1 /* 2 * RDMA protocol and interfaces 3 * 4 * Copyright IBM, Corp. 2010-2013 5 * 6 * Authors: 7 * Michael R. Hines <mrhines@us.ibm.com> 8 * Jiuxing Liu <jl@us.ibm.com> 9 * 10 * This work is licensed under the terms of the GNU GPL, version 2 or 11 * later. See the COPYING file in the top-level directory. 12 * 13 */ 14 #include "qemu-common.h" 15 #include "migration/migration.h" 16 #include "migration/qemu-file.h" 17 #include "exec/cpu-common.h" 18 #include "qemu/main-loop.h" 19 #include "qemu/sockets.h" 20 #include "qemu/bitmap.h" 21 #include "block/coroutine.h" 22 #include <stdio.h> 23 #include <sys/types.h> 24 #include <sys/socket.h> 25 #include <netdb.h> 26 #include <arpa/inet.h> 27 #include <string.h> 28 #include <rdma/rdma_cma.h> 29 #include "trace.h" 30 31 /* 32 * Print and error on both the Monitor and the Log file. 33 */ 34 #define ERROR(errp, fmt, ...) \ 35 do { \ 36 fprintf(stderr, "RDMA ERROR: " fmt "\n", ## __VA_ARGS__); \ 37 if (errp && (*(errp) == NULL)) { \ 38 error_setg(errp, "RDMA ERROR: " fmt, ## __VA_ARGS__); \ 39 } \ 40 } while (0) 41 42 #define RDMA_RESOLVE_TIMEOUT_MS 10000 43 44 /* Do not merge data if larger than this. */ 45 #define RDMA_MERGE_MAX (2 * 1024 * 1024) 46 #define RDMA_SIGNALED_SEND_MAX (RDMA_MERGE_MAX / 4096) 47 48 #define RDMA_REG_CHUNK_SHIFT 20 /* 1 MB */ 49 50 /* 51 * This is only for non-live state being migrated. 52 * Instead of RDMA_WRITE messages, we use RDMA_SEND 53 * messages for that state, which requires a different 54 * delivery design than main memory. 55 */ 56 #define RDMA_SEND_INCREMENT 32768 57 58 /* 59 * Maximum size infiniband SEND message 60 */ 61 #define RDMA_CONTROL_MAX_BUFFER (512 * 1024) 62 #define RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE 4096 63 64 #define RDMA_CONTROL_VERSION_CURRENT 1 65 /* 66 * Capabilities for negotiation. 67 */ 68 #define RDMA_CAPABILITY_PIN_ALL 0x01 69 70 /* 71 * Add the other flags above to this list of known capabilities 72 * as they are introduced. 73 */ 74 static uint32_t known_capabilities = RDMA_CAPABILITY_PIN_ALL; 75 76 #define CHECK_ERROR_STATE() \ 77 do { \ 78 if (rdma->error_state) { \ 79 if (!rdma->error_reported) { \ 80 error_report("RDMA is in an error state waiting migration" \ 81 " to abort!"); \ 82 rdma->error_reported = 1; \ 83 } \ 84 return rdma->error_state; \ 85 } \ 86 } while (0); 87 88 /* 89 * A work request ID is 64-bits and we split up these bits 90 * into 3 parts: 91 * 92 * bits 0-15 : type of control message, 2^16 93 * bits 16-29: ram block index, 2^14 94 * bits 30-63: ram block chunk number, 2^34 95 * 96 * The last two bit ranges are only used for RDMA writes, 97 * in order to track their completion and potentially 98 * also track unregistration status of the message. 99 */ 100 #define RDMA_WRID_TYPE_SHIFT 0UL 101 #define RDMA_WRID_BLOCK_SHIFT 16UL 102 #define RDMA_WRID_CHUNK_SHIFT 30UL 103 104 #define RDMA_WRID_TYPE_MASK \ 105 ((1UL << RDMA_WRID_BLOCK_SHIFT) - 1UL) 106 107 #define RDMA_WRID_BLOCK_MASK \ 108 (~RDMA_WRID_TYPE_MASK & ((1UL << RDMA_WRID_CHUNK_SHIFT) - 1UL)) 109 110 #define RDMA_WRID_CHUNK_MASK (~RDMA_WRID_BLOCK_MASK & ~RDMA_WRID_TYPE_MASK) 111 112 /* 113 * RDMA migration protocol: 114 * 1. RDMA Writes (data messages, i.e. RAM) 115 * 2. IB Send/Recv (control channel messages) 116 */ 117 enum { 118 RDMA_WRID_NONE = 0, 119 RDMA_WRID_RDMA_WRITE = 1, 120 RDMA_WRID_SEND_CONTROL = 2000, 121 RDMA_WRID_RECV_CONTROL = 4000, 122 }; 123 124 static const char *wrid_desc[] = { 125 [RDMA_WRID_NONE] = "NONE", 126 [RDMA_WRID_RDMA_WRITE] = "WRITE RDMA", 127 [RDMA_WRID_SEND_CONTROL] = "CONTROL SEND", 128 [RDMA_WRID_RECV_CONTROL] = "CONTROL RECV", 129 }; 130 131 /* 132 * Work request IDs for IB SEND messages only (not RDMA writes). 133 * This is used by the migration protocol to transmit 134 * control messages (such as device state and registration commands) 135 * 136 * We could use more WRs, but we have enough for now. 137 */ 138 enum { 139 RDMA_WRID_READY = 0, 140 RDMA_WRID_DATA, 141 RDMA_WRID_CONTROL, 142 RDMA_WRID_MAX, 143 }; 144 145 /* 146 * SEND/RECV IB Control Messages. 147 */ 148 enum { 149 RDMA_CONTROL_NONE = 0, 150 RDMA_CONTROL_ERROR, 151 RDMA_CONTROL_READY, /* ready to receive */ 152 RDMA_CONTROL_QEMU_FILE, /* QEMUFile-transmitted bytes */ 153 RDMA_CONTROL_RAM_BLOCKS_REQUEST, /* RAMBlock synchronization */ 154 RDMA_CONTROL_RAM_BLOCKS_RESULT, /* RAMBlock synchronization */ 155 RDMA_CONTROL_COMPRESS, /* page contains repeat values */ 156 RDMA_CONTROL_REGISTER_REQUEST, /* dynamic page registration */ 157 RDMA_CONTROL_REGISTER_RESULT, /* key to use after registration */ 158 RDMA_CONTROL_REGISTER_FINISHED, /* current iteration finished */ 159 RDMA_CONTROL_UNREGISTER_REQUEST, /* dynamic UN-registration */ 160 RDMA_CONTROL_UNREGISTER_FINISHED, /* unpinning finished */ 161 }; 162 163 static const char *control_desc[] = { 164 [RDMA_CONTROL_NONE] = "NONE", 165 [RDMA_CONTROL_ERROR] = "ERROR", 166 [RDMA_CONTROL_READY] = "READY", 167 [RDMA_CONTROL_QEMU_FILE] = "QEMU FILE", 168 [RDMA_CONTROL_RAM_BLOCKS_REQUEST] = "RAM BLOCKS REQUEST", 169 [RDMA_CONTROL_RAM_BLOCKS_RESULT] = "RAM BLOCKS RESULT", 170 [RDMA_CONTROL_COMPRESS] = "COMPRESS", 171 [RDMA_CONTROL_REGISTER_REQUEST] = "REGISTER REQUEST", 172 [RDMA_CONTROL_REGISTER_RESULT] = "REGISTER RESULT", 173 [RDMA_CONTROL_REGISTER_FINISHED] = "REGISTER FINISHED", 174 [RDMA_CONTROL_UNREGISTER_REQUEST] = "UNREGISTER REQUEST", 175 [RDMA_CONTROL_UNREGISTER_FINISHED] = "UNREGISTER FINISHED", 176 }; 177 178 /* 179 * Memory and MR structures used to represent an IB Send/Recv work request. 180 * This is *not* used for RDMA writes, only IB Send/Recv. 181 */ 182 typedef struct { 183 uint8_t control[RDMA_CONTROL_MAX_BUFFER]; /* actual buffer to register */ 184 struct ibv_mr *control_mr; /* registration metadata */ 185 size_t control_len; /* length of the message */ 186 uint8_t *control_curr; /* start of unconsumed bytes */ 187 } RDMAWorkRequestData; 188 189 /* 190 * Negotiate RDMA capabilities during connection-setup time. 191 */ 192 typedef struct { 193 uint32_t version; 194 uint32_t flags; 195 } RDMACapabilities; 196 197 static void caps_to_network(RDMACapabilities *cap) 198 { 199 cap->version = htonl(cap->version); 200 cap->flags = htonl(cap->flags); 201 } 202 203 static void network_to_caps(RDMACapabilities *cap) 204 { 205 cap->version = ntohl(cap->version); 206 cap->flags = ntohl(cap->flags); 207 } 208 209 /* 210 * Representation of a RAMBlock from an RDMA perspective. 211 * This is not transmitted, only local. 212 * This and subsequent structures cannot be linked lists 213 * because we're using a single IB message to transmit 214 * the information. It's small anyway, so a list is overkill. 215 */ 216 typedef struct RDMALocalBlock { 217 uint8_t *local_host_addr; /* local virtual address */ 218 uint64_t remote_host_addr; /* remote virtual address */ 219 uint64_t offset; 220 uint64_t length; 221 struct ibv_mr **pmr; /* MRs for chunk-level registration */ 222 struct ibv_mr *mr; /* MR for non-chunk-level registration */ 223 uint32_t *remote_keys; /* rkeys for chunk-level registration */ 224 uint32_t remote_rkey; /* rkeys for non-chunk-level registration */ 225 int index; /* which block are we */ 226 bool is_ram_block; 227 int nb_chunks; 228 unsigned long *transit_bitmap; 229 unsigned long *unregister_bitmap; 230 } RDMALocalBlock; 231 232 /* 233 * Also represents a RAMblock, but only on the dest. 234 * This gets transmitted by the dest during connection-time 235 * to the source VM and then is used to populate the 236 * corresponding RDMALocalBlock with 237 * the information needed to perform the actual RDMA. 238 */ 239 typedef struct QEMU_PACKED RDMARemoteBlock { 240 uint64_t remote_host_addr; 241 uint64_t offset; 242 uint64_t length; 243 uint32_t remote_rkey; 244 uint32_t padding; 245 } RDMARemoteBlock; 246 247 static uint64_t htonll(uint64_t v) 248 { 249 union { uint32_t lv[2]; uint64_t llv; } u; 250 u.lv[0] = htonl(v >> 32); 251 u.lv[1] = htonl(v & 0xFFFFFFFFULL); 252 return u.llv; 253 } 254 255 static uint64_t ntohll(uint64_t v) { 256 union { uint32_t lv[2]; uint64_t llv; } u; 257 u.llv = v; 258 return ((uint64_t)ntohl(u.lv[0]) << 32) | (uint64_t) ntohl(u.lv[1]); 259 } 260 261 static void remote_block_to_network(RDMARemoteBlock *rb) 262 { 263 rb->remote_host_addr = htonll(rb->remote_host_addr); 264 rb->offset = htonll(rb->offset); 265 rb->length = htonll(rb->length); 266 rb->remote_rkey = htonl(rb->remote_rkey); 267 } 268 269 static void network_to_remote_block(RDMARemoteBlock *rb) 270 { 271 rb->remote_host_addr = ntohll(rb->remote_host_addr); 272 rb->offset = ntohll(rb->offset); 273 rb->length = ntohll(rb->length); 274 rb->remote_rkey = ntohl(rb->remote_rkey); 275 } 276 277 /* 278 * Virtual address of the above structures used for transmitting 279 * the RAMBlock descriptions at connection-time. 280 * This structure is *not* transmitted. 281 */ 282 typedef struct RDMALocalBlocks { 283 int nb_blocks; 284 bool init; /* main memory init complete */ 285 RDMALocalBlock *block; 286 } RDMALocalBlocks; 287 288 /* 289 * Main data structure for RDMA state. 290 * While there is only one copy of this structure being allocated right now, 291 * this is the place where one would start if you wanted to consider 292 * having more than one RDMA connection open at the same time. 293 */ 294 typedef struct RDMAContext { 295 char *host; 296 int port; 297 298 RDMAWorkRequestData wr_data[RDMA_WRID_MAX]; 299 300 /* 301 * This is used by *_exchange_send() to figure out whether or not 302 * the initial "READY" message has already been received or not. 303 * This is because other functions may potentially poll() and detect 304 * the READY message before send() does, in which case we need to 305 * know if it completed. 306 */ 307 int control_ready_expected; 308 309 /* number of outstanding writes */ 310 int nb_sent; 311 312 /* store info about current buffer so that we can 313 merge it with future sends */ 314 uint64_t current_addr; 315 uint64_t current_length; 316 /* index of ram block the current buffer belongs to */ 317 int current_index; 318 /* index of the chunk in the current ram block */ 319 int current_chunk; 320 321 bool pin_all; 322 323 /* 324 * infiniband-specific variables for opening the device 325 * and maintaining connection state and so forth. 326 * 327 * cm_id also has ibv_context, rdma_event_channel, and ibv_qp in 328 * cm_id->verbs, cm_id->channel, and cm_id->qp. 329 */ 330 struct rdma_cm_id *cm_id; /* connection manager ID */ 331 struct rdma_cm_id *listen_id; 332 bool connected; 333 334 struct ibv_context *verbs; 335 struct rdma_event_channel *channel; 336 struct ibv_qp *qp; /* queue pair */ 337 struct ibv_comp_channel *comp_channel; /* completion channel */ 338 struct ibv_pd *pd; /* protection domain */ 339 struct ibv_cq *cq; /* completion queue */ 340 341 /* 342 * If a previous write failed (perhaps because of a failed 343 * memory registration, then do not attempt any future work 344 * and remember the error state. 345 */ 346 int error_state; 347 int error_reported; 348 349 /* 350 * Description of ram blocks used throughout the code. 351 */ 352 RDMALocalBlocks local_ram_blocks; 353 RDMARemoteBlock *block; 354 355 /* 356 * Migration on *destination* started. 357 * Then use coroutine yield function. 358 * Source runs in a thread, so we don't care. 359 */ 360 int migration_started_on_destination; 361 362 int total_registrations; 363 int total_writes; 364 365 int unregister_current, unregister_next; 366 uint64_t unregistrations[RDMA_SIGNALED_SEND_MAX]; 367 368 GHashTable *blockmap; 369 } RDMAContext; 370 371 /* 372 * Interface to the rest of the migration call stack. 373 */ 374 typedef struct QEMUFileRDMA { 375 RDMAContext *rdma; 376 size_t len; 377 void *file; 378 } QEMUFileRDMA; 379 380 /* 381 * Main structure for IB Send/Recv control messages. 382 * This gets prepended at the beginning of every Send/Recv. 383 */ 384 typedef struct QEMU_PACKED { 385 uint32_t len; /* Total length of data portion */ 386 uint32_t type; /* which control command to perform */ 387 uint32_t repeat; /* number of commands in data portion of same type */ 388 uint32_t padding; 389 } RDMAControlHeader; 390 391 static void control_to_network(RDMAControlHeader *control) 392 { 393 control->type = htonl(control->type); 394 control->len = htonl(control->len); 395 control->repeat = htonl(control->repeat); 396 } 397 398 static void network_to_control(RDMAControlHeader *control) 399 { 400 control->type = ntohl(control->type); 401 control->len = ntohl(control->len); 402 control->repeat = ntohl(control->repeat); 403 } 404 405 /* 406 * Register a single Chunk. 407 * Information sent by the source VM to inform the dest 408 * to register an single chunk of memory before we can perform 409 * the actual RDMA operation. 410 */ 411 typedef struct QEMU_PACKED { 412 union QEMU_PACKED { 413 uint64_t current_addr; /* offset into the ramblock of the chunk */ 414 uint64_t chunk; /* chunk to lookup if unregistering */ 415 } key; 416 uint32_t current_index; /* which ramblock the chunk belongs to */ 417 uint32_t padding; 418 uint64_t chunks; /* how many sequential chunks to register */ 419 } RDMARegister; 420 421 static void register_to_network(RDMARegister *reg) 422 { 423 reg->key.current_addr = htonll(reg->key.current_addr); 424 reg->current_index = htonl(reg->current_index); 425 reg->chunks = htonll(reg->chunks); 426 } 427 428 static void network_to_register(RDMARegister *reg) 429 { 430 reg->key.current_addr = ntohll(reg->key.current_addr); 431 reg->current_index = ntohl(reg->current_index); 432 reg->chunks = ntohll(reg->chunks); 433 } 434 435 typedef struct QEMU_PACKED { 436 uint32_t value; /* if zero, we will madvise() */ 437 uint32_t block_idx; /* which ram block index */ 438 uint64_t offset; /* where in the remote ramblock this chunk */ 439 uint64_t length; /* length of the chunk */ 440 } RDMACompress; 441 442 static void compress_to_network(RDMACompress *comp) 443 { 444 comp->value = htonl(comp->value); 445 comp->block_idx = htonl(comp->block_idx); 446 comp->offset = htonll(comp->offset); 447 comp->length = htonll(comp->length); 448 } 449 450 static void network_to_compress(RDMACompress *comp) 451 { 452 comp->value = ntohl(comp->value); 453 comp->block_idx = ntohl(comp->block_idx); 454 comp->offset = ntohll(comp->offset); 455 comp->length = ntohll(comp->length); 456 } 457 458 /* 459 * The result of the dest's memory registration produces an "rkey" 460 * which the source VM must reference in order to perform 461 * the RDMA operation. 462 */ 463 typedef struct QEMU_PACKED { 464 uint32_t rkey; 465 uint32_t padding; 466 uint64_t host_addr; 467 } RDMARegisterResult; 468 469 static void result_to_network(RDMARegisterResult *result) 470 { 471 result->rkey = htonl(result->rkey); 472 result->host_addr = htonll(result->host_addr); 473 }; 474 475 static void network_to_result(RDMARegisterResult *result) 476 { 477 result->rkey = ntohl(result->rkey); 478 result->host_addr = ntohll(result->host_addr); 479 }; 480 481 const char *print_wrid(int wrid); 482 static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head, 483 uint8_t *data, RDMAControlHeader *resp, 484 int *resp_idx, 485 int (*callback)(RDMAContext *rdma)); 486 487 static inline uint64_t ram_chunk_index(const uint8_t *start, 488 const uint8_t *host) 489 { 490 return ((uintptr_t) host - (uintptr_t) start) >> RDMA_REG_CHUNK_SHIFT; 491 } 492 493 static inline uint8_t *ram_chunk_start(const RDMALocalBlock *rdma_ram_block, 494 uint64_t i) 495 { 496 return (uint8_t *) (((uintptr_t) rdma_ram_block->local_host_addr) 497 + (i << RDMA_REG_CHUNK_SHIFT)); 498 } 499 500 static inline uint8_t *ram_chunk_end(const RDMALocalBlock *rdma_ram_block, 501 uint64_t i) 502 { 503 uint8_t *result = ram_chunk_start(rdma_ram_block, i) + 504 (1UL << RDMA_REG_CHUNK_SHIFT); 505 506 if (result > (rdma_ram_block->local_host_addr + rdma_ram_block->length)) { 507 result = rdma_ram_block->local_host_addr + rdma_ram_block->length; 508 } 509 510 return result; 511 } 512 513 static int __qemu_rdma_add_block(RDMAContext *rdma, void *host_addr, 514 ram_addr_t block_offset, uint64_t length) 515 { 516 RDMALocalBlocks *local = &rdma->local_ram_blocks; 517 RDMALocalBlock *block = g_hash_table_lookup(rdma->blockmap, 518 (void *) block_offset); 519 RDMALocalBlock *old = local->block; 520 521 assert(block == NULL); 522 523 local->block = g_malloc0(sizeof(RDMALocalBlock) * (local->nb_blocks + 1)); 524 525 if (local->nb_blocks) { 526 int x; 527 528 for (x = 0; x < local->nb_blocks; x++) { 529 g_hash_table_remove(rdma->blockmap, (void *)old[x].offset); 530 g_hash_table_insert(rdma->blockmap, (void *)old[x].offset, 531 &local->block[x]); 532 } 533 memcpy(local->block, old, sizeof(RDMALocalBlock) * local->nb_blocks); 534 g_free(old); 535 } 536 537 block = &local->block[local->nb_blocks]; 538 539 block->local_host_addr = host_addr; 540 block->offset = block_offset; 541 block->length = length; 542 block->index = local->nb_blocks; 543 block->nb_chunks = ram_chunk_index(host_addr, host_addr + length) + 1UL; 544 block->transit_bitmap = bitmap_new(block->nb_chunks); 545 bitmap_clear(block->transit_bitmap, 0, block->nb_chunks); 546 block->unregister_bitmap = bitmap_new(block->nb_chunks); 547 bitmap_clear(block->unregister_bitmap, 0, block->nb_chunks); 548 block->remote_keys = g_malloc0(block->nb_chunks * sizeof(uint32_t)); 549 550 block->is_ram_block = local->init ? false : true; 551 552 g_hash_table_insert(rdma->blockmap, (void *) block_offset, block); 553 554 trace___qemu_rdma_add_block(local->nb_blocks, 555 (uint64_t) block->local_host_addr, block->offset, 556 block->length, 557 (uint64_t) (block->local_host_addr + block->length), 558 BITS_TO_LONGS(block->nb_chunks) * 559 sizeof(unsigned long) * 8, 560 block->nb_chunks); 561 562 local->nb_blocks++; 563 564 return 0; 565 } 566 567 /* 568 * Memory regions need to be registered with the device and queue pairs setup 569 * in advanced before the migration starts. This tells us where the RAM blocks 570 * are so that we can register them individually. 571 */ 572 static void qemu_rdma_init_one_block(void *host_addr, 573 ram_addr_t block_offset, ram_addr_t length, void *opaque) 574 { 575 __qemu_rdma_add_block(opaque, host_addr, block_offset, length); 576 } 577 578 /* 579 * Identify the RAMBlocks and their quantity. They will be references to 580 * identify chunk boundaries inside each RAMBlock and also be referenced 581 * during dynamic page registration. 582 */ 583 static int qemu_rdma_init_ram_blocks(RDMAContext *rdma) 584 { 585 RDMALocalBlocks *local = &rdma->local_ram_blocks; 586 587 assert(rdma->blockmap == NULL); 588 rdma->blockmap = g_hash_table_new(g_direct_hash, g_direct_equal); 589 memset(local, 0, sizeof *local); 590 qemu_ram_foreach_block(qemu_rdma_init_one_block, rdma); 591 trace_qemu_rdma_init_ram_blocks(local->nb_blocks); 592 rdma->block = (RDMARemoteBlock *) g_malloc0(sizeof(RDMARemoteBlock) * 593 rdma->local_ram_blocks.nb_blocks); 594 local->init = true; 595 return 0; 596 } 597 598 static int __qemu_rdma_delete_block(RDMAContext *rdma, ram_addr_t block_offset) 599 { 600 RDMALocalBlocks *local = &rdma->local_ram_blocks; 601 RDMALocalBlock *block = g_hash_table_lookup(rdma->blockmap, 602 (void *) block_offset); 603 RDMALocalBlock *old = local->block; 604 int x; 605 606 assert(block); 607 608 if (block->pmr) { 609 int j; 610 611 for (j = 0; j < block->nb_chunks; j++) { 612 if (!block->pmr[j]) { 613 continue; 614 } 615 ibv_dereg_mr(block->pmr[j]); 616 rdma->total_registrations--; 617 } 618 g_free(block->pmr); 619 block->pmr = NULL; 620 } 621 622 if (block->mr) { 623 ibv_dereg_mr(block->mr); 624 rdma->total_registrations--; 625 block->mr = NULL; 626 } 627 628 g_free(block->transit_bitmap); 629 block->transit_bitmap = NULL; 630 631 g_free(block->unregister_bitmap); 632 block->unregister_bitmap = NULL; 633 634 g_free(block->remote_keys); 635 block->remote_keys = NULL; 636 637 for (x = 0; x < local->nb_blocks; x++) { 638 g_hash_table_remove(rdma->blockmap, (void *)old[x].offset); 639 } 640 641 if (local->nb_blocks > 1) { 642 643 local->block = g_malloc0(sizeof(RDMALocalBlock) * 644 (local->nb_blocks - 1)); 645 646 if (block->index) { 647 memcpy(local->block, old, sizeof(RDMALocalBlock) * block->index); 648 } 649 650 if (block->index < (local->nb_blocks - 1)) { 651 memcpy(local->block + block->index, old + (block->index + 1), 652 sizeof(RDMALocalBlock) * 653 (local->nb_blocks - (block->index + 1))); 654 } 655 } else { 656 assert(block == local->block); 657 local->block = NULL; 658 } 659 660 trace___qemu_rdma_delete_block(local->nb_blocks, 661 (uint64_t)block->local_host_addr, 662 block->offset, block->length, 663 (uint64_t)(block->local_host_addr + block->length), 664 BITS_TO_LONGS(block->nb_chunks) * 665 sizeof(unsigned long) * 8, block->nb_chunks); 666 667 g_free(old); 668 669 local->nb_blocks--; 670 671 if (local->nb_blocks) { 672 for (x = 0; x < local->nb_blocks; x++) { 673 g_hash_table_insert(rdma->blockmap, (void *)local->block[x].offset, 674 &local->block[x]); 675 } 676 } 677 678 return 0; 679 } 680 681 /* 682 * Put in the log file which RDMA device was opened and the details 683 * associated with that device. 684 */ 685 static void qemu_rdma_dump_id(const char *who, struct ibv_context *verbs) 686 { 687 struct ibv_port_attr port; 688 689 if (ibv_query_port(verbs, 1, &port)) { 690 error_report("Failed to query port information"); 691 return; 692 } 693 694 printf("%s RDMA Device opened: kernel name %s " 695 "uverbs device name %s, " 696 "infiniband_verbs class device path %s, " 697 "infiniband class device path %s, " 698 "transport: (%d) %s\n", 699 who, 700 verbs->device->name, 701 verbs->device->dev_name, 702 verbs->device->dev_path, 703 verbs->device->ibdev_path, 704 port.link_layer, 705 (port.link_layer == IBV_LINK_LAYER_INFINIBAND) ? "Infiniband" : 706 ((port.link_layer == IBV_LINK_LAYER_ETHERNET) 707 ? "Ethernet" : "Unknown")); 708 } 709 710 /* 711 * Put in the log file the RDMA gid addressing information, 712 * useful for folks who have trouble understanding the 713 * RDMA device hierarchy in the kernel. 714 */ 715 static void qemu_rdma_dump_gid(const char *who, struct rdma_cm_id *id) 716 { 717 char sgid[33]; 718 char dgid[33]; 719 inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.sgid, sgid, sizeof sgid); 720 inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.dgid, dgid, sizeof dgid); 721 trace_qemu_rdma_dump_gid(who, sgid, dgid); 722 } 723 724 /* 725 * As of now, IPv6 over RoCE / iWARP is not supported by linux. 726 * We will try the next addrinfo struct, and fail if there are 727 * no other valid addresses to bind against. 728 * 729 * If user is listening on '[::]', then we will not have a opened a device 730 * yet and have no way of verifying if the device is RoCE or not. 731 * 732 * In this case, the source VM will throw an error for ALL types of 733 * connections (both IPv4 and IPv6) if the destination machine does not have 734 * a regular infiniband network available for use. 735 * 736 * The only way to guarantee that an error is thrown for broken kernels is 737 * for the management software to choose a *specific* interface at bind time 738 * and validate what time of hardware it is. 739 * 740 * Unfortunately, this puts the user in a fix: 741 * 742 * If the source VM connects with an IPv4 address without knowing that the 743 * destination has bound to '[::]' the migration will unconditionally fail 744 * unless the management software is explicitly listening on the the IPv4 745 * address while using a RoCE-based device. 746 * 747 * If the source VM connects with an IPv6 address, then we're OK because we can 748 * throw an error on the source (and similarly on the destination). 749 * 750 * But in mixed environments, this will be broken for a while until it is fixed 751 * inside linux. 752 * 753 * We do provide a *tiny* bit of help in this function: We can list all of the 754 * devices in the system and check to see if all the devices are RoCE or 755 * Infiniband. 756 * 757 * If we detect that we have a *pure* RoCE environment, then we can safely 758 * thrown an error even if the management software has specified '[::]' as the 759 * bind address. 760 * 761 * However, if there is are multiple hetergeneous devices, then we cannot make 762 * this assumption and the user just has to be sure they know what they are 763 * doing. 764 * 765 * Patches are being reviewed on linux-rdma. 766 */ 767 static int qemu_rdma_broken_ipv6_kernel(Error **errp, struct ibv_context *verbs) 768 { 769 struct ibv_port_attr port_attr; 770 771 /* This bug only exists in linux, to our knowledge. */ 772 #ifdef CONFIG_LINUX 773 774 /* 775 * Verbs are only NULL if management has bound to '[::]'. 776 * 777 * Let's iterate through all the devices and see if there any pure IB 778 * devices (non-ethernet). 779 * 780 * If not, then we can safely proceed with the migration. 781 * Otherwise, there are no guarantees until the bug is fixed in linux. 782 */ 783 if (!verbs) { 784 int num_devices, x; 785 struct ibv_device ** dev_list = ibv_get_device_list(&num_devices); 786 bool roce_found = false; 787 bool ib_found = false; 788 789 for (x = 0; x < num_devices; x++) { 790 verbs = ibv_open_device(dev_list[x]); 791 792 if (ibv_query_port(verbs, 1, &port_attr)) { 793 ibv_close_device(verbs); 794 ERROR(errp, "Could not query initial IB port"); 795 return -EINVAL; 796 } 797 798 if (port_attr.link_layer == IBV_LINK_LAYER_INFINIBAND) { 799 ib_found = true; 800 } else if (port_attr.link_layer == IBV_LINK_LAYER_ETHERNET) { 801 roce_found = true; 802 } 803 804 ibv_close_device(verbs); 805 806 } 807 808 if (roce_found) { 809 if (ib_found) { 810 fprintf(stderr, "WARN: migrations may fail:" 811 " IPv6 over RoCE / iWARP in linux" 812 " is broken. But since you appear to have a" 813 " mixed RoCE / IB environment, be sure to only" 814 " migrate over the IB fabric until the kernel " 815 " fixes the bug.\n"); 816 } else { 817 ERROR(errp, "You only have RoCE / iWARP devices in your systems" 818 " and your management software has specified '[::]'" 819 ", but IPv6 over RoCE / iWARP is not supported in Linux."); 820 return -ENONET; 821 } 822 } 823 824 return 0; 825 } 826 827 /* 828 * If we have a verbs context, that means that some other than '[::]' was 829 * used by the management software for binding. In which case we can actually 830 * warn the user about a potential broken kernel; 831 */ 832 833 /* IB ports start with 1, not 0 */ 834 if (ibv_query_port(verbs, 1, &port_attr)) { 835 ERROR(errp, "Could not query initial IB port"); 836 return -EINVAL; 837 } 838 839 if (port_attr.link_layer == IBV_LINK_LAYER_ETHERNET) { 840 ERROR(errp, "Linux kernel's RoCE / iWARP does not support IPv6 " 841 "(but patches on linux-rdma in progress)"); 842 return -ENONET; 843 } 844 845 #endif 846 847 return 0; 848 } 849 850 /* 851 * Figure out which RDMA device corresponds to the requested IP hostname 852 * Also create the initial connection manager identifiers for opening 853 * the connection. 854 */ 855 static int qemu_rdma_resolve_host(RDMAContext *rdma, Error **errp) 856 { 857 int ret; 858 struct rdma_addrinfo *res; 859 char port_str[16]; 860 struct rdma_cm_event *cm_event; 861 char ip[40] = "unknown"; 862 struct rdma_addrinfo *e; 863 864 if (rdma->host == NULL || !strcmp(rdma->host, "")) { 865 ERROR(errp, "RDMA hostname has not been set"); 866 return -EINVAL; 867 } 868 869 /* create CM channel */ 870 rdma->channel = rdma_create_event_channel(); 871 if (!rdma->channel) { 872 ERROR(errp, "could not create CM channel"); 873 return -EINVAL; 874 } 875 876 /* create CM id */ 877 ret = rdma_create_id(rdma->channel, &rdma->cm_id, NULL, RDMA_PS_TCP); 878 if (ret) { 879 ERROR(errp, "could not create channel id"); 880 goto err_resolve_create_id; 881 } 882 883 snprintf(port_str, 16, "%d", rdma->port); 884 port_str[15] = '\0'; 885 886 ret = rdma_getaddrinfo(rdma->host, port_str, NULL, &res); 887 if (ret < 0) { 888 ERROR(errp, "could not rdma_getaddrinfo address %s", rdma->host); 889 goto err_resolve_get_addr; 890 } 891 892 for (e = res; e != NULL; e = e->ai_next) { 893 inet_ntop(e->ai_family, 894 &((struct sockaddr_in *) e->ai_dst_addr)->sin_addr, ip, sizeof ip); 895 trace_qemu_rdma_resolve_host_trying(rdma->host, ip); 896 897 ret = rdma_resolve_addr(rdma->cm_id, NULL, e->ai_dst_addr, 898 RDMA_RESOLVE_TIMEOUT_MS); 899 if (!ret) { 900 if (e->ai_family == AF_INET6) { 901 ret = qemu_rdma_broken_ipv6_kernel(errp, rdma->cm_id->verbs); 902 if (ret) { 903 continue; 904 } 905 } 906 goto route; 907 } 908 } 909 910 ERROR(errp, "could not resolve address %s", rdma->host); 911 goto err_resolve_get_addr; 912 913 route: 914 qemu_rdma_dump_gid("source_resolve_addr", rdma->cm_id); 915 916 ret = rdma_get_cm_event(rdma->channel, &cm_event); 917 if (ret) { 918 ERROR(errp, "could not perform event_addr_resolved"); 919 goto err_resolve_get_addr; 920 } 921 922 if (cm_event->event != RDMA_CM_EVENT_ADDR_RESOLVED) { 923 ERROR(errp, "result not equal to event_addr_resolved %s", 924 rdma_event_str(cm_event->event)); 925 perror("rdma_resolve_addr"); 926 rdma_ack_cm_event(cm_event); 927 ret = -EINVAL; 928 goto err_resolve_get_addr; 929 } 930 rdma_ack_cm_event(cm_event); 931 932 /* resolve route */ 933 ret = rdma_resolve_route(rdma->cm_id, RDMA_RESOLVE_TIMEOUT_MS); 934 if (ret) { 935 ERROR(errp, "could not resolve rdma route"); 936 goto err_resolve_get_addr; 937 } 938 939 ret = rdma_get_cm_event(rdma->channel, &cm_event); 940 if (ret) { 941 ERROR(errp, "could not perform event_route_resolved"); 942 goto err_resolve_get_addr; 943 } 944 if (cm_event->event != RDMA_CM_EVENT_ROUTE_RESOLVED) { 945 ERROR(errp, "result not equal to event_route_resolved: %s", 946 rdma_event_str(cm_event->event)); 947 rdma_ack_cm_event(cm_event); 948 ret = -EINVAL; 949 goto err_resolve_get_addr; 950 } 951 rdma_ack_cm_event(cm_event); 952 rdma->verbs = rdma->cm_id->verbs; 953 qemu_rdma_dump_id("source_resolve_host", rdma->cm_id->verbs); 954 qemu_rdma_dump_gid("source_resolve_host", rdma->cm_id); 955 return 0; 956 957 err_resolve_get_addr: 958 rdma_destroy_id(rdma->cm_id); 959 rdma->cm_id = NULL; 960 err_resolve_create_id: 961 rdma_destroy_event_channel(rdma->channel); 962 rdma->channel = NULL; 963 return ret; 964 } 965 966 /* 967 * Create protection domain and completion queues 968 */ 969 static int qemu_rdma_alloc_pd_cq(RDMAContext *rdma) 970 { 971 /* allocate pd */ 972 rdma->pd = ibv_alloc_pd(rdma->verbs); 973 if (!rdma->pd) { 974 error_report("failed to allocate protection domain"); 975 return -1; 976 } 977 978 /* create completion channel */ 979 rdma->comp_channel = ibv_create_comp_channel(rdma->verbs); 980 if (!rdma->comp_channel) { 981 error_report("failed to allocate completion channel"); 982 goto err_alloc_pd_cq; 983 } 984 985 /* 986 * Completion queue can be filled by both read and write work requests, 987 * so must reflect the sum of both possible queue sizes. 988 */ 989 rdma->cq = ibv_create_cq(rdma->verbs, (RDMA_SIGNALED_SEND_MAX * 3), 990 NULL, rdma->comp_channel, 0); 991 if (!rdma->cq) { 992 error_report("failed to allocate completion queue"); 993 goto err_alloc_pd_cq; 994 } 995 996 return 0; 997 998 err_alloc_pd_cq: 999 if (rdma->pd) { 1000 ibv_dealloc_pd(rdma->pd); 1001 } 1002 if (rdma->comp_channel) { 1003 ibv_destroy_comp_channel(rdma->comp_channel); 1004 } 1005 rdma->pd = NULL; 1006 rdma->comp_channel = NULL; 1007 return -1; 1008 1009 } 1010 1011 /* 1012 * Create queue pairs. 1013 */ 1014 static int qemu_rdma_alloc_qp(RDMAContext *rdma) 1015 { 1016 struct ibv_qp_init_attr attr = { 0 }; 1017 int ret; 1018 1019 attr.cap.max_send_wr = RDMA_SIGNALED_SEND_MAX; 1020 attr.cap.max_recv_wr = 3; 1021 attr.cap.max_send_sge = 1; 1022 attr.cap.max_recv_sge = 1; 1023 attr.send_cq = rdma->cq; 1024 attr.recv_cq = rdma->cq; 1025 attr.qp_type = IBV_QPT_RC; 1026 1027 ret = rdma_create_qp(rdma->cm_id, rdma->pd, &attr); 1028 if (ret) { 1029 return -1; 1030 } 1031 1032 rdma->qp = rdma->cm_id->qp; 1033 return 0; 1034 } 1035 1036 static int qemu_rdma_reg_whole_ram_blocks(RDMAContext *rdma) 1037 { 1038 int i; 1039 RDMALocalBlocks *local = &rdma->local_ram_blocks; 1040 1041 for (i = 0; i < local->nb_blocks; i++) { 1042 local->block[i].mr = 1043 ibv_reg_mr(rdma->pd, 1044 local->block[i].local_host_addr, 1045 local->block[i].length, 1046 IBV_ACCESS_LOCAL_WRITE | 1047 IBV_ACCESS_REMOTE_WRITE 1048 ); 1049 if (!local->block[i].mr) { 1050 perror("Failed to register local dest ram block!\n"); 1051 break; 1052 } 1053 rdma->total_registrations++; 1054 } 1055 1056 if (i >= local->nb_blocks) { 1057 return 0; 1058 } 1059 1060 for (i--; i >= 0; i--) { 1061 ibv_dereg_mr(local->block[i].mr); 1062 rdma->total_registrations--; 1063 } 1064 1065 return -1; 1066 1067 } 1068 1069 /* 1070 * Find the ram block that corresponds to the page requested to be 1071 * transmitted by QEMU. 1072 * 1073 * Once the block is found, also identify which 'chunk' within that 1074 * block that the page belongs to. 1075 * 1076 * This search cannot fail or the migration will fail. 1077 */ 1078 static int qemu_rdma_search_ram_block(RDMAContext *rdma, 1079 uint64_t block_offset, 1080 uint64_t offset, 1081 uint64_t length, 1082 uint64_t *block_index, 1083 uint64_t *chunk_index) 1084 { 1085 uint64_t current_addr = block_offset + offset; 1086 RDMALocalBlock *block = g_hash_table_lookup(rdma->blockmap, 1087 (void *) block_offset); 1088 assert(block); 1089 assert(current_addr >= block->offset); 1090 assert((current_addr + length) <= (block->offset + block->length)); 1091 1092 *block_index = block->index; 1093 *chunk_index = ram_chunk_index(block->local_host_addr, 1094 block->local_host_addr + (current_addr - block->offset)); 1095 1096 return 0; 1097 } 1098 1099 /* 1100 * Register a chunk with IB. If the chunk was already registered 1101 * previously, then skip. 1102 * 1103 * Also return the keys associated with the registration needed 1104 * to perform the actual RDMA operation. 1105 */ 1106 static int qemu_rdma_register_and_get_keys(RDMAContext *rdma, 1107 RDMALocalBlock *block, uint8_t *host_addr, 1108 uint32_t *lkey, uint32_t *rkey, int chunk, 1109 uint8_t *chunk_start, uint8_t *chunk_end) 1110 { 1111 if (block->mr) { 1112 if (lkey) { 1113 *lkey = block->mr->lkey; 1114 } 1115 if (rkey) { 1116 *rkey = block->mr->rkey; 1117 } 1118 return 0; 1119 } 1120 1121 /* allocate memory to store chunk MRs */ 1122 if (!block->pmr) { 1123 block->pmr = g_malloc0(block->nb_chunks * sizeof(struct ibv_mr *)); 1124 } 1125 1126 /* 1127 * If 'rkey', then we're the destination, so grant access to the source. 1128 * 1129 * If 'lkey', then we're the source VM, so grant access only to ourselves. 1130 */ 1131 if (!block->pmr[chunk]) { 1132 uint64_t len = chunk_end - chunk_start; 1133 1134 trace_qemu_rdma_register_and_get_keys(len, chunk_start); 1135 1136 block->pmr[chunk] = ibv_reg_mr(rdma->pd, 1137 chunk_start, len, 1138 (rkey ? (IBV_ACCESS_LOCAL_WRITE | 1139 IBV_ACCESS_REMOTE_WRITE) : 0)); 1140 1141 if (!block->pmr[chunk]) { 1142 perror("Failed to register chunk!"); 1143 fprintf(stderr, "Chunk details: block: %d chunk index %d" 1144 " start %" PRIu64 " end %" PRIu64 " host %" PRIu64 1145 " local %" PRIu64 " registrations: %d\n", 1146 block->index, chunk, (uint64_t) chunk_start, 1147 (uint64_t) chunk_end, (uint64_t) host_addr, 1148 (uint64_t) block->local_host_addr, 1149 rdma->total_registrations); 1150 return -1; 1151 } 1152 rdma->total_registrations++; 1153 } 1154 1155 if (lkey) { 1156 *lkey = block->pmr[chunk]->lkey; 1157 } 1158 if (rkey) { 1159 *rkey = block->pmr[chunk]->rkey; 1160 } 1161 return 0; 1162 } 1163 1164 /* 1165 * Register (at connection time) the memory used for control 1166 * channel messages. 1167 */ 1168 static int qemu_rdma_reg_control(RDMAContext *rdma, int idx) 1169 { 1170 rdma->wr_data[idx].control_mr = ibv_reg_mr(rdma->pd, 1171 rdma->wr_data[idx].control, RDMA_CONTROL_MAX_BUFFER, 1172 IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE); 1173 if (rdma->wr_data[idx].control_mr) { 1174 rdma->total_registrations++; 1175 return 0; 1176 } 1177 error_report("qemu_rdma_reg_control failed"); 1178 return -1; 1179 } 1180 1181 const char *print_wrid(int wrid) 1182 { 1183 if (wrid >= RDMA_WRID_RECV_CONTROL) { 1184 return wrid_desc[RDMA_WRID_RECV_CONTROL]; 1185 } 1186 return wrid_desc[wrid]; 1187 } 1188 1189 /* 1190 * RDMA requires memory registration (mlock/pinning), but this is not good for 1191 * overcommitment. 1192 * 1193 * In preparation for the future where LRU information or workload-specific 1194 * writable writable working set memory access behavior is available to QEMU 1195 * it would be nice to have in place the ability to UN-register/UN-pin 1196 * particular memory regions from the RDMA hardware when it is determine that 1197 * those regions of memory will likely not be accessed again in the near future. 1198 * 1199 * While we do not yet have such information right now, the following 1200 * compile-time option allows us to perform a non-optimized version of this 1201 * behavior. 1202 * 1203 * By uncommenting this option, you will cause *all* RDMA transfers to be 1204 * unregistered immediately after the transfer completes on both sides of the 1205 * connection. This has no effect in 'rdma-pin-all' mode, only regular mode. 1206 * 1207 * This will have a terrible impact on migration performance, so until future 1208 * workload information or LRU information is available, do not attempt to use 1209 * this feature except for basic testing. 1210 */ 1211 //#define RDMA_UNREGISTRATION_EXAMPLE 1212 1213 /* 1214 * Perform a non-optimized memory unregistration after every transfer 1215 * for demonsration purposes, only if pin-all is not requested. 1216 * 1217 * Potential optimizations: 1218 * 1. Start a new thread to run this function continuously 1219 - for bit clearing 1220 - and for receipt of unregister messages 1221 * 2. Use an LRU. 1222 * 3. Use workload hints. 1223 */ 1224 static int qemu_rdma_unregister_waiting(RDMAContext *rdma) 1225 { 1226 while (rdma->unregistrations[rdma->unregister_current]) { 1227 int ret; 1228 uint64_t wr_id = rdma->unregistrations[rdma->unregister_current]; 1229 uint64_t chunk = 1230 (wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT; 1231 uint64_t index = 1232 (wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT; 1233 RDMALocalBlock *block = 1234 &(rdma->local_ram_blocks.block[index]); 1235 RDMARegister reg = { .current_index = index }; 1236 RDMAControlHeader resp = { .type = RDMA_CONTROL_UNREGISTER_FINISHED, 1237 }; 1238 RDMAControlHeader head = { .len = sizeof(RDMARegister), 1239 .type = RDMA_CONTROL_UNREGISTER_REQUEST, 1240 .repeat = 1, 1241 }; 1242 1243 trace_qemu_rdma_unregister_waiting_proc(chunk, 1244 rdma->unregister_current); 1245 1246 rdma->unregistrations[rdma->unregister_current] = 0; 1247 rdma->unregister_current++; 1248 1249 if (rdma->unregister_current == RDMA_SIGNALED_SEND_MAX) { 1250 rdma->unregister_current = 0; 1251 } 1252 1253 1254 /* 1255 * Unregistration is speculative (because migration is single-threaded 1256 * and we cannot break the protocol's inifinband message ordering). 1257 * Thus, if the memory is currently being used for transmission, 1258 * then abort the attempt to unregister and try again 1259 * later the next time a completion is received for this memory. 1260 */ 1261 clear_bit(chunk, block->unregister_bitmap); 1262 1263 if (test_bit(chunk, block->transit_bitmap)) { 1264 trace_qemu_rdma_unregister_waiting_inflight(chunk); 1265 continue; 1266 } 1267 1268 trace_qemu_rdma_unregister_waiting_send(chunk); 1269 1270 ret = ibv_dereg_mr(block->pmr[chunk]); 1271 block->pmr[chunk] = NULL; 1272 block->remote_keys[chunk] = 0; 1273 1274 if (ret != 0) { 1275 perror("unregistration chunk failed"); 1276 return -ret; 1277 } 1278 rdma->total_registrations--; 1279 1280 reg.key.chunk = chunk; 1281 register_to_network(®); 1282 ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) ®, 1283 &resp, NULL, NULL); 1284 if (ret < 0) { 1285 return ret; 1286 } 1287 1288 trace_qemu_rdma_unregister_waiting_complete(chunk); 1289 } 1290 1291 return 0; 1292 } 1293 1294 static uint64_t qemu_rdma_make_wrid(uint64_t wr_id, uint64_t index, 1295 uint64_t chunk) 1296 { 1297 uint64_t result = wr_id & RDMA_WRID_TYPE_MASK; 1298 1299 result |= (index << RDMA_WRID_BLOCK_SHIFT); 1300 result |= (chunk << RDMA_WRID_CHUNK_SHIFT); 1301 1302 return result; 1303 } 1304 1305 /* 1306 * Set bit for unregistration in the next iteration. 1307 * We cannot transmit right here, but will unpin later. 1308 */ 1309 static void qemu_rdma_signal_unregister(RDMAContext *rdma, uint64_t index, 1310 uint64_t chunk, uint64_t wr_id) 1311 { 1312 if (rdma->unregistrations[rdma->unregister_next] != 0) { 1313 error_report("rdma migration: queue is full"); 1314 } else { 1315 RDMALocalBlock *block = &(rdma->local_ram_blocks.block[index]); 1316 1317 if (!test_and_set_bit(chunk, block->unregister_bitmap)) { 1318 trace_qemu_rdma_signal_unregister_append(chunk, 1319 rdma->unregister_next); 1320 1321 rdma->unregistrations[rdma->unregister_next++] = 1322 qemu_rdma_make_wrid(wr_id, index, chunk); 1323 1324 if (rdma->unregister_next == RDMA_SIGNALED_SEND_MAX) { 1325 rdma->unregister_next = 0; 1326 } 1327 } else { 1328 trace_qemu_rdma_signal_unregister_already(chunk); 1329 } 1330 } 1331 } 1332 1333 /* 1334 * Consult the connection manager to see a work request 1335 * (of any kind) has completed. 1336 * Return the work request ID that completed. 1337 */ 1338 static uint64_t qemu_rdma_poll(RDMAContext *rdma, uint64_t *wr_id_out, 1339 uint32_t *byte_len) 1340 { 1341 int ret; 1342 struct ibv_wc wc; 1343 uint64_t wr_id; 1344 1345 ret = ibv_poll_cq(rdma->cq, 1, &wc); 1346 1347 if (!ret) { 1348 *wr_id_out = RDMA_WRID_NONE; 1349 return 0; 1350 } 1351 1352 if (ret < 0) { 1353 error_report("ibv_poll_cq return %d", ret); 1354 return ret; 1355 } 1356 1357 wr_id = wc.wr_id & RDMA_WRID_TYPE_MASK; 1358 1359 if (wc.status != IBV_WC_SUCCESS) { 1360 fprintf(stderr, "ibv_poll_cq wc.status=%d %s!\n", 1361 wc.status, ibv_wc_status_str(wc.status)); 1362 fprintf(stderr, "ibv_poll_cq wrid=%s!\n", wrid_desc[wr_id]); 1363 1364 return -1; 1365 } 1366 1367 if (rdma->control_ready_expected && 1368 (wr_id >= RDMA_WRID_RECV_CONTROL)) { 1369 trace_qemu_rdma_poll_recv(wrid_desc[RDMA_WRID_RECV_CONTROL], 1370 wr_id - RDMA_WRID_RECV_CONTROL, wr_id, rdma->nb_sent); 1371 rdma->control_ready_expected = 0; 1372 } 1373 1374 if (wr_id == RDMA_WRID_RDMA_WRITE) { 1375 uint64_t chunk = 1376 (wc.wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT; 1377 uint64_t index = 1378 (wc.wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT; 1379 RDMALocalBlock *block = &(rdma->local_ram_blocks.block[index]); 1380 1381 trace_qemu_rdma_poll_write(print_wrid(wr_id), wr_id, rdma->nb_sent, 1382 index, chunk, 1383 block->local_host_addr, (void *)block->remote_host_addr); 1384 1385 clear_bit(chunk, block->transit_bitmap); 1386 1387 if (rdma->nb_sent > 0) { 1388 rdma->nb_sent--; 1389 } 1390 1391 if (!rdma->pin_all) { 1392 /* 1393 * FYI: If one wanted to signal a specific chunk to be unregistered 1394 * using LRU or workload-specific information, this is the function 1395 * you would call to do so. That chunk would then get asynchronously 1396 * unregistered later. 1397 */ 1398 #ifdef RDMA_UNREGISTRATION_EXAMPLE 1399 qemu_rdma_signal_unregister(rdma, index, chunk, wc.wr_id); 1400 #endif 1401 } 1402 } else { 1403 trace_qemu_rdma_poll_other(print_wrid(wr_id), wr_id, rdma->nb_sent); 1404 } 1405 1406 *wr_id_out = wc.wr_id; 1407 if (byte_len) { 1408 *byte_len = wc.byte_len; 1409 } 1410 1411 return 0; 1412 } 1413 1414 /* 1415 * Block until the next work request has completed. 1416 * 1417 * First poll to see if a work request has already completed, 1418 * otherwise block. 1419 * 1420 * If we encounter completed work requests for IDs other than 1421 * the one we're interested in, then that's generally an error. 1422 * 1423 * The only exception is actual RDMA Write completions. These 1424 * completions only need to be recorded, but do not actually 1425 * need further processing. 1426 */ 1427 static int qemu_rdma_block_for_wrid(RDMAContext *rdma, int wrid_requested, 1428 uint32_t *byte_len) 1429 { 1430 int num_cq_events = 0, ret = 0; 1431 struct ibv_cq *cq; 1432 void *cq_ctx; 1433 uint64_t wr_id = RDMA_WRID_NONE, wr_id_in; 1434 1435 if (ibv_req_notify_cq(rdma->cq, 0)) { 1436 return -1; 1437 } 1438 /* poll cq first */ 1439 while (wr_id != wrid_requested) { 1440 ret = qemu_rdma_poll(rdma, &wr_id_in, byte_len); 1441 if (ret < 0) { 1442 return ret; 1443 } 1444 1445 wr_id = wr_id_in & RDMA_WRID_TYPE_MASK; 1446 1447 if (wr_id == RDMA_WRID_NONE) { 1448 break; 1449 } 1450 if (wr_id != wrid_requested) { 1451 trace_qemu_rdma_block_for_wrid_miss(print_wrid(wrid_requested), 1452 wrid_requested, print_wrid(wr_id), wr_id); 1453 } 1454 } 1455 1456 if (wr_id == wrid_requested) { 1457 return 0; 1458 } 1459 1460 while (1) { 1461 /* 1462 * Coroutine doesn't start until process_incoming_migration() 1463 * so don't yield unless we know we're running inside of a coroutine. 1464 */ 1465 if (rdma->migration_started_on_destination) { 1466 yield_until_fd_readable(rdma->comp_channel->fd); 1467 } 1468 1469 if (ibv_get_cq_event(rdma->comp_channel, &cq, &cq_ctx)) { 1470 perror("ibv_get_cq_event"); 1471 goto err_block_for_wrid; 1472 } 1473 1474 num_cq_events++; 1475 1476 if (ibv_req_notify_cq(cq, 0)) { 1477 goto err_block_for_wrid; 1478 } 1479 1480 while (wr_id != wrid_requested) { 1481 ret = qemu_rdma_poll(rdma, &wr_id_in, byte_len); 1482 if (ret < 0) { 1483 goto err_block_for_wrid; 1484 } 1485 1486 wr_id = wr_id_in & RDMA_WRID_TYPE_MASK; 1487 1488 if (wr_id == RDMA_WRID_NONE) { 1489 break; 1490 } 1491 if (wr_id != wrid_requested) { 1492 trace_qemu_rdma_block_for_wrid_miss(print_wrid(wrid_requested), 1493 wrid_requested, print_wrid(wr_id), wr_id); 1494 } 1495 } 1496 1497 if (wr_id == wrid_requested) { 1498 goto success_block_for_wrid; 1499 } 1500 } 1501 1502 success_block_for_wrid: 1503 if (num_cq_events) { 1504 ibv_ack_cq_events(cq, num_cq_events); 1505 } 1506 return 0; 1507 1508 err_block_for_wrid: 1509 if (num_cq_events) { 1510 ibv_ack_cq_events(cq, num_cq_events); 1511 } 1512 return ret; 1513 } 1514 1515 /* 1516 * Post a SEND message work request for the control channel 1517 * containing some data and block until the post completes. 1518 */ 1519 static int qemu_rdma_post_send_control(RDMAContext *rdma, uint8_t *buf, 1520 RDMAControlHeader *head) 1521 { 1522 int ret = 0; 1523 RDMAWorkRequestData *wr = &rdma->wr_data[RDMA_WRID_CONTROL]; 1524 struct ibv_send_wr *bad_wr; 1525 struct ibv_sge sge = { 1526 .addr = (uint64_t)(wr->control), 1527 .length = head->len + sizeof(RDMAControlHeader), 1528 .lkey = wr->control_mr->lkey, 1529 }; 1530 struct ibv_send_wr send_wr = { 1531 .wr_id = RDMA_WRID_SEND_CONTROL, 1532 .opcode = IBV_WR_SEND, 1533 .send_flags = IBV_SEND_SIGNALED, 1534 .sg_list = &sge, 1535 .num_sge = 1, 1536 }; 1537 1538 trace_qemu_rdma_post_send_control(control_desc[head->type]); 1539 1540 /* 1541 * We don't actually need to do a memcpy() in here if we used 1542 * the "sge" properly, but since we're only sending control messages 1543 * (not RAM in a performance-critical path), then its OK for now. 1544 * 1545 * The copy makes the RDMAControlHeader simpler to manipulate 1546 * for the time being. 1547 */ 1548 assert(head->len <= RDMA_CONTROL_MAX_BUFFER - sizeof(*head)); 1549 memcpy(wr->control, head, sizeof(RDMAControlHeader)); 1550 control_to_network((void *) wr->control); 1551 1552 if (buf) { 1553 memcpy(wr->control + sizeof(RDMAControlHeader), buf, head->len); 1554 } 1555 1556 1557 ret = ibv_post_send(rdma->qp, &send_wr, &bad_wr); 1558 1559 if (ret > 0) { 1560 error_report("Failed to use post IB SEND for control"); 1561 return -ret; 1562 } 1563 1564 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_SEND_CONTROL, NULL); 1565 if (ret < 0) { 1566 error_report("rdma migration: send polling control error"); 1567 } 1568 1569 return ret; 1570 } 1571 1572 /* 1573 * Post a RECV work request in anticipation of some future receipt 1574 * of data on the control channel. 1575 */ 1576 static int qemu_rdma_post_recv_control(RDMAContext *rdma, int idx) 1577 { 1578 struct ibv_recv_wr *bad_wr; 1579 struct ibv_sge sge = { 1580 .addr = (uint64_t)(rdma->wr_data[idx].control), 1581 .length = RDMA_CONTROL_MAX_BUFFER, 1582 .lkey = rdma->wr_data[idx].control_mr->lkey, 1583 }; 1584 1585 struct ibv_recv_wr recv_wr = { 1586 .wr_id = RDMA_WRID_RECV_CONTROL + idx, 1587 .sg_list = &sge, 1588 .num_sge = 1, 1589 }; 1590 1591 1592 if (ibv_post_recv(rdma->qp, &recv_wr, &bad_wr)) { 1593 return -1; 1594 } 1595 1596 return 0; 1597 } 1598 1599 /* 1600 * Block and wait for a RECV control channel message to arrive. 1601 */ 1602 static int qemu_rdma_exchange_get_response(RDMAContext *rdma, 1603 RDMAControlHeader *head, int expecting, int idx) 1604 { 1605 uint32_t byte_len; 1606 int ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RECV_CONTROL + idx, 1607 &byte_len); 1608 1609 if (ret < 0) { 1610 error_report("rdma migration: recv polling control error!"); 1611 return ret; 1612 } 1613 1614 network_to_control((void *) rdma->wr_data[idx].control); 1615 memcpy(head, rdma->wr_data[idx].control, sizeof(RDMAControlHeader)); 1616 1617 trace_qemu_rdma_exchange_get_response_start(control_desc[expecting]); 1618 1619 if (expecting == RDMA_CONTROL_NONE) { 1620 trace_qemu_rdma_exchange_get_response_none(control_desc[head->type], 1621 head->type); 1622 } else if (head->type != expecting || head->type == RDMA_CONTROL_ERROR) { 1623 error_report("Was expecting a %s (%d) control message" 1624 ", but got: %s (%d), length: %d", 1625 control_desc[expecting], expecting, 1626 control_desc[head->type], head->type, head->len); 1627 return -EIO; 1628 } 1629 if (head->len > RDMA_CONTROL_MAX_BUFFER - sizeof(*head)) { 1630 error_report("too long length: %d\n", head->len); 1631 return -EINVAL; 1632 } 1633 if (sizeof(*head) + head->len != byte_len) { 1634 error_report("Malformed length: %d byte_len %d", head->len, byte_len); 1635 return -EINVAL; 1636 } 1637 1638 return 0; 1639 } 1640 1641 /* 1642 * When a RECV work request has completed, the work request's 1643 * buffer is pointed at the header. 1644 * 1645 * This will advance the pointer to the data portion 1646 * of the control message of the work request's buffer that 1647 * was populated after the work request finished. 1648 */ 1649 static void qemu_rdma_move_header(RDMAContext *rdma, int idx, 1650 RDMAControlHeader *head) 1651 { 1652 rdma->wr_data[idx].control_len = head->len; 1653 rdma->wr_data[idx].control_curr = 1654 rdma->wr_data[idx].control + sizeof(RDMAControlHeader); 1655 } 1656 1657 /* 1658 * This is an 'atomic' high-level operation to deliver a single, unified 1659 * control-channel message. 1660 * 1661 * Additionally, if the user is expecting some kind of reply to this message, 1662 * they can request a 'resp' response message be filled in by posting an 1663 * additional work request on behalf of the user and waiting for an additional 1664 * completion. 1665 * 1666 * The extra (optional) response is used during registration to us from having 1667 * to perform an *additional* exchange of message just to provide a response by 1668 * instead piggy-backing on the acknowledgement. 1669 */ 1670 static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head, 1671 uint8_t *data, RDMAControlHeader *resp, 1672 int *resp_idx, 1673 int (*callback)(RDMAContext *rdma)) 1674 { 1675 int ret = 0; 1676 1677 /* 1678 * Wait until the dest is ready before attempting to deliver the message 1679 * by waiting for a READY message. 1680 */ 1681 if (rdma->control_ready_expected) { 1682 RDMAControlHeader resp; 1683 ret = qemu_rdma_exchange_get_response(rdma, 1684 &resp, RDMA_CONTROL_READY, RDMA_WRID_READY); 1685 if (ret < 0) { 1686 return ret; 1687 } 1688 } 1689 1690 /* 1691 * If the user is expecting a response, post a WR in anticipation of it. 1692 */ 1693 if (resp) { 1694 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_DATA); 1695 if (ret) { 1696 error_report("rdma migration: error posting" 1697 " extra control recv for anticipated result!"); 1698 return ret; 1699 } 1700 } 1701 1702 /* 1703 * Post a WR to replace the one we just consumed for the READY message. 1704 */ 1705 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY); 1706 if (ret) { 1707 error_report("rdma migration: error posting first control recv!"); 1708 return ret; 1709 } 1710 1711 /* 1712 * Deliver the control message that was requested. 1713 */ 1714 ret = qemu_rdma_post_send_control(rdma, data, head); 1715 1716 if (ret < 0) { 1717 error_report("Failed to send control buffer!"); 1718 return ret; 1719 } 1720 1721 /* 1722 * If we're expecting a response, block and wait for it. 1723 */ 1724 if (resp) { 1725 if (callback) { 1726 trace_qemu_rdma_exchange_send_issue_callback(); 1727 ret = callback(rdma); 1728 if (ret < 0) { 1729 return ret; 1730 } 1731 } 1732 1733 trace_qemu_rdma_exchange_send_waiting(control_desc[resp->type]); 1734 ret = qemu_rdma_exchange_get_response(rdma, resp, 1735 resp->type, RDMA_WRID_DATA); 1736 1737 if (ret < 0) { 1738 return ret; 1739 } 1740 1741 qemu_rdma_move_header(rdma, RDMA_WRID_DATA, resp); 1742 if (resp_idx) { 1743 *resp_idx = RDMA_WRID_DATA; 1744 } 1745 trace_qemu_rdma_exchange_send_received(control_desc[resp->type]); 1746 } 1747 1748 rdma->control_ready_expected = 1; 1749 1750 return 0; 1751 } 1752 1753 /* 1754 * This is an 'atomic' high-level operation to receive a single, unified 1755 * control-channel message. 1756 */ 1757 static int qemu_rdma_exchange_recv(RDMAContext *rdma, RDMAControlHeader *head, 1758 int expecting) 1759 { 1760 RDMAControlHeader ready = { 1761 .len = 0, 1762 .type = RDMA_CONTROL_READY, 1763 .repeat = 1, 1764 }; 1765 int ret; 1766 1767 /* 1768 * Inform the source that we're ready to receive a message. 1769 */ 1770 ret = qemu_rdma_post_send_control(rdma, NULL, &ready); 1771 1772 if (ret < 0) { 1773 error_report("Failed to send control buffer!"); 1774 return ret; 1775 } 1776 1777 /* 1778 * Block and wait for the message. 1779 */ 1780 ret = qemu_rdma_exchange_get_response(rdma, head, 1781 expecting, RDMA_WRID_READY); 1782 1783 if (ret < 0) { 1784 return ret; 1785 } 1786 1787 qemu_rdma_move_header(rdma, RDMA_WRID_READY, head); 1788 1789 /* 1790 * Post a new RECV work request to replace the one we just consumed. 1791 */ 1792 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY); 1793 if (ret) { 1794 error_report("rdma migration: error posting second control recv!"); 1795 return ret; 1796 } 1797 1798 return 0; 1799 } 1800 1801 /* 1802 * Write an actual chunk of memory using RDMA. 1803 * 1804 * If we're using dynamic registration on the dest-side, we have to 1805 * send a registration command first. 1806 */ 1807 static int qemu_rdma_write_one(QEMUFile *f, RDMAContext *rdma, 1808 int current_index, uint64_t current_addr, 1809 uint64_t length) 1810 { 1811 struct ibv_sge sge; 1812 struct ibv_send_wr send_wr = { 0 }; 1813 struct ibv_send_wr *bad_wr; 1814 int reg_result_idx, ret, count = 0; 1815 uint64_t chunk, chunks; 1816 uint8_t *chunk_start, *chunk_end; 1817 RDMALocalBlock *block = &(rdma->local_ram_blocks.block[current_index]); 1818 RDMARegister reg; 1819 RDMARegisterResult *reg_result; 1820 RDMAControlHeader resp = { .type = RDMA_CONTROL_REGISTER_RESULT }; 1821 RDMAControlHeader head = { .len = sizeof(RDMARegister), 1822 .type = RDMA_CONTROL_REGISTER_REQUEST, 1823 .repeat = 1, 1824 }; 1825 1826 retry: 1827 sge.addr = (uint64_t)(block->local_host_addr + 1828 (current_addr - block->offset)); 1829 sge.length = length; 1830 1831 chunk = ram_chunk_index(block->local_host_addr, (uint8_t *) sge.addr); 1832 chunk_start = ram_chunk_start(block, chunk); 1833 1834 if (block->is_ram_block) { 1835 chunks = length / (1UL << RDMA_REG_CHUNK_SHIFT); 1836 1837 if (chunks && ((length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) { 1838 chunks--; 1839 } 1840 } else { 1841 chunks = block->length / (1UL << RDMA_REG_CHUNK_SHIFT); 1842 1843 if (chunks && ((block->length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) { 1844 chunks--; 1845 } 1846 } 1847 1848 trace_qemu_rdma_write_one_top(chunks + 1, 1849 (chunks + 1) * 1850 (1UL << RDMA_REG_CHUNK_SHIFT) / 1024 / 1024); 1851 1852 chunk_end = ram_chunk_end(block, chunk + chunks); 1853 1854 if (!rdma->pin_all) { 1855 #ifdef RDMA_UNREGISTRATION_EXAMPLE 1856 qemu_rdma_unregister_waiting(rdma); 1857 #endif 1858 } 1859 1860 while (test_bit(chunk, block->transit_bitmap)) { 1861 (void)count; 1862 trace_qemu_rdma_write_one_block(count++, current_index, chunk, 1863 sge.addr, length, rdma->nb_sent, block->nb_chunks); 1864 1865 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL); 1866 1867 if (ret < 0) { 1868 error_report("Failed to Wait for previous write to complete " 1869 "block %d chunk %" PRIu64 1870 " current %" PRIu64 " len %" PRIu64 " %d", 1871 current_index, chunk, sge.addr, length, rdma->nb_sent); 1872 return ret; 1873 } 1874 } 1875 1876 if (!rdma->pin_all || !block->is_ram_block) { 1877 if (!block->remote_keys[chunk]) { 1878 /* 1879 * This chunk has not yet been registered, so first check to see 1880 * if the entire chunk is zero. If so, tell the other size to 1881 * memset() + madvise() the entire chunk without RDMA. 1882 */ 1883 1884 if (can_use_buffer_find_nonzero_offset((void *)sge.addr, length) 1885 && buffer_find_nonzero_offset((void *)sge.addr, 1886 length) == length) { 1887 RDMACompress comp = { 1888 .offset = current_addr, 1889 .value = 0, 1890 .block_idx = current_index, 1891 .length = length, 1892 }; 1893 1894 head.len = sizeof(comp); 1895 head.type = RDMA_CONTROL_COMPRESS; 1896 1897 trace_qemu_rdma_write_one_zero(chunk, sge.length, 1898 current_index, current_addr); 1899 1900 compress_to_network(&comp); 1901 ret = qemu_rdma_exchange_send(rdma, &head, 1902 (uint8_t *) &comp, NULL, NULL, NULL); 1903 1904 if (ret < 0) { 1905 return -EIO; 1906 } 1907 1908 acct_update_position(f, sge.length, true); 1909 1910 return 1; 1911 } 1912 1913 /* 1914 * Otherwise, tell other side to register. 1915 */ 1916 reg.current_index = current_index; 1917 if (block->is_ram_block) { 1918 reg.key.current_addr = current_addr; 1919 } else { 1920 reg.key.chunk = chunk; 1921 } 1922 reg.chunks = chunks; 1923 1924 trace_qemu_rdma_write_one_sendreg(chunk, sge.length, current_index, 1925 current_addr); 1926 1927 register_to_network(®); 1928 ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) ®, 1929 &resp, ®_result_idx, NULL); 1930 if (ret < 0) { 1931 return ret; 1932 } 1933 1934 /* try to overlap this single registration with the one we sent. */ 1935 if (qemu_rdma_register_and_get_keys(rdma, block, 1936 (uint8_t *) sge.addr, 1937 &sge.lkey, NULL, chunk, 1938 chunk_start, chunk_end)) { 1939 error_report("cannot get lkey"); 1940 return -EINVAL; 1941 } 1942 1943 reg_result = (RDMARegisterResult *) 1944 rdma->wr_data[reg_result_idx].control_curr; 1945 1946 network_to_result(reg_result); 1947 1948 trace_qemu_rdma_write_one_recvregres(block->remote_keys[chunk], 1949 reg_result->rkey, chunk); 1950 1951 block->remote_keys[chunk] = reg_result->rkey; 1952 block->remote_host_addr = reg_result->host_addr; 1953 } else { 1954 /* already registered before */ 1955 if (qemu_rdma_register_and_get_keys(rdma, block, 1956 (uint8_t *)sge.addr, 1957 &sge.lkey, NULL, chunk, 1958 chunk_start, chunk_end)) { 1959 error_report("cannot get lkey!"); 1960 return -EINVAL; 1961 } 1962 } 1963 1964 send_wr.wr.rdma.rkey = block->remote_keys[chunk]; 1965 } else { 1966 send_wr.wr.rdma.rkey = block->remote_rkey; 1967 1968 if (qemu_rdma_register_and_get_keys(rdma, block, (uint8_t *)sge.addr, 1969 &sge.lkey, NULL, chunk, 1970 chunk_start, chunk_end)) { 1971 error_report("cannot get lkey!"); 1972 return -EINVAL; 1973 } 1974 } 1975 1976 /* 1977 * Encode the ram block index and chunk within this wrid. 1978 * We will use this information at the time of completion 1979 * to figure out which bitmap to check against and then which 1980 * chunk in the bitmap to look for. 1981 */ 1982 send_wr.wr_id = qemu_rdma_make_wrid(RDMA_WRID_RDMA_WRITE, 1983 current_index, chunk); 1984 1985 send_wr.opcode = IBV_WR_RDMA_WRITE; 1986 send_wr.send_flags = IBV_SEND_SIGNALED; 1987 send_wr.sg_list = &sge; 1988 send_wr.num_sge = 1; 1989 send_wr.wr.rdma.remote_addr = block->remote_host_addr + 1990 (current_addr - block->offset); 1991 1992 trace_qemu_rdma_write_one_post(chunk, sge.addr, send_wr.wr.rdma.remote_addr, 1993 sge.length); 1994 1995 /* 1996 * ibv_post_send() does not return negative error numbers, 1997 * per the specification they are positive - no idea why. 1998 */ 1999 ret = ibv_post_send(rdma->qp, &send_wr, &bad_wr); 2000 2001 if (ret == ENOMEM) { 2002 trace_qemu_rdma_write_one_queue_full(); 2003 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL); 2004 if (ret < 0) { 2005 error_report("rdma migration: failed to make " 2006 "room in full send queue! %d", ret); 2007 return ret; 2008 } 2009 2010 goto retry; 2011 2012 } else if (ret > 0) { 2013 perror("rdma migration: post rdma write failed"); 2014 return -ret; 2015 } 2016 2017 set_bit(chunk, block->transit_bitmap); 2018 acct_update_position(f, sge.length, false); 2019 rdma->total_writes++; 2020 2021 return 0; 2022 } 2023 2024 /* 2025 * Push out any unwritten RDMA operations. 2026 * 2027 * We support sending out multiple chunks at the same time. 2028 * Not all of them need to get signaled in the completion queue. 2029 */ 2030 static int qemu_rdma_write_flush(QEMUFile *f, RDMAContext *rdma) 2031 { 2032 int ret; 2033 2034 if (!rdma->current_length) { 2035 return 0; 2036 } 2037 2038 ret = qemu_rdma_write_one(f, rdma, 2039 rdma->current_index, rdma->current_addr, rdma->current_length); 2040 2041 if (ret < 0) { 2042 return ret; 2043 } 2044 2045 if (ret == 0) { 2046 rdma->nb_sent++; 2047 trace_qemu_rdma_write_flush(rdma->nb_sent); 2048 } 2049 2050 rdma->current_length = 0; 2051 rdma->current_addr = 0; 2052 2053 return 0; 2054 } 2055 2056 static inline int qemu_rdma_buffer_mergable(RDMAContext *rdma, 2057 uint64_t offset, uint64_t len) 2058 { 2059 RDMALocalBlock *block; 2060 uint8_t *host_addr; 2061 uint8_t *chunk_end; 2062 2063 if (rdma->current_index < 0) { 2064 return 0; 2065 } 2066 2067 if (rdma->current_chunk < 0) { 2068 return 0; 2069 } 2070 2071 block = &(rdma->local_ram_blocks.block[rdma->current_index]); 2072 host_addr = block->local_host_addr + (offset - block->offset); 2073 chunk_end = ram_chunk_end(block, rdma->current_chunk); 2074 2075 if (rdma->current_length == 0) { 2076 return 0; 2077 } 2078 2079 /* 2080 * Only merge into chunk sequentially. 2081 */ 2082 if (offset != (rdma->current_addr + rdma->current_length)) { 2083 return 0; 2084 } 2085 2086 if (offset < block->offset) { 2087 return 0; 2088 } 2089 2090 if ((offset + len) > (block->offset + block->length)) { 2091 return 0; 2092 } 2093 2094 if ((host_addr + len) > chunk_end) { 2095 return 0; 2096 } 2097 2098 return 1; 2099 } 2100 2101 /* 2102 * We're not actually writing here, but doing three things: 2103 * 2104 * 1. Identify the chunk the buffer belongs to. 2105 * 2. If the chunk is full or the buffer doesn't belong to the current 2106 * chunk, then start a new chunk and flush() the old chunk. 2107 * 3. To keep the hardware busy, we also group chunks into batches 2108 * and only require that a batch gets acknowledged in the completion 2109 * qeueue instead of each individual chunk. 2110 */ 2111 static int qemu_rdma_write(QEMUFile *f, RDMAContext *rdma, 2112 uint64_t block_offset, uint64_t offset, 2113 uint64_t len) 2114 { 2115 uint64_t current_addr = block_offset + offset; 2116 uint64_t index = rdma->current_index; 2117 uint64_t chunk = rdma->current_chunk; 2118 int ret; 2119 2120 /* If we cannot merge it, we flush the current buffer first. */ 2121 if (!qemu_rdma_buffer_mergable(rdma, current_addr, len)) { 2122 ret = qemu_rdma_write_flush(f, rdma); 2123 if (ret) { 2124 return ret; 2125 } 2126 rdma->current_length = 0; 2127 rdma->current_addr = current_addr; 2128 2129 ret = qemu_rdma_search_ram_block(rdma, block_offset, 2130 offset, len, &index, &chunk); 2131 if (ret) { 2132 error_report("ram block search failed"); 2133 return ret; 2134 } 2135 rdma->current_index = index; 2136 rdma->current_chunk = chunk; 2137 } 2138 2139 /* merge it */ 2140 rdma->current_length += len; 2141 2142 /* flush it if buffer is too large */ 2143 if (rdma->current_length >= RDMA_MERGE_MAX) { 2144 return qemu_rdma_write_flush(f, rdma); 2145 } 2146 2147 return 0; 2148 } 2149 2150 static void qemu_rdma_cleanup(RDMAContext *rdma) 2151 { 2152 struct rdma_cm_event *cm_event; 2153 int ret, idx; 2154 2155 if (rdma->cm_id && rdma->connected) { 2156 if (rdma->error_state) { 2157 RDMAControlHeader head = { .len = 0, 2158 .type = RDMA_CONTROL_ERROR, 2159 .repeat = 1, 2160 }; 2161 error_report("Early error. Sending error."); 2162 qemu_rdma_post_send_control(rdma, NULL, &head); 2163 } 2164 2165 ret = rdma_disconnect(rdma->cm_id); 2166 if (!ret) { 2167 trace_qemu_rdma_cleanup_waiting_for_disconnect(); 2168 ret = rdma_get_cm_event(rdma->channel, &cm_event); 2169 if (!ret) { 2170 rdma_ack_cm_event(cm_event); 2171 } 2172 } 2173 trace_qemu_rdma_cleanup_disconnect(); 2174 rdma->connected = false; 2175 } 2176 2177 g_free(rdma->block); 2178 rdma->block = NULL; 2179 2180 for (idx = 0; idx < RDMA_WRID_MAX; idx++) { 2181 if (rdma->wr_data[idx].control_mr) { 2182 rdma->total_registrations--; 2183 ibv_dereg_mr(rdma->wr_data[idx].control_mr); 2184 } 2185 rdma->wr_data[idx].control_mr = NULL; 2186 } 2187 2188 if (rdma->local_ram_blocks.block) { 2189 while (rdma->local_ram_blocks.nb_blocks) { 2190 __qemu_rdma_delete_block(rdma, 2191 rdma->local_ram_blocks.block->offset); 2192 } 2193 } 2194 2195 if (rdma->cq) { 2196 ibv_destroy_cq(rdma->cq); 2197 rdma->cq = NULL; 2198 } 2199 if (rdma->comp_channel) { 2200 ibv_destroy_comp_channel(rdma->comp_channel); 2201 rdma->comp_channel = NULL; 2202 } 2203 if (rdma->pd) { 2204 ibv_dealloc_pd(rdma->pd); 2205 rdma->pd = NULL; 2206 } 2207 if (rdma->listen_id) { 2208 rdma_destroy_id(rdma->listen_id); 2209 rdma->listen_id = NULL; 2210 } 2211 if (rdma->cm_id) { 2212 if (rdma->qp) { 2213 rdma_destroy_qp(rdma->cm_id); 2214 rdma->qp = NULL; 2215 } 2216 rdma_destroy_id(rdma->cm_id); 2217 rdma->cm_id = NULL; 2218 } 2219 if (rdma->channel) { 2220 rdma_destroy_event_channel(rdma->channel); 2221 rdma->channel = NULL; 2222 } 2223 g_free(rdma->host); 2224 rdma->host = NULL; 2225 } 2226 2227 2228 static int qemu_rdma_source_init(RDMAContext *rdma, Error **errp, bool pin_all) 2229 { 2230 int ret, idx; 2231 Error *local_err = NULL, **temp = &local_err; 2232 2233 /* 2234 * Will be validated against destination's actual capabilities 2235 * after the connect() completes. 2236 */ 2237 rdma->pin_all = pin_all; 2238 2239 ret = qemu_rdma_resolve_host(rdma, temp); 2240 if (ret) { 2241 goto err_rdma_source_init; 2242 } 2243 2244 ret = qemu_rdma_alloc_pd_cq(rdma); 2245 if (ret) { 2246 ERROR(temp, "rdma migration: error allocating pd and cq! Your mlock()" 2247 " limits may be too low. Please check $ ulimit -a # and " 2248 "search for 'ulimit -l' in the output"); 2249 goto err_rdma_source_init; 2250 } 2251 2252 ret = qemu_rdma_alloc_qp(rdma); 2253 if (ret) { 2254 ERROR(temp, "rdma migration: error allocating qp!"); 2255 goto err_rdma_source_init; 2256 } 2257 2258 ret = qemu_rdma_init_ram_blocks(rdma); 2259 if (ret) { 2260 ERROR(temp, "rdma migration: error initializing ram blocks!"); 2261 goto err_rdma_source_init; 2262 } 2263 2264 for (idx = 0; idx < RDMA_WRID_MAX; idx++) { 2265 ret = qemu_rdma_reg_control(rdma, idx); 2266 if (ret) { 2267 ERROR(temp, "rdma migration: error registering %d control!", 2268 idx); 2269 goto err_rdma_source_init; 2270 } 2271 } 2272 2273 return 0; 2274 2275 err_rdma_source_init: 2276 error_propagate(errp, local_err); 2277 qemu_rdma_cleanup(rdma); 2278 return -1; 2279 } 2280 2281 static int qemu_rdma_connect(RDMAContext *rdma, Error **errp) 2282 { 2283 RDMACapabilities cap = { 2284 .version = RDMA_CONTROL_VERSION_CURRENT, 2285 .flags = 0, 2286 }; 2287 struct rdma_conn_param conn_param = { .initiator_depth = 2, 2288 .retry_count = 5, 2289 .private_data = &cap, 2290 .private_data_len = sizeof(cap), 2291 }; 2292 struct rdma_cm_event *cm_event; 2293 int ret; 2294 2295 /* 2296 * Only negotiate the capability with destination if the user 2297 * on the source first requested the capability. 2298 */ 2299 if (rdma->pin_all) { 2300 trace_qemu_rdma_connect_pin_all_requested(); 2301 cap.flags |= RDMA_CAPABILITY_PIN_ALL; 2302 } 2303 2304 caps_to_network(&cap); 2305 2306 ret = rdma_connect(rdma->cm_id, &conn_param); 2307 if (ret) { 2308 perror("rdma_connect"); 2309 ERROR(errp, "connecting to destination!"); 2310 rdma_destroy_id(rdma->cm_id); 2311 rdma->cm_id = NULL; 2312 goto err_rdma_source_connect; 2313 } 2314 2315 ret = rdma_get_cm_event(rdma->channel, &cm_event); 2316 if (ret) { 2317 perror("rdma_get_cm_event after rdma_connect"); 2318 ERROR(errp, "connecting to destination!"); 2319 rdma_ack_cm_event(cm_event); 2320 rdma_destroy_id(rdma->cm_id); 2321 rdma->cm_id = NULL; 2322 goto err_rdma_source_connect; 2323 } 2324 2325 if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) { 2326 perror("rdma_get_cm_event != EVENT_ESTABLISHED after rdma_connect"); 2327 ERROR(errp, "connecting to destination!"); 2328 rdma_ack_cm_event(cm_event); 2329 rdma_destroy_id(rdma->cm_id); 2330 rdma->cm_id = NULL; 2331 goto err_rdma_source_connect; 2332 } 2333 rdma->connected = true; 2334 2335 memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap)); 2336 network_to_caps(&cap); 2337 2338 /* 2339 * Verify that the *requested* capabilities are supported by the destination 2340 * and disable them otherwise. 2341 */ 2342 if (rdma->pin_all && !(cap.flags & RDMA_CAPABILITY_PIN_ALL)) { 2343 ERROR(errp, "Server cannot support pinning all memory. " 2344 "Will register memory dynamically."); 2345 rdma->pin_all = false; 2346 } 2347 2348 trace_qemu_rdma_connect_pin_all_outcome(rdma->pin_all); 2349 2350 rdma_ack_cm_event(cm_event); 2351 2352 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY); 2353 if (ret) { 2354 ERROR(errp, "posting second control recv!"); 2355 goto err_rdma_source_connect; 2356 } 2357 2358 rdma->control_ready_expected = 1; 2359 rdma->nb_sent = 0; 2360 return 0; 2361 2362 err_rdma_source_connect: 2363 qemu_rdma_cleanup(rdma); 2364 return -1; 2365 } 2366 2367 static int qemu_rdma_dest_init(RDMAContext *rdma, Error **errp) 2368 { 2369 int ret = -EINVAL, idx; 2370 struct rdma_cm_id *listen_id; 2371 char ip[40] = "unknown"; 2372 struct rdma_addrinfo *res; 2373 char port_str[16]; 2374 2375 for (idx = 0; idx < RDMA_WRID_MAX; idx++) { 2376 rdma->wr_data[idx].control_len = 0; 2377 rdma->wr_data[idx].control_curr = NULL; 2378 } 2379 2380 if (rdma->host == NULL) { 2381 ERROR(errp, "RDMA host is not set!"); 2382 rdma->error_state = -EINVAL; 2383 return -1; 2384 } 2385 /* create CM channel */ 2386 rdma->channel = rdma_create_event_channel(); 2387 if (!rdma->channel) { 2388 ERROR(errp, "could not create rdma event channel"); 2389 rdma->error_state = -EINVAL; 2390 return -1; 2391 } 2392 2393 /* create CM id */ 2394 ret = rdma_create_id(rdma->channel, &listen_id, NULL, RDMA_PS_TCP); 2395 if (ret) { 2396 ERROR(errp, "could not create cm_id!"); 2397 goto err_dest_init_create_listen_id; 2398 } 2399 2400 snprintf(port_str, 16, "%d", rdma->port); 2401 port_str[15] = '\0'; 2402 2403 if (rdma->host && strcmp("", rdma->host)) { 2404 struct rdma_addrinfo *e; 2405 2406 ret = rdma_getaddrinfo(rdma->host, port_str, NULL, &res); 2407 if (ret < 0) { 2408 ERROR(errp, "could not rdma_getaddrinfo address %s", rdma->host); 2409 goto err_dest_init_bind_addr; 2410 } 2411 2412 for (e = res; e != NULL; e = e->ai_next) { 2413 inet_ntop(e->ai_family, 2414 &((struct sockaddr_in *) e->ai_dst_addr)->sin_addr, ip, sizeof ip); 2415 trace_qemu_rdma_dest_init_trying(rdma->host, ip); 2416 ret = rdma_bind_addr(listen_id, e->ai_dst_addr); 2417 if (!ret) { 2418 if (e->ai_family == AF_INET6) { 2419 ret = qemu_rdma_broken_ipv6_kernel(errp, listen_id->verbs); 2420 if (ret) { 2421 continue; 2422 } 2423 } 2424 2425 goto listen; 2426 } 2427 } 2428 2429 ERROR(errp, "Error: could not rdma_bind_addr!"); 2430 goto err_dest_init_bind_addr; 2431 } else { 2432 ERROR(errp, "migration host and port not specified!"); 2433 ret = -EINVAL; 2434 goto err_dest_init_bind_addr; 2435 } 2436 listen: 2437 2438 rdma->listen_id = listen_id; 2439 qemu_rdma_dump_gid("dest_init", listen_id); 2440 return 0; 2441 2442 err_dest_init_bind_addr: 2443 rdma_destroy_id(listen_id); 2444 err_dest_init_create_listen_id: 2445 rdma_destroy_event_channel(rdma->channel); 2446 rdma->channel = NULL; 2447 rdma->error_state = ret; 2448 return ret; 2449 2450 } 2451 2452 static void *qemu_rdma_data_init(const char *host_port, Error **errp) 2453 { 2454 RDMAContext *rdma = NULL; 2455 InetSocketAddress *addr; 2456 2457 if (host_port) { 2458 rdma = g_malloc0(sizeof(RDMAContext)); 2459 memset(rdma, 0, sizeof(RDMAContext)); 2460 rdma->current_index = -1; 2461 rdma->current_chunk = -1; 2462 2463 addr = inet_parse(host_port, NULL); 2464 if (addr != NULL) { 2465 rdma->port = atoi(addr->port); 2466 rdma->host = g_strdup(addr->host); 2467 } else { 2468 ERROR(errp, "bad RDMA migration address '%s'", host_port); 2469 g_free(rdma); 2470 rdma = NULL; 2471 } 2472 2473 qapi_free_InetSocketAddress(addr); 2474 } 2475 2476 return rdma; 2477 } 2478 2479 /* 2480 * QEMUFile interface to the control channel. 2481 * SEND messages for control only. 2482 * VM's ram is handled with regular RDMA messages. 2483 */ 2484 static int qemu_rdma_put_buffer(void *opaque, const uint8_t *buf, 2485 int64_t pos, int size) 2486 { 2487 QEMUFileRDMA *r = opaque; 2488 QEMUFile *f = r->file; 2489 RDMAContext *rdma = r->rdma; 2490 size_t remaining = size; 2491 uint8_t * data = (void *) buf; 2492 int ret; 2493 2494 CHECK_ERROR_STATE(); 2495 2496 /* 2497 * Push out any writes that 2498 * we're queued up for VM's ram. 2499 */ 2500 ret = qemu_rdma_write_flush(f, rdma); 2501 if (ret < 0) { 2502 rdma->error_state = ret; 2503 return ret; 2504 } 2505 2506 while (remaining) { 2507 RDMAControlHeader head; 2508 2509 r->len = MIN(remaining, RDMA_SEND_INCREMENT); 2510 remaining -= r->len; 2511 2512 head.len = r->len; 2513 head.type = RDMA_CONTROL_QEMU_FILE; 2514 2515 ret = qemu_rdma_exchange_send(rdma, &head, data, NULL, NULL, NULL); 2516 2517 if (ret < 0) { 2518 rdma->error_state = ret; 2519 return ret; 2520 } 2521 2522 data += r->len; 2523 } 2524 2525 return size; 2526 } 2527 2528 static size_t qemu_rdma_fill(RDMAContext *rdma, uint8_t *buf, 2529 int size, int idx) 2530 { 2531 size_t len = 0; 2532 2533 if (rdma->wr_data[idx].control_len) { 2534 trace_qemu_rdma_fill(rdma->wr_data[idx].control_len, size); 2535 2536 len = MIN(size, rdma->wr_data[idx].control_len); 2537 memcpy(buf, rdma->wr_data[idx].control_curr, len); 2538 rdma->wr_data[idx].control_curr += len; 2539 rdma->wr_data[idx].control_len -= len; 2540 } 2541 2542 return len; 2543 } 2544 2545 /* 2546 * QEMUFile interface to the control channel. 2547 * RDMA links don't use bytestreams, so we have to 2548 * return bytes to QEMUFile opportunistically. 2549 */ 2550 static int qemu_rdma_get_buffer(void *opaque, uint8_t *buf, 2551 int64_t pos, int size) 2552 { 2553 QEMUFileRDMA *r = opaque; 2554 RDMAContext *rdma = r->rdma; 2555 RDMAControlHeader head; 2556 int ret = 0; 2557 2558 CHECK_ERROR_STATE(); 2559 2560 /* 2561 * First, we hold on to the last SEND message we 2562 * were given and dish out the bytes until we run 2563 * out of bytes. 2564 */ 2565 r->len = qemu_rdma_fill(r->rdma, buf, size, 0); 2566 if (r->len) { 2567 return r->len; 2568 } 2569 2570 /* 2571 * Once we run out, we block and wait for another 2572 * SEND message to arrive. 2573 */ 2574 ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_QEMU_FILE); 2575 2576 if (ret < 0) { 2577 rdma->error_state = ret; 2578 return ret; 2579 } 2580 2581 /* 2582 * SEND was received with new bytes, now try again. 2583 */ 2584 return qemu_rdma_fill(r->rdma, buf, size, 0); 2585 } 2586 2587 /* 2588 * Block until all the outstanding chunks have been delivered by the hardware. 2589 */ 2590 static int qemu_rdma_drain_cq(QEMUFile *f, RDMAContext *rdma) 2591 { 2592 int ret; 2593 2594 if (qemu_rdma_write_flush(f, rdma) < 0) { 2595 return -EIO; 2596 } 2597 2598 while (rdma->nb_sent) { 2599 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL); 2600 if (ret < 0) { 2601 error_report("rdma migration: complete polling error!"); 2602 return -EIO; 2603 } 2604 } 2605 2606 qemu_rdma_unregister_waiting(rdma); 2607 2608 return 0; 2609 } 2610 2611 static int qemu_rdma_close(void *opaque) 2612 { 2613 trace_qemu_rdma_close(); 2614 QEMUFileRDMA *r = opaque; 2615 if (r->rdma) { 2616 qemu_rdma_cleanup(r->rdma); 2617 g_free(r->rdma); 2618 } 2619 g_free(r); 2620 return 0; 2621 } 2622 2623 /* 2624 * Parameters: 2625 * @offset == 0 : 2626 * This means that 'block_offset' is a full virtual address that does not 2627 * belong to a RAMBlock of the virtual machine and instead 2628 * represents a private malloc'd memory area that the caller wishes to 2629 * transfer. 2630 * 2631 * @offset != 0 : 2632 * Offset is an offset to be added to block_offset and used 2633 * to also lookup the corresponding RAMBlock. 2634 * 2635 * @size > 0 : 2636 * Initiate an transfer this size. 2637 * 2638 * @size == 0 : 2639 * A 'hint' or 'advice' that means that we wish to speculatively 2640 * and asynchronously unregister this memory. In this case, there is no 2641 * guarantee that the unregister will actually happen, for example, 2642 * if the memory is being actively transmitted. Additionally, the memory 2643 * may be re-registered at any future time if a write within the same 2644 * chunk was requested again, even if you attempted to unregister it 2645 * here. 2646 * 2647 * @size < 0 : TODO, not yet supported 2648 * Unregister the memory NOW. This means that the caller does not 2649 * expect there to be any future RDMA transfers and we just want to clean 2650 * things up. This is used in case the upper layer owns the memory and 2651 * cannot wait for qemu_fclose() to occur. 2652 * 2653 * @bytes_sent : User-specificed pointer to indicate how many bytes were 2654 * sent. Usually, this will not be more than a few bytes of 2655 * the protocol because most transfers are sent asynchronously. 2656 */ 2657 static size_t qemu_rdma_save_page(QEMUFile *f, void *opaque, 2658 ram_addr_t block_offset, ram_addr_t offset, 2659 size_t size, int *bytes_sent) 2660 { 2661 QEMUFileRDMA *rfile = opaque; 2662 RDMAContext *rdma = rfile->rdma; 2663 int ret; 2664 2665 CHECK_ERROR_STATE(); 2666 2667 qemu_fflush(f); 2668 2669 if (size > 0) { 2670 /* 2671 * Add this page to the current 'chunk'. If the chunk 2672 * is full, or the page doen't belong to the current chunk, 2673 * an actual RDMA write will occur and a new chunk will be formed. 2674 */ 2675 ret = qemu_rdma_write(f, rdma, block_offset, offset, size); 2676 if (ret < 0) { 2677 error_report("rdma migration: write error! %d", ret); 2678 goto err; 2679 } 2680 2681 /* 2682 * We always return 1 bytes because the RDMA 2683 * protocol is completely asynchronous. We do not yet know 2684 * whether an identified chunk is zero or not because we're 2685 * waiting for other pages to potentially be merged with 2686 * the current chunk. So, we have to call qemu_update_position() 2687 * later on when the actual write occurs. 2688 */ 2689 if (bytes_sent) { 2690 *bytes_sent = 1; 2691 } 2692 } else { 2693 uint64_t index, chunk; 2694 2695 /* TODO: Change QEMUFileOps prototype to be signed: size_t => long 2696 if (size < 0) { 2697 ret = qemu_rdma_drain_cq(f, rdma); 2698 if (ret < 0) { 2699 fprintf(stderr, "rdma: failed to synchronously drain" 2700 " completion queue before unregistration.\n"); 2701 goto err; 2702 } 2703 } 2704 */ 2705 2706 ret = qemu_rdma_search_ram_block(rdma, block_offset, 2707 offset, size, &index, &chunk); 2708 2709 if (ret) { 2710 error_report("ram block search failed"); 2711 goto err; 2712 } 2713 2714 qemu_rdma_signal_unregister(rdma, index, chunk, 0); 2715 2716 /* 2717 * TODO: Synchronous, guaranteed unregistration (should not occur during 2718 * fast-path). Otherwise, unregisters will process on the next call to 2719 * qemu_rdma_drain_cq() 2720 if (size < 0) { 2721 qemu_rdma_unregister_waiting(rdma); 2722 } 2723 */ 2724 } 2725 2726 /* 2727 * Drain the Completion Queue if possible, but do not block, 2728 * just poll. 2729 * 2730 * If nothing to poll, the end of the iteration will do this 2731 * again to make sure we don't overflow the request queue. 2732 */ 2733 while (1) { 2734 uint64_t wr_id, wr_id_in; 2735 int ret = qemu_rdma_poll(rdma, &wr_id_in, NULL); 2736 if (ret < 0) { 2737 error_report("rdma migration: polling error! %d", ret); 2738 goto err; 2739 } 2740 2741 wr_id = wr_id_in & RDMA_WRID_TYPE_MASK; 2742 2743 if (wr_id == RDMA_WRID_NONE) { 2744 break; 2745 } 2746 } 2747 2748 return RAM_SAVE_CONTROL_DELAYED; 2749 err: 2750 rdma->error_state = ret; 2751 return ret; 2752 } 2753 2754 static int qemu_rdma_accept(RDMAContext *rdma) 2755 { 2756 RDMACapabilities cap; 2757 struct rdma_conn_param conn_param = { 2758 .responder_resources = 2, 2759 .private_data = &cap, 2760 .private_data_len = sizeof(cap), 2761 }; 2762 struct rdma_cm_event *cm_event; 2763 struct ibv_context *verbs; 2764 int ret = -EINVAL; 2765 int idx; 2766 2767 ret = rdma_get_cm_event(rdma->channel, &cm_event); 2768 if (ret) { 2769 goto err_rdma_dest_wait; 2770 } 2771 2772 if (cm_event->event != RDMA_CM_EVENT_CONNECT_REQUEST) { 2773 rdma_ack_cm_event(cm_event); 2774 goto err_rdma_dest_wait; 2775 } 2776 2777 memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap)); 2778 2779 network_to_caps(&cap); 2780 2781 if (cap.version < 1 || cap.version > RDMA_CONTROL_VERSION_CURRENT) { 2782 error_report("Unknown source RDMA version: %d, bailing...", 2783 cap.version); 2784 rdma_ack_cm_event(cm_event); 2785 goto err_rdma_dest_wait; 2786 } 2787 2788 /* 2789 * Respond with only the capabilities this version of QEMU knows about. 2790 */ 2791 cap.flags &= known_capabilities; 2792 2793 /* 2794 * Enable the ones that we do know about. 2795 * Add other checks here as new ones are introduced. 2796 */ 2797 if (cap.flags & RDMA_CAPABILITY_PIN_ALL) { 2798 rdma->pin_all = true; 2799 } 2800 2801 rdma->cm_id = cm_event->id; 2802 verbs = cm_event->id->verbs; 2803 2804 rdma_ack_cm_event(cm_event); 2805 2806 trace_qemu_rdma_accept_pin_state(rdma->pin_all); 2807 2808 caps_to_network(&cap); 2809 2810 trace_qemu_rdma_accept_pin_verbsc(verbs); 2811 2812 if (!rdma->verbs) { 2813 rdma->verbs = verbs; 2814 } else if (rdma->verbs != verbs) { 2815 error_report("ibv context not matching %p, %p!", rdma->verbs, 2816 verbs); 2817 goto err_rdma_dest_wait; 2818 } 2819 2820 qemu_rdma_dump_id("dest_init", verbs); 2821 2822 ret = qemu_rdma_alloc_pd_cq(rdma); 2823 if (ret) { 2824 error_report("rdma migration: error allocating pd and cq!"); 2825 goto err_rdma_dest_wait; 2826 } 2827 2828 ret = qemu_rdma_alloc_qp(rdma); 2829 if (ret) { 2830 error_report("rdma migration: error allocating qp!"); 2831 goto err_rdma_dest_wait; 2832 } 2833 2834 ret = qemu_rdma_init_ram_blocks(rdma); 2835 if (ret) { 2836 error_report("rdma migration: error initializing ram blocks!"); 2837 goto err_rdma_dest_wait; 2838 } 2839 2840 for (idx = 0; idx < RDMA_WRID_MAX; idx++) { 2841 ret = qemu_rdma_reg_control(rdma, idx); 2842 if (ret) { 2843 error_report("rdma: error registering %d control", idx); 2844 goto err_rdma_dest_wait; 2845 } 2846 } 2847 2848 qemu_set_fd_handler2(rdma->channel->fd, NULL, NULL, NULL, NULL); 2849 2850 ret = rdma_accept(rdma->cm_id, &conn_param); 2851 if (ret) { 2852 error_report("rdma_accept returns %d", ret); 2853 goto err_rdma_dest_wait; 2854 } 2855 2856 ret = rdma_get_cm_event(rdma->channel, &cm_event); 2857 if (ret) { 2858 error_report("rdma_accept get_cm_event failed %d", ret); 2859 goto err_rdma_dest_wait; 2860 } 2861 2862 if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) { 2863 error_report("rdma_accept not event established"); 2864 rdma_ack_cm_event(cm_event); 2865 goto err_rdma_dest_wait; 2866 } 2867 2868 rdma_ack_cm_event(cm_event); 2869 rdma->connected = true; 2870 2871 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY); 2872 if (ret) { 2873 error_report("rdma migration: error posting second control recv"); 2874 goto err_rdma_dest_wait; 2875 } 2876 2877 qemu_rdma_dump_gid("dest_connect", rdma->cm_id); 2878 2879 return 0; 2880 2881 err_rdma_dest_wait: 2882 rdma->error_state = ret; 2883 qemu_rdma_cleanup(rdma); 2884 return ret; 2885 } 2886 2887 /* 2888 * During each iteration of the migration, we listen for instructions 2889 * by the source VM to perform dynamic page registrations before they 2890 * can perform RDMA operations. 2891 * 2892 * We respond with the 'rkey'. 2893 * 2894 * Keep doing this until the source tells us to stop. 2895 */ 2896 static int qemu_rdma_registration_handle(QEMUFile *f, void *opaque, 2897 uint64_t flags) 2898 { 2899 RDMAControlHeader reg_resp = { .len = sizeof(RDMARegisterResult), 2900 .type = RDMA_CONTROL_REGISTER_RESULT, 2901 .repeat = 0, 2902 }; 2903 RDMAControlHeader unreg_resp = { .len = 0, 2904 .type = RDMA_CONTROL_UNREGISTER_FINISHED, 2905 .repeat = 0, 2906 }; 2907 RDMAControlHeader blocks = { .type = RDMA_CONTROL_RAM_BLOCKS_RESULT, 2908 .repeat = 1 }; 2909 QEMUFileRDMA *rfile = opaque; 2910 RDMAContext *rdma = rfile->rdma; 2911 RDMALocalBlocks *local = &rdma->local_ram_blocks; 2912 RDMAControlHeader head; 2913 RDMARegister *reg, *registers; 2914 RDMACompress *comp; 2915 RDMARegisterResult *reg_result; 2916 static RDMARegisterResult results[RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE]; 2917 RDMALocalBlock *block; 2918 void *host_addr; 2919 int ret = 0; 2920 int idx = 0; 2921 int count = 0; 2922 int i = 0; 2923 2924 CHECK_ERROR_STATE(); 2925 2926 do { 2927 trace_qemu_rdma_registration_handle_wait(flags); 2928 2929 ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_NONE); 2930 2931 if (ret < 0) { 2932 break; 2933 } 2934 2935 if (head.repeat > RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE) { 2936 error_report("rdma: Too many requests in this message (%d)." 2937 "Bailing.", head.repeat); 2938 ret = -EIO; 2939 break; 2940 } 2941 2942 switch (head.type) { 2943 case RDMA_CONTROL_COMPRESS: 2944 comp = (RDMACompress *) rdma->wr_data[idx].control_curr; 2945 network_to_compress(comp); 2946 2947 trace_qemu_rdma_registration_handle_compress(comp->length, 2948 comp->block_idx, 2949 comp->offset); 2950 block = &(rdma->local_ram_blocks.block[comp->block_idx]); 2951 2952 host_addr = block->local_host_addr + 2953 (comp->offset - block->offset); 2954 2955 ram_handle_compressed(host_addr, comp->value, comp->length); 2956 break; 2957 2958 case RDMA_CONTROL_REGISTER_FINISHED: 2959 trace_qemu_rdma_registration_handle_finished(); 2960 goto out; 2961 2962 case RDMA_CONTROL_RAM_BLOCKS_REQUEST: 2963 trace_qemu_rdma_registration_handle_ram_blocks(); 2964 2965 if (rdma->pin_all) { 2966 ret = qemu_rdma_reg_whole_ram_blocks(rdma); 2967 if (ret) { 2968 error_report("rdma migration: error dest " 2969 "registering ram blocks"); 2970 goto out; 2971 } 2972 } 2973 2974 /* 2975 * Dest uses this to prepare to transmit the RAMBlock descriptions 2976 * to the source VM after connection setup. 2977 * Both sides use the "remote" structure to communicate and update 2978 * their "local" descriptions with what was sent. 2979 */ 2980 for (i = 0; i < local->nb_blocks; i++) { 2981 rdma->block[i].remote_host_addr = 2982 (uint64_t)(local->block[i].local_host_addr); 2983 2984 if (rdma->pin_all) { 2985 rdma->block[i].remote_rkey = local->block[i].mr->rkey; 2986 } 2987 2988 rdma->block[i].offset = local->block[i].offset; 2989 rdma->block[i].length = local->block[i].length; 2990 2991 remote_block_to_network(&rdma->block[i]); 2992 } 2993 2994 blocks.len = rdma->local_ram_blocks.nb_blocks 2995 * sizeof(RDMARemoteBlock); 2996 2997 2998 ret = qemu_rdma_post_send_control(rdma, 2999 (uint8_t *) rdma->block, &blocks); 3000 3001 if (ret < 0) { 3002 error_report("rdma migration: error sending remote info"); 3003 goto out; 3004 } 3005 3006 break; 3007 case RDMA_CONTROL_REGISTER_REQUEST: 3008 trace_qemu_rdma_registration_handle_register(head.repeat); 3009 3010 reg_resp.repeat = head.repeat; 3011 registers = (RDMARegister *) rdma->wr_data[idx].control_curr; 3012 3013 for (count = 0; count < head.repeat; count++) { 3014 uint64_t chunk; 3015 uint8_t *chunk_start, *chunk_end; 3016 3017 reg = ®isters[count]; 3018 network_to_register(reg); 3019 3020 reg_result = &results[count]; 3021 3022 trace_qemu_rdma_registration_handle_register_loop(count, 3023 reg->current_index, reg->key.current_addr, reg->chunks); 3024 3025 block = &(rdma->local_ram_blocks.block[reg->current_index]); 3026 if (block->is_ram_block) { 3027 host_addr = (block->local_host_addr + 3028 (reg->key.current_addr - block->offset)); 3029 chunk = ram_chunk_index(block->local_host_addr, 3030 (uint8_t *) host_addr); 3031 } else { 3032 chunk = reg->key.chunk; 3033 host_addr = block->local_host_addr + 3034 (reg->key.chunk * (1UL << RDMA_REG_CHUNK_SHIFT)); 3035 } 3036 chunk_start = ram_chunk_start(block, chunk); 3037 chunk_end = ram_chunk_end(block, chunk + reg->chunks); 3038 if (qemu_rdma_register_and_get_keys(rdma, block, 3039 (uint8_t *)host_addr, NULL, ®_result->rkey, 3040 chunk, chunk_start, chunk_end)) { 3041 error_report("cannot get rkey"); 3042 ret = -EINVAL; 3043 goto out; 3044 } 3045 3046 reg_result->host_addr = (uint64_t) block->local_host_addr; 3047 3048 trace_qemu_rdma_registration_handle_register_rkey( 3049 reg_result->rkey); 3050 3051 result_to_network(reg_result); 3052 } 3053 3054 ret = qemu_rdma_post_send_control(rdma, 3055 (uint8_t *) results, ®_resp); 3056 3057 if (ret < 0) { 3058 error_report("Failed to send control buffer"); 3059 goto out; 3060 } 3061 break; 3062 case RDMA_CONTROL_UNREGISTER_REQUEST: 3063 trace_qemu_rdma_registration_handle_unregister(head.repeat); 3064 unreg_resp.repeat = head.repeat; 3065 registers = (RDMARegister *) rdma->wr_data[idx].control_curr; 3066 3067 for (count = 0; count < head.repeat; count++) { 3068 reg = ®isters[count]; 3069 network_to_register(reg); 3070 3071 trace_qemu_rdma_registration_handle_unregister_loop(count, 3072 reg->current_index, reg->key.chunk); 3073 3074 block = &(rdma->local_ram_blocks.block[reg->current_index]); 3075 3076 ret = ibv_dereg_mr(block->pmr[reg->key.chunk]); 3077 block->pmr[reg->key.chunk] = NULL; 3078 3079 if (ret != 0) { 3080 perror("rdma unregistration chunk failed"); 3081 ret = -ret; 3082 goto out; 3083 } 3084 3085 rdma->total_registrations--; 3086 3087 trace_qemu_rdma_registration_handle_unregister_success( 3088 reg->key.chunk); 3089 } 3090 3091 ret = qemu_rdma_post_send_control(rdma, NULL, &unreg_resp); 3092 3093 if (ret < 0) { 3094 error_report("Failed to send control buffer"); 3095 goto out; 3096 } 3097 break; 3098 case RDMA_CONTROL_REGISTER_RESULT: 3099 error_report("Invalid RESULT message at dest."); 3100 ret = -EIO; 3101 goto out; 3102 default: 3103 error_report("Unknown control message %s", control_desc[head.type]); 3104 ret = -EIO; 3105 goto out; 3106 } 3107 } while (1); 3108 out: 3109 if (ret < 0) { 3110 rdma->error_state = ret; 3111 } 3112 return ret; 3113 } 3114 3115 static int qemu_rdma_registration_start(QEMUFile *f, void *opaque, 3116 uint64_t flags) 3117 { 3118 QEMUFileRDMA *rfile = opaque; 3119 RDMAContext *rdma = rfile->rdma; 3120 3121 CHECK_ERROR_STATE(); 3122 3123 trace_qemu_rdma_registration_start(flags); 3124 qemu_put_be64(f, RAM_SAVE_FLAG_HOOK); 3125 qemu_fflush(f); 3126 3127 return 0; 3128 } 3129 3130 /* 3131 * Inform dest that dynamic registrations are done for now. 3132 * First, flush writes, if any. 3133 */ 3134 static int qemu_rdma_registration_stop(QEMUFile *f, void *opaque, 3135 uint64_t flags) 3136 { 3137 Error *local_err = NULL, **errp = &local_err; 3138 QEMUFileRDMA *rfile = opaque; 3139 RDMAContext *rdma = rfile->rdma; 3140 RDMAControlHeader head = { .len = 0, .repeat = 1 }; 3141 int ret = 0; 3142 3143 CHECK_ERROR_STATE(); 3144 3145 qemu_fflush(f); 3146 ret = qemu_rdma_drain_cq(f, rdma); 3147 3148 if (ret < 0) { 3149 goto err; 3150 } 3151 3152 if (flags == RAM_CONTROL_SETUP) { 3153 RDMAControlHeader resp = {.type = RDMA_CONTROL_RAM_BLOCKS_RESULT }; 3154 RDMALocalBlocks *local = &rdma->local_ram_blocks; 3155 int reg_result_idx, i, j, nb_remote_blocks; 3156 3157 head.type = RDMA_CONTROL_RAM_BLOCKS_REQUEST; 3158 trace_qemu_rdma_registration_stop_ram(); 3159 3160 /* 3161 * Make sure that we parallelize the pinning on both sides. 3162 * For very large guests, doing this serially takes a really 3163 * long time, so we have to 'interleave' the pinning locally 3164 * with the control messages by performing the pinning on this 3165 * side before we receive the control response from the other 3166 * side that the pinning has completed. 3167 */ 3168 ret = qemu_rdma_exchange_send(rdma, &head, NULL, &resp, 3169 ®_result_idx, rdma->pin_all ? 3170 qemu_rdma_reg_whole_ram_blocks : NULL); 3171 if (ret < 0) { 3172 ERROR(errp, "receiving remote info!"); 3173 return ret; 3174 } 3175 3176 nb_remote_blocks = resp.len / sizeof(RDMARemoteBlock); 3177 3178 /* 3179 * The protocol uses two different sets of rkeys (mutually exclusive): 3180 * 1. One key to represent the virtual address of the entire ram block. 3181 * (dynamic chunk registration disabled - pin everything with one rkey.) 3182 * 2. One to represent individual chunks within a ram block. 3183 * (dynamic chunk registration enabled - pin individual chunks.) 3184 * 3185 * Once the capability is successfully negotiated, the destination transmits 3186 * the keys to use (or sends them later) including the virtual addresses 3187 * and then propagates the remote ram block descriptions to his local copy. 3188 */ 3189 3190 if (local->nb_blocks != nb_remote_blocks) { 3191 ERROR(errp, "ram blocks mismatch #1! " 3192 "Your QEMU command line parameters are probably " 3193 "not identical on both the source and destination."); 3194 return -EINVAL; 3195 } 3196 3197 qemu_rdma_move_header(rdma, reg_result_idx, &resp); 3198 memcpy(rdma->block, 3199 rdma->wr_data[reg_result_idx].control_curr, resp.len); 3200 for (i = 0; i < nb_remote_blocks; i++) { 3201 network_to_remote_block(&rdma->block[i]); 3202 3203 /* search local ram blocks */ 3204 for (j = 0; j < local->nb_blocks; j++) { 3205 if (rdma->block[i].offset != local->block[j].offset) { 3206 continue; 3207 } 3208 3209 if (rdma->block[i].length != local->block[j].length) { 3210 ERROR(errp, "ram blocks mismatch #2! " 3211 "Your QEMU command line parameters are probably " 3212 "not identical on both the source and destination."); 3213 return -EINVAL; 3214 } 3215 local->block[j].remote_host_addr = 3216 rdma->block[i].remote_host_addr; 3217 local->block[j].remote_rkey = rdma->block[i].remote_rkey; 3218 break; 3219 } 3220 3221 if (j >= local->nb_blocks) { 3222 ERROR(errp, "ram blocks mismatch #3! " 3223 "Your QEMU command line parameters are probably " 3224 "not identical on both the source and destination."); 3225 return -EINVAL; 3226 } 3227 } 3228 } 3229 3230 trace_qemu_rdma_registration_stop(flags); 3231 3232 head.type = RDMA_CONTROL_REGISTER_FINISHED; 3233 ret = qemu_rdma_exchange_send(rdma, &head, NULL, NULL, NULL, NULL); 3234 3235 if (ret < 0) { 3236 goto err; 3237 } 3238 3239 return 0; 3240 err: 3241 rdma->error_state = ret; 3242 return ret; 3243 } 3244 3245 static int qemu_rdma_get_fd(void *opaque) 3246 { 3247 QEMUFileRDMA *rfile = opaque; 3248 RDMAContext *rdma = rfile->rdma; 3249 3250 return rdma->comp_channel->fd; 3251 } 3252 3253 static const QEMUFileOps rdma_read_ops = { 3254 .get_buffer = qemu_rdma_get_buffer, 3255 .get_fd = qemu_rdma_get_fd, 3256 .close = qemu_rdma_close, 3257 .hook_ram_load = qemu_rdma_registration_handle, 3258 }; 3259 3260 static const QEMUFileOps rdma_write_ops = { 3261 .put_buffer = qemu_rdma_put_buffer, 3262 .close = qemu_rdma_close, 3263 .before_ram_iterate = qemu_rdma_registration_start, 3264 .after_ram_iterate = qemu_rdma_registration_stop, 3265 .save_page = qemu_rdma_save_page, 3266 }; 3267 3268 static void *qemu_fopen_rdma(RDMAContext *rdma, const char *mode) 3269 { 3270 QEMUFileRDMA *r = g_malloc0(sizeof(QEMUFileRDMA)); 3271 3272 if (qemu_file_mode_is_not_valid(mode)) { 3273 return NULL; 3274 } 3275 3276 r->rdma = rdma; 3277 3278 if (mode[0] == 'w') { 3279 r->file = qemu_fopen_ops(r, &rdma_write_ops); 3280 } else { 3281 r->file = qemu_fopen_ops(r, &rdma_read_ops); 3282 } 3283 3284 return r->file; 3285 } 3286 3287 static void rdma_accept_incoming_migration(void *opaque) 3288 { 3289 RDMAContext *rdma = opaque; 3290 int ret; 3291 QEMUFile *f; 3292 Error *local_err = NULL, **errp = &local_err; 3293 3294 trace_qemu_dma_accept_incoming_migration(); 3295 ret = qemu_rdma_accept(rdma); 3296 3297 if (ret) { 3298 ERROR(errp, "RDMA Migration initialization failed!"); 3299 return; 3300 } 3301 3302 trace_qemu_dma_accept_incoming_migration_accepted(); 3303 3304 f = qemu_fopen_rdma(rdma, "rb"); 3305 if (f == NULL) { 3306 ERROR(errp, "could not qemu_fopen_rdma!"); 3307 qemu_rdma_cleanup(rdma); 3308 return; 3309 } 3310 3311 rdma->migration_started_on_destination = 1; 3312 process_incoming_migration(f); 3313 } 3314 3315 void rdma_start_incoming_migration(const char *host_port, Error **errp) 3316 { 3317 int ret; 3318 RDMAContext *rdma; 3319 Error *local_err = NULL; 3320 3321 trace_rdma_start_incoming_migration(); 3322 rdma = qemu_rdma_data_init(host_port, &local_err); 3323 3324 if (rdma == NULL) { 3325 goto err; 3326 } 3327 3328 ret = qemu_rdma_dest_init(rdma, &local_err); 3329 3330 if (ret) { 3331 goto err; 3332 } 3333 3334 trace_rdma_start_incoming_migration_after_dest_init(); 3335 3336 ret = rdma_listen(rdma->listen_id, 5); 3337 3338 if (ret) { 3339 ERROR(errp, "listening on socket!"); 3340 goto err; 3341 } 3342 3343 trace_rdma_start_incoming_migration_after_rdma_listen(); 3344 3345 qemu_set_fd_handler2(rdma->channel->fd, NULL, 3346 rdma_accept_incoming_migration, NULL, 3347 (void *)(intptr_t) rdma); 3348 return; 3349 err: 3350 error_propagate(errp, local_err); 3351 g_free(rdma); 3352 } 3353 3354 void rdma_start_outgoing_migration(void *opaque, 3355 const char *host_port, Error **errp) 3356 { 3357 MigrationState *s = opaque; 3358 Error *local_err = NULL, **temp = &local_err; 3359 RDMAContext *rdma = qemu_rdma_data_init(host_port, &local_err); 3360 int ret = 0; 3361 3362 if (rdma == NULL) { 3363 ERROR(temp, "Failed to initialize RDMA data structures! %d", ret); 3364 goto err; 3365 } 3366 3367 ret = qemu_rdma_source_init(rdma, &local_err, 3368 s->enabled_capabilities[MIGRATION_CAPABILITY_RDMA_PIN_ALL]); 3369 3370 if (ret) { 3371 goto err; 3372 } 3373 3374 trace_rdma_start_outgoing_migration_after_rdma_source_init(); 3375 ret = qemu_rdma_connect(rdma, &local_err); 3376 3377 if (ret) { 3378 goto err; 3379 } 3380 3381 trace_rdma_start_outgoing_migration_after_rdma_connect(); 3382 3383 s->file = qemu_fopen_rdma(rdma, "wb"); 3384 migrate_fd_connect(s); 3385 return; 3386 err: 3387 error_propagate(errp, local_err); 3388 g_free(rdma); 3389 migrate_fd_error(s); 3390 } 3391