xref: /openbmc/qemu/migration/rdma.c (revision 259ebed4)
1 /*
2  * RDMA protocol and interfaces
3  *
4  * Copyright IBM, Corp. 2010-2013
5  * Copyright Red Hat, Inc. 2015-2016
6  *
7  * Authors:
8  *  Michael R. Hines <mrhines@us.ibm.com>
9  *  Jiuxing Liu <jl@us.ibm.com>
10  *  Daniel P. Berrange <berrange@redhat.com>
11  *
12  * This work is licensed under the terms of the GNU GPL, version 2 or
13  * later.  See the COPYING file in the top-level directory.
14  *
15  */
16 
17 #include "qemu/osdep.h"
18 #include "qapi/error.h"
19 #include "qemu/cutils.h"
20 #include "exec/target_page.h"
21 #include "rdma.h"
22 #include "migration.h"
23 #include "migration-stats.h"
24 #include "qemu-file.h"
25 #include "ram.h"
26 #include "qemu/error-report.h"
27 #include "qemu/main-loop.h"
28 #include "qemu/module.h"
29 #include "qemu/rcu.h"
30 #include "qemu/sockets.h"
31 #include "qemu/bitmap.h"
32 #include "qemu/coroutine.h"
33 #include "exec/memory.h"
34 #include <sys/socket.h>
35 #include <netdb.h>
36 #include <arpa/inet.h>
37 #include <rdma/rdma_cma.h>
38 #include "trace.h"
39 #include "qom/object.h"
40 #include "options.h"
41 #include <poll.h>
42 
43 #define RDMA_RESOLVE_TIMEOUT_MS 10000
44 
45 /* Do not merge data if larger than this. */
46 #define RDMA_MERGE_MAX (2 * 1024 * 1024)
47 #define RDMA_SIGNALED_SEND_MAX (RDMA_MERGE_MAX / 4096)
48 
49 #define RDMA_REG_CHUNK_SHIFT 20 /* 1 MB */
50 
51 /*
52  * This is only for non-live state being migrated.
53  * Instead of RDMA_WRITE messages, we use RDMA_SEND
54  * messages for that state, which requires a different
55  * delivery design than main memory.
56  */
57 #define RDMA_SEND_INCREMENT 32768
58 
59 /*
60  * Maximum size infiniband SEND message
61  */
62 #define RDMA_CONTROL_MAX_BUFFER (512 * 1024)
63 #define RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE 4096
64 
65 #define RDMA_CONTROL_VERSION_CURRENT 1
66 /*
67  * Capabilities for negotiation.
68  */
69 #define RDMA_CAPABILITY_PIN_ALL 0x01
70 
71 /*
72  * Add the other flags above to this list of known capabilities
73  * as they are introduced.
74  */
75 static uint32_t known_capabilities = RDMA_CAPABILITY_PIN_ALL;
76 
77 /*
78  * A work request ID is 64-bits and we split up these bits
79  * into 3 parts:
80  *
81  * bits 0-15 : type of control message, 2^16
82  * bits 16-29: ram block index, 2^14
83  * bits 30-63: ram block chunk number, 2^34
84  *
85  * The last two bit ranges are only used for RDMA writes,
86  * in order to track their completion and potentially
87  * also track unregistration status of the message.
88  */
89 #define RDMA_WRID_TYPE_SHIFT  0UL
90 #define RDMA_WRID_BLOCK_SHIFT 16UL
91 #define RDMA_WRID_CHUNK_SHIFT 30UL
92 
93 #define RDMA_WRID_TYPE_MASK \
94     ((1UL << RDMA_WRID_BLOCK_SHIFT) - 1UL)
95 
96 #define RDMA_WRID_BLOCK_MASK \
97     (~RDMA_WRID_TYPE_MASK & ((1UL << RDMA_WRID_CHUNK_SHIFT) - 1UL))
98 
99 #define RDMA_WRID_CHUNK_MASK (~RDMA_WRID_BLOCK_MASK & ~RDMA_WRID_TYPE_MASK)
100 
101 /*
102  * RDMA migration protocol:
103  * 1. RDMA Writes (data messages, i.e. RAM)
104  * 2. IB Send/Recv (control channel messages)
105  */
106 enum {
107     RDMA_WRID_NONE = 0,
108     RDMA_WRID_RDMA_WRITE = 1,
109     RDMA_WRID_SEND_CONTROL = 2000,
110     RDMA_WRID_RECV_CONTROL = 4000,
111 };
112 
113 /*
114  * Work request IDs for IB SEND messages only (not RDMA writes).
115  * This is used by the migration protocol to transmit
116  * control messages (such as device state and registration commands)
117  *
118  * We could use more WRs, but we have enough for now.
119  */
120 enum {
121     RDMA_WRID_READY = 0,
122     RDMA_WRID_DATA,
123     RDMA_WRID_CONTROL,
124     RDMA_WRID_MAX,
125 };
126 
127 /*
128  * SEND/RECV IB Control Messages.
129  */
130 enum {
131     RDMA_CONTROL_NONE = 0,
132     RDMA_CONTROL_ERROR,
133     RDMA_CONTROL_READY,               /* ready to receive */
134     RDMA_CONTROL_QEMU_FILE,           /* QEMUFile-transmitted bytes */
135     RDMA_CONTROL_RAM_BLOCKS_REQUEST,  /* RAMBlock synchronization */
136     RDMA_CONTROL_RAM_BLOCKS_RESULT,   /* RAMBlock synchronization */
137     RDMA_CONTROL_COMPRESS,            /* page contains repeat values */
138     RDMA_CONTROL_REGISTER_REQUEST,    /* dynamic page registration */
139     RDMA_CONTROL_REGISTER_RESULT,     /* key to use after registration */
140     RDMA_CONTROL_REGISTER_FINISHED,   /* current iteration finished */
141     RDMA_CONTROL_UNREGISTER_REQUEST,  /* dynamic UN-registration */
142     RDMA_CONTROL_UNREGISTER_FINISHED, /* unpinning finished */
143 };
144 
145 
146 /*
147  * Memory and MR structures used to represent an IB Send/Recv work request.
148  * This is *not* used for RDMA writes, only IB Send/Recv.
149  */
150 typedef struct {
151     uint8_t  control[RDMA_CONTROL_MAX_BUFFER]; /* actual buffer to register */
152     struct   ibv_mr *control_mr;               /* registration metadata */
153     size_t   control_len;                      /* length of the message */
154     uint8_t *control_curr;                     /* start of unconsumed bytes */
155 } RDMAWorkRequestData;
156 
157 /*
158  * Negotiate RDMA capabilities during connection-setup time.
159  */
160 typedef struct {
161     uint32_t version;
162     uint32_t flags;
163 } RDMACapabilities;
164 
165 static void caps_to_network(RDMACapabilities *cap)
166 {
167     cap->version = htonl(cap->version);
168     cap->flags = htonl(cap->flags);
169 }
170 
171 static void network_to_caps(RDMACapabilities *cap)
172 {
173     cap->version = ntohl(cap->version);
174     cap->flags = ntohl(cap->flags);
175 }
176 
177 /*
178  * Representation of a RAMBlock from an RDMA perspective.
179  * This is not transmitted, only local.
180  * This and subsequent structures cannot be linked lists
181  * because we're using a single IB message to transmit
182  * the information. It's small anyway, so a list is overkill.
183  */
184 typedef struct RDMALocalBlock {
185     char          *block_name;
186     uint8_t       *local_host_addr; /* local virtual address */
187     uint64_t       remote_host_addr; /* remote virtual address */
188     uint64_t       offset;
189     uint64_t       length;
190     struct         ibv_mr **pmr;    /* MRs for chunk-level registration */
191     struct         ibv_mr *mr;      /* MR for non-chunk-level registration */
192     uint32_t      *remote_keys;     /* rkeys for chunk-level registration */
193     uint32_t       remote_rkey;     /* rkeys for non-chunk-level registration */
194     int            index;           /* which block are we */
195     unsigned int   src_index;       /* (Only used on dest) */
196     bool           is_ram_block;
197     int            nb_chunks;
198     unsigned long *transit_bitmap;
199     unsigned long *unregister_bitmap;
200 } RDMALocalBlock;
201 
202 /*
203  * Also represents a RAMblock, but only on the dest.
204  * This gets transmitted by the dest during connection-time
205  * to the source VM and then is used to populate the
206  * corresponding RDMALocalBlock with
207  * the information needed to perform the actual RDMA.
208  */
209 typedef struct QEMU_PACKED RDMADestBlock {
210     uint64_t remote_host_addr;
211     uint64_t offset;
212     uint64_t length;
213     uint32_t remote_rkey;
214     uint32_t padding;
215 } RDMADestBlock;
216 
217 static const char *control_desc(unsigned int rdma_control)
218 {
219     static const char *strs[] = {
220         [RDMA_CONTROL_NONE] = "NONE",
221         [RDMA_CONTROL_ERROR] = "ERROR",
222         [RDMA_CONTROL_READY] = "READY",
223         [RDMA_CONTROL_QEMU_FILE] = "QEMU FILE",
224         [RDMA_CONTROL_RAM_BLOCKS_REQUEST] = "RAM BLOCKS REQUEST",
225         [RDMA_CONTROL_RAM_BLOCKS_RESULT] = "RAM BLOCKS RESULT",
226         [RDMA_CONTROL_COMPRESS] = "COMPRESS",
227         [RDMA_CONTROL_REGISTER_REQUEST] = "REGISTER REQUEST",
228         [RDMA_CONTROL_REGISTER_RESULT] = "REGISTER RESULT",
229         [RDMA_CONTROL_REGISTER_FINISHED] = "REGISTER FINISHED",
230         [RDMA_CONTROL_UNREGISTER_REQUEST] = "UNREGISTER REQUEST",
231         [RDMA_CONTROL_UNREGISTER_FINISHED] = "UNREGISTER FINISHED",
232     };
233 
234     if (rdma_control > RDMA_CONTROL_UNREGISTER_FINISHED) {
235         return "??BAD CONTROL VALUE??";
236     }
237 
238     return strs[rdma_control];
239 }
240 
241 static uint64_t htonll(uint64_t v)
242 {
243     union { uint32_t lv[2]; uint64_t llv; } u;
244     u.lv[0] = htonl(v >> 32);
245     u.lv[1] = htonl(v & 0xFFFFFFFFULL);
246     return u.llv;
247 }
248 
249 static uint64_t ntohll(uint64_t v)
250 {
251     union { uint32_t lv[2]; uint64_t llv; } u;
252     u.llv = v;
253     return ((uint64_t)ntohl(u.lv[0]) << 32) | (uint64_t) ntohl(u.lv[1]);
254 }
255 
256 static void dest_block_to_network(RDMADestBlock *db)
257 {
258     db->remote_host_addr = htonll(db->remote_host_addr);
259     db->offset = htonll(db->offset);
260     db->length = htonll(db->length);
261     db->remote_rkey = htonl(db->remote_rkey);
262 }
263 
264 static void network_to_dest_block(RDMADestBlock *db)
265 {
266     db->remote_host_addr = ntohll(db->remote_host_addr);
267     db->offset = ntohll(db->offset);
268     db->length = ntohll(db->length);
269     db->remote_rkey = ntohl(db->remote_rkey);
270 }
271 
272 /*
273  * Virtual address of the above structures used for transmitting
274  * the RAMBlock descriptions at connection-time.
275  * This structure is *not* transmitted.
276  */
277 typedef struct RDMALocalBlocks {
278     int nb_blocks;
279     bool     init;             /* main memory init complete */
280     RDMALocalBlock *block;
281 } RDMALocalBlocks;
282 
283 /*
284  * Main data structure for RDMA state.
285  * While there is only one copy of this structure being allocated right now,
286  * this is the place where one would start if you wanted to consider
287  * having more than one RDMA connection open at the same time.
288  */
289 typedef struct RDMAContext {
290     char *host;
291     int port;
292 
293     RDMAWorkRequestData wr_data[RDMA_WRID_MAX];
294 
295     /*
296      * This is used by *_exchange_send() to figure out whether or not
297      * the initial "READY" message has already been received or not.
298      * This is because other functions may potentially poll() and detect
299      * the READY message before send() does, in which case we need to
300      * know if it completed.
301      */
302     int control_ready_expected;
303 
304     /* number of outstanding writes */
305     int nb_sent;
306 
307     /* store info about current buffer so that we can
308        merge it with future sends */
309     uint64_t current_addr;
310     uint64_t current_length;
311     /* index of ram block the current buffer belongs to */
312     int current_index;
313     /* index of the chunk in the current ram block */
314     int current_chunk;
315 
316     bool pin_all;
317 
318     /*
319      * infiniband-specific variables for opening the device
320      * and maintaining connection state and so forth.
321      *
322      * cm_id also has ibv_context, rdma_event_channel, and ibv_qp in
323      * cm_id->verbs, cm_id->channel, and cm_id->qp.
324      */
325     struct rdma_cm_id *cm_id;               /* connection manager ID */
326     struct rdma_cm_id *listen_id;
327     bool connected;
328 
329     struct ibv_context          *verbs;
330     struct rdma_event_channel   *channel;
331     struct ibv_qp *qp;                      /* queue pair */
332     struct ibv_comp_channel *recv_comp_channel;  /* recv completion channel */
333     struct ibv_comp_channel *send_comp_channel;  /* send completion channel */
334     struct ibv_pd *pd;                      /* protection domain */
335     struct ibv_cq *recv_cq;                 /* recvieve completion queue */
336     struct ibv_cq *send_cq;                 /* send completion queue */
337 
338     /*
339      * If a previous write failed (perhaps because of a failed
340      * memory registration, then do not attempt any future work
341      * and remember the error state.
342      */
343     bool errored;
344     bool error_reported;
345     bool received_error;
346 
347     /*
348      * Description of ram blocks used throughout the code.
349      */
350     RDMALocalBlocks local_ram_blocks;
351     RDMADestBlock  *dest_blocks;
352 
353     /* Index of the next RAMBlock received during block registration */
354     unsigned int    next_src_index;
355 
356     /*
357      * Migration on *destination* started.
358      * Then use coroutine yield function.
359      * Source runs in a thread, so we don't care.
360      */
361     int migration_started_on_destination;
362 
363     int total_registrations;
364     int total_writes;
365 
366     int unregister_current, unregister_next;
367     uint64_t unregistrations[RDMA_SIGNALED_SEND_MAX];
368 
369     GHashTable *blockmap;
370 
371     /* the RDMAContext for return path */
372     struct RDMAContext *return_path;
373     bool is_return_path;
374 } RDMAContext;
375 
376 #define TYPE_QIO_CHANNEL_RDMA "qio-channel-rdma"
377 OBJECT_DECLARE_SIMPLE_TYPE(QIOChannelRDMA, QIO_CHANNEL_RDMA)
378 
379 
380 
381 struct QIOChannelRDMA {
382     QIOChannel parent;
383     RDMAContext *rdmain;
384     RDMAContext *rdmaout;
385     QEMUFile *file;
386     bool blocking; /* XXX we don't actually honour this yet */
387 };
388 
389 /*
390  * Main structure for IB Send/Recv control messages.
391  * This gets prepended at the beginning of every Send/Recv.
392  */
393 typedef struct QEMU_PACKED {
394     uint32_t len;     /* Total length of data portion */
395     uint32_t type;    /* which control command to perform */
396     uint32_t repeat;  /* number of commands in data portion of same type */
397     uint32_t padding;
398 } RDMAControlHeader;
399 
400 static void control_to_network(RDMAControlHeader *control)
401 {
402     control->type = htonl(control->type);
403     control->len = htonl(control->len);
404     control->repeat = htonl(control->repeat);
405 }
406 
407 static void network_to_control(RDMAControlHeader *control)
408 {
409     control->type = ntohl(control->type);
410     control->len = ntohl(control->len);
411     control->repeat = ntohl(control->repeat);
412 }
413 
414 /*
415  * Register a single Chunk.
416  * Information sent by the source VM to inform the dest
417  * to register an single chunk of memory before we can perform
418  * the actual RDMA operation.
419  */
420 typedef struct QEMU_PACKED {
421     union QEMU_PACKED {
422         uint64_t current_addr;  /* offset into the ram_addr_t space */
423         uint64_t chunk;         /* chunk to lookup if unregistering */
424     } key;
425     uint32_t current_index; /* which ramblock the chunk belongs to */
426     uint32_t padding;
427     uint64_t chunks;            /* how many sequential chunks to register */
428 } RDMARegister;
429 
430 static bool rdma_errored(RDMAContext *rdma)
431 {
432     if (rdma->errored && !rdma->error_reported) {
433         error_report("RDMA is in an error state waiting migration"
434                      " to abort!");
435         rdma->error_reported = true;
436     }
437     return rdma->errored;
438 }
439 
440 static void register_to_network(RDMAContext *rdma, RDMARegister *reg)
441 {
442     RDMALocalBlock *local_block;
443     local_block  = &rdma->local_ram_blocks.block[reg->current_index];
444 
445     if (local_block->is_ram_block) {
446         /*
447          * current_addr as passed in is an address in the local ram_addr_t
448          * space, we need to translate this for the destination
449          */
450         reg->key.current_addr -= local_block->offset;
451         reg->key.current_addr += rdma->dest_blocks[reg->current_index].offset;
452     }
453     reg->key.current_addr = htonll(reg->key.current_addr);
454     reg->current_index = htonl(reg->current_index);
455     reg->chunks = htonll(reg->chunks);
456 }
457 
458 static void network_to_register(RDMARegister *reg)
459 {
460     reg->key.current_addr = ntohll(reg->key.current_addr);
461     reg->current_index = ntohl(reg->current_index);
462     reg->chunks = ntohll(reg->chunks);
463 }
464 
465 typedef struct QEMU_PACKED {
466     uint32_t value;     /* if zero, we will madvise() */
467     uint32_t block_idx; /* which ram block index */
468     uint64_t offset;    /* Address in remote ram_addr_t space */
469     uint64_t length;    /* length of the chunk */
470 } RDMACompress;
471 
472 static void compress_to_network(RDMAContext *rdma, RDMACompress *comp)
473 {
474     comp->value = htonl(comp->value);
475     /*
476      * comp->offset as passed in is an address in the local ram_addr_t
477      * space, we need to translate this for the destination
478      */
479     comp->offset -= rdma->local_ram_blocks.block[comp->block_idx].offset;
480     comp->offset += rdma->dest_blocks[comp->block_idx].offset;
481     comp->block_idx = htonl(comp->block_idx);
482     comp->offset = htonll(comp->offset);
483     comp->length = htonll(comp->length);
484 }
485 
486 static void network_to_compress(RDMACompress *comp)
487 {
488     comp->value = ntohl(comp->value);
489     comp->block_idx = ntohl(comp->block_idx);
490     comp->offset = ntohll(comp->offset);
491     comp->length = ntohll(comp->length);
492 }
493 
494 /*
495  * The result of the dest's memory registration produces an "rkey"
496  * which the source VM must reference in order to perform
497  * the RDMA operation.
498  */
499 typedef struct QEMU_PACKED {
500     uint32_t rkey;
501     uint32_t padding;
502     uint64_t host_addr;
503 } RDMARegisterResult;
504 
505 static void result_to_network(RDMARegisterResult *result)
506 {
507     result->rkey = htonl(result->rkey);
508     result->host_addr = htonll(result->host_addr);
509 };
510 
511 static void network_to_result(RDMARegisterResult *result)
512 {
513     result->rkey = ntohl(result->rkey);
514     result->host_addr = ntohll(result->host_addr);
515 };
516 
517 static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head,
518                                    uint8_t *data, RDMAControlHeader *resp,
519                                    int *resp_idx,
520                                    int (*callback)(RDMAContext *rdma,
521                                                    Error **errp),
522                                    Error **errp);
523 
524 static inline uint64_t ram_chunk_index(const uint8_t *start,
525                                        const uint8_t *host)
526 {
527     return ((uintptr_t) host - (uintptr_t) start) >> RDMA_REG_CHUNK_SHIFT;
528 }
529 
530 static inline uint8_t *ram_chunk_start(const RDMALocalBlock *rdma_ram_block,
531                                        uint64_t i)
532 {
533     return (uint8_t *)(uintptr_t)(rdma_ram_block->local_host_addr +
534                                   (i << RDMA_REG_CHUNK_SHIFT));
535 }
536 
537 static inline uint8_t *ram_chunk_end(const RDMALocalBlock *rdma_ram_block,
538                                      uint64_t i)
539 {
540     uint8_t *result = ram_chunk_start(rdma_ram_block, i) +
541                                          (1UL << RDMA_REG_CHUNK_SHIFT);
542 
543     if (result > (rdma_ram_block->local_host_addr + rdma_ram_block->length)) {
544         result = rdma_ram_block->local_host_addr + rdma_ram_block->length;
545     }
546 
547     return result;
548 }
549 
550 static void rdma_add_block(RDMAContext *rdma, const char *block_name,
551                            void *host_addr,
552                            ram_addr_t block_offset, uint64_t length)
553 {
554     RDMALocalBlocks *local = &rdma->local_ram_blocks;
555     RDMALocalBlock *block;
556     RDMALocalBlock *old = local->block;
557 
558     local->block = g_new0(RDMALocalBlock, local->nb_blocks + 1);
559 
560     if (local->nb_blocks) {
561         if (rdma->blockmap) {
562             for (int x = 0; x < local->nb_blocks; x++) {
563                 g_hash_table_remove(rdma->blockmap,
564                                     (void *)(uintptr_t)old[x].offset);
565                 g_hash_table_insert(rdma->blockmap,
566                                     (void *)(uintptr_t)old[x].offset,
567                                     &local->block[x]);
568             }
569         }
570         memcpy(local->block, old, sizeof(RDMALocalBlock) * local->nb_blocks);
571         g_free(old);
572     }
573 
574     block = &local->block[local->nb_blocks];
575 
576     block->block_name = g_strdup(block_name);
577     block->local_host_addr = host_addr;
578     block->offset = block_offset;
579     block->length = length;
580     block->index = local->nb_blocks;
581     block->src_index = ~0U; /* Filled in by the receipt of the block list */
582     block->nb_chunks = ram_chunk_index(host_addr, host_addr + length) + 1UL;
583     block->transit_bitmap = bitmap_new(block->nb_chunks);
584     bitmap_clear(block->transit_bitmap, 0, block->nb_chunks);
585     block->unregister_bitmap = bitmap_new(block->nb_chunks);
586     bitmap_clear(block->unregister_bitmap, 0, block->nb_chunks);
587     block->remote_keys = g_new0(uint32_t, block->nb_chunks);
588 
589     block->is_ram_block = local->init ? false : true;
590 
591     if (rdma->blockmap) {
592         g_hash_table_insert(rdma->blockmap, (void *)(uintptr_t)block_offset, block);
593     }
594 
595     trace_rdma_add_block(block_name, local->nb_blocks,
596                          (uintptr_t) block->local_host_addr,
597                          block->offset, block->length,
598                          (uintptr_t) (block->local_host_addr + block->length),
599                          BITS_TO_LONGS(block->nb_chunks) *
600                              sizeof(unsigned long) * 8,
601                          block->nb_chunks);
602 
603     local->nb_blocks++;
604 }
605 
606 /*
607  * Memory regions need to be registered with the device and queue pairs setup
608  * in advanced before the migration starts. This tells us where the RAM blocks
609  * are so that we can register them individually.
610  */
611 static int qemu_rdma_init_one_block(RAMBlock *rb, void *opaque)
612 {
613     const char *block_name = qemu_ram_get_idstr(rb);
614     void *host_addr = qemu_ram_get_host_addr(rb);
615     ram_addr_t block_offset = qemu_ram_get_offset(rb);
616     ram_addr_t length = qemu_ram_get_used_length(rb);
617     rdma_add_block(opaque, block_name, host_addr, block_offset, length);
618     return 0;
619 }
620 
621 /*
622  * Identify the RAMBlocks and their quantity. They will be references to
623  * identify chunk boundaries inside each RAMBlock and also be referenced
624  * during dynamic page registration.
625  */
626 static void qemu_rdma_init_ram_blocks(RDMAContext *rdma)
627 {
628     RDMALocalBlocks *local = &rdma->local_ram_blocks;
629     int ret;
630 
631     assert(rdma->blockmap == NULL);
632     memset(local, 0, sizeof *local);
633     ret = foreach_not_ignored_block(qemu_rdma_init_one_block, rdma);
634     assert(!ret);
635     trace_qemu_rdma_init_ram_blocks(local->nb_blocks);
636     rdma->dest_blocks = g_new0(RDMADestBlock,
637                                rdma->local_ram_blocks.nb_blocks);
638     local->init = true;
639 }
640 
641 /*
642  * Note: If used outside of cleanup, the caller must ensure that the destination
643  * block structures are also updated
644  */
645 static void rdma_delete_block(RDMAContext *rdma, RDMALocalBlock *block)
646 {
647     RDMALocalBlocks *local = &rdma->local_ram_blocks;
648     RDMALocalBlock *old = local->block;
649 
650     if (rdma->blockmap) {
651         g_hash_table_remove(rdma->blockmap, (void *)(uintptr_t)block->offset);
652     }
653     if (block->pmr) {
654         for (int j = 0; j < block->nb_chunks; j++) {
655             if (!block->pmr[j]) {
656                 continue;
657             }
658             ibv_dereg_mr(block->pmr[j]);
659             rdma->total_registrations--;
660         }
661         g_free(block->pmr);
662         block->pmr = NULL;
663     }
664 
665     if (block->mr) {
666         ibv_dereg_mr(block->mr);
667         rdma->total_registrations--;
668         block->mr = NULL;
669     }
670 
671     g_free(block->transit_bitmap);
672     block->transit_bitmap = NULL;
673 
674     g_free(block->unregister_bitmap);
675     block->unregister_bitmap = NULL;
676 
677     g_free(block->remote_keys);
678     block->remote_keys = NULL;
679 
680     g_free(block->block_name);
681     block->block_name = NULL;
682 
683     if (rdma->blockmap) {
684         for (int x = 0; x < local->nb_blocks; x++) {
685             g_hash_table_remove(rdma->blockmap,
686                                 (void *)(uintptr_t)old[x].offset);
687         }
688     }
689 
690     if (local->nb_blocks > 1) {
691 
692         local->block = g_new0(RDMALocalBlock, local->nb_blocks - 1);
693 
694         if (block->index) {
695             memcpy(local->block, old, sizeof(RDMALocalBlock) * block->index);
696         }
697 
698         if (block->index < (local->nb_blocks - 1)) {
699             memcpy(local->block + block->index, old + (block->index + 1),
700                 sizeof(RDMALocalBlock) *
701                     (local->nb_blocks - (block->index + 1)));
702             for (int x = block->index; x < local->nb_blocks - 1; x++) {
703                 local->block[x].index--;
704             }
705         }
706     } else {
707         assert(block == local->block);
708         local->block = NULL;
709     }
710 
711     trace_rdma_delete_block(block, (uintptr_t)block->local_host_addr,
712                            block->offset, block->length,
713                             (uintptr_t)(block->local_host_addr + block->length),
714                            BITS_TO_LONGS(block->nb_chunks) *
715                                sizeof(unsigned long) * 8, block->nb_chunks);
716 
717     g_free(old);
718 
719     local->nb_blocks--;
720 
721     if (local->nb_blocks && rdma->blockmap) {
722         for (int x = 0; x < local->nb_blocks; x++) {
723             g_hash_table_insert(rdma->blockmap,
724                                 (void *)(uintptr_t)local->block[x].offset,
725                                 &local->block[x]);
726         }
727     }
728 }
729 
730 /*
731  * Trace RDMA device open, with device details.
732  */
733 static void qemu_rdma_dump_id(const char *who, struct ibv_context *verbs)
734 {
735     struct ibv_port_attr port;
736 
737     if (ibv_query_port(verbs, 1, &port)) {
738         trace_qemu_rdma_dump_id_failed(who);
739         return;
740     }
741 
742     trace_qemu_rdma_dump_id(who,
743                 verbs->device->name,
744                 verbs->device->dev_name,
745                 verbs->device->dev_path,
746                 verbs->device->ibdev_path,
747                 port.link_layer,
748                 port.link_layer == IBV_LINK_LAYER_INFINIBAND ? "Infiniband"
749                 : port.link_layer == IBV_LINK_LAYER_ETHERNET ? "Ethernet"
750                 : "Unknown");
751 }
752 
753 /*
754  * Trace RDMA gid addressing information.
755  * Useful for understanding the RDMA device hierarchy in the kernel.
756  */
757 static void qemu_rdma_dump_gid(const char *who, struct rdma_cm_id *id)
758 {
759     char sgid[33];
760     char dgid[33];
761     inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.sgid, sgid, sizeof sgid);
762     inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.dgid, dgid, sizeof dgid);
763     trace_qemu_rdma_dump_gid(who, sgid, dgid);
764 }
765 
766 /*
767  * As of now, IPv6 over RoCE / iWARP is not supported by linux.
768  * We will try the next addrinfo struct, and fail if there are
769  * no other valid addresses to bind against.
770  *
771  * If user is listening on '[::]', then we will not have a opened a device
772  * yet and have no way of verifying if the device is RoCE or not.
773  *
774  * In this case, the source VM will throw an error for ALL types of
775  * connections (both IPv4 and IPv6) if the destination machine does not have
776  * a regular infiniband network available for use.
777  *
778  * The only way to guarantee that an error is thrown for broken kernels is
779  * for the management software to choose a *specific* interface at bind time
780  * and validate what time of hardware it is.
781  *
782  * Unfortunately, this puts the user in a fix:
783  *
784  *  If the source VM connects with an IPv4 address without knowing that the
785  *  destination has bound to '[::]' the migration will unconditionally fail
786  *  unless the management software is explicitly listening on the IPv4
787  *  address while using a RoCE-based device.
788  *
789  *  If the source VM connects with an IPv6 address, then we're OK because we can
790  *  throw an error on the source (and similarly on the destination).
791  *
792  *  But in mixed environments, this will be broken for a while until it is fixed
793  *  inside linux.
794  *
795  * We do provide a *tiny* bit of help in this function: We can list all of the
796  * devices in the system and check to see if all the devices are RoCE or
797  * Infiniband.
798  *
799  * If we detect that we have a *pure* RoCE environment, then we can safely
800  * thrown an error even if the management software has specified '[::]' as the
801  * bind address.
802  *
803  * However, if there is are multiple hetergeneous devices, then we cannot make
804  * this assumption and the user just has to be sure they know what they are
805  * doing.
806  *
807  * Patches are being reviewed on linux-rdma.
808  */
809 static int qemu_rdma_broken_ipv6_kernel(struct ibv_context *verbs, Error **errp)
810 {
811     /* This bug only exists in linux, to our knowledge. */
812 #ifdef CONFIG_LINUX
813     struct ibv_port_attr port_attr;
814 
815     /*
816      * Verbs are only NULL if management has bound to '[::]'.
817      *
818      * Let's iterate through all the devices and see if there any pure IB
819      * devices (non-ethernet).
820      *
821      * If not, then we can safely proceed with the migration.
822      * Otherwise, there are no guarantees until the bug is fixed in linux.
823      */
824     if (!verbs) {
825         int num_devices;
826         struct ibv_device **dev_list = ibv_get_device_list(&num_devices);
827         bool roce_found = false;
828         bool ib_found = false;
829 
830         for (int x = 0; x < num_devices; x++) {
831             verbs = ibv_open_device(dev_list[x]);
832             /*
833              * ibv_open_device() is not documented to set errno.  If
834              * it does, it's somebody else's doc bug.  If it doesn't,
835              * the use of errno below is wrong.
836              * TODO Find out whether ibv_open_device() sets errno.
837              */
838             if (!verbs) {
839                 if (errno == EPERM) {
840                     continue;
841                 } else {
842                     error_setg_errno(errp, errno,
843                                      "could not open RDMA device context");
844                     return -1;
845                 }
846             }
847 
848             if (ibv_query_port(verbs, 1, &port_attr)) {
849                 ibv_close_device(verbs);
850                 error_setg(errp,
851                            "RDMA ERROR: Could not query initial IB port");
852                 return -1;
853             }
854 
855             if (port_attr.link_layer == IBV_LINK_LAYER_INFINIBAND) {
856                 ib_found = true;
857             } else if (port_attr.link_layer == IBV_LINK_LAYER_ETHERNET) {
858                 roce_found = true;
859             }
860 
861             ibv_close_device(verbs);
862 
863         }
864 
865         if (roce_found) {
866             if (ib_found) {
867                 warn_report("migrations may fail:"
868                             " IPv6 over RoCE / iWARP in linux"
869                             " is broken. But since you appear to have a"
870                             " mixed RoCE / IB environment, be sure to only"
871                             " migrate over the IB fabric until the kernel "
872                             " fixes the bug.");
873             } else {
874                 error_setg(errp, "RDMA ERROR: "
875                            "You only have RoCE / iWARP devices in your systems"
876                            " and your management software has specified '[::]'"
877                            ", but IPv6 over RoCE / iWARP is not supported in Linux.");
878                 return -1;
879             }
880         }
881 
882         return 0;
883     }
884 
885     /*
886      * If we have a verbs context, that means that some other than '[::]' was
887      * used by the management software for binding. In which case we can
888      * actually warn the user about a potentially broken kernel.
889      */
890 
891     /* IB ports start with 1, not 0 */
892     if (ibv_query_port(verbs, 1, &port_attr)) {
893         error_setg(errp, "RDMA ERROR: Could not query initial IB port");
894         return -1;
895     }
896 
897     if (port_attr.link_layer == IBV_LINK_LAYER_ETHERNET) {
898         error_setg(errp, "RDMA ERROR: "
899                    "Linux kernel's RoCE / iWARP does not support IPv6 "
900                    "(but patches on linux-rdma in progress)");
901         return -1;
902     }
903 
904 #endif
905 
906     return 0;
907 }
908 
909 /*
910  * Figure out which RDMA device corresponds to the requested IP hostname
911  * Also create the initial connection manager identifiers for opening
912  * the connection.
913  */
914 static int qemu_rdma_resolve_host(RDMAContext *rdma, Error **errp)
915 {
916     Error *err = NULL;
917     int ret;
918     struct rdma_addrinfo *res;
919     char port_str[16];
920     struct rdma_cm_event *cm_event;
921     char ip[40] = "unknown";
922 
923     if (rdma->host == NULL || !strcmp(rdma->host, "")) {
924         error_setg(errp, "RDMA ERROR: RDMA hostname has not been set");
925         return -1;
926     }
927 
928     /* create CM channel */
929     rdma->channel = rdma_create_event_channel();
930     if (!rdma->channel) {
931         error_setg(errp, "RDMA ERROR: could not create CM channel");
932         return -1;
933     }
934 
935     /* create CM id */
936     ret = rdma_create_id(rdma->channel, &rdma->cm_id, NULL, RDMA_PS_TCP);
937     if (ret < 0) {
938         error_setg(errp, "RDMA ERROR: could not create channel id");
939         goto err_resolve_create_id;
940     }
941 
942     snprintf(port_str, 16, "%d", rdma->port);
943     port_str[15] = '\0';
944 
945     ret = rdma_getaddrinfo(rdma->host, port_str, NULL, &res);
946     if (ret) {
947         error_setg(errp, "RDMA ERROR: could not rdma_getaddrinfo address %s",
948                    rdma->host);
949         goto err_resolve_get_addr;
950     }
951 
952     /* Try all addresses, saving the first error in @err */
953     for (struct rdma_addrinfo *e = res; e != NULL; e = e->ai_next) {
954         Error **local_errp = err ? NULL : &err;
955 
956         inet_ntop(e->ai_family,
957             &((struct sockaddr_in *) e->ai_dst_addr)->sin_addr, ip, sizeof ip);
958         trace_qemu_rdma_resolve_host_trying(rdma->host, ip);
959 
960         ret = rdma_resolve_addr(rdma->cm_id, NULL, e->ai_dst_addr,
961                 RDMA_RESOLVE_TIMEOUT_MS);
962         if (ret >= 0) {
963             if (e->ai_family == AF_INET6) {
964                 ret = qemu_rdma_broken_ipv6_kernel(rdma->cm_id->verbs,
965                                                    local_errp);
966                 if (ret < 0) {
967                     continue;
968                 }
969             }
970             error_free(err);
971             goto route;
972         }
973     }
974 
975     rdma_freeaddrinfo(res);
976     if (err) {
977         error_propagate(errp, err);
978     } else {
979         error_setg(errp, "RDMA ERROR: could not resolve address %s",
980                    rdma->host);
981     }
982     goto err_resolve_get_addr;
983 
984 route:
985     rdma_freeaddrinfo(res);
986     qemu_rdma_dump_gid("source_resolve_addr", rdma->cm_id);
987 
988     ret = rdma_get_cm_event(rdma->channel, &cm_event);
989     if (ret < 0) {
990         error_setg(errp, "RDMA ERROR: could not perform event_addr_resolved");
991         goto err_resolve_get_addr;
992     }
993 
994     if (cm_event->event != RDMA_CM_EVENT_ADDR_RESOLVED) {
995         error_setg(errp,
996                    "RDMA ERROR: result not equal to event_addr_resolved %s",
997                    rdma_event_str(cm_event->event));
998         rdma_ack_cm_event(cm_event);
999         goto err_resolve_get_addr;
1000     }
1001     rdma_ack_cm_event(cm_event);
1002 
1003     /* resolve route */
1004     ret = rdma_resolve_route(rdma->cm_id, RDMA_RESOLVE_TIMEOUT_MS);
1005     if (ret < 0) {
1006         error_setg(errp, "RDMA ERROR: could not resolve rdma route");
1007         goto err_resolve_get_addr;
1008     }
1009 
1010     ret = rdma_get_cm_event(rdma->channel, &cm_event);
1011     if (ret < 0) {
1012         error_setg(errp, "RDMA ERROR: could not perform event_route_resolved");
1013         goto err_resolve_get_addr;
1014     }
1015     if (cm_event->event != RDMA_CM_EVENT_ROUTE_RESOLVED) {
1016         error_setg(errp, "RDMA ERROR: "
1017                    "result not equal to event_route_resolved: %s",
1018                    rdma_event_str(cm_event->event));
1019         rdma_ack_cm_event(cm_event);
1020         goto err_resolve_get_addr;
1021     }
1022     rdma_ack_cm_event(cm_event);
1023     rdma->verbs = rdma->cm_id->verbs;
1024     qemu_rdma_dump_id("source_resolve_host", rdma->cm_id->verbs);
1025     qemu_rdma_dump_gid("source_resolve_host", rdma->cm_id);
1026     return 0;
1027 
1028 err_resolve_get_addr:
1029     rdma_destroy_id(rdma->cm_id);
1030     rdma->cm_id = NULL;
1031 err_resolve_create_id:
1032     rdma_destroy_event_channel(rdma->channel);
1033     rdma->channel = NULL;
1034     return -1;
1035 }
1036 
1037 /*
1038  * Create protection domain and completion queues
1039  */
1040 static int qemu_rdma_alloc_pd_cq(RDMAContext *rdma, Error **errp)
1041 {
1042     /* allocate pd */
1043     rdma->pd = ibv_alloc_pd(rdma->verbs);
1044     if (!rdma->pd) {
1045         error_setg(errp, "failed to allocate protection domain");
1046         return -1;
1047     }
1048 
1049     /* create receive completion channel */
1050     rdma->recv_comp_channel = ibv_create_comp_channel(rdma->verbs);
1051     if (!rdma->recv_comp_channel) {
1052         error_setg(errp, "failed to allocate receive completion channel");
1053         goto err_alloc_pd_cq;
1054     }
1055 
1056     /*
1057      * Completion queue can be filled by read work requests.
1058      */
1059     rdma->recv_cq = ibv_create_cq(rdma->verbs, (RDMA_SIGNALED_SEND_MAX * 3),
1060                                   NULL, rdma->recv_comp_channel, 0);
1061     if (!rdma->recv_cq) {
1062         error_setg(errp, "failed to allocate receive completion queue");
1063         goto err_alloc_pd_cq;
1064     }
1065 
1066     /* create send completion channel */
1067     rdma->send_comp_channel = ibv_create_comp_channel(rdma->verbs);
1068     if (!rdma->send_comp_channel) {
1069         error_setg(errp, "failed to allocate send completion channel");
1070         goto err_alloc_pd_cq;
1071     }
1072 
1073     rdma->send_cq = ibv_create_cq(rdma->verbs, (RDMA_SIGNALED_SEND_MAX * 3),
1074                                   NULL, rdma->send_comp_channel, 0);
1075     if (!rdma->send_cq) {
1076         error_setg(errp, "failed to allocate send completion queue");
1077         goto err_alloc_pd_cq;
1078     }
1079 
1080     return 0;
1081 
1082 err_alloc_pd_cq:
1083     if (rdma->pd) {
1084         ibv_dealloc_pd(rdma->pd);
1085     }
1086     if (rdma->recv_comp_channel) {
1087         ibv_destroy_comp_channel(rdma->recv_comp_channel);
1088     }
1089     if (rdma->send_comp_channel) {
1090         ibv_destroy_comp_channel(rdma->send_comp_channel);
1091     }
1092     if (rdma->recv_cq) {
1093         ibv_destroy_cq(rdma->recv_cq);
1094         rdma->recv_cq = NULL;
1095     }
1096     rdma->pd = NULL;
1097     rdma->recv_comp_channel = NULL;
1098     rdma->send_comp_channel = NULL;
1099     return -1;
1100 
1101 }
1102 
1103 /*
1104  * Create queue pairs.
1105  */
1106 static int qemu_rdma_alloc_qp(RDMAContext *rdma)
1107 {
1108     struct ibv_qp_init_attr attr = { 0 };
1109 
1110     attr.cap.max_send_wr = RDMA_SIGNALED_SEND_MAX;
1111     attr.cap.max_recv_wr = 3;
1112     attr.cap.max_send_sge = 1;
1113     attr.cap.max_recv_sge = 1;
1114     attr.send_cq = rdma->send_cq;
1115     attr.recv_cq = rdma->recv_cq;
1116     attr.qp_type = IBV_QPT_RC;
1117 
1118     if (rdma_create_qp(rdma->cm_id, rdma->pd, &attr) < 0) {
1119         return -1;
1120     }
1121 
1122     rdma->qp = rdma->cm_id->qp;
1123     return 0;
1124 }
1125 
1126 /* Check whether On-Demand Paging is supported by RDAM device */
1127 static bool rdma_support_odp(struct ibv_context *dev)
1128 {
1129     struct ibv_device_attr_ex attr = {0};
1130 
1131     if (ibv_query_device_ex(dev, NULL, &attr)) {
1132         return false;
1133     }
1134 
1135     if (attr.odp_caps.general_caps & IBV_ODP_SUPPORT) {
1136         return true;
1137     }
1138 
1139     return false;
1140 }
1141 
1142 /*
1143  * ibv_advise_mr to avoid RNR NAK error as far as possible.
1144  * The responder mr registering with ODP will sent RNR NAK back to
1145  * the requester in the face of the page fault.
1146  */
1147 static void qemu_rdma_advise_prefetch_mr(struct ibv_pd *pd, uint64_t addr,
1148                                          uint32_t len,  uint32_t lkey,
1149                                          const char *name, bool wr)
1150 {
1151 #ifdef HAVE_IBV_ADVISE_MR
1152     int ret;
1153     int advice = wr ? IBV_ADVISE_MR_ADVICE_PREFETCH_WRITE :
1154                  IBV_ADVISE_MR_ADVICE_PREFETCH;
1155     struct ibv_sge sg_list = {.lkey = lkey, .addr = addr, .length = len};
1156 
1157     ret = ibv_advise_mr(pd, advice,
1158                         IBV_ADVISE_MR_FLAG_FLUSH, &sg_list, 1);
1159     /* ignore the error */
1160     trace_qemu_rdma_advise_mr(name, len, addr, strerror(ret));
1161 #endif
1162 }
1163 
1164 static int qemu_rdma_reg_whole_ram_blocks(RDMAContext *rdma, Error **errp)
1165 {
1166     int i;
1167     RDMALocalBlocks *local = &rdma->local_ram_blocks;
1168 
1169     for (i = 0; i < local->nb_blocks; i++) {
1170         int access = IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE;
1171 
1172         local->block[i].mr =
1173             ibv_reg_mr(rdma->pd,
1174                     local->block[i].local_host_addr,
1175                     local->block[i].length, access
1176                     );
1177         /*
1178          * ibv_reg_mr() is not documented to set errno.  If it does,
1179          * it's somebody else's doc bug.  If it doesn't, the use of
1180          * errno below is wrong.
1181          * TODO Find out whether ibv_reg_mr() sets errno.
1182          */
1183         if (!local->block[i].mr &&
1184             errno == ENOTSUP && rdma_support_odp(rdma->verbs)) {
1185                 access |= IBV_ACCESS_ON_DEMAND;
1186                 /* register ODP mr */
1187                 local->block[i].mr =
1188                     ibv_reg_mr(rdma->pd,
1189                                local->block[i].local_host_addr,
1190                                local->block[i].length, access);
1191                 trace_qemu_rdma_register_odp_mr(local->block[i].block_name);
1192 
1193                 if (local->block[i].mr) {
1194                     qemu_rdma_advise_prefetch_mr(rdma->pd,
1195                                     (uintptr_t)local->block[i].local_host_addr,
1196                                     local->block[i].length,
1197                                     local->block[i].mr->lkey,
1198                                     local->block[i].block_name,
1199                                     true);
1200                 }
1201         }
1202 
1203         if (!local->block[i].mr) {
1204             error_setg_errno(errp, errno,
1205                              "Failed to register local dest ram block!");
1206             goto err;
1207         }
1208         rdma->total_registrations++;
1209     }
1210 
1211     return 0;
1212 
1213 err:
1214     for (i--; i >= 0; i--) {
1215         ibv_dereg_mr(local->block[i].mr);
1216         local->block[i].mr = NULL;
1217         rdma->total_registrations--;
1218     }
1219 
1220     return -1;
1221 
1222 }
1223 
1224 /*
1225  * Find the ram block that corresponds to the page requested to be
1226  * transmitted by QEMU.
1227  *
1228  * Once the block is found, also identify which 'chunk' within that
1229  * block that the page belongs to.
1230  */
1231 static void qemu_rdma_search_ram_block(RDMAContext *rdma,
1232                                        uintptr_t block_offset,
1233                                        uint64_t offset,
1234                                        uint64_t length,
1235                                        uint64_t *block_index,
1236                                        uint64_t *chunk_index)
1237 {
1238     uint64_t current_addr = block_offset + offset;
1239     RDMALocalBlock *block = g_hash_table_lookup(rdma->blockmap,
1240                                                 (void *) block_offset);
1241     assert(block);
1242     assert(current_addr >= block->offset);
1243     assert((current_addr + length) <= (block->offset + block->length));
1244 
1245     *block_index = block->index;
1246     *chunk_index = ram_chunk_index(block->local_host_addr,
1247                 block->local_host_addr + (current_addr - block->offset));
1248 }
1249 
1250 /*
1251  * Register a chunk with IB. If the chunk was already registered
1252  * previously, then skip.
1253  *
1254  * Also return the keys associated with the registration needed
1255  * to perform the actual RDMA operation.
1256  */
1257 static int qemu_rdma_register_and_get_keys(RDMAContext *rdma,
1258         RDMALocalBlock *block, uintptr_t host_addr,
1259         uint32_t *lkey, uint32_t *rkey, int chunk,
1260         uint8_t *chunk_start, uint8_t *chunk_end)
1261 {
1262     if (block->mr) {
1263         if (lkey) {
1264             *lkey = block->mr->lkey;
1265         }
1266         if (rkey) {
1267             *rkey = block->mr->rkey;
1268         }
1269         return 0;
1270     }
1271 
1272     /* allocate memory to store chunk MRs */
1273     if (!block->pmr) {
1274         block->pmr = g_new0(struct ibv_mr *, block->nb_chunks);
1275     }
1276 
1277     /*
1278      * If 'rkey', then we're the destination, so grant access to the source.
1279      *
1280      * If 'lkey', then we're the source VM, so grant access only to ourselves.
1281      */
1282     if (!block->pmr[chunk]) {
1283         uint64_t len = chunk_end - chunk_start;
1284         int access = rkey ? IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE :
1285                      0;
1286 
1287         trace_qemu_rdma_register_and_get_keys(len, chunk_start);
1288 
1289         block->pmr[chunk] = ibv_reg_mr(rdma->pd, chunk_start, len, access);
1290         /*
1291          * ibv_reg_mr() is not documented to set errno.  If it does,
1292          * it's somebody else's doc bug.  If it doesn't, the use of
1293          * errno below is wrong.
1294          * TODO Find out whether ibv_reg_mr() sets errno.
1295          */
1296         if (!block->pmr[chunk] &&
1297             errno == ENOTSUP && rdma_support_odp(rdma->verbs)) {
1298             access |= IBV_ACCESS_ON_DEMAND;
1299             /* register ODP mr */
1300             block->pmr[chunk] = ibv_reg_mr(rdma->pd, chunk_start, len, access);
1301             trace_qemu_rdma_register_odp_mr(block->block_name);
1302 
1303             if (block->pmr[chunk]) {
1304                 qemu_rdma_advise_prefetch_mr(rdma->pd, (uintptr_t)chunk_start,
1305                                             len, block->pmr[chunk]->lkey,
1306                                             block->block_name, rkey);
1307 
1308             }
1309         }
1310     }
1311     if (!block->pmr[chunk]) {
1312         return -1;
1313     }
1314     rdma->total_registrations++;
1315 
1316     if (lkey) {
1317         *lkey = block->pmr[chunk]->lkey;
1318     }
1319     if (rkey) {
1320         *rkey = block->pmr[chunk]->rkey;
1321     }
1322     return 0;
1323 }
1324 
1325 /*
1326  * Register (at connection time) the memory used for control
1327  * channel messages.
1328  */
1329 static int qemu_rdma_reg_control(RDMAContext *rdma, int idx)
1330 {
1331     rdma->wr_data[idx].control_mr = ibv_reg_mr(rdma->pd,
1332             rdma->wr_data[idx].control, RDMA_CONTROL_MAX_BUFFER,
1333             IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE);
1334     if (rdma->wr_data[idx].control_mr) {
1335         rdma->total_registrations++;
1336         return 0;
1337     }
1338     return -1;
1339 }
1340 
1341 /*
1342  * Perform a non-optimized memory unregistration after every transfer
1343  * for demonstration purposes, only if pin-all is not requested.
1344  *
1345  * Potential optimizations:
1346  * 1. Start a new thread to run this function continuously
1347         - for bit clearing
1348         - and for receipt of unregister messages
1349  * 2. Use an LRU.
1350  * 3. Use workload hints.
1351  */
1352 static int qemu_rdma_unregister_waiting(RDMAContext *rdma)
1353 {
1354     Error *err = NULL;
1355 
1356     while (rdma->unregistrations[rdma->unregister_current]) {
1357         int ret;
1358         uint64_t wr_id = rdma->unregistrations[rdma->unregister_current];
1359         uint64_t chunk =
1360             (wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT;
1361         uint64_t index =
1362             (wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT;
1363         RDMALocalBlock *block =
1364             &(rdma->local_ram_blocks.block[index]);
1365         RDMARegister reg = { .current_index = index };
1366         RDMAControlHeader resp = { .type = RDMA_CONTROL_UNREGISTER_FINISHED,
1367                                  };
1368         RDMAControlHeader head = { .len = sizeof(RDMARegister),
1369                                    .type = RDMA_CONTROL_UNREGISTER_REQUEST,
1370                                    .repeat = 1,
1371                                  };
1372 
1373         trace_qemu_rdma_unregister_waiting_proc(chunk,
1374                                                 rdma->unregister_current);
1375 
1376         rdma->unregistrations[rdma->unregister_current] = 0;
1377         rdma->unregister_current++;
1378 
1379         if (rdma->unregister_current == RDMA_SIGNALED_SEND_MAX) {
1380             rdma->unregister_current = 0;
1381         }
1382 
1383 
1384         /*
1385          * Unregistration is speculative (because migration is single-threaded
1386          * and we cannot break the protocol's inifinband message ordering).
1387          * Thus, if the memory is currently being used for transmission,
1388          * then abort the attempt to unregister and try again
1389          * later the next time a completion is received for this memory.
1390          */
1391         clear_bit(chunk, block->unregister_bitmap);
1392 
1393         if (test_bit(chunk, block->transit_bitmap)) {
1394             trace_qemu_rdma_unregister_waiting_inflight(chunk);
1395             continue;
1396         }
1397 
1398         trace_qemu_rdma_unregister_waiting_send(chunk);
1399 
1400         ret = ibv_dereg_mr(block->pmr[chunk]);
1401         block->pmr[chunk] = NULL;
1402         block->remote_keys[chunk] = 0;
1403 
1404         if (ret != 0) {
1405             error_report("unregistration chunk failed: %s",
1406                          strerror(ret));
1407             return -1;
1408         }
1409         rdma->total_registrations--;
1410 
1411         reg.key.chunk = chunk;
1412         register_to_network(rdma, &reg);
1413         ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) &reg,
1414                                       &resp, NULL, NULL, &err);
1415         if (ret < 0) {
1416             error_report_err(err);
1417             return -1;
1418         }
1419 
1420         trace_qemu_rdma_unregister_waiting_complete(chunk);
1421     }
1422 
1423     return 0;
1424 }
1425 
1426 static uint64_t qemu_rdma_make_wrid(uint64_t wr_id, uint64_t index,
1427                                          uint64_t chunk)
1428 {
1429     uint64_t result = wr_id & RDMA_WRID_TYPE_MASK;
1430 
1431     result |= (index << RDMA_WRID_BLOCK_SHIFT);
1432     result |= (chunk << RDMA_WRID_CHUNK_SHIFT);
1433 
1434     return result;
1435 }
1436 
1437 /*
1438  * Consult the connection manager to see a work request
1439  * (of any kind) has completed.
1440  * Return the work request ID that completed.
1441  */
1442 static int qemu_rdma_poll(RDMAContext *rdma, struct ibv_cq *cq,
1443                           uint64_t *wr_id_out, uint32_t *byte_len)
1444 {
1445     int ret;
1446     struct ibv_wc wc;
1447     uint64_t wr_id;
1448 
1449     ret = ibv_poll_cq(cq, 1, &wc);
1450 
1451     if (!ret) {
1452         *wr_id_out = RDMA_WRID_NONE;
1453         return 0;
1454     }
1455 
1456     if (ret < 0) {
1457         return -1;
1458     }
1459 
1460     wr_id = wc.wr_id & RDMA_WRID_TYPE_MASK;
1461 
1462     if (wc.status != IBV_WC_SUCCESS) {
1463         return -1;
1464     }
1465 
1466     if (rdma->control_ready_expected &&
1467         (wr_id >= RDMA_WRID_RECV_CONTROL)) {
1468         trace_qemu_rdma_poll_recv(wr_id - RDMA_WRID_RECV_CONTROL, wr_id,
1469                                   rdma->nb_sent);
1470         rdma->control_ready_expected = 0;
1471     }
1472 
1473     if (wr_id == RDMA_WRID_RDMA_WRITE) {
1474         uint64_t chunk =
1475             (wc.wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT;
1476         uint64_t index =
1477             (wc.wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT;
1478         RDMALocalBlock *block = &(rdma->local_ram_blocks.block[index]);
1479 
1480         trace_qemu_rdma_poll_write(wr_id, rdma->nb_sent,
1481                                    index, chunk, block->local_host_addr,
1482                                    (void *)(uintptr_t)block->remote_host_addr);
1483 
1484         clear_bit(chunk, block->transit_bitmap);
1485 
1486         if (rdma->nb_sent > 0) {
1487             rdma->nb_sent--;
1488         }
1489     } else {
1490         trace_qemu_rdma_poll_other(wr_id, rdma->nb_sent);
1491     }
1492 
1493     *wr_id_out = wc.wr_id;
1494     if (byte_len) {
1495         *byte_len = wc.byte_len;
1496     }
1497 
1498     return  0;
1499 }
1500 
1501 /* Wait for activity on the completion channel.
1502  * Returns 0 on success, none-0 on error.
1503  */
1504 static int qemu_rdma_wait_comp_channel(RDMAContext *rdma,
1505                                        struct ibv_comp_channel *comp_channel)
1506 {
1507     struct rdma_cm_event *cm_event;
1508 
1509     /*
1510      * Coroutine doesn't start until migration_fd_process_incoming()
1511      * so don't yield unless we know we're running inside of a coroutine.
1512      */
1513     if (rdma->migration_started_on_destination &&
1514         migration_incoming_get_current()->state == MIGRATION_STATUS_ACTIVE) {
1515         yield_until_fd_readable(comp_channel->fd);
1516     } else {
1517         /* This is the source side, we're in a separate thread
1518          * or destination prior to migration_fd_process_incoming()
1519          * after postcopy, the destination also in a separate thread.
1520          * we can't yield; so we have to poll the fd.
1521          * But we need to be able to handle 'cancel' or an error
1522          * without hanging forever.
1523          */
1524         while (!rdma->errored && !rdma->received_error) {
1525             GPollFD pfds[2];
1526             pfds[0].fd = comp_channel->fd;
1527             pfds[0].events = G_IO_IN | G_IO_HUP | G_IO_ERR;
1528             pfds[0].revents = 0;
1529 
1530             pfds[1].fd = rdma->channel->fd;
1531             pfds[1].events = G_IO_IN | G_IO_HUP | G_IO_ERR;
1532             pfds[1].revents = 0;
1533 
1534             /* 0.1s timeout, should be fine for a 'cancel' */
1535             switch (qemu_poll_ns(pfds, 2, 100 * 1000 * 1000)) {
1536             case 2:
1537             case 1: /* fd active */
1538                 if (pfds[0].revents) {
1539                     return 0;
1540                 }
1541 
1542                 if (pfds[1].revents) {
1543                     if (rdma_get_cm_event(rdma->channel, &cm_event) < 0) {
1544                         return -1;
1545                     }
1546 
1547                     if (cm_event->event == RDMA_CM_EVENT_DISCONNECTED ||
1548                         cm_event->event == RDMA_CM_EVENT_DEVICE_REMOVAL) {
1549                         rdma_ack_cm_event(cm_event);
1550                         return -1;
1551                     }
1552                     rdma_ack_cm_event(cm_event);
1553                 }
1554                 break;
1555 
1556             case 0: /* Timeout, go around again */
1557                 break;
1558 
1559             default: /* Error of some type -
1560                       * I don't trust errno from qemu_poll_ns
1561                      */
1562                 return -1;
1563             }
1564 
1565             if (migrate_get_current()->state == MIGRATION_STATUS_CANCELLING) {
1566                 /* Bail out and let the cancellation happen */
1567                 return -1;
1568             }
1569         }
1570     }
1571 
1572     if (rdma->received_error) {
1573         return -1;
1574     }
1575     return -rdma->errored;
1576 }
1577 
1578 static struct ibv_comp_channel *to_channel(RDMAContext *rdma, uint64_t wrid)
1579 {
1580     return wrid < RDMA_WRID_RECV_CONTROL ? rdma->send_comp_channel :
1581            rdma->recv_comp_channel;
1582 }
1583 
1584 static struct ibv_cq *to_cq(RDMAContext *rdma, uint64_t wrid)
1585 {
1586     return wrid < RDMA_WRID_RECV_CONTROL ? rdma->send_cq : rdma->recv_cq;
1587 }
1588 
1589 /*
1590  * Block until the next work request has completed.
1591  *
1592  * First poll to see if a work request has already completed,
1593  * otherwise block.
1594  *
1595  * If we encounter completed work requests for IDs other than
1596  * the one we're interested in, then that's generally an error.
1597  *
1598  * The only exception is actual RDMA Write completions. These
1599  * completions only need to be recorded, but do not actually
1600  * need further processing.
1601  */
1602 static int qemu_rdma_block_for_wrid(RDMAContext *rdma,
1603                                     uint64_t wrid_requested,
1604                                     uint32_t *byte_len)
1605 {
1606     int num_cq_events = 0, ret;
1607     struct ibv_cq *cq;
1608     void *cq_ctx;
1609     uint64_t wr_id = RDMA_WRID_NONE, wr_id_in;
1610     struct ibv_comp_channel *ch = to_channel(rdma, wrid_requested);
1611     struct ibv_cq *poll_cq = to_cq(rdma, wrid_requested);
1612 
1613     if (ibv_req_notify_cq(poll_cq, 0)) {
1614         return -1;
1615     }
1616     /* poll cq first */
1617     while (wr_id != wrid_requested) {
1618         ret = qemu_rdma_poll(rdma, poll_cq, &wr_id_in, byte_len);
1619         if (ret < 0) {
1620             return -1;
1621         }
1622 
1623         wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
1624 
1625         if (wr_id == RDMA_WRID_NONE) {
1626             break;
1627         }
1628         if (wr_id != wrid_requested) {
1629             trace_qemu_rdma_block_for_wrid_miss(wrid_requested, wr_id);
1630         }
1631     }
1632 
1633     if (wr_id == wrid_requested) {
1634         return 0;
1635     }
1636 
1637     while (1) {
1638         ret = qemu_rdma_wait_comp_channel(rdma, ch);
1639         if (ret < 0) {
1640             goto err_block_for_wrid;
1641         }
1642 
1643         ret = ibv_get_cq_event(ch, &cq, &cq_ctx);
1644         if (ret < 0) {
1645             goto err_block_for_wrid;
1646         }
1647 
1648         num_cq_events++;
1649 
1650         if (ibv_req_notify_cq(cq, 0)) {
1651             goto err_block_for_wrid;
1652         }
1653 
1654         while (wr_id != wrid_requested) {
1655             ret = qemu_rdma_poll(rdma, poll_cq, &wr_id_in, byte_len);
1656             if (ret < 0) {
1657                 goto err_block_for_wrid;
1658             }
1659 
1660             wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
1661 
1662             if (wr_id == RDMA_WRID_NONE) {
1663                 break;
1664             }
1665             if (wr_id != wrid_requested) {
1666                 trace_qemu_rdma_block_for_wrid_miss(wrid_requested, wr_id);
1667             }
1668         }
1669 
1670         if (wr_id == wrid_requested) {
1671             goto success_block_for_wrid;
1672         }
1673     }
1674 
1675 success_block_for_wrid:
1676     if (num_cq_events) {
1677         ibv_ack_cq_events(cq, num_cq_events);
1678     }
1679     return 0;
1680 
1681 err_block_for_wrid:
1682     if (num_cq_events) {
1683         ibv_ack_cq_events(cq, num_cq_events);
1684     }
1685 
1686     rdma->errored = true;
1687     return -1;
1688 }
1689 
1690 /*
1691  * Post a SEND message work request for the control channel
1692  * containing some data and block until the post completes.
1693  */
1694 static int qemu_rdma_post_send_control(RDMAContext *rdma, uint8_t *buf,
1695                                        RDMAControlHeader *head,
1696                                        Error **errp)
1697 {
1698     int ret;
1699     RDMAWorkRequestData *wr = &rdma->wr_data[RDMA_WRID_CONTROL];
1700     struct ibv_send_wr *bad_wr;
1701     struct ibv_sge sge = {
1702                            .addr = (uintptr_t)(wr->control),
1703                            .length = head->len + sizeof(RDMAControlHeader),
1704                            .lkey = wr->control_mr->lkey,
1705                          };
1706     struct ibv_send_wr send_wr = {
1707                                    .wr_id = RDMA_WRID_SEND_CONTROL,
1708                                    .opcode = IBV_WR_SEND,
1709                                    .send_flags = IBV_SEND_SIGNALED,
1710                                    .sg_list = &sge,
1711                                    .num_sge = 1,
1712                                 };
1713 
1714     trace_qemu_rdma_post_send_control(control_desc(head->type));
1715 
1716     /*
1717      * We don't actually need to do a memcpy() in here if we used
1718      * the "sge" properly, but since we're only sending control messages
1719      * (not RAM in a performance-critical path), then its OK for now.
1720      *
1721      * The copy makes the RDMAControlHeader simpler to manipulate
1722      * for the time being.
1723      */
1724     assert(head->len <= RDMA_CONTROL_MAX_BUFFER - sizeof(*head));
1725     memcpy(wr->control, head, sizeof(RDMAControlHeader));
1726     control_to_network((void *) wr->control);
1727 
1728     if (buf) {
1729         memcpy(wr->control + sizeof(RDMAControlHeader), buf, head->len);
1730     }
1731 
1732 
1733     ret = ibv_post_send(rdma->qp, &send_wr, &bad_wr);
1734 
1735     if (ret > 0) {
1736         error_setg(errp, "Failed to use post IB SEND for control");
1737         return -1;
1738     }
1739 
1740     ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_SEND_CONTROL, NULL);
1741     if (ret < 0) {
1742         error_setg(errp, "rdma migration: send polling control error");
1743         return -1;
1744     }
1745 
1746     return 0;
1747 }
1748 
1749 /*
1750  * Post a RECV work request in anticipation of some future receipt
1751  * of data on the control channel.
1752  */
1753 static int qemu_rdma_post_recv_control(RDMAContext *rdma, int idx,
1754                                        Error **errp)
1755 {
1756     struct ibv_recv_wr *bad_wr;
1757     struct ibv_sge sge = {
1758                             .addr = (uintptr_t)(rdma->wr_data[idx].control),
1759                             .length = RDMA_CONTROL_MAX_BUFFER,
1760                             .lkey = rdma->wr_data[idx].control_mr->lkey,
1761                          };
1762 
1763     struct ibv_recv_wr recv_wr = {
1764                                     .wr_id = RDMA_WRID_RECV_CONTROL + idx,
1765                                     .sg_list = &sge,
1766                                     .num_sge = 1,
1767                                  };
1768 
1769 
1770     if (ibv_post_recv(rdma->qp, &recv_wr, &bad_wr)) {
1771         error_setg(errp, "error posting control recv");
1772         return -1;
1773     }
1774 
1775     return 0;
1776 }
1777 
1778 /*
1779  * Block and wait for a RECV control channel message to arrive.
1780  */
1781 static int qemu_rdma_exchange_get_response(RDMAContext *rdma,
1782                 RDMAControlHeader *head, uint32_t expecting, int idx,
1783                 Error **errp)
1784 {
1785     uint32_t byte_len;
1786     int ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RECV_CONTROL + idx,
1787                                        &byte_len);
1788 
1789     if (ret < 0) {
1790         error_setg(errp, "rdma migration: recv polling control error!");
1791         return -1;
1792     }
1793 
1794     network_to_control((void *) rdma->wr_data[idx].control);
1795     memcpy(head, rdma->wr_data[idx].control, sizeof(RDMAControlHeader));
1796 
1797     trace_qemu_rdma_exchange_get_response_start(control_desc(expecting));
1798 
1799     if (expecting == RDMA_CONTROL_NONE) {
1800         trace_qemu_rdma_exchange_get_response_none(control_desc(head->type),
1801                                              head->type);
1802     } else if (head->type != expecting || head->type == RDMA_CONTROL_ERROR) {
1803         error_setg(errp, "Was expecting a %s (%d) control message"
1804                 ", but got: %s (%d), length: %d",
1805                 control_desc(expecting), expecting,
1806                 control_desc(head->type), head->type, head->len);
1807         if (head->type == RDMA_CONTROL_ERROR) {
1808             rdma->received_error = true;
1809         }
1810         return -1;
1811     }
1812     if (head->len > RDMA_CONTROL_MAX_BUFFER - sizeof(*head)) {
1813         error_setg(errp, "too long length: %d", head->len);
1814         return -1;
1815     }
1816     if (sizeof(*head) + head->len != byte_len) {
1817         error_setg(errp, "Malformed length: %d byte_len %d",
1818                    head->len, byte_len);
1819         return -1;
1820     }
1821 
1822     return 0;
1823 }
1824 
1825 /*
1826  * When a RECV work request has completed, the work request's
1827  * buffer is pointed at the header.
1828  *
1829  * This will advance the pointer to the data portion
1830  * of the control message of the work request's buffer that
1831  * was populated after the work request finished.
1832  */
1833 static void qemu_rdma_move_header(RDMAContext *rdma, int idx,
1834                                   RDMAControlHeader *head)
1835 {
1836     rdma->wr_data[idx].control_len = head->len;
1837     rdma->wr_data[idx].control_curr =
1838         rdma->wr_data[idx].control + sizeof(RDMAControlHeader);
1839 }
1840 
1841 /*
1842  * This is an 'atomic' high-level operation to deliver a single, unified
1843  * control-channel message.
1844  *
1845  * Additionally, if the user is expecting some kind of reply to this message,
1846  * they can request a 'resp' response message be filled in by posting an
1847  * additional work request on behalf of the user and waiting for an additional
1848  * completion.
1849  *
1850  * The extra (optional) response is used during registration to us from having
1851  * to perform an *additional* exchange of message just to provide a response by
1852  * instead piggy-backing on the acknowledgement.
1853  */
1854 static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head,
1855                                    uint8_t *data, RDMAControlHeader *resp,
1856                                    int *resp_idx,
1857                                    int (*callback)(RDMAContext *rdma,
1858                                                    Error **errp),
1859                                    Error **errp)
1860 {
1861     int ret;
1862 
1863     /*
1864      * Wait until the dest is ready before attempting to deliver the message
1865      * by waiting for a READY message.
1866      */
1867     if (rdma->control_ready_expected) {
1868         RDMAControlHeader resp_ignored;
1869 
1870         ret = qemu_rdma_exchange_get_response(rdma, &resp_ignored,
1871                                               RDMA_CONTROL_READY,
1872                                               RDMA_WRID_READY, errp);
1873         if (ret < 0) {
1874             return -1;
1875         }
1876     }
1877 
1878     /*
1879      * If the user is expecting a response, post a WR in anticipation of it.
1880      */
1881     if (resp) {
1882         ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_DATA, errp);
1883         if (ret < 0) {
1884             return -1;
1885         }
1886     }
1887 
1888     /*
1889      * Post a WR to replace the one we just consumed for the READY message.
1890      */
1891     ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY, errp);
1892     if (ret < 0) {
1893         return -1;
1894     }
1895 
1896     /*
1897      * Deliver the control message that was requested.
1898      */
1899     ret = qemu_rdma_post_send_control(rdma, data, head, errp);
1900 
1901     if (ret < 0) {
1902         return -1;
1903     }
1904 
1905     /*
1906      * If we're expecting a response, block and wait for it.
1907      */
1908     if (resp) {
1909         if (callback) {
1910             trace_qemu_rdma_exchange_send_issue_callback();
1911             ret = callback(rdma, errp);
1912             if (ret < 0) {
1913                 return -1;
1914             }
1915         }
1916 
1917         trace_qemu_rdma_exchange_send_waiting(control_desc(resp->type));
1918         ret = qemu_rdma_exchange_get_response(rdma, resp,
1919                                               resp->type, RDMA_WRID_DATA,
1920                                               errp);
1921 
1922         if (ret < 0) {
1923             return -1;
1924         }
1925 
1926         qemu_rdma_move_header(rdma, RDMA_WRID_DATA, resp);
1927         if (resp_idx) {
1928             *resp_idx = RDMA_WRID_DATA;
1929         }
1930         trace_qemu_rdma_exchange_send_received(control_desc(resp->type));
1931     }
1932 
1933     rdma->control_ready_expected = 1;
1934 
1935     return 0;
1936 }
1937 
1938 /*
1939  * This is an 'atomic' high-level operation to receive a single, unified
1940  * control-channel message.
1941  */
1942 static int qemu_rdma_exchange_recv(RDMAContext *rdma, RDMAControlHeader *head,
1943                                    uint32_t expecting, Error **errp)
1944 {
1945     RDMAControlHeader ready = {
1946                                 .len = 0,
1947                                 .type = RDMA_CONTROL_READY,
1948                                 .repeat = 1,
1949                               };
1950     int ret;
1951 
1952     /*
1953      * Inform the source that we're ready to receive a message.
1954      */
1955     ret = qemu_rdma_post_send_control(rdma, NULL, &ready, errp);
1956 
1957     if (ret < 0) {
1958         return -1;
1959     }
1960 
1961     /*
1962      * Block and wait for the message.
1963      */
1964     ret = qemu_rdma_exchange_get_response(rdma, head,
1965                                           expecting, RDMA_WRID_READY, errp);
1966 
1967     if (ret < 0) {
1968         return -1;
1969     }
1970 
1971     qemu_rdma_move_header(rdma, RDMA_WRID_READY, head);
1972 
1973     /*
1974      * Post a new RECV work request to replace the one we just consumed.
1975      */
1976     ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY, errp);
1977     if (ret < 0) {
1978         return -1;
1979     }
1980 
1981     return 0;
1982 }
1983 
1984 /*
1985  * Write an actual chunk of memory using RDMA.
1986  *
1987  * If we're using dynamic registration on the dest-side, we have to
1988  * send a registration command first.
1989  */
1990 static int qemu_rdma_write_one(RDMAContext *rdma,
1991                                int current_index, uint64_t current_addr,
1992                                uint64_t length, Error **errp)
1993 {
1994     struct ibv_sge sge;
1995     struct ibv_send_wr send_wr = { 0 };
1996     struct ibv_send_wr *bad_wr;
1997     int reg_result_idx, ret, count = 0;
1998     uint64_t chunk, chunks;
1999     uint8_t *chunk_start, *chunk_end;
2000     RDMALocalBlock *block = &(rdma->local_ram_blocks.block[current_index]);
2001     RDMARegister reg;
2002     RDMARegisterResult *reg_result;
2003     RDMAControlHeader resp = { .type = RDMA_CONTROL_REGISTER_RESULT };
2004     RDMAControlHeader head = { .len = sizeof(RDMARegister),
2005                                .type = RDMA_CONTROL_REGISTER_REQUEST,
2006                                .repeat = 1,
2007                              };
2008 
2009 retry:
2010     sge.addr = (uintptr_t)(block->local_host_addr +
2011                             (current_addr - block->offset));
2012     sge.length = length;
2013 
2014     chunk = ram_chunk_index(block->local_host_addr,
2015                             (uint8_t *)(uintptr_t)sge.addr);
2016     chunk_start = ram_chunk_start(block, chunk);
2017 
2018     if (block->is_ram_block) {
2019         chunks = length / (1UL << RDMA_REG_CHUNK_SHIFT);
2020 
2021         if (chunks && ((length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) {
2022             chunks--;
2023         }
2024     } else {
2025         chunks = block->length / (1UL << RDMA_REG_CHUNK_SHIFT);
2026 
2027         if (chunks && ((block->length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) {
2028             chunks--;
2029         }
2030     }
2031 
2032     trace_qemu_rdma_write_one_top(chunks + 1,
2033                                   (chunks + 1) *
2034                                   (1UL << RDMA_REG_CHUNK_SHIFT) / 1024 / 1024);
2035 
2036     chunk_end = ram_chunk_end(block, chunk + chunks);
2037 
2038 
2039     while (test_bit(chunk, block->transit_bitmap)) {
2040         (void)count;
2041         trace_qemu_rdma_write_one_block(count++, current_index, chunk,
2042                 sge.addr, length, rdma->nb_sent, block->nb_chunks);
2043 
2044         ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
2045 
2046         if (ret < 0) {
2047             error_setg(errp, "Failed to Wait for previous write to complete "
2048                     "block %d chunk %" PRIu64
2049                     " current %" PRIu64 " len %" PRIu64 " %d",
2050                     current_index, chunk, sge.addr, length, rdma->nb_sent);
2051             return -1;
2052         }
2053     }
2054 
2055     if (!rdma->pin_all || !block->is_ram_block) {
2056         if (!block->remote_keys[chunk]) {
2057             /*
2058              * This chunk has not yet been registered, so first check to see
2059              * if the entire chunk is zero. If so, tell the other size to
2060              * memset() + madvise() the entire chunk without RDMA.
2061              */
2062 
2063             if (buffer_is_zero((void *)(uintptr_t)sge.addr, length)) {
2064                 RDMACompress comp = {
2065                                         .offset = current_addr,
2066                                         .value = 0,
2067                                         .block_idx = current_index,
2068                                         .length = length,
2069                                     };
2070 
2071                 head.len = sizeof(comp);
2072                 head.type = RDMA_CONTROL_COMPRESS;
2073 
2074                 trace_qemu_rdma_write_one_zero(chunk, sge.length,
2075                                                current_index, current_addr);
2076 
2077                 compress_to_network(rdma, &comp);
2078                 ret = qemu_rdma_exchange_send(rdma, &head,
2079                                 (uint8_t *) &comp, NULL, NULL, NULL, errp);
2080 
2081                 if (ret < 0) {
2082                     return -1;
2083                 }
2084 
2085                 /*
2086                  * TODO: Here we are sending something, but we are not
2087                  * accounting for anything transferred.  The following is wrong:
2088                  *
2089                  * stat64_add(&mig_stats.rdma_bytes, sge.length);
2090                  *
2091                  * because we are using some kind of compression.  I
2092                  * would think that head.len would be the more similar
2093                  * thing to a correct value.
2094                  */
2095                 stat64_add(&mig_stats.zero_pages,
2096                            sge.length / qemu_target_page_size());
2097                 return 1;
2098             }
2099 
2100             /*
2101              * Otherwise, tell other side to register.
2102              */
2103             reg.current_index = current_index;
2104             if (block->is_ram_block) {
2105                 reg.key.current_addr = current_addr;
2106             } else {
2107                 reg.key.chunk = chunk;
2108             }
2109             reg.chunks = chunks;
2110 
2111             trace_qemu_rdma_write_one_sendreg(chunk, sge.length, current_index,
2112                                               current_addr);
2113 
2114             register_to_network(rdma, &reg);
2115             ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) &reg,
2116                                     &resp, &reg_result_idx, NULL, errp);
2117             if (ret < 0) {
2118                 return -1;
2119             }
2120 
2121             /* try to overlap this single registration with the one we sent. */
2122             if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr,
2123                                                 &sge.lkey, NULL, chunk,
2124                                                 chunk_start, chunk_end)) {
2125                 error_setg(errp, "cannot get lkey");
2126                 return -1;
2127             }
2128 
2129             reg_result = (RDMARegisterResult *)
2130                     rdma->wr_data[reg_result_idx].control_curr;
2131 
2132             network_to_result(reg_result);
2133 
2134             trace_qemu_rdma_write_one_recvregres(block->remote_keys[chunk],
2135                                                  reg_result->rkey, chunk);
2136 
2137             block->remote_keys[chunk] = reg_result->rkey;
2138             block->remote_host_addr = reg_result->host_addr;
2139         } else {
2140             /* already registered before */
2141             if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr,
2142                                                 &sge.lkey, NULL, chunk,
2143                                                 chunk_start, chunk_end)) {
2144                 error_setg(errp, "cannot get lkey!");
2145                 return -1;
2146             }
2147         }
2148 
2149         send_wr.wr.rdma.rkey = block->remote_keys[chunk];
2150     } else {
2151         send_wr.wr.rdma.rkey = block->remote_rkey;
2152 
2153         if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr,
2154                                                      &sge.lkey, NULL, chunk,
2155                                                      chunk_start, chunk_end)) {
2156             error_setg(errp, "cannot get lkey!");
2157             return -1;
2158         }
2159     }
2160 
2161     /*
2162      * Encode the ram block index and chunk within this wrid.
2163      * We will use this information at the time of completion
2164      * to figure out which bitmap to check against and then which
2165      * chunk in the bitmap to look for.
2166      */
2167     send_wr.wr_id = qemu_rdma_make_wrid(RDMA_WRID_RDMA_WRITE,
2168                                         current_index, chunk);
2169 
2170     send_wr.opcode = IBV_WR_RDMA_WRITE;
2171     send_wr.send_flags = IBV_SEND_SIGNALED;
2172     send_wr.sg_list = &sge;
2173     send_wr.num_sge = 1;
2174     send_wr.wr.rdma.remote_addr = block->remote_host_addr +
2175                                 (current_addr - block->offset);
2176 
2177     trace_qemu_rdma_write_one_post(chunk, sge.addr, send_wr.wr.rdma.remote_addr,
2178                                    sge.length);
2179 
2180     /*
2181      * ibv_post_send() does not return negative error numbers,
2182      * per the specification they are positive - no idea why.
2183      */
2184     ret = ibv_post_send(rdma->qp, &send_wr, &bad_wr);
2185 
2186     if (ret == ENOMEM) {
2187         trace_qemu_rdma_write_one_queue_full();
2188         ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL);
2189         if (ret < 0) {
2190             error_setg(errp, "rdma migration: failed to make "
2191                          "room in full send queue!");
2192             return -1;
2193         }
2194 
2195         goto retry;
2196 
2197     } else if (ret > 0) {
2198         error_setg_errno(errp, ret,
2199                          "rdma migration: post rdma write failed");
2200         return -1;
2201     }
2202 
2203     set_bit(chunk, block->transit_bitmap);
2204     stat64_add(&mig_stats.normal_pages, sge.length / qemu_target_page_size());
2205     /*
2206      * We are adding to transferred the amount of data written, but no
2207      * overhead at all.  I will asume that RDMA is magicaly and don't
2208      * need to transfer (at least) the addresses where it wants to
2209      * write the pages.  Here it looks like it should be something
2210      * like:
2211      *     sizeof(send_wr) + sge.length
2212      * but this being RDMA, who knows.
2213      */
2214     stat64_add(&mig_stats.rdma_bytes, sge.length);
2215     ram_transferred_add(sge.length);
2216     rdma->total_writes++;
2217 
2218     return 0;
2219 }
2220 
2221 /*
2222  * Push out any unwritten RDMA operations.
2223  *
2224  * We support sending out multiple chunks at the same time.
2225  * Not all of them need to get signaled in the completion queue.
2226  */
2227 static int qemu_rdma_write_flush(RDMAContext *rdma, Error **errp)
2228 {
2229     int ret;
2230 
2231     if (!rdma->current_length) {
2232         return 0;
2233     }
2234 
2235     ret = qemu_rdma_write_one(rdma, rdma->current_index, rdma->current_addr,
2236                               rdma->current_length, errp);
2237 
2238     if (ret < 0) {
2239         return -1;
2240     }
2241 
2242     if (ret == 0) {
2243         rdma->nb_sent++;
2244         trace_qemu_rdma_write_flush(rdma->nb_sent);
2245     }
2246 
2247     rdma->current_length = 0;
2248     rdma->current_addr = 0;
2249 
2250     return 0;
2251 }
2252 
2253 static inline bool qemu_rdma_buffer_mergeable(RDMAContext *rdma,
2254                     uint64_t offset, uint64_t len)
2255 {
2256     RDMALocalBlock *block;
2257     uint8_t *host_addr;
2258     uint8_t *chunk_end;
2259 
2260     if (rdma->current_index < 0) {
2261         return false;
2262     }
2263 
2264     if (rdma->current_chunk < 0) {
2265         return false;
2266     }
2267 
2268     block = &(rdma->local_ram_blocks.block[rdma->current_index]);
2269     host_addr = block->local_host_addr + (offset - block->offset);
2270     chunk_end = ram_chunk_end(block, rdma->current_chunk);
2271 
2272     if (rdma->current_length == 0) {
2273         return false;
2274     }
2275 
2276     /*
2277      * Only merge into chunk sequentially.
2278      */
2279     if (offset != (rdma->current_addr + rdma->current_length)) {
2280         return false;
2281     }
2282 
2283     if (offset < block->offset) {
2284         return false;
2285     }
2286 
2287     if ((offset + len) > (block->offset + block->length)) {
2288         return false;
2289     }
2290 
2291     if ((host_addr + len) > chunk_end) {
2292         return false;
2293     }
2294 
2295     return true;
2296 }
2297 
2298 /*
2299  * We're not actually writing here, but doing three things:
2300  *
2301  * 1. Identify the chunk the buffer belongs to.
2302  * 2. If the chunk is full or the buffer doesn't belong to the current
2303  *    chunk, then start a new chunk and flush() the old chunk.
2304  * 3. To keep the hardware busy, we also group chunks into batches
2305  *    and only require that a batch gets acknowledged in the completion
2306  *    queue instead of each individual chunk.
2307  */
2308 static int qemu_rdma_write(RDMAContext *rdma,
2309                            uint64_t block_offset, uint64_t offset,
2310                            uint64_t len, Error **errp)
2311 {
2312     uint64_t current_addr = block_offset + offset;
2313     uint64_t index = rdma->current_index;
2314     uint64_t chunk = rdma->current_chunk;
2315 
2316     /* If we cannot merge it, we flush the current buffer first. */
2317     if (!qemu_rdma_buffer_mergeable(rdma, current_addr, len)) {
2318         if (qemu_rdma_write_flush(rdma, errp) < 0) {
2319             return -1;
2320         }
2321         rdma->current_length = 0;
2322         rdma->current_addr = current_addr;
2323 
2324         qemu_rdma_search_ram_block(rdma, block_offset,
2325                                    offset, len, &index, &chunk);
2326         rdma->current_index = index;
2327         rdma->current_chunk = chunk;
2328     }
2329 
2330     /* merge it */
2331     rdma->current_length += len;
2332 
2333     /* flush it if buffer is too large */
2334     if (rdma->current_length >= RDMA_MERGE_MAX) {
2335         return qemu_rdma_write_flush(rdma, errp);
2336     }
2337 
2338     return 0;
2339 }
2340 
2341 static void qemu_rdma_cleanup(RDMAContext *rdma)
2342 {
2343     Error *err = NULL;
2344 
2345     if (rdma->cm_id && rdma->connected) {
2346         if ((rdma->errored ||
2347              migrate_get_current()->state == MIGRATION_STATUS_CANCELLING) &&
2348             !rdma->received_error) {
2349             RDMAControlHeader head = { .len = 0,
2350                                        .type = RDMA_CONTROL_ERROR,
2351                                        .repeat = 1,
2352                                      };
2353             warn_report("Early error. Sending error.");
2354             if (qemu_rdma_post_send_control(rdma, NULL, &head, &err) < 0) {
2355                 warn_report_err(err);
2356             }
2357         }
2358 
2359         rdma_disconnect(rdma->cm_id);
2360         trace_qemu_rdma_cleanup_disconnect();
2361         rdma->connected = false;
2362     }
2363 
2364     if (rdma->channel) {
2365         qemu_set_fd_handler(rdma->channel->fd, NULL, NULL, NULL);
2366     }
2367     g_free(rdma->dest_blocks);
2368     rdma->dest_blocks = NULL;
2369 
2370     for (int i = 0; i < RDMA_WRID_MAX; i++) {
2371         if (rdma->wr_data[i].control_mr) {
2372             rdma->total_registrations--;
2373             ibv_dereg_mr(rdma->wr_data[i].control_mr);
2374         }
2375         rdma->wr_data[i].control_mr = NULL;
2376     }
2377 
2378     if (rdma->local_ram_blocks.block) {
2379         while (rdma->local_ram_blocks.nb_blocks) {
2380             rdma_delete_block(rdma, &rdma->local_ram_blocks.block[0]);
2381         }
2382     }
2383 
2384     if (rdma->qp) {
2385         rdma_destroy_qp(rdma->cm_id);
2386         rdma->qp = NULL;
2387     }
2388     if (rdma->recv_cq) {
2389         ibv_destroy_cq(rdma->recv_cq);
2390         rdma->recv_cq = NULL;
2391     }
2392     if (rdma->send_cq) {
2393         ibv_destroy_cq(rdma->send_cq);
2394         rdma->send_cq = NULL;
2395     }
2396     if (rdma->recv_comp_channel) {
2397         ibv_destroy_comp_channel(rdma->recv_comp_channel);
2398         rdma->recv_comp_channel = NULL;
2399     }
2400     if (rdma->send_comp_channel) {
2401         ibv_destroy_comp_channel(rdma->send_comp_channel);
2402         rdma->send_comp_channel = NULL;
2403     }
2404     if (rdma->pd) {
2405         ibv_dealloc_pd(rdma->pd);
2406         rdma->pd = NULL;
2407     }
2408     if (rdma->cm_id) {
2409         rdma_destroy_id(rdma->cm_id);
2410         rdma->cm_id = NULL;
2411     }
2412 
2413     /* the destination side, listen_id and channel is shared */
2414     if (rdma->listen_id) {
2415         if (!rdma->is_return_path) {
2416             rdma_destroy_id(rdma->listen_id);
2417         }
2418         rdma->listen_id = NULL;
2419 
2420         if (rdma->channel) {
2421             if (!rdma->is_return_path) {
2422                 rdma_destroy_event_channel(rdma->channel);
2423             }
2424             rdma->channel = NULL;
2425         }
2426     }
2427 
2428     if (rdma->channel) {
2429         rdma_destroy_event_channel(rdma->channel);
2430         rdma->channel = NULL;
2431     }
2432     g_free(rdma->host);
2433     rdma->host = NULL;
2434 }
2435 
2436 
2437 static int qemu_rdma_source_init(RDMAContext *rdma, bool pin_all, Error **errp)
2438 {
2439     int ret;
2440 
2441     /*
2442      * Will be validated against destination's actual capabilities
2443      * after the connect() completes.
2444      */
2445     rdma->pin_all = pin_all;
2446 
2447     ret = qemu_rdma_resolve_host(rdma, errp);
2448     if (ret < 0) {
2449         goto err_rdma_source_init;
2450     }
2451 
2452     ret = qemu_rdma_alloc_pd_cq(rdma, errp);
2453     if (ret < 0) {
2454         goto err_rdma_source_init;
2455     }
2456 
2457     ret = qemu_rdma_alloc_qp(rdma);
2458     if (ret < 0) {
2459         error_setg(errp, "RDMA ERROR: rdma migration: error allocating qp!");
2460         goto err_rdma_source_init;
2461     }
2462 
2463     qemu_rdma_init_ram_blocks(rdma);
2464 
2465     /* Build the hash that maps from offset to RAMBlock */
2466     rdma->blockmap = g_hash_table_new(g_direct_hash, g_direct_equal);
2467     for (int i = 0; i < rdma->local_ram_blocks.nb_blocks; i++) {
2468         g_hash_table_insert(rdma->blockmap,
2469                 (void *)(uintptr_t)rdma->local_ram_blocks.block[i].offset,
2470                 &rdma->local_ram_blocks.block[i]);
2471     }
2472 
2473     for (int i = 0; i < RDMA_WRID_MAX; i++) {
2474         ret = qemu_rdma_reg_control(rdma, i);
2475         if (ret < 0) {
2476             error_setg(errp, "RDMA ERROR: rdma migration: error "
2477                        "registering %d control!", i);
2478             goto err_rdma_source_init;
2479         }
2480     }
2481 
2482     return 0;
2483 
2484 err_rdma_source_init:
2485     qemu_rdma_cleanup(rdma);
2486     return -1;
2487 }
2488 
2489 static int qemu_get_cm_event_timeout(RDMAContext *rdma,
2490                                      struct rdma_cm_event **cm_event,
2491                                      long msec, Error **errp)
2492 {
2493     int ret;
2494     struct pollfd poll_fd = {
2495                                 .fd = rdma->channel->fd,
2496                                 .events = POLLIN,
2497                                 .revents = 0
2498                             };
2499 
2500     do {
2501         ret = poll(&poll_fd, 1, msec);
2502     } while (ret < 0 && errno == EINTR);
2503 
2504     if (ret == 0) {
2505         error_setg(errp, "RDMA ERROR: poll cm event timeout");
2506         return -1;
2507     } else if (ret < 0) {
2508         error_setg(errp, "RDMA ERROR: failed to poll cm event, errno=%i",
2509                    errno);
2510         return -1;
2511     } else if (poll_fd.revents & POLLIN) {
2512         if (rdma_get_cm_event(rdma->channel, cm_event) < 0) {
2513             error_setg(errp, "RDMA ERROR: failed to get cm event");
2514             return -1;
2515         }
2516         return 0;
2517     } else {
2518         error_setg(errp, "RDMA ERROR: no POLLIN event, revent=%x",
2519                    poll_fd.revents);
2520         return -1;
2521     }
2522 }
2523 
2524 static int qemu_rdma_connect(RDMAContext *rdma, bool return_path,
2525                              Error **errp)
2526 {
2527     RDMACapabilities cap = {
2528                                 .version = RDMA_CONTROL_VERSION_CURRENT,
2529                                 .flags = 0,
2530                            };
2531     struct rdma_conn_param conn_param = { .initiator_depth = 2,
2532                                           .retry_count = 5,
2533                                           .private_data = &cap,
2534                                           .private_data_len = sizeof(cap),
2535                                         };
2536     struct rdma_cm_event *cm_event;
2537     int ret;
2538 
2539     /*
2540      * Only negotiate the capability with destination if the user
2541      * on the source first requested the capability.
2542      */
2543     if (rdma->pin_all) {
2544         trace_qemu_rdma_connect_pin_all_requested();
2545         cap.flags |= RDMA_CAPABILITY_PIN_ALL;
2546     }
2547 
2548     caps_to_network(&cap);
2549 
2550     ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY, errp);
2551     if (ret < 0) {
2552         goto err_rdma_source_connect;
2553     }
2554 
2555     ret = rdma_connect(rdma->cm_id, &conn_param);
2556     if (ret < 0) {
2557         error_setg_errno(errp, errno,
2558                          "RDMA ERROR: connecting to destination!");
2559         goto err_rdma_source_connect;
2560     }
2561 
2562     if (return_path) {
2563         ret = qemu_get_cm_event_timeout(rdma, &cm_event, 5000, errp);
2564     } else {
2565         ret = rdma_get_cm_event(rdma->channel, &cm_event);
2566         if (ret < 0) {
2567             error_setg_errno(errp, errno,
2568                              "RDMA ERROR: failed to get cm event");
2569         }
2570     }
2571     if (ret < 0) {
2572         goto err_rdma_source_connect;
2573     }
2574 
2575     if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) {
2576         error_setg(errp, "RDMA ERROR: connecting to destination!");
2577         rdma_ack_cm_event(cm_event);
2578         goto err_rdma_source_connect;
2579     }
2580     rdma->connected = true;
2581 
2582     memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap));
2583     network_to_caps(&cap);
2584 
2585     /*
2586      * Verify that the *requested* capabilities are supported by the destination
2587      * and disable them otherwise.
2588      */
2589     if (rdma->pin_all && !(cap.flags & RDMA_CAPABILITY_PIN_ALL)) {
2590         warn_report("RDMA: Server cannot support pinning all memory. "
2591                     "Will register memory dynamically.");
2592         rdma->pin_all = false;
2593     }
2594 
2595     trace_qemu_rdma_connect_pin_all_outcome(rdma->pin_all);
2596 
2597     rdma_ack_cm_event(cm_event);
2598 
2599     rdma->control_ready_expected = 1;
2600     rdma->nb_sent = 0;
2601     return 0;
2602 
2603 err_rdma_source_connect:
2604     qemu_rdma_cleanup(rdma);
2605     return -1;
2606 }
2607 
2608 static int qemu_rdma_dest_init(RDMAContext *rdma, Error **errp)
2609 {
2610     Error *err = NULL;
2611     int ret;
2612     struct rdma_cm_id *listen_id;
2613     char ip[40] = "unknown";
2614     struct rdma_addrinfo *res, *e;
2615     char port_str[16];
2616     int reuse = 1;
2617 
2618     for (int i = 0; i < RDMA_WRID_MAX; i++) {
2619         rdma->wr_data[i].control_len = 0;
2620         rdma->wr_data[i].control_curr = NULL;
2621     }
2622 
2623     if (!rdma->host || !rdma->host[0]) {
2624         error_setg(errp, "RDMA ERROR: RDMA host is not set!");
2625         rdma->errored = true;
2626         return -1;
2627     }
2628     /* create CM channel */
2629     rdma->channel = rdma_create_event_channel();
2630     if (!rdma->channel) {
2631         error_setg(errp, "RDMA ERROR: could not create rdma event channel");
2632         rdma->errored = true;
2633         return -1;
2634     }
2635 
2636     /* create CM id */
2637     ret = rdma_create_id(rdma->channel, &listen_id, NULL, RDMA_PS_TCP);
2638     if (ret < 0) {
2639         error_setg(errp, "RDMA ERROR: could not create cm_id!");
2640         goto err_dest_init_create_listen_id;
2641     }
2642 
2643     snprintf(port_str, 16, "%d", rdma->port);
2644     port_str[15] = '\0';
2645 
2646     ret = rdma_getaddrinfo(rdma->host, port_str, NULL, &res);
2647     if (ret) {
2648         error_setg(errp, "RDMA ERROR: could not rdma_getaddrinfo address %s",
2649                    rdma->host);
2650         goto err_dest_init_bind_addr;
2651     }
2652 
2653     ret = rdma_set_option(listen_id, RDMA_OPTION_ID, RDMA_OPTION_ID_REUSEADDR,
2654                           &reuse, sizeof reuse);
2655     if (ret < 0) {
2656         error_setg(errp, "RDMA ERROR: Error: could not set REUSEADDR option");
2657         goto err_dest_init_bind_addr;
2658     }
2659 
2660     /* Try all addresses, saving the first error in @err */
2661     for (e = res; e != NULL; e = e->ai_next) {
2662         Error **local_errp = err ? NULL : &err;
2663 
2664         inet_ntop(e->ai_family,
2665             &((struct sockaddr_in *) e->ai_dst_addr)->sin_addr, ip, sizeof ip);
2666         trace_qemu_rdma_dest_init_trying(rdma->host, ip);
2667         ret = rdma_bind_addr(listen_id, e->ai_dst_addr);
2668         if (ret < 0) {
2669             continue;
2670         }
2671         if (e->ai_family == AF_INET6) {
2672             ret = qemu_rdma_broken_ipv6_kernel(listen_id->verbs,
2673                                                local_errp);
2674             if (ret < 0) {
2675                 continue;
2676             }
2677         }
2678         error_free(err);
2679         break;
2680     }
2681 
2682     rdma_freeaddrinfo(res);
2683     if (!e) {
2684         if (err) {
2685             error_propagate(errp, err);
2686         } else {
2687             error_setg(errp, "RDMA ERROR: Error: could not rdma_bind_addr!");
2688         }
2689         goto err_dest_init_bind_addr;
2690     }
2691 
2692     rdma->listen_id = listen_id;
2693     qemu_rdma_dump_gid("dest_init", listen_id);
2694     return 0;
2695 
2696 err_dest_init_bind_addr:
2697     rdma_destroy_id(listen_id);
2698 err_dest_init_create_listen_id:
2699     rdma_destroy_event_channel(rdma->channel);
2700     rdma->channel = NULL;
2701     rdma->errored = true;
2702     return -1;
2703 
2704 }
2705 
2706 static void qemu_rdma_return_path_dest_init(RDMAContext *rdma_return_path,
2707                                             RDMAContext *rdma)
2708 {
2709     for (int i = 0; i < RDMA_WRID_MAX; i++) {
2710         rdma_return_path->wr_data[i].control_len = 0;
2711         rdma_return_path->wr_data[i].control_curr = NULL;
2712     }
2713 
2714     /*the CM channel and CM id is shared*/
2715     rdma_return_path->channel = rdma->channel;
2716     rdma_return_path->listen_id = rdma->listen_id;
2717 
2718     rdma->return_path = rdma_return_path;
2719     rdma_return_path->return_path = rdma;
2720     rdma_return_path->is_return_path = true;
2721 }
2722 
2723 static RDMAContext *qemu_rdma_data_init(InetSocketAddress *saddr, Error **errp)
2724 {
2725     RDMAContext *rdma = NULL;
2726 
2727     rdma = g_new0(RDMAContext, 1);
2728     rdma->current_index = -1;
2729     rdma->current_chunk = -1;
2730 
2731     rdma->host = g_strdup(saddr->host);
2732     rdma->port = atoi(saddr->port);
2733     return rdma;
2734 }
2735 
2736 /*
2737  * QEMUFile interface to the control channel.
2738  * SEND messages for control only.
2739  * VM's ram is handled with regular RDMA messages.
2740  */
2741 static ssize_t qio_channel_rdma_writev(QIOChannel *ioc,
2742                                        const struct iovec *iov,
2743                                        size_t niov,
2744                                        int *fds,
2745                                        size_t nfds,
2746                                        int flags,
2747                                        Error **errp)
2748 {
2749     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
2750     RDMAContext *rdma;
2751     int ret;
2752     ssize_t done = 0;
2753     size_t len;
2754 
2755     RCU_READ_LOCK_GUARD();
2756     rdma = qatomic_rcu_read(&rioc->rdmaout);
2757 
2758     if (!rdma) {
2759         error_setg(errp, "RDMA control channel output is not set");
2760         return -1;
2761     }
2762 
2763     if (rdma->errored) {
2764         error_setg(errp,
2765                    "RDMA is in an error state waiting migration to abort!");
2766         return -1;
2767     }
2768 
2769     /*
2770      * Push out any writes that
2771      * we're queued up for VM's ram.
2772      */
2773     ret = qemu_rdma_write_flush(rdma, errp);
2774     if (ret < 0) {
2775         rdma->errored = true;
2776         return -1;
2777     }
2778 
2779     for (int i = 0; i < niov; i++) {
2780         size_t remaining = iov[i].iov_len;
2781         uint8_t * data = (void *)iov[i].iov_base;
2782         while (remaining) {
2783             RDMAControlHeader head = {};
2784 
2785             len = MIN(remaining, RDMA_SEND_INCREMENT);
2786             remaining -= len;
2787 
2788             head.len = len;
2789             head.type = RDMA_CONTROL_QEMU_FILE;
2790 
2791             ret = qemu_rdma_exchange_send(rdma, &head,
2792                                           data, NULL, NULL, NULL, errp);
2793 
2794             if (ret < 0) {
2795                 rdma->errored = true;
2796                 return -1;
2797             }
2798 
2799             data += len;
2800             done += len;
2801         }
2802     }
2803 
2804     return done;
2805 }
2806 
2807 static size_t qemu_rdma_fill(RDMAContext *rdma, uint8_t *buf,
2808                              size_t size, int idx)
2809 {
2810     size_t len = 0;
2811 
2812     if (rdma->wr_data[idx].control_len) {
2813         trace_qemu_rdma_fill(rdma->wr_data[idx].control_len, size);
2814 
2815         len = MIN(size, rdma->wr_data[idx].control_len);
2816         memcpy(buf, rdma->wr_data[idx].control_curr, len);
2817         rdma->wr_data[idx].control_curr += len;
2818         rdma->wr_data[idx].control_len -= len;
2819     }
2820 
2821     return len;
2822 }
2823 
2824 /*
2825  * QEMUFile interface to the control channel.
2826  * RDMA links don't use bytestreams, so we have to
2827  * return bytes to QEMUFile opportunistically.
2828  */
2829 static ssize_t qio_channel_rdma_readv(QIOChannel *ioc,
2830                                       const struct iovec *iov,
2831                                       size_t niov,
2832                                       int **fds,
2833                                       size_t *nfds,
2834                                       int flags,
2835                                       Error **errp)
2836 {
2837     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
2838     RDMAContext *rdma;
2839     RDMAControlHeader head;
2840     int ret;
2841     ssize_t done = 0;
2842     size_t len;
2843 
2844     RCU_READ_LOCK_GUARD();
2845     rdma = qatomic_rcu_read(&rioc->rdmain);
2846 
2847     if (!rdma) {
2848         error_setg(errp, "RDMA control channel input is not set");
2849         return -1;
2850     }
2851 
2852     if (rdma->errored) {
2853         error_setg(errp,
2854                    "RDMA is in an error state waiting migration to abort!");
2855         return -1;
2856     }
2857 
2858     for (int i = 0; i < niov; i++) {
2859         size_t want = iov[i].iov_len;
2860         uint8_t *data = (void *)iov[i].iov_base;
2861 
2862         /*
2863          * First, we hold on to the last SEND message we
2864          * were given and dish out the bytes until we run
2865          * out of bytes.
2866          */
2867         len = qemu_rdma_fill(rdma, data, want, 0);
2868         done += len;
2869         want -= len;
2870         /* Got what we needed, so go to next iovec */
2871         if (want == 0) {
2872             continue;
2873         }
2874 
2875         /* If we got any data so far, then don't wait
2876          * for more, just return what we have */
2877         if (done > 0) {
2878             break;
2879         }
2880 
2881 
2882         /* We've got nothing at all, so lets wait for
2883          * more to arrive
2884          */
2885         ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_QEMU_FILE,
2886                                       errp);
2887 
2888         if (ret < 0) {
2889             rdma->errored = true;
2890             return -1;
2891         }
2892 
2893         /*
2894          * SEND was received with new bytes, now try again.
2895          */
2896         len = qemu_rdma_fill(rdma, data, want, 0);
2897         done += len;
2898         want -= len;
2899 
2900         /* Still didn't get enough, so lets just return */
2901         if (want) {
2902             if (done == 0) {
2903                 return QIO_CHANNEL_ERR_BLOCK;
2904             } else {
2905                 break;
2906             }
2907         }
2908     }
2909     return done;
2910 }
2911 
2912 /*
2913  * Block until all the outstanding chunks have been delivered by the hardware.
2914  */
2915 static int qemu_rdma_drain_cq(RDMAContext *rdma)
2916 {
2917     Error *err = NULL;
2918 
2919     if (qemu_rdma_write_flush(rdma, &err) < 0) {
2920         error_report_err(err);
2921         return -1;
2922     }
2923 
2924     while (rdma->nb_sent) {
2925         if (qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL) < 0) {
2926             error_report("rdma migration: complete polling error!");
2927             return -1;
2928         }
2929     }
2930 
2931     qemu_rdma_unregister_waiting(rdma);
2932 
2933     return 0;
2934 }
2935 
2936 
2937 static int qio_channel_rdma_set_blocking(QIOChannel *ioc,
2938                                          bool blocking,
2939                                          Error **errp)
2940 {
2941     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
2942     /* XXX we should make readv/writev actually honour this :-) */
2943     rioc->blocking = blocking;
2944     return 0;
2945 }
2946 
2947 
2948 typedef struct QIOChannelRDMASource QIOChannelRDMASource;
2949 struct QIOChannelRDMASource {
2950     GSource parent;
2951     QIOChannelRDMA *rioc;
2952     GIOCondition condition;
2953 };
2954 
2955 static gboolean
2956 qio_channel_rdma_source_prepare(GSource *source,
2957                                 gint *timeout)
2958 {
2959     QIOChannelRDMASource *rsource = (QIOChannelRDMASource *)source;
2960     RDMAContext *rdma;
2961     GIOCondition cond = 0;
2962     *timeout = -1;
2963 
2964     RCU_READ_LOCK_GUARD();
2965     if (rsource->condition == G_IO_IN) {
2966         rdma = qatomic_rcu_read(&rsource->rioc->rdmain);
2967     } else {
2968         rdma = qatomic_rcu_read(&rsource->rioc->rdmaout);
2969     }
2970 
2971     if (!rdma) {
2972         error_report("RDMAContext is NULL when prepare Gsource");
2973         return FALSE;
2974     }
2975 
2976     if (rdma->wr_data[0].control_len) {
2977         cond |= G_IO_IN;
2978     }
2979     cond |= G_IO_OUT;
2980 
2981     return cond & rsource->condition;
2982 }
2983 
2984 static gboolean
2985 qio_channel_rdma_source_check(GSource *source)
2986 {
2987     QIOChannelRDMASource *rsource = (QIOChannelRDMASource *)source;
2988     RDMAContext *rdma;
2989     GIOCondition cond = 0;
2990 
2991     RCU_READ_LOCK_GUARD();
2992     if (rsource->condition == G_IO_IN) {
2993         rdma = qatomic_rcu_read(&rsource->rioc->rdmain);
2994     } else {
2995         rdma = qatomic_rcu_read(&rsource->rioc->rdmaout);
2996     }
2997 
2998     if (!rdma) {
2999         error_report("RDMAContext is NULL when check Gsource");
3000         return FALSE;
3001     }
3002 
3003     if (rdma->wr_data[0].control_len) {
3004         cond |= G_IO_IN;
3005     }
3006     cond |= G_IO_OUT;
3007 
3008     return cond & rsource->condition;
3009 }
3010 
3011 static gboolean
3012 qio_channel_rdma_source_dispatch(GSource *source,
3013                                  GSourceFunc callback,
3014                                  gpointer user_data)
3015 {
3016     QIOChannelFunc func = (QIOChannelFunc)callback;
3017     QIOChannelRDMASource *rsource = (QIOChannelRDMASource *)source;
3018     RDMAContext *rdma;
3019     GIOCondition cond = 0;
3020 
3021     RCU_READ_LOCK_GUARD();
3022     if (rsource->condition == G_IO_IN) {
3023         rdma = qatomic_rcu_read(&rsource->rioc->rdmain);
3024     } else {
3025         rdma = qatomic_rcu_read(&rsource->rioc->rdmaout);
3026     }
3027 
3028     if (!rdma) {
3029         error_report("RDMAContext is NULL when dispatch Gsource");
3030         return FALSE;
3031     }
3032 
3033     if (rdma->wr_data[0].control_len) {
3034         cond |= G_IO_IN;
3035     }
3036     cond |= G_IO_OUT;
3037 
3038     return (*func)(QIO_CHANNEL(rsource->rioc),
3039                    (cond & rsource->condition),
3040                    user_data);
3041 }
3042 
3043 static void
3044 qio_channel_rdma_source_finalize(GSource *source)
3045 {
3046     QIOChannelRDMASource *ssource = (QIOChannelRDMASource *)source;
3047 
3048     object_unref(OBJECT(ssource->rioc));
3049 }
3050 
3051 static GSourceFuncs qio_channel_rdma_source_funcs = {
3052     qio_channel_rdma_source_prepare,
3053     qio_channel_rdma_source_check,
3054     qio_channel_rdma_source_dispatch,
3055     qio_channel_rdma_source_finalize
3056 };
3057 
3058 static GSource *qio_channel_rdma_create_watch(QIOChannel *ioc,
3059                                               GIOCondition condition)
3060 {
3061     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
3062     QIOChannelRDMASource *ssource;
3063     GSource *source;
3064 
3065     source = g_source_new(&qio_channel_rdma_source_funcs,
3066                           sizeof(QIOChannelRDMASource));
3067     ssource = (QIOChannelRDMASource *)source;
3068 
3069     ssource->rioc = rioc;
3070     object_ref(OBJECT(rioc));
3071 
3072     ssource->condition = condition;
3073 
3074     return source;
3075 }
3076 
3077 static void qio_channel_rdma_set_aio_fd_handler(QIOChannel *ioc,
3078                                                 AioContext *read_ctx,
3079                                                 IOHandler *io_read,
3080                                                 AioContext *write_ctx,
3081                                                 IOHandler *io_write,
3082                                                 void *opaque)
3083 {
3084     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
3085     if (io_read) {
3086         aio_set_fd_handler(read_ctx, rioc->rdmain->recv_comp_channel->fd,
3087                            io_read, io_write, NULL, NULL, opaque);
3088         aio_set_fd_handler(read_ctx, rioc->rdmain->send_comp_channel->fd,
3089                            io_read, io_write, NULL, NULL, opaque);
3090     } else {
3091         aio_set_fd_handler(write_ctx, rioc->rdmaout->recv_comp_channel->fd,
3092                            io_read, io_write, NULL, NULL, opaque);
3093         aio_set_fd_handler(write_ctx, rioc->rdmaout->send_comp_channel->fd,
3094                            io_read, io_write, NULL, NULL, opaque);
3095     }
3096 }
3097 
3098 struct rdma_close_rcu {
3099     struct rcu_head rcu;
3100     RDMAContext *rdmain;
3101     RDMAContext *rdmaout;
3102 };
3103 
3104 /* callback from qio_channel_rdma_close via call_rcu */
3105 static void qio_channel_rdma_close_rcu(struct rdma_close_rcu *rcu)
3106 {
3107     if (rcu->rdmain) {
3108         qemu_rdma_cleanup(rcu->rdmain);
3109     }
3110 
3111     if (rcu->rdmaout) {
3112         qemu_rdma_cleanup(rcu->rdmaout);
3113     }
3114 
3115     g_free(rcu->rdmain);
3116     g_free(rcu->rdmaout);
3117     g_free(rcu);
3118 }
3119 
3120 static int qio_channel_rdma_close(QIOChannel *ioc,
3121                                   Error **errp)
3122 {
3123     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
3124     RDMAContext *rdmain, *rdmaout;
3125     struct rdma_close_rcu *rcu = g_new(struct rdma_close_rcu, 1);
3126 
3127     trace_qemu_rdma_close();
3128 
3129     rdmain = rioc->rdmain;
3130     if (rdmain) {
3131         qatomic_rcu_set(&rioc->rdmain, NULL);
3132     }
3133 
3134     rdmaout = rioc->rdmaout;
3135     if (rdmaout) {
3136         qatomic_rcu_set(&rioc->rdmaout, NULL);
3137     }
3138 
3139     rcu->rdmain = rdmain;
3140     rcu->rdmaout = rdmaout;
3141     call_rcu(rcu, qio_channel_rdma_close_rcu, rcu);
3142 
3143     return 0;
3144 }
3145 
3146 static int
3147 qio_channel_rdma_shutdown(QIOChannel *ioc,
3148                             QIOChannelShutdown how,
3149                             Error **errp)
3150 {
3151     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(ioc);
3152     RDMAContext *rdmain, *rdmaout;
3153 
3154     RCU_READ_LOCK_GUARD();
3155 
3156     rdmain = qatomic_rcu_read(&rioc->rdmain);
3157     rdmaout = qatomic_rcu_read(&rioc->rdmain);
3158 
3159     switch (how) {
3160     case QIO_CHANNEL_SHUTDOWN_READ:
3161         if (rdmain) {
3162             rdmain->errored = true;
3163         }
3164         break;
3165     case QIO_CHANNEL_SHUTDOWN_WRITE:
3166         if (rdmaout) {
3167             rdmaout->errored = true;
3168         }
3169         break;
3170     case QIO_CHANNEL_SHUTDOWN_BOTH:
3171     default:
3172         if (rdmain) {
3173             rdmain->errored = true;
3174         }
3175         if (rdmaout) {
3176             rdmaout->errored = true;
3177         }
3178         break;
3179     }
3180 
3181     return 0;
3182 }
3183 
3184 /*
3185  * Parameters:
3186  *    @offset == 0 :
3187  *        This means that 'block_offset' is a full virtual address that does not
3188  *        belong to a RAMBlock of the virtual machine and instead
3189  *        represents a private malloc'd memory area that the caller wishes to
3190  *        transfer.
3191  *
3192  *    @offset != 0 :
3193  *        Offset is an offset to be added to block_offset and used
3194  *        to also lookup the corresponding RAMBlock.
3195  *
3196  *    @size : Number of bytes to transfer
3197  *
3198  *    @pages_sent : User-specificed pointer to indicate how many pages were
3199  *                  sent. Usually, this will not be more than a few bytes of
3200  *                  the protocol because most transfers are sent asynchronously.
3201  */
3202 static int qemu_rdma_save_page(QEMUFile *f, ram_addr_t block_offset,
3203                                ram_addr_t offset, size_t size)
3204 {
3205     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(qemu_file_get_ioc(f));
3206     Error *err = NULL;
3207     RDMAContext *rdma;
3208     int ret;
3209 
3210     RCU_READ_LOCK_GUARD();
3211     rdma = qatomic_rcu_read(&rioc->rdmaout);
3212 
3213     if (!rdma) {
3214         return -1;
3215     }
3216 
3217     if (rdma_errored(rdma)) {
3218         return -1;
3219     }
3220 
3221     qemu_fflush(f);
3222 
3223     /*
3224      * Add this page to the current 'chunk'. If the chunk
3225      * is full, or the page doesn't belong to the current chunk,
3226      * an actual RDMA write will occur and a new chunk will be formed.
3227      */
3228     ret = qemu_rdma_write(rdma, block_offset, offset, size, &err);
3229     if (ret < 0) {
3230         error_report_err(err);
3231         goto err;
3232     }
3233 
3234     /*
3235      * Drain the Completion Queue if possible, but do not block,
3236      * just poll.
3237      *
3238      * If nothing to poll, the end of the iteration will do this
3239      * again to make sure we don't overflow the request queue.
3240      */
3241     while (1) {
3242         uint64_t wr_id, wr_id_in;
3243         ret = qemu_rdma_poll(rdma, rdma->recv_cq, &wr_id_in, NULL);
3244 
3245         if (ret < 0) {
3246             error_report("rdma migration: polling error");
3247             goto err;
3248         }
3249 
3250         wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
3251 
3252         if (wr_id == RDMA_WRID_NONE) {
3253             break;
3254         }
3255     }
3256 
3257     while (1) {
3258         uint64_t wr_id, wr_id_in;
3259         ret = qemu_rdma_poll(rdma, rdma->send_cq, &wr_id_in, NULL);
3260 
3261         if (ret < 0) {
3262             error_report("rdma migration: polling error");
3263             goto err;
3264         }
3265 
3266         wr_id = wr_id_in & RDMA_WRID_TYPE_MASK;
3267 
3268         if (wr_id == RDMA_WRID_NONE) {
3269             break;
3270         }
3271     }
3272 
3273     return RAM_SAVE_CONTROL_DELAYED;
3274 
3275 err:
3276     rdma->errored = true;
3277     return -1;
3278 }
3279 
3280 int rdma_control_save_page(QEMUFile *f, ram_addr_t block_offset,
3281                            ram_addr_t offset, size_t size)
3282 {
3283     if (!migrate_rdma() || migration_in_postcopy()) {
3284         return RAM_SAVE_CONTROL_NOT_SUPP;
3285     }
3286 
3287     int ret = qemu_rdma_save_page(f, block_offset, offset, size);
3288 
3289     if (ret != RAM_SAVE_CONTROL_DELAYED &&
3290         ret != RAM_SAVE_CONTROL_NOT_SUPP) {
3291         if (ret < 0) {
3292             qemu_file_set_error(f, ret);
3293         }
3294     }
3295     return ret;
3296 }
3297 
3298 static void rdma_accept_incoming_migration(void *opaque);
3299 
3300 static void rdma_cm_poll_handler(void *opaque)
3301 {
3302     RDMAContext *rdma = opaque;
3303     struct rdma_cm_event *cm_event;
3304     MigrationIncomingState *mis = migration_incoming_get_current();
3305 
3306     if (rdma_get_cm_event(rdma->channel, &cm_event) < 0) {
3307         error_report("get_cm_event failed %d", errno);
3308         return;
3309     }
3310 
3311     if (cm_event->event == RDMA_CM_EVENT_DISCONNECTED ||
3312         cm_event->event == RDMA_CM_EVENT_DEVICE_REMOVAL) {
3313         if (!rdma->errored &&
3314             migration_incoming_get_current()->state !=
3315               MIGRATION_STATUS_COMPLETED) {
3316             error_report("receive cm event, cm event is %d", cm_event->event);
3317             rdma->errored = true;
3318             if (rdma->return_path) {
3319                 rdma->return_path->errored = true;
3320             }
3321         }
3322         rdma_ack_cm_event(cm_event);
3323         if (mis->loadvm_co) {
3324             qemu_coroutine_enter(mis->loadvm_co);
3325         }
3326         return;
3327     }
3328     rdma_ack_cm_event(cm_event);
3329 }
3330 
3331 static int qemu_rdma_accept(RDMAContext *rdma)
3332 {
3333     Error *err = NULL;
3334     RDMACapabilities cap;
3335     struct rdma_conn_param conn_param = {
3336                                             .responder_resources = 2,
3337                                             .private_data = &cap,
3338                                             .private_data_len = sizeof(cap),
3339                                          };
3340     RDMAContext *rdma_return_path = NULL;
3341     g_autoptr(InetSocketAddress) isock = g_new0(InetSocketAddress, 1);
3342     struct rdma_cm_event *cm_event;
3343     struct ibv_context *verbs;
3344     int ret;
3345 
3346     ret = rdma_get_cm_event(rdma->channel, &cm_event);
3347     if (ret < 0) {
3348         goto err_rdma_dest_wait;
3349     }
3350 
3351     if (cm_event->event != RDMA_CM_EVENT_CONNECT_REQUEST) {
3352         rdma_ack_cm_event(cm_event);
3353         goto err_rdma_dest_wait;
3354     }
3355 
3356     isock->host = rdma->host;
3357     isock->port = g_strdup_printf("%d", rdma->port);
3358 
3359     /*
3360      * initialize the RDMAContext for return path for postcopy after first
3361      * connection request reached.
3362      */
3363     if ((migrate_postcopy() || migrate_return_path())
3364         && !rdma->is_return_path) {
3365         rdma_return_path = qemu_rdma_data_init(isock, NULL);
3366         if (rdma_return_path == NULL) {
3367             rdma_ack_cm_event(cm_event);
3368             goto err_rdma_dest_wait;
3369         }
3370 
3371         qemu_rdma_return_path_dest_init(rdma_return_path, rdma);
3372     }
3373 
3374     memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap));
3375 
3376     network_to_caps(&cap);
3377 
3378     if (cap.version < 1 || cap.version > RDMA_CONTROL_VERSION_CURRENT) {
3379         error_report("Unknown source RDMA version: %d, bailing...",
3380                      cap.version);
3381         rdma_ack_cm_event(cm_event);
3382         goto err_rdma_dest_wait;
3383     }
3384 
3385     /*
3386      * Respond with only the capabilities this version of QEMU knows about.
3387      */
3388     cap.flags &= known_capabilities;
3389 
3390     /*
3391      * Enable the ones that we do know about.
3392      * Add other checks here as new ones are introduced.
3393      */
3394     if (cap.flags & RDMA_CAPABILITY_PIN_ALL) {
3395         rdma->pin_all = true;
3396     }
3397 
3398     rdma->cm_id = cm_event->id;
3399     verbs = cm_event->id->verbs;
3400 
3401     rdma_ack_cm_event(cm_event);
3402 
3403     trace_qemu_rdma_accept_pin_state(rdma->pin_all);
3404 
3405     caps_to_network(&cap);
3406 
3407     trace_qemu_rdma_accept_pin_verbsc(verbs);
3408 
3409     if (!rdma->verbs) {
3410         rdma->verbs = verbs;
3411     } else if (rdma->verbs != verbs) {
3412         error_report("ibv context not matching %p, %p!", rdma->verbs,
3413                      verbs);
3414         goto err_rdma_dest_wait;
3415     }
3416 
3417     qemu_rdma_dump_id("dest_init", verbs);
3418 
3419     ret = qemu_rdma_alloc_pd_cq(rdma, &err);
3420     if (ret < 0) {
3421         error_report_err(err);
3422         goto err_rdma_dest_wait;
3423     }
3424 
3425     ret = qemu_rdma_alloc_qp(rdma);
3426     if (ret < 0) {
3427         error_report("rdma migration: error allocating qp!");
3428         goto err_rdma_dest_wait;
3429     }
3430 
3431     qemu_rdma_init_ram_blocks(rdma);
3432 
3433     for (int i = 0; i < RDMA_WRID_MAX; i++) {
3434         ret = qemu_rdma_reg_control(rdma, i);
3435         if (ret < 0) {
3436             error_report("rdma: error registering %d control", i);
3437             goto err_rdma_dest_wait;
3438         }
3439     }
3440 
3441     /* Accept the second connection request for return path */
3442     if ((migrate_postcopy() || migrate_return_path())
3443         && !rdma->is_return_path) {
3444         qemu_set_fd_handler(rdma->channel->fd, rdma_accept_incoming_migration,
3445                             NULL,
3446                             (void *)(intptr_t)rdma->return_path);
3447     } else {
3448         qemu_set_fd_handler(rdma->channel->fd, rdma_cm_poll_handler,
3449                             NULL, rdma);
3450     }
3451 
3452     ret = rdma_accept(rdma->cm_id, &conn_param);
3453     if (ret < 0) {
3454         error_report("rdma_accept failed");
3455         goto err_rdma_dest_wait;
3456     }
3457 
3458     ret = rdma_get_cm_event(rdma->channel, &cm_event);
3459     if (ret < 0) {
3460         error_report("rdma_accept get_cm_event failed");
3461         goto err_rdma_dest_wait;
3462     }
3463 
3464     if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) {
3465         error_report("rdma_accept not event established");
3466         rdma_ack_cm_event(cm_event);
3467         goto err_rdma_dest_wait;
3468     }
3469 
3470     rdma_ack_cm_event(cm_event);
3471     rdma->connected = true;
3472 
3473     ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY, &err);
3474     if (ret < 0) {
3475         error_report_err(err);
3476         goto err_rdma_dest_wait;
3477     }
3478 
3479     qemu_rdma_dump_gid("dest_connect", rdma->cm_id);
3480 
3481     return 0;
3482 
3483 err_rdma_dest_wait:
3484     rdma->errored = true;
3485     qemu_rdma_cleanup(rdma);
3486     g_free(rdma_return_path);
3487     return -1;
3488 }
3489 
3490 static int dest_ram_sort_func(const void *a, const void *b)
3491 {
3492     unsigned int a_index = ((const RDMALocalBlock *)a)->src_index;
3493     unsigned int b_index = ((const RDMALocalBlock *)b)->src_index;
3494 
3495     return (a_index < b_index) ? -1 : (a_index != b_index);
3496 }
3497 
3498 /*
3499  * During each iteration of the migration, we listen for instructions
3500  * by the source VM to perform dynamic page registrations before they
3501  * can perform RDMA operations.
3502  *
3503  * We respond with the 'rkey'.
3504  *
3505  * Keep doing this until the source tells us to stop.
3506  */
3507 int rdma_registration_handle(QEMUFile *f)
3508 {
3509     RDMAControlHeader reg_resp = { .len = sizeof(RDMARegisterResult),
3510                                .type = RDMA_CONTROL_REGISTER_RESULT,
3511                                .repeat = 0,
3512                              };
3513     RDMAControlHeader unreg_resp = { .len = 0,
3514                                .type = RDMA_CONTROL_UNREGISTER_FINISHED,
3515                                .repeat = 0,
3516                              };
3517     RDMAControlHeader blocks = { .type = RDMA_CONTROL_RAM_BLOCKS_RESULT,
3518                                  .repeat = 1 };
3519     QIOChannelRDMA *rioc;
3520     Error *err = NULL;
3521     RDMAContext *rdma;
3522     RDMALocalBlocks *local;
3523     RDMAControlHeader head;
3524     RDMARegister *reg, *registers;
3525     RDMACompress *comp;
3526     RDMARegisterResult *reg_result;
3527     static RDMARegisterResult results[RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE];
3528     RDMALocalBlock *block;
3529     void *host_addr;
3530     int ret;
3531     int idx = 0;
3532 
3533     if (!migrate_rdma()) {
3534         return 0;
3535     }
3536 
3537     RCU_READ_LOCK_GUARD();
3538     rioc = QIO_CHANNEL_RDMA(qemu_file_get_ioc(f));
3539     rdma = qatomic_rcu_read(&rioc->rdmain);
3540 
3541     if (!rdma) {
3542         return -1;
3543     }
3544 
3545     if (rdma_errored(rdma)) {
3546         return -1;
3547     }
3548 
3549     local = &rdma->local_ram_blocks;
3550     do {
3551         trace_rdma_registration_handle_wait();
3552 
3553         ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_NONE, &err);
3554 
3555         if (ret < 0) {
3556             error_report_err(err);
3557             break;
3558         }
3559 
3560         if (head.repeat > RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE) {
3561             error_report("rdma: Too many requests in this message (%d)."
3562                             "Bailing.", head.repeat);
3563             break;
3564         }
3565 
3566         switch (head.type) {
3567         case RDMA_CONTROL_COMPRESS:
3568             comp = (RDMACompress *) rdma->wr_data[idx].control_curr;
3569             network_to_compress(comp);
3570 
3571             trace_rdma_registration_handle_compress(comp->length,
3572                                                     comp->block_idx,
3573                                                     comp->offset);
3574             if (comp->block_idx >= rdma->local_ram_blocks.nb_blocks) {
3575                 error_report("rdma: 'compress' bad block index %u (vs %d)",
3576                              (unsigned int)comp->block_idx,
3577                              rdma->local_ram_blocks.nb_blocks);
3578                 goto err;
3579             }
3580             block = &(rdma->local_ram_blocks.block[comp->block_idx]);
3581 
3582             host_addr = block->local_host_addr +
3583                             (comp->offset - block->offset);
3584             if (comp->value) {
3585                 error_report("rdma: Zero page with non-zero (%d) value",
3586                              comp->value);
3587                 goto err;
3588             }
3589             ram_handle_zero(host_addr, comp->length);
3590             break;
3591 
3592         case RDMA_CONTROL_REGISTER_FINISHED:
3593             trace_rdma_registration_handle_finished();
3594             return 0;
3595 
3596         case RDMA_CONTROL_RAM_BLOCKS_REQUEST:
3597             trace_rdma_registration_handle_ram_blocks();
3598 
3599             /* Sort our local RAM Block list so it's the same as the source,
3600              * we can do this since we've filled in a src_index in the list
3601              * as we received the RAMBlock list earlier.
3602              */
3603             qsort(rdma->local_ram_blocks.block,
3604                   rdma->local_ram_blocks.nb_blocks,
3605                   sizeof(RDMALocalBlock), dest_ram_sort_func);
3606             for (int i = 0; i < local->nb_blocks; i++) {
3607                 local->block[i].index = i;
3608             }
3609 
3610             if (rdma->pin_all) {
3611                 ret = qemu_rdma_reg_whole_ram_blocks(rdma, &err);
3612                 if (ret < 0) {
3613                     error_report_err(err);
3614                     goto err;
3615                 }
3616             }
3617 
3618             /*
3619              * Dest uses this to prepare to transmit the RAMBlock descriptions
3620              * to the source VM after connection setup.
3621              * Both sides use the "remote" structure to communicate and update
3622              * their "local" descriptions with what was sent.
3623              */
3624             for (int i = 0; i < local->nb_blocks; i++) {
3625                 rdma->dest_blocks[i].remote_host_addr =
3626                     (uintptr_t)(local->block[i].local_host_addr);
3627 
3628                 if (rdma->pin_all) {
3629                     rdma->dest_blocks[i].remote_rkey = local->block[i].mr->rkey;
3630                 }
3631 
3632                 rdma->dest_blocks[i].offset = local->block[i].offset;
3633                 rdma->dest_blocks[i].length = local->block[i].length;
3634 
3635                 dest_block_to_network(&rdma->dest_blocks[i]);
3636                 trace_rdma_registration_handle_ram_blocks_loop(
3637                     local->block[i].block_name,
3638                     local->block[i].offset,
3639                     local->block[i].length,
3640                     local->block[i].local_host_addr,
3641                     local->block[i].src_index);
3642             }
3643 
3644             blocks.len = rdma->local_ram_blocks.nb_blocks
3645                                                 * sizeof(RDMADestBlock);
3646 
3647 
3648             ret = qemu_rdma_post_send_control(rdma,
3649                                     (uint8_t *) rdma->dest_blocks, &blocks,
3650                                     &err);
3651 
3652             if (ret < 0) {
3653                 error_report_err(err);
3654                 goto err;
3655             }
3656 
3657             break;
3658         case RDMA_CONTROL_REGISTER_REQUEST:
3659             trace_rdma_registration_handle_register(head.repeat);
3660 
3661             reg_resp.repeat = head.repeat;
3662             registers = (RDMARegister *) rdma->wr_data[idx].control_curr;
3663 
3664             for (int count = 0; count < head.repeat; count++) {
3665                 uint64_t chunk;
3666                 uint8_t *chunk_start, *chunk_end;
3667 
3668                 reg = &registers[count];
3669                 network_to_register(reg);
3670 
3671                 reg_result = &results[count];
3672 
3673                 trace_rdma_registration_handle_register_loop(count,
3674                          reg->current_index, reg->key.current_addr, reg->chunks);
3675 
3676                 if (reg->current_index >= rdma->local_ram_blocks.nb_blocks) {
3677                     error_report("rdma: 'register' bad block index %u (vs %d)",
3678                                  (unsigned int)reg->current_index,
3679                                  rdma->local_ram_blocks.nb_blocks);
3680                     goto err;
3681                 }
3682                 block = &(rdma->local_ram_blocks.block[reg->current_index]);
3683                 if (block->is_ram_block) {
3684                     if (block->offset > reg->key.current_addr) {
3685                         error_report("rdma: bad register address for block %s"
3686                             " offset: %" PRIx64 " current_addr: %" PRIx64,
3687                             block->block_name, block->offset,
3688                             reg->key.current_addr);
3689                         goto err;
3690                     }
3691                     host_addr = (block->local_host_addr +
3692                                 (reg->key.current_addr - block->offset));
3693                     chunk = ram_chunk_index(block->local_host_addr,
3694                                             (uint8_t *) host_addr);
3695                 } else {
3696                     chunk = reg->key.chunk;
3697                     host_addr = block->local_host_addr +
3698                         (reg->key.chunk * (1UL << RDMA_REG_CHUNK_SHIFT));
3699                     /* Check for particularly bad chunk value */
3700                     if (host_addr < (void *)block->local_host_addr) {
3701                         error_report("rdma: bad chunk for block %s"
3702                             " chunk: %" PRIx64,
3703                             block->block_name, reg->key.chunk);
3704                         goto err;
3705                     }
3706                 }
3707                 chunk_start = ram_chunk_start(block, chunk);
3708                 chunk_end = ram_chunk_end(block, chunk + reg->chunks);
3709                 /* avoid "-Waddress-of-packed-member" warning */
3710                 uint32_t tmp_rkey = 0;
3711                 if (qemu_rdma_register_and_get_keys(rdma, block,
3712                             (uintptr_t)host_addr, NULL, &tmp_rkey,
3713                             chunk, chunk_start, chunk_end)) {
3714                     error_report("cannot get rkey");
3715                     goto err;
3716                 }
3717                 reg_result->rkey = tmp_rkey;
3718 
3719                 reg_result->host_addr = (uintptr_t)block->local_host_addr;
3720 
3721                 trace_rdma_registration_handle_register_rkey(reg_result->rkey);
3722 
3723                 result_to_network(reg_result);
3724             }
3725 
3726             ret = qemu_rdma_post_send_control(rdma,
3727                             (uint8_t *) results, &reg_resp, &err);
3728 
3729             if (ret < 0) {
3730                 error_report_err(err);
3731                 goto err;
3732             }
3733             break;
3734         case RDMA_CONTROL_UNREGISTER_REQUEST:
3735             trace_rdma_registration_handle_unregister(head.repeat);
3736             unreg_resp.repeat = head.repeat;
3737             registers = (RDMARegister *) rdma->wr_data[idx].control_curr;
3738 
3739             for (int count = 0; count < head.repeat; count++) {
3740                 reg = &registers[count];
3741                 network_to_register(reg);
3742 
3743                 trace_rdma_registration_handle_unregister_loop(count,
3744                            reg->current_index, reg->key.chunk);
3745 
3746                 block = &(rdma->local_ram_blocks.block[reg->current_index]);
3747 
3748                 ret = ibv_dereg_mr(block->pmr[reg->key.chunk]);
3749                 block->pmr[reg->key.chunk] = NULL;
3750 
3751                 if (ret != 0) {
3752                     error_report("rdma unregistration chunk failed: %s",
3753                                  strerror(errno));
3754                     goto err;
3755                 }
3756 
3757                 rdma->total_registrations--;
3758 
3759                 trace_rdma_registration_handle_unregister_success(reg->key.chunk);
3760             }
3761 
3762             ret = qemu_rdma_post_send_control(rdma, NULL, &unreg_resp, &err);
3763 
3764             if (ret < 0) {
3765                 error_report_err(err);
3766                 goto err;
3767             }
3768             break;
3769         case RDMA_CONTROL_REGISTER_RESULT:
3770             error_report("Invalid RESULT message at dest.");
3771             goto err;
3772         default:
3773             error_report("Unknown control message %s", control_desc(head.type));
3774             goto err;
3775         }
3776     } while (1);
3777 
3778 err:
3779     rdma->errored = true;
3780     return -1;
3781 }
3782 
3783 /* Destination:
3784  * Called during the initial RAM load section which lists the
3785  * RAMBlocks by name.  This lets us know the order of the RAMBlocks on
3786  * the source.  We've already built our local RAMBlock list, but not
3787  * yet sent the list to the source.
3788  */
3789 int rdma_block_notification_handle(QEMUFile *f, const char *name)
3790 {
3791     int curr;
3792     int found = -1;
3793 
3794     if (!migrate_rdma()) {
3795         return 0;
3796     }
3797 
3798     RCU_READ_LOCK_GUARD();
3799     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(qemu_file_get_ioc(f));
3800     RDMAContext *rdma = qatomic_rcu_read(&rioc->rdmain);
3801 
3802     if (!rdma) {
3803         return -1;
3804     }
3805 
3806     /* Find the matching RAMBlock in our local list */
3807     for (curr = 0; curr < rdma->local_ram_blocks.nb_blocks; curr++) {
3808         if (!strcmp(rdma->local_ram_blocks.block[curr].block_name, name)) {
3809             found = curr;
3810             break;
3811         }
3812     }
3813 
3814     if (found == -1) {
3815         error_report("RAMBlock '%s' not found on destination", name);
3816         return -1;
3817     }
3818 
3819     rdma->local_ram_blocks.block[curr].src_index = rdma->next_src_index;
3820     trace_rdma_block_notification_handle(name, rdma->next_src_index);
3821     rdma->next_src_index++;
3822 
3823     return 0;
3824 }
3825 
3826 int rdma_registration_start(QEMUFile *f, uint64_t flags)
3827 {
3828     if (!migrate_rdma() || migration_in_postcopy()) {
3829         return 0;
3830     }
3831 
3832     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(qemu_file_get_ioc(f));
3833     RCU_READ_LOCK_GUARD();
3834     RDMAContext *rdma = qatomic_rcu_read(&rioc->rdmaout);
3835     if (!rdma) {
3836         return -1;
3837     }
3838 
3839     if (rdma_errored(rdma)) {
3840         return -1;
3841     }
3842 
3843     trace_rdma_registration_start(flags);
3844     qemu_put_be64(f, RAM_SAVE_FLAG_HOOK);
3845     return qemu_fflush(f);
3846 }
3847 
3848 /*
3849  * Inform dest that dynamic registrations are done for now.
3850  * First, flush writes, if any.
3851  */
3852 int rdma_registration_stop(QEMUFile *f, uint64_t flags)
3853 {
3854     QIOChannelRDMA *rioc;
3855     Error *err = NULL;
3856     RDMAContext *rdma;
3857     RDMAControlHeader head = { .len = 0, .repeat = 1 };
3858     int ret;
3859 
3860     if (!migrate_rdma() || migration_in_postcopy()) {
3861         return 0;
3862     }
3863 
3864     RCU_READ_LOCK_GUARD();
3865     rioc = QIO_CHANNEL_RDMA(qemu_file_get_ioc(f));
3866     rdma = qatomic_rcu_read(&rioc->rdmaout);
3867     if (!rdma) {
3868         return -1;
3869     }
3870 
3871     if (rdma_errored(rdma)) {
3872         return -1;
3873     }
3874 
3875     qemu_fflush(f);
3876     ret = qemu_rdma_drain_cq(rdma);
3877 
3878     if (ret < 0) {
3879         goto err;
3880     }
3881 
3882     if (flags == RAM_CONTROL_SETUP) {
3883         RDMAControlHeader resp = {.type = RDMA_CONTROL_RAM_BLOCKS_RESULT };
3884         RDMALocalBlocks *local = &rdma->local_ram_blocks;
3885         int reg_result_idx, nb_dest_blocks;
3886 
3887         head.type = RDMA_CONTROL_RAM_BLOCKS_REQUEST;
3888         trace_rdma_registration_stop_ram();
3889 
3890         /*
3891          * Make sure that we parallelize the pinning on both sides.
3892          * For very large guests, doing this serially takes a really
3893          * long time, so we have to 'interleave' the pinning locally
3894          * with the control messages by performing the pinning on this
3895          * side before we receive the control response from the other
3896          * side that the pinning has completed.
3897          */
3898         ret = qemu_rdma_exchange_send(rdma, &head, NULL, &resp,
3899                     &reg_result_idx, rdma->pin_all ?
3900                     qemu_rdma_reg_whole_ram_blocks : NULL,
3901                     &err);
3902         if (ret < 0) {
3903             error_report_err(err);
3904             return -1;
3905         }
3906 
3907         nb_dest_blocks = resp.len / sizeof(RDMADestBlock);
3908 
3909         /*
3910          * The protocol uses two different sets of rkeys (mutually exclusive):
3911          * 1. One key to represent the virtual address of the entire ram block.
3912          *    (dynamic chunk registration disabled - pin everything with one rkey.)
3913          * 2. One to represent individual chunks within a ram block.
3914          *    (dynamic chunk registration enabled - pin individual chunks.)
3915          *
3916          * Once the capability is successfully negotiated, the destination transmits
3917          * the keys to use (or sends them later) including the virtual addresses
3918          * and then propagates the remote ram block descriptions to his local copy.
3919          */
3920 
3921         if (local->nb_blocks != nb_dest_blocks) {
3922             error_report("ram blocks mismatch (Number of blocks %d vs %d)",
3923                          local->nb_blocks, nb_dest_blocks);
3924             error_printf("Your QEMU command line parameters are probably "
3925                          "not identical on both the source and destination.");
3926             rdma->errored = true;
3927             return -1;
3928         }
3929 
3930         qemu_rdma_move_header(rdma, reg_result_idx, &resp);
3931         memcpy(rdma->dest_blocks,
3932             rdma->wr_data[reg_result_idx].control_curr, resp.len);
3933         for (int i = 0; i < nb_dest_blocks; i++) {
3934             network_to_dest_block(&rdma->dest_blocks[i]);
3935 
3936             /* We require that the blocks are in the same order */
3937             if (rdma->dest_blocks[i].length != local->block[i].length) {
3938                 error_report("Block %s/%d has a different length %" PRIu64
3939                              "vs %" PRIu64,
3940                              local->block[i].block_name, i,
3941                              local->block[i].length,
3942                              rdma->dest_blocks[i].length);
3943                 rdma->errored = true;
3944                 return -1;
3945             }
3946             local->block[i].remote_host_addr =
3947                     rdma->dest_blocks[i].remote_host_addr;
3948             local->block[i].remote_rkey = rdma->dest_blocks[i].remote_rkey;
3949         }
3950     }
3951 
3952     trace_rdma_registration_stop(flags);
3953 
3954     head.type = RDMA_CONTROL_REGISTER_FINISHED;
3955     ret = qemu_rdma_exchange_send(rdma, &head, NULL, NULL, NULL, NULL, &err);
3956 
3957     if (ret < 0) {
3958         error_report_err(err);
3959         goto err;
3960     }
3961 
3962     return 0;
3963 err:
3964     rdma->errored = true;
3965     return -1;
3966 }
3967 
3968 static void qio_channel_rdma_finalize(Object *obj)
3969 {
3970     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(obj);
3971     if (rioc->rdmain) {
3972         qemu_rdma_cleanup(rioc->rdmain);
3973         g_free(rioc->rdmain);
3974         rioc->rdmain = NULL;
3975     }
3976     if (rioc->rdmaout) {
3977         qemu_rdma_cleanup(rioc->rdmaout);
3978         g_free(rioc->rdmaout);
3979         rioc->rdmaout = NULL;
3980     }
3981 }
3982 
3983 static void qio_channel_rdma_class_init(ObjectClass *klass,
3984                                         void *class_data G_GNUC_UNUSED)
3985 {
3986     QIOChannelClass *ioc_klass = QIO_CHANNEL_CLASS(klass);
3987 
3988     ioc_klass->io_writev = qio_channel_rdma_writev;
3989     ioc_klass->io_readv = qio_channel_rdma_readv;
3990     ioc_klass->io_set_blocking = qio_channel_rdma_set_blocking;
3991     ioc_klass->io_close = qio_channel_rdma_close;
3992     ioc_klass->io_create_watch = qio_channel_rdma_create_watch;
3993     ioc_klass->io_set_aio_fd_handler = qio_channel_rdma_set_aio_fd_handler;
3994     ioc_klass->io_shutdown = qio_channel_rdma_shutdown;
3995 }
3996 
3997 static const TypeInfo qio_channel_rdma_info = {
3998     .parent = TYPE_QIO_CHANNEL,
3999     .name = TYPE_QIO_CHANNEL_RDMA,
4000     .instance_size = sizeof(QIOChannelRDMA),
4001     .instance_finalize = qio_channel_rdma_finalize,
4002     .class_init = qio_channel_rdma_class_init,
4003 };
4004 
4005 static void qio_channel_rdma_register_types(void)
4006 {
4007     type_register_static(&qio_channel_rdma_info);
4008 }
4009 
4010 type_init(qio_channel_rdma_register_types);
4011 
4012 static QEMUFile *rdma_new_input(RDMAContext *rdma)
4013 {
4014     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(object_new(TYPE_QIO_CHANNEL_RDMA));
4015 
4016     rioc->file = qemu_file_new_input(QIO_CHANNEL(rioc));
4017     rioc->rdmain = rdma;
4018     rioc->rdmaout = rdma->return_path;
4019 
4020     return rioc->file;
4021 }
4022 
4023 static QEMUFile *rdma_new_output(RDMAContext *rdma)
4024 {
4025     QIOChannelRDMA *rioc = QIO_CHANNEL_RDMA(object_new(TYPE_QIO_CHANNEL_RDMA));
4026 
4027     rioc->file = qemu_file_new_output(QIO_CHANNEL(rioc));
4028     rioc->rdmaout = rdma;
4029     rioc->rdmain = rdma->return_path;
4030 
4031     return rioc->file;
4032 }
4033 
4034 static void rdma_accept_incoming_migration(void *opaque)
4035 {
4036     RDMAContext *rdma = opaque;
4037     QEMUFile *f;
4038     Error *local_err = NULL;
4039 
4040     trace_qemu_rdma_accept_incoming_migration();
4041     if (qemu_rdma_accept(rdma) < 0) {
4042         error_report("RDMA ERROR: Migration initialization failed");
4043         return;
4044     }
4045 
4046     trace_qemu_rdma_accept_incoming_migration_accepted();
4047 
4048     if (rdma->is_return_path) {
4049         return;
4050     }
4051 
4052     f = rdma_new_input(rdma);
4053     if (f == NULL) {
4054         error_report("RDMA ERROR: could not open RDMA for input");
4055         qemu_rdma_cleanup(rdma);
4056         return;
4057     }
4058 
4059     rdma->migration_started_on_destination = 1;
4060     migration_fd_process_incoming(f, &local_err);
4061     if (local_err) {
4062         error_reportf_err(local_err, "RDMA ERROR:");
4063     }
4064 }
4065 
4066 void rdma_start_incoming_migration(InetSocketAddress *host_port,
4067                                    Error **errp)
4068 {
4069     MigrationState *s = migrate_get_current();
4070     int ret;
4071     RDMAContext *rdma;
4072 
4073     trace_rdma_start_incoming_migration();
4074 
4075     /* Avoid ram_block_discard_disable(), cannot change during migration. */
4076     if (ram_block_discard_is_required()) {
4077         error_setg(errp, "RDMA: cannot disable RAM discard");
4078         return;
4079     }
4080 
4081     rdma = qemu_rdma_data_init(host_port, errp);
4082     if (rdma == NULL) {
4083         goto err;
4084     }
4085 
4086     ret = qemu_rdma_dest_init(rdma, errp);
4087     if (ret < 0) {
4088         goto err;
4089     }
4090 
4091     trace_rdma_start_incoming_migration_after_dest_init();
4092 
4093     ret = rdma_listen(rdma->listen_id, 5);
4094 
4095     if (ret < 0) {
4096         error_setg(errp, "RDMA ERROR: listening on socket!");
4097         goto cleanup_rdma;
4098     }
4099 
4100     trace_rdma_start_incoming_migration_after_rdma_listen();
4101     s->rdma_migration = true;
4102     qemu_set_fd_handler(rdma->channel->fd, rdma_accept_incoming_migration,
4103                         NULL, (void *)(intptr_t)rdma);
4104     return;
4105 
4106 cleanup_rdma:
4107     qemu_rdma_cleanup(rdma);
4108 err:
4109     if (rdma) {
4110         g_free(rdma->host);
4111     }
4112     g_free(rdma);
4113 }
4114 
4115 void rdma_start_outgoing_migration(void *opaque,
4116                             InetSocketAddress *host_port, Error **errp)
4117 {
4118     MigrationState *s = opaque;
4119     RDMAContext *rdma_return_path = NULL;
4120     RDMAContext *rdma;
4121     int ret;
4122 
4123     /* Avoid ram_block_discard_disable(), cannot change during migration. */
4124     if (ram_block_discard_is_required()) {
4125         error_setg(errp, "RDMA: cannot disable RAM discard");
4126         return;
4127     }
4128 
4129     rdma = qemu_rdma_data_init(host_port, errp);
4130     if (rdma == NULL) {
4131         goto err;
4132     }
4133 
4134     ret = qemu_rdma_source_init(rdma, migrate_rdma_pin_all(), errp);
4135 
4136     if (ret < 0) {
4137         goto err;
4138     }
4139 
4140     trace_rdma_start_outgoing_migration_after_rdma_source_init();
4141     ret = qemu_rdma_connect(rdma, false, errp);
4142 
4143     if (ret < 0) {
4144         goto err;
4145     }
4146 
4147     /* RDMA postcopy need a separate queue pair for return path */
4148     if (migrate_postcopy() || migrate_return_path()) {
4149         rdma_return_path = qemu_rdma_data_init(host_port, errp);
4150 
4151         if (rdma_return_path == NULL) {
4152             goto return_path_err;
4153         }
4154 
4155         ret = qemu_rdma_source_init(rdma_return_path,
4156                                     migrate_rdma_pin_all(), errp);
4157 
4158         if (ret < 0) {
4159             goto return_path_err;
4160         }
4161 
4162         ret = qemu_rdma_connect(rdma_return_path, true, errp);
4163 
4164         if (ret < 0) {
4165             goto return_path_err;
4166         }
4167 
4168         rdma->return_path = rdma_return_path;
4169         rdma_return_path->return_path = rdma;
4170         rdma_return_path->is_return_path = true;
4171     }
4172 
4173     trace_rdma_start_outgoing_migration_after_rdma_connect();
4174 
4175     s->to_dst_file = rdma_new_output(rdma);
4176     s->rdma_migration = true;
4177     migrate_fd_connect(s, NULL);
4178     return;
4179 return_path_err:
4180     qemu_rdma_cleanup(rdma);
4181 err:
4182     g_free(rdma);
4183     g_free(rdma_return_path);
4184 }
4185