemu_fopen_rdma\n");
4064         qemu_rdma_cleanup(rdma);
4065         return;
4066     }
4067 
4068     rdma->migration_started_on_destination = 1;
4069     migration_fd_process_incoming(f, &local_err);
4070     if (local_err) {
4071         error_reportf_err(local_err, "RDMA ERROR:");
4072     }
4073 }
4074 
4075 void rdma_start_incoming_migration(const char *host_port, Error **errp)
4076 {
4077     int ret;
4078     RDMAContext *rdma, *rdma_return_path = NULL;
4079     Error *local_err = NULL;
4080 
4081     trace_rdma_start_incoming_migration();
4082 
4083     /* Avoid ram_block_discard_disable(), cannot change during migration. */
4084     if (ram_block_discard_is_required()) {
4085         error_setg(errp, "RDMA: cannot disable RAM discard");
4086         return;
4087     }
4088 
4089     rdma = qemu_rdma_data_init(host_port, &local_err);
4090     if (rdma == NULL) {
4091         goto err;
4092     }
4093 
4094     ret = qemu_rdma_dest_init(rdma, &local_err);
4095 
4096     if (ret) {
4097         goto err;
4098     }
4099 
4100     trace_rdma_start_incoming_migration_after_dest_init();
4101 
4102     ret = rdma_listen(rdma->listen_id, 5);
4103 
4104     if (ret) {
4105         ERROR(errp, "listening on socket!");
4106         goto cleanup_rdma;
4107     }
4108 
4109     trace_rdma_start_incoming_migration_after_rdma_listen();
4110 
4111     qemu_set_fd_handler(rdma->channel->fd, rdma_accept_incoming_migration,
4112                         NULL, (void *)(intptr_t)rdma);
4113     return;
4114 
4115 cleanup_rdma:
4116     qemu_rdma_cleanup(rdma);
4117 err:
4118     error_propagate(errp, local_err);
4119     if (rdma) {
4120         g_free(rdma->host);
4121         g_free(rdma->host_port);
4122     }
4123     g_free(rdma);
4124     g_free(rdma_return_path);
4125 }
4126 
4127 void rdma_start_outgoing_migration(void *opaque,
4128                             const char *host_port, Error **errp)
4129 {
4130     MigrationState *s = opaque;
4131     RDMAContext *rdma_return_path = NULL;
4132     RDMAContext *rdma;
4133     int ret = 0;
4134 
4135     /* Avoid ram_block_discard_disable(), cannot change during migration. */
4136     if (ram_block_discard_is_required()) {
4137         error_setg(errp, "RDMA: cannot disable RAM discard");
4138         return;
4139     }
4140 
4141     rdma = qemu_rdma_data_init(host_port, errp);
4142     if (rdma == NULL) {
4143         goto err;
4144     }
4145 
4146     ret = qemu_rdma_source_init(rdma,
4147         s->enabled_capabilities[MIGRATION_CAPABILITY_RDMA_PIN_ALL], errp);
4148 
4149     if (ret) {
4150         goto err;
4151     }
4152 
4153     trace_rdma_start_outgoing_migration_after_rdma_source_init();
4154     ret = qemu_rdma_connect(rdma, errp, false);
4155 
4156     if (ret) {
4157         goto err;
4158     }
4159 
4160     /* RDMA postcopy need a separate queue pair for return path */
4161     if (migrate_postcopy()) {
4162         rdma_return_path = qemu_rdma_data_init(host_port, errp);
4163 
4164         if (rdma_return_path == NULL) {
4165             goto return_path_err;
4166         }
4167 
4168         ret = qemu_rdma_source_init(rdma_return_path,
4169             s->enabled_capabilities[MIGRATION_CAPABILITY_RDMA_PIN_ALL], errp);
4170 
4171         if (ret) {
4172             goto return_path_err;
4173         }
4174 
4175         ret = qemu_rdma_connect(rdma_return_path, errp, true);
4176 
4177         if (ret) {
4178             goto return_path_err;
4179         }
4180 
4181         rdma->return_path = rdma_return_path;
4182         rdma_return_path->return_path = rdma;
4183         rdma_return_path->is_return_path = true;
4184     }
4185 
4186     trace_rdma_start_outgoing_migration_after_rdma_connect();
4187 
4188     s->to_dst_file = qemu_fopen_rdma(rdma, "wb");
4189     migrate_fd_connect(s, NULL);
4190     return;
4191 return_path_err:
4192     qemu_rdma_cleanup(rdma);
4193 err:
4194     g_free(rdma);
4195     g_free(rdma_return_path);
4196 }
4197