1 /* 2 * QEMU System Emulator 3 * 4 * Copyright (c) 2003-2008 Fabrice Bellard 5 * Copyright (c) 2011-2015 Red Hat Inc 6 * 7 * Authors: 8 * Juan Quintela <quintela@redhat.com> 9 * 10 * Permission is hereby granted, free of charge, to any person obtaining a copy 11 * of this software and associated documentation files (the "Software"), to deal 12 * in the Software without restriction, including without limitation the rights 13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 14 * copies of the Software, and to permit persons to whom the Software is 15 * furnished to do so, subject to the following conditions: 16 * 17 * The above copyright notice and this permission notice shall be included in 18 * all copies or substantial portions of the Software. 19 * 20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 26 * THE SOFTWARE. 27 */ 28 29 #include "qemu/osdep.h" 30 #include "cpu.h" 31 #include <zlib.h> 32 #include "qemu/cutils.h" 33 #include "qemu/bitops.h" 34 #include "qemu/bitmap.h" 35 #include "qemu/main-loop.h" 36 #include "xbzrle.h" 37 #include "ram.h" 38 #include "migration.h" 39 #include "socket.h" 40 #include "migration/register.h" 41 #include "migration/misc.h" 42 #include "qemu-file.h" 43 #include "postcopy-ram.h" 44 #include "page_cache.h" 45 #include "qemu/error-report.h" 46 #include "qapi/error.h" 47 #include "qapi/qapi-events-migration.h" 48 #include "qapi/qmp/qerror.h" 49 #include "trace.h" 50 #include "exec/ram_addr.h" 51 #include "exec/target_page.h" 52 #include "qemu/rcu_queue.h" 53 #include "migration/colo.h" 54 #include "block.h" 55 #include "sysemu/sysemu.h" 56 #include "qemu/uuid.h" 57 #include "savevm.h" 58 #include "qemu/iov.h" 59 60 /***********************************************************/ 61 /* ram save/restore */ 62 63 /* RAM_SAVE_FLAG_ZERO used to be named RAM_SAVE_FLAG_COMPRESS, it 64 * worked for pages that where filled with the same char. We switched 65 * it to only search for the zero value. And to avoid confusion with 66 * RAM_SSAVE_FLAG_COMPRESS_PAGE just rename it. 67 */ 68 69 #define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */ 70 #define RAM_SAVE_FLAG_ZERO 0x02 71 #define RAM_SAVE_FLAG_MEM_SIZE 0x04 72 #define RAM_SAVE_FLAG_PAGE 0x08 73 #define RAM_SAVE_FLAG_EOS 0x10 74 #define RAM_SAVE_FLAG_CONTINUE 0x20 75 #define RAM_SAVE_FLAG_XBZRLE 0x40 76 /* 0x80 is reserved in migration.h start with 0x100 next */ 77 #define RAM_SAVE_FLAG_COMPRESS_PAGE 0x100 78 79 static inline bool is_zero_range(uint8_t *p, uint64_t size) 80 { 81 return buffer_is_zero(p, size); 82 } 83 84 XBZRLECacheStats xbzrle_counters; 85 86 /* struct contains XBZRLE cache and a static page 87 used by the compression */ 88 static struct { 89 /* buffer used for XBZRLE encoding */ 90 uint8_t *encoded_buf; 91 /* buffer for storing page content */ 92 uint8_t *current_buf; 93 /* Cache for XBZRLE, Protected by lock. */ 94 PageCache *cache; 95 QemuMutex lock; 96 /* it will store a page full of zeros */ 97 uint8_t *zero_target_page; 98 /* buffer used for XBZRLE decoding */ 99 uint8_t *decoded_buf; 100 } XBZRLE; 101 102 static void XBZRLE_cache_lock(void) 103 { 104 if (migrate_use_xbzrle()) 105 qemu_mutex_lock(&XBZRLE.lock); 106 } 107 108 static void XBZRLE_cache_unlock(void) 109 { 110 if (migrate_use_xbzrle()) 111 qemu_mutex_unlock(&XBZRLE.lock); 112 } 113 114 /** 115 * xbzrle_cache_resize: resize the xbzrle cache 116 * 117 * This function is called from qmp_migrate_set_cache_size in main 118 * thread, possibly while a migration is in progress. A running 119 * migration may be using the cache and might finish during this call, 120 * hence changes to the cache are protected by XBZRLE.lock(). 121 * 122 * Returns 0 for success or -1 for error 123 * 124 * @new_size: new cache size 125 * @errp: set *errp if the check failed, with reason 126 */ 127 int xbzrle_cache_resize(int64_t new_size, Error **errp) 128 { 129 PageCache *new_cache; 130 int64_t ret = 0; 131 132 /* Check for truncation */ 133 if (new_size != (size_t)new_size) { 134 error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cache size", 135 "exceeding address space"); 136 return -1; 137 } 138 139 if (new_size == migrate_xbzrle_cache_size()) { 140 /* nothing to do */ 141 return 0; 142 } 143 144 XBZRLE_cache_lock(); 145 146 if (XBZRLE.cache != NULL) { 147 new_cache = cache_init(new_size, TARGET_PAGE_SIZE, errp); 148 if (!new_cache) { 149 ret = -1; 150 goto out; 151 } 152 153 cache_fini(XBZRLE.cache); 154 XBZRLE.cache = new_cache; 155 } 156 out: 157 XBZRLE_cache_unlock(); 158 return ret; 159 } 160 161 static bool ramblock_is_ignored(RAMBlock *block) 162 { 163 return !qemu_ram_is_migratable(block) || 164 (migrate_ignore_shared() && qemu_ram_is_shared(block)); 165 } 166 167 /* Should be holding either ram_list.mutex, or the RCU lock. */ 168 #define RAMBLOCK_FOREACH_NOT_IGNORED(block) \ 169 INTERNAL_RAMBLOCK_FOREACH(block) \ 170 if (ramblock_is_ignored(block)) {} else 171 172 #define RAMBLOCK_FOREACH_MIGRATABLE(block) \ 173 INTERNAL_RAMBLOCK_FOREACH(block) \ 174 if (!qemu_ram_is_migratable(block)) {} else 175 176 #undef RAMBLOCK_FOREACH 177 178 int foreach_not_ignored_block(RAMBlockIterFunc func, void *opaque) 179 { 180 RAMBlock *block; 181 int ret = 0; 182 183 RCU_READ_LOCK_GUARD(); 184 185 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 186 ret = func(block, opaque); 187 if (ret) { 188 break; 189 } 190 } 191 return ret; 192 } 193 194 static void ramblock_recv_map_init(void) 195 { 196 RAMBlock *rb; 197 198 RAMBLOCK_FOREACH_NOT_IGNORED(rb) { 199 assert(!rb->receivedmap); 200 rb->receivedmap = bitmap_new(rb->max_length >> qemu_target_page_bits()); 201 } 202 } 203 204 int ramblock_recv_bitmap_test(RAMBlock *rb, void *host_addr) 205 { 206 return test_bit(ramblock_recv_bitmap_offset(host_addr, rb), 207 rb->receivedmap); 208 } 209 210 bool ramblock_recv_bitmap_test_byte_offset(RAMBlock *rb, uint64_t byte_offset) 211 { 212 return test_bit(byte_offset >> TARGET_PAGE_BITS, rb->receivedmap); 213 } 214 215 void ramblock_recv_bitmap_set(RAMBlock *rb, void *host_addr) 216 { 217 set_bit_atomic(ramblock_recv_bitmap_offset(host_addr, rb), rb->receivedmap); 218 } 219 220 void ramblock_recv_bitmap_set_range(RAMBlock *rb, void *host_addr, 221 size_t nr) 222 { 223 bitmap_set_atomic(rb->receivedmap, 224 ramblock_recv_bitmap_offset(host_addr, rb), 225 nr); 226 } 227 228 #define RAMBLOCK_RECV_BITMAP_ENDING (0x0123456789abcdefULL) 229 230 /* 231 * Format: bitmap_size (8 bytes) + whole_bitmap (N bytes). 232 * 233 * Returns >0 if success with sent bytes, or <0 if error. 234 */ 235 int64_t ramblock_recv_bitmap_send(QEMUFile *file, 236 const char *block_name) 237 { 238 RAMBlock *block = qemu_ram_block_by_name(block_name); 239 unsigned long *le_bitmap, nbits; 240 uint64_t size; 241 242 if (!block) { 243 error_report("%s: invalid block name: %s", __func__, block_name); 244 return -1; 245 } 246 247 nbits = block->used_length >> TARGET_PAGE_BITS; 248 249 /* 250 * Make sure the tmp bitmap buffer is big enough, e.g., on 32bit 251 * machines we may need 4 more bytes for padding (see below 252 * comment). So extend it a bit before hand. 253 */ 254 le_bitmap = bitmap_new(nbits + BITS_PER_LONG); 255 256 /* 257 * Always use little endian when sending the bitmap. This is 258 * required that when source and destination VMs are not using the 259 * same endianess. (Note: big endian won't work.) 260 */ 261 bitmap_to_le(le_bitmap, block->receivedmap, nbits); 262 263 /* Size of the bitmap, in bytes */ 264 size = DIV_ROUND_UP(nbits, 8); 265 266 /* 267 * size is always aligned to 8 bytes for 64bit machines, but it 268 * may not be true for 32bit machines. We need this padding to 269 * make sure the migration can survive even between 32bit and 270 * 64bit machines. 271 */ 272 size = ROUND_UP(size, 8); 273 274 qemu_put_be64(file, size); 275 qemu_put_buffer(file, (const uint8_t *)le_bitmap, size); 276 /* 277 * Mark as an end, in case the middle part is screwed up due to 278 * some "misterious" reason. 279 */ 280 qemu_put_be64(file, RAMBLOCK_RECV_BITMAP_ENDING); 281 qemu_fflush(file); 282 283 g_free(le_bitmap); 284 285 if (qemu_file_get_error(file)) { 286 return qemu_file_get_error(file); 287 } 288 289 return size + sizeof(size); 290 } 291 292 /* 293 * An outstanding page request, on the source, having been received 294 * and queued 295 */ 296 struct RAMSrcPageRequest { 297 RAMBlock *rb; 298 hwaddr offset; 299 hwaddr len; 300 301 QSIMPLEQ_ENTRY(RAMSrcPageRequest) next_req; 302 }; 303 304 /* State of RAM for migration */ 305 struct RAMState { 306 /* QEMUFile used for this migration */ 307 QEMUFile *f; 308 /* Last block that we have visited searching for dirty pages */ 309 RAMBlock *last_seen_block; 310 /* Last block from where we have sent data */ 311 RAMBlock *last_sent_block; 312 /* Last dirty target page we have sent */ 313 ram_addr_t last_page; 314 /* last ram version we have seen */ 315 uint32_t last_version; 316 /* We are in the first round */ 317 bool ram_bulk_stage; 318 /* The free page optimization is enabled */ 319 bool fpo_enabled; 320 /* How many times we have dirty too many pages */ 321 int dirty_rate_high_cnt; 322 /* these variables are used for bitmap sync */ 323 /* last time we did a full bitmap_sync */ 324 int64_t time_last_bitmap_sync; 325 /* bytes transferred at start_time */ 326 uint64_t bytes_xfer_prev; 327 /* number of dirty pages since start_time */ 328 uint64_t num_dirty_pages_period; 329 /* xbzrle misses since the beginning of the period */ 330 uint64_t xbzrle_cache_miss_prev; 331 332 /* compression statistics since the beginning of the period */ 333 /* amount of count that no free thread to compress data */ 334 uint64_t compress_thread_busy_prev; 335 /* amount bytes after compression */ 336 uint64_t compressed_size_prev; 337 /* amount of compressed pages */ 338 uint64_t compress_pages_prev; 339 340 /* total handled target pages at the beginning of period */ 341 uint64_t target_page_count_prev; 342 /* total handled target pages since start */ 343 uint64_t target_page_count; 344 /* number of dirty bits in the bitmap */ 345 uint64_t migration_dirty_pages; 346 /* Protects modification of the bitmap and migration dirty pages */ 347 QemuMutex bitmap_mutex; 348 /* The RAMBlock used in the last src_page_requests */ 349 RAMBlock *last_req_rb; 350 /* Queue of outstanding page requests from the destination */ 351 QemuMutex src_page_req_mutex; 352 QSIMPLEQ_HEAD(, RAMSrcPageRequest) src_page_requests; 353 }; 354 typedef struct RAMState RAMState; 355 356 static RAMState *ram_state; 357 358 static NotifierWithReturnList precopy_notifier_list; 359 360 void precopy_infrastructure_init(void) 361 { 362 notifier_with_return_list_init(&precopy_notifier_list); 363 } 364 365 void precopy_add_notifier(NotifierWithReturn *n) 366 { 367 notifier_with_return_list_add(&precopy_notifier_list, n); 368 } 369 370 void precopy_remove_notifier(NotifierWithReturn *n) 371 { 372 notifier_with_return_remove(n); 373 } 374 375 int precopy_notify(PrecopyNotifyReason reason, Error **errp) 376 { 377 PrecopyNotifyData pnd; 378 pnd.reason = reason; 379 pnd.errp = errp; 380 381 return notifier_with_return_list_notify(&precopy_notifier_list, &pnd); 382 } 383 384 void precopy_enable_free_page_optimization(void) 385 { 386 if (!ram_state) { 387 return; 388 } 389 390 ram_state->fpo_enabled = true; 391 } 392 393 uint64_t ram_bytes_remaining(void) 394 { 395 return ram_state ? (ram_state->migration_dirty_pages * TARGET_PAGE_SIZE) : 396 0; 397 } 398 399 MigrationStats ram_counters; 400 401 /* used by the search for pages to send */ 402 struct PageSearchStatus { 403 /* Current block being searched */ 404 RAMBlock *block; 405 /* Current page to search from */ 406 unsigned long page; 407 /* Set once we wrap around */ 408 bool complete_round; 409 }; 410 typedef struct PageSearchStatus PageSearchStatus; 411 412 CompressionStats compression_counters; 413 414 struct CompressParam { 415 bool done; 416 bool quit; 417 bool zero_page; 418 QEMUFile *file; 419 QemuMutex mutex; 420 QemuCond cond; 421 RAMBlock *block; 422 ram_addr_t offset; 423 424 /* internally used fields */ 425 z_stream stream; 426 uint8_t *originbuf; 427 }; 428 typedef struct CompressParam CompressParam; 429 430 struct DecompressParam { 431 bool done; 432 bool quit; 433 QemuMutex mutex; 434 QemuCond cond; 435 void *des; 436 uint8_t *compbuf; 437 int len; 438 z_stream stream; 439 }; 440 typedef struct DecompressParam DecompressParam; 441 442 static CompressParam *comp_param; 443 static QemuThread *compress_threads; 444 /* comp_done_cond is used to wake up the migration thread when 445 * one of the compression threads has finished the compression. 446 * comp_done_lock is used to co-work with comp_done_cond. 447 */ 448 static QemuMutex comp_done_lock; 449 static QemuCond comp_done_cond; 450 /* The empty QEMUFileOps will be used by file in CompressParam */ 451 static const QEMUFileOps empty_ops = { }; 452 453 static QEMUFile *decomp_file; 454 static DecompressParam *decomp_param; 455 static QemuThread *decompress_threads; 456 static QemuMutex decomp_done_lock; 457 static QemuCond decomp_done_cond; 458 459 static bool do_compress_ram_page(QEMUFile *f, z_stream *stream, RAMBlock *block, 460 ram_addr_t offset, uint8_t *source_buf); 461 462 static void *do_data_compress(void *opaque) 463 { 464 CompressParam *param = opaque; 465 RAMBlock *block; 466 ram_addr_t offset; 467 bool zero_page; 468 469 qemu_mutex_lock(¶m->mutex); 470 while (!param->quit) { 471 if (param->block) { 472 block = param->block; 473 offset = param->offset; 474 param->block = NULL; 475 qemu_mutex_unlock(¶m->mutex); 476 477 zero_page = do_compress_ram_page(param->file, ¶m->stream, 478 block, offset, param->originbuf); 479 480 qemu_mutex_lock(&comp_done_lock); 481 param->done = true; 482 param->zero_page = zero_page; 483 qemu_cond_signal(&comp_done_cond); 484 qemu_mutex_unlock(&comp_done_lock); 485 486 qemu_mutex_lock(¶m->mutex); 487 } else { 488 qemu_cond_wait(¶m->cond, ¶m->mutex); 489 } 490 } 491 qemu_mutex_unlock(¶m->mutex); 492 493 return NULL; 494 } 495 496 static void compress_threads_save_cleanup(void) 497 { 498 int i, thread_count; 499 500 if (!migrate_use_compression() || !comp_param) { 501 return; 502 } 503 504 thread_count = migrate_compress_threads(); 505 for (i = 0; i < thread_count; i++) { 506 /* 507 * we use it as a indicator which shows if the thread is 508 * properly init'd or not 509 */ 510 if (!comp_param[i].file) { 511 break; 512 } 513 514 qemu_mutex_lock(&comp_param[i].mutex); 515 comp_param[i].quit = true; 516 qemu_cond_signal(&comp_param[i].cond); 517 qemu_mutex_unlock(&comp_param[i].mutex); 518 519 qemu_thread_join(compress_threads + i); 520 qemu_mutex_destroy(&comp_param[i].mutex); 521 qemu_cond_destroy(&comp_param[i].cond); 522 deflateEnd(&comp_param[i].stream); 523 g_free(comp_param[i].originbuf); 524 qemu_fclose(comp_param[i].file); 525 comp_param[i].file = NULL; 526 } 527 qemu_mutex_destroy(&comp_done_lock); 528 qemu_cond_destroy(&comp_done_cond); 529 g_free(compress_threads); 530 g_free(comp_param); 531 compress_threads = NULL; 532 comp_param = NULL; 533 } 534 535 static int compress_threads_save_setup(void) 536 { 537 int i, thread_count; 538 539 if (!migrate_use_compression()) { 540 return 0; 541 } 542 thread_count = migrate_compress_threads(); 543 compress_threads = g_new0(QemuThread, thread_count); 544 comp_param = g_new0(CompressParam, thread_count); 545 qemu_cond_init(&comp_done_cond); 546 qemu_mutex_init(&comp_done_lock); 547 for (i = 0; i < thread_count; i++) { 548 comp_param[i].originbuf = g_try_malloc(TARGET_PAGE_SIZE); 549 if (!comp_param[i].originbuf) { 550 goto exit; 551 } 552 553 if (deflateInit(&comp_param[i].stream, 554 migrate_compress_level()) != Z_OK) { 555 g_free(comp_param[i].originbuf); 556 goto exit; 557 } 558 559 /* comp_param[i].file is just used as a dummy buffer to save data, 560 * set its ops to empty. 561 */ 562 comp_param[i].file = qemu_fopen_ops(NULL, &empty_ops); 563 comp_param[i].done = true; 564 comp_param[i].quit = false; 565 qemu_mutex_init(&comp_param[i].mutex); 566 qemu_cond_init(&comp_param[i].cond); 567 qemu_thread_create(compress_threads + i, "compress", 568 do_data_compress, comp_param + i, 569 QEMU_THREAD_JOINABLE); 570 } 571 return 0; 572 573 exit: 574 compress_threads_save_cleanup(); 575 return -1; 576 } 577 578 /* Multiple fd's */ 579 580 #define MULTIFD_MAGIC 0x11223344U 581 #define MULTIFD_VERSION 1 582 583 #define MULTIFD_FLAG_SYNC (1 << 0) 584 585 /* This value needs to be a multiple of qemu_target_page_size() */ 586 #define MULTIFD_PACKET_SIZE (512 * 1024) 587 588 typedef struct { 589 uint32_t magic; 590 uint32_t version; 591 unsigned char uuid[16]; /* QemuUUID */ 592 uint8_t id; 593 uint8_t unused1[7]; /* Reserved for future use */ 594 uint64_t unused2[4]; /* Reserved for future use */ 595 } __attribute__((packed)) MultiFDInit_t; 596 597 typedef struct { 598 uint32_t magic; 599 uint32_t version; 600 uint32_t flags; 601 /* maximum number of allocated pages */ 602 uint32_t pages_alloc; 603 uint32_t pages_used; 604 /* size of the next packet that contains pages */ 605 uint32_t next_packet_size; 606 uint64_t packet_num; 607 uint64_t unused[4]; /* Reserved for future use */ 608 char ramblock[256]; 609 uint64_t offset[]; 610 } __attribute__((packed)) MultiFDPacket_t; 611 612 typedef struct { 613 /* number of used pages */ 614 uint32_t used; 615 /* number of allocated pages */ 616 uint32_t allocated; 617 /* global number of generated multifd packets */ 618 uint64_t packet_num; 619 /* offset of each page */ 620 ram_addr_t *offset; 621 /* pointer to each page */ 622 struct iovec *iov; 623 RAMBlock *block; 624 } MultiFDPages_t; 625 626 typedef struct { 627 /* this fields are not changed once the thread is created */ 628 /* channel number */ 629 uint8_t id; 630 /* channel thread name */ 631 char *name; 632 /* channel thread id */ 633 QemuThread thread; 634 /* communication channel */ 635 QIOChannel *c; 636 /* sem where to wait for more work */ 637 QemuSemaphore sem; 638 /* this mutex protects the following parameters */ 639 QemuMutex mutex; 640 /* is this channel thread running */ 641 bool running; 642 /* should this thread finish */ 643 bool quit; 644 /* thread has work to do */ 645 int pending_job; 646 /* array of pages to sent */ 647 MultiFDPages_t *pages; 648 /* packet allocated len */ 649 uint32_t packet_len; 650 /* pointer to the packet */ 651 MultiFDPacket_t *packet; 652 /* multifd flags for each packet */ 653 uint32_t flags; 654 /* size of the next packet that contains pages */ 655 uint32_t next_packet_size; 656 /* global number of generated multifd packets */ 657 uint64_t packet_num; 658 /* thread local variables */ 659 /* packets sent through this channel */ 660 uint64_t num_packets; 661 /* pages sent through this channel */ 662 uint64_t num_pages; 663 /* syncs main thread and channels */ 664 QemuSemaphore sem_sync; 665 } MultiFDSendParams; 666 667 typedef struct { 668 /* this fields are not changed once the thread is created */ 669 /* channel number */ 670 uint8_t id; 671 /* channel thread name */ 672 char *name; 673 /* channel thread id */ 674 QemuThread thread; 675 /* communication channel */ 676 QIOChannel *c; 677 /* this mutex protects the following parameters */ 678 QemuMutex mutex; 679 /* is this channel thread running */ 680 bool running; 681 /* should this thread finish */ 682 bool quit; 683 /* array of pages to receive */ 684 MultiFDPages_t *pages; 685 /* packet allocated len */ 686 uint32_t packet_len; 687 /* pointer to the packet */ 688 MultiFDPacket_t *packet; 689 /* multifd flags for each packet */ 690 uint32_t flags; 691 /* global number of generated multifd packets */ 692 uint64_t packet_num; 693 /* thread local variables */ 694 /* size of the next packet that contains pages */ 695 uint32_t next_packet_size; 696 /* packets sent through this channel */ 697 uint64_t num_packets; 698 /* pages sent through this channel */ 699 uint64_t num_pages; 700 /* syncs main thread and channels */ 701 QemuSemaphore sem_sync; 702 } MultiFDRecvParams; 703 704 static int multifd_send_initial_packet(MultiFDSendParams *p, Error **errp) 705 { 706 MultiFDInit_t msg; 707 int ret; 708 709 msg.magic = cpu_to_be32(MULTIFD_MAGIC); 710 msg.version = cpu_to_be32(MULTIFD_VERSION); 711 msg.id = p->id; 712 memcpy(msg.uuid, &qemu_uuid.data, sizeof(msg.uuid)); 713 714 ret = qio_channel_write_all(p->c, (char *)&msg, sizeof(msg), errp); 715 if (ret != 0) { 716 return -1; 717 } 718 return 0; 719 } 720 721 static int multifd_recv_initial_packet(QIOChannel *c, Error **errp) 722 { 723 MultiFDInit_t msg; 724 int ret; 725 726 ret = qio_channel_read_all(c, (char *)&msg, sizeof(msg), errp); 727 if (ret != 0) { 728 return -1; 729 } 730 731 msg.magic = be32_to_cpu(msg.magic); 732 msg.version = be32_to_cpu(msg.version); 733 734 if (msg.magic != MULTIFD_MAGIC) { 735 error_setg(errp, "multifd: received packet magic %x " 736 "expected %x", msg.magic, MULTIFD_MAGIC); 737 return -1; 738 } 739 740 if (msg.version != MULTIFD_VERSION) { 741 error_setg(errp, "multifd: received packet version %d " 742 "expected %d", msg.version, MULTIFD_VERSION); 743 return -1; 744 } 745 746 if (memcmp(msg.uuid, &qemu_uuid, sizeof(qemu_uuid))) { 747 char *uuid = qemu_uuid_unparse_strdup(&qemu_uuid); 748 char *msg_uuid = qemu_uuid_unparse_strdup((const QemuUUID *)msg.uuid); 749 750 error_setg(errp, "multifd: received uuid '%s' and expected " 751 "uuid '%s' for channel %hhd", msg_uuid, uuid, msg.id); 752 g_free(uuid); 753 g_free(msg_uuid); 754 return -1; 755 } 756 757 if (msg.id > migrate_multifd_channels()) { 758 error_setg(errp, "multifd: received channel version %d " 759 "expected %d", msg.version, MULTIFD_VERSION); 760 return -1; 761 } 762 763 return msg.id; 764 } 765 766 static MultiFDPages_t *multifd_pages_init(size_t size) 767 { 768 MultiFDPages_t *pages = g_new0(MultiFDPages_t, 1); 769 770 pages->allocated = size; 771 pages->iov = g_new0(struct iovec, size); 772 pages->offset = g_new0(ram_addr_t, size); 773 774 return pages; 775 } 776 777 static void multifd_pages_clear(MultiFDPages_t *pages) 778 { 779 pages->used = 0; 780 pages->allocated = 0; 781 pages->packet_num = 0; 782 pages->block = NULL; 783 g_free(pages->iov); 784 pages->iov = NULL; 785 g_free(pages->offset); 786 pages->offset = NULL; 787 g_free(pages); 788 } 789 790 static void multifd_send_fill_packet(MultiFDSendParams *p) 791 { 792 MultiFDPacket_t *packet = p->packet; 793 int i; 794 795 packet->flags = cpu_to_be32(p->flags); 796 packet->pages_alloc = cpu_to_be32(p->pages->allocated); 797 packet->pages_used = cpu_to_be32(p->pages->used); 798 packet->next_packet_size = cpu_to_be32(p->next_packet_size); 799 packet->packet_num = cpu_to_be64(p->packet_num); 800 801 if (p->pages->block) { 802 strncpy(packet->ramblock, p->pages->block->idstr, 256); 803 } 804 805 for (i = 0; i < p->pages->used; i++) { 806 packet->offset[i] = cpu_to_be64(p->pages->offset[i]); 807 } 808 } 809 810 static int multifd_recv_unfill_packet(MultiFDRecvParams *p, Error **errp) 811 { 812 MultiFDPacket_t *packet = p->packet; 813 uint32_t pages_max = MULTIFD_PACKET_SIZE / qemu_target_page_size(); 814 RAMBlock *block; 815 int i; 816 817 packet->magic = be32_to_cpu(packet->magic); 818 if (packet->magic != MULTIFD_MAGIC) { 819 error_setg(errp, "multifd: received packet " 820 "magic %x and expected magic %x", 821 packet->magic, MULTIFD_MAGIC); 822 return -1; 823 } 824 825 packet->version = be32_to_cpu(packet->version); 826 if (packet->version != MULTIFD_VERSION) { 827 error_setg(errp, "multifd: received packet " 828 "version %d and expected version %d", 829 packet->version, MULTIFD_VERSION); 830 return -1; 831 } 832 833 p->flags = be32_to_cpu(packet->flags); 834 835 packet->pages_alloc = be32_to_cpu(packet->pages_alloc); 836 /* 837 * If we received a packet that is 100 times bigger than expected 838 * just stop migration. It is a magic number. 839 */ 840 if (packet->pages_alloc > pages_max * 100) { 841 error_setg(errp, "multifd: received packet " 842 "with size %d and expected a maximum size of %d", 843 packet->pages_alloc, pages_max * 100) ; 844 return -1; 845 } 846 /* 847 * We received a packet that is bigger than expected but inside 848 * reasonable limits (see previous comment). Just reallocate. 849 */ 850 if (packet->pages_alloc > p->pages->allocated) { 851 multifd_pages_clear(p->pages); 852 p->pages = multifd_pages_init(packet->pages_alloc); 853 } 854 855 p->pages->used = be32_to_cpu(packet->pages_used); 856 if (p->pages->used > packet->pages_alloc) { 857 error_setg(errp, "multifd: received packet " 858 "with %d pages and expected maximum pages are %d", 859 p->pages->used, packet->pages_alloc) ; 860 return -1; 861 } 862 863 p->next_packet_size = be32_to_cpu(packet->next_packet_size); 864 p->packet_num = be64_to_cpu(packet->packet_num); 865 866 if (p->pages->used) { 867 /* make sure that ramblock is 0 terminated */ 868 packet->ramblock[255] = 0; 869 block = qemu_ram_block_by_name(packet->ramblock); 870 if (!block) { 871 error_setg(errp, "multifd: unknown ram block %s", 872 packet->ramblock); 873 return -1; 874 } 875 } 876 877 for (i = 0; i < p->pages->used; i++) { 878 ram_addr_t offset = be64_to_cpu(packet->offset[i]); 879 880 if (offset > (block->used_length - TARGET_PAGE_SIZE)) { 881 error_setg(errp, "multifd: offset too long " RAM_ADDR_FMT 882 " (max " RAM_ADDR_FMT ")", 883 offset, block->max_length); 884 return -1; 885 } 886 p->pages->iov[i].iov_base = block->host + offset; 887 p->pages->iov[i].iov_len = TARGET_PAGE_SIZE; 888 } 889 890 return 0; 891 } 892 893 struct { 894 MultiFDSendParams *params; 895 /* array of pages to sent */ 896 MultiFDPages_t *pages; 897 /* global number of generated multifd packets */ 898 uint64_t packet_num; 899 /* send channels ready */ 900 QemuSemaphore channels_ready; 901 } *multifd_send_state; 902 903 /* 904 * How we use multifd_send_state->pages and channel->pages? 905 * 906 * We create a pages for each channel, and a main one. Each time that 907 * we need to send a batch of pages we interchange the ones between 908 * multifd_send_state and the channel that is sending it. There are 909 * two reasons for that: 910 * - to not have to do so many mallocs during migration 911 * - to make easier to know what to free at the end of migration 912 * 913 * This way we always know who is the owner of each "pages" struct, 914 * and we don't need any locking. It belongs to the migration thread 915 * or to the channel thread. Switching is safe because the migration 916 * thread is using the channel mutex when changing it, and the channel 917 * have to had finish with its own, otherwise pending_job can't be 918 * false. 919 */ 920 921 static int multifd_send_pages(RAMState *rs) 922 { 923 int i; 924 static int next_channel; 925 MultiFDSendParams *p = NULL; /* make happy gcc */ 926 MultiFDPages_t *pages = multifd_send_state->pages; 927 uint64_t transferred; 928 929 qemu_sem_wait(&multifd_send_state->channels_ready); 930 for (i = next_channel;; i = (i + 1) % migrate_multifd_channels()) { 931 p = &multifd_send_state->params[i]; 932 933 qemu_mutex_lock(&p->mutex); 934 if (p->quit) { 935 error_report("%s: channel %d has already quit!", __func__, i); 936 qemu_mutex_unlock(&p->mutex); 937 return -1; 938 } 939 if (!p->pending_job) { 940 p->pending_job++; 941 next_channel = (i + 1) % migrate_multifd_channels(); 942 break; 943 } 944 qemu_mutex_unlock(&p->mutex); 945 } 946 p->pages->used = 0; 947 948 p->packet_num = multifd_send_state->packet_num++; 949 p->pages->block = NULL; 950 multifd_send_state->pages = p->pages; 951 p->pages = pages; 952 transferred = ((uint64_t) pages->used) * TARGET_PAGE_SIZE + p->packet_len; 953 qemu_file_update_transfer(rs->f, transferred); 954 ram_counters.multifd_bytes += transferred; 955 ram_counters.transferred += transferred;; 956 qemu_mutex_unlock(&p->mutex); 957 qemu_sem_post(&p->sem); 958 959 return 1; 960 } 961 962 static int multifd_queue_page(RAMState *rs, RAMBlock *block, ram_addr_t offset) 963 { 964 MultiFDPages_t *pages = multifd_send_state->pages; 965 966 if (!pages->block) { 967 pages->block = block; 968 } 969 970 if (pages->block == block) { 971 pages->offset[pages->used] = offset; 972 pages->iov[pages->used].iov_base = block->host + offset; 973 pages->iov[pages->used].iov_len = TARGET_PAGE_SIZE; 974 pages->used++; 975 976 if (pages->used < pages->allocated) { 977 return 1; 978 } 979 } 980 981 if (multifd_send_pages(rs) < 0) { 982 return -1; 983 } 984 985 if (pages->block != block) { 986 return multifd_queue_page(rs, block, offset); 987 } 988 989 return 1; 990 } 991 992 static void multifd_send_terminate_threads(Error *err) 993 { 994 int i; 995 996 trace_multifd_send_terminate_threads(err != NULL); 997 998 if (err) { 999 MigrationState *s = migrate_get_current(); 1000 migrate_set_error(s, err); 1001 if (s->state == MIGRATION_STATUS_SETUP || 1002 s->state == MIGRATION_STATUS_PRE_SWITCHOVER || 1003 s->state == MIGRATION_STATUS_DEVICE || 1004 s->state == MIGRATION_STATUS_ACTIVE) { 1005 migrate_set_state(&s->state, s->state, 1006 MIGRATION_STATUS_FAILED); 1007 } 1008 } 1009 1010 for (i = 0; i < migrate_multifd_channels(); i++) { 1011 MultiFDSendParams *p = &multifd_send_state->params[i]; 1012 1013 qemu_mutex_lock(&p->mutex); 1014 p->quit = true; 1015 qemu_sem_post(&p->sem); 1016 qemu_mutex_unlock(&p->mutex); 1017 } 1018 } 1019 1020 void multifd_save_cleanup(void) 1021 { 1022 int i; 1023 1024 if (!migrate_use_multifd()) { 1025 return; 1026 } 1027 multifd_send_terminate_threads(NULL); 1028 for (i = 0; i < migrate_multifd_channels(); i++) { 1029 MultiFDSendParams *p = &multifd_send_state->params[i]; 1030 1031 if (p->running) { 1032 qemu_thread_join(&p->thread); 1033 } 1034 socket_send_channel_destroy(p->c); 1035 p->c = NULL; 1036 qemu_mutex_destroy(&p->mutex); 1037 qemu_sem_destroy(&p->sem); 1038 qemu_sem_destroy(&p->sem_sync); 1039 g_free(p->name); 1040 p->name = NULL; 1041 multifd_pages_clear(p->pages); 1042 p->pages = NULL; 1043 p->packet_len = 0; 1044 g_free(p->packet); 1045 p->packet = NULL; 1046 } 1047 qemu_sem_destroy(&multifd_send_state->channels_ready); 1048 g_free(multifd_send_state->params); 1049 multifd_send_state->params = NULL; 1050 multifd_pages_clear(multifd_send_state->pages); 1051 multifd_send_state->pages = NULL; 1052 g_free(multifd_send_state); 1053 multifd_send_state = NULL; 1054 } 1055 1056 static void multifd_send_sync_main(RAMState *rs) 1057 { 1058 int i; 1059 1060 if (!migrate_use_multifd()) { 1061 return; 1062 } 1063 if (multifd_send_state->pages->used) { 1064 if (multifd_send_pages(rs) < 0) { 1065 error_report("%s: multifd_send_pages fail", __func__); 1066 return; 1067 } 1068 } 1069 for (i = 0; i < migrate_multifd_channels(); i++) { 1070 MultiFDSendParams *p = &multifd_send_state->params[i]; 1071 1072 trace_multifd_send_sync_main_signal(p->id); 1073 1074 qemu_mutex_lock(&p->mutex); 1075 1076 if (p->quit) { 1077 error_report("%s: channel %d has already quit", __func__, i); 1078 qemu_mutex_unlock(&p->mutex); 1079 return; 1080 } 1081 1082 p->packet_num = multifd_send_state->packet_num++; 1083 p->flags |= MULTIFD_FLAG_SYNC; 1084 p->pending_job++; 1085 qemu_file_update_transfer(rs->f, p->packet_len); 1086 ram_counters.multifd_bytes += p->packet_len; 1087 ram_counters.transferred += p->packet_len; 1088 qemu_mutex_unlock(&p->mutex); 1089 qemu_sem_post(&p->sem); 1090 } 1091 for (i = 0; i < migrate_multifd_channels(); i++) { 1092 MultiFDSendParams *p = &multifd_send_state->params[i]; 1093 1094 trace_multifd_send_sync_main_wait(p->id); 1095 qemu_sem_wait(&p->sem_sync); 1096 } 1097 trace_multifd_send_sync_main(multifd_send_state->packet_num); 1098 } 1099 1100 static void *multifd_send_thread(void *opaque) 1101 { 1102 MultiFDSendParams *p = opaque; 1103 Error *local_err = NULL; 1104 int ret = 0; 1105 uint32_t flags = 0; 1106 1107 trace_multifd_send_thread_start(p->id); 1108 rcu_register_thread(); 1109 1110 if (multifd_send_initial_packet(p, &local_err) < 0) { 1111 ret = -1; 1112 goto out; 1113 } 1114 /* initial packet */ 1115 p->num_packets = 1; 1116 1117 while (true) { 1118 qemu_sem_wait(&p->sem); 1119 qemu_mutex_lock(&p->mutex); 1120 1121 if (p->pending_job) { 1122 uint32_t used = p->pages->used; 1123 uint64_t packet_num = p->packet_num; 1124 flags = p->flags; 1125 1126 p->next_packet_size = used * qemu_target_page_size(); 1127 multifd_send_fill_packet(p); 1128 p->flags = 0; 1129 p->num_packets++; 1130 p->num_pages += used; 1131 qemu_mutex_unlock(&p->mutex); 1132 1133 trace_multifd_send(p->id, packet_num, used, flags, 1134 p->next_packet_size); 1135 1136 ret = qio_channel_write_all(p->c, (void *)p->packet, 1137 p->packet_len, &local_err); 1138 if (ret != 0) { 1139 break; 1140 } 1141 1142 if (used) { 1143 ret = qio_channel_writev_all(p->c, p->pages->iov, 1144 used, &local_err); 1145 if (ret != 0) { 1146 break; 1147 } 1148 } 1149 1150 qemu_mutex_lock(&p->mutex); 1151 p->pending_job--; 1152 qemu_mutex_unlock(&p->mutex); 1153 1154 if (flags & MULTIFD_FLAG_SYNC) { 1155 qemu_sem_post(&p->sem_sync); 1156 } 1157 qemu_sem_post(&multifd_send_state->channels_ready); 1158 } else if (p->quit) { 1159 qemu_mutex_unlock(&p->mutex); 1160 break; 1161 } else { 1162 qemu_mutex_unlock(&p->mutex); 1163 /* sometimes there are spurious wakeups */ 1164 } 1165 } 1166 1167 out: 1168 if (local_err) { 1169 trace_multifd_send_error(p->id); 1170 multifd_send_terminate_threads(local_err); 1171 } 1172 1173 /* 1174 * Error happen, I will exit, but I can't just leave, tell 1175 * who pay attention to me. 1176 */ 1177 if (ret != 0) { 1178 qemu_sem_post(&p->sem_sync); 1179 qemu_sem_post(&multifd_send_state->channels_ready); 1180 } 1181 1182 qemu_mutex_lock(&p->mutex); 1183 p->running = false; 1184 qemu_mutex_unlock(&p->mutex); 1185 1186 rcu_unregister_thread(); 1187 trace_multifd_send_thread_end(p->id, p->num_packets, p->num_pages); 1188 1189 return NULL; 1190 } 1191 1192 static void multifd_new_send_channel_async(QIOTask *task, gpointer opaque) 1193 { 1194 MultiFDSendParams *p = opaque; 1195 QIOChannel *sioc = QIO_CHANNEL(qio_task_get_source(task)); 1196 Error *local_err = NULL; 1197 1198 trace_multifd_new_send_channel_async(p->id); 1199 if (qio_task_propagate_error(task, &local_err)) { 1200 migrate_set_error(migrate_get_current(), local_err); 1201 multifd_save_cleanup(); 1202 } else { 1203 p->c = QIO_CHANNEL(sioc); 1204 qio_channel_set_delay(p->c, false); 1205 p->running = true; 1206 qemu_thread_create(&p->thread, p->name, multifd_send_thread, p, 1207 QEMU_THREAD_JOINABLE); 1208 } 1209 } 1210 1211 int multifd_save_setup(void) 1212 { 1213 int thread_count; 1214 uint32_t page_count = MULTIFD_PACKET_SIZE / qemu_target_page_size(); 1215 uint8_t i; 1216 1217 if (!migrate_use_multifd()) { 1218 return 0; 1219 } 1220 thread_count = migrate_multifd_channels(); 1221 multifd_send_state = g_malloc0(sizeof(*multifd_send_state)); 1222 multifd_send_state->params = g_new0(MultiFDSendParams, thread_count); 1223 multifd_send_state->pages = multifd_pages_init(page_count); 1224 qemu_sem_init(&multifd_send_state->channels_ready, 0); 1225 1226 for (i = 0; i < thread_count; i++) { 1227 MultiFDSendParams *p = &multifd_send_state->params[i]; 1228 1229 qemu_mutex_init(&p->mutex); 1230 qemu_sem_init(&p->sem, 0); 1231 qemu_sem_init(&p->sem_sync, 0); 1232 p->quit = false; 1233 p->pending_job = 0; 1234 p->id = i; 1235 p->pages = multifd_pages_init(page_count); 1236 p->packet_len = sizeof(MultiFDPacket_t) 1237 + sizeof(ram_addr_t) * page_count; 1238 p->packet = g_malloc0(p->packet_len); 1239 p->packet->magic = cpu_to_be32(MULTIFD_MAGIC); 1240 p->packet->version = cpu_to_be32(MULTIFD_VERSION); 1241 p->name = g_strdup_printf("multifdsend_%d", i); 1242 socket_send_channel_create(multifd_new_send_channel_async, p); 1243 } 1244 return 0; 1245 } 1246 1247 struct { 1248 MultiFDRecvParams *params; 1249 /* number of created threads */ 1250 int count; 1251 /* syncs main thread and channels */ 1252 QemuSemaphore sem_sync; 1253 /* global number of generated multifd packets */ 1254 uint64_t packet_num; 1255 } *multifd_recv_state; 1256 1257 static void multifd_recv_terminate_threads(Error *err) 1258 { 1259 int i; 1260 1261 trace_multifd_recv_terminate_threads(err != NULL); 1262 1263 if (err) { 1264 MigrationState *s = migrate_get_current(); 1265 migrate_set_error(s, err); 1266 if (s->state == MIGRATION_STATUS_SETUP || 1267 s->state == MIGRATION_STATUS_ACTIVE) { 1268 migrate_set_state(&s->state, s->state, 1269 MIGRATION_STATUS_FAILED); 1270 } 1271 } 1272 1273 for (i = 0; i < migrate_multifd_channels(); i++) { 1274 MultiFDRecvParams *p = &multifd_recv_state->params[i]; 1275 1276 qemu_mutex_lock(&p->mutex); 1277 p->quit = true; 1278 /* We could arrive here for two reasons: 1279 - normal quit, i.e. everything went fine, just finished 1280 - error quit: We close the channels so the channel threads 1281 finish the qio_channel_read_all_eof() */ 1282 qio_channel_shutdown(p->c, QIO_CHANNEL_SHUTDOWN_BOTH, NULL); 1283 qemu_mutex_unlock(&p->mutex); 1284 } 1285 } 1286 1287 int multifd_load_cleanup(Error **errp) 1288 { 1289 int i; 1290 int ret = 0; 1291 1292 if (!migrate_use_multifd()) { 1293 return 0; 1294 } 1295 multifd_recv_terminate_threads(NULL); 1296 for (i = 0; i < migrate_multifd_channels(); i++) { 1297 MultiFDRecvParams *p = &multifd_recv_state->params[i]; 1298 1299 if (p->running) { 1300 p->quit = true; 1301 /* 1302 * multifd_recv_thread may hung at MULTIFD_FLAG_SYNC handle code, 1303 * however try to wakeup it without harm in cleanup phase. 1304 */ 1305 qemu_sem_post(&p->sem_sync); 1306 qemu_thread_join(&p->thread); 1307 } 1308 object_unref(OBJECT(p->c)); 1309 p->c = NULL; 1310 qemu_mutex_destroy(&p->mutex); 1311 qemu_sem_destroy(&p->sem_sync); 1312 g_free(p->name); 1313 p->name = NULL; 1314 multifd_pages_clear(p->pages); 1315 p->pages = NULL; 1316 p->packet_len = 0; 1317 g_free(p->packet); 1318 p->packet = NULL; 1319 } 1320 qemu_sem_destroy(&multifd_recv_state->sem_sync); 1321 g_free(multifd_recv_state->params); 1322 multifd_recv_state->params = NULL; 1323 g_free(multifd_recv_state); 1324 multifd_recv_state = NULL; 1325 1326 return ret; 1327 } 1328 1329 static void multifd_recv_sync_main(void) 1330 { 1331 int i; 1332 1333 if (!migrate_use_multifd()) { 1334 return; 1335 } 1336 for (i = 0; i < migrate_multifd_channels(); i++) { 1337 MultiFDRecvParams *p = &multifd_recv_state->params[i]; 1338 1339 trace_multifd_recv_sync_main_wait(p->id); 1340 qemu_sem_wait(&multifd_recv_state->sem_sync); 1341 } 1342 for (i = 0; i < migrate_multifd_channels(); i++) { 1343 MultiFDRecvParams *p = &multifd_recv_state->params[i]; 1344 1345 qemu_mutex_lock(&p->mutex); 1346 if (multifd_recv_state->packet_num < p->packet_num) { 1347 multifd_recv_state->packet_num = p->packet_num; 1348 } 1349 qemu_mutex_unlock(&p->mutex); 1350 trace_multifd_recv_sync_main_signal(p->id); 1351 qemu_sem_post(&p->sem_sync); 1352 } 1353 trace_multifd_recv_sync_main(multifd_recv_state->packet_num); 1354 } 1355 1356 static void *multifd_recv_thread(void *opaque) 1357 { 1358 MultiFDRecvParams *p = opaque; 1359 Error *local_err = NULL; 1360 int ret; 1361 1362 trace_multifd_recv_thread_start(p->id); 1363 rcu_register_thread(); 1364 1365 while (true) { 1366 uint32_t used; 1367 uint32_t flags; 1368 1369 if (p->quit) { 1370 break; 1371 } 1372 1373 ret = qio_channel_read_all_eof(p->c, (void *)p->packet, 1374 p->packet_len, &local_err); 1375 if (ret == 0) { /* EOF */ 1376 break; 1377 } 1378 if (ret == -1) { /* Error */ 1379 break; 1380 } 1381 1382 qemu_mutex_lock(&p->mutex); 1383 ret = multifd_recv_unfill_packet(p, &local_err); 1384 if (ret) { 1385 qemu_mutex_unlock(&p->mutex); 1386 break; 1387 } 1388 1389 used = p->pages->used; 1390 flags = p->flags; 1391 trace_multifd_recv(p->id, p->packet_num, used, flags, 1392 p->next_packet_size); 1393 p->num_packets++; 1394 p->num_pages += used; 1395 qemu_mutex_unlock(&p->mutex); 1396 1397 if (used) { 1398 ret = qio_channel_readv_all(p->c, p->pages->iov, 1399 used, &local_err); 1400 if (ret != 0) { 1401 break; 1402 } 1403 } 1404 1405 if (flags & MULTIFD_FLAG_SYNC) { 1406 qemu_sem_post(&multifd_recv_state->sem_sync); 1407 qemu_sem_wait(&p->sem_sync); 1408 } 1409 } 1410 1411 if (local_err) { 1412 multifd_recv_terminate_threads(local_err); 1413 } 1414 qemu_mutex_lock(&p->mutex); 1415 p->running = false; 1416 qemu_mutex_unlock(&p->mutex); 1417 1418 rcu_unregister_thread(); 1419 trace_multifd_recv_thread_end(p->id, p->num_packets, p->num_pages); 1420 1421 return NULL; 1422 } 1423 1424 int multifd_load_setup(void) 1425 { 1426 int thread_count; 1427 uint32_t page_count = MULTIFD_PACKET_SIZE / qemu_target_page_size(); 1428 uint8_t i; 1429 1430 if (!migrate_use_multifd()) { 1431 return 0; 1432 } 1433 thread_count = migrate_multifd_channels(); 1434 multifd_recv_state = g_malloc0(sizeof(*multifd_recv_state)); 1435 multifd_recv_state->params = g_new0(MultiFDRecvParams, thread_count); 1436 atomic_set(&multifd_recv_state->count, 0); 1437 qemu_sem_init(&multifd_recv_state->sem_sync, 0); 1438 1439 for (i = 0; i < thread_count; i++) { 1440 MultiFDRecvParams *p = &multifd_recv_state->params[i]; 1441 1442 qemu_mutex_init(&p->mutex); 1443 qemu_sem_init(&p->sem_sync, 0); 1444 p->quit = false; 1445 p->id = i; 1446 p->pages = multifd_pages_init(page_count); 1447 p->packet_len = sizeof(MultiFDPacket_t) 1448 + sizeof(ram_addr_t) * page_count; 1449 p->packet = g_malloc0(p->packet_len); 1450 p->name = g_strdup_printf("multifdrecv_%d", i); 1451 } 1452 return 0; 1453 } 1454 1455 bool multifd_recv_all_channels_created(void) 1456 { 1457 int thread_count = migrate_multifd_channels(); 1458 1459 if (!migrate_use_multifd()) { 1460 return true; 1461 } 1462 1463 return thread_count == atomic_read(&multifd_recv_state->count); 1464 } 1465 1466 /* 1467 * Try to receive all multifd channels to get ready for the migration. 1468 * - Return true and do not set @errp when correctly receving all channels; 1469 * - Return false and do not set @errp when correctly receiving the current one; 1470 * - Return false and set @errp when failing to receive the current channel. 1471 */ 1472 bool multifd_recv_new_channel(QIOChannel *ioc, Error **errp) 1473 { 1474 MultiFDRecvParams *p; 1475 Error *local_err = NULL; 1476 int id; 1477 1478 id = multifd_recv_initial_packet(ioc, &local_err); 1479 if (id < 0) { 1480 multifd_recv_terminate_threads(local_err); 1481 error_propagate_prepend(errp, local_err, 1482 "failed to receive packet" 1483 " via multifd channel %d: ", 1484 atomic_read(&multifd_recv_state->count)); 1485 return false; 1486 } 1487 trace_multifd_recv_new_channel(id); 1488 1489 p = &multifd_recv_state->params[id]; 1490 if (p->c != NULL) { 1491 error_setg(&local_err, "multifd: received id '%d' already setup'", 1492 id); 1493 multifd_recv_terminate_threads(local_err); 1494 error_propagate(errp, local_err); 1495 return false; 1496 } 1497 p->c = ioc; 1498 object_ref(OBJECT(ioc)); 1499 /* initial packet */ 1500 p->num_packets = 1; 1501 1502 p->running = true; 1503 qemu_thread_create(&p->thread, p->name, multifd_recv_thread, p, 1504 QEMU_THREAD_JOINABLE); 1505 atomic_inc(&multifd_recv_state->count); 1506 return atomic_read(&multifd_recv_state->count) == 1507 migrate_multifd_channels(); 1508 } 1509 1510 /** 1511 * save_page_header: write page header to wire 1512 * 1513 * If this is the 1st block, it also writes the block identification 1514 * 1515 * Returns the number of bytes written 1516 * 1517 * @f: QEMUFile where to send the data 1518 * @block: block that contains the page we want to send 1519 * @offset: offset inside the block for the page 1520 * in the lower bits, it contains flags 1521 */ 1522 static size_t save_page_header(RAMState *rs, QEMUFile *f, RAMBlock *block, 1523 ram_addr_t offset) 1524 { 1525 size_t size, len; 1526 1527 if (block == rs->last_sent_block) { 1528 offset |= RAM_SAVE_FLAG_CONTINUE; 1529 } 1530 qemu_put_be64(f, offset); 1531 size = 8; 1532 1533 if (!(offset & RAM_SAVE_FLAG_CONTINUE)) { 1534 len = strlen(block->idstr); 1535 qemu_put_byte(f, len); 1536 qemu_put_buffer(f, (uint8_t *)block->idstr, len); 1537 size += 1 + len; 1538 rs->last_sent_block = block; 1539 } 1540 return size; 1541 } 1542 1543 /** 1544 * mig_throttle_guest_down: throotle down the guest 1545 * 1546 * Reduce amount of guest cpu execution to hopefully slow down memory 1547 * writes. If guest dirty memory rate is reduced below the rate at 1548 * which we can transfer pages to the destination then we should be 1549 * able to complete migration. Some workloads dirty memory way too 1550 * fast and will not effectively converge, even with auto-converge. 1551 */ 1552 static void mig_throttle_guest_down(void) 1553 { 1554 MigrationState *s = migrate_get_current(); 1555 uint64_t pct_initial = s->parameters.cpu_throttle_initial; 1556 uint64_t pct_icrement = s->parameters.cpu_throttle_increment; 1557 int pct_max = s->parameters.max_cpu_throttle; 1558 1559 /* We have not started throttling yet. Let's start it. */ 1560 if (!cpu_throttle_active()) { 1561 cpu_throttle_set(pct_initial); 1562 } else { 1563 /* Throttling already on, just increase the rate */ 1564 cpu_throttle_set(MIN(cpu_throttle_get_percentage() + pct_icrement, 1565 pct_max)); 1566 } 1567 } 1568 1569 /** 1570 * xbzrle_cache_zero_page: insert a zero page in the XBZRLE cache 1571 * 1572 * @rs: current RAM state 1573 * @current_addr: address for the zero page 1574 * 1575 * Update the xbzrle cache to reflect a page that's been sent as all 0. 1576 * The important thing is that a stale (not-yet-0'd) page be replaced 1577 * by the new data. 1578 * As a bonus, if the page wasn't in the cache it gets added so that 1579 * when a small write is made into the 0'd page it gets XBZRLE sent. 1580 */ 1581 static void xbzrle_cache_zero_page(RAMState *rs, ram_addr_t current_addr) 1582 { 1583 if (rs->ram_bulk_stage || !migrate_use_xbzrle()) { 1584 return; 1585 } 1586 1587 /* We don't care if this fails to allocate a new cache page 1588 * as long as it updated an old one */ 1589 cache_insert(XBZRLE.cache, current_addr, XBZRLE.zero_target_page, 1590 ram_counters.dirty_sync_count); 1591 } 1592 1593 #define ENCODING_FLAG_XBZRLE 0x1 1594 1595 /** 1596 * save_xbzrle_page: compress and send current page 1597 * 1598 * Returns: 1 means that we wrote the page 1599 * 0 means that page is identical to the one already sent 1600 * -1 means that xbzrle would be longer than normal 1601 * 1602 * @rs: current RAM state 1603 * @current_data: pointer to the address of the page contents 1604 * @current_addr: addr of the page 1605 * @block: block that contains the page we want to send 1606 * @offset: offset inside the block for the page 1607 * @last_stage: if we are at the completion stage 1608 */ 1609 static int save_xbzrle_page(RAMState *rs, uint8_t **current_data, 1610 ram_addr_t current_addr, RAMBlock *block, 1611 ram_addr_t offset, bool last_stage) 1612 { 1613 int encoded_len = 0, bytes_xbzrle; 1614 uint8_t *prev_cached_page; 1615 1616 if (!cache_is_cached(XBZRLE.cache, current_addr, 1617 ram_counters.dirty_sync_count)) { 1618 xbzrle_counters.cache_miss++; 1619 if (!last_stage) { 1620 if (cache_insert(XBZRLE.cache, current_addr, *current_data, 1621 ram_counters.dirty_sync_count) == -1) { 1622 return -1; 1623 } else { 1624 /* update *current_data when the page has been 1625 inserted into cache */ 1626 *current_data = get_cached_data(XBZRLE.cache, current_addr); 1627 } 1628 } 1629 return -1; 1630 } 1631 1632 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr); 1633 1634 /* save current buffer into memory */ 1635 memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE); 1636 1637 /* XBZRLE encoding (if there is no overflow) */ 1638 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf, 1639 TARGET_PAGE_SIZE, XBZRLE.encoded_buf, 1640 TARGET_PAGE_SIZE); 1641 1642 /* 1643 * Update the cache contents, so that it corresponds to the data 1644 * sent, in all cases except where we skip the page. 1645 */ 1646 if (!last_stage && encoded_len != 0) { 1647 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE); 1648 /* 1649 * In the case where we couldn't compress, ensure that the caller 1650 * sends the data from the cache, since the guest might have 1651 * changed the RAM since we copied it. 1652 */ 1653 *current_data = prev_cached_page; 1654 } 1655 1656 if (encoded_len == 0) { 1657 trace_save_xbzrle_page_skipping(); 1658 return 0; 1659 } else if (encoded_len == -1) { 1660 trace_save_xbzrle_page_overflow(); 1661 xbzrle_counters.overflow++; 1662 return -1; 1663 } 1664 1665 /* Send XBZRLE based compressed page */ 1666 bytes_xbzrle = save_page_header(rs, rs->f, block, 1667 offset | RAM_SAVE_FLAG_XBZRLE); 1668 qemu_put_byte(rs->f, ENCODING_FLAG_XBZRLE); 1669 qemu_put_be16(rs->f, encoded_len); 1670 qemu_put_buffer(rs->f, XBZRLE.encoded_buf, encoded_len); 1671 bytes_xbzrle += encoded_len + 1 + 2; 1672 xbzrle_counters.pages++; 1673 xbzrle_counters.bytes += bytes_xbzrle; 1674 ram_counters.transferred += bytes_xbzrle; 1675 1676 return 1; 1677 } 1678 1679 /** 1680 * migration_bitmap_find_dirty: find the next dirty page from start 1681 * 1682 * Returns the page offset within memory region of the start of a dirty page 1683 * 1684 * @rs: current RAM state 1685 * @rb: RAMBlock where to search for dirty pages 1686 * @start: page where we start the search 1687 */ 1688 static inline 1689 unsigned long migration_bitmap_find_dirty(RAMState *rs, RAMBlock *rb, 1690 unsigned long start) 1691 { 1692 unsigned long size = rb->used_length >> TARGET_PAGE_BITS; 1693 unsigned long *bitmap = rb->bmap; 1694 unsigned long next; 1695 1696 if (ramblock_is_ignored(rb)) { 1697 return size; 1698 } 1699 1700 /* 1701 * When the free page optimization is enabled, we need to check the bitmap 1702 * to send the non-free pages rather than all the pages in the bulk stage. 1703 */ 1704 if (!rs->fpo_enabled && rs->ram_bulk_stage && start > 0) { 1705 next = start + 1; 1706 } else { 1707 next = find_next_bit(bitmap, size, start); 1708 } 1709 1710 return next; 1711 } 1712 1713 static inline bool migration_bitmap_clear_dirty(RAMState *rs, 1714 RAMBlock *rb, 1715 unsigned long page) 1716 { 1717 bool ret; 1718 1719 qemu_mutex_lock(&rs->bitmap_mutex); 1720 1721 /* 1722 * Clear dirty bitmap if needed. This _must_ be called before we 1723 * send any of the page in the chunk because we need to make sure 1724 * we can capture further page content changes when we sync dirty 1725 * log the next time. So as long as we are going to send any of 1726 * the page in the chunk we clear the remote dirty bitmap for all. 1727 * Clearing it earlier won't be a problem, but too late will. 1728 */ 1729 if (rb->clear_bmap && clear_bmap_test_and_clear(rb, page)) { 1730 uint8_t shift = rb->clear_bmap_shift; 1731 hwaddr size = 1ULL << (TARGET_PAGE_BITS + shift); 1732 hwaddr start = (page << TARGET_PAGE_BITS) & (-size); 1733 1734 /* 1735 * CLEAR_BITMAP_SHIFT_MIN should always guarantee this... this 1736 * can make things easier sometimes since then start address 1737 * of the small chunk will always be 64 pages aligned so the 1738 * bitmap will always be aligned to unsigned long. We should 1739 * even be able to remove this restriction but I'm simply 1740 * keeping it. 1741 */ 1742 assert(shift >= 6); 1743 trace_migration_bitmap_clear_dirty(rb->idstr, start, size, page); 1744 memory_region_clear_dirty_bitmap(rb->mr, start, size); 1745 } 1746 1747 ret = test_and_clear_bit(page, rb->bmap); 1748 1749 if (ret) { 1750 rs->migration_dirty_pages--; 1751 } 1752 qemu_mutex_unlock(&rs->bitmap_mutex); 1753 1754 return ret; 1755 } 1756 1757 /* Called with RCU critical section */ 1758 static void ramblock_sync_dirty_bitmap(RAMState *rs, RAMBlock *rb) 1759 { 1760 rs->migration_dirty_pages += 1761 cpu_physical_memory_sync_dirty_bitmap(rb, 0, rb->used_length, 1762 &rs->num_dirty_pages_period); 1763 } 1764 1765 /** 1766 * ram_pagesize_summary: calculate all the pagesizes of a VM 1767 * 1768 * Returns a summary bitmap of the page sizes of all RAMBlocks 1769 * 1770 * For VMs with just normal pages this is equivalent to the host page 1771 * size. If it's got some huge pages then it's the OR of all the 1772 * different page sizes. 1773 */ 1774 uint64_t ram_pagesize_summary(void) 1775 { 1776 RAMBlock *block; 1777 uint64_t summary = 0; 1778 1779 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 1780 summary |= block->page_size; 1781 } 1782 1783 return summary; 1784 } 1785 1786 uint64_t ram_get_total_transferred_pages(void) 1787 { 1788 return ram_counters.normal + ram_counters.duplicate + 1789 compression_counters.pages + xbzrle_counters.pages; 1790 } 1791 1792 static void migration_update_rates(RAMState *rs, int64_t end_time) 1793 { 1794 uint64_t page_count = rs->target_page_count - rs->target_page_count_prev; 1795 double compressed_size; 1796 1797 /* calculate period counters */ 1798 ram_counters.dirty_pages_rate = rs->num_dirty_pages_period * 1000 1799 / (end_time - rs->time_last_bitmap_sync); 1800 1801 if (!page_count) { 1802 return; 1803 } 1804 1805 if (migrate_use_xbzrle()) { 1806 xbzrle_counters.cache_miss_rate = (double)(xbzrle_counters.cache_miss - 1807 rs->xbzrle_cache_miss_prev) / page_count; 1808 rs->xbzrle_cache_miss_prev = xbzrle_counters.cache_miss; 1809 } 1810 1811 if (migrate_use_compression()) { 1812 compression_counters.busy_rate = (double)(compression_counters.busy - 1813 rs->compress_thread_busy_prev) / page_count; 1814 rs->compress_thread_busy_prev = compression_counters.busy; 1815 1816 compressed_size = compression_counters.compressed_size - 1817 rs->compressed_size_prev; 1818 if (compressed_size) { 1819 double uncompressed_size = (compression_counters.pages - 1820 rs->compress_pages_prev) * TARGET_PAGE_SIZE; 1821 1822 /* Compression-Ratio = Uncompressed-size / Compressed-size */ 1823 compression_counters.compression_rate = 1824 uncompressed_size / compressed_size; 1825 1826 rs->compress_pages_prev = compression_counters.pages; 1827 rs->compressed_size_prev = compression_counters.compressed_size; 1828 } 1829 } 1830 } 1831 1832 static void migration_bitmap_sync(RAMState *rs) 1833 { 1834 RAMBlock *block; 1835 int64_t end_time; 1836 uint64_t bytes_xfer_now; 1837 1838 ram_counters.dirty_sync_count++; 1839 1840 if (!rs->time_last_bitmap_sync) { 1841 rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); 1842 } 1843 1844 trace_migration_bitmap_sync_start(); 1845 memory_global_dirty_log_sync(); 1846 1847 qemu_mutex_lock(&rs->bitmap_mutex); 1848 WITH_RCU_READ_LOCK_GUARD() { 1849 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 1850 ramblock_sync_dirty_bitmap(rs, block); 1851 } 1852 ram_counters.remaining = ram_bytes_remaining(); 1853 } 1854 qemu_mutex_unlock(&rs->bitmap_mutex); 1855 1856 memory_global_after_dirty_log_sync(); 1857 trace_migration_bitmap_sync_end(rs->num_dirty_pages_period); 1858 1859 end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); 1860 1861 /* more than 1 second = 1000 millisecons */ 1862 if (end_time > rs->time_last_bitmap_sync + 1000) { 1863 bytes_xfer_now = ram_counters.transferred; 1864 1865 /* During block migration the auto-converge logic incorrectly detects 1866 * that ram migration makes no progress. Avoid this by disabling the 1867 * throttling logic during the bulk phase of block migration. */ 1868 if (migrate_auto_converge() && !blk_mig_bulk_active()) { 1869 /* The following detection logic can be refined later. For now: 1870 Check to see if the dirtied bytes is 50% more than the approx. 1871 amount of bytes that just got transferred since the last time we 1872 were in this routine. If that happens twice, start or increase 1873 throttling */ 1874 1875 if ((rs->num_dirty_pages_period * TARGET_PAGE_SIZE > 1876 (bytes_xfer_now - rs->bytes_xfer_prev) / 2) && 1877 (++rs->dirty_rate_high_cnt >= 2)) { 1878 trace_migration_throttle(); 1879 rs->dirty_rate_high_cnt = 0; 1880 mig_throttle_guest_down(); 1881 } 1882 } 1883 1884 migration_update_rates(rs, end_time); 1885 1886 rs->target_page_count_prev = rs->target_page_count; 1887 1888 /* reset period counters */ 1889 rs->time_last_bitmap_sync = end_time; 1890 rs->num_dirty_pages_period = 0; 1891 rs->bytes_xfer_prev = bytes_xfer_now; 1892 } 1893 if (migrate_use_events()) { 1894 qapi_event_send_migration_pass(ram_counters.dirty_sync_count); 1895 } 1896 } 1897 1898 static void migration_bitmap_sync_precopy(RAMState *rs) 1899 { 1900 Error *local_err = NULL; 1901 1902 /* 1903 * The current notifier usage is just an optimization to migration, so we 1904 * don't stop the normal migration process in the error case. 1905 */ 1906 if (precopy_notify(PRECOPY_NOTIFY_BEFORE_BITMAP_SYNC, &local_err)) { 1907 error_report_err(local_err); 1908 } 1909 1910 migration_bitmap_sync(rs); 1911 1912 if (precopy_notify(PRECOPY_NOTIFY_AFTER_BITMAP_SYNC, &local_err)) { 1913 error_report_err(local_err); 1914 } 1915 } 1916 1917 /** 1918 * save_zero_page_to_file: send the zero page to the file 1919 * 1920 * Returns the size of data written to the file, 0 means the page is not 1921 * a zero page 1922 * 1923 * @rs: current RAM state 1924 * @file: the file where the data is saved 1925 * @block: block that contains the page we want to send 1926 * @offset: offset inside the block for the page 1927 */ 1928 static int save_zero_page_to_file(RAMState *rs, QEMUFile *file, 1929 RAMBlock *block, ram_addr_t offset) 1930 { 1931 uint8_t *p = block->host + offset; 1932 int len = 0; 1933 1934 if (is_zero_range(p, TARGET_PAGE_SIZE)) { 1935 len += save_page_header(rs, file, block, offset | RAM_SAVE_FLAG_ZERO); 1936 qemu_put_byte(file, 0); 1937 len += 1; 1938 } 1939 return len; 1940 } 1941 1942 /** 1943 * save_zero_page: send the zero page to the stream 1944 * 1945 * Returns the number of pages written. 1946 * 1947 * @rs: current RAM state 1948 * @block: block that contains the page we want to send 1949 * @offset: offset inside the block for the page 1950 */ 1951 static int save_zero_page(RAMState *rs, RAMBlock *block, ram_addr_t offset) 1952 { 1953 int len = save_zero_page_to_file(rs, rs->f, block, offset); 1954 1955 if (len) { 1956 ram_counters.duplicate++; 1957 ram_counters.transferred += len; 1958 return 1; 1959 } 1960 return -1; 1961 } 1962 1963 static void ram_release_pages(const char *rbname, uint64_t offset, int pages) 1964 { 1965 if (!migrate_release_ram() || !migration_in_postcopy()) { 1966 return; 1967 } 1968 1969 ram_discard_range(rbname, offset, pages << TARGET_PAGE_BITS); 1970 } 1971 1972 /* 1973 * @pages: the number of pages written by the control path, 1974 * < 0 - error 1975 * > 0 - number of pages written 1976 * 1977 * Return true if the pages has been saved, otherwise false is returned. 1978 */ 1979 static bool control_save_page(RAMState *rs, RAMBlock *block, ram_addr_t offset, 1980 int *pages) 1981 { 1982 uint64_t bytes_xmit = 0; 1983 int ret; 1984 1985 *pages = -1; 1986 ret = ram_control_save_page(rs->f, block->offset, offset, TARGET_PAGE_SIZE, 1987 &bytes_xmit); 1988 if (ret == RAM_SAVE_CONTROL_NOT_SUPP) { 1989 return false; 1990 } 1991 1992 if (bytes_xmit) { 1993 ram_counters.transferred += bytes_xmit; 1994 *pages = 1; 1995 } 1996 1997 if (ret == RAM_SAVE_CONTROL_DELAYED) { 1998 return true; 1999 } 2000 2001 if (bytes_xmit > 0) { 2002 ram_counters.normal++; 2003 } else if (bytes_xmit == 0) { 2004 ram_counters.duplicate++; 2005 } 2006 2007 return true; 2008 } 2009 2010 /* 2011 * directly send the page to the stream 2012 * 2013 * Returns the number of pages written. 2014 * 2015 * @rs: current RAM state 2016 * @block: block that contains the page we want to send 2017 * @offset: offset inside the block for the page 2018 * @buf: the page to be sent 2019 * @async: send to page asyncly 2020 */ 2021 static int save_normal_page(RAMState *rs, RAMBlock *block, ram_addr_t offset, 2022 uint8_t *buf, bool async) 2023 { 2024 ram_counters.transferred += save_page_header(rs, rs->f, block, 2025 offset | RAM_SAVE_FLAG_PAGE); 2026 if (async) { 2027 qemu_put_buffer_async(rs->f, buf, TARGET_PAGE_SIZE, 2028 migrate_release_ram() & 2029 migration_in_postcopy()); 2030 } else { 2031 qemu_put_buffer(rs->f, buf, TARGET_PAGE_SIZE); 2032 } 2033 ram_counters.transferred += TARGET_PAGE_SIZE; 2034 ram_counters.normal++; 2035 return 1; 2036 } 2037 2038 /** 2039 * ram_save_page: send the given page to the stream 2040 * 2041 * Returns the number of pages written. 2042 * < 0 - error 2043 * >=0 - Number of pages written - this might legally be 0 2044 * if xbzrle noticed the page was the same. 2045 * 2046 * @rs: current RAM state 2047 * @block: block that contains the page we want to send 2048 * @offset: offset inside the block for the page 2049 * @last_stage: if we are at the completion stage 2050 */ 2051 static int ram_save_page(RAMState *rs, PageSearchStatus *pss, bool last_stage) 2052 { 2053 int pages = -1; 2054 uint8_t *p; 2055 bool send_async = true; 2056 RAMBlock *block = pss->block; 2057 ram_addr_t offset = pss->page << TARGET_PAGE_BITS; 2058 ram_addr_t current_addr = block->offset + offset; 2059 2060 p = block->host + offset; 2061 trace_ram_save_page(block->idstr, (uint64_t)offset, p); 2062 2063 XBZRLE_cache_lock(); 2064 if (!rs->ram_bulk_stage && !migration_in_postcopy() && 2065 migrate_use_xbzrle()) { 2066 pages = save_xbzrle_page(rs, &p, current_addr, block, 2067 offset, last_stage); 2068 if (!last_stage) { 2069 /* Can't send this cached data async, since the cache page 2070 * might get updated before it gets to the wire 2071 */ 2072 send_async = false; 2073 } 2074 } 2075 2076 /* XBZRLE overflow or normal page */ 2077 if (pages == -1) { 2078 pages = save_normal_page(rs, block, offset, p, send_async); 2079 } 2080 2081 XBZRLE_cache_unlock(); 2082 2083 return pages; 2084 } 2085 2086 static int ram_save_multifd_page(RAMState *rs, RAMBlock *block, 2087 ram_addr_t offset) 2088 { 2089 if (multifd_queue_page(rs, block, offset) < 0) { 2090 return -1; 2091 } 2092 ram_counters.normal++; 2093 2094 return 1; 2095 } 2096 2097 static bool do_compress_ram_page(QEMUFile *f, z_stream *stream, RAMBlock *block, 2098 ram_addr_t offset, uint8_t *source_buf) 2099 { 2100 RAMState *rs = ram_state; 2101 uint8_t *p = block->host + (offset & TARGET_PAGE_MASK); 2102 bool zero_page = false; 2103 int ret; 2104 2105 if (save_zero_page_to_file(rs, f, block, offset)) { 2106 zero_page = true; 2107 goto exit; 2108 } 2109 2110 save_page_header(rs, f, block, offset | RAM_SAVE_FLAG_COMPRESS_PAGE); 2111 2112 /* 2113 * copy it to a internal buffer to avoid it being modified by VM 2114 * so that we can catch up the error during compression and 2115 * decompression 2116 */ 2117 memcpy(source_buf, p, TARGET_PAGE_SIZE); 2118 ret = qemu_put_compression_data(f, stream, source_buf, TARGET_PAGE_SIZE); 2119 if (ret < 0) { 2120 qemu_file_set_error(migrate_get_current()->to_dst_file, ret); 2121 error_report("compressed data failed!"); 2122 return false; 2123 } 2124 2125 exit: 2126 ram_release_pages(block->idstr, offset & TARGET_PAGE_MASK, 1); 2127 return zero_page; 2128 } 2129 2130 static void 2131 update_compress_thread_counts(const CompressParam *param, int bytes_xmit) 2132 { 2133 ram_counters.transferred += bytes_xmit; 2134 2135 if (param->zero_page) { 2136 ram_counters.duplicate++; 2137 return; 2138 } 2139 2140 /* 8 means a header with RAM_SAVE_FLAG_CONTINUE. */ 2141 compression_counters.compressed_size += bytes_xmit - 8; 2142 compression_counters.pages++; 2143 } 2144 2145 static bool save_page_use_compression(RAMState *rs); 2146 2147 static void flush_compressed_data(RAMState *rs) 2148 { 2149 int idx, len, thread_count; 2150 2151 if (!save_page_use_compression(rs)) { 2152 return; 2153 } 2154 thread_count = migrate_compress_threads(); 2155 2156 qemu_mutex_lock(&comp_done_lock); 2157 for (idx = 0; idx < thread_count; idx++) { 2158 while (!comp_param[idx].done) { 2159 qemu_cond_wait(&comp_done_cond, &comp_done_lock); 2160 } 2161 } 2162 qemu_mutex_unlock(&comp_done_lock); 2163 2164 for (idx = 0; idx < thread_count; idx++) { 2165 qemu_mutex_lock(&comp_param[idx].mutex); 2166 if (!comp_param[idx].quit) { 2167 len = qemu_put_qemu_file(rs->f, comp_param[idx].file); 2168 /* 2169 * it's safe to fetch zero_page without holding comp_done_lock 2170 * as there is no further request submitted to the thread, 2171 * i.e, the thread should be waiting for a request at this point. 2172 */ 2173 update_compress_thread_counts(&comp_param[idx], len); 2174 } 2175 qemu_mutex_unlock(&comp_param[idx].mutex); 2176 } 2177 } 2178 2179 static inline void set_compress_params(CompressParam *param, RAMBlock *block, 2180 ram_addr_t offset) 2181 { 2182 param->block = block; 2183 param->offset = offset; 2184 } 2185 2186 static int compress_page_with_multi_thread(RAMState *rs, RAMBlock *block, 2187 ram_addr_t offset) 2188 { 2189 int idx, thread_count, bytes_xmit = -1, pages = -1; 2190 bool wait = migrate_compress_wait_thread(); 2191 2192 thread_count = migrate_compress_threads(); 2193 qemu_mutex_lock(&comp_done_lock); 2194 retry: 2195 for (idx = 0; idx < thread_count; idx++) { 2196 if (comp_param[idx].done) { 2197 comp_param[idx].done = false; 2198 bytes_xmit = qemu_put_qemu_file(rs->f, comp_param[idx].file); 2199 qemu_mutex_lock(&comp_param[idx].mutex); 2200 set_compress_params(&comp_param[idx], block, offset); 2201 qemu_cond_signal(&comp_param[idx].cond); 2202 qemu_mutex_unlock(&comp_param[idx].mutex); 2203 pages = 1; 2204 update_compress_thread_counts(&comp_param[idx], bytes_xmit); 2205 break; 2206 } 2207 } 2208 2209 /* 2210 * wait for the free thread if the user specifies 'compress-wait-thread', 2211 * otherwise we will post the page out in the main thread as normal page. 2212 */ 2213 if (pages < 0 && wait) { 2214 qemu_cond_wait(&comp_done_cond, &comp_done_lock); 2215 goto retry; 2216 } 2217 qemu_mutex_unlock(&comp_done_lock); 2218 2219 return pages; 2220 } 2221 2222 /** 2223 * find_dirty_block: find the next dirty page and update any state 2224 * associated with the search process. 2225 * 2226 * Returns true if a page is found 2227 * 2228 * @rs: current RAM state 2229 * @pss: data about the state of the current dirty page scan 2230 * @again: set to false if the search has scanned the whole of RAM 2231 */ 2232 static bool find_dirty_block(RAMState *rs, PageSearchStatus *pss, bool *again) 2233 { 2234 pss->page = migration_bitmap_find_dirty(rs, pss->block, pss->page); 2235 if (pss->complete_round && pss->block == rs->last_seen_block && 2236 pss->page >= rs->last_page) { 2237 /* 2238 * We've been once around the RAM and haven't found anything. 2239 * Give up. 2240 */ 2241 *again = false; 2242 return false; 2243 } 2244 if ((pss->page << TARGET_PAGE_BITS) >= pss->block->used_length) { 2245 /* Didn't find anything in this RAM Block */ 2246 pss->page = 0; 2247 pss->block = QLIST_NEXT_RCU(pss->block, next); 2248 if (!pss->block) { 2249 /* 2250 * If memory migration starts over, we will meet a dirtied page 2251 * which may still exists in compression threads's ring, so we 2252 * should flush the compressed data to make sure the new page 2253 * is not overwritten by the old one in the destination. 2254 * 2255 * Also If xbzrle is on, stop using the data compression at this 2256 * point. In theory, xbzrle can do better than compression. 2257 */ 2258 flush_compressed_data(rs); 2259 2260 /* Hit the end of the list */ 2261 pss->block = QLIST_FIRST_RCU(&ram_list.blocks); 2262 /* Flag that we've looped */ 2263 pss->complete_round = true; 2264 rs->ram_bulk_stage = false; 2265 } 2266 /* Didn't find anything this time, but try again on the new block */ 2267 *again = true; 2268 return false; 2269 } else { 2270 /* Can go around again, but... */ 2271 *again = true; 2272 /* We've found something so probably don't need to */ 2273 return true; 2274 } 2275 } 2276 2277 /** 2278 * unqueue_page: gets a page of the queue 2279 * 2280 * Helper for 'get_queued_page' - gets a page off the queue 2281 * 2282 * Returns the block of the page (or NULL if none available) 2283 * 2284 * @rs: current RAM state 2285 * @offset: used to return the offset within the RAMBlock 2286 */ 2287 static RAMBlock *unqueue_page(RAMState *rs, ram_addr_t *offset) 2288 { 2289 RAMBlock *block = NULL; 2290 2291 if (QSIMPLEQ_EMPTY_ATOMIC(&rs->src_page_requests)) { 2292 return NULL; 2293 } 2294 2295 qemu_mutex_lock(&rs->src_page_req_mutex); 2296 if (!QSIMPLEQ_EMPTY(&rs->src_page_requests)) { 2297 struct RAMSrcPageRequest *entry = 2298 QSIMPLEQ_FIRST(&rs->src_page_requests); 2299 block = entry->rb; 2300 *offset = entry->offset; 2301 2302 if (entry->len > TARGET_PAGE_SIZE) { 2303 entry->len -= TARGET_PAGE_SIZE; 2304 entry->offset += TARGET_PAGE_SIZE; 2305 } else { 2306 memory_region_unref(block->mr); 2307 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req); 2308 g_free(entry); 2309 migration_consume_urgent_request(); 2310 } 2311 } 2312 qemu_mutex_unlock(&rs->src_page_req_mutex); 2313 2314 return block; 2315 } 2316 2317 /** 2318 * get_queued_page: unqueue a page from the postcopy requests 2319 * 2320 * Skips pages that are already sent (!dirty) 2321 * 2322 * Returns true if a queued page is found 2323 * 2324 * @rs: current RAM state 2325 * @pss: data about the state of the current dirty page scan 2326 */ 2327 static bool get_queued_page(RAMState *rs, PageSearchStatus *pss) 2328 { 2329 RAMBlock *block; 2330 ram_addr_t offset; 2331 bool dirty; 2332 2333 do { 2334 block = unqueue_page(rs, &offset); 2335 /* 2336 * We're sending this page, and since it's postcopy nothing else 2337 * will dirty it, and we must make sure it doesn't get sent again 2338 * even if this queue request was received after the background 2339 * search already sent it. 2340 */ 2341 if (block) { 2342 unsigned long page; 2343 2344 page = offset >> TARGET_PAGE_BITS; 2345 dirty = test_bit(page, block->bmap); 2346 if (!dirty) { 2347 trace_get_queued_page_not_dirty(block->idstr, (uint64_t)offset, 2348 page); 2349 } else { 2350 trace_get_queued_page(block->idstr, (uint64_t)offset, page); 2351 } 2352 } 2353 2354 } while (block && !dirty); 2355 2356 if (block) { 2357 /* 2358 * As soon as we start servicing pages out of order, then we have 2359 * to kill the bulk stage, since the bulk stage assumes 2360 * in (migration_bitmap_find_and_reset_dirty) that every page is 2361 * dirty, that's no longer true. 2362 */ 2363 rs->ram_bulk_stage = false; 2364 2365 /* 2366 * We want the background search to continue from the queued page 2367 * since the guest is likely to want other pages near to the page 2368 * it just requested. 2369 */ 2370 pss->block = block; 2371 pss->page = offset >> TARGET_PAGE_BITS; 2372 2373 /* 2374 * This unqueued page would break the "one round" check, even is 2375 * really rare. 2376 */ 2377 pss->complete_round = false; 2378 } 2379 2380 return !!block; 2381 } 2382 2383 /** 2384 * migration_page_queue_free: drop any remaining pages in the ram 2385 * request queue 2386 * 2387 * It should be empty at the end anyway, but in error cases there may 2388 * be some left. in case that there is any page left, we drop it. 2389 * 2390 */ 2391 static void migration_page_queue_free(RAMState *rs) 2392 { 2393 struct RAMSrcPageRequest *mspr, *next_mspr; 2394 /* This queue generally should be empty - but in the case of a failed 2395 * migration might have some droppings in. 2396 */ 2397 RCU_READ_LOCK_GUARD(); 2398 QSIMPLEQ_FOREACH_SAFE(mspr, &rs->src_page_requests, next_req, next_mspr) { 2399 memory_region_unref(mspr->rb->mr); 2400 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req); 2401 g_free(mspr); 2402 } 2403 } 2404 2405 /** 2406 * ram_save_queue_pages: queue the page for transmission 2407 * 2408 * A request from postcopy destination for example. 2409 * 2410 * Returns zero on success or negative on error 2411 * 2412 * @rbname: Name of the RAMBLock of the request. NULL means the 2413 * same that last one. 2414 * @start: starting address from the start of the RAMBlock 2415 * @len: length (in bytes) to send 2416 */ 2417 int ram_save_queue_pages(const char *rbname, ram_addr_t start, ram_addr_t len) 2418 { 2419 RAMBlock *ramblock; 2420 RAMState *rs = ram_state; 2421 2422 ram_counters.postcopy_requests++; 2423 RCU_READ_LOCK_GUARD(); 2424 2425 if (!rbname) { 2426 /* Reuse last RAMBlock */ 2427 ramblock = rs->last_req_rb; 2428 2429 if (!ramblock) { 2430 /* 2431 * Shouldn't happen, we can't reuse the last RAMBlock if 2432 * it's the 1st request. 2433 */ 2434 error_report("ram_save_queue_pages no previous block"); 2435 goto err; 2436 } 2437 } else { 2438 ramblock = qemu_ram_block_by_name(rbname); 2439 2440 if (!ramblock) { 2441 /* We shouldn't be asked for a non-existent RAMBlock */ 2442 error_report("ram_save_queue_pages no block '%s'", rbname); 2443 goto err; 2444 } 2445 rs->last_req_rb = ramblock; 2446 } 2447 trace_ram_save_queue_pages(ramblock->idstr, start, len); 2448 if (start+len > ramblock->used_length) { 2449 error_report("%s request overrun start=" RAM_ADDR_FMT " len=" 2450 RAM_ADDR_FMT " blocklen=" RAM_ADDR_FMT, 2451 __func__, start, len, ramblock->used_length); 2452 goto err; 2453 } 2454 2455 struct RAMSrcPageRequest *new_entry = 2456 g_malloc0(sizeof(struct RAMSrcPageRequest)); 2457 new_entry->rb = ramblock; 2458 new_entry->offset = start; 2459 new_entry->len = len; 2460 2461 memory_region_ref(ramblock->mr); 2462 qemu_mutex_lock(&rs->src_page_req_mutex); 2463 QSIMPLEQ_INSERT_TAIL(&rs->src_page_requests, new_entry, next_req); 2464 migration_make_urgent_request(); 2465 qemu_mutex_unlock(&rs->src_page_req_mutex); 2466 2467 return 0; 2468 2469 err: 2470 return -1; 2471 } 2472 2473 static bool save_page_use_compression(RAMState *rs) 2474 { 2475 if (!migrate_use_compression()) { 2476 return false; 2477 } 2478 2479 /* 2480 * If xbzrle is on, stop using the data compression after first 2481 * round of migration even if compression is enabled. In theory, 2482 * xbzrle can do better than compression. 2483 */ 2484 if (rs->ram_bulk_stage || !migrate_use_xbzrle()) { 2485 return true; 2486 } 2487 2488 return false; 2489 } 2490 2491 /* 2492 * try to compress the page before posting it out, return true if the page 2493 * has been properly handled by compression, otherwise needs other 2494 * paths to handle it 2495 */ 2496 static bool save_compress_page(RAMState *rs, RAMBlock *block, ram_addr_t offset) 2497 { 2498 if (!save_page_use_compression(rs)) { 2499 return false; 2500 } 2501 2502 /* 2503 * When starting the process of a new block, the first page of 2504 * the block should be sent out before other pages in the same 2505 * block, and all the pages in last block should have been sent 2506 * out, keeping this order is important, because the 'cont' flag 2507 * is used to avoid resending the block name. 2508 * 2509 * We post the fist page as normal page as compression will take 2510 * much CPU resource. 2511 */ 2512 if (block != rs->last_sent_block) { 2513 flush_compressed_data(rs); 2514 return false; 2515 } 2516 2517 if (compress_page_with_multi_thread(rs, block, offset) > 0) { 2518 return true; 2519 } 2520 2521 compression_counters.busy++; 2522 return false; 2523 } 2524 2525 /** 2526 * ram_save_target_page: save one target page 2527 * 2528 * Returns the number of pages written 2529 * 2530 * @rs: current RAM state 2531 * @pss: data about the page we want to send 2532 * @last_stage: if we are at the completion stage 2533 */ 2534 static int ram_save_target_page(RAMState *rs, PageSearchStatus *pss, 2535 bool last_stage) 2536 { 2537 RAMBlock *block = pss->block; 2538 ram_addr_t offset = pss->page << TARGET_PAGE_BITS; 2539 int res; 2540 2541 if (control_save_page(rs, block, offset, &res)) { 2542 return res; 2543 } 2544 2545 if (save_compress_page(rs, block, offset)) { 2546 return 1; 2547 } 2548 2549 res = save_zero_page(rs, block, offset); 2550 if (res > 0) { 2551 /* Must let xbzrle know, otherwise a previous (now 0'd) cached 2552 * page would be stale 2553 */ 2554 if (!save_page_use_compression(rs)) { 2555 XBZRLE_cache_lock(); 2556 xbzrle_cache_zero_page(rs, block->offset + offset); 2557 XBZRLE_cache_unlock(); 2558 } 2559 ram_release_pages(block->idstr, offset, res); 2560 return res; 2561 } 2562 2563 /* 2564 * do not use multifd for compression as the first page in the new 2565 * block should be posted out before sending the compressed page 2566 */ 2567 if (!save_page_use_compression(rs) && migrate_use_multifd()) { 2568 return ram_save_multifd_page(rs, block, offset); 2569 } 2570 2571 return ram_save_page(rs, pss, last_stage); 2572 } 2573 2574 /** 2575 * ram_save_host_page: save a whole host page 2576 * 2577 * Starting at *offset send pages up to the end of the current host 2578 * page. It's valid for the initial offset to point into the middle of 2579 * a host page in which case the remainder of the hostpage is sent. 2580 * Only dirty target pages are sent. Note that the host page size may 2581 * be a huge page for this block. 2582 * The saving stops at the boundary of the used_length of the block 2583 * if the RAMBlock isn't a multiple of the host page size. 2584 * 2585 * Returns the number of pages written or negative on error 2586 * 2587 * @rs: current RAM state 2588 * @ms: current migration state 2589 * @pss: data about the page we want to send 2590 * @last_stage: if we are at the completion stage 2591 */ 2592 static int ram_save_host_page(RAMState *rs, PageSearchStatus *pss, 2593 bool last_stage) 2594 { 2595 int tmppages, pages = 0; 2596 size_t pagesize_bits = 2597 qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS; 2598 2599 if (ramblock_is_ignored(pss->block)) { 2600 error_report("block %s should not be migrated !", pss->block->idstr); 2601 return 0; 2602 } 2603 2604 do { 2605 /* Check the pages is dirty and if it is send it */ 2606 if (!migration_bitmap_clear_dirty(rs, pss->block, pss->page)) { 2607 pss->page++; 2608 continue; 2609 } 2610 2611 tmppages = ram_save_target_page(rs, pss, last_stage); 2612 if (tmppages < 0) { 2613 return tmppages; 2614 } 2615 2616 pages += tmppages; 2617 pss->page++; 2618 } while ((pss->page & (pagesize_bits - 1)) && 2619 offset_in_ramblock(pss->block, pss->page << TARGET_PAGE_BITS)); 2620 2621 /* The offset we leave with is the last one we looked at */ 2622 pss->page--; 2623 return pages; 2624 } 2625 2626 /** 2627 * ram_find_and_save_block: finds a dirty page and sends it to f 2628 * 2629 * Called within an RCU critical section. 2630 * 2631 * Returns the number of pages written where zero means no dirty pages, 2632 * or negative on error 2633 * 2634 * @rs: current RAM state 2635 * @last_stage: if we are at the completion stage 2636 * 2637 * On systems where host-page-size > target-page-size it will send all the 2638 * pages in a host page that are dirty. 2639 */ 2640 2641 static int ram_find_and_save_block(RAMState *rs, bool last_stage) 2642 { 2643 PageSearchStatus pss; 2644 int pages = 0; 2645 bool again, found; 2646 2647 /* No dirty page as there is zero RAM */ 2648 if (!ram_bytes_total()) { 2649 return pages; 2650 } 2651 2652 pss.block = rs->last_seen_block; 2653 pss.page = rs->last_page; 2654 pss.complete_round = false; 2655 2656 if (!pss.block) { 2657 pss.block = QLIST_FIRST_RCU(&ram_list.blocks); 2658 } 2659 2660 do { 2661 again = true; 2662 found = get_queued_page(rs, &pss); 2663 2664 if (!found) { 2665 /* priority queue empty, so just search for something dirty */ 2666 found = find_dirty_block(rs, &pss, &again); 2667 } 2668 2669 if (found) { 2670 pages = ram_save_host_page(rs, &pss, last_stage); 2671 } 2672 } while (!pages && again); 2673 2674 rs->last_seen_block = pss.block; 2675 rs->last_page = pss.page; 2676 2677 return pages; 2678 } 2679 2680 void acct_update_position(QEMUFile *f, size_t size, bool zero) 2681 { 2682 uint64_t pages = size / TARGET_PAGE_SIZE; 2683 2684 if (zero) { 2685 ram_counters.duplicate += pages; 2686 } else { 2687 ram_counters.normal += pages; 2688 ram_counters.transferred += size; 2689 qemu_update_position(f, size); 2690 } 2691 } 2692 2693 static uint64_t ram_bytes_total_common(bool count_ignored) 2694 { 2695 RAMBlock *block; 2696 uint64_t total = 0; 2697 2698 RCU_READ_LOCK_GUARD(); 2699 2700 if (count_ignored) { 2701 RAMBLOCK_FOREACH_MIGRATABLE(block) { 2702 total += block->used_length; 2703 } 2704 } else { 2705 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 2706 total += block->used_length; 2707 } 2708 } 2709 return total; 2710 } 2711 2712 uint64_t ram_bytes_total(void) 2713 { 2714 return ram_bytes_total_common(false); 2715 } 2716 2717 static void xbzrle_load_setup(void) 2718 { 2719 XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE); 2720 } 2721 2722 static void xbzrle_load_cleanup(void) 2723 { 2724 g_free(XBZRLE.decoded_buf); 2725 XBZRLE.decoded_buf = NULL; 2726 } 2727 2728 static void ram_state_cleanup(RAMState **rsp) 2729 { 2730 if (*rsp) { 2731 migration_page_queue_free(*rsp); 2732 qemu_mutex_destroy(&(*rsp)->bitmap_mutex); 2733 qemu_mutex_destroy(&(*rsp)->src_page_req_mutex); 2734 g_free(*rsp); 2735 *rsp = NULL; 2736 } 2737 } 2738 2739 static void xbzrle_cleanup(void) 2740 { 2741 XBZRLE_cache_lock(); 2742 if (XBZRLE.cache) { 2743 cache_fini(XBZRLE.cache); 2744 g_free(XBZRLE.encoded_buf); 2745 g_free(XBZRLE.current_buf); 2746 g_free(XBZRLE.zero_target_page); 2747 XBZRLE.cache = NULL; 2748 XBZRLE.encoded_buf = NULL; 2749 XBZRLE.current_buf = NULL; 2750 XBZRLE.zero_target_page = NULL; 2751 } 2752 XBZRLE_cache_unlock(); 2753 } 2754 2755 static void ram_save_cleanup(void *opaque) 2756 { 2757 RAMState **rsp = opaque; 2758 RAMBlock *block; 2759 2760 /* caller have hold iothread lock or is in a bh, so there is 2761 * no writing race against the migration bitmap 2762 */ 2763 memory_global_dirty_log_stop(); 2764 2765 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 2766 g_free(block->clear_bmap); 2767 block->clear_bmap = NULL; 2768 g_free(block->bmap); 2769 block->bmap = NULL; 2770 } 2771 2772 xbzrle_cleanup(); 2773 compress_threads_save_cleanup(); 2774 ram_state_cleanup(rsp); 2775 } 2776 2777 static void ram_state_reset(RAMState *rs) 2778 { 2779 rs->last_seen_block = NULL; 2780 rs->last_sent_block = NULL; 2781 rs->last_page = 0; 2782 rs->last_version = ram_list.version; 2783 rs->ram_bulk_stage = true; 2784 rs->fpo_enabled = false; 2785 } 2786 2787 #define MAX_WAIT 50 /* ms, half buffered_file limit */ 2788 2789 /* 2790 * 'expected' is the value you expect the bitmap mostly to be full 2791 * of; it won't bother printing lines that are all this value. 2792 * If 'todump' is null the migration bitmap is dumped. 2793 */ 2794 void ram_debug_dump_bitmap(unsigned long *todump, bool expected, 2795 unsigned long pages) 2796 { 2797 int64_t cur; 2798 int64_t linelen = 128; 2799 char linebuf[129]; 2800 2801 for (cur = 0; cur < pages; cur += linelen) { 2802 int64_t curb; 2803 bool found = false; 2804 /* 2805 * Last line; catch the case where the line length 2806 * is longer than remaining ram 2807 */ 2808 if (cur + linelen > pages) { 2809 linelen = pages - cur; 2810 } 2811 for (curb = 0; curb < linelen; curb++) { 2812 bool thisbit = test_bit(cur + curb, todump); 2813 linebuf[curb] = thisbit ? '1' : '.'; 2814 found = found || (thisbit != expected); 2815 } 2816 if (found) { 2817 linebuf[curb] = '\0'; 2818 fprintf(stderr, "0x%08" PRIx64 " : %s\n", cur, linebuf); 2819 } 2820 } 2821 } 2822 2823 /* **** functions for postcopy ***** */ 2824 2825 void ram_postcopy_migrated_memory_release(MigrationState *ms) 2826 { 2827 struct RAMBlock *block; 2828 2829 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 2830 unsigned long *bitmap = block->bmap; 2831 unsigned long range = block->used_length >> TARGET_PAGE_BITS; 2832 unsigned long run_start = find_next_zero_bit(bitmap, range, 0); 2833 2834 while (run_start < range) { 2835 unsigned long run_end = find_next_bit(bitmap, range, run_start + 1); 2836 ram_discard_range(block->idstr, run_start << TARGET_PAGE_BITS, 2837 (run_end - run_start) << TARGET_PAGE_BITS); 2838 run_start = find_next_zero_bit(bitmap, range, run_end + 1); 2839 } 2840 } 2841 } 2842 2843 /** 2844 * postcopy_send_discard_bm_ram: discard a RAMBlock 2845 * 2846 * Returns zero on success 2847 * 2848 * Callback from postcopy_each_ram_send_discard for each RAMBlock 2849 * 2850 * @ms: current migration state 2851 * @block: RAMBlock to discard 2852 */ 2853 static int postcopy_send_discard_bm_ram(MigrationState *ms, RAMBlock *block) 2854 { 2855 unsigned long end = block->used_length >> TARGET_PAGE_BITS; 2856 unsigned long current; 2857 unsigned long *bitmap = block->bmap; 2858 2859 for (current = 0; current < end; ) { 2860 unsigned long one = find_next_bit(bitmap, end, current); 2861 unsigned long zero, discard_length; 2862 2863 if (one >= end) { 2864 break; 2865 } 2866 2867 zero = find_next_zero_bit(bitmap, end, one + 1); 2868 2869 if (zero >= end) { 2870 discard_length = end - one; 2871 } else { 2872 discard_length = zero - one; 2873 } 2874 postcopy_discard_send_range(ms, one, discard_length); 2875 current = one + discard_length; 2876 } 2877 2878 return 0; 2879 } 2880 2881 /** 2882 * postcopy_each_ram_send_discard: discard all RAMBlocks 2883 * 2884 * Returns 0 for success or negative for error 2885 * 2886 * Utility for the outgoing postcopy code. 2887 * Calls postcopy_send_discard_bm_ram for each RAMBlock 2888 * passing it bitmap indexes and name. 2889 * (qemu_ram_foreach_block ends up passing unscaled lengths 2890 * which would mean postcopy code would have to deal with target page) 2891 * 2892 * @ms: current migration state 2893 */ 2894 static int postcopy_each_ram_send_discard(MigrationState *ms) 2895 { 2896 struct RAMBlock *block; 2897 int ret; 2898 2899 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 2900 postcopy_discard_send_init(ms, block->idstr); 2901 2902 /* 2903 * Postcopy sends chunks of bitmap over the wire, but it 2904 * just needs indexes at this point, avoids it having 2905 * target page specific code. 2906 */ 2907 ret = postcopy_send_discard_bm_ram(ms, block); 2908 postcopy_discard_send_finish(ms); 2909 if (ret) { 2910 return ret; 2911 } 2912 } 2913 2914 return 0; 2915 } 2916 2917 /** 2918 * postcopy_chunk_hostpages_pass: canonicalize bitmap in hostpages 2919 * 2920 * Helper for postcopy_chunk_hostpages; it's called twice to 2921 * canonicalize the two bitmaps, that are similar, but one is 2922 * inverted. 2923 * 2924 * Postcopy requires that all target pages in a hostpage are dirty or 2925 * clean, not a mix. This function canonicalizes the bitmaps. 2926 * 2927 * @ms: current migration state 2928 * @block: block that contains the page we want to canonicalize 2929 */ 2930 static void postcopy_chunk_hostpages_pass(MigrationState *ms, RAMBlock *block) 2931 { 2932 RAMState *rs = ram_state; 2933 unsigned long *bitmap = block->bmap; 2934 unsigned int host_ratio = block->page_size / TARGET_PAGE_SIZE; 2935 unsigned long pages = block->used_length >> TARGET_PAGE_BITS; 2936 unsigned long run_start; 2937 2938 if (block->page_size == TARGET_PAGE_SIZE) { 2939 /* Easy case - TPS==HPS for a non-huge page RAMBlock */ 2940 return; 2941 } 2942 2943 /* Find a dirty page */ 2944 run_start = find_next_bit(bitmap, pages, 0); 2945 2946 while (run_start < pages) { 2947 2948 /* 2949 * If the start of this run of pages is in the middle of a host 2950 * page, then we need to fixup this host page. 2951 */ 2952 if (QEMU_IS_ALIGNED(run_start, host_ratio)) { 2953 /* Find the end of this run */ 2954 run_start = find_next_zero_bit(bitmap, pages, run_start + 1); 2955 /* 2956 * If the end isn't at the start of a host page, then the 2957 * run doesn't finish at the end of a host page 2958 * and we need to discard. 2959 */ 2960 } 2961 2962 if (!QEMU_IS_ALIGNED(run_start, host_ratio)) { 2963 unsigned long page; 2964 unsigned long fixup_start_addr = QEMU_ALIGN_DOWN(run_start, 2965 host_ratio); 2966 run_start = QEMU_ALIGN_UP(run_start, host_ratio); 2967 2968 /* Clean up the bitmap */ 2969 for (page = fixup_start_addr; 2970 page < fixup_start_addr + host_ratio; page++) { 2971 /* 2972 * Remark them as dirty, updating the count for any pages 2973 * that weren't previously dirty. 2974 */ 2975 rs->migration_dirty_pages += !test_and_set_bit(page, bitmap); 2976 } 2977 } 2978 2979 /* Find the next dirty page for the next iteration */ 2980 run_start = find_next_bit(bitmap, pages, run_start); 2981 } 2982 } 2983 2984 /** 2985 * postcopy_chunk_hostpages: discard any partially sent host page 2986 * 2987 * Utility for the outgoing postcopy code. 2988 * 2989 * Discard any partially sent host-page size chunks, mark any partially 2990 * dirty host-page size chunks as all dirty. In this case the host-page 2991 * is the host-page for the particular RAMBlock, i.e. it might be a huge page 2992 * 2993 * Returns zero on success 2994 * 2995 * @ms: current migration state 2996 * @block: block we want to work with 2997 */ 2998 static int postcopy_chunk_hostpages(MigrationState *ms, RAMBlock *block) 2999 { 3000 postcopy_discard_send_init(ms, block->idstr); 3001 3002 /* 3003 * Ensure that all partially dirty host pages are made fully dirty. 3004 */ 3005 postcopy_chunk_hostpages_pass(ms, block); 3006 3007 postcopy_discard_send_finish(ms); 3008 return 0; 3009 } 3010 3011 /** 3012 * ram_postcopy_send_discard_bitmap: transmit the discard bitmap 3013 * 3014 * Returns zero on success 3015 * 3016 * Transmit the set of pages to be discarded after precopy to the target 3017 * these are pages that: 3018 * a) Have been previously transmitted but are now dirty again 3019 * b) Pages that have never been transmitted, this ensures that 3020 * any pages on the destination that have been mapped by background 3021 * tasks get discarded (transparent huge pages is the specific concern) 3022 * Hopefully this is pretty sparse 3023 * 3024 * @ms: current migration state 3025 */ 3026 int ram_postcopy_send_discard_bitmap(MigrationState *ms) 3027 { 3028 RAMState *rs = ram_state; 3029 RAMBlock *block; 3030 int ret; 3031 3032 RCU_READ_LOCK_GUARD(); 3033 3034 /* This should be our last sync, the src is now paused */ 3035 migration_bitmap_sync(rs); 3036 3037 /* Easiest way to make sure we don't resume in the middle of a host-page */ 3038 rs->last_seen_block = NULL; 3039 rs->last_sent_block = NULL; 3040 rs->last_page = 0; 3041 3042 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3043 /* Deal with TPS != HPS and huge pages */ 3044 ret = postcopy_chunk_hostpages(ms, block); 3045 if (ret) { 3046 return ret; 3047 } 3048 3049 #ifdef DEBUG_POSTCOPY 3050 ram_debug_dump_bitmap(block->bmap, true, 3051 block->used_length >> TARGET_PAGE_BITS); 3052 #endif 3053 } 3054 trace_ram_postcopy_send_discard_bitmap(); 3055 3056 ret = postcopy_each_ram_send_discard(ms); 3057 3058 return ret; 3059 } 3060 3061 /** 3062 * ram_discard_range: discard dirtied pages at the beginning of postcopy 3063 * 3064 * Returns zero on success 3065 * 3066 * @rbname: name of the RAMBlock of the request. NULL means the 3067 * same that last one. 3068 * @start: RAMBlock starting page 3069 * @length: RAMBlock size 3070 */ 3071 int ram_discard_range(const char *rbname, uint64_t start, size_t length) 3072 { 3073 int ret = -1; 3074 3075 trace_ram_discard_range(rbname, start, length); 3076 3077 RCU_READ_LOCK_GUARD(); 3078 RAMBlock *rb = qemu_ram_block_by_name(rbname); 3079 3080 if (!rb) { 3081 error_report("ram_discard_range: Failed to find block '%s'", rbname); 3082 goto err; 3083 } 3084 3085 /* 3086 * On source VM, we don't need to update the received bitmap since 3087 * we don't even have one. 3088 */ 3089 if (rb->receivedmap) { 3090 bitmap_clear(rb->receivedmap, start >> qemu_target_page_bits(), 3091 length >> qemu_target_page_bits()); 3092 } 3093 3094 ret = ram_block_discard_range(rb, start, length); 3095 3096 err: 3097 return ret; 3098 } 3099 3100 /* 3101 * For every allocation, we will try not to crash the VM if the 3102 * allocation failed. 3103 */ 3104 static int xbzrle_init(void) 3105 { 3106 Error *local_err = NULL; 3107 3108 if (!migrate_use_xbzrle()) { 3109 return 0; 3110 } 3111 3112 XBZRLE_cache_lock(); 3113 3114 XBZRLE.zero_target_page = g_try_malloc0(TARGET_PAGE_SIZE); 3115 if (!XBZRLE.zero_target_page) { 3116 error_report("%s: Error allocating zero page", __func__); 3117 goto err_out; 3118 } 3119 3120 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size(), 3121 TARGET_PAGE_SIZE, &local_err); 3122 if (!XBZRLE.cache) { 3123 error_report_err(local_err); 3124 goto free_zero_page; 3125 } 3126 3127 XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE); 3128 if (!XBZRLE.encoded_buf) { 3129 error_report("%s: Error allocating encoded_buf", __func__); 3130 goto free_cache; 3131 } 3132 3133 XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE); 3134 if (!XBZRLE.current_buf) { 3135 error_report("%s: Error allocating current_buf", __func__); 3136 goto free_encoded_buf; 3137 } 3138 3139 /* We are all good */ 3140 XBZRLE_cache_unlock(); 3141 return 0; 3142 3143 free_encoded_buf: 3144 g_free(XBZRLE.encoded_buf); 3145 XBZRLE.encoded_buf = NULL; 3146 free_cache: 3147 cache_fini(XBZRLE.cache); 3148 XBZRLE.cache = NULL; 3149 free_zero_page: 3150 g_free(XBZRLE.zero_target_page); 3151 XBZRLE.zero_target_page = NULL; 3152 err_out: 3153 XBZRLE_cache_unlock(); 3154 return -ENOMEM; 3155 } 3156 3157 static int ram_state_init(RAMState **rsp) 3158 { 3159 *rsp = g_try_new0(RAMState, 1); 3160 3161 if (!*rsp) { 3162 error_report("%s: Init ramstate fail", __func__); 3163 return -1; 3164 } 3165 3166 qemu_mutex_init(&(*rsp)->bitmap_mutex); 3167 qemu_mutex_init(&(*rsp)->src_page_req_mutex); 3168 QSIMPLEQ_INIT(&(*rsp)->src_page_requests); 3169 3170 /* 3171 * Count the total number of pages used by ram blocks not including any 3172 * gaps due to alignment or unplugs. 3173 * This must match with the initial values of dirty bitmap. 3174 */ 3175 (*rsp)->migration_dirty_pages = ram_bytes_total() >> TARGET_PAGE_BITS; 3176 ram_state_reset(*rsp); 3177 3178 return 0; 3179 } 3180 3181 static void ram_list_init_bitmaps(void) 3182 { 3183 MigrationState *ms = migrate_get_current(); 3184 RAMBlock *block; 3185 unsigned long pages; 3186 uint8_t shift; 3187 3188 /* Skip setting bitmap if there is no RAM */ 3189 if (ram_bytes_total()) { 3190 shift = ms->clear_bitmap_shift; 3191 if (shift > CLEAR_BITMAP_SHIFT_MAX) { 3192 error_report("clear_bitmap_shift (%u) too big, using " 3193 "max value (%u)", shift, CLEAR_BITMAP_SHIFT_MAX); 3194 shift = CLEAR_BITMAP_SHIFT_MAX; 3195 } else if (shift < CLEAR_BITMAP_SHIFT_MIN) { 3196 error_report("clear_bitmap_shift (%u) too small, using " 3197 "min value (%u)", shift, CLEAR_BITMAP_SHIFT_MIN); 3198 shift = CLEAR_BITMAP_SHIFT_MIN; 3199 } 3200 3201 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3202 pages = block->max_length >> TARGET_PAGE_BITS; 3203 /* 3204 * The initial dirty bitmap for migration must be set with all 3205 * ones to make sure we'll migrate every guest RAM page to 3206 * destination. 3207 * Here we set RAMBlock.bmap all to 1 because when rebegin a 3208 * new migration after a failed migration, ram_list. 3209 * dirty_memory[DIRTY_MEMORY_MIGRATION] don't include the whole 3210 * guest memory. 3211 */ 3212 block->bmap = bitmap_new(pages); 3213 bitmap_set(block->bmap, 0, pages); 3214 block->clear_bmap_shift = shift; 3215 block->clear_bmap = bitmap_new(clear_bmap_size(pages, shift)); 3216 } 3217 } 3218 } 3219 3220 static void ram_init_bitmaps(RAMState *rs) 3221 { 3222 /* For memory_global_dirty_log_start below. */ 3223 qemu_mutex_lock_iothread(); 3224 qemu_mutex_lock_ramlist(); 3225 3226 WITH_RCU_READ_LOCK_GUARD() { 3227 ram_list_init_bitmaps(); 3228 memory_global_dirty_log_start(); 3229 migration_bitmap_sync_precopy(rs); 3230 } 3231 qemu_mutex_unlock_ramlist(); 3232 qemu_mutex_unlock_iothread(); 3233 } 3234 3235 static int ram_init_all(RAMState **rsp) 3236 { 3237 if (ram_state_init(rsp)) { 3238 return -1; 3239 } 3240 3241 if (xbzrle_init()) { 3242 ram_state_cleanup(rsp); 3243 return -1; 3244 } 3245 3246 ram_init_bitmaps(*rsp); 3247 3248 return 0; 3249 } 3250 3251 static void ram_state_resume_prepare(RAMState *rs, QEMUFile *out) 3252 { 3253 RAMBlock *block; 3254 uint64_t pages = 0; 3255 3256 /* 3257 * Postcopy is not using xbzrle/compression, so no need for that. 3258 * Also, since source are already halted, we don't need to care 3259 * about dirty page logging as well. 3260 */ 3261 3262 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3263 pages += bitmap_count_one(block->bmap, 3264 block->used_length >> TARGET_PAGE_BITS); 3265 } 3266 3267 /* This may not be aligned with current bitmaps. Recalculate. */ 3268 rs->migration_dirty_pages = pages; 3269 3270 rs->last_seen_block = NULL; 3271 rs->last_sent_block = NULL; 3272 rs->last_page = 0; 3273 rs->last_version = ram_list.version; 3274 /* 3275 * Disable the bulk stage, otherwise we'll resend the whole RAM no 3276 * matter what we have sent. 3277 */ 3278 rs->ram_bulk_stage = false; 3279 3280 /* Update RAMState cache of output QEMUFile */ 3281 rs->f = out; 3282 3283 trace_ram_state_resume_prepare(pages); 3284 } 3285 3286 /* 3287 * This function clears bits of the free pages reported by the caller from the 3288 * migration dirty bitmap. @addr is the host address corresponding to the 3289 * start of the continuous guest free pages, and @len is the total bytes of 3290 * those pages. 3291 */ 3292 void qemu_guest_free_page_hint(void *addr, size_t len) 3293 { 3294 RAMBlock *block; 3295 ram_addr_t offset; 3296 size_t used_len, start, npages; 3297 MigrationState *s = migrate_get_current(); 3298 3299 /* This function is currently expected to be used during live migration */ 3300 if (!migration_is_setup_or_active(s->state)) { 3301 return; 3302 } 3303 3304 for (; len > 0; len -= used_len, addr += used_len) { 3305 block = qemu_ram_block_from_host(addr, false, &offset); 3306 if (unlikely(!block || offset >= block->used_length)) { 3307 /* 3308 * The implementation might not support RAMBlock resize during 3309 * live migration, but it could happen in theory with future 3310 * updates. So we add a check here to capture that case. 3311 */ 3312 error_report_once("%s unexpected error", __func__); 3313 return; 3314 } 3315 3316 if (len <= block->used_length - offset) { 3317 used_len = len; 3318 } else { 3319 used_len = block->used_length - offset; 3320 } 3321 3322 start = offset >> TARGET_PAGE_BITS; 3323 npages = used_len >> TARGET_PAGE_BITS; 3324 3325 qemu_mutex_lock(&ram_state->bitmap_mutex); 3326 ram_state->migration_dirty_pages -= 3327 bitmap_count_one_with_offset(block->bmap, start, npages); 3328 bitmap_clear(block->bmap, start, npages); 3329 qemu_mutex_unlock(&ram_state->bitmap_mutex); 3330 } 3331 } 3332 3333 /* 3334 * Each of ram_save_setup, ram_save_iterate and ram_save_complete has 3335 * long-running RCU critical section. When rcu-reclaims in the code 3336 * start to become numerous it will be necessary to reduce the 3337 * granularity of these critical sections. 3338 */ 3339 3340 /** 3341 * ram_save_setup: Setup RAM for migration 3342 * 3343 * Returns zero to indicate success and negative for error 3344 * 3345 * @f: QEMUFile where to send the data 3346 * @opaque: RAMState pointer 3347 */ 3348 static int ram_save_setup(QEMUFile *f, void *opaque) 3349 { 3350 RAMState **rsp = opaque; 3351 RAMBlock *block; 3352 3353 if (compress_threads_save_setup()) { 3354 return -1; 3355 } 3356 3357 /* migration has already setup the bitmap, reuse it. */ 3358 if (!migration_in_colo_state()) { 3359 if (ram_init_all(rsp) != 0) { 3360 compress_threads_save_cleanup(); 3361 return -1; 3362 } 3363 } 3364 (*rsp)->f = f; 3365 3366 WITH_RCU_READ_LOCK_GUARD() { 3367 qemu_put_be64(f, ram_bytes_total_common(true) | RAM_SAVE_FLAG_MEM_SIZE); 3368 3369 RAMBLOCK_FOREACH_MIGRATABLE(block) { 3370 qemu_put_byte(f, strlen(block->idstr)); 3371 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr)); 3372 qemu_put_be64(f, block->used_length); 3373 if (migrate_postcopy_ram() && block->page_size != 3374 qemu_host_page_size) { 3375 qemu_put_be64(f, block->page_size); 3376 } 3377 if (migrate_ignore_shared()) { 3378 qemu_put_be64(f, block->mr->addr); 3379 } 3380 } 3381 } 3382 3383 ram_control_before_iterate(f, RAM_CONTROL_SETUP); 3384 ram_control_after_iterate(f, RAM_CONTROL_SETUP); 3385 3386 multifd_send_sync_main(*rsp); 3387 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 3388 qemu_fflush(f); 3389 3390 return 0; 3391 } 3392 3393 /** 3394 * ram_save_iterate: iterative stage for migration 3395 * 3396 * Returns zero to indicate success and negative for error 3397 * 3398 * @f: QEMUFile where to send the data 3399 * @opaque: RAMState pointer 3400 */ 3401 static int ram_save_iterate(QEMUFile *f, void *opaque) 3402 { 3403 RAMState **temp = opaque; 3404 RAMState *rs = *temp; 3405 int ret; 3406 int i; 3407 int64_t t0; 3408 int done = 0; 3409 3410 if (blk_mig_bulk_active()) { 3411 /* Avoid transferring ram during bulk phase of block migration as 3412 * the bulk phase will usually take a long time and transferring 3413 * ram updates during that time is pointless. */ 3414 goto out; 3415 } 3416 3417 WITH_RCU_READ_LOCK_GUARD() { 3418 if (ram_list.version != rs->last_version) { 3419 ram_state_reset(rs); 3420 } 3421 3422 /* Read version before ram_list.blocks */ 3423 smp_rmb(); 3424 3425 ram_control_before_iterate(f, RAM_CONTROL_ROUND); 3426 3427 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 3428 i = 0; 3429 while ((ret = qemu_file_rate_limit(f)) == 0 || 3430 !QSIMPLEQ_EMPTY(&rs->src_page_requests)) { 3431 int pages; 3432 3433 if (qemu_file_get_error(f)) { 3434 break; 3435 } 3436 3437 pages = ram_find_and_save_block(rs, false); 3438 /* no more pages to sent */ 3439 if (pages == 0) { 3440 done = 1; 3441 break; 3442 } 3443 3444 if (pages < 0) { 3445 qemu_file_set_error(f, pages); 3446 break; 3447 } 3448 3449 rs->target_page_count += pages; 3450 3451 /* 3452 * we want to check in the 1st loop, just in case it was the 1st 3453 * time and we had to sync the dirty bitmap. 3454 * qemu_clock_get_ns() is a bit expensive, so we only check each 3455 * some iterations 3456 */ 3457 if ((i & 63) == 0) { 3458 uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) / 3459 1000000; 3460 if (t1 > MAX_WAIT) { 3461 trace_ram_save_iterate_big_wait(t1, i); 3462 break; 3463 } 3464 } 3465 i++; 3466 } 3467 } 3468 3469 /* 3470 * Must occur before EOS (or any QEMUFile operation) 3471 * because of RDMA protocol. 3472 */ 3473 ram_control_after_iterate(f, RAM_CONTROL_ROUND); 3474 3475 out: 3476 multifd_send_sync_main(rs); 3477 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 3478 qemu_fflush(f); 3479 ram_counters.transferred += 8; 3480 3481 ret = qemu_file_get_error(f); 3482 if (ret < 0) { 3483 return ret; 3484 } 3485 3486 return done; 3487 } 3488 3489 /** 3490 * ram_save_complete: function called to send the remaining amount of ram 3491 * 3492 * Returns zero to indicate success or negative on error 3493 * 3494 * Called with iothread lock 3495 * 3496 * @f: QEMUFile where to send the data 3497 * @opaque: RAMState pointer 3498 */ 3499 static int ram_save_complete(QEMUFile *f, void *opaque) 3500 { 3501 RAMState **temp = opaque; 3502 RAMState *rs = *temp; 3503 int ret = 0; 3504 3505 WITH_RCU_READ_LOCK_GUARD() { 3506 if (!migration_in_postcopy()) { 3507 migration_bitmap_sync_precopy(rs); 3508 } 3509 3510 ram_control_before_iterate(f, RAM_CONTROL_FINISH); 3511 3512 /* try transferring iterative blocks of memory */ 3513 3514 /* flush all remaining blocks regardless of rate limiting */ 3515 while (true) { 3516 int pages; 3517 3518 pages = ram_find_and_save_block(rs, !migration_in_colo_state()); 3519 /* no more blocks to sent */ 3520 if (pages == 0) { 3521 break; 3522 } 3523 if (pages < 0) { 3524 ret = pages; 3525 break; 3526 } 3527 } 3528 3529 flush_compressed_data(rs); 3530 ram_control_after_iterate(f, RAM_CONTROL_FINISH); 3531 } 3532 3533 multifd_send_sync_main(rs); 3534 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 3535 qemu_fflush(f); 3536 3537 return ret; 3538 } 3539 3540 static void ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size, 3541 uint64_t *res_precopy_only, 3542 uint64_t *res_compatible, 3543 uint64_t *res_postcopy_only) 3544 { 3545 RAMState **temp = opaque; 3546 RAMState *rs = *temp; 3547 uint64_t remaining_size; 3548 3549 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE; 3550 3551 if (!migration_in_postcopy() && 3552 remaining_size < max_size) { 3553 qemu_mutex_lock_iothread(); 3554 WITH_RCU_READ_LOCK_GUARD() { 3555 migration_bitmap_sync_precopy(rs); 3556 } 3557 qemu_mutex_unlock_iothread(); 3558 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE; 3559 } 3560 3561 if (migrate_postcopy_ram()) { 3562 /* We can do postcopy, and all the data is postcopiable */ 3563 *res_compatible += remaining_size; 3564 } else { 3565 *res_precopy_only += remaining_size; 3566 } 3567 } 3568 3569 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host) 3570 { 3571 unsigned int xh_len; 3572 int xh_flags; 3573 uint8_t *loaded_data; 3574 3575 /* extract RLE header */ 3576 xh_flags = qemu_get_byte(f); 3577 xh_len = qemu_get_be16(f); 3578 3579 if (xh_flags != ENCODING_FLAG_XBZRLE) { 3580 error_report("Failed to load XBZRLE page - wrong compression!"); 3581 return -1; 3582 } 3583 3584 if (xh_len > TARGET_PAGE_SIZE) { 3585 error_report("Failed to load XBZRLE page - len overflow!"); 3586 return -1; 3587 } 3588 loaded_data = XBZRLE.decoded_buf; 3589 /* load data and decode */ 3590 /* it can change loaded_data to point to an internal buffer */ 3591 qemu_get_buffer_in_place(f, &loaded_data, xh_len); 3592 3593 /* decode RLE */ 3594 if (xbzrle_decode_buffer(loaded_data, xh_len, host, 3595 TARGET_PAGE_SIZE) == -1) { 3596 error_report("Failed to load XBZRLE page - decode error!"); 3597 return -1; 3598 } 3599 3600 return 0; 3601 } 3602 3603 /** 3604 * ram_block_from_stream: read a RAMBlock id from the migration stream 3605 * 3606 * Must be called from within a rcu critical section. 3607 * 3608 * Returns a pointer from within the RCU-protected ram_list. 3609 * 3610 * @f: QEMUFile where to read the data from 3611 * @flags: Page flags (mostly to see if it's a continuation of previous block) 3612 */ 3613 static inline RAMBlock *ram_block_from_stream(QEMUFile *f, int flags) 3614 { 3615 static RAMBlock *block = NULL; 3616 char id[256]; 3617 uint8_t len; 3618 3619 if (flags & RAM_SAVE_FLAG_CONTINUE) { 3620 if (!block) { 3621 error_report("Ack, bad migration stream!"); 3622 return NULL; 3623 } 3624 return block; 3625 } 3626 3627 len = qemu_get_byte(f); 3628 qemu_get_buffer(f, (uint8_t *)id, len); 3629 id[len] = 0; 3630 3631 block = qemu_ram_block_by_name(id); 3632 if (!block) { 3633 error_report("Can't find block %s", id); 3634 return NULL; 3635 } 3636 3637 if (ramblock_is_ignored(block)) { 3638 error_report("block %s should not be migrated !", id); 3639 return NULL; 3640 } 3641 3642 return block; 3643 } 3644 3645 static inline void *host_from_ram_block_offset(RAMBlock *block, 3646 ram_addr_t offset) 3647 { 3648 if (!offset_in_ramblock(block, offset)) { 3649 return NULL; 3650 } 3651 3652 return block->host + offset; 3653 } 3654 3655 static inline void *colo_cache_from_block_offset(RAMBlock *block, 3656 ram_addr_t offset) 3657 { 3658 if (!offset_in_ramblock(block, offset)) { 3659 return NULL; 3660 } 3661 if (!block->colo_cache) { 3662 error_report("%s: colo_cache is NULL in block :%s", 3663 __func__, block->idstr); 3664 return NULL; 3665 } 3666 3667 /* 3668 * During colo checkpoint, we need bitmap of these migrated pages. 3669 * It help us to decide which pages in ram cache should be flushed 3670 * into VM's RAM later. 3671 */ 3672 if (!test_and_set_bit(offset >> TARGET_PAGE_BITS, block->bmap)) { 3673 ram_state->migration_dirty_pages++; 3674 } 3675 return block->colo_cache + offset; 3676 } 3677 3678 /** 3679 * ram_handle_compressed: handle the zero page case 3680 * 3681 * If a page (or a whole RDMA chunk) has been 3682 * determined to be zero, then zap it. 3683 * 3684 * @host: host address for the zero page 3685 * @ch: what the page is filled from. We only support zero 3686 * @size: size of the zero page 3687 */ 3688 void ram_handle_compressed(void *host, uint8_t ch, uint64_t size) 3689 { 3690 if (ch != 0 || !is_zero_range(host, size)) { 3691 memset(host, ch, size); 3692 } 3693 } 3694 3695 /* return the size after decompression, or negative value on error */ 3696 static int 3697 qemu_uncompress_data(z_stream *stream, uint8_t *dest, size_t dest_len, 3698 const uint8_t *source, size_t source_len) 3699 { 3700 int err; 3701 3702 err = inflateReset(stream); 3703 if (err != Z_OK) { 3704 return -1; 3705 } 3706 3707 stream->avail_in = source_len; 3708 stream->next_in = (uint8_t *)source; 3709 stream->avail_out = dest_len; 3710 stream->next_out = dest; 3711 3712 err = inflate(stream, Z_NO_FLUSH); 3713 if (err != Z_STREAM_END) { 3714 return -1; 3715 } 3716 3717 return stream->total_out; 3718 } 3719 3720 static void *do_data_decompress(void *opaque) 3721 { 3722 DecompressParam *param = opaque; 3723 unsigned long pagesize; 3724 uint8_t *des; 3725 int len, ret; 3726 3727 qemu_mutex_lock(¶m->mutex); 3728 while (!param->quit) { 3729 if (param->des) { 3730 des = param->des; 3731 len = param->len; 3732 param->des = 0; 3733 qemu_mutex_unlock(¶m->mutex); 3734 3735 pagesize = TARGET_PAGE_SIZE; 3736 3737 ret = qemu_uncompress_data(¶m->stream, des, pagesize, 3738 param->compbuf, len); 3739 if (ret < 0 && migrate_get_current()->decompress_error_check) { 3740 error_report("decompress data failed"); 3741 qemu_file_set_error(decomp_file, ret); 3742 } 3743 3744 qemu_mutex_lock(&decomp_done_lock); 3745 param->done = true; 3746 qemu_cond_signal(&decomp_done_cond); 3747 qemu_mutex_unlock(&decomp_done_lock); 3748 3749 qemu_mutex_lock(¶m->mutex); 3750 } else { 3751 qemu_cond_wait(¶m->cond, ¶m->mutex); 3752 } 3753 } 3754 qemu_mutex_unlock(¶m->mutex); 3755 3756 return NULL; 3757 } 3758 3759 static int wait_for_decompress_done(void) 3760 { 3761 int idx, thread_count; 3762 3763 if (!migrate_use_compression()) { 3764 return 0; 3765 } 3766 3767 thread_count = migrate_decompress_threads(); 3768 qemu_mutex_lock(&decomp_done_lock); 3769 for (idx = 0; idx < thread_count; idx++) { 3770 while (!decomp_param[idx].done) { 3771 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock); 3772 } 3773 } 3774 qemu_mutex_unlock(&decomp_done_lock); 3775 return qemu_file_get_error(decomp_file); 3776 } 3777 3778 static void compress_threads_load_cleanup(void) 3779 { 3780 int i, thread_count; 3781 3782 if (!migrate_use_compression()) { 3783 return; 3784 } 3785 thread_count = migrate_decompress_threads(); 3786 for (i = 0; i < thread_count; i++) { 3787 /* 3788 * we use it as a indicator which shows if the thread is 3789 * properly init'd or not 3790 */ 3791 if (!decomp_param[i].compbuf) { 3792 break; 3793 } 3794 3795 qemu_mutex_lock(&decomp_param[i].mutex); 3796 decomp_param[i].quit = true; 3797 qemu_cond_signal(&decomp_param[i].cond); 3798 qemu_mutex_unlock(&decomp_param[i].mutex); 3799 } 3800 for (i = 0; i < thread_count; i++) { 3801 if (!decomp_param[i].compbuf) { 3802 break; 3803 } 3804 3805 qemu_thread_join(decompress_threads + i); 3806 qemu_mutex_destroy(&decomp_param[i].mutex); 3807 qemu_cond_destroy(&decomp_param[i].cond); 3808 inflateEnd(&decomp_param[i].stream); 3809 g_free(decomp_param[i].compbuf); 3810 decomp_param[i].compbuf = NULL; 3811 } 3812 g_free(decompress_threads); 3813 g_free(decomp_param); 3814 decompress_threads = NULL; 3815 decomp_param = NULL; 3816 decomp_file = NULL; 3817 } 3818 3819 static int compress_threads_load_setup(QEMUFile *f) 3820 { 3821 int i, thread_count; 3822 3823 if (!migrate_use_compression()) { 3824 return 0; 3825 } 3826 3827 thread_count = migrate_decompress_threads(); 3828 decompress_threads = g_new0(QemuThread, thread_count); 3829 decomp_param = g_new0(DecompressParam, thread_count); 3830 qemu_mutex_init(&decomp_done_lock); 3831 qemu_cond_init(&decomp_done_cond); 3832 decomp_file = f; 3833 for (i = 0; i < thread_count; i++) { 3834 if (inflateInit(&decomp_param[i].stream) != Z_OK) { 3835 goto exit; 3836 } 3837 3838 decomp_param[i].compbuf = g_malloc0(compressBound(TARGET_PAGE_SIZE)); 3839 qemu_mutex_init(&decomp_param[i].mutex); 3840 qemu_cond_init(&decomp_param[i].cond); 3841 decomp_param[i].done = true; 3842 decomp_param[i].quit = false; 3843 qemu_thread_create(decompress_threads + i, "decompress", 3844 do_data_decompress, decomp_param + i, 3845 QEMU_THREAD_JOINABLE); 3846 } 3847 return 0; 3848 exit: 3849 compress_threads_load_cleanup(); 3850 return -1; 3851 } 3852 3853 static void decompress_data_with_multi_threads(QEMUFile *f, 3854 void *host, int len) 3855 { 3856 int idx, thread_count; 3857 3858 thread_count = migrate_decompress_threads(); 3859 qemu_mutex_lock(&decomp_done_lock); 3860 while (true) { 3861 for (idx = 0; idx < thread_count; idx++) { 3862 if (decomp_param[idx].done) { 3863 decomp_param[idx].done = false; 3864 qemu_mutex_lock(&decomp_param[idx].mutex); 3865 qemu_get_buffer(f, decomp_param[idx].compbuf, len); 3866 decomp_param[idx].des = host; 3867 decomp_param[idx].len = len; 3868 qemu_cond_signal(&decomp_param[idx].cond); 3869 qemu_mutex_unlock(&decomp_param[idx].mutex); 3870 break; 3871 } 3872 } 3873 if (idx < thread_count) { 3874 break; 3875 } else { 3876 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock); 3877 } 3878 } 3879 qemu_mutex_unlock(&decomp_done_lock); 3880 } 3881 3882 /* 3883 * colo cache: this is for secondary VM, we cache the whole 3884 * memory of the secondary VM, it is need to hold the global lock 3885 * to call this helper. 3886 */ 3887 int colo_init_ram_cache(void) 3888 { 3889 RAMBlock *block; 3890 3891 rcu_read_lock(); 3892 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3893 block->colo_cache = qemu_anon_ram_alloc(block->used_length, 3894 NULL, 3895 false); 3896 if (!block->colo_cache) { 3897 error_report("%s: Can't alloc memory for COLO cache of block %s," 3898 "size 0x" RAM_ADDR_FMT, __func__, block->idstr, 3899 block->used_length); 3900 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3901 if (block->colo_cache) { 3902 qemu_anon_ram_free(block->colo_cache, block->used_length); 3903 block->colo_cache = NULL; 3904 } 3905 } 3906 return -errno; 3907 } 3908 memcpy(block->colo_cache, block->host, block->used_length); 3909 } 3910 rcu_read_unlock(); 3911 /* 3912 * Record the dirty pages that sent by PVM, we use this dirty bitmap together 3913 * with to decide which page in cache should be flushed into SVM's RAM. Here 3914 * we use the same name 'ram_bitmap' as for migration. 3915 */ 3916 if (ram_bytes_total()) { 3917 RAMBlock *block; 3918 3919 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3920 unsigned long pages = block->max_length >> TARGET_PAGE_BITS; 3921 3922 block->bmap = bitmap_new(pages); 3923 bitmap_set(block->bmap, 0, pages); 3924 } 3925 } 3926 ram_state = g_new0(RAMState, 1); 3927 ram_state->migration_dirty_pages = 0; 3928 qemu_mutex_init(&ram_state->bitmap_mutex); 3929 memory_global_dirty_log_start(); 3930 3931 return 0; 3932 } 3933 3934 /* It is need to hold the global lock to call this helper */ 3935 void colo_release_ram_cache(void) 3936 { 3937 RAMBlock *block; 3938 3939 memory_global_dirty_log_stop(); 3940 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3941 g_free(block->bmap); 3942 block->bmap = NULL; 3943 } 3944 3945 WITH_RCU_READ_LOCK_GUARD() { 3946 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3947 if (block->colo_cache) { 3948 qemu_anon_ram_free(block->colo_cache, block->used_length); 3949 block->colo_cache = NULL; 3950 } 3951 } 3952 } 3953 qemu_mutex_destroy(&ram_state->bitmap_mutex); 3954 g_free(ram_state); 3955 ram_state = NULL; 3956 } 3957 3958 /** 3959 * ram_load_setup: Setup RAM for migration incoming side 3960 * 3961 * Returns zero to indicate success and negative for error 3962 * 3963 * @f: QEMUFile where to receive the data 3964 * @opaque: RAMState pointer 3965 */ 3966 static int ram_load_setup(QEMUFile *f, void *opaque) 3967 { 3968 if (compress_threads_load_setup(f)) { 3969 return -1; 3970 } 3971 3972 xbzrle_load_setup(); 3973 ramblock_recv_map_init(); 3974 3975 return 0; 3976 } 3977 3978 static int ram_load_cleanup(void *opaque) 3979 { 3980 RAMBlock *rb; 3981 3982 RAMBLOCK_FOREACH_NOT_IGNORED(rb) { 3983 qemu_ram_block_writeback(rb); 3984 } 3985 3986 xbzrle_load_cleanup(); 3987 compress_threads_load_cleanup(); 3988 3989 RAMBLOCK_FOREACH_NOT_IGNORED(rb) { 3990 g_free(rb->receivedmap); 3991 rb->receivedmap = NULL; 3992 } 3993 3994 return 0; 3995 } 3996 3997 /** 3998 * ram_postcopy_incoming_init: allocate postcopy data structures 3999 * 4000 * Returns 0 for success and negative if there was one error 4001 * 4002 * @mis: current migration incoming state 4003 * 4004 * Allocate data structures etc needed by incoming migration with 4005 * postcopy-ram. postcopy-ram's similarly names 4006 * postcopy_ram_incoming_init does the work. 4007 */ 4008 int ram_postcopy_incoming_init(MigrationIncomingState *mis) 4009 { 4010 return postcopy_ram_incoming_init(mis); 4011 } 4012 4013 /** 4014 * ram_load_postcopy: load a page in postcopy case 4015 * 4016 * Returns 0 for success or -errno in case of error 4017 * 4018 * Called in postcopy mode by ram_load(). 4019 * rcu_read_lock is taken prior to this being called. 4020 * 4021 * @f: QEMUFile where to send the data 4022 */ 4023 static int ram_load_postcopy(QEMUFile *f) 4024 { 4025 int flags = 0, ret = 0; 4026 bool place_needed = false; 4027 bool matches_target_page_size = false; 4028 MigrationIncomingState *mis = migration_incoming_get_current(); 4029 /* Temporary page that is later 'placed' */ 4030 void *postcopy_host_page = mis->postcopy_tmp_page; 4031 void *last_host = NULL; 4032 bool all_zero = false; 4033 4034 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) { 4035 ram_addr_t addr; 4036 void *host = NULL; 4037 void *page_buffer = NULL; 4038 void *place_source = NULL; 4039 RAMBlock *block = NULL; 4040 uint8_t ch; 4041 4042 addr = qemu_get_be64(f); 4043 4044 /* 4045 * If qemu file error, we should stop here, and then "addr" 4046 * may be invalid 4047 */ 4048 ret = qemu_file_get_error(f); 4049 if (ret) { 4050 break; 4051 } 4052 4053 flags = addr & ~TARGET_PAGE_MASK; 4054 addr &= TARGET_PAGE_MASK; 4055 4056 trace_ram_load_postcopy_loop((uint64_t)addr, flags); 4057 place_needed = false; 4058 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE)) { 4059 block = ram_block_from_stream(f, flags); 4060 4061 host = host_from_ram_block_offset(block, addr); 4062 if (!host) { 4063 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr); 4064 ret = -EINVAL; 4065 break; 4066 } 4067 matches_target_page_size = block->page_size == TARGET_PAGE_SIZE; 4068 /* 4069 * Postcopy requires that we place whole host pages atomically; 4070 * these may be huge pages for RAMBlocks that are backed by 4071 * hugetlbfs. 4072 * To make it atomic, the data is read into a temporary page 4073 * that's moved into place later. 4074 * The migration protocol uses, possibly smaller, target-pages 4075 * however the source ensures it always sends all the components 4076 * of a host page in order. 4077 */ 4078 page_buffer = postcopy_host_page + 4079 ((uintptr_t)host & (block->page_size - 1)); 4080 /* If all TP are zero then we can optimise the place */ 4081 if (!((uintptr_t)host & (block->page_size - 1))) { 4082 all_zero = true; 4083 } else { 4084 /* not the 1st TP within the HP */ 4085 if (host != (last_host + TARGET_PAGE_SIZE)) { 4086 error_report("Non-sequential target page %p/%p", 4087 host, last_host); 4088 ret = -EINVAL; 4089 break; 4090 } 4091 } 4092 4093 4094 /* 4095 * If it's the last part of a host page then we place the host 4096 * page 4097 */ 4098 place_needed = (((uintptr_t)host + TARGET_PAGE_SIZE) & 4099 (block->page_size - 1)) == 0; 4100 place_source = postcopy_host_page; 4101 } 4102 last_host = host; 4103 4104 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) { 4105 case RAM_SAVE_FLAG_ZERO: 4106 ch = qemu_get_byte(f); 4107 memset(page_buffer, ch, TARGET_PAGE_SIZE); 4108 if (ch) { 4109 all_zero = false; 4110 } 4111 break; 4112 4113 case RAM_SAVE_FLAG_PAGE: 4114 all_zero = false; 4115 if (!matches_target_page_size) { 4116 /* For huge pages, we always use temporary buffer */ 4117 qemu_get_buffer(f, page_buffer, TARGET_PAGE_SIZE); 4118 } else { 4119 /* 4120 * For small pages that matches target page size, we 4121 * avoid the qemu_file copy. Instead we directly use 4122 * the buffer of QEMUFile to place the page. Note: we 4123 * cannot do any QEMUFile operation before using that 4124 * buffer to make sure the buffer is valid when 4125 * placing the page. 4126 */ 4127 qemu_get_buffer_in_place(f, (uint8_t **)&place_source, 4128 TARGET_PAGE_SIZE); 4129 } 4130 break; 4131 case RAM_SAVE_FLAG_EOS: 4132 /* normal exit */ 4133 multifd_recv_sync_main(); 4134 break; 4135 default: 4136 error_report("Unknown combination of migration flags: %#x" 4137 " (postcopy mode)", flags); 4138 ret = -EINVAL; 4139 break; 4140 } 4141 4142 /* Detect for any possible file errors */ 4143 if (!ret && qemu_file_get_error(f)) { 4144 ret = qemu_file_get_error(f); 4145 } 4146 4147 if (!ret && place_needed) { 4148 /* This gets called at the last target page in the host page */ 4149 void *place_dest = host + TARGET_PAGE_SIZE - block->page_size; 4150 4151 if (all_zero) { 4152 ret = postcopy_place_page_zero(mis, place_dest, 4153 block); 4154 } else { 4155 ret = postcopy_place_page(mis, place_dest, 4156 place_source, block); 4157 } 4158 } 4159 } 4160 4161 return ret; 4162 } 4163 4164 static bool postcopy_is_advised(void) 4165 { 4166 PostcopyState ps = postcopy_state_get(); 4167 return ps >= POSTCOPY_INCOMING_ADVISE && ps < POSTCOPY_INCOMING_END; 4168 } 4169 4170 static bool postcopy_is_running(void) 4171 { 4172 PostcopyState ps = postcopy_state_get(); 4173 return ps >= POSTCOPY_INCOMING_LISTENING && ps < POSTCOPY_INCOMING_END; 4174 } 4175 4176 /* 4177 * Flush content of RAM cache into SVM's memory. 4178 * Only flush the pages that be dirtied by PVM or SVM or both. 4179 */ 4180 static void colo_flush_ram_cache(void) 4181 { 4182 RAMBlock *block = NULL; 4183 void *dst_host; 4184 void *src_host; 4185 unsigned long offset = 0; 4186 4187 memory_global_dirty_log_sync(); 4188 WITH_RCU_READ_LOCK_GUARD() { 4189 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 4190 ramblock_sync_dirty_bitmap(ram_state, block); 4191 } 4192 } 4193 4194 trace_colo_flush_ram_cache_begin(ram_state->migration_dirty_pages); 4195 WITH_RCU_READ_LOCK_GUARD() { 4196 block = QLIST_FIRST_RCU(&ram_list.blocks); 4197 4198 while (block) { 4199 offset = migration_bitmap_find_dirty(ram_state, block, offset); 4200 4201 if (offset << TARGET_PAGE_BITS >= block->used_length) { 4202 offset = 0; 4203 block = QLIST_NEXT_RCU(block, next); 4204 } else { 4205 migration_bitmap_clear_dirty(ram_state, block, offset); 4206 dst_host = block->host + (offset << TARGET_PAGE_BITS); 4207 src_host = block->colo_cache + (offset << TARGET_PAGE_BITS); 4208 memcpy(dst_host, src_host, TARGET_PAGE_SIZE); 4209 } 4210 } 4211 } 4212 trace_colo_flush_ram_cache_end(); 4213 } 4214 4215 /** 4216 * ram_load_precopy: load pages in precopy case 4217 * 4218 * Returns 0 for success or -errno in case of error 4219 * 4220 * Called in precopy mode by ram_load(). 4221 * rcu_read_lock is taken prior to this being called. 4222 * 4223 * @f: QEMUFile where to send the data 4224 */ 4225 static int ram_load_precopy(QEMUFile *f) 4226 { 4227 int flags = 0, ret = 0, invalid_flags = 0, len = 0; 4228 /* ADVISE is earlier, it shows the source has the postcopy capability on */ 4229 bool postcopy_advised = postcopy_is_advised(); 4230 if (!migrate_use_compression()) { 4231 invalid_flags |= RAM_SAVE_FLAG_COMPRESS_PAGE; 4232 } 4233 4234 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) { 4235 ram_addr_t addr, total_ram_bytes; 4236 void *host = NULL; 4237 uint8_t ch; 4238 4239 addr = qemu_get_be64(f); 4240 flags = addr & ~TARGET_PAGE_MASK; 4241 addr &= TARGET_PAGE_MASK; 4242 4243 if (flags & invalid_flags) { 4244 if (flags & invalid_flags & RAM_SAVE_FLAG_COMPRESS_PAGE) { 4245 error_report("Received an unexpected compressed page"); 4246 } 4247 4248 ret = -EINVAL; 4249 break; 4250 } 4251 4252 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE | 4253 RAM_SAVE_FLAG_COMPRESS_PAGE | RAM_SAVE_FLAG_XBZRLE)) { 4254 RAMBlock *block = ram_block_from_stream(f, flags); 4255 4256 /* 4257 * After going into COLO, we should load the Page into colo_cache. 4258 */ 4259 if (migration_incoming_in_colo_state()) { 4260 host = colo_cache_from_block_offset(block, addr); 4261 } else { 4262 host = host_from_ram_block_offset(block, addr); 4263 } 4264 if (!host) { 4265 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr); 4266 ret = -EINVAL; 4267 break; 4268 } 4269 4270 if (!migration_incoming_in_colo_state()) { 4271 ramblock_recv_bitmap_set(block, host); 4272 } 4273 4274 trace_ram_load_loop(block->idstr, (uint64_t)addr, flags, host); 4275 } 4276 4277 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) { 4278 case RAM_SAVE_FLAG_MEM_SIZE: 4279 /* Synchronize RAM block list */ 4280 total_ram_bytes = addr; 4281 while (!ret && total_ram_bytes) { 4282 RAMBlock *block; 4283 char id[256]; 4284 ram_addr_t length; 4285 4286 len = qemu_get_byte(f); 4287 qemu_get_buffer(f, (uint8_t *)id, len); 4288 id[len] = 0; 4289 length = qemu_get_be64(f); 4290 4291 block = qemu_ram_block_by_name(id); 4292 if (block && !qemu_ram_is_migratable(block)) { 4293 error_report("block %s should not be migrated !", id); 4294 ret = -EINVAL; 4295 } else if (block) { 4296 if (length != block->used_length) { 4297 Error *local_err = NULL; 4298 4299 ret = qemu_ram_resize(block, length, 4300 &local_err); 4301 if (local_err) { 4302 error_report_err(local_err); 4303 } 4304 } 4305 /* For postcopy we need to check hugepage sizes match */ 4306 if (postcopy_advised && 4307 block->page_size != qemu_host_page_size) { 4308 uint64_t remote_page_size = qemu_get_be64(f); 4309 if (remote_page_size != block->page_size) { 4310 error_report("Mismatched RAM page size %s " 4311 "(local) %zd != %" PRId64, 4312 id, block->page_size, 4313 remote_page_size); 4314 ret = -EINVAL; 4315 } 4316 } 4317 if (migrate_ignore_shared()) { 4318 hwaddr addr = qemu_get_be64(f); 4319 if (ramblock_is_ignored(block) && 4320 block->mr->addr != addr) { 4321 error_report("Mismatched GPAs for block %s " 4322 "%" PRId64 "!= %" PRId64, 4323 id, (uint64_t)addr, 4324 (uint64_t)block->mr->addr); 4325 ret = -EINVAL; 4326 } 4327 } 4328 ram_control_load_hook(f, RAM_CONTROL_BLOCK_REG, 4329 block->idstr); 4330 } else { 4331 error_report("Unknown ramblock \"%s\", cannot " 4332 "accept migration", id); 4333 ret = -EINVAL; 4334 } 4335 4336 total_ram_bytes -= length; 4337 } 4338 break; 4339 4340 case RAM_SAVE_FLAG_ZERO: 4341 ch = qemu_get_byte(f); 4342 ram_handle_compressed(host, ch, TARGET_PAGE_SIZE); 4343 break; 4344 4345 case RAM_SAVE_FLAG_PAGE: 4346 qemu_get_buffer(f, host, TARGET_PAGE_SIZE); 4347 break; 4348 4349 case RAM_SAVE_FLAG_COMPRESS_PAGE: 4350 len = qemu_get_be32(f); 4351 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) { 4352 error_report("Invalid compressed data length: %d", len); 4353 ret = -EINVAL; 4354 break; 4355 } 4356 decompress_data_with_multi_threads(f, host, len); 4357 break; 4358 4359 case RAM_SAVE_FLAG_XBZRLE: 4360 if (load_xbzrle(f, addr, host) < 0) { 4361 error_report("Failed to decompress XBZRLE page at " 4362 RAM_ADDR_FMT, addr); 4363 ret = -EINVAL; 4364 break; 4365 } 4366 break; 4367 case RAM_SAVE_FLAG_EOS: 4368 /* normal exit */ 4369 multifd_recv_sync_main(); 4370 break; 4371 default: 4372 if (flags & RAM_SAVE_FLAG_HOOK) { 4373 ram_control_load_hook(f, RAM_CONTROL_HOOK, NULL); 4374 } else { 4375 error_report("Unknown combination of migration flags: %#x", 4376 flags); 4377 ret = -EINVAL; 4378 } 4379 } 4380 if (!ret) { 4381 ret = qemu_file_get_error(f); 4382 } 4383 } 4384 4385 return ret; 4386 } 4387 4388 static int ram_load(QEMUFile *f, void *opaque, int version_id) 4389 { 4390 int ret = 0; 4391 static uint64_t seq_iter; 4392 /* 4393 * If system is running in postcopy mode, page inserts to host memory must 4394 * be atomic 4395 */ 4396 bool postcopy_running = postcopy_is_running(); 4397 4398 seq_iter++; 4399 4400 if (version_id != 4) { 4401 return -EINVAL; 4402 } 4403 4404 /* 4405 * This RCU critical section can be very long running. 4406 * When RCU reclaims in the code start to become numerous, 4407 * it will be necessary to reduce the granularity of this 4408 * critical section. 4409 */ 4410 WITH_RCU_READ_LOCK_GUARD() { 4411 if (postcopy_running) { 4412 ret = ram_load_postcopy(f); 4413 } else { 4414 ret = ram_load_precopy(f); 4415 } 4416 4417 ret |= wait_for_decompress_done(); 4418 } 4419 trace_ram_load_complete(ret, seq_iter); 4420 4421 if (!ret && migration_incoming_in_colo_state()) { 4422 colo_flush_ram_cache(); 4423 } 4424 return ret; 4425 } 4426 4427 static bool ram_has_postcopy(void *opaque) 4428 { 4429 RAMBlock *rb; 4430 RAMBLOCK_FOREACH_NOT_IGNORED(rb) { 4431 if (ramblock_is_pmem(rb)) { 4432 info_report("Block: %s, host: %p is a nvdimm memory, postcopy" 4433 "is not supported now!", rb->idstr, rb->host); 4434 return false; 4435 } 4436 } 4437 4438 return migrate_postcopy_ram(); 4439 } 4440 4441 /* Sync all the dirty bitmap with destination VM. */ 4442 static int ram_dirty_bitmap_sync_all(MigrationState *s, RAMState *rs) 4443 { 4444 RAMBlock *block; 4445 QEMUFile *file = s->to_dst_file; 4446 int ramblock_count = 0; 4447 4448 trace_ram_dirty_bitmap_sync_start(); 4449 4450 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 4451 qemu_savevm_send_recv_bitmap(file, block->idstr); 4452 trace_ram_dirty_bitmap_request(block->idstr); 4453 ramblock_count++; 4454 } 4455 4456 trace_ram_dirty_bitmap_sync_wait(); 4457 4458 /* Wait until all the ramblocks' dirty bitmap synced */ 4459 while (ramblock_count--) { 4460 qemu_sem_wait(&s->rp_state.rp_sem); 4461 } 4462 4463 trace_ram_dirty_bitmap_sync_complete(); 4464 4465 return 0; 4466 } 4467 4468 static void ram_dirty_bitmap_reload_notify(MigrationState *s) 4469 { 4470 qemu_sem_post(&s->rp_state.rp_sem); 4471 } 4472 4473 /* 4474 * Read the received bitmap, revert it as the initial dirty bitmap. 4475 * This is only used when the postcopy migration is paused but wants 4476 * to resume from a middle point. 4477 */ 4478 int ram_dirty_bitmap_reload(MigrationState *s, RAMBlock *block) 4479 { 4480 int ret = -EINVAL; 4481 QEMUFile *file = s->rp_state.from_dst_file; 4482 unsigned long *le_bitmap, nbits = block->used_length >> TARGET_PAGE_BITS; 4483 uint64_t local_size = DIV_ROUND_UP(nbits, 8); 4484 uint64_t size, end_mark; 4485 4486 trace_ram_dirty_bitmap_reload_begin(block->idstr); 4487 4488 if (s->state != MIGRATION_STATUS_POSTCOPY_RECOVER) { 4489 error_report("%s: incorrect state %s", __func__, 4490 MigrationStatus_str(s->state)); 4491 return -EINVAL; 4492 } 4493 4494 /* 4495 * Note: see comments in ramblock_recv_bitmap_send() on why we 4496 * need the endianess convertion, and the paddings. 4497 */ 4498 local_size = ROUND_UP(local_size, 8); 4499 4500 /* Add paddings */ 4501 le_bitmap = bitmap_new(nbits + BITS_PER_LONG); 4502 4503 size = qemu_get_be64(file); 4504 4505 /* The size of the bitmap should match with our ramblock */ 4506 if (size != local_size) { 4507 error_report("%s: ramblock '%s' bitmap size mismatch " 4508 "(0x%"PRIx64" != 0x%"PRIx64")", __func__, 4509 block->idstr, size, local_size); 4510 ret = -EINVAL; 4511 goto out; 4512 } 4513 4514 size = qemu_get_buffer(file, (uint8_t *)le_bitmap, local_size); 4515 end_mark = qemu_get_be64(file); 4516 4517 ret = qemu_file_get_error(file); 4518 if (ret || size != local_size) { 4519 error_report("%s: read bitmap failed for ramblock '%s': %d" 4520 " (size 0x%"PRIx64", got: 0x%"PRIx64")", 4521 __func__, block->idstr, ret, local_size, size); 4522 ret = -EIO; 4523 goto out; 4524 } 4525 4526 if (end_mark != RAMBLOCK_RECV_BITMAP_ENDING) { 4527 error_report("%s: ramblock '%s' end mark incorrect: 0x%"PRIu64, 4528 __func__, block->idstr, end_mark); 4529 ret = -EINVAL; 4530 goto out; 4531 } 4532 4533 /* 4534 * Endianess convertion. We are during postcopy (though paused). 4535 * The dirty bitmap won't change. We can directly modify it. 4536 */ 4537 bitmap_from_le(block->bmap, le_bitmap, nbits); 4538 4539 /* 4540 * What we received is "received bitmap". Revert it as the initial 4541 * dirty bitmap for this ramblock. 4542 */ 4543 bitmap_complement(block->bmap, block->bmap, nbits); 4544 4545 trace_ram_dirty_bitmap_reload_complete(block->idstr); 4546 4547 /* 4548 * We succeeded to sync bitmap for current ramblock. If this is 4549 * the last one to sync, we need to notify the main send thread. 4550 */ 4551 ram_dirty_bitmap_reload_notify(s); 4552 4553 ret = 0; 4554 out: 4555 g_free(le_bitmap); 4556 return ret; 4557 } 4558 4559 static int ram_resume_prepare(MigrationState *s, void *opaque) 4560 { 4561 RAMState *rs = *(RAMState **)opaque; 4562 int ret; 4563 4564 ret = ram_dirty_bitmap_sync_all(s, rs); 4565 if (ret) { 4566 return ret; 4567 } 4568 4569 ram_state_resume_prepare(rs, s->to_dst_file); 4570 4571 return 0; 4572 } 4573 4574 static SaveVMHandlers savevm_ram_handlers = { 4575 .save_setup = ram_save_setup, 4576 .save_live_iterate = ram_save_iterate, 4577 .save_live_complete_postcopy = ram_save_complete, 4578 .save_live_complete_precopy = ram_save_complete, 4579 .has_postcopy = ram_has_postcopy, 4580 .save_live_pending = ram_save_pending, 4581 .load_state = ram_load, 4582 .save_cleanup = ram_save_cleanup, 4583 .load_setup = ram_load_setup, 4584 .load_cleanup = ram_load_cleanup, 4585 .resume_prepare = ram_resume_prepare, 4586 }; 4587 4588 void ram_mig_init(void) 4589 { 4590 qemu_mutex_init(&XBZRLE.lock); 4591 register_savevm_live("ram", 0, 4, &savevm_ram_handlers, &ram_state); 4592 } 4593