1 /* 2 * QEMU System Emulator 3 * 4 * Copyright (c) 2003-2008 Fabrice Bellard 5 * Copyright (c) 2011-2015 Red Hat Inc 6 * 7 * Authors: 8 * Juan Quintela <quintela@redhat.com> 9 * 10 * Permission is hereby granted, free of charge, to any person obtaining a copy 11 * of this software and associated documentation files (the "Software"), to deal 12 * in the Software without restriction, including without limitation the rights 13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 14 * copies of the Software, and to permit persons to whom the Software is 15 * furnished to do so, subject to the following conditions: 16 * 17 * The above copyright notice and this permission notice shall be included in 18 * all copies or substantial portions of the Software. 19 * 20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 26 * THE SOFTWARE. 27 */ 28 29 #include "qemu/osdep.h" 30 #include "qemu/cutils.h" 31 #include "qemu/bitops.h" 32 #include "qemu/bitmap.h" 33 #include "qemu/madvise.h" 34 #include "qemu/main-loop.h" 35 #include "xbzrle.h" 36 #include "ram-compress.h" 37 #include "ram.h" 38 #include "migration.h" 39 #include "migration-stats.h" 40 #include "migration/register.h" 41 #include "migration/misc.h" 42 #include "qemu-file.h" 43 #include "postcopy-ram.h" 44 #include "page_cache.h" 45 #include "qemu/error-report.h" 46 #include "qapi/error.h" 47 #include "qapi/qapi-types-migration.h" 48 #include "qapi/qapi-events-migration.h" 49 #include "qapi/qapi-commands-migration.h" 50 #include "qapi/qmp/qerror.h" 51 #include "trace.h" 52 #include "exec/ram_addr.h" 53 #include "exec/target_page.h" 54 #include "qemu/rcu_queue.h" 55 #include "migration/colo.h" 56 #include "block.h" 57 #include "sysemu/cpu-throttle.h" 58 #include "savevm.h" 59 #include "qemu/iov.h" 60 #include "multifd.h" 61 #include "sysemu/runstate.h" 62 #include "rdma.h" 63 #include "options.h" 64 #include "sysemu/dirtylimit.h" 65 #include "sysemu/kvm.h" 66 67 #include "hw/boards.h" /* for machine_dump_guest_core() */ 68 69 #if defined(__linux__) 70 #include "qemu/userfaultfd.h" 71 #endif /* defined(__linux__) */ 72 73 /***********************************************************/ 74 /* ram save/restore */ 75 76 /* 77 * RAM_SAVE_FLAG_ZERO used to be named RAM_SAVE_FLAG_COMPRESS, it 78 * worked for pages that were filled with the same char. We switched 79 * it to only search for the zero value. And to avoid confusion with 80 * RAM_SAVE_FLAG_COMPRESS_PAGE just rename it. 81 */ 82 /* 83 * RAM_SAVE_FLAG_FULL was obsoleted in 2009, it can be reused now 84 */ 85 #define RAM_SAVE_FLAG_FULL 0x01 86 #define RAM_SAVE_FLAG_ZERO 0x02 87 #define RAM_SAVE_FLAG_MEM_SIZE 0x04 88 #define RAM_SAVE_FLAG_PAGE 0x08 89 #define RAM_SAVE_FLAG_EOS 0x10 90 #define RAM_SAVE_FLAG_CONTINUE 0x20 91 #define RAM_SAVE_FLAG_XBZRLE 0x40 92 /* 0x80 is reserved in rdma.h for RAM_SAVE_FLAG_HOOK */ 93 #define RAM_SAVE_FLAG_COMPRESS_PAGE 0x100 94 #define RAM_SAVE_FLAG_MULTIFD_FLUSH 0x200 95 /* We can't use any flag that is bigger than 0x200 */ 96 97 XBZRLECacheStats xbzrle_counters; 98 99 /* used by the search for pages to send */ 100 struct PageSearchStatus { 101 /* The migration channel used for a specific host page */ 102 QEMUFile *pss_channel; 103 /* Last block from where we have sent data */ 104 RAMBlock *last_sent_block; 105 /* Current block being searched */ 106 RAMBlock *block; 107 /* Current page to search from */ 108 unsigned long page; 109 /* Set once we wrap around */ 110 bool complete_round; 111 /* Whether we're sending a host page */ 112 bool host_page_sending; 113 /* The start/end of current host page. Invalid if host_page_sending==false */ 114 unsigned long host_page_start; 115 unsigned long host_page_end; 116 }; 117 typedef struct PageSearchStatus PageSearchStatus; 118 119 /* struct contains XBZRLE cache and a static page 120 used by the compression */ 121 static struct { 122 /* buffer used for XBZRLE encoding */ 123 uint8_t *encoded_buf; 124 /* buffer for storing page content */ 125 uint8_t *current_buf; 126 /* Cache for XBZRLE, Protected by lock. */ 127 PageCache *cache; 128 QemuMutex lock; 129 /* it will store a page full of zeros */ 130 uint8_t *zero_target_page; 131 /* buffer used for XBZRLE decoding */ 132 uint8_t *decoded_buf; 133 } XBZRLE; 134 135 static void XBZRLE_cache_lock(void) 136 { 137 if (migrate_xbzrle()) { 138 qemu_mutex_lock(&XBZRLE.lock); 139 } 140 } 141 142 static void XBZRLE_cache_unlock(void) 143 { 144 if (migrate_xbzrle()) { 145 qemu_mutex_unlock(&XBZRLE.lock); 146 } 147 } 148 149 /** 150 * xbzrle_cache_resize: resize the xbzrle cache 151 * 152 * This function is called from migrate_params_apply in main 153 * thread, possibly while a migration is in progress. A running 154 * migration may be using the cache and might finish during this call, 155 * hence changes to the cache are protected by XBZRLE.lock(). 156 * 157 * Returns 0 for success or -1 for error 158 * 159 * @new_size: new cache size 160 * @errp: set *errp if the check failed, with reason 161 */ 162 int xbzrle_cache_resize(uint64_t new_size, Error **errp) 163 { 164 PageCache *new_cache; 165 int64_t ret = 0; 166 167 /* Check for truncation */ 168 if (new_size != (size_t)new_size) { 169 error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cache size", 170 "exceeding address space"); 171 return -1; 172 } 173 174 if (new_size == migrate_xbzrle_cache_size()) { 175 /* nothing to do */ 176 return 0; 177 } 178 179 XBZRLE_cache_lock(); 180 181 if (XBZRLE.cache != NULL) { 182 new_cache = cache_init(new_size, TARGET_PAGE_SIZE, errp); 183 if (!new_cache) { 184 ret = -1; 185 goto out; 186 } 187 188 cache_fini(XBZRLE.cache); 189 XBZRLE.cache = new_cache; 190 } 191 out: 192 XBZRLE_cache_unlock(); 193 return ret; 194 } 195 196 static bool postcopy_preempt_active(void) 197 { 198 return migrate_postcopy_preempt() && migration_in_postcopy(); 199 } 200 201 bool migrate_ram_is_ignored(RAMBlock *block) 202 { 203 return !qemu_ram_is_migratable(block) || 204 (migrate_ignore_shared() && qemu_ram_is_shared(block) 205 && qemu_ram_is_named_file(block)); 206 } 207 208 #undef RAMBLOCK_FOREACH 209 210 int foreach_not_ignored_block(RAMBlockIterFunc func, void *opaque) 211 { 212 RAMBlock *block; 213 int ret = 0; 214 215 RCU_READ_LOCK_GUARD(); 216 217 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 218 ret = func(block, opaque); 219 if (ret) { 220 break; 221 } 222 } 223 return ret; 224 } 225 226 static void ramblock_recv_map_init(void) 227 { 228 RAMBlock *rb; 229 230 RAMBLOCK_FOREACH_NOT_IGNORED(rb) { 231 assert(!rb->receivedmap); 232 rb->receivedmap = bitmap_new(rb->max_length >> qemu_target_page_bits()); 233 } 234 } 235 236 int ramblock_recv_bitmap_test(RAMBlock *rb, void *host_addr) 237 { 238 return test_bit(ramblock_recv_bitmap_offset(host_addr, rb), 239 rb->receivedmap); 240 } 241 242 bool ramblock_recv_bitmap_test_byte_offset(RAMBlock *rb, uint64_t byte_offset) 243 { 244 return test_bit(byte_offset >> TARGET_PAGE_BITS, rb->receivedmap); 245 } 246 247 void ramblock_recv_bitmap_set(RAMBlock *rb, void *host_addr) 248 { 249 set_bit_atomic(ramblock_recv_bitmap_offset(host_addr, rb), rb->receivedmap); 250 } 251 252 void ramblock_recv_bitmap_set_range(RAMBlock *rb, void *host_addr, 253 size_t nr) 254 { 255 bitmap_set_atomic(rb->receivedmap, 256 ramblock_recv_bitmap_offset(host_addr, rb), 257 nr); 258 } 259 260 #define RAMBLOCK_RECV_BITMAP_ENDING (0x0123456789abcdefULL) 261 262 /* 263 * Format: bitmap_size (8 bytes) + whole_bitmap (N bytes). 264 * 265 * Returns >0 if success with sent bytes, or <0 if error. 266 */ 267 int64_t ramblock_recv_bitmap_send(QEMUFile *file, 268 const char *block_name) 269 { 270 RAMBlock *block = qemu_ram_block_by_name(block_name); 271 unsigned long *le_bitmap, nbits; 272 uint64_t size; 273 274 if (!block) { 275 error_report("%s: invalid block name: %s", __func__, block_name); 276 return -1; 277 } 278 279 nbits = block->postcopy_length >> TARGET_PAGE_BITS; 280 281 /* 282 * Make sure the tmp bitmap buffer is big enough, e.g., on 32bit 283 * machines we may need 4 more bytes for padding (see below 284 * comment). So extend it a bit before hand. 285 */ 286 le_bitmap = bitmap_new(nbits + BITS_PER_LONG); 287 288 /* 289 * Always use little endian when sending the bitmap. This is 290 * required that when source and destination VMs are not using the 291 * same endianness. (Note: big endian won't work.) 292 */ 293 bitmap_to_le(le_bitmap, block->receivedmap, nbits); 294 295 /* Size of the bitmap, in bytes */ 296 size = DIV_ROUND_UP(nbits, 8); 297 298 /* 299 * size is always aligned to 8 bytes for 64bit machines, but it 300 * may not be true for 32bit machines. We need this padding to 301 * make sure the migration can survive even between 32bit and 302 * 64bit machines. 303 */ 304 size = ROUND_UP(size, 8); 305 306 qemu_put_be64(file, size); 307 qemu_put_buffer(file, (const uint8_t *)le_bitmap, size); 308 g_free(le_bitmap); 309 /* 310 * Mark as an end, in case the middle part is screwed up due to 311 * some "mysterious" reason. 312 */ 313 qemu_put_be64(file, RAMBLOCK_RECV_BITMAP_ENDING); 314 int ret = qemu_fflush(file); 315 if (ret) { 316 return ret; 317 } 318 319 return size + sizeof(size); 320 } 321 322 /* 323 * An outstanding page request, on the source, having been received 324 * and queued 325 */ 326 struct RAMSrcPageRequest { 327 RAMBlock *rb; 328 hwaddr offset; 329 hwaddr len; 330 331 QSIMPLEQ_ENTRY(RAMSrcPageRequest) next_req; 332 }; 333 334 /* State of RAM for migration */ 335 struct RAMState { 336 /* 337 * PageSearchStatus structures for the channels when send pages. 338 * Protected by the bitmap_mutex. 339 */ 340 PageSearchStatus pss[RAM_CHANNEL_MAX]; 341 /* UFFD file descriptor, used in 'write-tracking' migration */ 342 int uffdio_fd; 343 /* total ram size in bytes */ 344 uint64_t ram_bytes_total; 345 /* Last block that we have visited searching for dirty pages */ 346 RAMBlock *last_seen_block; 347 /* Last dirty target page we have sent */ 348 ram_addr_t last_page; 349 /* last ram version we have seen */ 350 uint32_t last_version; 351 /* How many times we have dirty too many pages */ 352 int dirty_rate_high_cnt; 353 /* these variables are used for bitmap sync */ 354 /* last time we did a full bitmap_sync */ 355 int64_t time_last_bitmap_sync; 356 /* bytes transferred at start_time */ 357 uint64_t bytes_xfer_prev; 358 /* number of dirty pages since start_time */ 359 uint64_t num_dirty_pages_period; 360 /* xbzrle misses since the beginning of the period */ 361 uint64_t xbzrle_cache_miss_prev; 362 /* Amount of xbzrle pages since the beginning of the period */ 363 uint64_t xbzrle_pages_prev; 364 /* Amount of xbzrle encoded bytes since the beginning of the period */ 365 uint64_t xbzrle_bytes_prev; 366 /* Are we really using XBZRLE (e.g., after the first round). */ 367 bool xbzrle_started; 368 /* Are we on the last stage of migration */ 369 bool last_stage; 370 371 /* total handled target pages at the beginning of period */ 372 uint64_t target_page_count_prev; 373 /* total handled target pages since start */ 374 uint64_t target_page_count; 375 /* number of dirty bits in the bitmap */ 376 uint64_t migration_dirty_pages; 377 /* 378 * Protects: 379 * - dirty/clear bitmap 380 * - migration_dirty_pages 381 * - pss structures 382 */ 383 QemuMutex bitmap_mutex; 384 /* The RAMBlock used in the last src_page_requests */ 385 RAMBlock *last_req_rb; 386 /* Queue of outstanding page requests from the destination */ 387 QemuMutex src_page_req_mutex; 388 QSIMPLEQ_HEAD(, RAMSrcPageRequest) src_page_requests; 389 390 /* 391 * This is only used when postcopy is in recovery phase, to communicate 392 * between the migration thread and the return path thread on dirty 393 * bitmap synchronizations. This field is unused in other stages of 394 * RAM migration. 395 */ 396 unsigned int postcopy_bmap_sync_requested; 397 }; 398 typedef struct RAMState RAMState; 399 400 static RAMState *ram_state; 401 402 static NotifierWithReturnList precopy_notifier_list; 403 404 /* Whether postcopy has queued requests? */ 405 static bool postcopy_has_request(RAMState *rs) 406 { 407 return !QSIMPLEQ_EMPTY_ATOMIC(&rs->src_page_requests); 408 } 409 410 void precopy_infrastructure_init(void) 411 { 412 notifier_with_return_list_init(&precopy_notifier_list); 413 } 414 415 void precopy_add_notifier(NotifierWithReturn *n) 416 { 417 notifier_with_return_list_add(&precopy_notifier_list, n); 418 } 419 420 void precopy_remove_notifier(NotifierWithReturn *n) 421 { 422 notifier_with_return_remove(n); 423 } 424 425 int precopy_notify(PrecopyNotifyReason reason, Error **errp) 426 { 427 PrecopyNotifyData pnd; 428 pnd.reason = reason; 429 pnd.errp = errp; 430 431 return notifier_with_return_list_notify(&precopy_notifier_list, &pnd); 432 } 433 434 uint64_t ram_bytes_remaining(void) 435 { 436 return ram_state ? (ram_state->migration_dirty_pages * TARGET_PAGE_SIZE) : 437 0; 438 } 439 440 void ram_transferred_add(uint64_t bytes) 441 { 442 if (runstate_is_running()) { 443 stat64_add(&mig_stats.precopy_bytes, bytes); 444 } else if (migration_in_postcopy()) { 445 stat64_add(&mig_stats.postcopy_bytes, bytes); 446 } else { 447 stat64_add(&mig_stats.downtime_bytes, bytes); 448 } 449 } 450 451 struct MigrationOps { 452 int (*ram_save_target_page)(RAMState *rs, PageSearchStatus *pss); 453 }; 454 typedef struct MigrationOps MigrationOps; 455 456 MigrationOps *migration_ops; 457 458 static int ram_save_host_page_urgent(PageSearchStatus *pss); 459 460 /* NOTE: page is the PFN not real ram_addr_t. */ 461 static void pss_init(PageSearchStatus *pss, RAMBlock *rb, ram_addr_t page) 462 { 463 pss->block = rb; 464 pss->page = page; 465 pss->complete_round = false; 466 } 467 468 /* 469 * Check whether two PSSs are actively sending the same page. Return true 470 * if it is, false otherwise. 471 */ 472 static bool pss_overlap(PageSearchStatus *pss1, PageSearchStatus *pss2) 473 { 474 return pss1->host_page_sending && pss2->host_page_sending && 475 (pss1->host_page_start == pss2->host_page_start); 476 } 477 478 /** 479 * save_page_header: write page header to wire 480 * 481 * If this is the 1st block, it also writes the block identification 482 * 483 * Returns the number of bytes written 484 * 485 * @pss: current PSS channel status 486 * @block: block that contains the page we want to send 487 * @offset: offset inside the block for the page 488 * in the lower bits, it contains flags 489 */ 490 static size_t save_page_header(PageSearchStatus *pss, QEMUFile *f, 491 RAMBlock *block, ram_addr_t offset) 492 { 493 size_t size, len; 494 bool same_block = (block == pss->last_sent_block); 495 496 if (same_block) { 497 offset |= RAM_SAVE_FLAG_CONTINUE; 498 } 499 qemu_put_be64(f, offset); 500 size = 8; 501 502 if (!same_block) { 503 len = strlen(block->idstr); 504 qemu_put_byte(f, len); 505 qemu_put_buffer(f, (uint8_t *)block->idstr, len); 506 size += 1 + len; 507 pss->last_sent_block = block; 508 } 509 return size; 510 } 511 512 /** 513 * mig_throttle_guest_down: throttle down the guest 514 * 515 * Reduce amount of guest cpu execution to hopefully slow down memory 516 * writes. If guest dirty memory rate is reduced below the rate at 517 * which we can transfer pages to the destination then we should be 518 * able to complete migration. Some workloads dirty memory way too 519 * fast and will not effectively converge, even with auto-converge. 520 */ 521 static void mig_throttle_guest_down(uint64_t bytes_dirty_period, 522 uint64_t bytes_dirty_threshold) 523 { 524 uint64_t pct_initial = migrate_cpu_throttle_initial(); 525 uint64_t pct_increment = migrate_cpu_throttle_increment(); 526 bool pct_tailslow = migrate_cpu_throttle_tailslow(); 527 int pct_max = migrate_max_cpu_throttle(); 528 529 uint64_t throttle_now = cpu_throttle_get_percentage(); 530 uint64_t cpu_now, cpu_ideal, throttle_inc; 531 532 /* We have not started throttling yet. Let's start it. */ 533 if (!cpu_throttle_active()) { 534 cpu_throttle_set(pct_initial); 535 } else { 536 /* Throttling already on, just increase the rate */ 537 if (!pct_tailslow) { 538 throttle_inc = pct_increment; 539 } else { 540 /* Compute the ideal CPU percentage used by Guest, which may 541 * make the dirty rate match the dirty rate threshold. */ 542 cpu_now = 100 - throttle_now; 543 cpu_ideal = cpu_now * (bytes_dirty_threshold * 1.0 / 544 bytes_dirty_period); 545 throttle_inc = MIN(cpu_now - cpu_ideal, pct_increment); 546 } 547 cpu_throttle_set(MIN(throttle_now + throttle_inc, pct_max)); 548 } 549 } 550 551 void mig_throttle_counter_reset(void) 552 { 553 RAMState *rs = ram_state; 554 555 rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); 556 rs->num_dirty_pages_period = 0; 557 rs->bytes_xfer_prev = migration_transferred_bytes(); 558 } 559 560 /** 561 * xbzrle_cache_zero_page: insert a zero page in the XBZRLE cache 562 * 563 * @current_addr: address for the zero page 564 * 565 * Update the xbzrle cache to reflect a page that's been sent as all 0. 566 * The important thing is that a stale (not-yet-0'd) page be replaced 567 * by the new data. 568 * As a bonus, if the page wasn't in the cache it gets added so that 569 * when a small write is made into the 0'd page it gets XBZRLE sent. 570 */ 571 static void xbzrle_cache_zero_page(ram_addr_t current_addr) 572 { 573 /* We don't care if this fails to allocate a new cache page 574 * as long as it updated an old one */ 575 cache_insert(XBZRLE.cache, current_addr, XBZRLE.zero_target_page, 576 stat64_get(&mig_stats.dirty_sync_count)); 577 } 578 579 #define ENCODING_FLAG_XBZRLE 0x1 580 581 /** 582 * save_xbzrle_page: compress and send current page 583 * 584 * Returns: 1 means that we wrote the page 585 * 0 means that page is identical to the one already sent 586 * -1 means that xbzrle would be longer than normal 587 * 588 * @rs: current RAM state 589 * @pss: current PSS channel 590 * @current_data: pointer to the address of the page contents 591 * @current_addr: addr of the page 592 * @block: block that contains the page we want to send 593 * @offset: offset inside the block for the page 594 */ 595 static int save_xbzrle_page(RAMState *rs, PageSearchStatus *pss, 596 uint8_t **current_data, ram_addr_t current_addr, 597 RAMBlock *block, ram_addr_t offset) 598 { 599 int encoded_len = 0, bytes_xbzrle; 600 uint8_t *prev_cached_page; 601 QEMUFile *file = pss->pss_channel; 602 uint64_t generation = stat64_get(&mig_stats.dirty_sync_count); 603 604 if (!cache_is_cached(XBZRLE.cache, current_addr, generation)) { 605 xbzrle_counters.cache_miss++; 606 if (!rs->last_stage) { 607 if (cache_insert(XBZRLE.cache, current_addr, *current_data, 608 generation) == -1) { 609 return -1; 610 } else { 611 /* update *current_data when the page has been 612 inserted into cache */ 613 *current_data = get_cached_data(XBZRLE.cache, current_addr); 614 } 615 } 616 return -1; 617 } 618 619 /* 620 * Reaching here means the page has hit the xbzrle cache, no matter what 621 * encoding result it is (normal encoding, overflow or skipping the page), 622 * count the page as encoded. This is used to calculate the encoding rate. 623 * 624 * Example: 2 pages (8KB) being encoded, first page encoding generates 2KB, 625 * 2nd page turns out to be skipped (i.e. no new bytes written to the 626 * page), the overall encoding rate will be 8KB / 2KB = 4, which has the 627 * skipped page included. In this way, the encoding rate can tell if the 628 * guest page is good for xbzrle encoding. 629 */ 630 xbzrle_counters.pages++; 631 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr); 632 633 /* save current buffer into memory */ 634 memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE); 635 636 /* XBZRLE encoding (if there is no overflow) */ 637 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf, 638 TARGET_PAGE_SIZE, XBZRLE.encoded_buf, 639 TARGET_PAGE_SIZE); 640 641 /* 642 * Update the cache contents, so that it corresponds to the data 643 * sent, in all cases except where we skip the page. 644 */ 645 if (!rs->last_stage && encoded_len != 0) { 646 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE); 647 /* 648 * In the case where we couldn't compress, ensure that the caller 649 * sends the data from the cache, since the guest might have 650 * changed the RAM since we copied it. 651 */ 652 *current_data = prev_cached_page; 653 } 654 655 if (encoded_len == 0) { 656 trace_save_xbzrle_page_skipping(); 657 return 0; 658 } else if (encoded_len == -1) { 659 trace_save_xbzrle_page_overflow(); 660 xbzrle_counters.overflow++; 661 xbzrle_counters.bytes += TARGET_PAGE_SIZE; 662 return -1; 663 } 664 665 /* Send XBZRLE based compressed page */ 666 bytes_xbzrle = save_page_header(pss, pss->pss_channel, block, 667 offset | RAM_SAVE_FLAG_XBZRLE); 668 qemu_put_byte(file, ENCODING_FLAG_XBZRLE); 669 qemu_put_be16(file, encoded_len); 670 qemu_put_buffer(file, XBZRLE.encoded_buf, encoded_len); 671 bytes_xbzrle += encoded_len + 1 + 2; 672 /* 673 * Like compressed_size (please see update_compress_thread_counts), 674 * the xbzrle encoded bytes don't count the 8 byte header with 675 * RAM_SAVE_FLAG_CONTINUE. 676 */ 677 xbzrle_counters.bytes += bytes_xbzrle - 8; 678 ram_transferred_add(bytes_xbzrle); 679 680 return 1; 681 } 682 683 /** 684 * pss_find_next_dirty: find the next dirty page of current ramblock 685 * 686 * This function updates pss->page to point to the next dirty page index 687 * within the ramblock to migrate, or the end of ramblock when nothing 688 * found. Note that when pss->host_page_sending==true it means we're 689 * during sending a host page, so we won't look for dirty page that is 690 * outside the host page boundary. 691 * 692 * @pss: the current page search status 693 */ 694 static void pss_find_next_dirty(PageSearchStatus *pss) 695 { 696 RAMBlock *rb = pss->block; 697 unsigned long size = rb->used_length >> TARGET_PAGE_BITS; 698 unsigned long *bitmap = rb->bmap; 699 700 if (migrate_ram_is_ignored(rb)) { 701 /* Points directly to the end, so we know no dirty page */ 702 pss->page = size; 703 return; 704 } 705 706 /* 707 * If during sending a host page, only look for dirty pages within the 708 * current host page being send. 709 */ 710 if (pss->host_page_sending) { 711 assert(pss->host_page_end); 712 size = MIN(size, pss->host_page_end); 713 } 714 715 pss->page = find_next_bit(bitmap, size, pss->page); 716 } 717 718 static void migration_clear_memory_region_dirty_bitmap(RAMBlock *rb, 719 unsigned long page) 720 { 721 uint8_t shift; 722 hwaddr size, start; 723 724 if (!rb->clear_bmap || !clear_bmap_test_and_clear(rb, page)) { 725 return; 726 } 727 728 shift = rb->clear_bmap_shift; 729 /* 730 * CLEAR_BITMAP_SHIFT_MIN should always guarantee this... this 731 * can make things easier sometimes since then start address 732 * of the small chunk will always be 64 pages aligned so the 733 * bitmap will always be aligned to unsigned long. We should 734 * even be able to remove this restriction but I'm simply 735 * keeping it. 736 */ 737 assert(shift >= 6); 738 739 size = 1ULL << (TARGET_PAGE_BITS + shift); 740 start = QEMU_ALIGN_DOWN((ram_addr_t)page << TARGET_PAGE_BITS, size); 741 trace_migration_bitmap_clear_dirty(rb->idstr, start, size, page); 742 memory_region_clear_dirty_bitmap(rb->mr, start, size); 743 } 744 745 static void 746 migration_clear_memory_region_dirty_bitmap_range(RAMBlock *rb, 747 unsigned long start, 748 unsigned long npages) 749 { 750 unsigned long i, chunk_pages = 1UL << rb->clear_bmap_shift; 751 unsigned long chunk_start = QEMU_ALIGN_DOWN(start, chunk_pages); 752 unsigned long chunk_end = QEMU_ALIGN_UP(start + npages, chunk_pages); 753 754 /* 755 * Clear pages from start to start + npages - 1, so the end boundary is 756 * exclusive. 757 */ 758 for (i = chunk_start; i < chunk_end; i += chunk_pages) { 759 migration_clear_memory_region_dirty_bitmap(rb, i); 760 } 761 } 762 763 /* 764 * colo_bitmap_find_diry:find contiguous dirty pages from start 765 * 766 * Returns the page offset within memory region of the start of the contiguout 767 * dirty page 768 * 769 * @rs: current RAM state 770 * @rb: RAMBlock where to search for dirty pages 771 * @start: page where we start the search 772 * @num: the number of contiguous dirty pages 773 */ 774 static inline 775 unsigned long colo_bitmap_find_dirty(RAMState *rs, RAMBlock *rb, 776 unsigned long start, unsigned long *num) 777 { 778 unsigned long size = rb->used_length >> TARGET_PAGE_BITS; 779 unsigned long *bitmap = rb->bmap; 780 unsigned long first, next; 781 782 *num = 0; 783 784 if (migrate_ram_is_ignored(rb)) { 785 return size; 786 } 787 788 first = find_next_bit(bitmap, size, start); 789 if (first >= size) { 790 return first; 791 } 792 next = find_next_zero_bit(bitmap, size, first + 1); 793 assert(next >= first); 794 *num = next - first; 795 return first; 796 } 797 798 static inline bool migration_bitmap_clear_dirty(RAMState *rs, 799 RAMBlock *rb, 800 unsigned long page) 801 { 802 bool ret; 803 804 /* 805 * Clear dirty bitmap if needed. This _must_ be called before we 806 * send any of the page in the chunk because we need to make sure 807 * we can capture further page content changes when we sync dirty 808 * log the next time. So as long as we are going to send any of 809 * the page in the chunk we clear the remote dirty bitmap for all. 810 * Clearing it earlier won't be a problem, but too late will. 811 */ 812 migration_clear_memory_region_dirty_bitmap(rb, page); 813 814 ret = test_and_clear_bit(page, rb->bmap); 815 if (ret) { 816 rs->migration_dirty_pages--; 817 } 818 819 return ret; 820 } 821 822 static void dirty_bitmap_clear_section(MemoryRegionSection *section, 823 void *opaque) 824 { 825 const hwaddr offset = section->offset_within_region; 826 const hwaddr size = int128_get64(section->size); 827 const unsigned long start = offset >> TARGET_PAGE_BITS; 828 const unsigned long npages = size >> TARGET_PAGE_BITS; 829 RAMBlock *rb = section->mr->ram_block; 830 uint64_t *cleared_bits = opaque; 831 832 /* 833 * We don't grab ram_state->bitmap_mutex because we expect to run 834 * only when starting migration or during postcopy recovery where 835 * we don't have concurrent access. 836 */ 837 if (!migration_in_postcopy() && !migrate_background_snapshot()) { 838 migration_clear_memory_region_dirty_bitmap_range(rb, start, npages); 839 } 840 *cleared_bits += bitmap_count_one_with_offset(rb->bmap, start, npages); 841 bitmap_clear(rb->bmap, start, npages); 842 } 843 844 /* 845 * Exclude all dirty pages from migration that fall into a discarded range as 846 * managed by a RamDiscardManager responsible for the mapped memory region of 847 * the RAMBlock. Clear the corresponding bits in the dirty bitmaps. 848 * 849 * Discarded pages ("logically unplugged") have undefined content and must 850 * not get migrated, because even reading these pages for migration might 851 * result in undesired behavior. 852 * 853 * Returns the number of cleared bits in the RAMBlock dirty bitmap. 854 * 855 * Note: The result is only stable while migrating (precopy/postcopy). 856 */ 857 static uint64_t ramblock_dirty_bitmap_clear_discarded_pages(RAMBlock *rb) 858 { 859 uint64_t cleared_bits = 0; 860 861 if (rb->mr && rb->bmap && memory_region_has_ram_discard_manager(rb->mr)) { 862 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr); 863 MemoryRegionSection section = { 864 .mr = rb->mr, 865 .offset_within_region = 0, 866 .size = int128_make64(qemu_ram_get_used_length(rb)), 867 }; 868 869 ram_discard_manager_replay_discarded(rdm, §ion, 870 dirty_bitmap_clear_section, 871 &cleared_bits); 872 } 873 return cleared_bits; 874 } 875 876 /* 877 * Check if a host-page aligned page falls into a discarded range as managed by 878 * a RamDiscardManager responsible for the mapped memory region of the RAMBlock. 879 * 880 * Note: The result is only stable while migrating (precopy/postcopy). 881 */ 882 bool ramblock_page_is_discarded(RAMBlock *rb, ram_addr_t start) 883 { 884 if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) { 885 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr); 886 MemoryRegionSection section = { 887 .mr = rb->mr, 888 .offset_within_region = start, 889 .size = int128_make64(qemu_ram_pagesize(rb)), 890 }; 891 892 return !ram_discard_manager_is_populated(rdm, §ion); 893 } 894 return false; 895 } 896 897 /* Called with RCU critical section */ 898 static void ramblock_sync_dirty_bitmap(RAMState *rs, RAMBlock *rb) 899 { 900 uint64_t new_dirty_pages = 901 cpu_physical_memory_sync_dirty_bitmap(rb, 0, rb->used_length); 902 903 rs->migration_dirty_pages += new_dirty_pages; 904 rs->num_dirty_pages_period += new_dirty_pages; 905 } 906 907 /** 908 * ram_pagesize_summary: calculate all the pagesizes of a VM 909 * 910 * Returns a summary bitmap of the page sizes of all RAMBlocks 911 * 912 * For VMs with just normal pages this is equivalent to the host page 913 * size. If it's got some huge pages then it's the OR of all the 914 * different page sizes. 915 */ 916 uint64_t ram_pagesize_summary(void) 917 { 918 RAMBlock *block; 919 uint64_t summary = 0; 920 921 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 922 summary |= block->page_size; 923 } 924 925 return summary; 926 } 927 928 uint64_t ram_get_total_transferred_pages(void) 929 { 930 return stat64_get(&mig_stats.normal_pages) + 931 stat64_get(&mig_stats.zero_pages) + 932 compress_ram_pages() + xbzrle_counters.pages; 933 } 934 935 static void migration_update_rates(RAMState *rs, int64_t end_time) 936 { 937 uint64_t page_count = rs->target_page_count - rs->target_page_count_prev; 938 939 /* calculate period counters */ 940 stat64_set(&mig_stats.dirty_pages_rate, 941 rs->num_dirty_pages_period * 1000 / 942 (end_time - rs->time_last_bitmap_sync)); 943 944 if (!page_count) { 945 return; 946 } 947 948 if (migrate_xbzrle()) { 949 double encoded_size, unencoded_size; 950 951 xbzrle_counters.cache_miss_rate = (double)(xbzrle_counters.cache_miss - 952 rs->xbzrle_cache_miss_prev) / page_count; 953 rs->xbzrle_cache_miss_prev = xbzrle_counters.cache_miss; 954 unencoded_size = (xbzrle_counters.pages - rs->xbzrle_pages_prev) * 955 TARGET_PAGE_SIZE; 956 encoded_size = xbzrle_counters.bytes - rs->xbzrle_bytes_prev; 957 if (xbzrle_counters.pages == rs->xbzrle_pages_prev || !encoded_size) { 958 xbzrle_counters.encoding_rate = 0; 959 } else { 960 xbzrle_counters.encoding_rate = unencoded_size / encoded_size; 961 } 962 rs->xbzrle_pages_prev = xbzrle_counters.pages; 963 rs->xbzrle_bytes_prev = xbzrle_counters.bytes; 964 } 965 compress_update_rates(page_count); 966 } 967 968 /* 969 * Enable dirty-limit to throttle down the guest 970 */ 971 static void migration_dirty_limit_guest(void) 972 { 973 /* 974 * dirty page rate quota for all vCPUs fetched from 975 * migration parameter 'vcpu_dirty_limit' 976 */ 977 static int64_t quota_dirtyrate; 978 MigrationState *s = migrate_get_current(); 979 980 /* 981 * If dirty limit already enabled and migration parameter 982 * vcpu-dirty-limit untouched. 983 */ 984 if (dirtylimit_in_service() && 985 quota_dirtyrate == s->parameters.vcpu_dirty_limit) { 986 return; 987 } 988 989 quota_dirtyrate = s->parameters.vcpu_dirty_limit; 990 991 /* 992 * Set all vCPU a quota dirtyrate, note that the second 993 * parameter will be ignored if setting all vCPU for the vm 994 */ 995 qmp_set_vcpu_dirty_limit(false, -1, quota_dirtyrate, NULL); 996 trace_migration_dirty_limit_guest(quota_dirtyrate); 997 } 998 999 static void migration_trigger_throttle(RAMState *rs) 1000 { 1001 uint64_t threshold = migrate_throttle_trigger_threshold(); 1002 uint64_t bytes_xfer_period = 1003 migration_transferred_bytes() - rs->bytes_xfer_prev; 1004 uint64_t bytes_dirty_period = rs->num_dirty_pages_period * TARGET_PAGE_SIZE; 1005 uint64_t bytes_dirty_threshold = bytes_xfer_period * threshold / 100; 1006 1007 /* During block migration the auto-converge logic incorrectly detects 1008 * that ram migration makes no progress. Avoid this by disabling the 1009 * throttling logic during the bulk phase of block migration. */ 1010 if (blk_mig_bulk_active()) { 1011 return; 1012 } 1013 1014 /* 1015 * The following detection logic can be refined later. For now: 1016 * Check to see if the ratio between dirtied bytes and the approx. 1017 * amount of bytes that just got transferred since the last time 1018 * we were in this routine reaches the threshold. If that happens 1019 * twice, start or increase throttling. 1020 */ 1021 if ((bytes_dirty_period > bytes_dirty_threshold) && 1022 (++rs->dirty_rate_high_cnt >= 2)) { 1023 rs->dirty_rate_high_cnt = 0; 1024 if (migrate_auto_converge()) { 1025 trace_migration_throttle(); 1026 mig_throttle_guest_down(bytes_dirty_period, 1027 bytes_dirty_threshold); 1028 } else if (migrate_dirty_limit()) { 1029 migration_dirty_limit_guest(); 1030 } 1031 } 1032 } 1033 1034 static void migration_bitmap_sync(RAMState *rs, bool last_stage) 1035 { 1036 RAMBlock *block; 1037 int64_t end_time; 1038 1039 stat64_add(&mig_stats.dirty_sync_count, 1); 1040 1041 if (!rs->time_last_bitmap_sync) { 1042 rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); 1043 } 1044 1045 trace_migration_bitmap_sync_start(); 1046 memory_global_dirty_log_sync(last_stage); 1047 1048 qemu_mutex_lock(&rs->bitmap_mutex); 1049 WITH_RCU_READ_LOCK_GUARD() { 1050 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 1051 ramblock_sync_dirty_bitmap(rs, block); 1052 } 1053 stat64_set(&mig_stats.dirty_bytes_last_sync, ram_bytes_remaining()); 1054 } 1055 qemu_mutex_unlock(&rs->bitmap_mutex); 1056 1057 memory_global_after_dirty_log_sync(); 1058 trace_migration_bitmap_sync_end(rs->num_dirty_pages_period); 1059 1060 end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); 1061 1062 /* more than 1 second = 1000 millisecons */ 1063 if (end_time > rs->time_last_bitmap_sync + 1000) { 1064 migration_trigger_throttle(rs); 1065 1066 migration_update_rates(rs, end_time); 1067 1068 rs->target_page_count_prev = rs->target_page_count; 1069 1070 /* reset period counters */ 1071 rs->time_last_bitmap_sync = end_time; 1072 rs->num_dirty_pages_period = 0; 1073 rs->bytes_xfer_prev = migration_transferred_bytes(); 1074 } 1075 if (migrate_events()) { 1076 uint64_t generation = stat64_get(&mig_stats.dirty_sync_count); 1077 qapi_event_send_migration_pass(generation); 1078 } 1079 } 1080 1081 static void migration_bitmap_sync_precopy(RAMState *rs, bool last_stage) 1082 { 1083 Error *local_err = NULL; 1084 1085 /* 1086 * The current notifier usage is just an optimization to migration, so we 1087 * don't stop the normal migration process in the error case. 1088 */ 1089 if (precopy_notify(PRECOPY_NOTIFY_BEFORE_BITMAP_SYNC, &local_err)) { 1090 error_report_err(local_err); 1091 local_err = NULL; 1092 } 1093 1094 migration_bitmap_sync(rs, last_stage); 1095 1096 if (precopy_notify(PRECOPY_NOTIFY_AFTER_BITMAP_SYNC, &local_err)) { 1097 error_report_err(local_err); 1098 } 1099 } 1100 1101 void ram_release_page(const char *rbname, uint64_t offset) 1102 { 1103 if (!migrate_release_ram() || !migration_in_postcopy()) { 1104 return; 1105 } 1106 1107 ram_discard_range(rbname, offset, TARGET_PAGE_SIZE); 1108 } 1109 1110 /** 1111 * save_zero_page: send the zero page to the stream 1112 * 1113 * Returns the number of pages written. 1114 * 1115 * @rs: current RAM state 1116 * @pss: current PSS channel 1117 * @offset: offset inside the block for the page 1118 */ 1119 static int save_zero_page(RAMState *rs, PageSearchStatus *pss, 1120 ram_addr_t offset) 1121 { 1122 uint8_t *p = pss->block->host + offset; 1123 QEMUFile *file = pss->pss_channel; 1124 int len = 0; 1125 1126 if (!buffer_is_zero(p, TARGET_PAGE_SIZE)) { 1127 return 0; 1128 } 1129 1130 len += save_page_header(pss, file, pss->block, offset | RAM_SAVE_FLAG_ZERO); 1131 qemu_put_byte(file, 0); 1132 len += 1; 1133 ram_release_page(pss->block->idstr, offset); 1134 1135 stat64_add(&mig_stats.zero_pages, 1); 1136 ram_transferred_add(len); 1137 1138 /* 1139 * Must let xbzrle know, otherwise a previous (now 0'd) cached 1140 * page would be stale. 1141 */ 1142 if (rs->xbzrle_started) { 1143 XBZRLE_cache_lock(); 1144 xbzrle_cache_zero_page(pss->block->offset + offset); 1145 XBZRLE_cache_unlock(); 1146 } 1147 1148 return len; 1149 } 1150 1151 /* 1152 * @pages: the number of pages written by the control path, 1153 * < 0 - error 1154 * > 0 - number of pages written 1155 * 1156 * Return true if the pages has been saved, otherwise false is returned. 1157 */ 1158 static bool control_save_page(PageSearchStatus *pss, 1159 ram_addr_t offset, int *pages) 1160 { 1161 int ret; 1162 1163 ret = rdma_control_save_page(pss->pss_channel, pss->block->offset, offset, 1164 TARGET_PAGE_SIZE); 1165 if (ret == RAM_SAVE_CONTROL_NOT_SUPP) { 1166 return false; 1167 } 1168 1169 if (ret == RAM_SAVE_CONTROL_DELAYED) { 1170 *pages = 1; 1171 return true; 1172 } 1173 *pages = ret; 1174 return true; 1175 } 1176 1177 /* 1178 * directly send the page to the stream 1179 * 1180 * Returns the number of pages written. 1181 * 1182 * @pss: current PSS channel 1183 * @block: block that contains the page we want to send 1184 * @offset: offset inside the block for the page 1185 * @buf: the page to be sent 1186 * @async: send to page asyncly 1187 */ 1188 static int save_normal_page(PageSearchStatus *pss, RAMBlock *block, 1189 ram_addr_t offset, uint8_t *buf, bool async) 1190 { 1191 QEMUFile *file = pss->pss_channel; 1192 1193 ram_transferred_add(save_page_header(pss, pss->pss_channel, block, 1194 offset | RAM_SAVE_FLAG_PAGE)); 1195 if (async) { 1196 qemu_put_buffer_async(file, buf, TARGET_PAGE_SIZE, 1197 migrate_release_ram() && 1198 migration_in_postcopy()); 1199 } else { 1200 qemu_put_buffer(file, buf, TARGET_PAGE_SIZE); 1201 } 1202 ram_transferred_add(TARGET_PAGE_SIZE); 1203 stat64_add(&mig_stats.normal_pages, 1); 1204 return 1; 1205 } 1206 1207 /** 1208 * ram_save_page: send the given page to the stream 1209 * 1210 * Returns the number of pages written. 1211 * < 0 - error 1212 * >=0 - Number of pages written - this might legally be 0 1213 * if xbzrle noticed the page was the same. 1214 * 1215 * @rs: current RAM state 1216 * @block: block that contains the page we want to send 1217 * @offset: offset inside the block for the page 1218 */ 1219 static int ram_save_page(RAMState *rs, PageSearchStatus *pss) 1220 { 1221 int pages = -1; 1222 uint8_t *p; 1223 bool send_async = true; 1224 RAMBlock *block = pss->block; 1225 ram_addr_t offset = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS; 1226 ram_addr_t current_addr = block->offset + offset; 1227 1228 p = block->host + offset; 1229 trace_ram_save_page(block->idstr, (uint64_t)offset, p); 1230 1231 XBZRLE_cache_lock(); 1232 if (rs->xbzrle_started && !migration_in_postcopy()) { 1233 pages = save_xbzrle_page(rs, pss, &p, current_addr, 1234 block, offset); 1235 if (!rs->last_stage) { 1236 /* Can't send this cached data async, since the cache page 1237 * might get updated before it gets to the wire 1238 */ 1239 send_async = false; 1240 } 1241 } 1242 1243 /* XBZRLE overflow or normal page */ 1244 if (pages == -1) { 1245 pages = save_normal_page(pss, block, offset, p, send_async); 1246 } 1247 1248 XBZRLE_cache_unlock(); 1249 1250 return pages; 1251 } 1252 1253 static int ram_save_multifd_page(QEMUFile *file, RAMBlock *block, 1254 ram_addr_t offset) 1255 { 1256 if (multifd_queue_page(file, block, offset) < 0) { 1257 return -1; 1258 } 1259 stat64_add(&mig_stats.normal_pages, 1); 1260 1261 return 1; 1262 } 1263 1264 int compress_send_queued_data(CompressParam *param) 1265 { 1266 PageSearchStatus *pss = &ram_state->pss[RAM_CHANNEL_PRECOPY]; 1267 MigrationState *ms = migrate_get_current(); 1268 QEMUFile *file = ms->to_dst_file; 1269 int len = 0; 1270 1271 RAMBlock *block = param->block; 1272 ram_addr_t offset = param->offset; 1273 1274 if (param->result == RES_NONE) { 1275 return 0; 1276 } 1277 1278 assert(block == pss->last_sent_block); 1279 1280 if (param->result == RES_ZEROPAGE) { 1281 assert(qemu_file_buffer_empty(param->file)); 1282 len += save_page_header(pss, file, block, offset | RAM_SAVE_FLAG_ZERO); 1283 qemu_put_byte(file, 0); 1284 len += 1; 1285 ram_release_page(block->idstr, offset); 1286 } else if (param->result == RES_COMPRESS) { 1287 assert(!qemu_file_buffer_empty(param->file)); 1288 len += save_page_header(pss, file, block, 1289 offset | RAM_SAVE_FLAG_COMPRESS_PAGE); 1290 len += qemu_put_qemu_file(file, param->file); 1291 } else { 1292 abort(); 1293 } 1294 1295 update_compress_thread_counts(param, len); 1296 1297 return len; 1298 } 1299 1300 #define PAGE_ALL_CLEAN 0 1301 #define PAGE_TRY_AGAIN 1 1302 #define PAGE_DIRTY_FOUND 2 1303 /** 1304 * find_dirty_block: find the next dirty page and update any state 1305 * associated with the search process. 1306 * 1307 * Returns: 1308 * <0: An error happened 1309 * PAGE_ALL_CLEAN: no dirty page found, give up 1310 * PAGE_TRY_AGAIN: no dirty page found, retry for next block 1311 * PAGE_DIRTY_FOUND: dirty page found 1312 * 1313 * @rs: current RAM state 1314 * @pss: data about the state of the current dirty page scan 1315 * @again: set to false if the search has scanned the whole of RAM 1316 */ 1317 static int find_dirty_block(RAMState *rs, PageSearchStatus *pss) 1318 { 1319 /* Update pss->page for the next dirty bit in ramblock */ 1320 pss_find_next_dirty(pss); 1321 1322 if (pss->complete_round && pss->block == rs->last_seen_block && 1323 pss->page >= rs->last_page) { 1324 /* 1325 * We've been once around the RAM and haven't found anything. 1326 * Give up. 1327 */ 1328 return PAGE_ALL_CLEAN; 1329 } 1330 if (!offset_in_ramblock(pss->block, 1331 ((ram_addr_t)pss->page) << TARGET_PAGE_BITS)) { 1332 /* Didn't find anything in this RAM Block */ 1333 pss->page = 0; 1334 pss->block = QLIST_NEXT_RCU(pss->block, next); 1335 if (!pss->block) { 1336 if (migrate_multifd() && 1337 !migrate_multifd_flush_after_each_section()) { 1338 QEMUFile *f = rs->pss[RAM_CHANNEL_PRECOPY].pss_channel; 1339 int ret = multifd_send_sync_main(f); 1340 if (ret < 0) { 1341 return ret; 1342 } 1343 qemu_put_be64(f, RAM_SAVE_FLAG_MULTIFD_FLUSH); 1344 qemu_fflush(f); 1345 } 1346 /* 1347 * If memory migration starts over, we will meet a dirtied page 1348 * which may still exists in compression threads's ring, so we 1349 * should flush the compressed data to make sure the new page 1350 * is not overwritten by the old one in the destination. 1351 * 1352 * Also If xbzrle is on, stop using the data compression at this 1353 * point. In theory, xbzrle can do better than compression. 1354 */ 1355 compress_flush_data(); 1356 1357 /* Hit the end of the list */ 1358 pss->block = QLIST_FIRST_RCU(&ram_list.blocks); 1359 /* Flag that we've looped */ 1360 pss->complete_round = true; 1361 /* After the first round, enable XBZRLE. */ 1362 if (migrate_xbzrle()) { 1363 rs->xbzrle_started = true; 1364 } 1365 } 1366 /* Didn't find anything this time, but try again on the new block */ 1367 return PAGE_TRY_AGAIN; 1368 } else { 1369 /* We've found something */ 1370 return PAGE_DIRTY_FOUND; 1371 } 1372 } 1373 1374 /** 1375 * unqueue_page: gets a page of the queue 1376 * 1377 * Helper for 'get_queued_page' - gets a page off the queue 1378 * 1379 * Returns the block of the page (or NULL if none available) 1380 * 1381 * @rs: current RAM state 1382 * @offset: used to return the offset within the RAMBlock 1383 */ 1384 static RAMBlock *unqueue_page(RAMState *rs, ram_addr_t *offset) 1385 { 1386 struct RAMSrcPageRequest *entry; 1387 RAMBlock *block = NULL; 1388 1389 if (!postcopy_has_request(rs)) { 1390 return NULL; 1391 } 1392 1393 QEMU_LOCK_GUARD(&rs->src_page_req_mutex); 1394 1395 /* 1396 * This should _never_ change even after we take the lock, because no one 1397 * should be taking anything off the request list other than us. 1398 */ 1399 assert(postcopy_has_request(rs)); 1400 1401 entry = QSIMPLEQ_FIRST(&rs->src_page_requests); 1402 block = entry->rb; 1403 *offset = entry->offset; 1404 1405 if (entry->len > TARGET_PAGE_SIZE) { 1406 entry->len -= TARGET_PAGE_SIZE; 1407 entry->offset += TARGET_PAGE_SIZE; 1408 } else { 1409 memory_region_unref(block->mr); 1410 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req); 1411 g_free(entry); 1412 migration_consume_urgent_request(); 1413 } 1414 1415 return block; 1416 } 1417 1418 #if defined(__linux__) 1419 /** 1420 * poll_fault_page: try to get next UFFD write fault page and, if pending fault 1421 * is found, return RAM block pointer and page offset 1422 * 1423 * Returns pointer to the RAMBlock containing faulting page, 1424 * NULL if no write faults are pending 1425 * 1426 * @rs: current RAM state 1427 * @offset: page offset from the beginning of the block 1428 */ 1429 static RAMBlock *poll_fault_page(RAMState *rs, ram_addr_t *offset) 1430 { 1431 struct uffd_msg uffd_msg; 1432 void *page_address; 1433 RAMBlock *block; 1434 int res; 1435 1436 if (!migrate_background_snapshot()) { 1437 return NULL; 1438 } 1439 1440 res = uffd_read_events(rs->uffdio_fd, &uffd_msg, 1); 1441 if (res <= 0) { 1442 return NULL; 1443 } 1444 1445 page_address = (void *)(uintptr_t) uffd_msg.arg.pagefault.address; 1446 block = qemu_ram_block_from_host(page_address, false, offset); 1447 assert(block && (block->flags & RAM_UF_WRITEPROTECT) != 0); 1448 return block; 1449 } 1450 1451 /** 1452 * ram_save_release_protection: release UFFD write protection after 1453 * a range of pages has been saved 1454 * 1455 * @rs: current RAM state 1456 * @pss: page-search-status structure 1457 * @start_page: index of the first page in the range relative to pss->block 1458 * 1459 * Returns 0 on success, negative value in case of an error 1460 */ 1461 static int ram_save_release_protection(RAMState *rs, PageSearchStatus *pss, 1462 unsigned long start_page) 1463 { 1464 int res = 0; 1465 1466 /* Check if page is from UFFD-managed region. */ 1467 if (pss->block->flags & RAM_UF_WRITEPROTECT) { 1468 void *page_address = pss->block->host + (start_page << TARGET_PAGE_BITS); 1469 uint64_t run_length = (pss->page - start_page) << TARGET_PAGE_BITS; 1470 1471 /* Flush async buffers before un-protect. */ 1472 qemu_fflush(pss->pss_channel); 1473 /* Un-protect memory range. */ 1474 res = uffd_change_protection(rs->uffdio_fd, page_address, run_length, 1475 false, false); 1476 } 1477 1478 return res; 1479 } 1480 1481 /* ram_write_tracking_available: check if kernel supports required UFFD features 1482 * 1483 * Returns true if supports, false otherwise 1484 */ 1485 bool ram_write_tracking_available(void) 1486 { 1487 uint64_t uffd_features; 1488 int res; 1489 1490 res = uffd_query_features(&uffd_features); 1491 return (res == 0 && 1492 (uffd_features & UFFD_FEATURE_PAGEFAULT_FLAG_WP) != 0); 1493 } 1494 1495 /* ram_write_tracking_compatible: check if guest configuration is 1496 * compatible with 'write-tracking' 1497 * 1498 * Returns true if compatible, false otherwise 1499 */ 1500 bool ram_write_tracking_compatible(void) 1501 { 1502 const uint64_t uffd_ioctls_mask = BIT(_UFFDIO_WRITEPROTECT); 1503 int uffd_fd; 1504 RAMBlock *block; 1505 bool ret = false; 1506 1507 /* Open UFFD file descriptor */ 1508 uffd_fd = uffd_create_fd(UFFD_FEATURE_PAGEFAULT_FLAG_WP, false); 1509 if (uffd_fd < 0) { 1510 return false; 1511 } 1512 1513 RCU_READ_LOCK_GUARD(); 1514 1515 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 1516 uint64_t uffd_ioctls; 1517 1518 /* Nothing to do with read-only and MMIO-writable regions */ 1519 if (block->mr->readonly || block->mr->rom_device) { 1520 continue; 1521 } 1522 /* Try to register block memory via UFFD-IO to track writes */ 1523 if (uffd_register_memory(uffd_fd, block->host, block->max_length, 1524 UFFDIO_REGISTER_MODE_WP, &uffd_ioctls)) { 1525 goto out; 1526 } 1527 if ((uffd_ioctls & uffd_ioctls_mask) != uffd_ioctls_mask) { 1528 goto out; 1529 } 1530 } 1531 ret = true; 1532 1533 out: 1534 uffd_close_fd(uffd_fd); 1535 return ret; 1536 } 1537 1538 static inline void populate_read_range(RAMBlock *block, ram_addr_t offset, 1539 ram_addr_t size) 1540 { 1541 const ram_addr_t end = offset + size; 1542 1543 /* 1544 * We read one byte of each page; this will preallocate page tables if 1545 * required and populate the shared zeropage on MAP_PRIVATE anonymous memory 1546 * where no page was populated yet. This might require adaption when 1547 * supporting other mappings, like shmem. 1548 */ 1549 for (; offset < end; offset += block->page_size) { 1550 char tmp = *((char *)block->host + offset); 1551 1552 /* Don't optimize the read out */ 1553 asm volatile("" : "+r" (tmp)); 1554 } 1555 } 1556 1557 static inline int populate_read_section(MemoryRegionSection *section, 1558 void *opaque) 1559 { 1560 const hwaddr size = int128_get64(section->size); 1561 hwaddr offset = section->offset_within_region; 1562 RAMBlock *block = section->mr->ram_block; 1563 1564 populate_read_range(block, offset, size); 1565 return 0; 1566 } 1567 1568 /* 1569 * ram_block_populate_read: preallocate page tables and populate pages in the 1570 * RAM block by reading a byte of each page. 1571 * 1572 * Since it's solely used for userfault_fd WP feature, here we just 1573 * hardcode page size to qemu_real_host_page_size. 1574 * 1575 * @block: RAM block to populate 1576 */ 1577 static void ram_block_populate_read(RAMBlock *rb) 1578 { 1579 /* 1580 * Skip populating all pages that fall into a discarded range as managed by 1581 * a RamDiscardManager responsible for the mapped memory region of the 1582 * RAMBlock. Such discarded ("logically unplugged") parts of a RAMBlock 1583 * must not get populated automatically. We don't have to track 1584 * modifications via userfaultfd WP reliably, because these pages will 1585 * not be part of the migration stream either way -- see 1586 * ramblock_dirty_bitmap_exclude_discarded_pages(). 1587 * 1588 * Note: The result is only stable while migrating (precopy/postcopy). 1589 */ 1590 if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) { 1591 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr); 1592 MemoryRegionSection section = { 1593 .mr = rb->mr, 1594 .offset_within_region = 0, 1595 .size = rb->mr->size, 1596 }; 1597 1598 ram_discard_manager_replay_populated(rdm, §ion, 1599 populate_read_section, NULL); 1600 } else { 1601 populate_read_range(rb, 0, rb->used_length); 1602 } 1603 } 1604 1605 /* 1606 * ram_write_tracking_prepare: prepare for UFFD-WP memory tracking 1607 */ 1608 void ram_write_tracking_prepare(void) 1609 { 1610 RAMBlock *block; 1611 1612 RCU_READ_LOCK_GUARD(); 1613 1614 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 1615 /* Nothing to do with read-only and MMIO-writable regions */ 1616 if (block->mr->readonly || block->mr->rom_device) { 1617 continue; 1618 } 1619 1620 /* 1621 * Populate pages of the RAM block before enabling userfault_fd 1622 * write protection. 1623 * 1624 * This stage is required since ioctl(UFFDIO_WRITEPROTECT) with 1625 * UFFDIO_WRITEPROTECT_MODE_WP mode setting would silently skip 1626 * pages with pte_none() entries in page table. 1627 */ 1628 ram_block_populate_read(block); 1629 } 1630 } 1631 1632 static inline int uffd_protect_section(MemoryRegionSection *section, 1633 void *opaque) 1634 { 1635 const hwaddr size = int128_get64(section->size); 1636 const hwaddr offset = section->offset_within_region; 1637 RAMBlock *rb = section->mr->ram_block; 1638 int uffd_fd = (uintptr_t)opaque; 1639 1640 return uffd_change_protection(uffd_fd, rb->host + offset, size, true, 1641 false); 1642 } 1643 1644 static int ram_block_uffd_protect(RAMBlock *rb, int uffd_fd) 1645 { 1646 assert(rb->flags & RAM_UF_WRITEPROTECT); 1647 1648 /* See ram_block_populate_read() */ 1649 if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) { 1650 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr); 1651 MemoryRegionSection section = { 1652 .mr = rb->mr, 1653 .offset_within_region = 0, 1654 .size = rb->mr->size, 1655 }; 1656 1657 return ram_discard_manager_replay_populated(rdm, §ion, 1658 uffd_protect_section, 1659 (void *)(uintptr_t)uffd_fd); 1660 } 1661 return uffd_change_protection(uffd_fd, rb->host, 1662 rb->used_length, true, false); 1663 } 1664 1665 /* 1666 * ram_write_tracking_start: start UFFD-WP memory tracking 1667 * 1668 * Returns 0 for success or negative value in case of error 1669 */ 1670 int ram_write_tracking_start(void) 1671 { 1672 int uffd_fd; 1673 RAMState *rs = ram_state; 1674 RAMBlock *block; 1675 1676 /* Open UFFD file descriptor */ 1677 uffd_fd = uffd_create_fd(UFFD_FEATURE_PAGEFAULT_FLAG_WP, true); 1678 if (uffd_fd < 0) { 1679 return uffd_fd; 1680 } 1681 rs->uffdio_fd = uffd_fd; 1682 1683 RCU_READ_LOCK_GUARD(); 1684 1685 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 1686 /* Nothing to do with read-only and MMIO-writable regions */ 1687 if (block->mr->readonly || block->mr->rom_device) { 1688 continue; 1689 } 1690 1691 /* Register block memory with UFFD to track writes */ 1692 if (uffd_register_memory(rs->uffdio_fd, block->host, 1693 block->max_length, UFFDIO_REGISTER_MODE_WP, NULL)) { 1694 goto fail; 1695 } 1696 block->flags |= RAM_UF_WRITEPROTECT; 1697 memory_region_ref(block->mr); 1698 1699 /* Apply UFFD write protection to the block memory range */ 1700 if (ram_block_uffd_protect(block, uffd_fd)) { 1701 goto fail; 1702 } 1703 1704 trace_ram_write_tracking_ramblock_start(block->idstr, block->page_size, 1705 block->host, block->max_length); 1706 } 1707 1708 return 0; 1709 1710 fail: 1711 error_report("ram_write_tracking_start() failed: restoring initial memory state"); 1712 1713 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 1714 if ((block->flags & RAM_UF_WRITEPROTECT) == 0) { 1715 continue; 1716 } 1717 uffd_unregister_memory(rs->uffdio_fd, block->host, block->max_length); 1718 /* Cleanup flags and remove reference */ 1719 block->flags &= ~RAM_UF_WRITEPROTECT; 1720 memory_region_unref(block->mr); 1721 } 1722 1723 uffd_close_fd(uffd_fd); 1724 rs->uffdio_fd = -1; 1725 return -1; 1726 } 1727 1728 /** 1729 * ram_write_tracking_stop: stop UFFD-WP memory tracking and remove protection 1730 */ 1731 void ram_write_tracking_stop(void) 1732 { 1733 RAMState *rs = ram_state; 1734 RAMBlock *block; 1735 1736 RCU_READ_LOCK_GUARD(); 1737 1738 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 1739 if ((block->flags & RAM_UF_WRITEPROTECT) == 0) { 1740 continue; 1741 } 1742 uffd_unregister_memory(rs->uffdio_fd, block->host, block->max_length); 1743 1744 trace_ram_write_tracking_ramblock_stop(block->idstr, block->page_size, 1745 block->host, block->max_length); 1746 1747 /* Cleanup flags and remove reference */ 1748 block->flags &= ~RAM_UF_WRITEPROTECT; 1749 memory_region_unref(block->mr); 1750 } 1751 1752 /* Finally close UFFD file descriptor */ 1753 uffd_close_fd(rs->uffdio_fd); 1754 rs->uffdio_fd = -1; 1755 } 1756 1757 #else 1758 /* No target OS support, stubs just fail or ignore */ 1759 1760 static RAMBlock *poll_fault_page(RAMState *rs, ram_addr_t *offset) 1761 { 1762 (void) rs; 1763 (void) offset; 1764 1765 return NULL; 1766 } 1767 1768 static int ram_save_release_protection(RAMState *rs, PageSearchStatus *pss, 1769 unsigned long start_page) 1770 { 1771 (void) rs; 1772 (void) pss; 1773 (void) start_page; 1774 1775 return 0; 1776 } 1777 1778 bool ram_write_tracking_available(void) 1779 { 1780 return false; 1781 } 1782 1783 bool ram_write_tracking_compatible(void) 1784 { 1785 assert(0); 1786 return false; 1787 } 1788 1789 int ram_write_tracking_start(void) 1790 { 1791 assert(0); 1792 return -1; 1793 } 1794 1795 void ram_write_tracking_stop(void) 1796 { 1797 assert(0); 1798 } 1799 #endif /* defined(__linux__) */ 1800 1801 /** 1802 * get_queued_page: unqueue a page from the postcopy requests 1803 * 1804 * Skips pages that are already sent (!dirty) 1805 * 1806 * Returns true if a queued page is found 1807 * 1808 * @rs: current RAM state 1809 * @pss: data about the state of the current dirty page scan 1810 */ 1811 static bool get_queued_page(RAMState *rs, PageSearchStatus *pss) 1812 { 1813 RAMBlock *block; 1814 ram_addr_t offset; 1815 bool dirty; 1816 1817 do { 1818 block = unqueue_page(rs, &offset); 1819 /* 1820 * We're sending this page, and since it's postcopy nothing else 1821 * will dirty it, and we must make sure it doesn't get sent again 1822 * even if this queue request was received after the background 1823 * search already sent it. 1824 */ 1825 if (block) { 1826 unsigned long page; 1827 1828 page = offset >> TARGET_PAGE_BITS; 1829 dirty = test_bit(page, block->bmap); 1830 if (!dirty) { 1831 trace_get_queued_page_not_dirty(block->idstr, (uint64_t)offset, 1832 page); 1833 } else { 1834 trace_get_queued_page(block->idstr, (uint64_t)offset, page); 1835 } 1836 } 1837 1838 } while (block && !dirty); 1839 1840 if (!block) { 1841 /* 1842 * Poll write faults too if background snapshot is enabled; that's 1843 * when we have vcpus got blocked by the write protected pages. 1844 */ 1845 block = poll_fault_page(rs, &offset); 1846 } 1847 1848 if (block) { 1849 /* 1850 * We want the background search to continue from the queued page 1851 * since the guest is likely to want other pages near to the page 1852 * it just requested. 1853 */ 1854 pss->block = block; 1855 pss->page = offset >> TARGET_PAGE_BITS; 1856 1857 /* 1858 * This unqueued page would break the "one round" check, even is 1859 * really rare. 1860 */ 1861 pss->complete_round = false; 1862 } 1863 1864 return !!block; 1865 } 1866 1867 /** 1868 * migration_page_queue_free: drop any remaining pages in the ram 1869 * request queue 1870 * 1871 * It should be empty at the end anyway, but in error cases there may 1872 * be some left. in case that there is any page left, we drop it. 1873 * 1874 */ 1875 static void migration_page_queue_free(RAMState *rs) 1876 { 1877 struct RAMSrcPageRequest *mspr, *next_mspr; 1878 /* This queue generally should be empty - but in the case of a failed 1879 * migration might have some droppings in. 1880 */ 1881 RCU_READ_LOCK_GUARD(); 1882 QSIMPLEQ_FOREACH_SAFE(mspr, &rs->src_page_requests, next_req, next_mspr) { 1883 memory_region_unref(mspr->rb->mr); 1884 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req); 1885 g_free(mspr); 1886 } 1887 } 1888 1889 /** 1890 * ram_save_queue_pages: queue the page for transmission 1891 * 1892 * A request from postcopy destination for example. 1893 * 1894 * Returns zero on success or negative on error 1895 * 1896 * @rbname: Name of the RAMBLock of the request. NULL means the 1897 * same that last one. 1898 * @start: starting address from the start of the RAMBlock 1899 * @len: length (in bytes) to send 1900 */ 1901 int ram_save_queue_pages(const char *rbname, ram_addr_t start, ram_addr_t len) 1902 { 1903 RAMBlock *ramblock; 1904 RAMState *rs = ram_state; 1905 1906 stat64_add(&mig_stats.postcopy_requests, 1); 1907 RCU_READ_LOCK_GUARD(); 1908 1909 if (!rbname) { 1910 /* Reuse last RAMBlock */ 1911 ramblock = rs->last_req_rb; 1912 1913 if (!ramblock) { 1914 /* 1915 * Shouldn't happen, we can't reuse the last RAMBlock if 1916 * it's the 1st request. 1917 */ 1918 error_report("ram_save_queue_pages no previous block"); 1919 return -1; 1920 } 1921 } else { 1922 ramblock = qemu_ram_block_by_name(rbname); 1923 1924 if (!ramblock) { 1925 /* We shouldn't be asked for a non-existent RAMBlock */ 1926 error_report("ram_save_queue_pages no block '%s'", rbname); 1927 return -1; 1928 } 1929 rs->last_req_rb = ramblock; 1930 } 1931 trace_ram_save_queue_pages(ramblock->idstr, start, len); 1932 if (!offset_in_ramblock(ramblock, start + len - 1)) { 1933 error_report("%s request overrun start=" RAM_ADDR_FMT " len=" 1934 RAM_ADDR_FMT " blocklen=" RAM_ADDR_FMT, 1935 __func__, start, len, ramblock->used_length); 1936 return -1; 1937 } 1938 1939 /* 1940 * When with postcopy preempt, we send back the page directly in the 1941 * rp-return thread. 1942 */ 1943 if (postcopy_preempt_active()) { 1944 ram_addr_t page_start = start >> TARGET_PAGE_BITS; 1945 size_t page_size = qemu_ram_pagesize(ramblock); 1946 PageSearchStatus *pss = &ram_state->pss[RAM_CHANNEL_POSTCOPY]; 1947 int ret = 0; 1948 1949 qemu_mutex_lock(&rs->bitmap_mutex); 1950 1951 pss_init(pss, ramblock, page_start); 1952 /* 1953 * Always use the preempt channel, and make sure it's there. It's 1954 * safe to access without lock, because when rp-thread is running 1955 * we should be the only one who operates on the qemufile 1956 */ 1957 pss->pss_channel = migrate_get_current()->postcopy_qemufile_src; 1958 assert(pss->pss_channel); 1959 1960 /* 1961 * It must be either one or multiple of host page size. Just 1962 * assert; if something wrong we're mostly split brain anyway. 1963 */ 1964 assert(len % page_size == 0); 1965 while (len) { 1966 if (ram_save_host_page_urgent(pss)) { 1967 error_report("%s: ram_save_host_page_urgent() failed: " 1968 "ramblock=%s, start_addr=0x"RAM_ADDR_FMT, 1969 __func__, ramblock->idstr, start); 1970 ret = -1; 1971 break; 1972 } 1973 /* 1974 * NOTE: after ram_save_host_page_urgent() succeeded, pss->page 1975 * will automatically be moved and point to the next host page 1976 * we're going to send, so no need to update here. 1977 * 1978 * Normally QEMU never sends >1 host page in requests, so 1979 * logically we don't even need that as the loop should only 1980 * run once, but just to be consistent. 1981 */ 1982 len -= page_size; 1983 }; 1984 qemu_mutex_unlock(&rs->bitmap_mutex); 1985 1986 return ret; 1987 } 1988 1989 struct RAMSrcPageRequest *new_entry = 1990 g_new0(struct RAMSrcPageRequest, 1); 1991 new_entry->rb = ramblock; 1992 new_entry->offset = start; 1993 new_entry->len = len; 1994 1995 memory_region_ref(ramblock->mr); 1996 qemu_mutex_lock(&rs->src_page_req_mutex); 1997 QSIMPLEQ_INSERT_TAIL(&rs->src_page_requests, new_entry, next_req); 1998 migration_make_urgent_request(); 1999 qemu_mutex_unlock(&rs->src_page_req_mutex); 2000 2001 return 0; 2002 } 2003 2004 /* 2005 * try to compress the page before posting it out, return true if the page 2006 * has been properly handled by compression, otherwise needs other 2007 * paths to handle it 2008 */ 2009 static bool save_compress_page(RAMState *rs, PageSearchStatus *pss, 2010 ram_addr_t offset) 2011 { 2012 if (!migrate_compress()) { 2013 return false; 2014 } 2015 2016 /* 2017 * When starting the process of a new block, the first page of 2018 * the block should be sent out before other pages in the same 2019 * block, and all the pages in last block should have been sent 2020 * out, keeping this order is important, because the 'cont' flag 2021 * is used to avoid resending the block name. 2022 * 2023 * We post the fist page as normal page as compression will take 2024 * much CPU resource. 2025 */ 2026 if (pss->block != pss->last_sent_block) { 2027 compress_flush_data(); 2028 return false; 2029 } 2030 2031 return compress_page_with_multi_thread(pss->block, offset, 2032 compress_send_queued_data); 2033 } 2034 2035 /** 2036 * ram_save_target_page_legacy: save one target page 2037 * 2038 * Returns the number of pages written 2039 * 2040 * @rs: current RAM state 2041 * @pss: data about the page we want to send 2042 */ 2043 static int ram_save_target_page_legacy(RAMState *rs, PageSearchStatus *pss) 2044 { 2045 RAMBlock *block = pss->block; 2046 ram_addr_t offset = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS; 2047 int res; 2048 2049 if (control_save_page(pss, offset, &res)) { 2050 return res; 2051 } 2052 2053 if (save_compress_page(rs, pss, offset)) { 2054 return 1; 2055 } 2056 2057 if (save_zero_page(rs, pss, offset)) { 2058 return 1; 2059 } 2060 2061 /* 2062 * Do not use multifd in postcopy as one whole host page should be 2063 * placed. Meanwhile postcopy requires atomic update of pages, so even 2064 * if host page size == guest page size the dest guest during run may 2065 * still see partially copied pages which is data corruption. 2066 */ 2067 if (migrate_multifd() && !migration_in_postcopy()) { 2068 return ram_save_multifd_page(pss->pss_channel, block, offset); 2069 } 2070 2071 return ram_save_page(rs, pss); 2072 } 2073 2074 /* Should be called before sending a host page */ 2075 static void pss_host_page_prepare(PageSearchStatus *pss) 2076 { 2077 /* How many guest pages are there in one host page? */ 2078 size_t guest_pfns = qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS; 2079 2080 pss->host_page_sending = true; 2081 if (guest_pfns <= 1) { 2082 /* 2083 * This covers both when guest psize == host psize, or when guest 2084 * has larger psize than the host (guest_pfns==0). 2085 * 2086 * For the latter, we always send one whole guest page per 2087 * iteration of the host page (example: an Alpha VM on x86 host 2088 * will have guest psize 8K while host psize 4K). 2089 */ 2090 pss->host_page_start = pss->page; 2091 pss->host_page_end = pss->page + 1; 2092 } else { 2093 /* 2094 * The host page spans over multiple guest pages, we send them 2095 * within the same host page iteration. 2096 */ 2097 pss->host_page_start = ROUND_DOWN(pss->page, guest_pfns); 2098 pss->host_page_end = ROUND_UP(pss->page + 1, guest_pfns); 2099 } 2100 } 2101 2102 /* 2103 * Whether the page pointed by PSS is within the host page being sent. 2104 * Must be called after a previous pss_host_page_prepare(). 2105 */ 2106 static bool pss_within_range(PageSearchStatus *pss) 2107 { 2108 ram_addr_t ram_addr; 2109 2110 assert(pss->host_page_sending); 2111 2112 /* Over host-page boundary? */ 2113 if (pss->page >= pss->host_page_end) { 2114 return false; 2115 } 2116 2117 ram_addr = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS; 2118 2119 return offset_in_ramblock(pss->block, ram_addr); 2120 } 2121 2122 static void pss_host_page_finish(PageSearchStatus *pss) 2123 { 2124 pss->host_page_sending = false; 2125 /* This is not needed, but just to reset it */ 2126 pss->host_page_start = pss->host_page_end = 0; 2127 } 2128 2129 /* 2130 * Send an urgent host page specified by `pss'. Need to be called with 2131 * bitmap_mutex held. 2132 * 2133 * Returns 0 if save host page succeeded, false otherwise. 2134 */ 2135 static int ram_save_host_page_urgent(PageSearchStatus *pss) 2136 { 2137 bool page_dirty, sent = false; 2138 RAMState *rs = ram_state; 2139 int ret = 0; 2140 2141 trace_postcopy_preempt_send_host_page(pss->block->idstr, pss->page); 2142 pss_host_page_prepare(pss); 2143 2144 /* 2145 * If precopy is sending the same page, let it be done in precopy, or 2146 * we could send the same page in two channels and none of them will 2147 * receive the whole page. 2148 */ 2149 if (pss_overlap(pss, &ram_state->pss[RAM_CHANNEL_PRECOPY])) { 2150 trace_postcopy_preempt_hit(pss->block->idstr, 2151 pss->page << TARGET_PAGE_BITS); 2152 return 0; 2153 } 2154 2155 do { 2156 page_dirty = migration_bitmap_clear_dirty(rs, pss->block, pss->page); 2157 2158 if (page_dirty) { 2159 /* Be strict to return code; it must be 1, or what else? */ 2160 if (migration_ops->ram_save_target_page(rs, pss) != 1) { 2161 error_report_once("%s: ram_save_target_page failed", __func__); 2162 ret = -1; 2163 goto out; 2164 } 2165 sent = true; 2166 } 2167 pss_find_next_dirty(pss); 2168 } while (pss_within_range(pss)); 2169 out: 2170 pss_host_page_finish(pss); 2171 /* For urgent requests, flush immediately if sent */ 2172 if (sent) { 2173 qemu_fflush(pss->pss_channel); 2174 } 2175 return ret; 2176 } 2177 2178 /** 2179 * ram_save_host_page: save a whole host page 2180 * 2181 * Starting at *offset send pages up to the end of the current host 2182 * page. It's valid for the initial offset to point into the middle of 2183 * a host page in which case the remainder of the hostpage is sent. 2184 * Only dirty target pages are sent. Note that the host page size may 2185 * be a huge page for this block. 2186 * 2187 * The saving stops at the boundary of the used_length of the block 2188 * if the RAMBlock isn't a multiple of the host page size. 2189 * 2190 * The caller must be with ram_state.bitmap_mutex held to call this 2191 * function. Note that this function can temporarily release the lock, but 2192 * when the function is returned it'll make sure the lock is still held. 2193 * 2194 * Returns the number of pages written or negative on error 2195 * 2196 * @rs: current RAM state 2197 * @pss: data about the page we want to send 2198 */ 2199 static int ram_save_host_page(RAMState *rs, PageSearchStatus *pss) 2200 { 2201 bool page_dirty, preempt_active = postcopy_preempt_active(); 2202 int tmppages, pages = 0; 2203 size_t pagesize_bits = 2204 qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS; 2205 unsigned long start_page = pss->page; 2206 int res; 2207 2208 if (migrate_ram_is_ignored(pss->block)) { 2209 error_report("block %s should not be migrated !", pss->block->idstr); 2210 return 0; 2211 } 2212 2213 /* Update host page boundary information */ 2214 pss_host_page_prepare(pss); 2215 2216 do { 2217 page_dirty = migration_bitmap_clear_dirty(rs, pss->block, pss->page); 2218 2219 /* Check the pages is dirty and if it is send it */ 2220 if (page_dirty) { 2221 /* 2222 * Properly yield the lock only in postcopy preempt mode 2223 * because both migration thread and rp-return thread can 2224 * operate on the bitmaps. 2225 */ 2226 if (preempt_active) { 2227 qemu_mutex_unlock(&rs->bitmap_mutex); 2228 } 2229 tmppages = migration_ops->ram_save_target_page(rs, pss); 2230 if (tmppages >= 0) { 2231 pages += tmppages; 2232 /* 2233 * Allow rate limiting to happen in the middle of huge pages if 2234 * something is sent in the current iteration. 2235 */ 2236 if (pagesize_bits > 1 && tmppages > 0) { 2237 migration_rate_limit(); 2238 } 2239 } 2240 if (preempt_active) { 2241 qemu_mutex_lock(&rs->bitmap_mutex); 2242 } 2243 } else { 2244 tmppages = 0; 2245 } 2246 2247 if (tmppages < 0) { 2248 pss_host_page_finish(pss); 2249 return tmppages; 2250 } 2251 2252 pss_find_next_dirty(pss); 2253 } while (pss_within_range(pss)); 2254 2255 pss_host_page_finish(pss); 2256 2257 res = ram_save_release_protection(rs, pss, start_page); 2258 return (res < 0 ? res : pages); 2259 } 2260 2261 /** 2262 * ram_find_and_save_block: finds a dirty page and sends it to f 2263 * 2264 * Called within an RCU critical section. 2265 * 2266 * Returns the number of pages written where zero means no dirty pages, 2267 * or negative on error 2268 * 2269 * @rs: current RAM state 2270 * 2271 * On systems where host-page-size > target-page-size it will send all the 2272 * pages in a host page that are dirty. 2273 */ 2274 static int ram_find_and_save_block(RAMState *rs) 2275 { 2276 PageSearchStatus *pss = &rs->pss[RAM_CHANNEL_PRECOPY]; 2277 int pages = 0; 2278 2279 /* No dirty page as there is zero RAM */ 2280 if (!rs->ram_bytes_total) { 2281 return pages; 2282 } 2283 2284 /* 2285 * Always keep last_seen_block/last_page valid during this procedure, 2286 * because find_dirty_block() relies on these values (e.g., we compare 2287 * last_seen_block with pss.block to see whether we searched all the 2288 * ramblocks) to detect the completion of migration. Having NULL value 2289 * of last_seen_block can conditionally cause below loop to run forever. 2290 */ 2291 if (!rs->last_seen_block) { 2292 rs->last_seen_block = QLIST_FIRST_RCU(&ram_list.blocks); 2293 rs->last_page = 0; 2294 } 2295 2296 pss_init(pss, rs->last_seen_block, rs->last_page); 2297 2298 while (true){ 2299 if (!get_queued_page(rs, pss)) { 2300 /* priority queue empty, so just search for something dirty */ 2301 int res = find_dirty_block(rs, pss); 2302 if (res != PAGE_DIRTY_FOUND) { 2303 if (res == PAGE_ALL_CLEAN) { 2304 break; 2305 } else if (res == PAGE_TRY_AGAIN) { 2306 continue; 2307 } else if (res < 0) { 2308 pages = res; 2309 break; 2310 } 2311 } 2312 } 2313 pages = ram_save_host_page(rs, pss); 2314 if (pages) { 2315 break; 2316 } 2317 } 2318 2319 rs->last_seen_block = pss->block; 2320 rs->last_page = pss->page; 2321 2322 return pages; 2323 } 2324 2325 static uint64_t ram_bytes_total_with_ignored(void) 2326 { 2327 RAMBlock *block; 2328 uint64_t total = 0; 2329 2330 RCU_READ_LOCK_GUARD(); 2331 2332 RAMBLOCK_FOREACH_MIGRATABLE(block) { 2333 total += block->used_length; 2334 } 2335 return total; 2336 } 2337 2338 uint64_t ram_bytes_total(void) 2339 { 2340 RAMBlock *block; 2341 uint64_t total = 0; 2342 2343 RCU_READ_LOCK_GUARD(); 2344 2345 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 2346 total += block->used_length; 2347 } 2348 return total; 2349 } 2350 2351 static void xbzrle_load_setup(void) 2352 { 2353 XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE); 2354 } 2355 2356 static void xbzrle_load_cleanup(void) 2357 { 2358 g_free(XBZRLE.decoded_buf); 2359 XBZRLE.decoded_buf = NULL; 2360 } 2361 2362 static void ram_state_cleanup(RAMState **rsp) 2363 { 2364 if (*rsp) { 2365 migration_page_queue_free(*rsp); 2366 qemu_mutex_destroy(&(*rsp)->bitmap_mutex); 2367 qemu_mutex_destroy(&(*rsp)->src_page_req_mutex); 2368 g_free(*rsp); 2369 *rsp = NULL; 2370 } 2371 } 2372 2373 static void xbzrle_cleanup(void) 2374 { 2375 XBZRLE_cache_lock(); 2376 if (XBZRLE.cache) { 2377 cache_fini(XBZRLE.cache); 2378 g_free(XBZRLE.encoded_buf); 2379 g_free(XBZRLE.current_buf); 2380 g_free(XBZRLE.zero_target_page); 2381 XBZRLE.cache = NULL; 2382 XBZRLE.encoded_buf = NULL; 2383 XBZRLE.current_buf = NULL; 2384 XBZRLE.zero_target_page = NULL; 2385 } 2386 XBZRLE_cache_unlock(); 2387 } 2388 2389 static void ram_save_cleanup(void *opaque) 2390 { 2391 RAMState **rsp = opaque; 2392 RAMBlock *block; 2393 2394 /* We don't use dirty log with background snapshots */ 2395 if (!migrate_background_snapshot()) { 2396 /* caller have hold iothread lock or is in a bh, so there is 2397 * no writing race against the migration bitmap 2398 */ 2399 if (global_dirty_tracking & GLOBAL_DIRTY_MIGRATION) { 2400 /* 2401 * do not stop dirty log without starting it, since 2402 * memory_global_dirty_log_stop will assert that 2403 * memory_global_dirty_log_start/stop used in pairs 2404 */ 2405 memory_global_dirty_log_stop(GLOBAL_DIRTY_MIGRATION); 2406 } 2407 } 2408 2409 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 2410 g_free(block->clear_bmap); 2411 block->clear_bmap = NULL; 2412 g_free(block->bmap); 2413 block->bmap = NULL; 2414 } 2415 2416 xbzrle_cleanup(); 2417 compress_threads_save_cleanup(); 2418 ram_state_cleanup(rsp); 2419 g_free(migration_ops); 2420 migration_ops = NULL; 2421 } 2422 2423 static void ram_state_reset(RAMState *rs) 2424 { 2425 int i; 2426 2427 for (i = 0; i < RAM_CHANNEL_MAX; i++) { 2428 rs->pss[i].last_sent_block = NULL; 2429 } 2430 2431 rs->last_seen_block = NULL; 2432 rs->last_page = 0; 2433 rs->last_version = ram_list.version; 2434 rs->xbzrle_started = false; 2435 } 2436 2437 #define MAX_WAIT 50 /* ms, half buffered_file limit */ 2438 2439 /* **** functions for postcopy ***** */ 2440 2441 void ram_postcopy_migrated_memory_release(MigrationState *ms) 2442 { 2443 struct RAMBlock *block; 2444 2445 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 2446 unsigned long *bitmap = block->bmap; 2447 unsigned long range = block->used_length >> TARGET_PAGE_BITS; 2448 unsigned long run_start = find_next_zero_bit(bitmap, range, 0); 2449 2450 while (run_start < range) { 2451 unsigned long run_end = find_next_bit(bitmap, range, run_start + 1); 2452 ram_discard_range(block->idstr, 2453 ((ram_addr_t)run_start) << TARGET_PAGE_BITS, 2454 ((ram_addr_t)(run_end - run_start)) 2455 << TARGET_PAGE_BITS); 2456 run_start = find_next_zero_bit(bitmap, range, run_end + 1); 2457 } 2458 } 2459 } 2460 2461 /** 2462 * postcopy_send_discard_bm_ram: discard a RAMBlock 2463 * 2464 * Callback from postcopy_each_ram_send_discard for each RAMBlock 2465 * 2466 * @ms: current migration state 2467 * @block: RAMBlock to discard 2468 */ 2469 static void postcopy_send_discard_bm_ram(MigrationState *ms, RAMBlock *block) 2470 { 2471 unsigned long end = block->used_length >> TARGET_PAGE_BITS; 2472 unsigned long current; 2473 unsigned long *bitmap = block->bmap; 2474 2475 for (current = 0; current < end; ) { 2476 unsigned long one = find_next_bit(bitmap, end, current); 2477 unsigned long zero, discard_length; 2478 2479 if (one >= end) { 2480 break; 2481 } 2482 2483 zero = find_next_zero_bit(bitmap, end, one + 1); 2484 2485 if (zero >= end) { 2486 discard_length = end - one; 2487 } else { 2488 discard_length = zero - one; 2489 } 2490 postcopy_discard_send_range(ms, one, discard_length); 2491 current = one + discard_length; 2492 } 2493 } 2494 2495 static void postcopy_chunk_hostpages_pass(MigrationState *ms, RAMBlock *block); 2496 2497 /** 2498 * postcopy_each_ram_send_discard: discard all RAMBlocks 2499 * 2500 * Utility for the outgoing postcopy code. 2501 * Calls postcopy_send_discard_bm_ram for each RAMBlock 2502 * passing it bitmap indexes and name. 2503 * (qemu_ram_foreach_block ends up passing unscaled lengths 2504 * which would mean postcopy code would have to deal with target page) 2505 * 2506 * @ms: current migration state 2507 */ 2508 static void postcopy_each_ram_send_discard(MigrationState *ms) 2509 { 2510 struct RAMBlock *block; 2511 2512 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 2513 postcopy_discard_send_init(ms, block->idstr); 2514 2515 /* 2516 * Deal with TPS != HPS and huge pages. It discard any partially sent 2517 * host-page size chunks, mark any partially dirty host-page size 2518 * chunks as all dirty. In this case the host-page is the host-page 2519 * for the particular RAMBlock, i.e. it might be a huge page. 2520 */ 2521 postcopy_chunk_hostpages_pass(ms, block); 2522 2523 /* 2524 * Postcopy sends chunks of bitmap over the wire, but it 2525 * just needs indexes at this point, avoids it having 2526 * target page specific code. 2527 */ 2528 postcopy_send_discard_bm_ram(ms, block); 2529 postcopy_discard_send_finish(ms); 2530 } 2531 } 2532 2533 /** 2534 * postcopy_chunk_hostpages_pass: canonicalize bitmap in hostpages 2535 * 2536 * Helper for postcopy_chunk_hostpages; it's called twice to 2537 * canonicalize the two bitmaps, that are similar, but one is 2538 * inverted. 2539 * 2540 * Postcopy requires that all target pages in a hostpage are dirty or 2541 * clean, not a mix. This function canonicalizes the bitmaps. 2542 * 2543 * @ms: current migration state 2544 * @block: block that contains the page we want to canonicalize 2545 */ 2546 static void postcopy_chunk_hostpages_pass(MigrationState *ms, RAMBlock *block) 2547 { 2548 RAMState *rs = ram_state; 2549 unsigned long *bitmap = block->bmap; 2550 unsigned int host_ratio = block->page_size / TARGET_PAGE_SIZE; 2551 unsigned long pages = block->used_length >> TARGET_PAGE_BITS; 2552 unsigned long run_start; 2553 2554 if (block->page_size == TARGET_PAGE_SIZE) { 2555 /* Easy case - TPS==HPS for a non-huge page RAMBlock */ 2556 return; 2557 } 2558 2559 /* Find a dirty page */ 2560 run_start = find_next_bit(bitmap, pages, 0); 2561 2562 while (run_start < pages) { 2563 2564 /* 2565 * If the start of this run of pages is in the middle of a host 2566 * page, then we need to fixup this host page. 2567 */ 2568 if (QEMU_IS_ALIGNED(run_start, host_ratio)) { 2569 /* Find the end of this run */ 2570 run_start = find_next_zero_bit(bitmap, pages, run_start + 1); 2571 /* 2572 * If the end isn't at the start of a host page, then the 2573 * run doesn't finish at the end of a host page 2574 * and we need to discard. 2575 */ 2576 } 2577 2578 if (!QEMU_IS_ALIGNED(run_start, host_ratio)) { 2579 unsigned long page; 2580 unsigned long fixup_start_addr = QEMU_ALIGN_DOWN(run_start, 2581 host_ratio); 2582 run_start = QEMU_ALIGN_UP(run_start, host_ratio); 2583 2584 /* Clean up the bitmap */ 2585 for (page = fixup_start_addr; 2586 page < fixup_start_addr + host_ratio; page++) { 2587 /* 2588 * Remark them as dirty, updating the count for any pages 2589 * that weren't previously dirty. 2590 */ 2591 rs->migration_dirty_pages += !test_and_set_bit(page, bitmap); 2592 } 2593 } 2594 2595 /* Find the next dirty page for the next iteration */ 2596 run_start = find_next_bit(bitmap, pages, run_start); 2597 } 2598 } 2599 2600 /** 2601 * ram_postcopy_send_discard_bitmap: transmit the discard bitmap 2602 * 2603 * Transmit the set of pages to be discarded after precopy to the target 2604 * these are pages that: 2605 * a) Have been previously transmitted but are now dirty again 2606 * b) Pages that have never been transmitted, this ensures that 2607 * any pages on the destination that have been mapped by background 2608 * tasks get discarded (transparent huge pages is the specific concern) 2609 * Hopefully this is pretty sparse 2610 * 2611 * @ms: current migration state 2612 */ 2613 void ram_postcopy_send_discard_bitmap(MigrationState *ms) 2614 { 2615 RAMState *rs = ram_state; 2616 2617 RCU_READ_LOCK_GUARD(); 2618 2619 /* This should be our last sync, the src is now paused */ 2620 migration_bitmap_sync(rs, false); 2621 2622 /* Easiest way to make sure we don't resume in the middle of a host-page */ 2623 rs->pss[RAM_CHANNEL_PRECOPY].last_sent_block = NULL; 2624 rs->last_seen_block = NULL; 2625 rs->last_page = 0; 2626 2627 postcopy_each_ram_send_discard(ms); 2628 2629 trace_ram_postcopy_send_discard_bitmap(); 2630 } 2631 2632 /** 2633 * ram_discard_range: discard dirtied pages at the beginning of postcopy 2634 * 2635 * Returns zero on success 2636 * 2637 * @rbname: name of the RAMBlock of the request. NULL means the 2638 * same that last one. 2639 * @start: RAMBlock starting page 2640 * @length: RAMBlock size 2641 */ 2642 int ram_discard_range(const char *rbname, uint64_t start, size_t length) 2643 { 2644 trace_ram_discard_range(rbname, start, length); 2645 2646 RCU_READ_LOCK_GUARD(); 2647 RAMBlock *rb = qemu_ram_block_by_name(rbname); 2648 2649 if (!rb) { 2650 error_report("ram_discard_range: Failed to find block '%s'", rbname); 2651 return -1; 2652 } 2653 2654 /* 2655 * On source VM, we don't need to update the received bitmap since 2656 * we don't even have one. 2657 */ 2658 if (rb->receivedmap) { 2659 bitmap_clear(rb->receivedmap, start >> qemu_target_page_bits(), 2660 length >> qemu_target_page_bits()); 2661 } 2662 2663 return ram_block_discard_range(rb, start, length); 2664 } 2665 2666 /* 2667 * For every allocation, we will try not to crash the VM if the 2668 * allocation failed. 2669 */ 2670 static int xbzrle_init(void) 2671 { 2672 Error *local_err = NULL; 2673 2674 if (!migrate_xbzrle()) { 2675 return 0; 2676 } 2677 2678 XBZRLE_cache_lock(); 2679 2680 XBZRLE.zero_target_page = g_try_malloc0(TARGET_PAGE_SIZE); 2681 if (!XBZRLE.zero_target_page) { 2682 error_report("%s: Error allocating zero page", __func__); 2683 goto err_out; 2684 } 2685 2686 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size(), 2687 TARGET_PAGE_SIZE, &local_err); 2688 if (!XBZRLE.cache) { 2689 error_report_err(local_err); 2690 goto free_zero_page; 2691 } 2692 2693 XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE); 2694 if (!XBZRLE.encoded_buf) { 2695 error_report("%s: Error allocating encoded_buf", __func__); 2696 goto free_cache; 2697 } 2698 2699 XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE); 2700 if (!XBZRLE.current_buf) { 2701 error_report("%s: Error allocating current_buf", __func__); 2702 goto free_encoded_buf; 2703 } 2704 2705 /* We are all good */ 2706 XBZRLE_cache_unlock(); 2707 return 0; 2708 2709 free_encoded_buf: 2710 g_free(XBZRLE.encoded_buf); 2711 XBZRLE.encoded_buf = NULL; 2712 free_cache: 2713 cache_fini(XBZRLE.cache); 2714 XBZRLE.cache = NULL; 2715 free_zero_page: 2716 g_free(XBZRLE.zero_target_page); 2717 XBZRLE.zero_target_page = NULL; 2718 err_out: 2719 XBZRLE_cache_unlock(); 2720 return -ENOMEM; 2721 } 2722 2723 static int ram_state_init(RAMState **rsp) 2724 { 2725 *rsp = g_try_new0(RAMState, 1); 2726 2727 if (!*rsp) { 2728 error_report("%s: Init ramstate fail", __func__); 2729 return -1; 2730 } 2731 2732 qemu_mutex_init(&(*rsp)->bitmap_mutex); 2733 qemu_mutex_init(&(*rsp)->src_page_req_mutex); 2734 QSIMPLEQ_INIT(&(*rsp)->src_page_requests); 2735 (*rsp)->ram_bytes_total = ram_bytes_total(); 2736 2737 /* 2738 * Count the total number of pages used by ram blocks not including any 2739 * gaps due to alignment or unplugs. 2740 * This must match with the initial values of dirty bitmap. 2741 */ 2742 (*rsp)->migration_dirty_pages = (*rsp)->ram_bytes_total >> TARGET_PAGE_BITS; 2743 ram_state_reset(*rsp); 2744 2745 return 0; 2746 } 2747 2748 static void ram_list_init_bitmaps(void) 2749 { 2750 MigrationState *ms = migrate_get_current(); 2751 RAMBlock *block; 2752 unsigned long pages; 2753 uint8_t shift; 2754 2755 /* Skip setting bitmap if there is no RAM */ 2756 if (ram_bytes_total()) { 2757 shift = ms->clear_bitmap_shift; 2758 if (shift > CLEAR_BITMAP_SHIFT_MAX) { 2759 error_report("clear_bitmap_shift (%u) too big, using " 2760 "max value (%u)", shift, CLEAR_BITMAP_SHIFT_MAX); 2761 shift = CLEAR_BITMAP_SHIFT_MAX; 2762 } else if (shift < CLEAR_BITMAP_SHIFT_MIN) { 2763 error_report("clear_bitmap_shift (%u) too small, using " 2764 "min value (%u)", shift, CLEAR_BITMAP_SHIFT_MIN); 2765 shift = CLEAR_BITMAP_SHIFT_MIN; 2766 } 2767 2768 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 2769 pages = block->max_length >> TARGET_PAGE_BITS; 2770 /* 2771 * The initial dirty bitmap for migration must be set with all 2772 * ones to make sure we'll migrate every guest RAM page to 2773 * destination. 2774 * Here we set RAMBlock.bmap all to 1 because when rebegin a 2775 * new migration after a failed migration, ram_list. 2776 * dirty_memory[DIRTY_MEMORY_MIGRATION] don't include the whole 2777 * guest memory. 2778 */ 2779 block->bmap = bitmap_new(pages); 2780 bitmap_set(block->bmap, 0, pages); 2781 block->clear_bmap_shift = shift; 2782 block->clear_bmap = bitmap_new(clear_bmap_size(pages, shift)); 2783 } 2784 } 2785 } 2786 2787 static void migration_bitmap_clear_discarded_pages(RAMState *rs) 2788 { 2789 unsigned long pages; 2790 RAMBlock *rb; 2791 2792 RCU_READ_LOCK_GUARD(); 2793 2794 RAMBLOCK_FOREACH_NOT_IGNORED(rb) { 2795 pages = ramblock_dirty_bitmap_clear_discarded_pages(rb); 2796 rs->migration_dirty_pages -= pages; 2797 } 2798 } 2799 2800 static void ram_init_bitmaps(RAMState *rs) 2801 { 2802 qemu_mutex_lock_ramlist(); 2803 2804 WITH_RCU_READ_LOCK_GUARD() { 2805 ram_list_init_bitmaps(); 2806 /* We don't use dirty log with background snapshots */ 2807 if (!migrate_background_snapshot()) { 2808 memory_global_dirty_log_start(GLOBAL_DIRTY_MIGRATION); 2809 migration_bitmap_sync_precopy(rs, false); 2810 } 2811 } 2812 qemu_mutex_unlock_ramlist(); 2813 2814 /* 2815 * After an eventual first bitmap sync, fixup the initial bitmap 2816 * containing all 1s to exclude any discarded pages from migration. 2817 */ 2818 migration_bitmap_clear_discarded_pages(rs); 2819 } 2820 2821 static int ram_init_all(RAMState **rsp) 2822 { 2823 if (ram_state_init(rsp)) { 2824 return -1; 2825 } 2826 2827 if (xbzrle_init()) { 2828 ram_state_cleanup(rsp); 2829 return -1; 2830 } 2831 2832 ram_init_bitmaps(*rsp); 2833 2834 return 0; 2835 } 2836 2837 static void ram_state_resume_prepare(RAMState *rs, QEMUFile *out) 2838 { 2839 RAMBlock *block; 2840 uint64_t pages = 0; 2841 2842 /* 2843 * Postcopy is not using xbzrle/compression, so no need for that. 2844 * Also, since source are already halted, we don't need to care 2845 * about dirty page logging as well. 2846 */ 2847 2848 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 2849 pages += bitmap_count_one(block->bmap, 2850 block->used_length >> TARGET_PAGE_BITS); 2851 } 2852 2853 /* This may not be aligned with current bitmaps. Recalculate. */ 2854 rs->migration_dirty_pages = pages; 2855 2856 ram_state_reset(rs); 2857 2858 /* Update RAMState cache of output QEMUFile */ 2859 rs->pss[RAM_CHANNEL_PRECOPY].pss_channel = out; 2860 2861 trace_ram_state_resume_prepare(pages); 2862 } 2863 2864 /* 2865 * This function clears bits of the free pages reported by the caller from the 2866 * migration dirty bitmap. @addr is the host address corresponding to the 2867 * start of the continuous guest free pages, and @len is the total bytes of 2868 * those pages. 2869 */ 2870 void qemu_guest_free_page_hint(void *addr, size_t len) 2871 { 2872 RAMBlock *block; 2873 ram_addr_t offset; 2874 size_t used_len, start, npages; 2875 MigrationState *s = migrate_get_current(); 2876 2877 /* This function is currently expected to be used during live migration */ 2878 if (!migration_is_setup_or_active(s->state)) { 2879 return; 2880 } 2881 2882 for (; len > 0; len -= used_len, addr += used_len) { 2883 block = qemu_ram_block_from_host(addr, false, &offset); 2884 if (unlikely(!block || offset >= block->used_length)) { 2885 /* 2886 * The implementation might not support RAMBlock resize during 2887 * live migration, but it could happen in theory with future 2888 * updates. So we add a check here to capture that case. 2889 */ 2890 error_report_once("%s unexpected error", __func__); 2891 return; 2892 } 2893 2894 if (len <= block->used_length - offset) { 2895 used_len = len; 2896 } else { 2897 used_len = block->used_length - offset; 2898 } 2899 2900 start = offset >> TARGET_PAGE_BITS; 2901 npages = used_len >> TARGET_PAGE_BITS; 2902 2903 qemu_mutex_lock(&ram_state->bitmap_mutex); 2904 /* 2905 * The skipped free pages are equavalent to be sent from clear_bmap's 2906 * perspective, so clear the bits from the memory region bitmap which 2907 * are initially set. Otherwise those skipped pages will be sent in 2908 * the next round after syncing from the memory region bitmap. 2909 */ 2910 migration_clear_memory_region_dirty_bitmap_range(block, start, npages); 2911 ram_state->migration_dirty_pages -= 2912 bitmap_count_one_with_offset(block->bmap, start, npages); 2913 bitmap_clear(block->bmap, start, npages); 2914 qemu_mutex_unlock(&ram_state->bitmap_mutex); 2915 } 2916 } 2917 2918 /* 2919 * Each of ram_save_setup, ram_save_iterate and ram_save_complete has 2920 * long-running RCU critical section. When rcu-reclaims in the code 2921 * start to become numerous it will be necessary to reduce the 2922 * granularity of these critical sections. 2923 */ 2924 2925 /** 2926 * ram_save_setup: Setup RAM for migration 2927 * 2928 * Returns zero to indicate success and negative for error 2929 * 2930 * @f: QEMUFile where to send the data 2931 * @opaque: RAMState pointer 2932 */ 2933 static int ram_save_setup(QEMUFile *f, void *opaque) 2934 { 2935 RAMState **rsp = opaque; 2936 RAMBlock *block; 2937 int ret; 2938 2939 if (compress_threads_save_setup()) { 2940 return -1; 2941 } 2942 2943 /* migration has already setup the bitmap, reuse it. */ 2944 if (!migration_in_colo_state()) { 2945 if (ram_init_all(rsp) != 0) { 2946 compress_threads_save_cleanup(); 2947 return -1; 2948 } 2949 } 2950 (*rsp)->pss[RAM_CHANNEL_PRECOPY].pss_channel = f; 2951 2952 WITH_RCU_READ_LOCK_GUARD() { 2953 qemu_put_be64(f, ram_bytes_total_with_ignored() 2954 | RAM_SAVE_FLAG_MEM_SIZE); 2955 2956 RAMBLOCK_FOREACH_MIGRATABLE(block) { 2957 qemu_put_byte(f, strlen(block->idstr)); 2958 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr)); 2959 qemu_put_be64(f, block->used_length); 2960 if (migrate_postcopy_ram() && block->page_size != 2961 qemu_host_page_size) { 2962 qemu_put_be64(f, block->page_size); 2963 } 2964 if (migrate_ignore_shared()) { 2965 qemu_put_be64(f, block->mr->addr); 2966 } 2967 } 2968 } 2969 2970 ret = rdma_registration_start(f, RAM_CONTROL_SETUP); 2971 if (ret < 0) { 2972 qemu_file_set_error(f, ret); 2973 return ret; 2974 } 2975 2976 ret = rdma_registration_stop(f, RAM_CONTROL_SETUP); 2977 if (ret < 0) { 2978 qemu_file_set_error(f, ret); 2979 return ret; 2980 } 2981 2982 migration_ops = g_malloc0(sizeof(MigrationOps)); 2983 migration_ops->ram_save_target_page = ram_save_target_page_legacy; 2984 2985 qemu_mutex_unlock_iothread(); 2986 ret = multifd_send_sync_main(f); 2987 qemu_mutex_lock_iothread(); 2988 if (ret < 0) { 2989 return ret; 2990 } 2991 2992 if (migrate_multifd() && !migrate_multifd_flush_after_each_section()) { 2993 qemu_put_be64(f, RAM_SAVE_FLAG_MULTIFD_FLUSH); 2994 } 2995 2996 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 2997 return qemu_fflush(f); 2998 } 2999 3000 /** 3001 * ram_save_iterate: iterative stage for migration 3002 * 3003 * Returns zero to indicate success and negative for error 3004 * 3005 * @f: QEMUFile where to send the data 3006 * @opaque: RAMState pointer 3007 */ 3008 static int ram_save_iterate(QEMUFile *f, void *opaque) 3009 { 3010 RAMState **temp = opaque; 3011 RAMState *rs = *temp; 3012 int ret = 0; 3013 int i; 3014 int64_t t0; 3015 int done = 0; 3016 3017 if (blk_mig_bulk_active()) { 3018 /* Avoid transferring ram during bulk phase of block migration as 3019 * the bulk phase will usually take a long time and transferring 3020 * ram updates during that time is pointless. */ 3021 goto out; 3022 } 3023 3024 /* 3025 * We'll take this lock a little bit long, but it's okay for two reasons. 3026 * Firstly, the only possible other thread to take it is who calls 3027 * qemu_guest_free_page_hint(), which should be rare; secondly, see 3028 * MAX_WAIT (if curious, further see commit 4508bd9ed8053ce) below, which 3029 * guarantees that we'll at least released it in a regular basis. 3030 */ 3031 qemu_mutex_lock(&rs->bitmap_mutex); 3032 WITH_RCU_READ_LOCK_GUARD() { 3033 if (ram_list.version != rs->last_version) { 3034 ram_state_reset(rs); 3035 } 3036 3037 /* Read version before ram_list.blocks */ 3038 smp_rmb(); 3039 3040 ret = rdma_registration_start(f, RAM_CONTROL_ROUND); 3041 if (ret < 0) { 3042 qemu_file_set_error(f, ret); 3043 goto out; 3044 } 3045 3046 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 3047 i = 0; 3048 while ((ret = migration_rate_exceeded(f)) == 0 || 3049 postcopy_has_request(rs)) { 3050 int pages; 3051 3052 if (qemu_file_get_error(f)) { 3053 break; 3054 } 3055 3056 pages = ram_find_and_save_block(rs); 3057 /* no more pages to sent */ 3058 if (pages == 0) { 3059 done = 1; 3060 break; 3061 } 3062 3063 if (pages < 0) { 3064 qemu_file_set_error(f, pages); 3065 break; 3066 } 3067 3068 rs->target_page_count += pages; 3069 3070 /* 3071 * During postcopy, it is necessary to make sure one whole host 3072 * page is sent in one chunk. 3073 */ 3074 if (migrate_postcopy_ram()) { 3075 compress_flush_data(); 3076 } 3077 3078 /* 3079 * we want to check in the 1st loop, just in case it was the 1st 3080 * time and we had to sync the dirty bitmap. 3081 * qemu_clock_get_ns() is a bit expensive, so we only check each 3082 * some iterations 3083 */ 3084 if ((i & 63) == 0) { 3085 uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) / 3086 1000000; 3087 if (t1 > MAX_WAIT) { 3088 trace_ram_save_iterate_big_wait(t1, i); 3089 break; 3090 } 3091 } 3092 i++; 3093 } 3094 } 3095 qemu_mutex_unlock(&rs->bitmap_mutex); 3096 3097 /* 3098 * Must occur before EOS (or any QEMUFile operation) 3099 * because of RDMA protocol. 3100 */ 3101 ret = rdma_registration_stop(f, RAM_CONTROL_ROUND); 3102 if (ret < 0) { 3103 qemu_file_set_error(f, ret); 3104 } 3105 3106 out: 3107 if (ret >= 0 3108 && migration_is_setup_or_active(migrate_get_current()->state)) { 3109 if (migrate_multifd() && migrate_multifd_flush_after_each_section()) { 3110 ret = multifd_send_sync_main(rs->pss[RAM_CHANNEL_PRECOPY].pss_channel); 3111 if (ret < 0) { 3112 return ret; 3113 } 3114 } 3115 3116 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 3117 ram_transferred_add(8); 3118 ret = qemu_fflush(f); 3119 } 3120 if (ret < 0) { 3121 return ret; 3122 } 3123 3124 return done; 3125 } 3126 3127 /** 3128 * ram_save_complete: function called to send the remaining amount of ram 3129 * 3130 * Returns zero to indicate success or negative on error 3131 * 3132 * Called with iothread lock 3133 * 3134 * @f: QEMUFile where to send the data 3135 * @opaque: RAMState pointer 3136 */ 3137 static int ram_save_complete(QEMUFile *f, void *opaque) 3138 { 3139 RAMState **temp = opaque; 3140 RAMState *rs = *temp; 3141 int ret = 0; 3142 3143 rs->last_stage = !migration_in_colo_state(); 3144 3145 WITH_RCU_READ_LOCK_GUARD() { 3146 if (!migration_in_postcopy()) { 3147 migration_bitmap_sync_precopy(rs, true); 3148 } 3149 3150 ret = rdma_registration_start(f, RAM_CONTROL_FINISH); 3151 if (ret < 0) { 3152 qemu_file_set_error(f, ret); 3153 return ret; 3154 } 3155 3156 /* try transferring iterative blocks of memory */ 3157 3158 /* flush all remaining blocks regardless of rate limiting */ 3159 qemu_mutex_lock(&rs->bitmap_mutex); 3160 while (true) { 3161 int pages; 3162 3163 pages = ram_find_and_save_block(rs); 3164 /* no more blocks to sent */ 3165 if (pages == 0) { 3166 break; 3167 } 3168 if (pages < 0) { 3169 qemu_mutex_unlock(&rs->bitmap_mutex); 3170 return pages; 3171 } 3172 } 3173 qemu_mutex_unlock(&rs->bitmap_mutex); 3174 3175 compress_flush_data(); 3176 3177 ret = rdma_registration_stop(f, RAM_CONTROL_FINISH); 3178 if (ret < 0) { 3179 qemu_file_set_error(f, ret); 3180 return ret; 3181 } 3182 } 3183 3184 ret = multifd_send_sync_main(rs->pss[RAM_CHANNEL_PRECOPY].pss_channel); 3185 if (ret < 0) { 3186 return ret; 3187 } 3188 3189 if (migrate_multifd() && !migrate_multifd_flush_after_each_section()) { 3190 qemu_put_be64(f, RAM_SAVE_FLAG_MULTIFD_FLUSH); 3191 } 3192 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 3193 return qemu_fflush(f); 3194 } 3195 3196 static void ram_state_pending_estimate(void *opaque, uint64_t *must_precopy, 3197 uint64_t *can_postcopy) 3198 { 3199 RAMState **temp = opaque; 3200 RAMState *rs = *temp; 3201 3202 uint64_t remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE; 3203 3204 if (migrate_postcopy_ram()) { 3205 /* We can do postcopy, and all the data is postcopiable */ 3206 *can_postcopy += remaining_size; 3207 } else { 3208 *must_precopy += remaining_size; 3209 } 3210 } 3211 3212 static void ram_state_pending_exact(void *opaque, uint64_t *must_precopy, 3213 uint64_t *can_postcopy) 3214 { 3215 MigrationState *s = migrate_get_current(); 3216 RAMState **temp = opaque; 3217 RAMState *rs = *temp; 3218 3219 uint64_t remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE; 3220 3221 if (!migration_in_postcopy() && remaining_size < s->threshold_size) { 3222 qemu_mutex_lock_iothread(); 3223 WITH_RCU_READ_LOCK_GUARD() { 3224 migration_bitmap_sync_precopy(rs, false); 3225 } 3226 qemu_mutex_unlock_iothread(); 3227 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE; 3228 } 3229 3230 if (migrate_postcopy_ram()) { 3231 /* We can do postcopy, and all the data is postcopiable */ 3232 *can_postcopy += remaining_size; 3233 } else { 3234 *must_precopy += remaining_size; 3235 } 3236 } 3237 3238 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host) 3239 { 3240 unsigned int xh_len; 3241 int xh_flags; 3242 uint8_t *loaded_data; 3243 3244 /* extract RLE header */ 3245 xh_flags = qemu_get_byte(f); 3246 xh_len = qemu_get_be16(f); 3247 3248 if (xh_flags != ENCODING_FLAG_XBZRLE) { 3249 error_report("Failed to load XBZRLE page - wrong compression!"); 3250 return -1; 3251 } 3252 3253 if (xh_len > TARGET_PAGE_SIZE) { 3254 error_report("Failed to load XBZRLE page - len overflow!"); 3255 return -1; 3256 } 3257 loaded_data = XBZRLE.decoded_buf; 3258 /* load data and decode */ 3259 /* it can change loaded_data to point to an internal buffer */ 3260 qemu_get_buffer_in_place(f, &loaded_data, xh_len); 3261 3262 /* decode RLE */ 3263 if (xbzrle_decode_buffer(loaded_data, xh_len, host, 3264 TARGET_PAGE_SIZE) == -1) { 3265 error_report("Failed to load XBZRLE page - decode error!"); 3266 return -1; 3267 } 3268 3269 return 0; 3270 } 3271 3272 /** 3273 * ram_block_from_stream: read a RAMBlock id from the migration stream 3274 * 3275 * Must be called from within a rcu critical section. 3276 * 3277 * Returns a pointer from within the RCU-protected ram_list. 3278 * 3279 * @mis: the migration incoming state pointer 3280 * @f: QEMUFile where to read the data from 3281 * @flags: Page flags (mostly to see if it's a continuation of previous block) 3282 * @channel: the channel we're using 3283 */ 3284 static inline RAMBlock *ram_block_from_stream(MigrationIncomingState *mis, 3285 QEMUFile *f, int flags, 3286 int channel) 3287 { 3288 RAMBlock *block = mis->last_recv_block[channel]; 3289 char id[256]; 3290 uint8_t len; 3291 3292 if (flags & RAM_SAVE_FLAG_CONTINUE) { 3293 if (!block) { 3294 error_report("Ack, bad migration stream!"); 3295 return NULL; 3296 } 3297 return block; 3298 } 3299 3300 len = qemu_get_byte(f); 3301 qemu_get_buffer(f, (uint8_t *)id, len); 3302 id[len] = 0; 3303 3304 block = qemu_ram_block_by_name(id); 3305 if (!block) { 3306 error_report("Can't find block %s", id); 3307 return NULL; 3308 } 3309 3310 if (migrate_ram_is_ignored(block)) { 3311 error_report("block %s should not be migrated !", id); 3312 return NULL; 3313 } 3314 3315 mis->last_recv_block[channel] = block; 3316 3317 return block; 3318 } 3319 3320 static inline void *host_from_ram_block_offset(RAMBlock *block, 3321 ram_addr_t offset) 3322 { 3323 if (!offset_in_ramblock(block, offset)) { 3324 return NULL; 3325 } 3326 3327 return block->host + offset; 3328 } 3329 3330 static void *host_page_from_ram_block_offset(RAMBlock *block, 3331 ram_addr_t offset) 3332 { 3333 /* Note: Explicitly no check against offset_in_ramblock(). */ 3334 return (void *)QEMU_ALIGN_DOWN((uintptr_t)(block->host + offset), 3335 block->page_size); 3336 } 3337 3338 static ram_addr_t host_page_offset_from_ram_block_offset(RAMBlock *block, 3339 ram_addr_t offset) 3340 { 3341 return ((uintptr_t)block->host + offset) & (block->page_size - 1); 3342 } 3343 3344 void colo_record_bitmap(RAMBlock *block, ram_addr_t *normal, uint32_t pages) 3345 { 3346 qemu_mutex_lock(&ram_state->bitmap_mutex); 3347 for (int i = 0; i < pages; i++) { 3348 ram_addr_t offset = normal[i]; 3349 ram_state->migration_dirty_pages += !test_and_set_bit( 3350 offset >> TARGET_PAGE_BITS, 3351 block->bmap); 3352 } 3353 qemu_mutex_unlock(&ram_state->bitmap_mutex); 3354 } 3355 3356 static inline void *colo_cache_from_block_offset(RAMBlock *block, 3357 ram_addr_t offset, bool record_bitmap) 3358 { 3359 if (!offset_in_ramblock(block, offset)) { 3360 return NULL; 3361 } 3362 if (!block->colo_cache) { 3363 error_report("%s: colo_cache is NULL in block :%s", 3364 __func__, block->idstr); 3365 return NULL; 3366 } 3367 3368 /* 3369 * During colo checkpoint, we need bitmap of these migrated pages. 3370 * It help us to decide which pages in ram cache should be flushed 3371 * into VM's RAM later. 3372 */ 3373 if (record_bitmap) { 3374 colo_record_bitmap(block, &offset, 1); 3375 } 3376 return block->colo_cache + offset; 3377 } 3378 3379 /** 3380 * ram_handle_zero: handle the zero page case 3381 * 3382 * If a page (or a whole RDMA chunk) has been 3383 * determined to be zero, then zap it. 3384 * 3385 * @host: host address for the zero page 3386 * @ch: what the page is filled from. We only support zero 3387 * @size: size of the zero page 3388 */ 3389 void ram_handle_zero(void *host, uint64_t size) 3390 { 3391 if (!buffer_is_zero(host, size)) { 3392 memset(host, 0, size); 3393 } 3394 } 3395 3396 static void colo_init_ram_state(void) 3397 { 3398 ram_state_init(&ram_state); 3399 } 3400 3401 /* 3402 * colo cache: this is for secondary VM, we cache the whole 3403 * memory of the secondary VM, it is need to hold the global lock 3404 * to call this helper. 3405 */ 3406 int colo_init_ram_cache(void) 3407 { 3408 RAMBlock *block; 3409 3410 WITH_RCU_READ_LOCK_GUARD() { 3411 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3412 block->colo_cache = qemu_anon_ram_alloc(block->used_length, 3413 NULL, false, false); 3414 if (!block->colo_cache) { 3415 error_report("%s: Can't alloc memory for COLO cache of block %s," 3416 "size 0x" RAM_ADDR_FMT, __func__, block->idstr, 3417 block->used_length); 3418 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3419 if (block->colo_cache) { 3420 qemu_anon_ram_free(block->colo_cache, block->used_length); 3421 block->colo_cache = NULL; 3422 } 3423 } 3424 return -errno; 3425 } 3426 if (!machine_dump_guest_core(current_machine)) { 3427 qemu_madvise(block->colo_cache, block->used_length, 3428 QEMU_MADV_DONTDUMP); 3429 } 3430 } 3431 } 3432 3433 /* 3434 * Record the dirty pages that sent by PVM, we use this dirty bitmap together 3435 * with to decide which page in cache should be flushed into SVM's RAM. Here 3436 * we use the same name 'ram_bitmap' as for migration. 3437 */ 3438 if (ram_bytes_total()) { 3439 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3440 unsigned long pages = block->max_length >> TARGET_PAGE_BITS; 3441 block->bmap = bitmap_new(pages); 3442 } 3443 } 3444 3445 colo_init_ram_state(); 3446 return 0; 3447 } 3448 3449 /* TODO: duplicated with ram_init_bitmaps */ 3450 void colo_incoming_start_dirty_log(void) 3451 { 3452 RAMBlock *block = NULL; 3453 /* For memory_global_dirty_log_start below. */ 3454 qemu_mutex_lock_iothread(); 3455 qemu_mutex_lock_ramlist(); 3456 3457 memory_global_dirty_log_sync(false); 3458 WITH_RCU_READ_LOCK_GUARD() { 3459 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3460 ramblock_sync_dirty_bitmap(ram_state, block); 3461 /* Discard this dirty bitmap record */ 3462 bitmap_zero(block->bmap, block->max_length >> TARGET_PAGE_BITS); 3463 } 3464 memory_global_dirty_log_start(GLOBAL_DIRTY_MIGRATION); 3465 } 3466 ram_state->migration_dirty_pages = 0; 3467 qemu_mutex_unlock_ramlist(); 3468 qemu_mutex_unlock_iothread(); 3469 } 3470 3471 /* It is need to hold the global lock to call this helper */ 3472 void colo_release_ram_cache(void) 3473 { 3474 RAMBlock *block; 3475 3476 memory_global_dirty_log_stop(GLOBAL_DIRTY_MIGRATION); 3477 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3478 g_free(block->bmap); 3479 block->bmap = NULL; 3480 } 3481 3482 WITH_RCU_READ_LOCK_GUARD() { 3483 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3484 if (block->colo_cache) { 3485 qemu_anon_ram_free(block->colo_cache, block->used_length); 3486 block->colo_cache = NULL; 3487 } 3488 } 3489 } 3490 ram_state_cleanup(&ram_state); 3491 } 3492 3493 /** 3494 * ram_load_setup: Setup RAM for migration incoming side 3495 * 3496 * Returns zero to indicate success and negative for error 3497 * 3498 * @f: QEMUFile where to receive the data 3499 * @opaque: RAMState pointer 3500 */ 3501 static int ram_load_setup(QEMUFile *f, void *opaque) 3502 { 3503 xbzrle_load_setup(); 3504 ramblock_recv_map_init(); 3505 3506 return 0; 3507 } 3508 3509 static int ram_load_cleanup(void *opaque) 3510 { 3511 RAMBlock *rb; 3512 3513 RAMBLOCK_FOREACH_NOT_IGNORED(rb) { 3514 qemu_ram_block_writeback(rb); 3515 } 3516 3517 xbzrle_load_cleanup(); 3518 3519 RAMBLOCK_FOREACH_NOT_IGNORED(rb) { 3520 g_free(rb->receivedmap); 3521 rb->receivedmap = NULL; 3522 } 3523 3524 return 0; 3525 } 3526 3527 /** 3528 * ram_postcopy_incoming_init: allocate postcopy data structures 3529 * 3530 * Returns 0 for success and negative if there was one error 3531 * 3532 * @mis: current migration incoming state 3533 * 3534 * Allocate data structures etc needed by incoming migration with 3535 * postcopy-ram. postcopy-ram's similarly names 3536 * postcopy_ram_incoming_init does the work. 3537 */ 3538 int ram_postcopy_incoming_init(MigrationIncomingState *mis) 3539 { 3540 return postcopy_ram_incoming_init(mis); 3541 } 3542 3543 /** 3544 * ram_load_postcopy: load a page in postcopy case 3545 * 3546 * Returns 0 for success or -errno in case of error 3547 * 3548 * Called in postcopy mode by ram_load(). 3549 * rcu_read_lock is taken prior to this being called. 3550 * 3551 * @f: QEMUFile where to send the data 3552 * @channel: the channel to use for loading 3553 */ 3554 int ram_load_postcopy(QEMUFile *f, int channel) 3555 { 3556 int flags = 0, ret = 0; 3557 bool place_needed = false; 3558 bool matches_target_page_size = false; 3559 MigrationIncomingState *mis = migration_incoming_get_current(); 3560 PostcopyTmpPage *tmp_page = &mis->postcopy_tmp_pages[channel]; 3561 3562 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) { 3563 ram_addr_t addr; 3564 void *page_buffer = NULL; 3565 void *place_source = NULL; 3566 RAMBlock *block = NULL; 3567 uint8_t ch; 3568 int len; 3569 3570 addr = qemu_get_be64(f); 3571 3572 /* 3573 * If qemu file error, we should stop here, and then "addr" 3574 * may be invalid 3575 */ 3576 ret = qemu_file_get_error(f); 3577 if (ret) { 3578 break; 3579 } 3580 3581 flags = addr & ~TARGET_PAGE_MASK; 3582 addr &= TARGET_PAGE_MASK; 3583 3584 trace_ram_load_postcopy_loop(channel, (uint64_t)addr, flags); 3585 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE | 3586 RAM_SAVE_FLAG_COMPRESS_PAGE)) { 3587 block = ram_block_from_stream(mis, f, flags, channel); 3588 if (!block) { 3589 ret = -EINVAL; 3590 break; 3591 } 3592 3593 /* 3594 * Relying on used_length is racy and can result in false positives. 3595 * We might place pages beyond used_length in case RAM was shrunk 3596 * while in postcopy, which is fine - trying to place via 3597 * UFFDIO_COPY/UFFDIO_ZEROPAGE will never segfault. 3598 */ 3599 if (!block->host || addr >= block->postcopy_length) { 3600 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr); 3601 ret = -EINVAL; 3602 break; 3603 } 3604 tmp_page->target_pages++; 3605 matches_target_page_size = block->page_size == TARGET_PAGE_SIZE; 3606 /* 3607 * Postcopy requires that we place whole host pages atomically; 3608 * these may be huge pages for RAMBlocks that are backed by 3609 * hugetlbfs. 3610 * To make it atomic, the data is read into a temporary page 3611 * that's moved into place later. 3612 * The migration protocol uses, possibly smaller, target-pages 3613 * however the source ensures it always sends all the components 3614 * of a host page in one chunk. 3615 */ 3616 page_buffer = tmp_page->tmp_huge_page + 3617 host_page_offset_from_ram_block_offset(block, addr); 3618 /* If all TP are zero then we can optimise the place */ 3619 if (tmp_page->target_pages == 1) { 3620 tmp_page->host_addr = 3621 host_page_from_ram_block_offset(block, addr); 3622 } else if (tmp_page->host_addr != 3623 host_page_from_ram_block_offset(block, addr)) { 3624 /* not the 1st TP within the HP */ 3625 error_report("Non-same host page detected on channel %d: " 3626 "Target host page %p, received host page %p " 3627 "(rb %s offset 0x"RAM_ADDR_FMT" target_pages %d)", 3628 channel, tmp_page->host_addr, 3629 host_page_from_ram_block_offset(block, addr), 3630 block->idstr, addr, tmp_page->target_pages); 3631 ret = -EINVAL; 3632 break; 3633 } 3634 3635 /* 3636 * If it's the last part of a host page then we place the host 3637 * page 3638 */ 3639 if (tmp_page->target_pages == 3640 (block->page_size / TARGET_PAGE_SIZE)) { 3641 place_needed = true; 3642 } 3643 place_source = tmp_page->tmp_huge_page; 3644 } 3645 3646 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) { 3647 case RAM_SAVE_FLAG_ZERO: 3648 ch = qemu_get_byte(f); 3649 if (ch != 0) { 3650 error_report("Found a zero page with value %d", ch); 3651 ret = -EINVAL; 3652 break; 3653 } 3654 /* 3655 * Can skip to set page_buffer when 3656 * this is a zero page and (block->page_size == TARGET_PAGE_SIZE). 3657 */ 3658 if (!matches_target_page_size) { 3659 memset(page_buffer, ch, TARGET_PAGE_SIZE); 3660 } 3661 break; 3662 3663 case RAM_SAVE_FLAG_PAGE: 3664 tmp_page->all_zero = false; 3665 if (!matches_target_page_size) { 3666 /* For huge pages, we always use temporary buffer */ 3667 qemu_get_buffer(f, page_buffer, TARGET_PAGE_SIZE); 3668 } else { 3669 /* 3670 * For small pages that matches target page size, we 3671 * avoid the qemu_file copy. Instead we directly use 3672 * the buffer of QEMUFile to place the page. Note: we 3673 * cannot do any QEMUFile operation before using that 3674 * buffer to make sure the buffer is valid when 3675 * placing the page. 3676 */ 3677 qemu_get_buffer_in_place(f, (uint8_t **)&place_source, 3678 TARGET_PAGE_SIZE); 3679 } 3680 break; 3681 case RAM_SAVE_FLAG_COMPRESS_PAGE: 3682 tmp_page->all_zero = false; 3683 len = qemu_get_be32(f); 3684 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) { 3685 error_report("Invalid compressed data length: %d", len); 3686 ret = -EINVAL; 3687 break; 3688 } 3689 decompress_data_with_multi_threads(f, page_buffer, len); 3690 break; 3691 case RAM_SAVE_FLAG_MULTIFD_FLUSH: 3692 multifd_recv_sync_main(); 3693 break; 3694 case RAM_SAVE_FLAG_EOS: 3695 /* normal exit */ 3696 if (migrate_multifd() && 3697 migrate_multifd_flush_after_each_section()) { 3698 multifd_recv_sync_main(); 3699 } 3700 break; 3701 default: 3702 error_report("Unknown combination of migration flags: 0x%x" 3703 " (postcopy mode)", flags); 3704 ret = -EINVAL; 3705 break; 3706 } 3707 3708 /* Got the whole host page, wait for decompress before placing. */ 3709 if (place_needed) { 3710 ret |= wait_for_decompress_done(); 3711 } 3712 3713 /* Detect for any possible file errors */ 3714 if (!ret && qemu_file_get_error(f)) { 3715 ret = qemu_file_get_error(f); 3716 } 3717 3718 if (!ret && place_needed) { 3719 if (tmp_page->all_zero) { 3720 ret = postcopy_place_page_zero(mis, tmp_page->host_addr, block); 3721 } else { 3722 ret = postcopy_place_page(mis, tmp_page->host_addr, 3723 place_source, block); 3724 } 3725 place_needed = false; 3726 postcopy_temp_page_reset(tmp_page); 3727 } 3728 } 3729 3730 return ret; 3731 } 3732 3733 static bool postcopy_is_running(void) 3734 { 3735 PostcopyState ps = postcopy_state_get(); 3736 return ps >= POSTCOPY_INCOMING_LISTENING && ps < POSTCOPY_INCOMING_END; 3737 } 3738 3739 /* 3740 * Flush content of RAM cache into SVM's memory. 3741 * Only flush the pages that be dirtied by PVM or SVM or both. 3742 */ 3743 void colo_flush_ram_cache(void) 3744 { 3745 RAMBlock *block = NULL; 3746 void *dst_host; 3747 void *src_host; 3748 unsigned long offset = 0; 3749 3750 memory_global_dirty_log_sync(false); 3751 qemu_mutex_lock(&ram_state->bitmap_mutex); 3752 WITH_RCU_READ_LOCK_GUARD() { 3753 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3754 ramblock_sync_dirty_bitmap(ram_state, block); 3755 } 3756 } 3757 3758 trace_colo_flush_ram_cache_begin(ram_state->migration_dirty_pages); 3759 WITH_RCU_READ_LOCK_GUARD() { 3760 block = QLIST_FIRST_RCU(&ram_list.blocks); 3761 3762 while (block) { 3763 unsigned long num = 0; 3764 3765 offset = colo_bitmap_find_dirty(ram_state, block, offset, &num); 3766 if (!offset_in_ramblock(block, 3767 ((ram_addr_t)offset) << TARGET_PAGE_BITS)) { 3768 offset = 0; 3769 num = 0; 3770 block = QLIST_NEXT_RCU(block, next); 3771 } else { 3772 unsigned long i = 0; 3773 3774 for (i = 0; i < num; i++) { 3775 migration_bitmap_clear_dirty(ram_state, block, offset + i); 3776 } 3777 dst_host = block->host 3778 + (((ram_addr_t)offset) << TARGET_PAGE_BITS); 3779 src_host = block->colo_cache 3780 + (((ram_addr_t)offset) << TARGET_PAGE_BITS); 3781 memcpy(dst_host, src_host, TARGET_PAGE_SIZE * num); 3782 offset += num; 3783 } 3784 } 3785 } 3786 qemu_mutex_unlock(&ram_state->bitmap_mutex); 3787 trace_colo_flush_ram_cache_end(); 3788 } 3789 3790 static int parse_ramblock(QEMUFile *f, RAMBlock *block, ram_addr_t length) 3791 { 3792 int ret = 0; 3793 /* ADVISE is earlier, it shows the source has the postcopy capability on */ 3794 bool postcopy_advised = migration_incoming_postcopy_advised(); 3795 3796 assert(block); 3797 3798 if (!qemu_ram_is_migratable(block)) { 3799 error_report("block %s should not be migrated !", block->idstr); 3800 return -EINVAL; 3801 } 3802 3803 if (length != block->used_length) { 3804 Error *local_err = NULL; 3805 3806 ret = qemu_ram_resize(block, length, &local_err); 3807 if (local_err) { 3808 error_report_err(local_err); 3809 return ret; 3810 } 3811 } 3812 /* For postcopy we need to check hugepage sizes match */ 3813 if (postcopy_advised && migrate_postcopy_ram() && 3814 block->page_size != qemu_host_page_size) { 3815 uint64_t remote_page_size = qemu_get_be64(f); 3816 if (remote_page_size != block->page_size) { 3817 error_report("Mismatched RAM page size %s " 3818 "(local) %zd != %" PRId64, block->idstr, 3819 block->page_size, remote_page_size); 3820 return -EINVAL; 3821 } 3822 } 3823 if (migrate_ignore_shared()) { 3824 hwaddr addr = qemu_get_be64(f); 3825 if (migrate_ram_is_ignored(block) && 3826 block->mr->addr != addr) { 3827 error_report("Mismatched GPAs for block %s " 3828 "%" PRId64 "!= %" PRId64, block->idstr, 3829 (uint64_t)addr, (uint64_t)block->mr->addr); 3830 return -EINVAL; 3831 } 3832 } 3833 ret = rdma_block_notification_handle(f, block->idstr); 3834 if (ret < 0) { 3835 qemu_file_set_error(f, ret); 3836 } 3837 3838 return ret; 3839 } 3840 3841 static int parse_ramblocks(QEMUFile *f, ram_addr_t total_ram_bytes) 3842 { 3843 int ret = 0; 3844 3845 /* Synchronize RAM block list */ 3846 while (!ret && total_ram_bytes) { 3847 RAMBlock *block; 3848 char id[256]; 3849 ram_addr_t length; 3850 int len = qemu_get_byte(f); 3851 3852 qemu_get_buffer(f, (uint8_t *)id, len); 3853 id[len] = 0; 3854 length = qemu_get_be64(f); 3855 3856 block = qemu_ram_block_by_name(id); 3857 if (block) { 3858 ret = parse_ramblock(f, block, length); 3859 } else { 3860 error_report("Unknown ramblock \"%s\", cannot accept " 3861 "migration", id); 3862 ret = -EINVAL; 3863 } 3864 total_ram_bytes -= length; 3865 } 3866 3867 return ret; 3868 } 3869 3870 /** 3871 * ram_load_precopy: load pages in precopy case 3872 * 3873 * Returns 0 for success or -errno in case of error 3874 * 3875 * Called in precopy mode by ram_load(). 3876 * rcu_read_lock is taken prior to this being called. 3877 * 3878 * @f: QEMUFile where to send the data 3879 */ 3880 static int ram_load_precopy(QEMUFile *f) 3881 { 3882 MigrationIncomingState *mis = migration_incoming_get_current(); 3883 int flags = 0, ret = 0, invalid_flags = 0, len = 0, i = 0; 3884 3885 if (!migrate_compress()) { 3886 invalid_flags |= RAM_SAVE_FLAG_COMPRESS_PAGE; 3887 } 3888 3889 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) { 3890 ram_addr_t addr; 3891 void *host = NULL, *host_bak = NULL; 3892 uint8_t ch; 3893 3894 /* 3895 * Yield periodically to let main loop run, but an iteration of 3896 * the main loop is expensive, so do it each some iterations 3897 */ 3898 if ((i & 32767) == 0 && qemu_in_coroutine()) { 3899 aio_co_schedule(qemu_get_current_aio_context(), 3900 qemu_coroutine_self()); 3901 qemu_coroutine_yield(); 3902 } 3903 i++; 3904 3905 addr = qemu_get_be64(f); 3906 flags = addr & ~TARGET_PAGE_MASK; 3907 addr &= TARGET_PAGE_MASK; 3908 3909 if (flags & invalid_flags) { 3910 if (flags & invalid_flags & RAM_SAVE_FLAG_COMPRESS_PAGE) { 3911 error_report("Received an unexpected compressed page"); 3912 } 3913 3914 ret = -EINVAL; 3915 break; 3916 } 3917 3918 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE | 3919 RAM_SAVE_FLAG_COMPRESS_PAGE | RAM_SAVE_FLAG_XBZRLE)) { 3920 RAMBlock *block = ram_block_from_stream(mis, f, flags, 3921 RAM_CHANNEL_PRECOPY); 3922 3923 host = host_from_ram_block_offset(block, addr); 3924 /* 3925 * After going into COLO stage, we should not load the page 3926 * into SVM's memory directly, we put them into colo_cache firstly. 3927 * NOTE: We need to keep a copy of SVM's ram in colo_cache. 3928 * Previously, we copied all these memory in preparing stage of COLO 3929 * while we need to stop VM, which is a time-consuming process. 3930 * Here we optimize it by a trick, back-up every page while in 3931 * migration process while COLO is enabled, though it affects the 3932 * speed of the migration, but it obviously reduce the downtime of 3933 * back-up all SVM'S memory in COLO preparing stage. 3934 */ 3935 if (migration_incoming_colo_enabled()) { 3936 if (migration_incoming_in_colo_state()) { 3937 /* In COLO stage, put all pages into cache temporarily */ 3938 host = colo_cache_from_block_offset(block, addr, true); 3939 } else { 3940 /* 3941 * In migration stage but before COLO stage, 3942 * Put all pages into both cache and SVM's memory. 3943 */ 3944 host_bak = colo_cache_from_block_offset(block, addr, false); 3945 } 3946 } 3947 if (!host) { 3948 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr); 3949 ret = -EINVAL; 3950 break; 3951 } 3952 if (!migration_incoming_in_colo_state()) { 3953 ramblock_recv_bitmap_set(block, host); 3954 } 3955 3956 trace_ram_load_loop(block->idstr, (uint64_t)addr, flags, host); 3957 } 3958 3959 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) { 3960 case RAM_SAVE_FLAG_MEM_SIZE: 3961 ret = parse_ramblocks(f, addr); 3962 break; 3963 3964 case RAM_SAVE_FLAG_ZERO: 3965 ch = qemu_get_byte(f); 3966 if (ch != 0) { 3967 error_report("Found a zero page with value %d", ch); 3968 ret = -EINVAL; 3969 break; 3970 } 3971 ram_handle_zero(host, TARGET_PAGE_SIZE); 3972 break; 3973 3974 case RAM_SAVE_FLAG_PAGE: 3975 qemu_get_buffer(f, host, TARGET_PAGE_SIZE); 3976 break; 3977 3978 case RAM_SAVE_FLAG_COMPRESS_PAGE: 3979 len = qemu_get_be32(f); 3980 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) { 3981 error_report("Invalid compressed data length: %d", len); 3982 ret = -EINVAL; 3983 break; 3984 } 3985 decompress_data_with_multi_threads(f, host, len); 3986 break; 3987 3988 case RAM_SAVE_FLAG_XBZRLE: 3989 if (load_xbzrle(f, addr, host) < 0) { 3990 error_report("Failed to decompress XBZRLE page at " 3991 RAM_ADDR_FMT, addr); 3992 ret = -EINVAL; 3993 break; 3994 } 3995 break; 3996 case RAM_SAVE_FLAG_MULTIFD_FLUSH: 3997 multifd_recv_sync_main(); 3998 break; 3999 case RAM_SAVE_FLAG_EOS: 4000 /* normal exit */ 4001 if (migrate_multifd() && 4002 migrate_multifd_flush_after_each_section()) { 4003 multifd_recv_sync_main(); 4004 } 4005 break; 4006 case RAM_SAVE_FLAG_HOOK: 4007 ret = rdma_registration_handle(f); 4008 if (ret < 0) { 4009 qemu_file_set_error(f, ret); 4010 } 4011 break; 4012 default: 4013 error_report("Unknown combination of migration flags: 0x%x", flags); 4014 ret = -EINVAL; 4015 } 4016 if (!ret) { 4017 ret = qemu_file_get_error(f); 4018 } 4019 if (!ret && host_bak) { 4020 memcpy(host_bak, host, TARGET_PAGE_SIZE); 4021 } 4022 } 4023 4024 ret |= wait_for_decompress_done(); 4025 return ret; 4026 } 4027 4028 static int ram_load(QEMUFile *f, void *opaque, int version_id) 4029 { 4030 int ret = 0; 4031 static uint64_t seq_iter; 4032 /* 4033 * If system is running in postcopy mode, page inserts to host memory must 4034 * be atomic 4035 */ 4036 bool postcopy_running = postcopy_is_running(); 4037 4038 seq_iter++; 4039 4040 if (version_id != 4) { 4041 return -EINVAL; 4042 } 4043 4044 /* 4045 * This RCU critical section can be very long running. 4046 * When RCU reclaims in the code start to become numerous, 4047 * it will be necessary to reduce the granularity of this 4048 * critical section. 4049 */ 4050 WITH_RCU_READ_LOCK_GUARD() { 4051 if (postcopy_running) { 4052 /* 4053 * Note! Here RAM_CHANNEL_PRECOPY is the precopy channel of 4054 * postcopy migration, we have another RAM_CHANNEL_POSTCOPY to 4055 * service fast page faults. 4056 */ 4057 ret = ram_load_postcopy(f, RAM_CHANNEL_PRECOPY); 4058 } else { 4059 ret = ram_load_precopy(f); 4060 } 4061 } 4062 trace_ram_load_complete(ret, seq_iter); 4063 4064 return ret; 4065 } 4066 4067 static bool ram_has_postcopy(void *opaque) 4068 { 4069 RAMBlock *rb; 4070 RAMBLOCK_FOREACH_NOT_IGNORED(rb) { 4071 if (ramblock_is_pmem(rb)) { 4072 info_report("Block: %s, host: %p is a nvdimm memory, postcopy" 4073 "is not supported now!", rb->idstr, rb->host); 4074 return false; 4075 } 4076 } 4077 4078 return migrate_postcopy_ram(); 4079 } 4080 4081 /* Sync all the dirty bitmap with destination VM. */ 4082 static int ram_dirty_bitmap_sync_all(MigrationState *s, RAMState *rs) 4083 { 4084 RAMBlock *block; 4085 QEMUFile *file = s->to_dst_file; 4086 4087 trace_ram_dirty_bitmap_sync_start(); 4088 4089 qatomic_set(&rs->postcopy_bmap_sync_requested, 0); 4090 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 4091 qemu_savevm_send_recv_bitmap(file, block->idstr); 4092 trace_ram_dirty_bitmap_request(block->idstr); 4093 qatomic_inc(&rs->postcopy_bmap_sync_requested); 4094 } 4095 4096 trace_ram_dirty_bitmap_sync_wait(); 4097 4098 /* Wait until all the ramblocks' dirty bitmap synced */ 4099 while (qatomic_read(&rs->postcopy_bmap_sync_requested)) { 4100 migration_rp_wait(s); 4101 } 4102 4103 trace_ram_dirty_bitmap_sync_complete(); 4104 4105 return 0; 4106 } 4107 4108 /* 4109 * Read the received bitmap, revert it as the initial dirty bitmap. 4110 * This is only used when the postcopy migration is paused but wants 4111 * to resume from a middle point. 4112 */ 4113 int ram_dirty_bitmap_reload(MigrationState *s, RAMBlock *block) 4114 { 4115 int ret = -EINVAL; 4116 /* from_dst_file is always valid because we're within rp_thread */ 4117 QEMUFile *file = s->rp_state.from_dst_file; 4118 g_autofree unsigned long *le_bitmap = NULL; 4119 unsigned long nbits = block->used_length >> TARGET_PAGE_BITS; 4120 uint64_t local_size = DIV_ROUND_UP(nbits, 8); 4121 uint64_t size, end_mark; 4122 RAMState *rs = ram_state; 4123 4124 trace_ram_dirty_bitmap_reload_begin(block->idstr); 4125 4126 if (s->state != MIGRATION_STATUS_POSTCOPY_RECOVER) { 4127 error_report("%s: incorrect state %s", __func__, 4128 MigrationStatus_str(s->state)); 4129 return -EINVAL; 4130 } 4131 4132 /* 4133 * Note: see comments in ramblock_recv_bitmap_send() on why we 4134 * need the endianness conversion, and the paddings. 4135 */ 4136 local_size = ROUND_UP(local_size, 8); 4137 4138 /* Add paddings */ 4139 le_bitmap = bitmap_new(nbits + BITS_PER_LONG); 4140 4141 size = qemu_get_be64(file); 4142 4143 /* The size of the bitmap should match with our ramblock */ 4144 if (size != local_size) { 4145 error_report("%s: ramblock '%s' bitmap size mismatch " 4146 "(0x%"PRIx64" != 0x%"PRIx64")", __func__, 4147 block->idstr, size, local_size); 4148 return -EINVAL; 4149 } 4150 4151 size = qemu_get_buffer(file, (uint8_t *)le_bitmap, local_size); 4152 end_mark = qemu_get_be64(file); 4153 4154 ret = qemu_file_get_error(file); 4155 if (ret || size != local_size) { 4156 error_report("%s: read bitmap failed for ramblock '%s': %d" 4157 " (size 0x%"PRIx64", got: 0x%"PRIx64")", 4158 __func__, block->idstr, ret, local_size, size); 4159 return -EIO; 4160 } 4161 4162 if (end_mark != RAMBLOCK_RECV_BITMAP_ENDING) { 4163 error_report("%s: ramblock '%s' end mark incorrect: 0x%"PRIx64, 4164 __func__, block->idstr, end_mark); 4165 return -EINVAL; 4166 } 4167 4168 /* 4169 * Endianness conversion. We are during postcopy (though paused). 4170 * The dirty bitmap won't change. We can directly modify it. 4171 */ 4172 bitmap_from_le(block->bmap, le_bitmap, nbits); 4173 4174 /* 4175 * What we received is "received bitmap". Revert it as the initial 4176 * dirty bitmap for this ramblock. 4177 */ 4178 bitmap_complement(block->bmap, block->bmap, nbits); 4179 4180 /* Clear dirty bits of discarded ranges that we don't want to migrate. */ 4181 ramblock_dirty_bitmap_clear_discarded_pages(block); 4182 4183 /* We'll recalculate migration_dirty_pages in ram_state_resume_prepare(). */ 4184 trace_ram_dirty_bitmap_reload_complete(block->idstr); 4185 4186 qatomic_dec(&rs->postcopy_bmap_sync_requested); 4187 4188 /* 4189 * We succeeded to sync bitmap for current ramblock. Always kick the 4190 * migration thread to check whether all requested bitmaps are 4191 * reloaded. NOTE: it's racy to only kick when requested==0, because 4192 * we don't know whether the migration thread may still be increasing 4193 * it. 4194 */ 4195 migration_rp_kick(s); 4196 4197 return 0; 4198 } 4199 4200 static int ram_resume_prepare(MigrationState *s, void *opaque) 4201 { 4202 RAMState *rs = *(RAMState **)opaque; 4203 int ret; 4204 4205 ret = ram_dirty_bitmap_sync_all(s, rs); 4206 if (ret) { 4207 return ret; 4208 } 4209 4210 ram_state_resume_prepare(rs, s->to_dst_file); 4211 4212 return 0; 4213 } 4214 4215 void postcopy_preempt_shutdown_file(MigrationState *s) 4216 { 4217 qemu_put_be64(s->postcopy_qemufile_src, RAM_SAVE_FLAG_EOS); 4218 qemu_fflush(s->postcopy_qemufile_src); 4219 } 4220 4221 static SaveVMHandlers savevm_ram_handlers = { 4222 .save_setup = ram_save_setup, 4223 .save_live_iterate = ram_save_iterate, 4224 .save_live_complete_postcopy = ram_save_complete, 4225 .save_live_complete_precopy = ram_save_complete, 4226 .has_postcopy = ram_has_postcopy, 4227 .state_pending_exact = ram_state_pending_exact, 4228 .state_pending_estimate = ram_state_pending_estimate, 4229 .load_state = ram_load, 4230 .save_cleanup = ram_save_cleanup, 4231 .load_setup = ram_load_setup, 4232 .load_cleanup = ram_load_cleanup, 4233 .resume_prepare = ram_resume_prepare, 4234 }; 4235 4236 static void ram_mig_ram_block_resized(RAMBlockNotifier *n, void *host, 4237 size_t old_size, size_t new_size) 4238 { 4239 PostcopyState ps = postcopy_state_get(); 4240 ram_addr_t offset; 4241 RAMBlock *rb = qemu_ram_block_from_host(host, false, &offset); 4242 Error *err = NULL; 4243 4244 if (!rb) { 4245 error_report("RAM block not found"); 4246 return; 4247 } 4248 4249 if (migrate_ram_is_ignored(rb)) { 4250 return; 4251 } 4252 4253 if (!migration_is_idle()) { 4254 /* 4255 * Precopy code on the source cannot deal with the size of RAM blocks 4256 * changing at random points in time - especially after sending the 4257 * RAM block sizes in the migration stream, they must no longer change. 4258 * Abort and indicate a proper reason. 4259 */ 4260 error_setg(&err, "RAM block '%s' resized during precopy.", rb->idstr); 4261 migration_cancel(err); 4262 error_free(err); 4263 } 4264 4265 switch (ps) { 4266 case POSTCOPY_INCOMING_ADVISE: 4267 /* 4268 * Update what ram_postcopy_incoming_init()->init_range() does at the 4269 * time postcopy was advised. Syncing RAM blocks with the source will 4270 * result in RAM resizes. 4271 */ 4272 if (old_size < new_size) { 4273 if (ram_discard_range(rb->idstr, old_size, new_size - old_size)) { 4274 error_report("RAM block '%s' discard of resized RAM failed", 4275 rb->idstr); 4276 } 4277 } 4278 rb->postcopy_length = new_size; 4279 break; 4280 case POSTCOPY_INCOMING_NONE: 4281 case POSTCOPY_INCOMING_RUNNING: 4282 case POSTCOPY_INCOMING_END: 4283 /* 4284 * Once our guest is running, postcopy does no longer care about 4285 * resizes. When growing, the new memory was not available on the 4286 * source, no handler needed. 4287 */ 4288 break; 4289 default: 4290 error_report("RAM block '%s' resized during postcopy state: %d", 4291 rb->idstr, ps); 4292 exit(-1); 4293 } 4294 } 4295 4296 static RAMBlockNotifier ram_mig_ram_notifier = { 4297 .ram_block_resized = ram_mig_ram_block_resized, 4298 }; 4299 4300 void ram_mig_init(void) 4301 { 4302 qemu_mutex_init(&XBZRLE.lock); 4303 register_savevm_live("ram", 0, 4, &savevm_ram_handlers, &ram_state); 4304 ram_block_notifier_add(&ram_mig_ram_notifier); 4305 } 4306