1 /* 2 * RDMA protocol and interfaces 3 * 4 * Copyright IBM, Corp. 2010-2013 5 * 6 * Authors: 7 * Michael R. Hines <mrhines@us.ibm.com> 8 * Jiuxing Liu <jl@us.ibm.com> 9 * 10 * This work is licensed under the terms of the GNU GPL, version 2 or 11 * later. See the COPYING file in the top-level directory. 12 * 13 */ 14 #include "qemu/osdep.h" 15 #include "qapi/error.h" 16 #include "qemu-common.h" 17 #include "migration/migration.h" 18 #include "migration/qemu-file.h" 19 #include "exec/cpu-common.h" 20 #include "qemu/error-report.h" 21 #include "qemu/main-loop.h" 22 #include "qemu/sockets.h" 23 #include "qemu/bitmap.h" 24 #include "qemu/coroutine.h" 25 #include <sys/socket.h> 26 #include <netdb.h> 27 #include <arpa/inet.h> 28 #include <rdma/rdma_cma.h> 29 #include "trace.h" 30 31 /* 32 * Print and error on both the Monitor and the Log file. 33 */ 34 #define ERROR(errp, fmt, ...) \ 35 do { \ 36 fprintf(stderr, "RDMA ERROR: " fmt "\n", ## __VA_ARGS__); \ 37 if (errp && (*(errp) == NULL)) { \ 38 error_setg(errp, "RDMA ERROR: " fmt, ## __VA_ARGS__); \ 39 } \ 40 } while (0) 41 42 #define RDMA_RESOLVE_TIMEOUT_MS 10000 43 44 /* Do not merge data if larger than this. */ 45 #define RDMA_MERGE_MAX (2 * 1024 * 1024) 46 #define RDMA_SIGNALED_SEND_MAX (RDMA_MERGE_MAX / 4096) 47 48 #define RDMA_REG_CHUNK_SHIFT 20 /* 1 MB */ 49 50 /* 51 * This is only for non-live state being migrated. 52 * Instead of RDMA_WRITE messages, we use RDMA_SEND 53 * messages for that state, which requires a different 54 * delivery design than main memory. 55 */ 56 #define RDMA_SEND_INCREMENT 32768 57 58 /* 59 * Maximum size infiniband SEND message 60 */ 61 #define RDMA_CONTROL_MAX_BUFFER (512 * 1024) 62 #define RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE 4096 63 64 #define RDMA_CONTROL_VERSION_CURRENT 1 65 /* 66 * Capabilities for negotiation. 67 */ 68 #define RDMA_CAPABILITY_PIN_ALL 0x01 69 70 /* 71 * Add the other flags above to this list of known capabilities 72 * as they are introduced. 73 */ 74 static uint32_t known_capabilities = RDMA_CAPABILITY_PIN_ALL; 75 76 #define CHECK_ERROR_STATE() \ 77 do { \ 78 if (rdma->error_state) { \ 79 if (!rdma->error_reported) { \ 80 error_report("RDMA is in an error state waiting migration" \ 81 " to abort!"); \ 82 rdma->error_reported = 1; \ 83 } \ 84 return rdma->error_state; \ 85 } \ 86 } while (0); 87 88 /* 89 * A work request ID is 64-bits and we split up these bits 90 * into 3 parts: 91 * 92 * bits 0-15 : type of control message, 2^16 93 * bits 16-29: ram block index, 2^14 94 * bits 30-63: ram block chunk number, 2^34 95 * 96 * The last two bit ranges are only used for RDMA writes, 97 * in order to track their completion and potentially 98 * also track unregistration status of the message. 99 */ 100 #define RDMA_WRID_TYPE_SHIFT 0UL 101 #define RDMA_WRID_BLOCK_SHIFT 16UL 102 #define RDMA_WRID_CHUNK_SHIFT 30UL 103 104 #define RDMA_WRID_TYPE_MASK \ 105 ((1UL << RDMA_WRID_BLOCK_SHIFT) - 1UL) 106 107 #define RDMA_WRID_BLOCK_MASK \ 108 (~RDMA_WRID_TYPE_MASK & ((1UL << RDMA_WRID_CHUNK_SHIFT) - 1UL)) 109 110 #define RDMA_WRID_CHUNK_MASK (~RDMA_WRID_BLOCK_MASK & ~RDMA_WRID_TYPE_MASK) 111 112 /* 113 * RDMA migration protocol: 114 * 1. RDMA Writes (data messages, i.e. RAM) 115 * 2. IB Send/Recv (control channel messages) 116 */ 117 enum { 118 RDMA_WRID_NONE = 0, 119 RDMA_WRID_RDMA_WRITE = 1, 120 RDMA_WRID_SEND_CONTROL = 2000, 121 RDMA_WRID_RECV_CONTROL = 4000, 122 }; 123 124 static const char *wrid_desc[] = { 125 [RDMA_WRID_NONE] = "NONE", 126 [RDMA_WRID_RDMA_WRITE] = "WRITE RDMA", 127 [RDMA_WRID_SEND_CONTROL] = "CONTROL SEND", 128 [RDMA_WRID_RECV_CONTROL] = "CONTROL RECV", 129 }; 130 131 /* 132 * Work request IDs for IB SEND messages only (not RDMA writes). 133 * This is used by the migration protocol to transmit 134 * control messages (such as device state and registration commands) 135 * 136 * We could use more WRs, but we have enough for now. 137 */ 138 enum { 139 RDMA_WRID_READY = 0, 140 RDMA_WRID_DATA, 141 RDMA_WRID_CONTROL, 142 RDMA_WRID_MAX, 143 }; 144 145 /* 146 * SEND/RECV IB Control Messages. 147 */ 148 enum { 149 RDMA_CONTROL_NONE = 0, 150 RDMA_CONTROL_ERROR, 151 RDMA_CONTROL_READY, /* ready to receive */ 152 RDMA_CONTROL_QEMU_FILE, /* QEMUFile-transmitted bytes */ 153 RDMA_CONTROL_RAM_BLOCKS_REQUEST, /* RAMBlock synchronization */ 154 RDMA_CONTROL_RAM_BLOCKS_RESULT, /* RAMBlock synchronization */ 155 RDMA_CONTROL_COMPRESS, /* page contains repeat values */ 156 RDMA_CONTROL_REGISTER_REQUEST, /* dynamic page registration */ 157 RDMA_CONTROL_REGISTER_RESULT, /* key to use after registration */ 158 RDMA_CONTROL_REGISTER_FINISHED, /* current iteration finished */ 159 RDMA_CONTROL_UNREGISTER_REQUEST, /* dynamic UN-registration */ 160 RDMA_CONTROL_UNREGISTER_FINISHED, /* unpinning finished */ 161 }; 162 163 static const char *control_desc[] = { 164 [RDMA_CONTROL_NONE] = "NONE", 165 [RDMA_CONTROL_ERROR] = "ERROR", 166 [RDMA_CONTROL_READY] = "READY", 167 [RDMA_CONTROL_QEMU_FILE] = "QEMU FILE", 168 [RDMA_CONTROL_RAM_BLOCKS_REQUEST] = "RAM BLOCKS REQUEST", 169 [RDMA_CONTROL_RAM_BLOCKS_RESULT] = "RAM BLOCKS RESULT", 170 [RDMA_CONTROL_COMPRESS] = "COMPRESS", 171 [RDMA_CONTROL_REGISTER_REQUEST] = "REGISTER REQUEST", 172 [RDMA_CONTROL_REGISTER_RESULT] = "REGISTER RESULT", 173 [RDMA_CONTROL_REGISTER_FINISHED] = "REGISTER FINISHED", 174 [RDMA_CONTROL_UNREGISTER_REQUEST] = "UNREGISTER REQUEST", 175 [RDMA_CONTROL_UNREGISTER_FINISHED] = "UNREGISTER FINISHED", 176 }; 177 178 /* 179 * Memory and MR structures used to represent an IB Send/Recv work request. 180 * This is *not* used for RDMA writes, only IB Send/Recv. 181 */ 182 typedef struct { 183 uint8_t control[RDMA_CONTROL_MAX_BUFFER]; /* actual buffer to register */ 184 struct ibv_mr *control_mr; /* registration metadata */ 185 size_t control_len; /* length of the message */ 186 uint8_t *control_curr; /* start of unconsumed bytes */ 187 } RDMAWorkRequestData; 188 189 /* 190 * Negotiate RDMA capabilities during connection-setup time. 191 */ 192 typedef struct { 193 uint32_t version; 194 uint32_t flags; 195 } RDMACapabilities; 196 197 static void caps_to_network(RDMACapabilities *cap) 198 { 199 cap->version = htonl(cap->version); 200 cap->flags = htonl(cap->flags); 201 } 202 203 static void network_to_caps(RDMACapabilities *cap) 204 { 205 cap->version = ntohl(cap->version); 206 cap->flags = ntohl(cap->flags); 207 } 208 209 /* 210 * Representation of a RAMBlock from an RDMA perspective. 211 * This is not transmitted, only local. 212 * This and subsequent structures cannot be linked lists 213 * because we're using a single IB message to transmit 214 * the information. It's small anyway, so a list is overkill. 215 */ 216 typedef struct RDMALocalBlock { 217 char *block_name; 218 uint8_t *local_host_addr; /* local virtual address */ 219 uint64_t remote_host_addr; /* remote virtual address */ 220 uint64_t offset; 221 uint64_t length; 222 struct ibv_mr **pmr; /* MRs for chunk-level registration */ 223 struct ibv_mr *mr; /* MR for non-chunk-level registration */ 224 uint32_t *remote_keys; /* rkeys for chunk-level registration */ 225 uint32_t remote_rkey; /* rkeys for non-chunk-level registration */ 226 int index; /* which block are we */ 227 unsigned int src_index; /* (Only used on dest) */ 228 bool is_ram_block; 229 int nb_chunks; 230 unsigned long *transit_bitmap; 231 unsigned long *unregister_bitmap; 232 } RDMALocalBlock; 233 234 /* 235 * Also represents a RAMblock, but only on the dest. 236 * This gets transmitted by the dest during connection-time 237 * to the source VM and then is used to populate the 238 * corresponding RDMALocalBlock with 239 * the information needed to perform the actual RDMA. 240 */ 241 typedef struct QEMU_PACKED RDMADestBlock { 242 uint64_t remote_host_addr; 243 uint64_t offset; 244 uint64_t length; 245 uint32_t remote_rkey; 246 uint32_t padding; 247 } RDMADestBlock; 248 249 static uint64_t htonll(uint64_t v) 250 { 251 union { uint32_t lv[2]; uint64_t llv; } u; 252 u.lv[0] = htonl(v >> 32); 253 u.lv[1] = htonl(v & 0xFFFFFFFFULL); 254 return u.llv; 255 } 256 257 static uint64_t ntohll(uint64_t v) { 258 union { uint32_t lv[2]; uint64_t llv; } u; 259 u.llv = v; 260 return ((uint64_t)ntohl(u.lv[0]) << 32) | (uint64_t) ntohl(u.lv[1]); 261 } 262 263 static void dest_block_to_network(RDMADestBlock *db) 264 { 265 db->remote_host_addr = htonll(db->remote_host_addr); 266 db->offset = htonll(db->offset); 267 db->length = htonll(db->length); 268 db->remote_rkey = htonl(db->remote_rkey); 269 } 270 271 static void network_to_dest_block(RDMADestBlock *db) 272 { 273 db->remote_host_addr = ntohll(db->remote_host_addr); 274 db->offset = ntohll(db->offset); 275 db->length = ntohll(db->length); 276 db->remote_rkey = ntohl(db->remote_rkey); 277 } 278 279 /* 280 * Virtual address of the above structures used for transmitting 281 * the RAMBlock descriptions at connection-time. 282 * This structure is *not* transmitted. 283 */ 284 typedef struct RDMALocalBlocks { 285 int nb_blocks; 286 bool init; /* main memory init complete */ 287 RDMALocalBlock *block; 288 } RDMALocalBlocks; 289 290 /* 291 * Main data structure for RDMA state. 292 * While there is only one copy of this structure being allocated right now, 293 * this is the place where one would start if you wanted to consider 294 * having more than one RDMA connection open at the same time. 295 */ 296 typedef struct RDMAContext { 297 char *host; 298 int port; 299 300 RDMAWorkRequestData wr_data[RDMA_WRID_MAX]; 301 302 /* 303 * This is used by *_exchange_send() to figure out whether or not 304 * the initial "READY" message has already been received or not. 305 * This is because other functions may potentially poll() and detect 306 * the READY message before send() does, in which case we need to 307 * know if it completed. 308 */ 309 int control_ready_expected; 310 311 /* number of outstanding writes */ 312 int nb_sent; 313 314 /* store info about current buffer so that we can 315 merge it with future sends */ 316 uint64_t current_addr; 317 uint64_t current_length; 318 /* index of ram block the current buffer belongs to */ 319 int current_index; 320 /* index of the chunk in the current ram block */ 321 int current_chunk; 322 323 bool pin_all; 324 325 /* 326 * infiniband-specific variables for opening the device 327 * and maintaining connection state and so forth. 328 * 329 * cm_id also has ibv_context, rdma_event_channel, and ibv_qp in 330 * cm_id->verbs, cm_id->channel, and cm_id->qp. 331 */ 332 struct rdma_cm_id *cm_id; /* connection manager ID */ 333 struct rdma_cm_id *listen_id; 334 bool connected; 335 336 struct ibv_context *verbs; 337 struct rdma_event_channel *channel; 338 struct ibv_qp *qp; /* queue pair */ 339 struct ibv_comp_channel *comp_channel; /* completion channel */ 340 struct ibv_pd *pd; /* protection domain */ 341 struct ibv_cq *cq; /* completion queue */ 342 343 /* 344 * If a previous write failed (perhaps because of a failed 345 * memory registration, then do not attempt any future work 346 * and remember the error state. 347 */ 348 int error_state; 349 int error_reported; 350 351 /* 352 * Description of ram blocks used throughout the code. 353 */ 354 RDMALocalBlocks local_ram_blocks; 355 RDMADestBlock *dest_blocks; 356 357 /* Index of the next RAMBlock received during block registration */ 358 unsigned int next_src_index; 359 360 /* 361 * Migration on *destination* started. 362 * Then use coroutine yield function. 363 * Source runs in a thread, so we don't care. 364 */ 365 int migration_started_on_destination; 366 367 int total_registrations; 368 int total_writes; 369 370 int unregister_current, unregister_next; 371 uint64_t unregistrations[RDMA_SIGNALED_SEND_MAX]; 372 373 GHashTable *blockmap; 374 } RDMAContext; 375 376 /* 377 * Interface to the rest of the migration call stack. 378 */ 379 typedef struct QEMUFileRDMA { 380 RDMAContext *rdma; 381 size_t len; 382 void *file; 383 } QEMUFileRDMA; 384 385 /* 386 * Main structure for IB Send/Recv control messages. 387 * This gets prepended at the beginning of every Send/Recv. 388 */ 389 typedef struct QEMU_PACKED { 390 uint32_t len; /* Total length of data portion */ 391 uint32_t type; /* which control command to perform */ 392 uint32_t repeat; /* number of commands in data portion of same type */ 393 uint32_t padding; 394 } RDMAControlHeader; 395 396 static void control_to_network(RDMAControlHeader *control) 397 { 398 control->type = htonl(control->type); 399 control->len = htonl(control->len); 400 control->repeat = htonl(control->repeat); 401 } 402 403 static void network_to_control(RDMAControlHeader *control) 404 { 405 control->type = ntohl(control->type); 406 control->len = ntohl(control->len); 407 control->repeat = ntohl(control->repeat); 408 } 409 410 /* 411 * Register a single Chunk. 412 * Information sent by the source VM to inform the dest 413 * to register an single chunk of memory before we can perform 414 * the actual RDMA operation. 415 */ 416 typedef struct QEMU_PACKED { 417 union QEMU_PACKED { 418 uint64_t current_addr; /* offset into the ram_addr_t space */ 419 uint64_t chunk; /* chunk to lookup if unregistering */ 420 } key; 421 uint32_t current_index; /* which ramblock the chunk belongs to */ 422 uint32_t padding; 423 uint64_t chunks; /* how many sequential chunks to register */ 424 } RDMARegister; 425 426 static void register_to_network(RDMAContext *rdma, RDMARegister *reg) 427 { 428 RDMALocalBlock *local_block; 429 local_block = &rdma->local_ram_blocks.block[reg->current_index]; 430 431 if (local_block->is_ram_block) { 432 /* 433 * current_addr as passed in is an address in the local ram_addr_t 434 * space, we need to translate this for the destination 435 */ 436 reg->key.current_addr -= local_block->offset; 437 reg->key.current_addr += rdma->dest_blocks[reg->current_index].offset; 438 } 439 reg->key.current_addr = htonll(reg->key.current_addr); 440 reg->current_index = htonl(reg->current_index); 441 reg->chunks = htonll(reg->chunks); 442 } 443 444 static void network_to_register(RDMARegister *reg) 445 { 446 reg->key.current_addr = ntohll(reg->key.current_addr); 447 reg->current_index = ntohl(reg->current_index); 448 reg->chunks = ntohll(reg->chunks); 449 } 450 451 typedef struct QEMU_PACKED { 452 uint32_t value; /* if zero, we will madvise() */ 453 uint32_t block_idx; /* which ram block index */ 454 uint64_t offset; /* Address in remote ram_addr_t space */ 455 uint64_t length; /* length of the chunk */ 456 } RDMACompress; 457 458 static void compress_to_network(RDMAContext *rdma, RDMACompress *comp) 459 { 460 comp->value = htonl(comp->value); 461 /* 462 * comp->offset as passed in is an address in the local ram_addr_t 463 * space, we need to translate this for the destination 464 */ 465 comp->offset -= rdma->local_ram_blocks.block[comp->block_idx].offset; 466 comp->offset += rdma->dest_blocks[comp->block_idx].offset; 467 comp->block_idx = htonl(comp->block_idx); 468 comp->offset = htonll(comp->offset); 469 comp->length = htonll(comp->length); 470 } 471 472 static void network_to_compress(RDMACompress *comp) 473 { 474 comp->value = ntohl(comp->value); 475 comp->block_idx = ntohl(comp->block_idx); 476 comp->offset = ntohll(comp->offset); 477 comp->length = ntohll(comp->length); 478 } 479 480 /* 481 * The result of the dest's memory registration produces an "rkey" 482 * which the source VM must reference in order to perform 483 * the RDMA operation. 484 */ 485 typedef struct QEMU_PACKED { 486 uint32_t rkey; 487 uint32_t padding; 488 uint64_t host_addr; 489 } RDMARegisterResult; 490 491 static void result_to_network(RDMARegisterResult *result) 492 { 493 result->rkey = htonl(result->rkey); 494 result->host_addr = htonll(result->host_addr); 495 }; 496 497 static void network_to_result(RDMARegisterResult *result) 498 { 499 result->rkey = ntohl(result->rkey); 500 result->host_addr = ntohll(result->host_addr); 501 }; 502 503 const char *print_wrid(int wrid); 504 static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head, 505 uint8_t *data, RDMAControlHeader *resp, 506 int *resp_idx, 507 int (*callback)(RDMAContext *rdma)); 508 509 static inline uint64_t ram_chunk_index(const uint8_t *start, 510 const uint8_t *host) 511 { 512 return ((uintptr_t) host - (uintptr_t) start) >> RDMA_REG_CHUNK_SHIFT; 513 } 514 515 static inline uint8_t *ram_chunk_start(const RDMALocalBlock *rdma_ram_block, 516 uint64_t i) 517 { 518 return (uint8_t *)(uintptr_t)(rdma_ram_block->local_host_addr + 519 (i << RDMA_REG_CHUNK_SHIFT)); 520 } 521 522 static inline uint8_t *ram_chunk_end(const RDMALocalBlock *rdma_ram_block, 523 uint64_t i) 524 { 525 uint8_t *result = ram_chunk_start(rdma_ram_block, i) + 526 (1UL << RDMA_REG_CHUNK_SHIFT); 527 528 if (result > (rdma_ram_block->local_host_addr + rdma_ram_block->length)) { 529 result = rdma_ram_block->local_host_addr + rdma_ram_block->length; 530 } 531 532 return result; 533 } 534 535 static int rdma_add_block(RDMAContext *rdma, const char *block_name, 536 void *host_addr, 537 ram_addr_t block_offset, uint64_t length) 538 { 539 RDMALocalBlocks *local = &rdma->local_ram_blocks; 540 RDMALocalBlock *block; 541 RDMALocalBlock *old = local->block; 542 543 local->block = g_new0(RDMALocalBlock, local->nb_blocks + 1); 544 545 if (local->nb_blocks) { 546 int x; 547 548 if (rdma->blockmap) { 549 for (x = 0; x < local->nb_blocks; x++) { 550 g_hash_table_remove(rdma->blockmap, 551 (void *)(uintptr_t)old[x].offset); 552 g_hash_table_insert(rdma->blockmap, 553 (void *)(uintptr_t)old[x].offset, 554 &local->block[x]); 555 } 556 } 557 memcpy(local->block, old, sizeof(RDMALocalBlock) * local->nb_blocks); 558 g_free(old); 559 } 560 561 block = &local->block[local->nb_blocks]; 562 563 block->block_name = g_strdup(block_name); 564 block->local_host_addr = host_addr; 565 block->offset = block_offset; 566 block->length = length; 567 block->index = local->nb_blocks; 568 block->src_index = ~0U; /* Filled in by the receipt of the block list */ 569 block->nb_chunks = ram_chunk_index(host_addr, host_addr + length) + 1UL; 570 block->transit_bitmap = bitmap_new(block->nb_chunks); 571 bitmap_clear(block->transit_bitmap, 0, block->nb_chunks); 572 block->unregister_bitmap = bitmap_new(block->nb_chunks); 573 bitmap_clear(block->unregister_bitmap, 0, block->nb_chunks); 574 block->remote_keys = g_new0(uint32_t, block->nb_chunks); 575 576 block->is_ram_block = local->init ? false : true; 577 578 if (rdma->blockmap) { 579 g_hash_table_insert(rdma->blockmap, (void *)(uintptr_t)block_offset, block); 580 } 581 582 trace_rdma_add_block(block_name, local->nb_blocks, 583 (uintptr_t) block->local_host_addr, 584 block->offset, block->length, 585 (uintptr_t) (block->local_host_addr + block->length), 586 BITS_TO_LONGS(block->nb_chunks) * 587 sizeof(unsigned long) * 8, 588 block->nb_chunks); 589 590 local->nb_blocks++; 591 592 return 0; 593 } 594 595 /* 596 * Memory regions need to be registered with the device and queue pairs setup 597 * in advanced before the migration starts. This tells us where the RAM blocks 598 * are so that we can register them individually. 599 */ 600 static int qemu_rdma_init_one_block(const char *block_name, void *host_addr, 601 ram_addr_t block_offset, ram_addr_t length, void *opaque) 602 { 603 return rdma_add_block(opaque, block_name, host_addr, block_offset, length); 604 } 605 606 /* 607 * Identify the RAMBlocks and their quantity. They will be references to 608 * identify chunk boundaries inside each RAMBlock and also be referenced 609 * during dynamic page registration. 610 */ 611 static int qemu_rdma_init_ram_blocks(RDMAContext *rdma) 612 { 613 RDMALocalBlocks *local = &rdma->local_ram_blocks; 614 615 assert(rdma->blockmap == NULL); 616 memset(local, 0, sizeof *local); 617 qemu_ram_foreach_block(qemu_rdma_init_one_block, rdma); 618 trace_qemu_rdma_init_ram_blocks(local->nb_blocks); 619 rdma->dest_blocks = g_new0(RDMADestBlock, 620 rdma->local_ram_blocks.nb_blocks); 621 local->init = true; 622 return 0; 623 } 624 625 /* 626 * Note: If used outside of cleanup, the caller must ensure that the destination 627 * block structures are also updated 628 */ 629 static int rdma_delete_block(RDMAContext *rdma, RDMALocalBlock *block) 630 { 631 RDMALocalBlocks *local = &rdma->local_ram_blocks; 632 RDMALocalBlock *old = local->block; 633 int x; 634 635 if (rdma->blockmap) { 636 g_hash_table_remove(rdma->blockmap, (void *)(uintptr_t)block->offset); 637 } 638 if (block->pmr) { 639 int j; 640 641 for (j = 0; j < block->nb_chunks; j++) { 642 if (!block->pmr[j]) { 643 continue; 644 } 645 ibv_dereg_mr(block->pmr[j]); 646 rdma->total_registrations--; 647 } 648 g_free(block->pmr); 649 block->pmr = NULL; 650 } 651 652 if (block->mr) { 653 ibv_dereg_mr(block->mr); 654 rdma->total_registrations--; 655 block->mr = NULL; 656 } 657 658 g_free(block->transit_bitmap); 659 block->transit_bitmap = NULL; 660 661 g_free(block->unregister_bitmap); 662 block->unregister_bitmap = NULL; 663 664 g_free(block->remote_keys); 665 block->remote_keys = NULL; 666 667 g_free(block->block_name); 668 block->block_name = NULL; 669 670 if (rdma->blockmap) { 671 for (x = 0; x < local->nb_blocks; x++) { 672 g_hash_table_remove(rdma->blockmap, 673 (void *)(uintptr_t)old[x].offset); 674 } 675 } 676 677 if (local->nb_blocks > 1) { 678 679 local->block = g_new0(RDMALocalBlock, local->nb_blocks - 1); 680 681 if (block->index) { 682 memcpy(local->block, old, sizeof(RDMALocalBlock) * block->index); 683 } 684 685 if (block->index < (local->nb_blocks - 1)) { 686 memcpy(local->block + block->index, old + (block->index + 1), 687 sizeof(RDMALocalBlock) * 688 (local->nb_blocks - (block->index + 1))); 689 } 690 } else { 691 assert(block == local->block); 692 local->block = NULL; 693 } 694 695 trace_rdma_delete_block(block, (uintptr_t)block->local_host_addr, 696 block->offset, block->length, 697 (uintptr_t)(block->local_host_addr + block->length), 698 BITS_TO_LONGS(block->nb_chunks) * 699 sizeof(unsigned long) * 8, block->nb_chunks); 700 701 g_free(old); 702 703 local->nb_blocks--; 704 705 if (local->nb_blocks && rdma->blockmap) { 706 for (x = 0; x < local->nb_blocks; x++) { 707 g_hash_table_insert(rdma->blockmap, 708 (void *)(uintptr_t)local->block[x].offset, 709 &local->block[x]); 710 } 711 } 712 713 return 0; 714 } 715 716 /* 717 * Put in the log file which RDMA device was opened and the details 718 * associated with that device. 719 */ 720 static void qemu_rdma_dump_id(const char *who, struct ibv_context *verbs) 721 { 722 struct ibv_port_attr port; 723 724 if (ibv_query_port(verbs, 1, &port)) { 725 error_report("Failed to query port information"); 726 return; 727 } 728 729 printf("%s RDMA Device opened: kernel name %s " 730 "uverbs device name %s, " 731 "infiniband_verbs class device path %s, " 732 "infiniband class device path %s, " 733 "transport: (%d) %s\n", 734 who, 735 verbs->device->name, 736 verbs->device->dev_name, 737 verbs->device->dev_path, 738 verbs->device->ibdev_path, 739 port.link_layer, 740 (port.link_layer == IBV_LINK_LAYER_INFINIBAND) ? "Infiniband" : 741 ((port.link_layer == IBV_LINK_LAYER_ETHERNET) 742 ? "Ethernet" : "Unknown")); 743 } 744 745 /* 746 * Put in the log file the RDMA gid addressing information, 747 * useful for folks who have trouble understanding the 748 * RDMA device hierarchy in the kernel. 749 */ 750 static void qemu_rdma_dump_gid(const char *who, struct rdma_cm_id *id) 751 { 752 char sgid[33]; 753 char dgid[33]; 754 inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.sgid, sgid, sizeof sgid); 755 inet_ntop(AF_INET6, &id->route.addr.addr.ibaddr.dgid, dgid, sizeof dgid); 756 trace_qemu_rdma_dump_gid(who, sgid, dgid); 757 } 758 759 /* 760 * As of now, IPv6 over RoCE / iWARP is not supported by linux. 761 * We will try the next addrinfo struct, and fail if there are 762 * no other valid addresses to bind against. 763 * 764 * If user is listening on '[::]', then we will not have a opened a device 765 * yet and have no way of verifying if the device is RoCE or not. 766 * 767 * In this case, the source VM will throw an error for ALL types of 768 * connections (both IPv4 and IPv6) if the destination machine does not have 769 * a regular infiniband network available for use. 770 * 771 * The only way to guarantee that an error is thrown for broken kernels is 772 * for the management software to choose a *specific* interface at bind time 773 * and validate what time of hardware it is. 774 * 775 * Unfortunately, this puts the user in a fix: 776 * 777 * If the source VM connects with an IPv4 address without knowing that the 778 * destination has bound to '[::]' the migration will unconditionally fail 779 * unless the management software is explicitly listening on the IPv4 780 * address while using a RoCE-based device. 781 * 782 * If the source VM connects with an IPv6 address, then we're OK because we can 783 * throw an error on the source (and similarly on the destination). 784 * 785 * But in mixed environments, this will be broken for a while until it is fixed 786 * inside linux. 787 * 788 * We do provide a *tiny* bit of help in this function: We can list all of the 789 * devices in the system and check to see if all the devices are RoCE or 790 * Infiniband. 791 * 792 * If we detect that we have a *pure* RoCE environment, then we can safely 793 * thrown an error even if the management software has specified '[::]' as the 794 * bind address. 795 * 796 * However, if there is are multiple hetergeneous devices, then we cannot make 797 * this assumption and the user just has to be sure they know what they are 798 * doing. 799 * 800 * Patches are being reviewed on linux-rdma. 801 */ 802 static int qemu_rdma_broken_ipv6_kernel(Error **errp, struct ibv_context *verbs) 803 { 804 struct ibv_port_attr port_attr; 805 806 /* This bug only exists in linux, to our knowledge. */ 807 #ifdef CONFIG_LINUX 808 809 /* 810 * Verbs are only NULL if management has bound to '[::]'. 811 * 812 * Let's iterate through all the devices and see if there any pure IB 813 * devices (non-ethernet). 814 * 815 * If not, then we can safely proceed with the migration. 816 * Otherwise, there are no guarantees until the bug is fixed in linux. 817 */ 818 if (!verbs) { 819 int num_devices, x; 820 struct ibv_device ** dev_list = ibv_get_device_list(&num_devices); 821 bool roce_found = false; 822 bool ib_found = false; 823 824 for (x = 0; x < num_devices; x++) { 825 verbs = ibv_open_device(dev_list[x]); 826 if (!verbs) { 827 if (errno == EPERM) { 828 continue; 829 } else { 830 return -EINVAL; 831 } 832 } 833 834 if (ibv_query_port(verbs, 1, &port_attr)) { 835 ibv_close_device(verbs); 836 ERROR(errp, "Could not query initial IB port"); 837 return -EINVAL; 838 } 839 840 if (port_attr.link_layer == IBV_LINK_LAYER_INFINIBAND) { 841 ib_found = true; 842 } else if (port_attr.link_layer == IBV_LINK_LAYER_ETHERNET) { 843 roce_found = true; 844 } 845 846 ibv_close_device(verbs); 847 848 } 849 850 if (roce_found) { 851 if (ib_found) { 852 fprintf(stderr, "WARN: migrations may fail:" 853 " IPv6 over RoCE / iWARP in linux" 854 " is broken. But since you appear to have a" 855 " mixed RoCE / IB environment, be sure to only" 856 " migrate over the IB fabric until the kernel " 857 " fixes the bug.\n"); 858 } else { 859 ERROR(errp, "You only have RoCE / iWARP devices in your systems" 860 " and your management software has specified '[::]'" 861 ", but IPv6 over RoCE / iWARP is not supported in Linux."); 862 return -ENONET; 863 } 864 } 865 866 return 0; 867 } 868 869 /* 870 * If we have a verbs context, that means that some other than '[::]' was 871 * used by the management software for binding. In which case we can 872 * actually warn the user about a potentially broken kernel. 873 */ 874 875 /* IB ports start with 1, not 0 */ 876 if (ibv_query_port(verbs, 1, &port_attr)) { 877 ERROR(errp, "Could not query initial IB port"); 878 return -EINVAL; 879 } 880 881 if (port_attr.link_layer == IBV_LINK_LAYER_ETHERNET) { 882 ERROR(errp, "Linux kernel's RoCE / iWARP does not support IPv6 " 883 "(but patches on linux-rdma in progress)"); 884 return -ENONET; 885 } 886 887 #endif 888 889 return 0; 890 } 891 892 /* 893 * Figure out which RDMA device corresponds to the requested IP hostname 894 * Also create the initial connection manager identifiers for opening 895 * the connection. 896 */ 897 static int qemu_rdma_resolve_host(RDMAContext *rdma, Error **errp) 898 { 899 int ret; 900 struct rdma_addrinfo *res; 901 char port_str[16]; 902 struct rdma_cm_event *cm_event; 903 char ip[40] = "unknown"; 904 struct rdma_addrinfo *e; 905 906 if (rdma->host == NULL || !strcmp(rdma->host, "")) { 907 ERROR(errp, "RDMA hostname has not been set"); 908 return -EINVAL; 909 } 910 911 /* create CM channel */ 912 rdma->channel = rdma_create_event_channel(); 913 if (!rdma->channel) { 914 ERROR(errp, "could not create CM channel"); 915 return -EINVAL; 916 } 917 918 /* create CM id */ 919 ret = rdma_create_id(rdma->channel, &rdma->cm_id, NULL, RDMA_PS_TCP); 920 if (ret) { 921 ERROR(errp, "could not create channel id"); 922 goto err_resolve_create_id; 923 } 924 925 snprintf(port_str, 16, "%d", rdma->port); 926 port_str[15] = '\0'; 927 928 ret = rdma_getaddrinfo(rdma->host, port_str, NULL, &res); 929 if (ret < 0) { 930 ERROR(errp, "could not rdma_getaddrinfo address %s", rdma->host); 931 goto err_resolve_get_addr; 932 } 933 934 for (e = res; e != NULL; e = e->ai_next) { 935 inet_ntop(e->ai_family, 936 &((struct sockaddr_in *) e->ai_dst_addr)->sin_addr, ip, sizeof ip); 937 trace_qemu_rdma_resolve_host_trying(rdma->host, ip); 938 939 ret = rdma_resolve_addr(rdma->cm_id, NULL, e->ai_dst_addr, 940 RDMA_RESOLVE_TIMEOUT_MS); 941 if (!ret) { 942 if (e->ai_family == AF_INET6) { 943 ret = qemu_rdma_broken_ipv6_kernel(errp, rdma->cm_id->verbs); 944 if (ret) { 945 continue; 946 } 947 } 948 goto route; 949 } 950 } 951 952 ERROR(errp, "could not resolve address %s", rdma->host); 953 goto err_resolve_get_addr; 954 955 route: 956 qemu_rdma_dump_gid("source_resolve_addr", rdma->cm_id); 957 958 ret = rdma_get_cm_event(rdma->channel, &cm_event); 959 if (ret) { 960 ERROR(errp, "could not perform event_addr_resolved"); 961 goto err_resolve_get_addr; 962 } 963 964 if (cm_event->event != RDMA_CM_EVENT_ADDR_RESOLVED) { 965 ERROR(errp, "result not equal to event_addr_resolved %s", 966 rdma_event_str(cm_event->event)); 967 perror("rdma_resolve_addr"); 968 rdma_ack_cm_event(cm_event); 969 ret = -EINVAL; 970 goto err_resolve_get_addr; 971 } 972 rdma_ack_cm_event(cm_event); 973 974 /* resolve route */ 975 ret = rdma_resolve_route(rdma->cm_id, RDMA_RESOLVE_TIMEOUT_MS); 976 if (ret) { 977 ERROR(errp, "could not resolve rdma route"); 978 goto err_resolve_get_addr; 979 } 980 981 ret = rdma_get_cm_event(rdma->channel, &cm_event); 982 if (ret) { 983 ERROR(errp, "could not perform event_route_resolved"); 984 goto err_resolve_get_addr; 985 } 986 if (cm_event->event != RDMA_CM_EVENT_ROUTE_RESOLVED) { 987 ERROR(errp, "result not equal to event_route_resolved: %s", 988 rdma_event_str(cm_event->event)); 989 rdma_ack_cm_event(cm_event); 990 ret = -EINVAL; 991 goto err_resolve_get_addr; 992 } 993 rdma_ack_cm_event(cm_event); 994 rdma->verbs = rdma->cm_id->verbs; 995 qemu_rdma_dump_id("source_resolve_host", rdma->cm_id->verbs); 996 qemu_rdma_dump_gid("source_resolve_host", rdma->cm_id); 997 return 0; 998 999 err_resolve_get_addr: 1000 rdma_destroy_id(rdma->cm_id); 1001 rdma->cm_id = NULL; 1002 err_resolve_create_id: 1003 rdma_destroy_event_channel(rdma->channel); 1004 rdma->channel = NULL; 1005 return ret; 1006 } 1007 1008 /* 1009 * Create protection domain and completion queues 1010 */ 1011 static int qemu_rdma_alloc_pd_cq(RDMAContext *rdma) 1012 { 1013 /* allocate pd */ 1014 rdma->pd = ibv_alloc_pd(rdma->verbs); 1015 if (!rdma->pd) { 1016 error_report("failed to allocate protection domain"); 1017 return -1; 1018 } 1019 1020 /* create completion channel */ 1021 rdma->comp_channel = ibv_create_comp_channel(rdma->verbs); 1022 if (!rdma->comp_channel) { 1023 error_report("failed to allocate completion channel"); 1024 goto err_alloc_pd_cq; 1025 } 1026 1027 /* 1028 * Completion queue can be filled by both read and write work requests, 1029 * so must reflect the sum of both possible queue sizes. 1030 */ 1031 rdma->cq = ibv_create_cq(rdma->verbs, (RDMA_SIGNALED_SEND_MAX * 3), 1032 NULL, rdma->comp_channel, 0); 1033 if (!rdma->cq) { 1034 error_report("failed to allocate completion queue"); 1035 goto err_alloc_pd_cq; 1036 } 1037 1038 return 0; 1039 1040 err_alloc_pd_cq: 1041 if (rdma->pd) { 1042 ibv_dealloc_pd(rdma->pd); 1043 } 1044 if (rdma->comp_channel) { 1045 ibv_destroy_comp_channel(rdma->comp_channel); 1046 } 1047 rdma->pd = NULL; 1048 rdma->comp_channel = NULL; 1049 return -1; 1050 1051 } 1052 1053 /* 1054 * Create queue pairs. 1055 */ 1056 static int qemu_rdma_alloc_qp(RDMAContext *rdma) 1057 { 1058 struct ibv_qp_init_attr attr = { 0 }; 1059 int ret; 1060 1061 attr.cap.max_send_wr = RDMA_SIGNALED_SEND_MAX; 1062 attr.cap.max_recv_wr = 3; 1063 attr.cap.max_send_sge = 1; 1064 attr.cap.max_recv_sge = 1; 1065 attr.send_cq = rdma->cq; 1066 attr.recv_cq = rdma->cq; 1067 attr.qp_type = IBV_QPT_RC; 1068 1069 ret = rdma_create_qp(rdma->cm_id, rdma->pd, &attr); 1070 if (ret) { 1071 return -1; 1072 } 1073 1074 rdma->qp = rdma->cm_id->qp; 1075 return 0; 1076 } 1077 1078 static int qemu_rdma_reg_whole_ram_blocks(RDMAContext *rdma) 1079 { 1080 int i; 1081 RDMALocalBlocks *local = &rdma->local_ram_blocks; 1082 1083 for (i = 0; i < local->nb_blocks; i++) { 1084 local->block[i].mr = 1085 ibv_reg_mr(rdma->pd, 1086 local->block[i].local_host_addr, 1087 local->block[i].length, 1088 IBV_ACCESS_LOCAL_WRITE | 1089 IBV_ACCESS_REMOTE_WRITE 1090 ); 1091 if (!local->block[i].mr) { 1092 perror("Failed to register local dest ram block!\n"); 1093 break; 1094 } 1095 rdma->total_registrations++; 1096 } 1097 1098 if (i >= local->nb_blocks) { 1099 return 0; 1100 } 1101 1102 for (i--; i >= 0; i--) { 1103 ibv_dereg_mr(local->block[i].mr); 1104 rdma->total_registrations--; 1105 } 1106 1107 return -1; 1108 1109 } 1110 1111 /* 1112 * Find the ram block that corresponds to the page requested to be 1113 * transmitted by QEMU. 1114 * 1115 * Once the block is found, also identify which 'chunk' within that 1116 * block that the page belongs to. 1117 * 1118 * This search cannot fail or the migration will fail. 1119 */ 1120 static int qemu_rdma_search_ram_block(RDMAContext *rdma, 1121 uintptr_t block_offset, 1122 uint64_t offset, 1123 uint64_t length, 1124 uint64_t *block_index, 1125 uint64_t *chunk_index) 1126 { 1127 uint64_t current_addr = block_offset + offset; 1128 RDMALocalBlock *block = g_hash_table_lookup(rdma->blockmap, 1129 (void *) block_offset); 1130 assert(block); 1131 assert(current_addr >= block->offset); 1132 assert((current_addr + length) <= (block->offset + block->length)); 1133 1134 *block_index = block->index; 1135 *chunk_index = ram_chunk_index(block->local_host_addr, 1136 block->local_host_addr + (current_addr - block->offset)); 1137 1138 return 0; 1139 } 1140 1141 /* 1142 * Register a chunk with IB. If the chunk was already registered 1143 * previously, then skip. 1144 * 1145 * Also return the keys associated with the registration needed 1146 * to perform the actual RDMA operation. 1147 */ 1148 static int qemu_rdma_register_and_get_keys(RDMAContext *rdma, 1149 RDMALocalBlock *block, uintptr_t host_addr, 1150 uint32_t *lkey, uint32_t *rkey, int chunk, 1151 uint8_t *chunk_start, uint8_t *chunk_end) 1152 { 1153 if (block->mr) { 1154 if (lkey) { 1155 *lkey = block->mr->lkey; 1156 } 1157 if (rkey) { 1158 *rkey = block->mr->rkey; 1159 } 1160 return 0; 1161 } 1162 1163 /* allocate memory to store chunk MRs */ 1164 if (!block->pmr) { 1165 block->pmr = g_new0(struct ibv_mr *, block->nb_chunks); 1166 } 1167 1168 /* 1169 * If 'rkey', then we're the destination, so grant access to the source. 1170 * 1171 * If 'lkey', then we're the source VM, so grant access only to ourselves. 1172 */ 1173 if (!block->pmr[chunk]) { 1174 uint64_t len = chunk_end - chunk_start; 1175 1176 trace_qemu_rdma_register_and_get_keys(len, chunk_start); 1177 1178 block->pmr[chunk] = ibv_reg_mr(rdma->pd, 1179 chunk_start, len, 1180 (rkey ? (IBV_ACCESS_LOCAL_WRITE | 1181 IBV_ACCESS_REMOTE_WRITE) : 0)); 1182 1183 if (!block->pmr[chunk]) { 1184 perror("Failed to register chunk!"); 1185 fprintf(stderr, "Chunk details: block: %d chunk index %d" 1186 " start %" PRIuPTR " end %" PRIuPTR 1187 " host %" PRIuPTR 1188 " local %" PRIuPTR " registrations: %d\n", 1189 block->index, chunk, (uintptr_t)chunk_start, 1190 (uintptr_t)chunk_end, host_addr, 1191 (uintptr_t)block->local_host_addr, 1192 rdma->total_registrations); 1193 return -1; 1194 } 1195 rdma->total_registrations++; 1196 } 1197 1198 if (lkey) { 1199 *lkey = block->pmr[chunk]->lkey; 1200 } 1201 if (rkey) { 1202 *rkey = block->pmr[chunk]->rkey; 1203 } 1204 return 0; 1205 } 1206 1207 /* 1208 * Register (at connection time) the memory used for control 1209 * channel messages. 1210 */ 1211 static int qemu_rdma_reg_control(RDMAContext *rdma, int idx) 1212 { 1213 rdma->wr_data[idx].control_mr = ibv_reg_mr(rdma->pd, 1214 rdma->wr_data[idx].control, RDMA_CONTROL_MAX_BUFFER, 1215 IBV_ACCESS_LOCAL_WRITE | IBV_ACCESS_REMOTE_WRITE); 1216 if (rdma->wr_data[idx].control_mr) { 1217 rdma->total_registrations++; 1218 return 0; 1219 } 1220 error_report("qemu_rdma_reg_control failed"); 1221 return -1; 1222 } 1223 1224 const char *print_wrid(int wrid) 1225 { 1226 if (wrid >= RDMA_WRID_RECV_CONTROL) { 1227 return wrid_desc[RDMA_WRID_RECV_CONTROL]; 1228 } 1229 return wrid_desc[wrid]; 1230 } 1231 1232 /* 1233 * RDMA requires memory registration (mlock/pinning), but this is not good for 1234 * overcommitment. 1235 * 1236 * In preparation for the future where LRU information or workload-specific 1237 * writable writable working set memory access behavior is available to QEMU 1238 * it would be nice to have in place the ability to UN-register/UN-pin 1239 * particular memory regions from the RDMA hardware when it is determine that 1240 * those regions of memory will likely not be accessed again in the near future. 1241 * 1242 * While we do not yet have such information right now, the following 1243 * compile-time option allows us to perform a non-optimized version of this 1244 * behavior. 1245 * 1246 * By uncommenting this option, you will cause *all* RDMA transfers to be 1247 * unregistered immediately after the transfer completes on both sides of the 1248 * connection. This has no effect in 'rdma-pin-all' mode, only regular mode. 1249 * 1250 * This will have a terrible impact on migration performance, so until future 1251 * workload information or LRU information is available, do not attempt to use 1252 * this feature except for basic testing. 1253 */ 1254 //#define RDMA_UNREGISTRATION_EXAMPLE 1255 1256 /* 1257 * Perform a non-optimized memory unregistration after every transfer 1258 * for demonstration purposes, only if pin-all is not requested. 1259 * 1260 * Potential optimizations: 1261 * 1. Start a new thread to run this function continuously 1262 - for bit clearing 1263 - and for receipt of unregister messages 1264 * 2. Use an LRU. 1265 * 3. Use workload hints. 1266 */ 1267 static int qemu_rdma_unregister_waiting(RDMAContext *rdma) 1268 { 1269 while (rdma->unregistrations[rdma->unregister_current]) { 1270 int ret; 1271 uint64_t wr_id = rdma->unregistrations[rdma->unregister_current]; 1272 uint64_t chunk = 1273 (wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT; 1274 uint64_t index = 1275 (wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT; 1276 RDMALocalBlock *block = 1277 &(rdma->local_ram_blocks.block[index]); 1278 RDMARegister reg = { .current_index = index }; 1279 RDMAControlHeader resp = { .type = RDMA_CONTROL_UNREGISTER_FINISHED, 1280 }; 1281 RDMAControlHeader head = { .len = sizeof(RDMARegister), 1282 .type = RDMA_CONTROL_UNREGISTER_REQUEST, 1283 .repeat = 1, 1284 }; 1285 1286 trace_qemu_rdma_unregister_waiting_proc(chunk, 1287 rdma->unregister_current); 1288 1289 rdma->unregistrations[rdma->unregister_current] = 0; 1290 rdma->unregister_current++; 1291 1292 if (rdma->unregister_current == RDMA_SIGNALED_SEND_MAX) { 1293 rdma->unregister_current = 0; 1294 } 1295 1296 1297 /* 1298 * Unregistration is speculative (because migration is single-threaded 1299 * and we cannot break the protocol's inifinband message ordering). 1300 * Thus, if the memory is currently being used for transmission, 1301 * then abort the attempt to unregister and try again 1302 * later the next time a completion is received for this memory. 1303 */ 1304 clear_bit(chunk, block->unregister_bitmap); 1305 1306 if (test_bit(chunk, block->transit_bitmap)) { 1307 trace_qemu_rdma_unregister_waiting_inflight(chunk); 1308 continue; 1309 } 1310 1311 trace_qemu_rdma_unregister_waiting_send(chunk); 1312 1313 ret = ibv_dereg_mr(block->pmr[chunk]); 1314 block->pmr[chunk] = NULL; 1315 block->remote_keys[chunk] = 0; 1316 1317 if (ret != 0) { 1318 perror("unregistration chunk failed"); 1319 return -ret; 1320 } 1321 rdma->total_registrations--; 1322 1323 reg.key.chunk = chunk; 1324 register_to_network(rdma, ®); 1325 ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) ®, 1326 &resp, NULL, NULL); 1327 if (ret < 0) { 1328 return ret; 1329 } 1330 1331 trace_qemu_rdma_unregister_waiting_complete(chunk); 1332 } 1333 1334 return 0; 1335 } 1336 1337 static uint64_t qemu_rdma_make_wrid(uint64_t wr_id, uint64_t index, 1338 uint64_t chunk) 1339 { 1340 uint64_t result = wr_id & RDMA_WRID_TYPE_MASK; 1341 1342 result |= (index << RDMA_WRID_BLOCK_SHIFT); 1343 result |= (chunk << RDMA_WRID_CHUNK_SHIFT); 1344 1345 return result; 1346 } 1347 1348 /* 1349 * Set bit for unregistration in the next iteration. 1350 * We cannot transmit right here, but will unpin later. 1351 */ 1352 static void qemu_rdma_signal_unregister(RDMAContext *rdma, uint64_t index, 1353 uint64_t chunk, uint64_t wr_id) 1354 { 1355 if (rdma->unregistrations[rdma->unregister_next] != 0) { 1356 error_report("rdma migration: queue is full"); 1357 } else { 1358 RDMALocalBlock *block = &(rdma->local_ram_blocks.block[index]); 1359 1360 if (!test_and_set_bit(chunk, block->unregister_bitmap)) { 1361 trace_qemu_rdma_signal_unregister_append(chunk, 1362 rdma->unregister_next); 1363 1364 rdma->unregistrations[rdma->unregister_next++] = 1365 qemu_rdma_make_wrid(wr_id, index, chunk); 1366 1367 if (rdma->unregister_next == RDMA_SIGNALED_SEND_MAX) { 1368 rdma->unregister_next = 0; 1369 } 1370 } else { 1371 trace_qemu_rdma_signal_unregister_already(chunk); 1372 } 1373 } 1374 } 1375 1376 /* 1377 * Consult the connection manager to see a work request 1378 * (of any kind) has completed. 1379 * Return the work request ID that completed. 1380 */ 1381 static uint64_t qemu_rdma_poll(RDMAContext *rdma, uint64_t *wr_id_out, 1382 uint32_t *byte_len) 1383 { 1384 int ret; 1385 struct ibv_wc wc; 1386 uint64_t wr_id; 1387 1388 ret = ibv_poll_cq(rdma->cq, 1, &wc); 1389 1390 if (!ret) { 1391 *wr_id_out = RDMA_WRID_NONE; 1392 return 0; 1393 } 1394 1395 if (ret < 0) { 1396 error_report("ibv_poll_cq return %d", ret); 1397 return ret; 1398 } 1399 1400 wr_id = wc.wr_id & RDMA_WRID_TYPE_MASK; 1401 1402 if (wc.status != IBV_WC_SUCCESS) { 1403 fprintf(stderr, "ibv_poll_cq wc.status=%d %s!\n", 1404 wc.status, ibv_wc_status_str(wc.status)); 1405 fprintf(stderr, "ibv_poll_cq wrid=%s!\n", wrid_desc[wr_id]); 1406 1407 return -1; 1408 } 1409 1410 if (rdma->control_ready_expected && 1411 (wr_id >= RDMA_WRID_RECV_CONTROL)) { 1412 trace_qemu_rdma_poll_recv(wrid_desc[RDMA_WRID_RECV_CONTROL], 1413 wr_id - RDMA_WRID_RECV_CONTROL, wr_id, rdma->nb_sent); 1414 rdma->control_ready_expected = 0; 1415 } 1416 1417 if (wr_id == RDMA_WRID_RDMA_WRITE) { 1418 uint64_t chunk = 1419 (wc.wr_id & RDMA_WRID_CHUNK_MASK) >> RDMA_WRID_CHUNK_SHIFT; 1420 uint64_t index = 1421 (wc.wr_id & RDMA_WRID_BLOCK_MASK) >> RDMA_WRID_BLOCK_SHIFT; 1422 RDMALocalBlock *block = &(rdma->local_ram_blocks.block[index]); 1423 1424 trace_qemu_rdma_poll_write(print_wrid(wr_id), wr_id, rdma->nb_sent, 1425 index, chunk, block->local_host_addr, 1426 (void *)(uintptr_t)block->remote_host_addr); 1427 1428 clear_bit(chunk, block->transit_bitmap); 1429 1430 if (rdma->nb_sent > 0) { 1431 rdma->nb_sent--; 1432 } 1433 1434 if (!rdma->pin_all) { 1435 /* 1436 * FYI: If one wanted to signal a specific chunk to be unregistered 1437 * using LRU or workload-specific information, this is the function 1438 * you would call to do so. That chunk would then get asynchronously 1439 * unregistered later. 1440 */ 1441 #ifdef RDMA_UNREGISTRATION_EXAMPLE 1442 qemu_rdma_signal_unregister(rdma, index, chunk, wc.wr_id); 1443 #endif 1444 } 1445 } else { 1446 trace_qemu_rdma_poll_other(print_wrid(wr_id), wr_id, rdma->nb_sent); 1447 } 1448 1449 *wr_id_out = wc.wr_id; 1450 if (byte_len) { 1451 *byte_len = wc.byte_len; 1452 } 1453 1454 return 0; 1455 } 1456 1457 /* 1458 * Block until the next work request has completed. 1459 * 1460 * First poll to see if a work request has already completed, 1461 * otherwise block. 1462 * 1463 * If we encounter completed work requests for IDs other than 1464 * the one we're interested in, then that's generally an error. 1465 * 1466 * The only exception is actual RDMA Write completions. These 1467 * completions only need to be recorded, but do not actually 1468 * need further processing. 1469 */ 1470 static int qemu_rdma_block_for_wrid(RDMAContext *rdma, int wrid_requested, 1471 uint32_t *byte_len) 1472 { 1473 int num_cq_events = 0, ret = 0; 1474 struct ibv_cq *cq; 1475 void *cq_ctx; 1476 uint64_t wr_id = RDMA_WRID_NONE, wr_id_in; 1477 1478 if (ibv_req_notify_cq(rdma->cq, 0)) { 1479 return -1; 1480 } 1481 /* poll cq first */ 1482 while (wr_id != wrid_requested) { 1483 ret = qemu_rdma_poll(rdma, &wr_id_in, byte_len); 1484 if (ret < 0) { 1485 return ret; 1486 } 1487 1488 wr_id = wr_id_in & RDMA_WRID_TYPE_MASK; 1489 1490 if (wr_id == RDMA_WRID_NONE) { 1491 break; 1492 } 1493 if (wr_id != wrid_requested) { 1494 trace_qemu_rdma_block_for_wrid_miss(print_wrid(wrid_requested), 1495 wrid_requested, print_wrid(wr_id), wr_id); 1496 } 1497 } 1498 1499 if (wr_id == wrid_requested) { 1500 return 0; 1501 } 1502 1503 while (1) { 1504 /* 1505 * Coroutine doesn't start until process_incoming_migration() 1506 * so don't yield unless we know we're running inside of a coroutine. 1507 */ 1508 if (rdma->migration_started_on_destination) { 1509 yield_until_fd_readable(rdma->comp_channel->fd); 1510 } 1511 1512 if (ibv_get_cq_event(rdma->comp_channel, &cq, &cq_ctx)) { 1513 perror("ibv_get_cq_event"); 1514 goto err_block_for_wrid; 1515 } 1516 1517 num_cq_events++; 1518 1519 if (ibv_req_notify_cq(cq, 0)) { 1520 goto err_block_for_wrid; 1521 } 1522 1523 while (wr_id != wrid_requested) { 1524 ret = qemu_rdma_poll(rdma, &wr_id_in, byte_len); 1525 if (ret < 0) { 1526 goto err_block_for_wrid; 1527 } 1528 1529 wr_id = wr_id_in & RDMA_WRID_TYPE_MASK; 1530 1531 if (wr_id == RDMA_WRID_NONE) { 1532 break; 1533 } 1534 if (wr_id != wrid_requested) { 1535 trace_qemu_rdma_block_for_wrid_miss(print_wrid(wrid_requested), 1536 wrid_requested, print_wrid(wr_id), wr_id); 1537 } 1538 } 1539 1540 if (wr_id == wrid_requested) { 1541 goto success_block_for_wrid; 1542 } 1543 } 1544 1545 success_block_for_wrid: 1546 if (num_cq_events) { 1547 ibv_ack_cq_events(cq, num_cq_events); 1548 } 1549 return 0; 1550 1551 err_block_for_wrid: 1552 if (num_cq_events) { 1553 ibv_ack_cq_events(cq, num_cq_events); 1554 } 1555 return ret; 1556 } 1557 1558 /* 1559 * Post a SEND message work request for the control channel 1560 * containing some data and block until the post completes. 1561 */ 1562 static int qemu_rdma_post_send_control(RDMAContext *rdma, uint8_t *buf, 1563 RDMAControlHeader *head) 1564 { 1565 int ret = 0; 1566 RDMAWorkRequestData *wr = &rdma->wr_data[RDMA_WRID_CONTROL]; 1567 struct ibv_send_wr *bad_wr; 1568 struct ibv_sge sge = { 1569 .addr = (uintptr_t)(wr->control), 1570 .length = head->len + sizeof(RDMAControlHeader), 1571 .lkey = wr->control_mr->lkey, 1572 }; 1573 struct ibv_send_wr send_wr = { 1574 .wr_id = RDMA_WRID_SEND_CONTROL, 1575 .opcode = IBV_WR_SEND, 1576 .send_flags = IBV_SEND_SIGNALED, 1577 .sg_list = &sge, 1578 .num_sge = 1, 1579 }; 1580 1581 trace_qemu_rdma_post_send_control(control_desc[head->type]); 1582 1583 /* 1584 * We don't actually need to do a memcpy() in here if we used 1585 * the "sge" properly, but since we're only sending control messages 1586 * (not RAM in a performance-critical path), then its OK for now. 1587 * 1588 * The copy makes the RDMAControlHeader simpler to manipulate 1589 * for the time being. 1590 */ 1591 assert(head->len <= RDMA_CONTROL_MAX_BUFFER - sizeof(*head)); 1592 memcpy(wr->control, head, sizeof(RDMAControlHeader)); 1593 control_to_network((void *) wr->control); 1594 1595 if (buf) { 1596 memcpy(wr->control + sizeof(RDMAControlHeader), buf, head->len); 1597 } 1598 1599 1600 ret = ibv_post_send(rdma->qp, &send_wr, &bad_wr); 1601 1602 if (ret > 0) { 1603 error_report("Failed to use post IB SEND for control"); 1604 return -ret; 1605 } 1606 1607 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_SEND_CONTROL, NULL); 1608 if (ret < 0) { 1609 error_report("rdma migration: send polling control error"); 1610 } 1611 1612 return ret; 1613 } 1614 1615 /* 1616 * Post a RECV work request in anticipation of some future receipt 1617 * of data on the control channel. 1618 */ 1619 static int qemu_rdma_post_recv_control(RDMAContext *rdma, int idx) 1620 { 1621 struct ibv_recv_wr *bad_wr; 1622 struct ibv_sge sge = { 1623 .addr = (uintptr_t)(rdma->wr_data[idx].control), 1624 .length = RDMA_CONTROL_MAX_BUFFER, 1625 .lkey = rdma->wr_data[idx].control_mr->lkey, 1626 }; 1627 1628 struct ibv_recv_wr recv_wr = { 1629 .wr_id = RDMA_WRID_RECV_CONTROL + idx, 1630 .sg_list = &sge, 1631 .num_sge = 1, 1632 }; 1633 1634 1635 if (ibv_post_recv(rdma->qp, &recv_wr, &bad_wr)) { 1636 return -1; 1637 } 1638 1639 return 0; 1640 } 1641 1642 /* 1643 * Block and wait for a RECV control channel message to arrive. 1644 */ 1645 static int qemu_rdma_exchange_get_response(RDMAContext *rdma, 1646 RDMAControlHeader *head, int expecting, int idx) 1647 { 1648 uint32_t byte_len; 1649 int ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RECV_CONTROL + idx, 1650 &byte_len); 1651 1652 if (ret < 0) { 1653 error_report("rdma migration: recv polling control error!"); 1654 return ret; 1655 } 1656 1657 network_to_control((void *) rdma->wr_data[idx].control); 1658 memcpy(head, rdma->wr_data[idx].control, sizeof(RDMAControlHeader)); 1659 1660 trace_qemu_rdma_exchange_get_response_start(control_desc[expecting]); 1661 1662 if (expecting == RDMA_CONTROL_NONE) { 1663 trace_qemu_rdma_exchange_get_response_none(control_desc[head->type], 1664 head->type); 1665 } else if (head->type != expecting || head->type == RDMA_CONTROL_ERROR) { 1666 error_report("Was expecting a %s (%d) control message" 1667 ", but got: %s (%d), length: %d", 1668 control_desc[expecting], expecting, 1669 control_desc[head->type], head->type, head->len); 1670 return -EIO; 1671 } 1672 if (head->len > RDMA_CONTROL_MAX_BUFFER - sizeof(*head)) { 1673 error_report("too long length: %d", head->len); 1674 return -EINVAL; 1675 } 1676 if (sizeof(*head) + head->len != byte_len) { 1677 error_report("Malformed length: %d byte_len %d", head->len, byte_len); 1678 return -EINVAL; 1679 } 1680 1681 return 0; 1682 } 1683 1684 /* 1685 * When a RECV work request has completed, the work request's 1686 * buffer is pointed at the header. 1687 * 1688 * This will advance the pointer to the data portion 1689 * of the control message of the work request's buffer that 1690 * was populated after the work request finished. 1691 */ 1692 static void qemu_rdma_move_header(RDMAContext *rdma, int idx, 1693 RDMAControlHeader *head) 1694 { 1695 rdma->wr_data[idx].control_len = head->len; 1696 rdma->wr_data[idx].control_curr = 1697 rdma->wr_data[idx].control + sizeof(RDMAControlHeader); 1698 } 1699 1700 /* 1701 * This is an 'atomic' high-level operation to deliver a single, unified 1702 * control-channel message. 1703 * 1704 * Additionally, if the user is expecting some kind of reply to this message, 1705 * they can request a 'resp' response message be filled in by posting an 1706 * additional work request on behalf of the user and waiting for an additional 1707 * completion. 1708 * 1709 * The extra (optional) response is used during registration to us from having 1710 * to perform an *additional* exchange of message just to provide a response by 1711 * instead piggy-backing on the acknowledgement. 1712 */ 1713 static int qemu_rdma_exchange_send(RDMAContext *rdma, RDMAControlHeader *head, 1714 uint8_t *data, RDMAControlHeader *resp, 1715 int *resp_idx, 1716 int (*callback)(RDMAContext *rdma)) 1717 { 1718 int ret = 0; 1719 1720 /* 1721 * Wait until the dest is ready before attempting to deliver the message 1722 * by waiting for a READY message. 1723 */ 1724 if (rdma->control_ready_expected) { 1725 RDMAControlHeader resp; 1726 ret = qemu_rdma_exchange_get_response(rdma, 1727 &resp, RDMA_CONTROL_READY, RDMA_WRID_READY); 1728 if (ret < 0) { 1729 return ret; 1730 } 1731 } 1732 1733 /* 1734 * If the user is expecting a response, post a WR in anticipation of it. 1735 */ 1736 if (resp) { 1737 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_DATA); 1738 if (ret) { 1739 error_report("rdma migration: error posting" 1740 " extra control recv for anticipated result!"); 1741 return ret; 1742 } 1743 } 1744 1745 /* 1746 * Post a WR to replace the one we just consumed for the READY message. 1747 */ 1748 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY); 1749 if (ret) { 1750 error_report("rdma migration: error posting first control recv!"); 1751 return ret; 1752 } 1753 1754 /* 1755 * Deliver the control message that was requested. 1756 */ 1757 ret = qemu_rdma_post_send_control(rdma, data, head); 1758 1759 if (ret < 0) { 1760 error_report("Failed to send control buffer!"); 1761 return ret; 1762 } 1763 1764 /* 1765 * If we're expecting a response, block and wait for it. 1766 */ 1767 if (resp) { 1768 if (callback) { 1769 trace_qemu_rdma_exchange_send_issue_callback(); 1770 ret = callback(rdma); 1771 if (ret < 0) { 1772 return ret; 1773 } 1774 } 1775 1776 trace_qemu_rdma_exchange_send_waiting(control_desc[resp->type]); 1777 ret = qemu_rdma_exchange_get_response(rdma, resp, 1778 resp->type, RDMA_WRID_DATA); 1779 1780 if (ret < 0) { 1781 return ret; 1782 } 1783 1784 qemu_rdma_move_header(rdma, RDMA_WRID_DATA, resp); 1785 if (resp_idx) { 1786 *resp_idx = RDMA_WRID_DATA; 1787 } 1788 trace_qemu_rdma_exchange_send_received(control_desc[resp->type]); 1789 } 1790 1791 rdma->control_ready_expected = 1; 1792 1793 return 0; 1794 } 1795 1796 /* 1797 * This is an 'atomic' high-level operation to receive a single, unified 1798 * control-channel message. 1799 */ 1800 static int qemu_rdma_exchange_recv(RDMAContext *rdma, RDMAControlHeader *head, 1801 int expecting) 1802 { 1803 RDMAControlHeader ready = { 1804 .len = 0, 1805 .type = RDMA_CONTROL_READY, 1806 .repeat = 1, 1807 }; 1808 int ret; 1809 1810 /* 1811 * Inform the source that we're ready to receive a message. 1812 */ 1813 ret = qemu_rdma_post_send_control(rdma, NULL, &ready); 1814 1815 if (ret < 0) { 1816 error_report("Failed to send control buffer!"); 1817 return ret; 1818 } 1819 1820 /* 1821 * Block and wait for the message. 1822 */ 1823 ret = qemu_rdma_exchange_get_response(rdma, head, 1824 expecting, RDMA_WRID_READY); 1825 1826 if (ret < 0) { 1827 return ret; 1828 } 1829 1830 qemu_rdma_move_header(rdma, RDMA_WRID_READY, head); 1831 1832 /* 1833 * Post a new RECV work request to replace the one we just consumed. 1834 */ 1835 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY); 1836 if (ret) { 1837 error_report("rdma migration: error posting second control recv!"); 1838 return ret; 1839 } 1840 1841 return 0; 1842 } 1843 1844 /* 1845 * Write an actual chunk of memory using RDMA. 1846 * 1847 * If we're using dynamic registration on the dest-side, we have to 1848 * send a registration command first. 1849 */ 1850 static int qemu_rdma_write_one(QEMUFile *f, RDMAContext *rdma, 1851 int current_index, uint64_t current_addr, 1852 uint64_t length) 1853 { 1854 struct ibv_sge sge; 1855 struct ibv_send_wr send_wr = { 0 }; 1856 struct ibv_send_wr *bad_wr; 1857 int reg_result_idx, ret, count = 0; 1858 uint64_t chunk, chunks; 1859 uint8_t *chunk_start, *chunk_end; 1860 RDMALocalBlock *block = &(rdma->local_ram_blocks.block[current_index]); 1861 RDMARegister reg; 1862 RDMARegisterResult *reg_result; 1863 RDMAControlHeader resp = { .type = RDMA_CONTROL_REGISTER_RESULT }; 1864 RDMAControlHeader head = { .len = sizeof(RDMARegister), 1865 .type = RDMA_CONTROL_REGISTER_REQUEST, 1866 .repeat = 1, 1867 }; 1868 1869 retry: 1870 sge.addr = (uintptr_t)(block->local_host_addr + 1871 (current_addr - block->offset)); 1872 sge.length = length; 1873 1874 chunk = ram_chunk_index(block->local_host_addr, 1875 (uint8_t *)(uintptr_t)sge.addr); 1876 chunk_start = ram_chunk_start(block, chunk); 1877 1878 if (block->is_ram_block) { 1879 chunks = length / (1UL << RDMA_REG_CHUNK_SHIFT); 1880 1881 if (chunks && ((length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) { 1882 chunks--; 1883 } 1884 } else { 1885 chunks = block->length / (1UL << RDMA_REG_CHUNK_SHIFT); 1886 1887 if (chunks && ((block->length % (1UL << RDMA_REG_CHUNK_SHIFT)) == 0)) { 1888 chunks--; 1889 } 1890 } 1891 1892 trace_qemu_rdma_write_one_top(chunks + 1, 1893 (chunks + 1) * 1894 (1UL << RDMA_REG_CHUNK_SHIFT) / 1024 / 1024); 1895 1896 chunk_end = ram_chunk_end(block, chunk + chunks); 1897 1898 if (!rdma->pin_all) { 1899 #ifdef RDMA_UNREGISTRATION_EXAMPLE 1900 qemu_rdma_unregister_waiting(rdma); 1901 #endif 1902 } 1903 1904 while (test_bit(chunk, block->transit_bitmap)) { 1905 (void)count; 1906 trace_qemu_rdma_write_one_block(count++, current_index, chunk, 1907 sge.addr, length, rdma->nb_sent, block->nb_chunks); 1908 1909 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL); 1910 1911 if (ret < 0) { 1912 error_report("Failed to Wait for previous write to complete " 1913 "block %d chunk %" PRIu64 1914 " current %" PRIu64 " len %" PRIu64 " %d", 1915 current_index, chunk, sge.addr, length, rdma->nb_sent); 1916 return ret; 1917 } 1918 } 1919 1920 if (!rdma->pin_all || !block->is_ram_block) { 1921 if (!block->remote_keys[chunk]) { 1922 /* 1923 * This chunk has not yet been registered, so first check to see 1924 * if the entire chunk is zero. If so, tell the other size to 1925 * memset() + madvise() the entire chunk without RDMA. 1926 */ 1927 1928 if (can_use_buffer_find_nonzero_offset((void *)(uintptr_t)sge.addr, 1929 length) 1930 && buffer_find_nonzero_offset((void *)(uintptr_t)sge.addr, 1931 length) == length) { 1932 RDMACompress comp = { 1933 .offset = current_addr, 1934 .value = 0, 1935 .block_idx = current_index, 1936 .length = length, 1937 }; 1938 1939 head.len = sizeof(comp); 1940 head.type = RDMA_CONTROL_COMPRESS; 1941 1942 trace_qemu_rdma_write_one_zero(chunk, sge.length, 1943 current_index, current_addr); 1944 1945 compress_to_network(rdma, &comp); 1946 ret = qemu_rdma_exchange_send(rdma, &head, 1947 (uint8_t *) &comp, NULL, NULL, NULL); 1948 1949 if (ret < 0) { 1950 return -EIO; 1951 } 1952 1953 acct_update_position(f, sge.length, true); 1954 1955 return 1; 1956 } 1957 1958 /* 1959 * Otherwise, tell other side to register. 1960 */ 1961 reg.current_index = current_index; 1962 if (block->is_ram_block) { 1963 reg.key.current_addr = current_addr; 1964 } else { 1965 reg.key.chunk = chunk; 1966 } 1967 reg.chunks = chunks; 1968 1969 trace_qemu_rdma_write_one_sendreg(chunk, sge.length, current_index, 1970 current_addr); 1971 1972 register_to_network(rdma, ®); 1973 ret = qemu_rdma_exchange_send(rdma, &head, (uint8_t *) ®, 1974 &resp, ®_result_idx, NULL); 1975 if (ret < 0) { 1976 return ret; 1977 } 1978 1979 /* try to overlap this single registration with the one we sent. */ 1980 if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr, 1981 &sge.lkey, NULL, chunk, 1982 chunk_start, chunk_end)) { 1983 error_report("cannot get lkey"); 1984 return -EINVAL; 1985 } 1986 1987 reg_result = (RDMARegisterResult *) 1988 rdma->wr_data[reg_result_idx].control_curr; 1989 1990 network_to_result(reg_result); 1991 1992 trace_qemu_rdma_write_one_recvregres(block->remote_keys[chunk], 1993 reg_result->rkey, chunk); 1994 1995 block->remote_keys[chunk] = reg_result->rkey; 1996 block->remote_host_addr = reg_result->host_addr; 1997 } else { 1998 /* already registered before */ 1999 if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr, 2000 &sge.lkey, NULL, chunk, 2001 chunk_start, chunk_end)) { 2002 error_report("cannot get lkey!"); 2003 return -EINVAL; 2004 } 2005 } 2006 2007 send_wr.wr.rdma.rkey = block->remote_keys[chunk]; 2008 } else { 2009 send_wr.wr.rdma.rkey = block->remote_rkey; 2010 2011 if (qemu_rdma_register_and_get_keys(rdma, block, sge.addr, 2012 &sge.lkey, NULL, chunk, 2013 chunk_start, chunk_end)) { 2014 error_report("cannot get lkey!"); 2015 return -EINVAL; 2016 } 2017 } 2018 2019 /* 2020 * Encode the ram block index and chunk within this wrid. 2021 * We will use this information at the time of completion 2022 * to figure out which bitmap to check against and then which 2023 * chunk in the bitmap to look for. 2024 */ 2025 send_wr.wr_id = qemu_rdma_make_wrid(RDMA_WRID_RDMA_WRITE, 2026 current_index, chunk); 2027 2028 send_wr.opcode = IBV_WR_RDMA_WRITE; 2029 send_wr.send_flags = IBV_SEND_SIGNALED; 2030 send_wr.sg_list = &sge; 2031 send_wr.num_sge = 1; 2032 send_wr.wr.rdma.remote_addr = block->remote_host_addr + 2033 (current_addr - block->offset); 2034 2035 trace_qemu_rdma_write_one_post(chunk, sge.addr, send_wr.wr.rdma.remote_addr, 2036 sge.length); 2037 2038 /* 2039 * ibv_post_send() does not return negative error numbers, 2040 * per the specification they are positive - no idea why. 2041 */ 2042 ret = ibv_post_send(rdma->qp, &send_wr, &bad_wr); 2043 2044 if (ret == ENOMEM) { 2045 trace_qemu_rdma_write_one_queue_full(); 2046 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL); 2047 if (ret < 0) { 2048 error_report("rdma migration: failed to make " 2049 "room in full send queue! %d", ret); 2050 return ret; 2051 } 2052 2053 goto retry; 2054 2055 } else if (ret > 0) { 2056 perror("rdma migration: post rdma write failed"); 2057 return -ret; 2058 } 2059 2060 set_bit(chunk, block->transit_bitmap); 2061 acct_update_position(f, sge.length, false); 2062 rdma->total_writes++; 2063 2064 return 0; 2065 } 2066 2067 /* 2068 * Push out any unwritten RDMA operations. 2069 * 2070 * We support sending out multiple chunks at the same time. 2071 * Not all of them need to get signaled in the completion queue. 2072 */ 2073 static int qemu_rdma_write_flush(QEMUFile *f, RDMAContext *rdma) 2074 { 2075 int ret; 2076 2077 if (!rdma->current_length) { 2078 return 0; 2079 } 2080 2081 ret = qemu_rdma_write_one(f, rdma, 2082 rdma->current_index, rdma->current_addr, rdma->current_length); 2083 2084 if (ret < 0) { 2085 return ret; 2086 } 2087 2088 if (ret == 0) { 2089 rdma->nb_sent++; 2090 trace_qemu_rdma_write_flush(rdma->nb_sent); 2091 } 2092 2093 rdma->current_length = 0; 2094 rdma->current_addr = 0; 2095 2096 return 0; 2097 } 2098 2099 static inline int qemu_rdma_buffer_mergable(RDMAContext *rdma, 2100 uint64_t offset, uint64_t len) 2101 { 2102 RDMALocalBlock *block; 2103 uint8_t *host_addr; 2104 uint8_t *chunk_end; 2105 2106 if (rdma->current_index < 0) { 2107 return 0; 2108 } 2109 2110 if (rdma->current_chunk < 0) { 2111 return 0; 2112 } 2113 2114 block = &(rdma->local_ram_blocks.block[rdma->current_index]); 2115 host_addr = block->local_host_addr + (offset - block->offset); 2116 chunk_end = ram_chunk_end(block, rdma->current_chunk); 2117 2118 if (rdma->current_length == 0) { 2119 return 0; 2120 } 2121 2122 /* 2123 * Only merge into chunk sequentially. 2124 */ 2125 if (offset != (rdma->current_addr + rdma->current_length)) { 2126 return 0; 2127 } 2128 2129 if (offset < block->offset) { 2130 return 0; 2131 } 2132 2133 if ((offset + len) > (block->offset + block->length)) { 2134 return 0; 2135 } 2136 2137 if ((host_addr + len) > chunk_end) { 2138 return 0; 2139 } 2140 2141 return 1; 2142 } 2143 2144 /* 2145 * We're not actually writing here, but doing three things: 2146 * 2147 * 1. Identify the chunk the buffer belongs to. 2148 * 2. If the chunk is full or the buffer doesn't belong to the current 2149 * chunk, then start a new chunk and flush() the old chunk. 2150 * 3. To keep the hardware busy, we also group chunks into batches 2151 * and only require that a batch gets acknowledged in the completion 2152 * qeueue instead of each individual chunk. 2153 */ 2154 static int qemu_rdma_write(QEMUFile *f, RDMAContext *rdma, 2155 uint64_t block_offset, uint64_t offset, 2156 uint64_t len) 2157 { 2158 uint64_t current_addr = block_offset + offset; 2159 uint64_t index = rdma->current_index; 2160 uint64_t chunk = rdma->current_chunk; 2161 int ret; 2162 2163 /* If we cannot merge it, we flush the current buffer first. */ 2164 if (!qemu_rdma_buffer_mergable(rdma, current_addr, len)) { 2165 ret = qemu_rdma_write_flush(f, rdma); 2166 if (ret) { 2167 return ret; 2168 } 2169 rdma->current_length = 0; 2170 rdma->current_addr = current_addr; 2171 2172 ret = qemu_rdma_search_ram_block(rdma, block_offset, 2173 offset, len, &index, &chunk); 2174 if (ret) { 2175 error_report("ram block search failed"); 2176 return ret; 2177 } 2178 rdma->current_index = index; 2179 rdma->current_chunk = chunk; 2180 } 2181 2182 /* merge it */ 2183 rdma->current_length += len; 2184 2185 /* flush it if buffer is too large */ 2186 if (rdma->current_length >= RDMA_MERGE_MAX) { 2187 return qemu_rdma_write_flush(f, rdma); 2188 } 2189 2190 return 0; 2191 } 2192 2193 static void qemu_rdma_cleanup(RDMAContext *rdma) 2194 { 2195 struct rdma_cm_event *cm_event; 2196 int ret, idx; 2197 2198 if (rdma->cm_id && rdma->connected) { 2199 if (rdma->error_state) { 2200 RDMAControlHeader head = { .len = 0, 2201 .type = RDMA_CONTROL_ERROR, 2202 .repeat = 1, 2203 }; 2204 error_report("Early error. Sending error."); 2205 qemu_rdma_post_send_control(rdma, NULL, &head); 2206 } 2207 2208 ret = rdma_disconnect(rdma->cm_id); 2209 if (!ret) { 2210 trace_qemu_rdma_cleanup_waiting_for_disconnect(); 2211 ret = rdma_get_cm_event(rdma->channel, &cm_event); 2212 if (!ret) { 2213 rdma_ack_cm_event(cm_event); 2214 } 2215 } 2216 trace_qemu_rdma_cleanup_disconnect(); 2217 rdma->connected = false; 2218 } 2219 2220 g_free(rdma->dest_blocks); 2221 rdma->dest_blocks = NULL; 2222 2223 for (idx = 0; idx < RDMA_WRID_MAX; idx++) { 2224 if (rdma->wr_data[idx].control_mr) { 2225 rdma->total_registrations--; 2226 ibv_dereg_mr(rdma->wr_data[idx].control_mr); 2227 } 2228 rdma->wr_data[idx].control_mr = NULL; 2229 } 2230 2231 if (rdma->local_ram_blocks.block) { 2232 while (rdma->local_ram_blocks.nb_blocks) { 2233 rdma_delete_block(rdma, &rdma->local_ram_blocks.block[0]); 2234 } 2235 } 2236 2237 if (rdma->qp) { 2238 rdma_destroy_qp(rdma->cm_id); 2239 rdma->qp = NULL; 2240 } 2241 if (rdma->cq) { 2242 ibv_destroy_cq(rdma->cq); 2243 rdma->cq = NULL; 2244 } 2245 if (rdma->comp_channel) { 2246 ibv_destroy_comp_channel(rdma->comp_channel); 2247 rdma->comp_channel = NULL; 2248 } 2249 if (rdma->pd) { 2250 ibv_dealloc_pd(rdma->pd); 2251 rdma->pd = NULL; 2252 } 2253 if (rdma->cm_id) { 2254 rdma_destroy_id(rdma->cm_id); 2255 rdma->cm_id = NULL; 2256 } 2257 if (rdma->listen_id) { 2258 rdma_destroy_id(rdma->listen_id); 2259 rdma->listen_id = NULL; 2260 } 2261 if (rdma->channel) { 2262 rdma_destroy_event_channel(rdma->channel); 2263 rdma->channel = NULL; 2264 } 2265 g_free(rdma->host); 2266 rdma->host = NULL; 2267 } 2268 2269 2270 static int qemu_rdma_source_init(RDMAContext *rdma, Error **errp, bool pin_all) 2271 { 2272 int ret, idx; 2273 Error *local_err = NULL, **temp = &local_err; 2274 2275 /* 2276 * Will be validated against destination's actual capabilities 2277 * after the connect() completes. 2278 */ 2279 rdma->pin_all = pin_all; 2280 2281 ret = qemu_rdma_resolve_host(rdma, temp); 2282 if (ret) { 2283 goto err_rdma_source_init; 2284 } 2285 2286 ret = qemu_rdma_alloc_pd_cq(rdma); 2287 if (ret) { 2288 ERROR(temp, "rdma migration: error allocating pd and cq! Your mlock()" 2289 " limits may be too low. Please check $ ulimit -a # and " 2290 "search for 'ulimit -l' in the output"); 2291 goto err_rdma_source_init; 2292 } 2293 2294 ret = qemu_rdma_alloc_qp(rdma); 2295 if (ret) { 2296 ERROR(temp, "rdma migration: error allocating qp!"); 2297 goto err_rdma_source_init; 2298 } 2299 2300 ret = qemu_rdma_init_ram_blocks(rdma); 2301 if (ret) { 2302 ERROR(temp, "rdma migration: error initializing ram blocks!"); 2303 goto err_rdma_source_init; 2304 } 2305 2306 /* Build the hash that maps from offset to RAMBlock */ 2307 rdma->blockmap = g_hash_table_new(g_direct_hash, g_direct_equal); 2308 for (idx = 0; idx < rdma->local_ram_blocks.nb_blocks; idx++) { 2309 g_hash_table_insert(rdma->blockmap, 2310 (void *)(uintptr_t)rdma->local_ram_blocks.block[idx].offset, 2311 &rdma->local_ram_blocks.block[idx]); 2312 } 2313 2314 for (idx = 0; idx < RDMA_WRID_MAX; idx++) { 2315 ret = qemu_rdma_reg_control(rdma, idx); 2316 if (ret) { 2317 ERROR(temp, "rdma migration: error registering %d control!", 2318 idx); 2319 goto err_rdma_source_init; 2320 } 2321 } 2322 2323 return 0; 2324 2325 err_rdma_source_init: 2326 error_propagate(errp, local_err); 2327 qemu_rdma_cleanup(rdma); 2328 return -1; 2329 } 2330 2331 static int qemu_rdma_connect(RDMAContext *rdma, Error **errp) 2332 { 2333 RDMACapabilities cap = { 2334 .version = RDMA_CONTROL_VERSION_CURRENT, 2335 .flags = 0, 2336 }; 2337 struct rdma_conn_param conn_param = { .initiator_depth = 2, 2338 .retry_count = 5, 2339 .private_data = &cap, 2340 .private_data_len = sizeof(cap), 2341 }; 2342 struct rdma_cm_event *cm_event; 2343 int ret; 2344 2345 /* 2346 * Only negotiate the capability with destination if the user 2347 * on the source first requested the capability. 2348 */ 2349 if (rdma->pin_all) { 2350 trace_qemu_rdma_connect_pin_all_requested(); 2351 cap.flags |= RDMA_CAPABILITY_PIN_ALL; 2352 } 2353 2354 caps_to_network(&cap); 2355 2356 ret = rdma_connect(rdma->cm_id, &conn_param); 2357 if (ret) { 2358 perror("rdma_connect"); 2359 ERROR(errp, "connecting to destination!"); 2360 goto err_rdma_source_connect; 2361 } 2362 2363 ret = rdma_get_cm_event(rdma->channel, &cm_event); 2364 if (ret) { 2365 perror("rdma_get_cm_event after rdma_connect"); 2366 ERROR(errp, "connecting to destination!"); 2367 rdma_ack_cm_event(cm_event); 2368 goto err_rdma_source_connect; 2369 } 2370 2371 if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) { 2372 perror("rdma_get_cm_event != EVENT_ESTABLISHED after rdma_connect"); 2373 ERROR(errp, "connecting to destination!"); 2374 rdma_ack_cm_event(cm_event); 2375 goto err_rdma_source_connect; 2376 } 2377 rdma->connected = true; 2378 2379 memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap)); 2380 network_to_caps(&cap); 2381 2382 /* 2383 * Verify that the *requested* capabilities are supported by the destination 2384 * and disable them otherwise. 2385 */ 2386 if (rdma->pin_all && !(cap.flags & RDMA_CAPABILITY_PIN_ALL)) { 2387 ERROR(errp, "Server cannot support pinning all memory. " 2388 "Will register memory dynamically."); 2389 rdma->pin_all = false; 2390 } 2391 2392 trace_qemu_rdma_connect_pin_all_outcome(rdma->pin_all); 2393 2394 rdma_ack_cm_event(cm_event); 2395 2396 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY); 2397 if (ret) { 2398 ERROR(errp, "posting second control recv!"); 2399 goto err_rdma_source_connect; 2400 } 2401 2402 rdma->control_ready_expected = 1; 2403 rdma->nb_sent = 0; 2404 return 0; 2405 2406 err_rdma_source_connect: 2407 qemu_rdma_cleanup(rdma); 2408 return -1; 2409 } 2410 2411 static int qemu_rdma_dest_init(RDMAContext *rdma, Error **errp) 2412 { 2413 int ret, idx; 2414 struct rdma_cm_id *listen_id; 2415 char ip[40] = "unknown"; 2416 struct rdma_addrinfo *res, *e; 2417 char port_str[16]; 2418 2419 for (idx = 0; idx < RDMA_WRID_MAX; idx++) { 2420 rdma->wr_data[idx].control_len = 0; 2421 rdma->wr_data[idx].control_curr = NULL; 2422 } 2423 2424 if (!rdma->host || !rdma->host[0]) { 2425 ERROR(errp, "RDMA host is not set!"); 2426 rdma->error_state = -EINVAL; 2427 return -1; 2428 } 2429 /* create CM channel */ 2430 rdma->channel = rdma_create_event_channel(); 2431 if (!rdma->channel) { 2432 ERROR(errp, "could not create rdma event channel"); 2433 rdma->error_state = -EINVAL; 2434 return -1; 2435 } 2436 2437 /* create CM id */ 2438 ret = rdma_create_id(rdma->channel, &listen_id, NULL, RDMA_PS_TCP); 2439 if (ret) { 2440 ERROR(errp, "could not create cm_id!"); 2441 goto err_dest_init_create_listen_id; 2442 } 2443 2444 snprintf(port_str, 16, "%d", rdma->port); 2445 port_str[15] = '\0'; 2446 2447 ret = rdma_getaddrinfo(rdma->host, port_str, NULL, &res); 2448 if (ret < 0) { 2449 ERROR(errp, "could not rdma_getaddrinfo address %s", rdma->host); 2450 goto err_dest_init_bind_addr; 2451 } 2452 2453 for (e = res; e != NULL; e = e->ai_next) { 2454 inet_ntop(e->ai_family, 2455 &((struct sockaddr_in *) e->ai_dst_addr)->sin_addr, ip, sizeof ip); 2456 trace_qemu_rdma_dest_init_trying(rdma->host, ip); 2457 ret = rdma_bind_addr(listen_id, e->ai_dst_addr); 2458 if (ret) { 2459 continue; 2460 } 2461 if (e->ai_family == AF_INET6) { 2462 ret = qemu_rdma_broken_ipv6_kernel(errp, listen_id->verbs); 2463 if (ret) { 2464 continue; 2465 } 2466 } 2467 break; 2468 } 2469 2470 if (!e) { 2471 ERROR(errp, "Error: could not rdma_bind_addr!"); 2472 goto err_dest_init_bind_addr; 2473 } 2474 2475 rdma->listen_id = listen_id; 2476 qemu_rdma_dump_gid("dest_init", listen_id); 2477 return 0; 2478 2479 err_dest_init_bind_addr: 2480 rdma_destroy_id(listen_id); 2481 err_dest_init_create_listen_id: 2482 rdma_destroy_event_channel(rdma->channel); 2483 rdma->channel = NULL; 2484 rdma->error_state = ret; 2485 return ret; 2486 2487 } 2488 2489 static void *qemu_rdma_data_init(const char *host_port, Error **errp) 2490 { 2491 RDMAContext *rdma = NULL; 2492 InetSocketAddress *addr; 2493 2494 if (host_port) { 2495 rdma = g_new0(RDMAContext, 1); 2496 rdma->current_index = -1; 2497 rdma->current_chunk = -1; 2498 2499 addr = inet_parse(host_port, NULL); 2500 if (addr != NULL) { 2501 rdma->port = atoi(addr->port); 2502 rdma->host = g_strdup(addr->host); 2503 } else { 2504 ERROR(errp, "bad RDMA migration address '%s'", host_port); 2505 g_free(rdma); 2506 rdma = NULL; 2507 } 2508 2509 qapi_free_InetSocketAddress(addr); 2510 } 2511 2512 return rdma; 2513 } 2514 2515 /* 2516 * QEMUFile interface to the control channel. 2517 * SEND messages for control only. 2518 * VM's ram is handled with regular RDMA messages. 2519 */ 2520 static ssize_t qemu_rdma_put_buffer(void *opaque, const uint8_t *buf, 2521 int64_t pos, size_t size) 2522 { 2523 QEMUFileRDMA *r = opaque; 2524 QEMUFile *f = r->file; 2525 RDMAContext *rdma = r->rdma; 2526 size_t remaining = size; 2527 uint8_t * data = (void *) buf; 2528 int ret; 2529 2530 CHECK_ERROR_STATE(); 2531 2532 /* 2533 * Push out any writes that 2534 * we're queued up for VM's ram. 2535 */ 2536 ret = qemu_rdma_write_flush(f, rdma); 2537 if (ret < 0) { 2538 rdma->error_state = ret; 2539 return ret; 2540 } 2541 2542 while (remaining) { 2543 RDMAControlHeader head; 2544 2545 r->len = MIN(remaining, RDMA_SEND_INCREMENT); 2546 remaining -= r->len; 2547 2548 /* Guaranteed to fit due to RDMA_SEND_INCREMENT MIN above */ 2549 head.len = (uint32_t)r->len; 2550 head.type = RDMA_CONTROL_QEMU_FILE; 2551 2552 ret = qemu_rdma_exchange_send(rdma, &head, data, NULL, NULL, NULL); 2553 2554 if (ret < 0) { 2555 rdma->error_state = ret; 2556 return ret; 2557 } 2558 2559 data += r->len; 2560 } 2561 2562 return size; 2563 } 2564 2565 static size_t qemu_rdma_fill(RDMAContext *rdma, uint8_t *buf, 2566 size_t size, int idx) 2567 { 2568 size_t len = 0; 2569 2570 if (rdma->wr_data[idx].control_len) { 2571 trace_qemu_rdma_fill(rdma->wr_data[idx].control_len, size); 2572 2573 len = MIN(size, rdma->wr_data[idx].control_len); 2574 memcpy(buf, rdma->wr_data[idx].control_curr, len); 2575 rdma->wr_data[idx].control_curr += len; 2576 rdma->wr_data[idx].control_len -= len; 2577 } 2578 2579 return len; 2580 } 2581 2582 /* 2583 * QEMUFile interface to the control channel. 2584 * RDMA links don't use bytestreams, so we have to 2585 * return bytes to QEMUFile opportunistically. 2586 */ 2587 static ssize_t qemu_rdma_get_buffer(void *opaque, uint8_t *buf, 2588 int64_t pos, size_t size) 2589 { 2590 QEMUFileRDMA *r = opaque; 2591 RDMAContext *rdma = r->rdma; 2592 RDMAControlHeader head; 2593 int ret = 0; 2594 2595 CHECK_ERROR_STATE(); 2596 2597 /* 2598 * First, we hold on to the last SEND message we 2599 * were given and dish out the bytes until we run 2600 * out of bytes. 2601 */ 2602 r->len = qemu_rdma_fill(r->rdma, buf, size, 0); 2603 if (r->len) { 2604 return r->len; 2605 } 2606 2607 /* 2608 * Once we run out, we block and wait for another 2609 * SEND message to arrive. 2610 */ 2611 ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_QEMU_FILE); 2612 2613 if (ret < 0) { 2614 rdma->error_state = ret; 2615 return ret; 2616 } 2617 2618 /* 2619 * SEND was received with new bytes, now try again. 2620 */ 2621 return qemu_rdma_fill(r->rdma, buf, size, 0); 2622 } 2623 2624 /* 2625 * Block until all the outstanding chunks have been delivered by the hardware. 2626 */ 2627 static int qemu_rdma_drain_cq(QEMUFile *f, RDMAContext *rdma) 2628 { 2629 int ret; 2630 2631 if (qemu_rdma_write_flush(f, rdma) < 0) { 2632 return -EIO; 2633 } 2634 2635 while (rdma->nb_sent) { 2636 ret = qemu_rdma_block_for_wrid(rdma, RDMA_WRID_RDMA_WRITE, NULL); 2637 if (ret < 0) { 2638 error_report("rdma migration: complete polling error!"); 2639 return -EIO; 2640 } 2641 } 2642 2643 qemu_rdma_unregister_waiting(rdma); 2644 2645 return 0; 2646 } 2647 2648 static int qemu_rdma_close(void *opaque) 2649 { 2650 trace_qemu_rdma_close(); 2651 QEMUFileRDMA *r = opaque; 2652 if (r->rdma) { 2653 qemu_rdma_cleanup(r->rdma); 2654 g_free(r->rdma); 2655 } 2656 g_free(r); 2657 return 0; 2658 } 2659 2660 /* 2661 * Parameters: 2662 * @offset == 0 : 2663 * This means that 'block_offset' is a full virtual address that does not 2664 * belong to a RAMBlock of the virtual machine and instead 2665 * represents a private malloc'd memory area that the caller wishes to 2666 * transfer. 2667 * 2668 * @offset != 0 : 2669 * Offset is an offset to be added to block_offset and used 2670 * to also lookup the corresponding RAMBlock. 2671 * 2672 * @size > 0 : 2673 * Initiate an transfer this size. 2674 * 2675 * @size == 0 : 2676 * A 'hint' or 'advice' that means that we wish to speculatively 2677 * and asynchronously unregister this memory. In this case, there is no 2678 * guarantee that the unregister will actually happen, for example, 2679 * if the memory is being actively transmitted. Additionally, the memory 2680 * may be re-registered at any future time if a write within the same 2681 * chunk was requested again, even if you attempted to unregister it 2682 * here. 2683 * 2684 * @size < 0 : TODO, not yet supported 2685 * Unregister the memory NOW. This means that the caller does not 2686 * expect there to be any future RDMA transfers and we just want to clean 2687 * things up. This is used in case the upper layer owns the memory and 2688 * cannot wait for qemu_fclose() to occur. 2689 * 2690 * @bytes_sent : User-specificed pointer to indicate how many bytes were 2691 * sent. Usually, this will not be more than a few bytes of 2692 * the protocol because most transfers are sent asynchronously. 2693 */ 2694 static size_t qemu_rdma_save_page(QEMUFile *f, void *opaque, 2695 ram_addr_t block_offset, ram_addr_t offset, 2696 size_t size, uint64_t *bytes_sent) 2697 { 2698 QEMUFileRDMA *rfile = opaque; 2699 RDMAContext *rdma = rfile->rdma; 2700 int ret; 2701 2702 CHECK_ERROR_STATE(); 2703 2704 qemu_fflush(f); 2705 2706 if (size > 0) { 2707 /* 2708 * Add this page to the current 'chunk'. If the chunk 2709 * is full, or the page doen't belong to the current chunk, 2710 * an actual RDMA write will occur and a new chunk will be formed. 2711 */ 2712 ret = qemu_rdma_write(f, rdma, block_offset, offset, size); 2713 if (ret < 0) { 2714 error_report("rdma migration: write error! %d", ret); 2715 goto err; 2716 } 2717 2718 /* 2719 * We always return 1 bytes because the RDMA 2720 * protocol is completely asynchronous. We do not yet know 2721 * whether an identified chunk is zero or not because we're 2722 * waiting for other pages to potentially be merged with 2723 * the current chunk. So, we have to call qemu_update_position() 2724 * later on when the actual write occurs. 2725 */ 2726 if (bytes_sent) { 2727 *bytes_sent = 1; 2728 } 2729 } else { 2730 uint64_t index, chunk; 2731 2732 /* TODO: Change QEMUFileOps prototype to be signed: size_t => long 2733 if (size < 0) { 2734 ret = qemu_rdma_drain_cq(f, rdma); 2735 if (ret < 0) { 2736 fprintf(stderr, "rdma: failed to synchronously drain" 2737 " completion queue before unregistration.\n"); 2738 goto err; 2739 } 2740 } 2741 */ 2742 2743 ret = qemu_rdma_search_ram_block(rdma, block_offset, 2744 offset, size, &index, &chunk); 2745 2746 if (ret) { 2747 error_report("ram block search failed"); 2748 goto err; 2749 } 2750 2751 qemu_rdma_signal_unregister(rdma, index, chunk, 0); 2752 2753 /* 2754 * TODO: Synchronous, guaranteed unregistration (should not occur during 2755 * fast-path). Otherwise, unregisters will process on the next call to 2756 * qemu_rdma_drain_cq() 2757 if (size < 0) { 2758 qemu_rdma_unregister_waiting(rdma); 2759 } 2760 */ 2761 } 2762 2763 /* 2764 * Drain the Completion Queue if possible, but do not block, 2765 * just poll. 2766 * 2767 * If nothing to poll, the end of the iteration will do this 2768 * again to make sure we don't overflow the request queue. 2769 */ 2770 while (1) { 2771 uint64_t wr_id, wr_id_in; 2772 int ret = qemu_rdma_poll(rdma, &wr_id_in, NULL); 2773 if (ret < 0) { 2774 error_report("rdma migration: polling error! %d", ret); 2775 goto err; 2776 } 2777 2778 wr_id = wr_id_in & RDMA_WRID_TYPE_MASK; 2779 2780 if (wr_id == RDMA_WRID_NONE) { 2781 break; 2782 } 2783 } 2784 2785 return RAM_SAVE_CONTROL_DELAYED; 2786 err: 2787 rdma->error_state = ret; 2788 return ret; 2789 } 2790 2791 static int qemu_rdma_accept(RDMAContext *rdma) 2792 { 2793 RDMACapabilities cap; 2794 struct rdma_conn_param conn_param = { 2795 .responder_resources = 2, 2796 .private_data = &cap, 2797 .private_data_len = sizeof(cap), 2798 }; 2799 struct rdma_cm_event *cm_event; 2800 struct ibv_context *verbs; 2801 int ret = -EINVAL; 2802 int idx; 2803 2804 ret = rdma_get_cm_event(rdma->channel, &cm_event); 2805 if (ret) { 2806 goto err_rdma_dest_wait; 2807 } 2808 2809 if (cm_event->event != RDMA_CM_EVENT_CONNECT_REQUEST) { 2810 rdma_ack_cm_event(cm_event); 2811 goto err_rdma_dest_wait; 2812 } 2813 2814 memcpy(&cap, cm_event->param.conn.private_data, sizeof(cap)); 2815 2816 network_to_caps(&cap); 2817 2818 if (cap.version < 1 || cap.version > RDMA_CONTROL_VERSION_CURRENT) { 2819 error_report("Unknown source RDMA version: %d, bailing...", 2820 cap.version); 2821 rdma_ack_cm_event(cm_event); 2822 goto err_rdma_dest_wait; 2823 } 2824 2825 /* 2826 * Respond with only the capabilities this version of QEMU knows about. 2827 */ 2828 cap.flags &= known_capabilities; 2829 2830 /* 2831 * Enable the ones that we do know about. 2832 * Add other checks here as new ones are introduced. 2833 */ 2834 if (cap.flags & RDMA_CAPABILITY_PIN_ALL) { 2835 rdma->pin_all = true; 2836 } 2837 2838 rdma->cm_id = cm_event->id; 2839 verbs = cm_event->id->verbs; 2840 2841 rdma_ack_cm_event(cm_event); 2842 2843 trace_qemu_rdma_accept_pin_state(rdma->pin_all); 2844 2845 caps_to_network(&cap); 2846 2847 trace_qemu_rdma_accept_pin_verbsc(verbs); 2848 2849 if (!rdma->verbs) { 2850 rdma->verbs = verbs; 2851 } else if (rdma->verbs != verbs) { 2852 error_report("ibv context not matching %p, %p!", rdma->verbs, 2853 verbs); 2854 goto err_rdma_dest_wait; 2855 } 2856 2857 qemu_rdma_dump_id("dest_init", verbs); 2858 2859 ret = qemu_rdma_alloc_pd_cq(rdma); 2860 if (ret) { 2861 error_report("rdma migration: error allocating pd and cq!"); 2862 goto err_rdma_dest_wait; 2863 } 2864 2865 ret = qemu_rdma_alloc_qp(rdma); 2866 if (ret) { 2867 error_report("rdma migration: error allocating qp!"); 2868 goto err_rdma_dest_wait; 2869 } 2870 2871 ret = qemu_rdma_init_ram_blocks(rdma); 2872 if (ret) { 2873 error_report("rdma migration: error initializing ram blocks!"); 2874 goto err_rdma_dest_wait; 2875 } 2876 2877 for (idx = 0; idx < RDMA_WRID_MAX; idx++) { 2878 ret = qemu_rdma_reg_control(rdma, idx); 2879 if (ret) { 2880 error_report("rdma: error registering %d control", idx); 2881 goto err_rdma_dest_wait; 2882 } 2883 } 2884 2885 qemu_set_fd_handler(rdma->channel->fd, NULL, NULL, NULL); 2886 2887 ret = rdma_accept(rdma->cm_id, &conn_param); 2888 if (ret) { 2889 error_report("rdma_accept returns %d", ret); 2890 goto err_rdma_dest_wait; 2891 } 2892 2893 ret = rdma_get_cm_event(rdma->channel, &cm_event); 2894 if (ret) { 2895 error_report("rdma_accept get_cm_event failed %d", ret); 2896 goto err_rdma_dest_wait; 2897 } 2898 2899 if (cm_event->event != RDMA_CM_EVENT_ESTABLISHED) { 2900 error_report("rdma_accept not event established"); 2901 rdma_ack_cm_event(cm_event); 2902 goto err_rdma_dest_wait; 2903 } 2904 2905 rdma_ack_cm_event(cm_event); 2906 rdma->connected = true; 2907 2908 ret = qemu_rdma_post_recv_control(rdma, RDMA_WRID_READY); 2909 if (ret) { 2910 error_report("rdma migration: error posting second control recv"); 2911 goto err_rdma_dest_wait; 2912 } 2913 2914 qemu_rdma_dump_gid("dest_connect", rdma->cm_id); 2915 2916 return 0; 2917 2918 err_rdma_dest_wait: 2919 rdma->error_state = ret; 2920 qemu_rdma_cleanup(rdma); 2921 return ret; 2922 } 2923 2924 static int dest_ram_sort_func(const void *a, const void *b) 2925 { 2926 unsigned int a_index = ((const RDMALocalBlock *)a)->src_index; 2927 unsigned int b_index = ((const RDMALocalBlock *)b)->src_index; 2928 2929 return (a_index < b_index) ? -1 : (a_index != b_index); 2930 } 2931 2932 /* 2933 * During each iteration of the migration, we listen for instructions 2934 * by the source VM to perform dynamic page registrations before they 2935 * can perform RDMA operations. 2936 * 2937 * We respond with the 'rkey'. 2938 * 2939 * Keep doing this until the source tells us to stop. 2940 */ 2941 static int qemu_rdma_registration_handle(QEMUFile *f, void *opaque) 2942 { 2943 RDMAControlHeader reg_resp = { .len = sizeof(RDMARegisterResult), 2944 .type = RDMA_CONTROL_REGISTER_RESULT, 2945 .repeat = 0, 2946 }; 2947 RDMAControlHeader unreg_resp = { .len = 0, 2948 .type = RDMA_CONTROL_UNREGISTER_FINISHED, 2949 .repeat = 0, 2950 }; 2951 RDMAControlHeader blocks = { .type = RDMA_CONTROL_RAM_BLOCKS_RESULT, 2952 .repeat = 1 }; 2953 QEMUFileRDMA *rfile = opaque; 2954 RDMAContext *rdma = rfile->rdma; 2955 RDMALocalBlocks *local = &rdma->local_ram_blocks; 2956 RDMAControlHeader head; 2957 RDMARegister *reg, *registers; 2958 RDMACompress *comp; 2959 RDMARegisterResult *reg_result; 2960 static RDMARegisterResult results[RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE]; 2961 RDMALocalBlock *block; 2962 void *host_addr; 2963 int ret = 0; 2964 int idx = 0; 2965 int count = 0; 2966 int i = 0; 2967 2968 CHECK_ERROR_STATE(); 2969 2970 do { 2971 trace_qemu_rdma_registration_handle_wait(); 2972 2973 ret = qemu_rdma_exchange_recv(rdma, &head, RDMA_CONTROL_NONE); 2974 2975 if (ret < 0) { 2976 break; 2977 } 2978 2979 if (head.repeat > RDMA_CONTROL_MAX_COMMANDS_PER_MESSAGE) { 2980 error_report("rdma: Too many requests in this message (%d)." 2981 "Bailing.", head.repeat); 2982 ret = -EIO; 2983 break; 2984 } 2985 2986 switch (head.type) { 2987 case RDMA_CONTROL_COMPRESS: 2988 comp = (RDMACompress *) rdma->wr_data[idx].control_curr; 2989 network_to_compress(comp); 2990 2991 trace_qemu_rdma_registration_handle_compress(comp->length, 2992 comp->block_idx, 2993 comp->offset); 2994 if (comp->block_idx >= rdma->local_ram_blocks.nb_blocks) { 2995 error_report("rdma: 'compress' bad block index %u (vs %d)", 2996 (unsigned int)comp->block_idx, 2997 rdma->local_ram_blocks.nb_blocks); 2998 ret = -EIO; 2999 goto out; 3000 } 3001 block = &(rdma->local_ram_blocks.block[comp->block_idx]); 3002 3003 host_addr = block->local_host_addr + 3004 (comp->offset - block->offset); 3005 3006 ram_handle_compressed(host_addr, comp->value, comp->length); 3007 break; 3008 3009 case RDMA_CONTROL_REGISTER_FINISHED: 3010 trace_qemu_rdma_registration_handle_finished(); 3011 goto out; 3012 3013 case RDMA_CONTROL_RAM_BLOCKS_REQUEST: 3014 trace_qemu_rdma_registration_handle_ram_blocks(); 3015 3016 /* Sort our local RAM Block list so it's the same as the source, 3017 * we can do this since we've filled in a src_index in the list 3018 * as we received the RAMBlock list earlier. 3019 */ 3020 qsort(rdma->local_ram_blocks.block, 3021 rdma->local_ram_blocks.nb_blocks, 3022 sizeof(RDMALocalBlock), dest_ram_sort_func); 3023 if (rdma->pin_all) { 3024 ret = qemu_rdma_reg_whole_ram_blocks(rdma); 3025 if (ret) { 3026 error_report("rdma migration: error dest " 3027 "registering ram blocks"); 3028 goto out; 3029 } 3030 } 3031 3032 /* 3033 * Dest uses this to prepare to transmit the RAMBlock descriptions 3034 * to the source VM after connection setup. 3035 * Both sides use the "remote" structure to communicate and update 3036 * their "local" descriptions with what was sent. 3037 */ 3038 for (i = 0; i < local->nb_blocks; i++) { 3039 rdma->dest_blocks[i].remote_host_addr = 3040 (uintptr_t)(local->block[i].local_host_addr); 3041 3042 if (rdma->pin_all) { 3043 rdma->dest_blocks[i].remote_rkey = local->block[i].mr->rkey; 3044 } 3045 3046 rdma->dest_blocks[i].offset = local->block[i].offset; 3047 rdma->dest_blocks[i].length = local->block[i].length; 3048 3049 dest_block_to_network(&rdma->dest_blocks[i]); 3050 trace_qemu_rdma_registration_handle_ram_blocks_loop( 3051 local->block[i].block_name, 3052 local->block[i].offset, 3053 local->block[i].length, 3054 local->block[i].local_host_addr, 3055 local->block[i].src_index); 3056 } 3057 3058 blocks.len = rdma->local_ram_blocks.nb_blocks 3059 * sizeof(RDMADestBlock); 3060 3061 3062 ret = qemu_rdma_post_send_control(rdma, 3063 (uint8_t *) rdma->dest_blocks, &blocks); 3064 3065 if (ret < 0) { 3066 error_report("rdma migration: error sending remote info"); 3067 goto out; 3068 } 3069 3070 break; 3071 case RDMA_CONTROL_REGISTER_REQUEST: 3072 trace_qemu_rdma_registration_handle_register(head.repeat); 3073 3074 reg_resp.repeat = head.repeat; 3075 registers = (RDMARegister *) rdma->wr_data[idx].control_curr; 3076 3077 for (count = 0; count < head.repeat; count++) { 3078 uint64_t chunk; 3079 uint8_t *chunk_start, *chunk_end; 3080 3081 reg = ®isters[count]; 3082 network_to_register(reg); 3083 3084 reg_result = &results[count]; 3085 3086 trace_qemu_rdma_registration_handle_register_loop(count, 3087 reg->current_index, reg->key.current_addr, reg->chunks); 3088 3089 if (reg->current_index >= rdma->local_ram_blocks.nb_blocks) { 3090 error_report("rdma: 'register' bad block index %u (vs %d)", 3091 (unsigned int)reg->current_index, 3092 rdma->local_ram_blocks.nb_blocks); 3093 ret = -ENOENT; 3094 goto out; 3095 } 3096 block = &(rdma->local_ram_blocks.block[reg->current_index]); 3097 if (block->is_ram_block) { 3098 if (block->offset > reg->key.current_addr) { 3099 error_report("rdma: bad register address for block %s" 3100 " offset: %" PRIx64 " current_addr: %" PRIx64, 3101 block->block_name, block->offset, 3102 reg->key.current_addr); 3103 ret = -ERANGE; 3104 goto out; 3105 } 3106 host_addr = (block->local_host_addr + 3107 (reg->key.current_addr - block->offset)); 3108 chunk = ram_chunk_index(block->local_host_addr, 3109 (uint8_t *) host_addr); 3110 } else { 3111 chunk = reg->key.chunk; 3112 host_addr = block->local_host_addr + 3113 (reg->key.chunk * (1UL << RDMA_REG_CHUNK_SHIFT)); 3114 /* Check for particularly bad chunk value */ 3115 if (host_addr < (void *)block->local_host_addr) { 3116 error_report("rdma: bad chunk for block %s" 3117 " chunk: %" PRIx64, 3118 block->block_name, reg->key.chunk); 3119 ret = -ERANGE; 3120 goto out; 3121 } 3122 } 3123 chunk_start = ram_chunk_start(block, chunk); 3124 chunk_end = ram_chunk_end(block, chunk + reg->chunks); 3125 if (qemu_rdma_register_and_get_keys(rdma, block, 3126 (uintptr_t)host_addr, NULL, ®_result->rkey, 3127 chunk, chunk_start, chunk_end)) { 3128 error_report("cannot get rkey"); 3129 ret = -EINVAL; 3130 goto out; 3131 } 3132 3133 reg_result->host_addr = (uintptr_t)block->local_host_addr; 3134 3135 trace_qemu_rdma_registration_handle_register_rkey( 3136 reg_result->rkey); 3137 3138 result_to_network(reg_result); 3139 } 3140 3141 ret = qemu_rdma_post_send_control(rdma, 3142 (uint8_t *) results, ®_resp); 3143 3144 if (ret < 0) { 3145 error_report("Failed to send control buffer"); 3146 goto out; 3147 } 3148 break; 3149 case RDMA_CONTROL_UNREGISTER_REQUEST: 3150 trace_qemu_rdma_registration_handle_unregister(head.repeat); 3151 unreg_resp.repeat = head.repeat; 3152 registers = (RDMARegister *) rdma->wr_data[idx].control_curr; 3153 3154 for (count = 0; count < head.repeat; count++) { 3155 reg = ®isters[count]; 3156 network_to_register(reg); 3157 3158 trace_qemu_rdma_registration_handle_unregister_loop(count, 3159 reg->current_index, reg->key.chunk); 3160 3161 block = &(rdma->local_ram_blocks.block[reg->current_index]); 3162 3163 ret = ibv_dereg_mr(block->pmr[reg->key.chunk]); 3164 block->pmr[reg->key.chunk] = NULL; 3165 3166 if (ret != 0) { 3167 perror("rdma unregistration chunk failed"); 3168 ret = -ret; 3169 goto out; 3170 } 3171 3172 rdma->total_registrations--; 3173 3174 trace_qemu_rdma_registration_handle_unregister_success( 3175 reg->key.chunk); 3176 } 3177 3178 ret = qemu_rdma_post_send_control(rdma, NULL, &unreg_resp); 3179 3180 if (ret < 0) { 3181 error_report("Failed to send control buffer"); 3182 goto out; 3183 } 3184 break; 3185 case RDMA_CONTROL_REGISTER_RESULT: 3186 error_report("Invalid RESULT message at dest."); 3187 ret = -EIO; 3188 goto out; 3189 default: 3190 error_report("Unknown control message %s", control_desc[head.type]); 3191 ret = -EIO; 3192 goto out; 3193 } 3194 } while (1); 3195 out: 3196 if (ret < 0) { 3197 rdma->error_state = ret; 3198 } 3199 return ret; 3200 } 3201 3202 /* Destination: 3203 * Called via a ram_control_load_hook during the initial RAM load section which 3204 * lists the RAMBlocks by name. This lets us know the order of the RAMBlocks 3205 * on the source. 3206 * We've already built our local RAMBlock list, but not yet sent the list to 3207 * the source. 3208 */ 3209 static int rdma_block_notification_handle(QEMUFileRDMA *rfile, const char *name) 3210 { 3211 RDMAContext *rdma = rfile->rdma; 3212 int curr; 3213 int found = -1; 3214 3215 /* Find the matching RAMBlock in our local list */ 3216 for (curr = 0; curr < rdma->local_ram_blocks.nb_blocks; curr++) { 3217 if (!strcmp(rdma->local_ram_blocks.block[curr].block_name, name)) { 3218 found = curr; 3219 break; 3220 } 3221 } 3222 3223 if (found == -1) { 3224 error_report("RAMBlock '%s' not found on destination", name); 3225 return -ENOENT; 3226 } 3227 3228 rdma->local_ram_blocks.block[curr].src_index = rdma->next_src_index; 3229 trace_rdma_block_notification_handle(name, rdma->next_src_index); 3230 rdma->next_src_index++; 3231 3232 return 0; 3233 } 3234 3235 static int rdma_load_hook(QEMUFile *f, void *opaque, uint64_t flags, void *data) 3236 { 3237 switch (flags) { 3238 case RAM_CONTROL_BLOCK_REG: 3239 return rdma_block_notification_handle(opaque, data); 3240 3241 case RAM_CONTROL_HOOK: 3242 return qemu_rdma_registration_handle(f, opaque); 3243 3244 default: 3245 /* Shouldn't be called with any other values */ 3246 abort(); 3247 } 3248 } 3249 3250 static int qemu_rdma_registration_start(QEMUFile *f, void *opaque, 3251 uint64_t flags, void *data) 3252 { 3253 QEMUFileRDMA *rfile = opaque; 3254 RDMAContext *rdma = rfile->rdma; 3255 3256 CHECK_ERROR_STATE(); 3257 3258 trace_qemu_rdma_registration_start(flags); 3259 qemu_put_be64(f, RAM_SAVE_FLAG_HOOK); 3260 qemu_fflush(f); 3261 3262 return 0; 3263 } 3264 3265 /* 3266 * Inform dest that dynamic registrations are done for now. 3267 * First, flush writes, if any. 3268 */ 3269 static int qemu_rdma_registration_stop(QEMUFile *f, void *opaque, 3270 uint64_t flags, void *data) 3271 { 3272 Error *local_err = NULL, **errp = &local_err; 3273 QEMUFileRDMA *rfile = opaque; 3274 RDMAContext *rdma = rfile->rdma; 3275 RDMAControlHeader head = { .len = 0, .repeat = 1 }; 3276 int ret = 0; 3277 3278 CHECK_ERROR_STATE(); 3279 3280 qemu_fflush(f); 3281 ret = qemu_rdma_drain_cq(f, rdma); 3282 3283 if (ret < 0) { 3284 goto err; 3285 } 3286 3287 if (flags == RAM_CONTROL_SETUP) { 3288 RDMAControlHeader resp = {.type = RDMA_CONTROL_RAM_BLOCKS_RESULT }; 3289 RDMALocalBlocks *local = &rdma->local_ram_blocks; 3290 int reg_result_idx, i, nb_dest_blocks; 3291 3292 head.type = RDMA_CONTROL_RAM_BLOCKS_REQUEST; 3293 trace_qemu_rdma_registration_stop_ram(); 3294 3295 /* 3296 * Make sure that we parallelize the pinning on both sides. 3297 * For very large guests, doing this serially takes a really 3298 * long time, so we have to 'interleave' the pinning locally 3299 * with the control messages by performing the pinning on this 3300 * side before we receive the control response from the other 3301 * side that the pinning has completed. 3302 */ 3303 ret = qemu_rdma_exchange_send(rdma, &head, NULL, &resp, 3304 ®_result_idx, rdma->pin_all ? 3305 qemu_rdma_reg_whole_ram_blocks : NULL); 3306 if (ret < 0) { 3307 ERROR(errp, "receiving remote info!"); 3308 return ret; 3309 } 3310 3311 nb_dest_blocks = resp.len / sizeof(RDMADestBlock); 3312 3313 /* 3314 * The protocol uses two different sets of rkeys (mutually exclusive): 3315 * 1. One key to represent the virtual address of the entire ram block. 3316 * (dynamic chunk registration disabled - pin everything with one rkey.) 3317 * 2. One to represent individual chunks within a ram block. 3318 * (dynamic chunk registration enabled - pin individual chunks.) 3319 * 3320 * Once the capability is successfully negotiated, the destination transmits 3321 * the keys to use (or sends them later) including the virtual addresses 3322 * and then propagates the remote ram block descriptions to his local copy. 3323 */ 3324 3325 if (local->nb_blocks != nb_dest_blocks) { 3326 ERROR(errp, "ram blocks mismatch (Number of blocks %d vs %d) " 3327 "Your QEMU command line parameters are probably " 3328 "not identical on both the source and destination.", 3329 local->nb_blocks, nb_dest_blocks); 3330 rdma->error_state = -EINVAL; 3331 return -EINVAL; 3332 } 3333 3334 qemu_rdma_move_header(rdma, reg_result_idx, &resp); 3335 memcpy(rdma->dest_blocks, 3336 rdma->wr_data[reg_result_idx].control_curr, resp.len); 3337 for (i = 0; i < nb_dest_blocks; i++) { 3338 network_to_dest_block(&rdma->dest_blocks[i]); 3339 3340 /* We require that the blocks are in the same order */ 3341 if (rdma->dest_blocks[i].length != local->block[i].length) { 3342 ERROR(errp, "Block %s/%d has a different length %" PRIu64 3343 "vs %" PRIu64, local->block[i].block_name, i, 3344 local->block[i].length, 3345 rdma->dest_blocks[i].length); 3346 rdma->error_state = -EINVAL; 3347 return -EINVAL; 3348 } 3349 local->block[i].remote_host_addr = 3350 rdma->dest_blocks[i].remote_host_addr; 3351 local->block[i].remote_rkey = rdma->dest_blocks[i].remote_rkey; 3352 } 3353 } 3354 3355 trace_qemu_rdma_registration_stop(flags); 3356 3357 head.type = RDMA_CONTROL_REGISTER_FINISHED; 3358 ret = qemu_rdma_exchange_send(rdma, &head, NULL, NULL, NULL, NULL); 3359 3360 if (ret < 0) { 3361 goto err; 3362 } 3363 3364 return 0; 3365 err: 3366 rdma->error_state = ret; 3367 return ret; 3368 } 3369 3370 static int qemu_rdma_get_fd(void *opaque) 3371 { 3372 QEMUFileRDMA *rfile = opaque; 3373 RDMAContext *rdma = rfile->rdma; 3374 3375 return rdma->comp_channel->fd; 3376 } 3377 3378 static const QEMUFileOps rdma_read_ops = { 3379 .get_buffer = qemu_rdma_get_buffer, 3380 .get_fd = qemu_rdma_get_fd, 3381 .close = qemu_rdma_close, 3382 .hook_ram_load = rdma_load_hook, 3383 }; 3384 3385 static const QEMUFileOps rdma_write_ops = { 3386 .put_buffer = qemu_rdma_put_buffer, 3387 .close = qemu_rdma_close, 3388 .before_ram_iterate = qemu_rdma_registration_start, 3389 .after_ram_iterate = qemu_rdma_registration_stop, 3390 .save_page = qemu_rdma_save_page, 3391 }; 3392 3393 static void *qemu_fopen_rdma(RDMAContext *rdma, const char *mode) 3394 { 3395 QEMUFileRDMA *r; 3396 3397 if (qemu_file_mode_is_not_valid(mode)) { 3398 return NULL; 3399 } 3400 3401 r = g_new0(QEMUFileRDMA, 1); 3402 r->rdma = rdma; 3403 3404 if (mode[0] == 'w') { 3405 r->file = qemu_fopen_ops(r, &rdma_write_ops); 3406 } else { 3407 r->file = qemu_fopen_ops(r, &rdma_read_ops); 3408 } 3409 3410 return r->file; 3411 } 3412 3413 static void rdma_accept_incoming_migration(void *opaque) 3414 { 3415 RDMAContext *rdma = opaque; 3416 int ret; 3417 QEMUFile *f; 3418 Error *local_err = NULL, **errp = &local_err; 3419 3420 trace_qemu_rdma_accept_incoming_migration(); 3421 ret = qemu_rdma_accept(rdma); 3422 3423 if (ret) { 3424 ERROR(errp, "RDMA Migration initialization failed!"); 3425 return; 3426 } 3427 3428 trace_qemu_rdma_accept_incoming_migration_accepted(); 3429 3430 f = qemu_fopen_rdma(rdma, "rb"); 3431 if (f == NULL) { 3432 ERROR(errp, "could not qemu_fopen_rdma!"); 3433 qemu_rdma_cleanup(rdma); 3434 return; 3435 } 3436 3437 rdma->migration_started_on_destination = 1; 3438 process_incoming_migration(f); 3439 } 3440 3441 void rdma_start_incoming_migration(const char *host_port, Error **errp) 3442 { 3443 int ret; 3444 RDMAContext *rdma; 3445 Error *local_err = NULL; 3446 3447 trace_rdma_start_incoming_migration(); 3448 rdma = qemu_rdma_data_init(host_port, &local_err); 3449 3450 if (rdma == NULL) { 3451 goto err; 3452 } 3453 3454 ret = qemu_rdma_dest_init(rdma, &local_err); 3455 3456 if (ret) { 3457 goto err; 3458 } 3459 3460 trace_rdma_start_incoming_migration_after_dest_init(); 3461 3462 ret = rdma_listen(rdma->listen_id, 5); 3463 3464 if (ret) { 3465 ERROR(errp, "listening on socket!"); 3466 goto err; 3467 } 3468 3469 trace_rdma_start_incoming_migration_after_rdma_listen(); 3470 3471 qemu_set_fd_handler(rdma->channel->fd, rdma_accept_incoming_migration, 3472 NULL, (void *)(intptr_t)rdma); 3473 return; 3474 err: 3475 error_propagate(errp, local_err); 3476 g_free(rdma); 3477 } 3478 3479 void rdma_start_outgoing_migration(void *opaque, 3480 const char *host_port, Error **errp) 3481 { 3482 MigrationState *s = opaque; 3483 Error *local_err = NULL, **temp = &local_err; 3484 RDMAContext *rdma = qemu_rdma_data_init(host_port, &local_err); 3485 int ret = 0; 3486 3487 if (rdma == NULL) { 3488 ERROR(temp, "Failed to initialize RDMA data structures! %d", ret); 3489 goto err; 3490 } 3491 3492 ret = qemu_rdma_source_init(rdma, &local_err, 3493 s->enabled_capabilities[MIGRATION_CAPABILITY_RDMA_PIN_ALL]); 3494 3495 if (ret) { 3496 goto err; 3497 } 3498 3499 trace_rdma_start_outgoing_migration_after_rdma_source_init(); 3500 ret = qemu_rdma_connect(rdma, &local_err); 3501 3502 if (ret) { 3503 goto err; 3504 } 3505 3506 trace_rdma_start_outgoing_migration_after_rdma_connect(); 3507 3508 s->to_dst_file = qemu_fopen_rdma(rdma, "wb"); 3509 migrate_fd_connect(s); 3510 return; 3511 err: 3512 error_propagate(errp, local_err); 3513 g_free(rdma); 3514 migrate_fd_error(s); 3515 } 3516