1 /* 2 * QEMU System Emulator 3 * 4 * Copyright (c) 2003-2008 Fabrice Bellard 5 * Copyright (c) 2011-2015 Red Hat Inc 6 * 7 * Authors: 8 * Juan Quintela <quintela@redhat.com> 9 * 10 * Permission is hereby granted, free of charge, to any person obtaining a copy 11 * of this software and associated documentation files (the "Software"), to deal 12 * in the Software without restriction, including without limitation the rights 13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 14 * copies of the Software, and to permit persons to whom the Software is 15 * furnished to do so, subject to the following conditions: 16 * 17 * The above copyright notice and this permission notice shall be included in 18 * all copies or substantial portions of the Software. 19 * 20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 26 * THE SOFTWARE. 27 */ 28 29 #include "qemu/osdep.h" 30 #include "qemu/cutils.h" 31 #include "qemu/bitops.h" 32 #include "qemu/bitmap.h" 33 #include "qemu/madvise.h" 34 #include "qemu/main-loop.h" 35 #include "xbzrle.h" 36 #include "ram-compress.h" 37 #include "ram.h" 38 #include "migration.h" 39 #include "migration-stats.h" 40 #include "migration/register.h" 41 #include "migration/misc.h" 42 #include "qemu-file.h" 43 #include "postcopy-ram.h" 44 #include "page_cache.h" 45 #include "qemu/error-report.h" 46 #include "qapi/error.h" 47 #include "qapi/qapi-types-migration.h" 48 #include "qapi/qapi-events-migration.h" 49 #include "qapi/qapi-commands-migration.h" 50 #include "qapi/qmp/qerror.h" 51 #include "trace.h" 52 #include "exec/ram_addr.h" 53 #include "exec/target_page.h" 54 #include "qemu/rcu_queue.h" 55 #include "migration/colo.h" 56 #include "block.h" 57 #include "sysemu/cpu-throttle.h" 58 #include "savevm.h" 59 #include "qemu/iov.h" 60 #include "multifd.h" 61 #include "sysemu/runstate.h" 62 #include "rdma.h" 63 #include "options.h" 64 #include "sysemu/dirtylimit.h" 65 #include "sysemu/kvm.h" 66 67 #include "hw/boards.h" /* for machine_dump_guest_core() */ 68 69 #if defined(__linux__) 70 #include "qemu/userfaultfd.h" 71 #endif /* defined(__linux__) */ 72 73 /***********************************************************/ 74 /* ram save/restore */ 75 76 /* 77 * RAM_SAVE_FLAG_ZERO used to be named RAM_SAVE_FLAG_COMPRESS, it 78 * worked for pages that were filled with the same char. We switched 79 * it to only search for the zero value. And to avoid confusion with 80 * RAM_SAVE_FLAG_COMPRESS_PAGE just rename it. 81 */ 82 /* 83 * RAM_SAVE_FLAG_FULL was obsoleted in 2009, it can be reused now 84 */ 85 #define RAM_SAVE_FLAG_FULL 0x01 86 #define RAM_SAVE_FLAG_ZERO 0x02 87 #define RAM_SAVE_FLAG_MEM_SIZE 0x04 88 #define RAM_SAVE_FLAG_PAGE 0x08 89 #define RAM_SAVE_FLAG_EOS 0x10 90 #define RAM_SAVE_FLAG_CONTINUE 0x20 91 #define RAM_SAVE_FLAG_XBZRLE 0x40 92 /* 0x80 is reserved in rdma.h for RAM_SAVE_FLAG_HOOK */ 93 #define RAM_SAVE_FLAG_COMPRESS_PAGE 0x100 94 #define RAM_SAVE_FLAG_MULTIFD_FLUSH 0x200 95 /* We can't use any flag that is bigger than 0x200 */ 96 97 XBZRLECacheStats xbzrle_counters; 98 99 /* used by the search for pages to send */ 100 struct PageSearchStatus { 101 /* The migration channel used for a specific host page */ 102 QEMUFile *pss_channel; 103 /* Last block from where we have sent data */ 104 RAMBlock *last_sent_block; 105 /* Current block being searched */ 106 RAMBlock *block; 107 /* Current page to search from */ 108 unsigned long page; 109 /* Set once we wrap around */ 110 bool complete_round; 111 /* Whether we're sending a host page */ 112 bool host_page_sending; 113 /* The start/end of current host page. Invalid if host_page_sending==false */ 114 unsigned long host_page_start; 115 unsigned long host_page_end; 116 }; 117 typedef struct PageSearchStatus PageSearchStatus; 118 119 /* struct contains XBZRLE cache and a static page 120 used by the compression */ 121 static struct { 122 /* buffer used for XBZRLE encoding */ 123 uint8_t *encoded_buf; 124 /* buffer for storing page content */ 125 uint8_t *current_buf; 126 /* Cache for XBZRLE, Protected by lock. */ 127 PageCache *cache; 128 QemuMutex lock; 129 /* it will store a page full of zeros */ 130 uint8_t *zero_target_page; 131 /* buffer used for XBZRLE decoding */ 132 uint8_t *decoded_buf; 133 } XBZRLE; 134 135 static void XBZRLE_cache_lock(void) 136 { 137 if (migrate_xbzrle()) { 138 qemu_mutex_lock(&XBZRLE.lock); 139 } 140 } 141 142 static void XBZRLE_cache_unlock(void) 143 { 144 if (migrate_xbzrle()) { 145 qemu_mutex_unlock(&XBZRLE.lock); 146 } 147 } 148 149 /** 150 * xbzrle_cache_resize: resize the xbzrle cache 151 * 152 * This function is called from migrate_params_apply in main 153 * thread, possibly while a migration is in progress. A running 154 * migration may be using the cache and might finish during this call, 155 * hence changes to the cache are protected by XBZRLE.lock(). 156 * 157 * Returns 0 for success or -1 for error 158 * 159 * @new_size: new cache size 160 * @errp: set *errp if the check failed, with reason 161 */ 162 int xbzrle_cache_resize(uint64_t new_size, Error **errp) 163 { 164 PageCache *new_cache; 165 int64_t ret = 0; 166 167 /* Check for truncation */ 168 if (new_size != (size_t)new_size) { 169 error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cache size", 170 "exceeding address space"); 171 return -1; 172 } 173 174 if (new_size == migrate_xbzrle_cache_size()) { 175 /* nothing to do */ 176 return 0; 177 } 178 179 XBZRLE_cache_lock(); 180 181 if (XBZRLE.cache != NULL) { 182 new_cache = cache_init(new_size, TARGET_PAGE_SIZE, errp); 183 if (!new_cache) { 184 ret = -1; 185 goto out; 186 } 187 188 cache_fini(XBZRLE.cache); 189 XBZRLE.cache = new_cache; 190 } 191 out: 192 XBZRLE_cache_unlock(); 193 return ret; 194 } 195 196 static bool postcopy_preempt_active(void) 197 { 198 return migrate_postcopy_preempt() && migration_in_postcopy(); 199 } 200 201 bool migrate_ram_is_ignored(RAMBlock *block) 202 { 203 return !qemu_ram_is_migratable(block) || 204 (migrate_ignore_shared() && qemu_ram_is_shared(block) 205 && qemu_ram_is_named_file(block)); 206 } 207 208 #undef RAMBLOCK_FOREACH 209 210 int foreach_not_ignored_block(RAMBlockIterFunc func, void *opaque) 211 { 212 RAMBlock *block; 213 int ret = 0; 214 215 RCU_READ_LOCK_GUARD(); 216 217 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 218 ret = func(block, opaque); 219 if (ret) { 220 break; 221 } 222 } 223 return ret; 224 } 225 226 static void ramblock_recv_map_init(void) 227 { 228 RAMBlock *rb; 229 230 RAMBLOCK_FOREACH_NOT_IGNORED(rb) { 231 assert(!rb->receivedmap); 232 rb->receivedmap = bitmap_new(rb->max_length >> qemu_target_page_bits()); 233 } 234 } 235 236 int ramblock_recv_bitmap_test(RAMBlock *rb, void *host_addr) 237 { 238 return test_bit(ramblock_recv_bitmap_offset(host_addr, rb), 239 rb->receivedmap); 240 } 241 242 bool ramblock_recv_bitmap_test_byte_offset(RAMBlock *rb, uint64_t byte_offset) 243 { 244 return test_bit(byte_offset >> TARGET_PAGE_BITS, rb->receivedmap); 245 } 246 247 void ramblock_recv_bitmap_set(RAMBlock *rb, void *host_addr) 248 { 249 set_bit_atomic(ramblock_recv_bitmap_offset(host_addr, rb), rb->receivedmap); 250 } 251 252 void ramblock_recv_bitmap_set_range(RAMBlock *rb, void *host_addr, 253 size_t nr) 254 { 255 bitmap_set_atomic(rb->receivedmap, 256 ramblock_recv_bitmap_offset(host_addr, rb), 257 nr); 258 } 259 260 #define RAMBLOCK_RECV_BITMAP_ENDING (0x0123456789abcdefULL) 261 262 /* 263 * Format: bitmap_size (8 bytes) + whole_bitmap (N bytes). 264 * 265 * Returns >0 if success with sent bytes, or <0 if error. 266 */ 267 int64_t ramblock_recv_bitmap_send(QEMUFile *file, 268 const char *block_name) 269 { 270 RAMBlock *block = qemu_ram_block_by_name(block_name); 271 unsigned long *le_bitmap, nbits; 272 uint64_t size; 273 274 if (!block) { 275 error_report("%s: invalid block name: %s", __func__, block_name); 276 return -1; 277 } 278 279 nbits = block->postcopy_length >> TARGET_PAGE_BITS; 280 281 /* 282 * Make sure the tmp bitmap buffer is big enough, e.g., on 32bit 283 * machines we may need 4 more bytes for padding (see below 284 * comment). So extend it a bit before hand. 285 */ 286 le_bitmap = bitmap_new(nbits + BITS_PER_LONG); 287 288 /* 289 * Always use little endian when sending the bitmap. This is 290 * required that when source and destination VMs are not using the 291 * same endianness. (Note: big endian won't work.) 292 */ 293 bitmap_to_le(le_bitmap, block->receivedmap, nbits); 294 295 /* Size of the bitmap, in bytes */ 296 size = DIV_ROUND_UP(nbits, 8); 297 298 /* 299 * size is always aligned to 8 bytes for 64bit machines, but it 300 * may not be true for 32bit machines. We need this padding to 301 * make sure the migration can survive even between 32bit and 302 * 64bit machines. 303 */ 304 size = ROUND_UP(size, 8); 305 306 qemu_put_be64(file, size); 307 qemu_put_buffer(file, (const uint8_t *)le_bitmap, size); 308 /* 309 * Mark as an end, in case the middle part is screwed up due to 310 * some "mysterious" reason. 311 */ 312 qemu_put_be64(file, RAMBLOCK_RECV_BITMAP_ENDING); 313 qemu_fflush(file); 314 315 g_free(le_bitmap); 316 317 if (qemu_file_get_error(file)) { 318 return qemu_file_get_error(file); 319 } 320 321 return size + sizeof(size); 322 } 323 324 /* 325 * An outstanding page request, on the source, having been received 326 * and queued 327 */ 328 struct RAMSrcPageRequest { 329 RAMBlock *rb; 330 hwaddr offset; 331 hwaddr len; 332 333 QSIMPLEQ_ENTRY(RAMSrcPageRequest) next_req; 334 }; 335 336 /* State of RAM for migration */ 337 struct RAMState { 338 /* 339 * PageSearchStatus structures for the channels when send pages. 340 * Protected by the bitmap_mutex. 341 */ 342 PageSearchStatus pss[RAM_CHANNEL_MAX]; 343 /* UFFD file descriptor, used in 'write-tracking' migration */ 344 int uffdio_fd; 345 /* total ram size in bytes */ 346 uint64_t ram_bytes_total; 347 /* Last block that we have visited searching for dirty pages */ 348 RAMBlock *last_seen_block; 349 /* Last dirty target page we have sent */ 350 ram_addr_t last_page; 351 /* last ram version we have seen */ 352 uint32_t last_version; 353 /* How many times we have dirty too many pages */ 354 int dirty_rate_high_cnt; 355 /* these variables are used for bitmap sync */ 356 /* last time we did a full bitmap_sync */ 357 int64_t time_last_bitmap_sync; 358 /* bytes transferred at start_time */ 359 uint64_t bytes_xfer_prev; 360 /* number of dirty pages since start_time */ 361 uint64_t num_dirty_pages_period; 362 /* xbzrle misses since the beginning of the period */ 363 uint64_t xbzrle_cache_miss_prev; 364 /* Amount of xbzrle pages since the beginning of the period */ 365 uint64_t xbzrle_pages_prev; 366 /* Amount of xbzrle encoded bytes since the beginning of the period */ 367 uint64_t xbzrle_bytes_prev; 368 /* Are we really using XBZRLE (e.g., after the first round). */ 369 bool xbzrle_started; 370 /* Are we on the last stage of migration */ 371 bool last_stage; 372 /* compression statistics since the beginning of the period */ 373 /* amount of count that no free thread to compress data */ 374 uint64_t compress_thread_busy_prev; 375 /* amount bytes after compression */ 376 uint64_t compressed_size_prev; 377 /* amount of compressed pages */ 378 uint64_t compress_pages_prev; 379 380 /* total handled target pages at the beginning of period */ 381 uint64_t target_page_count_prev; 382 /* total handled target pages since start */ 383 uint64_t target_page_count; 384 /* number of dirty bits in the bitmap */ 385 uint64_t migration_dirty_pages; 386 /* 387 * Protects: 388 * - dirty/clear bitmap 389 * - migration_dirty_pages 390 * - pss structures 391 */ 392 QemuMutex bitmap_mutex; 393 /* The RAMBlock used in the last src_page_requests */ 394 RAMBlock *last_req_rb; 395 /* Queue of outstanding page requests from the destination */ 396 QemuMutex src_page_req_mutex; 397 QSIMPLEQ_HEAD(, RAMSrcPageRequest) src_page_requests; 398 399 /* 400 * This is only used when postcopy is in recovery phase, to communicate 401 * between the migration thread and the return path thread on dirty 402 * bitmap synchronizations. This field is unused in other stages of 403 * RAM migration. 404 */ 405 unsigned int postcopy_bmap_sync_requested; 406 }; 407 typedef struct RAMState RAMState; 408 409 static RAMState *ram_state; 410 411 static NotifierWithReturnList precopy_notifier_list; 412 413 /* Whether postcopy has queued requests? */ 414 static bool postcopy_has_request(RAMState *rs) 415 { 416 return !QSIMPLEQ_EMPTY_ATOMIC(&rs->src_page_requests); 417 } 418 419 void precopy_infrastructure_init(void) 420 { 421 notifier_with_return_list_init(&precopy_notifier_list); 422 } 423 424 void precopy_add_notifier(NotifierWithReturn *n) 425 { 426 notifier_with_return_list_add(&precopy_notifier_list, n); 427 } 428 429 void precopy_remove_notifier(NotifierWithReturn *n) 430 { 431 notifier_with_return_remove(n); 432 } 433 434 int precopy_notify(PrecopyNotifyReason reason, Error **errp) 435 { 436 PrecopyNotifyData pnd; 437 pnd.reason = reason; 438 pnd.errp = errp; 439 440 return notifier_with_return_list_notify(&precopy_notifier_list, &pnd); 441 } 442 443 uint64_t ram_bytes_remaining(void) 444 { 445 return ram_state ? (ram_state->migration_dirty_pages * TARGET_PAGE_SIZE) : 446 0; 447 } 448 449 void ram_transferred_add(uint64_t bytes) 450 { 451 if (runstate_is_running()) { 452 stat64_add(&mig_stats.precopy_bytes, bytes); 453 } else if (migration_in_postcopy()) { 454 stat64_add(&mig_stats.postcopy_bytes, bytes); 455 } else { 456 stat64_add(&mig_stats.downtime_bytes, bytes); 457 } 458 stat64_add(&mig_stats.transferred, bytes); 459 } 460 461 struct MigrationOps { 462 int (*ram_save_target_page)(RAMState *rs, PageSearchStatus *pss); 463 }; 464 typedef struct MigrationOps MigrationOps; 465 466 MigrationOps *migration_ops; 467 468 static int ram_save_host_page_urgent(PageSearchStatus *pss); 469 470 /* NOTE: page is the PFN not real ram_addr_t. */ 471 static void pss_init(PageSearchStatus *pss, RAMBlock *rb, ram_addr_t page) 472 { 473 pss->block = rb; 474 pss->page = page; 475 pss->complete_round = false; 476 } 477 478 /* 479 * Check whether two PSSs are actively sending the same page. Return true 480 * if it is, false otherwise. 481 */ 482 static bool pss_overlap(PageSearchStatus *pss1, PageSearchStatus *pss2) 483 { 484 return pss1->host_page_sending && pss2->host_page_sending && 485 (pss1->host_page_start == pss2->host_page_start); 486 } 487 488 /** 489 * save_page_header: write page header to wire 490 * 491 * If this is the 1st block, it also writes the block identification 492 * 493 * Returns the number of bytes written 494 * 495 * @pss: current PSS channel status 496 * @block: block that contains the page we want to send 497 * @offset: offset inside the block for the page 498 * in the lower bits, it contains flags 499 */ 500 static size_t save_page_header(PageSearchStatus *pss, QEMUFile *f, 501 RAMBlock *block, ram_addr_t offset) 502 { 503 size_t size, len; 504 bool same_block = (block == pss->last_sent_block); 505 506 if (same_block) { 507 offset |= RAM_SAVE_FLAG_CONTINUE; 508 } 509 qemu_put_be64(f, offset); 510 size = 8; 511 512 if (!same_block) { 513 len = strlen(block->idstr); 514 qemu_put_byte(f, len); 515 qemu_put_buffer(f, (uint8_t *)block->idstr, len); 516 size += 1 + len; 517 pss->last_sent_block = block; 518 } 519 return size; 520 } 521 522 /** 523 * mig_throttle_guest_down: throttle down the guest 524 * 525 * Reduce amount of guest cpu execution to hopefully slow down memory 526 * writes. If guest dirty memory rate is reduced below the rate at 527 * which we can transfer pages to the destination then we should be 528 * able to complete migration. Some workloads dirty memory way too 529 * fast and will not effectively converge, even with auto-converge. 530 */ 531 static void mig_throttle_guest_down(uint64_t bytes_dirty_period, 532 uint64_t bytes_dirty_threshold) 533 { 534 uint64_t pct_initial = migrate_cpu_throttle_initial(); 535 uint64_t pct_increment = migrate_cpu_throttle_increment(); 536 bool pct_tailslow = migrate_cpu_throttle_tailslow(); 537 int pct_max = migrate_max_cpu_throttle(); 538 539 uint64_t throttle_now = cpu_throttle_get_percentage(); 540 uint64_t cpu_now, cpu_ideal, throttle_inc; 541 542 /* We have not started throttling yet. Let's start it. */ 543 if (!cpu_throttle_active()) { 544 cpu_throttle_set(pct_initial); 545 } else { 546 /* Throttling already on, just increase the rate */ 547 if (!pct_tailslow) { 548 throttle_inc = pct_increment; 549 } else { 550 /* Compute the ideal CPU percentage used by Guest, which may 551 * make the dirty rate match the dirty rate threshold. */ 552 cpu_now = 100 - throttle_now; 553 cpu_ideal = cpu_now * (bytes_dirty_threshold * 1.0 / 554 bytes_dirty_period); 555 throttle_inc = MIN(cpu_now - cpu_ideal, pct_increment); 556 } 557 cpu_throttle_set(MIN(throttle_now + throttle_inc, pct_max)); 558 } 559 } 560 561 void mig_throttle_counter_reset(void) 562 { 563 RAMState *rs = ram_state; 564 565 rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); 566 rs->num_dirty_pages_period = 0; 567 rs->bytes_xfer_prev = stat64_get(&mig_stats.transferred); 568 } 569 570 /** 571 * xbzrle_cache_zero_page: insert a zero page in the XBZRLE cache 572 * 573 * @current_addr: address for the zero page 574 * 575 * Update the xbzrle cache to reflect a page that's been sent as all 0. 576 * The important thing is that a stale (not-yet-0'd) page be replaced 577 * by the new data. 578 * As a bonus, if the page wasn't in the cache it gets added so that 579 * when a small write is made into the 0'd page it gets XBZRLE sent. 580 */ 581 static void xbzrle_cache_zero_page(ram_addr_t current_addr) 582 { 583 /* We don't care if this fails to allocate a new cache page 584 * as long as it updated an old one */ 585 cache_insert(XBZRLE.cache, current_addr, XBZRLE.zero_target_page, 586 stat64_get(&mig_stats.dirty_sync_count)); 587 } 588 589 #define ENCODING_FLAG_XBZRLE 0x1 590 591 /** 592 * save_xbzrle_page: compress and send current page 593 * 594 * Returns: 1 means that we wrote the page 595 * 0 means that page is identical to the one already sent 596 * -1 means that xbzrle would be longer than normal 597 * 598 * @rs: current RAM state 599 * @pss: current PSS channel 600 * @current_data: pointer to the address of the page contents 601 * @current_addr: addr of the page 602 * @block: block that contains the page we want to send 603 * @offset: offset inside the block for the page 604 */ 605 static int save_xbzrle_page(RAMState *rs, PageSearchStatus *pss, 606 uint8_t **current_data, ram_addr_t current_addr, 607 RAMBlock *block, ram_addr_t offset) 608 { 609 int encoded_len = 0, bytes_xbzrle; 610 uint8_t *prev_cached_page; 611 QEMUFile *file = pss->pss_channel; 612 uint64_t generation = stat64_get(&mig_stats.dirty_sync_count); 613 614 if (!cache_is_cached(XBZRLE.cache, current_addr, generation)) { 615 xbzrle_counters.cache_miss++; 616 if (!rs->last_stage) { 617 if (cache_insert(XBZRLE.cache, current_addr, *current_data, 618 generation) == -1) { 619 return -1; 620 } else { 621 /* update *current_data when the page has been 622 inserted into cache */ 623 *current_data = get_cached_data(XBZRLE.cache, current_addr); 624 } 625 } 626 return -1; 627 } 628 629 /* 630 * Reaching here means the page has hit the xbzrle cache, no matter what 631 * encoding result it is (normal encoding, overflow or skipping the page), 632 * count the page as encoded. This is used to calculate the encoding rate. 633 * 634 * Example: 2 pages (8KB) being encoded, first page encoding generates 2KB, 635 * 2nd page turns out to be skipped (i.e. no new bytes written to the 636 * page), the overall encoding rate will be 8KB / 2KB = 4, which has the 637 * skipped page included. In this way, the encoding rate can tell if the 638 * guest page is good for xbzrle encoding. 639 */ 640 xbzrle_counters.pages++; 641 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr); 642 643 /* save current buffer into memory */ 644 memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE); 645 646 /* XBZRLE encoding (if there is no overflow) */ 647 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf, 648 TARGET_PAGE_SIZE, XBZRLE.encoded_buf, 649 TARGET_PAGE_SIZE); 650 651 /* 652 * Update the cache contents, so that it corresponds to the data 653 * sent, in all cases except where we skip the page. 654 */ 655 if (!rs->last_stage && encoded_len != 0) { 656 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE); 657 /* 658 * In the case where we couldn't compress, ensure that the caller 659 * sends the data from the cache, since the guest might have 660 * changed the RAM since we copied it. 661 */ 662 *current_data = prev_cached_page; 663 } 664 665 if (encoded_len == 0) { 666 trace_save_xbzrle_page_skipping(); 667 return 0; 668 } else if (encoded_len == -1) { 669 trace_save_xbzrle_page_overflow(); 670 xbzrle_counters.overflow++; 671 xbzrle_counters.bytes += TARGET_PAGE_SIZE; 672 return -1; 673 } 674 675 /* Send XBZRLE based compressed page */ 676 bytes_xbzrle = save_page_header(pss, pss->pss_channel, block, 677 offset | RAM_SAVE_FLAG_XBZRLE); 678 qemu_put_byte(file, ENCODING_FLAG_XBZRLE); 679 qemu_put_be16(file, encoded_len); 680 qemu_put_buffer(file, XBZRLE.encoded_buf, encoded_len); 681 bytes_xbzrle += encoded_len + 1 + 2; 682 /* 683 * Like compressed_size (please see update_compress_thread_counts), 684 * the xbzrle encoded bytes don't count the 8 byte header with 685 * RAM_SAVE_FLAG_CONTINUE. 686 */ 687 xbzrle_counters.bytes += bytes_xbzrle - 8; 688 ram_transferred_add(bytes_xbzrle); 689 690 return 1; 691 } 692 693 /** 694 * pss_find_next_dirty: find the next dirty page of current ramblock 695 * 696 * This function updates pss->page to point to the next dirty page index 697 * within the ramblock to migrate, or the end of ramblock when nothing 698 * found. Note that when pss->host_page_sending==true it means we're 699 * during sending a host page, so we won't look for dirty page that is 700 * outside the host page boundary. 701 * 702 * @pss: the current page search status 703 */ 704 static void pss_find_next_dirty(PageSearchStatus *pss) 705 { 706 RAMBlock *rb = pss->block; 707 unsigned long size = rb->used_length >> TARGET_PAGE_BITS; 708 unsigned long *bitmap = rb->bmap; 709 710 if (migrate_ram_is_ignored(rb)) { 711 /* Points directly to the end, so we know no dirty page */ 712 pss->page = size; 713 return; 714 } 715 716 /* 717 * If during sending a host page, only look for dirty pages within the 718 * current host page being send. 719 */ 720 if (pss->host_page_sending) { 721 assert(pss->host_page_end); 722 size = MIN(size, pss->host_page_end); 723 } 724 725 pss->page = find_next_bit(bitmap, size, pss->page); 726 } 727 728 static void migration_clear_memory_region_dirty_bitmap(RAMBlock *rb, 729 unsigned long page) 730 { 731 uint8_t shift; 732 hwaddr size, start; 733 734 if (!rb->clear_bmap || !clear_bmap_test_and_clear(rb, page)) { 735 return; 736 } 737 738 shift = rb->clear_bmap_shift; 739 /* 740 * CLEAR_BITMAP_SHIFT_MIN should always guarantee this... this 741 * can make things easier sometimes since then start address 742 * of the small chunk will always be 64 pages aligned so the 743 * bitmap will always be aligned to unsigned long. We should 744 * even be able to remove this restriction but I'm simply 745 * keeping it. 746 */ 747 assert(shift >= 6); 748 749 size = 1ULL << (TARGET_PAGE_BITS + shift); 750 start = QEMU_ALIGN_DOWN((ram_addr_t)page << TARGET_PAGE_BITS, size); 751 trace_migration_bitmap_clear_dirty(rb->idstr, start, size, page); 752 memory_region_clear_dirty_bitmap(rb->mr, start, size); 753 } 754 755 static void 756 migration_clear_memory_region_dirty_bitmap_range(RAMBlock *rb, 757 unsigned long start, 758 unsigned long npages) 759 { 760 unsigned long i, chunk_pages = 1UL << rb->clear_bmap_shift; 761 unsigned long chunk_start = QEMU_ALIGN_DOWN(start, chunk_pages); 762 unsigned long chunk_end = QEMU_ALIGN_UP(start + npages, chunk_pages); 763 764 /* 765 * Clear pages from start to start + npages - 1, so the end boundary is 766 * exclusive. 767 */ 768 for (i = chunk_start; i < chunk_end; i += chunk_pages) { 769 migration_clear_memory_region_dirty_bitmap(rb, i); 770 } 771 } 772 773 /* 774 * colo_bitmap_find_diry:find contiguous dirty pages from start 775 * 776 * Returns the page offset within memory region of the start of the contiguout 777 * dirty page 778 * 779 * @rs: current RAM state 780 * @rb: RAMBlock where to search for dirty pages 781 * @start: page where we start the search 782 * @num: the number of contiguous dirty pages 783 */ 784 static inline 785 unsigned long colo_bitmap_find_dirty(RAMState *rs, RAMBlock *rb, 786 unsigned long start, unsigned long *num) 787 { 788 unsigned long size = rb->used_length >> TARGET_PAGE_BITS; 789 unsigned long *bitmap = rb->bmap; 790 unsigned long first, next; 791 792 *num = 0; 793 794 if (migrate_ram_is_ignored(rb)) { 795 return size; 796 } 797 798 first = find_next_bit(bitmap, size, start); 799 if (first >= size) { 800 return first; 801 } 802 next = find_next_zero_bit(bitmap, size, first + 1); 803 assert(next >= first); 804 *num = next - first; 805 return first; 806 } 807 808 static inline bool migration_bitmap_clear_dirty(RAMState *rs, 809 RAMBlock *rb, 810 unsigned long page) 811 { 812 bool ret; 813 814 /* 815 * Clear dirty bitmap if needed. This _must_ be called before we 816 * send any of the page in the chunk because we need to make sure 817 * we can capture further page content changes when we sync dirty 818 * log the next time. So as long as we are going to send any of 819 * the page in the chunk we clear the remote dirty bitmap for all. 820 * Clearing it earlier won't be a problem, but too late will. 821 */ 822 migration_clear_memory_region_dirty_bitmap(rb, page); 823 824 ret = test_and_clear_bit(page, rb->bmap); 825 if (ret) { 826 rs->migration_dirty_pages--; 827 } 828 829 return ret; 830 } 831 832 static void dirty_bitmap_clear_section(MemoryRegionSection *section, 833 void *opaque) 834 { 835 const hwaddr offset = section->offset_within_region; 836 const hwaddr size = int128_get64(section->size); 837 const unsigned long start = offset >> TARGET_PAGE_BITS; 838 const unsigned long npages = size >> TARGET_PAGE_BITS; 839 RAMBlock *rb = section->mr->ram_block; 840 uint64_t *cleared_bits = opaque; 841 842 /* 843 * We don't grab ram_state->bitmap_mutex because we expect to run 844 * only when starting migration or during postcopy recovery where 845 * we don't have concurrent access. 846 */ 847 if (!migration_in_postcopy() && !migrate_background_snapshot()) { 848 migration_clear_memory_region_dirty_bitmap_range(rb, start, npages); 849 } 850 *cleared_bits += bitmap_count_one_with_offset(rb->bmap, start, npages); 851 bitmap_clear(rb->bmap, start, npages); 852 } 853 854 /* 855 * Exclude all dirty pages from migration that fall into a discarded range as 856 * managed by a RamDiscardManager responsible for the mapped memory region of 857 * the RAMBlock. Clear the corresponding bits in the dirty bitmaps. 858 * 859 * Discarded pages ("logically unplugged") have undefined content and must 860 * not get migrated, because even reading these pages for migration might 861 * result in undesired behavior. 862 * 863 * Returns the number of cleared bits in the RAMBlock dirty bitmap. 864 * 865 * Note: The result is only stable while migrating (precopy/postcopy). 866 */ 867 static uint64_t ramblock_dirty_bitmap_clear_discarded_pages(RAMBlock *rb) 868 { 869 uint64_t cleared_bits = 0; 870 871 if (rb->mr && rb->bmap && memory_region_has_ram_discard_manager(rb->mr)) { 872 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr); 873 MemoryRegionSection section = { 874 .mr = rb->mr, 875 .offset_within_region = 0, 876 .size = int128_make64(qemu_ram_get_used_length(rb)), 877 }; 878 879 ram_discard_manager_replay_discarded(rdm, §ion, 880 dirty_bitmap_clear_section, 881 &cleared_bits); 882 } 883 return cleared_bits; 884 } 885 886 /* 887 * Check if a host-page aligned page falls into a discarded range as managed by 888 * a RamDiscardManager responsible for the mapped memory region of the RAMBlock. 889 * 890 * Note: The result is only stable while migrating (precopy/postcopy). 891 */ 892 bool ramblock_page_is_discarded(RAMBlock *rb, ram_addr_t start) 893 { 894 if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) { 895 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr); 896 MemoryRegionSection section = { 897 .mr = rb->mr, 898 .offset_within_region = start, 899 .size = int128_make64(qemu_ram_pagesize(rb)), 900 }; 901 902 return !ram_discard_manager_is_populated(rdm, §ion); 903 } 904 return false; 905 } 906 907 /* Called with RCU critical section */ 908 static void ramblock_sync_dirty_bitmap(RAMState *rs, RAMBlock *rb) 909 { 910 uint64_t new_dirty_pages = 911 cpu_physical_memory_sync_dirty_bitmap(rb, 0, rb->used_length); 912 913 rs->migration_dirty_pages += new_dirty_pages; 914 rs->num_dirty_pages_period += new_dirty_pages; 915 } 916 917 /** 918 * ram_pagesize_summary: calculate all the pagesizes of a VM 919 * 920 * Returns a summary bitmap of the page sizes of all RAMBlocks 921 * 922 * For VMs with just normal pages this is equivalent to the host page 923 * size. If it's got some huge pages then it's the OR of all the 924 * different page sizes. 925 */ 926 uint64_t ram_pagesize_summary(void) 927 { 928 RAMBlock *block; 929 uint64_t summary = 0; 930 931 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 932 summary |= block->page_size; 933 } 934 935 return summary; 936 } 937 938 uint64_t ram_get_total_transferred_pages(void) 939 { 940 return stat64_get(&mig_stats.normal_pages) + 941 stat64_get(&mig_stats.zero_pages) + 942 compression_counters.pages + xbzrle_counters.pages; 943 } 944 945 static void migration_update_rates(RAMState *rs, int64_t end_time) 946 { 947 uint64_t page_count = rs->target_page_count - rs->target_page_count_prev; 948 double compressed_size; 949 950 /* calculate period counters */ 951 stat64_set(&mig_stats.dirty_pages_rate, 952 rs->num_dirty_pages_period * 1000 / 953 (end_time - rs->time_last_bitmap_sync)); 954 955 if (!page_count) { 956 return; 957 } 958 959 if (migrate_xbzrle()) { 960 double encoded_size, unencoded_size; 961 962 xbzrle_counters.cache_miss_rate = (double)(xbzrle_counters.cache_miss - 963 rs->xbzrle_cache_miss_prev) / page_count; 964 rs->xbzrle_cache_miss_prev = xbzrle_counters.cache_miss; 965 unencoded_size = (xbzrle_counters.pages - rs->xbzrle_pages_prev) * 966 TARGET_PAGE_SIZE; 967 encoded_size = xbzrle_counters.bytes - rs->xbzrle_bytes_prev; 968 if (xbzrle_counters.pages == rs->xbzrle_pages_prev || !encoded_size) { 969 xbzrle_counters.encoding_rate = 0; 970 } else { 971 xbzrle_counters.encoding_rate = unencoded_size / encoded_size; 972 } 973 rs->xbzrle_pages_prev = xbzrle_counters.pages; 974 rs->xbzrle_bytes_prev = xbzrle_counters.bytes; 975 } 976 977 if (migrate_compress()) { 978 compression_counters.busy_rate = (double)(compression_counters.busy - 979 rs->compress_thread_busy_prev) / page_count; 980 rs->compress_thread_busy_prev = compression_counters.busy; 981 982 compressed_size = compression_counters.compressed_size - 983 rs->compressed_size_prev; 984 if (compressed_size) { 985 double uncompressed_size = (compression_counters.pages - 986 rs->compress_pages_prev) * TARGET_PAGE_SIZE; 987 988 /* Compression-Ratio = Uncompressed-size / Compressed-size */ 989 compression_counters.compression_rate = 990 uncompressed_size / compressed_size; 991 992 rs->compress_pages_prev = compression_counters.pages; 993 rs->compressed_size_prev = compression_counters.compressed_size; 994 } 995 } 996 } 997 998 /* 999 * Enable dirty-limit to throttle down the guest 1000 */ 1001 static void migration_dirty_limit_guest(void) 1002 { 1003 /* 1004 * dirty page rate quota for all vCPUs fetched from 1005 * migration parameter 'vcpu_dirty_limit' 1006 */ 1007 static int64_t quota_dirtyrate; 1008 MigrationState *s = migrate_get_current(); 1009 1010 /* 1011 * If dirty limit already enabled and migration parameter 1012 * vcpu-dirty-limit untouched. 1013 */ 1014 if (dirtylimit_in_service() && 1015 quota_dirtyrate == s->parameters.vcpu_dirty_limit) { 1016 return; 1017 } 1018 1019 quota_dirtyrate = s->parameters.vcpu_dirty_limit; 1020 1021 /* 1022 * Set all vCPU a quota dirtyrate, note that the second 1023 * parameter will be ignored if setting all vCPU for the vm 1024 */ 1025 qmp_set_vcpu_dirty_limit(false, -1, quota_dirtyrate, NULL); 1026 trace_migration_dirty_limit_guest(quota_dirtyrate); 1027 } 1028 1029 static void migration_trigger_throttle(RAMState *rs) 1030 { 1031 uint64_t threshold = migrate_throttle_trigger_threshold(); 1032 uint64_t bytes_xfer_period = 1033 stat64_get(&mig_stats.transferred) - rs->bytes_xfer_prev; 1034 uint64_t bytes_dirty_period = rs->num_dirty_pages_period * TARGET_PAGE_SIZE; 1035 uint64_t bytes_dirty_threshold = bytes_xfer_period * threshold / 100; 1036 1037 /* During block migration the auto-converge logic incorrectly detects 1038 * that ram migration makes no progress. Avoid this by disabling the 1039 * throttling logic during the bulk phase of block migration. */ 1040 if (blk_mig_bulk_active()) { 1041 return; 1042 } 1043 1044 /* 1045 * The following detection logic can be refined later. For now: 1046 * Check to see if the ratio between dirtied bytes and the approx. 1047 * amount of bytes that just got transferred since the last time 1048 * we were in this routine reaches the threshold. If that happens 1049 * twice, start or increase throttling. 1050 */ 1051 if ((bytes_dirty_period > bytes_dirty_threshold) && 1052 (++rs->dirty_rate_high_cnt >= 2)) { 1053 rs->dirty_rate_high_cnt = 0; 1054 if (migrate_auto_converge()) { 1055 trace_migration_throttle(); 1056 mig_throttle_guest_down(bytes_dirty_period, 1057 bytes_dirty_threshold); 1058 } else if (migrate_dirty_limit()) { 1059 migration_dirty_limit_guest(); 1060 } 1061 } 1062 } 1063 1064 static void migration_bitmap_sync(RAMState *rs, bool last_stage) 1065 { 1066 RAMBlock *block; 1067 int64_t end_time; 1068 1069 stat64_add(&mig_stats.dirty_sync_count, 1); 1070 1071 if (!rs->time_last_bitmap_sync) { 1072 rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); 1073 } 1074 1075 trace_migration_bitmap_sync_start(); 1076 memory_global_dirty_log_sync(last_stage); 1077 1078 qemu_mutex_lock(&rs->bitmap_mutex); 1079 WITH_RCU_READ_LOCK_GUARD() { 1080 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 1081 ramblock_sync_dirty_bitmap(rs, block); 1082 } 1083 stat64_set(&mig_stats.dirty_bytes_last_sync, ram_bytes_remaining()); 1084 } 1085 qemu_mutex_unlock(&rs->bitmap_mutex); 1086 1087 memory_global_after_dirty_log_sync(); 1088 trace_migration_bitmap_sync_end(rs->num_dirty_pages_period); 1089 1090 end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); 1091 1092 /* more than 1 second = 1000 millisecons */ 1093 if (end_time > rs->time_last_bitmap_sync + 1000) { 1094 migration_trigger_throttle(rs); 1095 1096 migration_update_rates(rs, end_time); 1097 1098 rs->target_page_count_prev = rs->target_page_count; 1099 1100 /* reset period counters */ 1101 rs->time_last_bitmap_sync = end_time; 1102 rs->num_dirty_pages_period = 0; 1103 rs->bytes_xfer_prev = stat64_get(&mig_stats.transferred); 1104 } 1105 if (migrate_events()) { 1106 uint64_t generation = stat64_get(&mig_stats.dirty_sync_count); 1107 qapi_event_send_migration_pass(generation); 1108 } 1109 } 1110 1111 static void migration_bitmap_sync_precopy(RAMState *rs, bool last_stage) 1112 { 1113 Error *local_err = NULL; 1114 1115 /* 1116 * The current notifier usage is just an optimization to migration, so we 1117 * don't stop the normal migration process in the error case. 1118 */ 1119 if (precopy_notify(PRECOPY_NOTIFY_BEFORE_BITMAP_SYNC, &local_err)) { 1120 error_report_err(local_err); 1121 local_err = NULL; 1122 } 1123 1124 migration_bitmap_sync(rs, last_stage); 1125 1126 if (precopy_notify(PRECOPY_NOTIFY_AFTER_BITMAP_SYNC, &local_err)) { 1127 error_report_err(local_err); 1128 } 1129 } 1130 1131 void ram_release_page(const char *rbname, uint64_t offset) 1132 { 1133 if (!migrate_release_ram() || !migration_in_postcopy()) { 1134 return; 1135 } 1136 1137 ram_discard_range(rbname, offset, TARGET_PAGE_SIZE); 1138 } 1139 1140 /** 1141 * save_zero_page: send the zero page to the stream 1142 * 1143 * Returns the number of pages written. 1144 * 1145 * @rs: current RAM state 1146 * @pss: current PSS channel 1147 * @block: block that contains the page we want to send 1148 * @offset: offset inside the block for the page 1149 */ 1150 static int save_zero_page(RAMState *rs, PageSearchStatus *pss, RAMBlock *block, 1151 ram_addr_t offset) 1152 { 1153 uint8_t *p = block->host + offset; 1154 QEMUFile *file = pss->pss_channel; 1155 int len = 0; 1156 1157 if (!buffer_is_zero(p, TARGET_PAGE_SIZE)) { 1158 return 0; 1159 } 1160 1161 len += save_page_header(pss, file, block, offset | RAM_SAVE_FLAG_ZERO); 1162 qemu_put_byte(file, 0); 1163 len += 1; 1164 ram_release_page(block->idstr, offset); 1165 1166 stat64_add(&mig_stats.zero_pages, 1); 1167 ram_transferred_add(len); 1168 1169 /* 1170 * Must let xbzrle know, otherwise a previous (now 0'd) cached 1171 * page would be stale. 1172 */ 1173 if (rs->xbzrle_started) { 1174 XBZRLE_cache_lock(); 1175 xbzrle_cache_zero_page(block->offset + offset); 1176 XBZRLE_cache_unlock(); 1177 } 1178 1179 return len; 1180 } 1181 1182 /* 1183 * @pages: the number of pages written by the control path, 1184 * < 0 - error 1185 * > 0 - number of pages written 1186 * 1187 * Return true if the pages has been saved, otherwise false is returned. 1188 */ 1189 static bool control_save_page(PageSearchStatus *pss, RAMBlock *block, 1190 ram_addr_t offset, int *pages) 1191 { 1192 int ret; 1193 1194 ret = rdma_control_save_page(pss->pss_channel, block->offset, offset, 1195 TARGET_PAGE_SIZE); 1196 if (ret == RAM_SAVE_CONTROL_NOT_SUPP) { 1197 return false; 1198 } 1199 1200 if (ret == RAM_SAVE_CONTROL_DELAYED) { 1201 *pages = 1; 1202 return true; 1203 } 1204 *pages = ret; 1205 return true; 1206 } 1207 1208 /* 1209 * directly send the page to the stream 1210 * 1211 * Returns the number of pages written. 1212 * 1213 * @pss: current PSS channel 1214 * @block: block that contains the page we want to send 1215 * @offset: offset inside the block for the page 1216 * @buf: the page to be sent 1217 * @async: send to page asyncly 1218 */ 1219 static int save_normal_page(PageSearchStatus *pss, RAMBlock *block, 1220 ram_addr_t offset, uint8_t *buf, bool async) 1221 { 1222 QEMUFile *file = pss->pss_channel; 1223 1224 ram_transferred_add(save_page_header(pss, pss->pss_channel, block, 1225 offset | RAM_SAVE_FLAG_PAGE)); 1226 if (async) { 1227 qemu_put_buffer_async(file, buf, TARGET_PAGE_SIZE, 1228 migrate_release_ram() && 1229 migration_in_postcopy()); 1230 } else { 1231 qemu_put_buffer(file, buf, TARGET_PAGE_SIZE); 1232 } 1233 ram_transferred_add(TARGET_PAGE_SIZE); 1234 stat64_add(&mig_stats.normal_pages, 1); 1235 return 1; 1236 } 1237 1238 /** 1239 * ram_save_page: send the given page to the stream 1240 * 1241 * Returns the number of pages written. 1242 * < 0 - error 1243 * >=0 - Number of pages written - this might legally be 0 1244 * if xbzrle noticed the page was the same. 1245 * 1246 * @rs: current RAM state 1247 * @block: block that contains the page we want to send 1248 * @offset: offset inside the block for the page 1249 */ 1250 static int ram_save_page(RAMState *rs, PageSearchStatus *pss) 1251 { 1252 int pages = -1; 1253 uint8_t *p; 1254 bool send_async = true; 1255 RAMBlock *block = pss->block; 1256 ram_addr_t offset = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS; 1257 ram_addr_t current_addr = block->offset + offset; 1258 1259 p = block->host + offset; 1260 trace_ram_save_page(block->idstr, (uint64_t)offset, p); 1261 1262 XBZRLE_cache_lock(); 1263 if (rs->xbzrle_started && !migration_in_postcopy()) { 1264 pages = save_xbzrle_page(rs, pss, &p, current_addr, 1265 block, offset); 1266 if (!rs->last_stage) { 1267 /* Can't send this cached data async, since the cache page 1268 * might get updated before it gets to the wire 1269 */ 1270 send_async = false; 1271 } 1272 } 1273 1274 /* XBZRLE overflow or normal page */ 1275 if (pages == -1) { 1276 pages = save_normal_page(pss, block, offset, p, send_async); 1277 } 1278 1279 XBZRLE_cache_unlock(); 1280 1281 return pages; 1282 } 1283 1284 static int ram_save_multifd_page(QEMUFile *file, RAMBlock *block, 1285 ram_addr_t offset) 1286 { 1287 if (multifd_queue_page(file, block, offset) < 0) { 1288 return -1; 1289 } 1290 stat64_add(&mig_stats.normal_pages, 1); 1291 1292 return 1; 1293 } 1294 1295 static void 1296 update_compress_thread_counts(const CompressParam *param, int bytes_xmit) 1297 { 1298 ram_transferred_add(bytes_xmit); 1299 1300 if (param->result == RES_ZEROPAGE) { 1301 stat64_add(&mig_stats.zero_pages, 1); 1302 return; 1303 } 1304 1305 /* 8 means a header with RAM_SAVE_FLAG_CONTINUE. */ 1306 compression_counters.compressed_size += bytes_xmit - 8; 1307 compression_counters.pages++; 1308 } 1309 1310 static bool save_page_use_compression(RAMState *rs); 1311 1312 static int send_queued_data(CompressParam *param) 1313 { 1314 PageSearchStatus *pss = &ram_state->pss[RAM_CHANNEL_PRECOPY]; 1315 MigrationState *ms = migrate_get_current(); 1316 QEMUFile *file = ms->to_dst_file; 1317 int len = 0; 1318 1319 RAMBlock *block = param->block; 1320 ram_addr_t offset = param->offset; 1321 1322 if (param->result == RES_NONE) { 1323 return 0; 1324 } 1325 1326 assert(block == pss->last_sent_block); 1327 1328 if (param->result == RES_ZEROPAGE) { 1329 assert(qemu_file_buffer_empty(param->file)); 1330 len += save_page_header(pss, file, block, offset | RAM_SAVE_FLAG_ZERO); 1331 qemu_put_byte(file, 0); 1332 len += 1; 1333 ram_release_page(block->idstr, offset); 1334 } else if (param->result == RES_COMPRESS) { 1335 assert(!qemu_file_buffer_empty(param->file)); 1336 len += save_page_header(pss, file, block, 1337 offset | RAM_SAVE_FLAG_COMPRESS_PAGE); 1338 len += qemu_put_qemu_file(file, param->file); 1339 } else { 1340 abort(); 1341 } 1342 1343 update_compress_thread_counts(param, len); 1344 1345 return len; 1346 } 1347 1348 static void ram_flush_compressed_data(RAMState *rs) 1349 { 1350 if (!save_page_use_compression(rs)) { 1351 return; 1352 } 1353 1354 flush_compressed_data(send_queued_data); 1355 } 1356 1357 #define PAGE_ALL_CLEAN 0 1358 #define PAGE_TRY_AGAIN 1 1359 #define PAGE_DIRTY_FOUND 2 1360 /** 1361 * find_dirty_block: find the next dirty page and update any state 1362 * associated with the search process. 1363 * 1364 * Returns: 1365 * <0: An error happened 1366 * PAGE_ALL_CLEAN: no dirty page found, give up 1367 * PAGE_TRY_AGAIN: no dirty page found, retry for next block 1368 * PAGE_DIRTY_FOUND: dirty page found 1369 * 1370 * @rs: current RAM state 1371 * @pss: data about the state of the current dirty page scan 1372 * @again: set to false if the search has scanned the whole of RAM 1373 */ 1374 static int find_dirty_block(RAMState *rs, PageSearchStatus *pss) 1375 { 1376 /* Update pss->page for the next dirty bit in ramblock */ 1377 pss_find_next_dirty(pss); 1378 1379 if (pss->complete_round && pss->block == rs->last_seen_block && 1380 pss->page >= rs->last_page) { 1381 /* 1382 * We've been once around the RAM and haven't found anything. 1383 * Give up. 1384 */ 1385 return PAGE_ALL_CLEAN; 1386 } 1387 if (!offset_in_ramblock(pss->block, 1388 ((ram_addr_t)pss->page) << TARGET_PAGE_BITS)) { 1389 /* Didn't find anything in this RAM Block */ 1390 pss->page = 0; 1391 pss->block = QLIST_NEXT_RCU(pss->block, next); 1392 if (!pss->block) { 1393 if (migrate_multifd() && 1394 !migrate_multifd_flush_after_each_section()) { 1395 QEMUFile *f = rs->pss[RAM_CHANNEL_PRECOPY].pss_channel; 1396 int ret = multifd_send_sync_main(f); 1397 if (ret < 0) { 1398 return ret; 1399 } 1400 qemu_put_be64(f, RAM_SAVE_FLAG_MULTIFD_FLUSH); 1401 qemu_fflush(f); 1402 } 1403 /* 1404 * If memory migration starts over, we will meet a dirtied page 1405 * which may still exists in compression threads's ring, so we 1406 * should flush the compressed data to make sure the new page 1407 * is not overwritten by the old one in the destination. 1408 * 1409 * Also If xbzrle is on, stop using the data compression at this 1410 * point. In theory, xbzrle can do better than compression. 1411 */ 1412 ram_flush_compressed_data(rs); 1413 1414 /* Hit the end of the list */ 1415 pss->block = QLIST_FIRST_RCU(&ram_list.blocks); 1416 /* Flag that we've looped */ 1417 pss->complete_round = true; 1418 /* After the first round, enable XBZRLE. */ 1419 if (migrate_xbzrle()) { 1420 rs->xbzrle_started = true; 1421 } 1422 } 1423 /* Didn't find anything this time, but try again on the new block */ 1424 return PAGE_TRY_AGAIN; 1425 } else { 1426 /* We've found something */ 1427 return PAGE_DIRTY_FOUND; 1428 } 1429 } 1430 1431 /** 1432 * unqueue_page: gets a page of the queue 1433 * 1434 * Helper for 'get_queued_page' - gets a page off the queue 1435 * 1436 * Returns the block of the page (or NULL if none available) 1437 * 1438 * @rs: current RAM state 1439 * @offset: used to return the offset within the RAMBlock 1440 */ 1441 static RAMBlock *unqueue_page(RAMState *rs, ram_addr_t *offset) 1442 { 1443 struct RAMSrcPageRequest *entry; 1444 RAMBlock *block = NULL; 1445 1446 if (!postcopy_has_request(rs)) { 1447 return NULL; 1448 } 1449 1450 QEMU_LOCK_GUARD(&rs->src_page_req_mutex); 1451 1452 /* 1453 * This should _never_ change even after we take the lock, because no one 1454 * should be taking anything off the request list other than us. 1455 */ 1456 assert(postcopy_has_request(rs)); 1457 1458 entry = QSIMPLEQ_FIRST(&rs->src_page_requests); 1459 block = entry->rb; 1460 *offset = entry->offset; 1461 1462 if (entry->len > TARGET_PAGE_SIZE) { 1463 entry->len -= TARGET_PAGE_SIZE; 1464 entry->offset += TARGET_PAGE_SIZE; 1465 } else { 1466 memory_region_unref(block->mr); 1467 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req); 1468 g_free(entry); 1469 migration_consume_urgent_request(); 1470 } 1471 1472 return block; 1473 } 1474 1475 #if defined(__linux__) 1476 /** 1477 * poll_fault_page: try to get next UFFD write fault page and, if pending fault 1478 * is found, return RAM block pointer and page offset 1479 * 1480 * Returns pointer to the RAMBlock containing faulting page, 1481 * NULL if no write faults are pending 1482 * 1483 * @rs: current RAM state 1484 * @offset: page offset from the beginning of the block 1485 */ 1486 static RAMBlock *poll_fault_page(RAMState *rs, ram_addr_t *offset) 1487 { 1488 struct uffd_msg uffd_msg; 1489 void *page_address; 1490 RAMBlock *block; 1491 int res; 1492 1493 if (!migrate_background_snapshot()) { 1494 return NULL; 1495 } 1496 1497 res = uffd_read_events(rs->uffdio_fd, &uffd_msg, 1); 1498 if (res <= 0) { 1499 return NULL; 1500 } 1501 1502 page_address = (void *)(uintptr_t) uffd_msg.arg.pagefault.address; 1503 block = qemu_ram_block_from_host(page_address, false, offset); 1504 assert(block && (block->flags & RAM_UF_WRITEPROTECT) != 0); 1505 return block; 1506 } 1507 1508 /** 1509 * ram_save_release_protection: release UFFD write protection after 1510 * a range of pages has been saved 1511 * 1512 * @rs: current RAM state 1513 * @pss: page-search-status structure 1514 * @start_page: index of the first page in the range relative to pss->block 1515 * 1516 * Returns 0 on success, negative value in case of an error 1517 */ 1518 static int ram_save_release_protection(RAMState *rs, PageSearchStatus *pss, 1519 unsigned long start_page) 1520 { 1521 int res = 0; 1522 1523 /* Check if page is from UFFD-managed region. */ 1524 if (pss->block->flags & RAM_UF_WRITEPROTECT) { 1525 void *page_address = pss->block->host + (start_page << TARGET_PAGE_BITS); 1526 uint64_t run_length = (pss->page - start_page) << TARGET_PAGE_BITS; 1527 1528 /* Flush async buffers before un-protect. */ 1529 qemu_fflush(pss->pss_channel); 1530 /* Un-protect memory range. */ 1531 res = uffd_change_protection(rs->uffdio_fd, page_address, run_length, 1532 false, false); 1533 } 1534 1535 return res; 1536 } 1537 1538 /* ram_write_tracking_available: check if kernel supports required UFFD features 1539 * 1540 * Returns true if supports, false otherwise 1541 */ 1542 bool ram_write_tracking_available(void) 1543 { 1544 uint64_t uffd_features; 1545 int res; 1546 1547 res = uffd_query_features(&uffd_features); 1548 return (res == 0 && 1549 (uffd_features & UFFD_FEATURE_PAGEFAULT_FLAG_WP) != 0); 1550 } 1551 1552 /* ram_write_tracking_compatible: check if guest configuration is 1553 * compatible with 'write-tracking' 1554 * 1555 * Returns true if compatible, false otherwise 1556 */ 1557 bool ram_write_tracking_compatible(void) 1558 { 1559 const uint64_t uffd_ioctls_mask = BIT(_UFFDIO_WRITEPROTECT); 1560 int uffd_fd; 1561 RAMBlock *block; 1562 bool ret = false; 1563 1564 /* Open UFFD file descriptor */ 1565 uffd_fd = uffd_create_fd(UFFD_FEATURE_PAGEFAULT_FLAG_WP, false); 1566 if (uffd_fd < 0) { 1567 return false; 1568 } 1569 1570 RCU_READ_LOCK_GUARD(); 1571 1572 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 1573 uint64_t uffd_ioctls; 1574 1575 /* Nothing to do with read-only and MMIO-writable regions */ 1576 if (block->mr->readonly || block->mr->rom_device) { 1577 continue; 1578 } 1579 /* Try to register block memory via UFFD-IO to track writes */ 1580 if (uffd_register_memory(uffd_fd, block->host, block->max_length, 1581 UFFDIO_REGISTER_MODE_WP, &uffd_ioctls)) { 1582 goto out; 1583 } 1584 if ((uffd_ioctls & uffd_ioctls_mask) != uffd_ioctls_mask) { 1585 goto out; 1586 } 1587 } 1588 ret = true; 1589 1590 out: 1591 uffd_close_fd(uffd_fd); 1592 return ret; 1593 } 1594 1595 static inline void populate_read_range(RAMBlock *block, ram_addr_t offset, 1596 ram_addr_t size) 1597 { 1598 const ram_addr_t end = offset + size; 1599 1600 /* 1601 * We read one byte of each page; this will preallocate page tables if 1602 * required and populate the shared zeropage on MAP_PRIVATE anonymous memory 1603 * where no page was populated yet. This might require adaption when 1604 * supporting other mappings, like shmem. 1605 */ 1606 for (; offset < end; offset += block->page_size) { 1607 char tmp = *((char *)block->host + offset); 1608 1609 /* Don't optimize the read out */ 1610 asm volatile("" : "+r" (tmp)); 1611 } 1612 } 1613 1614 static inline int populate_read_section(MemoryRegionSection *section, 1615 void *opaque) 1616 { 1617 const hwaddr size = int128_get64(section->size); 1618 hwaddr offset = section->offset_within_region; 1619 RAMBlock *block = section->mr->ram_block; 1620 1621 populate_read_range(block, offset, size); 1622 return 0; 1623 } 1624 1625 /* 1626 * ram_block_populate_read: preallocate page tables and populate pages in the 1627 * RAM block by reading a byte of each page. 1628 * 1629 * Since it's solely used for userfault_fd WP feature, here we just 1630 * hardcode page size to qemu_real_host_page_size. 1631 * 1632 * @block: RAM block to populate 1633 */ 1634 static void ram_block_populate_read(RAMBlock *rb) 1635 { 1636 /* 1637 * Skip populating all pages that fall into a discarded range as managed by 1638 * a RamDiscardManager responsible for the mapped memory region of the 1639 * RAMBlock. Such discarded ("logically unplugged") parts of a RAMBlock 1640 * must not get populated automatically. We don't have to track 1641 * modifications via userfaultfd WP reliably, because these pages will 1642 * not be part of the migration stream either way -- see 1643 * ramblock_dirty_bitmap_exclude_discarded_pages(). 1644 * 1645 * Note: The result is only stable while migrating (precopy/postcopy). 1646 */ 1647 if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) { 1648 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr); 1649 MemoryRegionSection section = { 1650 .mr = rb->mr, 1651 .offset_within_region = 0, 1652 .size = rb->mr->size, 1653 }; 1654 1655 ram_discard_manager_replay_populated(rdm, §ion, 1656 populate_read_section, NULL); 1657 } else { 1658 populate_read_range(rb, 0, rb->used_length); 1659 } 1660 } 1661 1662 /* 1663 * ram_write_tracking_prepare: prepare for UFFD-WP memory tracking 1664 */ 1665 void ram_write_tracking_prepare(void) 1666 { 1667 RAMBlock *block; 1668 1669 RCU_READ_LOCK_GUARD(); 1670 1671 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 1672 /* Nothing to do with read-only and MMIO-writable regions */ 1673 if (block->mr->readonly || block->mr->rom_device) { 1674 continue; 1675 } 1676 1677 /* 1678 * Populate pages of the RAM block before enabling userfault_fd 1679 * write protection. 1680 * 1681 * This stage is required since ioctl(UFFDIO_WRITEPROTECT) with 1682 * UFFDIO_WRITEPROTECT_MODE_WP mode setting would silently skip 1683 * pages with pte_none() entries in page table. 1684 */ 1685 ram_block_populate_read(block); 1686 } 1687 } 1688 1689 static inline int uffd_protect_section(MemoryRegionSection *section, 1690 void *opaque) 1691 { 1692 const hwaddr size = int128_get64(section->size); 1693 const hwaddr offset = section->offset_within_region; 1694 RAMBlock *rb = section->mr->ram_block; 1695 int uffd_fd = (uintptr_t)opaque; 1696 1697 return uffd_change_protection(uffd_fd, rb->host + offset, size, true, 1698 false); 1699 } 1700 1701 static int ram_block_uffd_protect(RAMBlock *rb, int uffd_fd) 1702 { 1703 assert(rb->flags & RAM_UF_WRITEPROTECT); 1704 1705 /* See ram_block_populate_read() */ 1706 if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) { 1707 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr); 1708 MemoryRegionSection section = { 1709 .mr = rb->mr, 1710 .offset_within_region = 0, 1711 .size = rb->mr->size, 1712 }; 1713 1714 return ram_discard_manager_replay_populated(rdm, §ion, 1715 uffd_protect_section, 1716 (void *)(uintptr_t)uffd_fd); 1717 } 1718 return uffd_change_protection(uffd_fd, rb->host, 1719 rb->used_length, true, false); 1720 } 1721 1722 /* 1723 * ram_write_tracking_start: start UFFD-WP memory tracking 1724 * 1725 * Returns 0 for success or negative value in case of error 1726 */ 1727 int ram_write_tracking_start(void) 1728 { 1729 int uffd_fd; 1730 RAMState *rs = ram_state; 1731 RAMBlock *block; 1732 1733 /* Open UFFD file descriptor */ 1734 uffd_fd = uffd_create_fd(UFFD_FEATURE_PAGEFAULT_FLAG_WP, true); 1735 if (uffd_fd < 0) { 1736 return uffd_fd; 1737 } 1738 rs->uffdio_fd = uffd_fd; 1739 1740 RCU_READ_LOCK_GUARD(); 1741 1742 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 1743 /* Nothing to do with read-only and MMIO-writable regions */ 1744 if (block->mr->readonly || block->mr->rom_device) { 1745 continue; 1746 } 1747 1748 /* Register block memory with UFFD to track writes */ 1749 if (uffd_register_memory(rs->uffdio_fd, block->host, 1750 block->max_length, UFFDIO_REGISTER_MODE_WP, NULL)) { 1751 goto fail; 1752 } 1753 block->flags |= RAM_UF_WRITEPROTECT; 1754 memory_region_ref(block->mr); 1755 1756 /* Apply UFFD write protection to the block memory range */ 1757 if (ram_block_uffd_protect(block, uffd_fd)) { 1758 goto fail; 1759 } 1760 1761 trace_ram_write_tracking_ramblock_start(block->idstr, block->page_size, 1762 block->host, block->max_length); 1763 } 1764 1765 return 0; 1766 1767 fail: 1768 error_report("ram_write_tracking_start() failed: restoring initial memory state"); 1769 1770 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 1771 if ((block->flags & RAM_UF_WRITEPROTECT) == 0) { 1772 continue; 1773 } 1774 uffd_unregister_memory(rs->uffdio_fd, block->host, block->max_length); 1775 /* Cleanup flags and remove reference */ 1776 block->flags &= ~RAM_UF_WRITEPROTECT; 1777 memory_region_unref(block->mr); 1778 } 1779 1780 uffd_close_fd(uffd_fd); 1781 rs->uffdio_fd = -1; 1782 return -1; 1783 } 1784 1785 /** 1786 * ram_write_tracking_stop: stop UFFD-WP memory tracking and remove protection 1787 */ 1788 void ram_write_tracking_stop(void) 1789 { 1790 RAMState *rs = ram_state; 1791 RAMBlock *block; 1792 1793 RCU_READ_LOCK_GUARD(); 1794 1795 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 1796 if ((block->flags & RAM_UF_WRITEPROTECT) == 0) { 1797 continue; 1798 } 1799 uffd_unregister_memory(rs->uffdio_fd, block->host, block->max_length); 1800 1801 trace_ram_write_tracking_ramblock_stop(block->idstr, block->page_size, 1802 block->host, block->max_length); 1803 1804 /* Cleanup flags and remove reference */ 1805 block->flags &= ~RAM_UF_WRITEPROTECT; 1806 memory_region_unref(block->mr); 1807 } 1808 1809 /* Finally close UFFD file descriptor */ 1810 uffd_close_fd(rs->uffdio_fd); 1811 rs->uffdio_fd = -1; 1812 } 1813 1814 #else 1815 /* No target OS support, stubs just fail or ignore */ 1816 1817 static RAMBlock *poll_fault_page(RAMState *rs, ram_addr_t *offset) 1818 { 1819 (void) rs; 1820 (void) offset; 1821 1822 return NULL; 1823 } 1824 1825 static int ram_save_release_protection(RAMState *rs, PageSearchStatus *pss, 1826 unsigned long start_page) 1827 { 1828 (void) rs; 1829 (void) pss; 1830 (void) start_page; 1831 1832 return 0; 1833 } 1834 1835 bool ram_write_tracking_available(void) 1836 { 1837 return false; 1838 } 1839 1840 bool ram_write_tracking_compatible(void) 1841 { 1842 assert(0); 1843 return false; 1844 } 1845 1846 int ram_write_tracking_start(void) 1847 { 1848 assert(0); 1849 return -1; 1850 } 1851 1852 void ram_write_tracking_stop(void) 1853 { 1854 assert(0); 1855 } 1856 #endif /* defined(__linux__) */ 1857 1858 /** 1859 * get_queued_page: unqueue a page from the postcopy requests 1860 * 1861 * Skips pages that are already sent (!dirty) 1862 * 1863 * Returns true if a queued page is found 1864 * 1865 * @rs: current RAM state 1866 * @pss: data about the state of the current dirty page scan 1867 */ 1868 static bool get_queued_page(RAMState *rs, PageSearchStatus *pss) 1869 { 1870 RAMBlock *block; 1871 ram_addr_t offset; 1872 bool dirty; 1873 1874 do { 1875 block = unqueue_page(rs, &offset); 1876 /* 1877 * We're sending this page, and since it's postcopy nothing else 1878 * will dirty it, and we must make sure it doesn't get sent again 1879 * even if this queue request was received after the background 1880 * search already sent it. 1881 */ 1882 if (block) { 1883 unsigned long page; 1884 1885 page = offset >> TARGET_PAGE_BITS; 1886 dirty = test_bit(page, block->bmap); 1887 if (!dirty) { 1888 trace_get_queued_page_not_dirty(block->idstr, (uint64_t)offset, 1889 page); 1890 } else { 1891 trace_get_queued_page(block->idstr, (uint64_t)offset, page); 1892 } 1893 } 1894 1895 } while (block && !dirty); 1896 1897 if (!block) { 1898 /* 1899 * Poll write faults too if background snapshot is enabled; that's 1900 * when we have vcpus got blocked by the write protected pages. 1901 */ 1902 block = poll_fault_page(rs, &offset); 1903 } 1904 1905 if (block) { 1906 /* 1907 * We want the background search to continue from the queued page 1908 * since the guest is likely to want other pages near to the page 1909 * it just requested. 1910 */ 1911 pss->block = block; 1912 pss->page = offset >> TARGET_PAGE_BITS; 1913 1914 /* 1915 * This unqueued page would break the "one round" check, even is 1916 * really rare. 1917 */ 1918 pss->complete_round = false; 1919 } 1920 1921 return !!block; 1922 } 1923 1924 /** 1925 * migration_page_queue_free: drop any remaining pages in the ram 1926 * request queue 1927 * 1928 * It should be empty at the end anyway, but in error cases there may 1929 * be some left. in case that there is any page left, we drop it. 1930 * 1931 */ 1932 static void migration_page_queue_free(RAMState *rs) 1933 { 1934 struct RAMSrcPageRequest *mspr, *next_mspr; 1935 /* This queue generally should be empty - but in the case of a failed 1936 * migration might have some droppings in. 1937 */ 1938 RCU_READ_LOCK_GUARD(); 1939 QSIMPLEQ_FOREACH_SAFE(mspr, &rs->src_page_requests, next_req, next_mspr) { 1940 memory_region_unref(mspr->rb->mr); 1941 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req); 1942 g_free(mspr); 1943 } 1944 } 1945 1946 /** 1947 * ram_save_queue_pages: queue the page for transmission 1948 * 1949 * A request from postcopy destination for example. 1950 * 1951 * Returns zero on success or negative on error 1952 * 1953 * @rbname: Name of the RAMBLock of the request. NULL means the 1954 * same that last one. 1955 * @start: starting address from the start of the RAMBlock 1956 * @len: length (in bytes) to send 1957 */ 1958 int ram_save_queue_pages(const char *rbname, ram_addr_t start, ram_addr_t len) 1959 { 1960 RAMBlock *ramblock; 1961 RAMState *rs = ram_state; 1962 1963 stat64_add(&mig_stats.postcopy_requests, 1); 1964 RCU_READ_LOCK_GUARD(); 1965 1966 if (!rbname) { 1967 /* Reuse last RAMBlock */ 1968 ramblock = rs->last_req_rb; 1969 1970 if (!ramblock) { 1971 /* 1972 * Shouldn't happen, we can't reuse the last RAMBlock if 1973 * it's the 1st request. 1974 */ 1975 error_report("ram_save_queue_pages no previous block"); 1976 return -1; 1977 } 1978 } else { 1979 ramblock = qemu_ram_block_by_name(rbname); 1980 1981 if (!ramblock) { 1982 /* We shouldn't be asked for a non-existent RAMBlock */ 1983 error_report("ram_save_queue_pages no block '%s'", rbname); 1984 return -1; 1985 } 1986 rs->last_req_rb = ramblock; 1987 } 1988 trace_ram_save_queue_pages(ramblock->idstr, start, len); 1989 if (!offset_in_ramblock(ramblock, start + len - 1)) { 1990 error_report("%s request overrun start=" RAM_ADDR_FMT " len=" 1991 RAM_ADDR_FMT " blocklen=" RAM_ADDR_FMT, 1992 __func__, start, len, ramblock->used_length); 1993 return -1; 1994 } 1995 1996 /* 1997 * When with postcopy preempt, we send back the page directly in the 1998 * rp-return thread. 1999 */ 2000 if (postcopy_preempt_active()) { 2001 ram_addr_t page_start = start >> TARGET_PAGE_BITS; 2002 size_t page_size = qemu_ram_pagesize(ramblock); 2003 PageSearchStatus *pss = &ram_state->pss[RAM_CHANNEL_POSTCOPY]; 2004 int ret = 0; 2005 2006 qemu_mutex_lock(&rs->bitmap_mutex); 2007 2008 pss_init(pss, ramblock, page_start); 2009 /* 2010 * Always use the preempt channel, and make sure it's there. It's 2011 * safe to access without lock, because when rp-thread is running 2012 * we should be the only one who operates on the qemufile 2013 */ 2014 pss->pss_channel = migrate_get_current()->postcopy_qemufile_src; 2015 assert(pss->pss_channel); 2016 2017 /* 2018 * It must be either one or multiple of host page size. Just 2019 * assert; if something wrong we're mostly split brain anyway. 2020 */ 2021 assert(len % page_size == 0); 2022 while (len) { 2023 if (ram_save_host_page_urgent(pss)) { 2024 error_report("%s: ram_save_host_page_urgent() failed: " 2025 "ramblock=%s, start_addr=0x"RAM_ADDR_FMT, 2026 __func__, ramblock->idstr, start); 2027 ret = -1; 2028 break; 2029 } 2030 /* 2031 * NOTE: after ram_save_host_page_urgent() succeeded, pss->page 2032 * will automatically be moved and point to the next host page 2033 * we're going to send, so no need to update here. 2034 * 2035 * Normally QEMU never sends >1 host page in requests, so 2036 * logically we don't even need that as the loop should only 2037 * run once, but just to be consistent. 2038 */ 2039 len -= page_size; 2040 }; 2041 qemu_mutex_unlock(&rs->bitmap_mutex); 2042 2043 return ret; 2044 } 2045 2046 struct RAMSrcPageRequest *new_entry = 2047 g_new0(struct RAMSrcPageRequest, 1); 2048 new_entry->rb = ramblock; 2049 new_entry->offset = start; 2050 new_entry->len = len; 2051 2052 memory_region_ref(ramblock->mr); 2053 qemu_mutex_lock(&rs->src_page_req_mutex); 2054 QSIMPLEQ_INSERT_TAIL(&rs->src_page_requests, new_entry, next_req); 2055 migration_make_urgent_request(); 2056 qemu_mutex_unlock(&rs->src_page_req_mutex); 2057 2058 return 0; 2059 } 2060 2061 static bool save_page_use_compression(RAMState *rs) 2062 { 2063 if (!migrate_compress()) { 2064 return false; 2065 } 2066 2067 /* 2068 * If xbzrle is enabled (e.g., after first round of migration), stop 2069 * using the data compression. In theory, xbzrle can do better than 2070 * compression. 2071 */ 2072 if (rs->xbzrle_started) { 2073 return false; 2074 } 2075 2076 return true; 2077 } 2078 2079 /* 2080 * try to compress the page before posting it out, return true if the page 2081 * has been properly handled by compression, otherwise needs other 2082 * paths to handle it 2083 */ 2084 static bool save_compress_page(RAMState *rs, PageSearchStatus *pss, 2085 RAMBlock *block, ram_addr_t offset) 2086 { 2087 if (!save_page_use_compression(rs)) { 2088 return false; 2089 } 2090 2091 /* 2092 * When starting the process of a new block, the first page of 2093 * the block should be sent out before other pages in the same 2094 * block, and all the pages in last block should have been sent 2095 * out, keeping this order is important, because the 'cont' flag 2096 * is used to avoid resending the block name. 2097 * 2098 * We post the fist page as normal page as compression will take 2099 * much CPU resource. 2100 */ 2101 if (block != pss->last_sent_block) { 2102 ram_flush_compressed_data(rs); 2103 return false; 2104 } 2105 2106 if (compress_page_with_multi_thread(block, offset, send_queued_data) > 0) { 2107 return true; 2108 } 2109 2110 compression_counters.busy++; 2111 return false; 2112 } 2113 2114 /** 2115 * ram_save_target_page_legacy: save one target page 2116 * 2117 * Returns the number of pages written 2118 * 2119 * @rs: current RAM state 2120 * @pss: data about the page we want to send 2121 */ 2122 static int ram_save_target_page_legacy(RAMState *rs, PageSearchStatus *pss) 2123 { 2124 RAMBlock *block = pss->block; 2125 ram_addr_t offset = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS; 2126 int res; 2127 2128 if (control_save_page(pss, block, offset, &res)) { 2129 return res; 2130 } 2131 2132 if (save_compress_page(rs, pss, block, offset)) { 2133 return 1; 2134 } 2135 2136 if (save_zero_page(rs, pss, block, offset)) { 2137 return 1; 2138 } 2139 2140 /* 2141 * Do not use multifd in postcopy as one whole host page should be 2142 * placed. Meanwhile postcopy requires atomic update of pages, so even 2143 * if host page size == guest page size the dest guest during run may 2144 * still see partially copied pages which is data corruption. 2145 */ 2146 if (migrate_multifd() && !migration_in_postcopy()) { 2147 return ram_save_multifd_page(pss->pss_channel, block, offset); 2148 } 2149 2150 return ram_save_page(rs, pss); 2151 } 2152 2153 /* Should be called before sending a host page */ 2154 static void pss_host_page_prepare(PageSearchStatus *pss) 2155 { 2156 /* How many guest pages are there in one host page? */ 2157 size_t guest_pfns = qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS; 2158 2159 pss->host_page_sending = true; 2160 if (guest_pfns <= 1) { 2161 /* 2162 * This covers both when guest psize == host psize, or when guest 2163 * has larger psize than the host (guest_pfns==0). 2164 * 2165 * For the latter, we always send one whole guest page per 2166 * iteration of the host page (example: an Alpha VM on x86 host 2167 * will have guest psize 8K while host psize 4K). 2168 */ 2169 pss->host_page_start = pss->page; 2170 pss->host_page_end = pss->page + 1; 2171 } else { 2172 /* 2173 * The host page spans over multiple guest pages, we send them 2174 * within the same host page iteration. 2175 */ 2176 pss->host_page_start = ROUND_DOWN(pss->page, guest_pfns); 2177 pss->host_page_end = ROUND_UP(pss->page + 1, guest_pfns); 2178 } 2179 } 2180 2181 /* 2182 * Whether the page pointed by PSS is within the host page being sent. 2183 * Must be called after a previous pss_host_page_prepare(). 2184 */ 2185 static bool pss_within_range(PageSearchStatus *pss) 2186 { 2187 ram_addr_t ram_addr; 2188 2189 assert(pss->host_page_sending); 2190 2191 /* Over host-page boundary? */ 2192 if (pss->page >= pss->host_page_end) { 2193 return false; 2194 } 2195 2196 ram_addr = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS; 2197 2198 return offset_in_ramblock(pss->block, ram_addr); 2199 } 2200 2201 static void pss_host_page_finish(PageSearchStatus *pss) 2202 { 2203 pss->host_page_sending = false; 2204 /* This is not needed, but just to reset it */ 2205 pss->host_page_start = pss->host_page_end = 0; 2206 } 2207 2208 /* 2209 * Send an urgent host page specified by `pss'. Need to be called with 2210 * bitmap_mutex held. 2211 * 2212 * Returns 0 if save host page succeeded, false otherwise. 2213 */ 2214 static int ram_save_host_page_urgent(PageSearchStatus *pss) 2215 { 2216 bool page_dirty, sent = false; 2217 RAMState *rs = ram_state; 2218 int ret = 0; 2219 2220 trace_postcopy_preempt_send_host_page(pss->block->idstr, pss->page); 2221 pss_host_page_prepare(pss); 2222 2223 /* 2224 * If precopy is sending the same page, let it be done in precopy, or 2225 * we could send the same page in two channels and none of them will 2226 * receive the whole page. 2227 */ 2228 if (pss_overlap(pss, &ram_state->pss[RAM_CHANNEL_PRECOPY])) { 2229 trace_postcopy_preempt_hit(pss->block->idstr, 2230 pss->page << TARGET_PAGE_BITS); 2231 return 0; 2232 } 2233 2234 do { 2235 page_dirty = migration_bitmap_clear_dirty(rs, pss->block, pss->page); 2236 2237 if (page_dirty) { 2238 /* Be strict to return code; it must be 1, or what else? */ 2239 if (migration_ops->ram_save_target_page(rs, pss) != 1) { 2240 error_report_once("%s: ram_save_target_page failed", __func__); 2241 ret = -1; 2242 goto out; 2243 } 2244 sent = true; 2245 } 2246 pss_find_next_dirty(pss); 2247 } while (pss_within_range(pss)); 2248 out: 2249 pss_host_page_finish(pss); 2250 /* For urgent requests, flush immediately if sent */ 2251 if (sent) { 2252 qemu_fflush(pss->pss_channel); 2253 } 2254 return ret; 2255 } 2256 2257 /** 2258 * ram_save_host_page: save a whole host page 2259 * 2260 * Starting at *offset send pages up to the end of the current host 2261 * page. It's valid for the initial offset to point into the middle of 2262 * a host page in which case the remainder of the hostpage is sent. 2263 * Only dirty target pages are sent. Note that the host page size may 2264 * be a huge page for this block. 2265 * 2266 * The saving stops at the boundary of the used_length of the block 2267 * if the RAMBlock isn't a multiple of the host page size. 2268 * 2269 * The caller must be with ram_state.bitmap_mutex held to call this 2270 * function. Note that this function can temporarily release the lock, but 2271 * when the function is returned it'll make sure the lock is still held. 2272 * 2273 * Returns the number of pages written or negative on error 2274 * 2275 * @rs: current RAM state 2276 * @pss: data about the page we want to send 2277 */ 2278 static int ram_save_host_page(RAMState *rs, PageSearchStatus *pss) 2279 { 2280 bool page_dirty, preempt_active = postcopy_preempt_active(); 2281 int tmppages, pages = 0; 2282 size_t pagesize_bits = 2283 qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS; 2284 unsigned long start_page = pss->page; 2285 int res; 2286 2287 if (migrate_ram_is_ignored(pss->block)) { 2288 error_report("block %s should not be migrated !", pss->block->idstr); 2289 return 0; 2290 } 2291 2292 /* Update host page boundary information */ 2293 pss_host_page_prepare(pss); 2294 2295 do { 2296 page_dirty = migration_bitmap_clear_dirty(rs, pss->block, pss->page); 2297 2298 /* Check the pages is dirty and if it is send it */ 2299 if (page_dirty) { 2300 /* 2301 * Properly yield the lock only in postcopy preempt mode 2302 * because both migration thread and rp-return thread can 2303 * operate on the bitmaps. 2304 */ 2305 if (preempt_active) { 2306 qemu_mutex_unlock(&rs->bitmap_mutex); 2307 } 2308 tmppages = migration_ops->ram_save_target_page(rs, pss); 2309 if (tmppages >= 0) { 2310 pages += tmppages; 2311 /* 2312 * Allow rate limiting to happen in the middle of huge pages if 2313 * something is sent in the current iteration. 2314 */ 2315 if (pagesize_bits > 1 && tmppages > 0) { 2316 migration_rate_limit(); 2317 } 2318 } 2319 if (preempt_active) { 2320 qemu_mutex_lock(&rs->bitmap_mutex); 2321 } 2322 } else { 2323 tmppages = 0; 2324 } 2325 2326 if (tmppages < 0) { 2327 pss_host_page_finish(pss); 2328 return tmppages; 2329 } 2330 2331 pss_find_next_dirty(pss); 2332 } while (pss_within_range(pss)); 2333 2334 pss_host_page_finish(pss); 2335 2336 res = ram_save_release_protection(rs, pss, start_page); 2337 return (res < 0 ? res : pages); 2338 } 2339 2340 /** 2341 * ram_find_and_save_block: finds a dirty page and sends it to f 2342 * 2343 * Called within an RCU critical section. 2344 * 2345 * Returns the number of pages written where zero means no dirty pages, 2346 * or negative on error 2347 * 2348 * @rs: current RAM state 2349 * 2350 * On systems where host-page-size > target-page-size it will send all the 2351 * pages in a host page that are dirty. 2352 */ 2353 static int ram_find_and_save_block(RAMState *rs) 2354 { 2355 PageSearchStatus *pss = &rs->pss[RAM_CHANNEL_PRECOPY]; 2356 int pages = 0; 2357 2358 /* No dirty page as there is zero RAM */ 2359 if (!rs->ram_bytes_total) { 2360 return pages; 2361 } 2362 2363 /* 2364 * Always keep last_seen_block/last_page valid during this procedure, 2365 * because find_dirty_block() relies on these values (e.g., we compare 2366 * last_seen_block with pss.block to see whether we searched all the 2367 * ramblocks) to detect the completion of migration. Having NULL value 2368 * of last_seen_block can conditionally cause below loop to run forever. 2369 */ 2370 if (!rs->last_seen_block) { 2371 rs->last_seen_block = QLIST_FIRST_RCU(&ram_list.blocks); 2372 rs->last_page = 0; 2373 } 2374 2375 pss_init(pss, rs->last_seen_block, rs->last_page); 2376 2377 while (true){ 2378 if (!get_queued_page(rs, pss)) { 2379 /* priority queue empty, so just search for something dirty */ 2380 int res = find_dirty_block(rs, pss); 2381 if (res != PAGE_DIRTY_FOUND) { 2382 if (res == PAGE_ALL_CLEAN) { 2383 break; 2384 } else if (res == PAGE_TRY_AGAIN) { 2385 continue; 2386 } else if (res < 0) { 2387 pages = res; 2388 break; 2389 } 2390 } 2391 } 2392 pages = ram_save_host_page(rs, pss); 2393 if (pages) { 2394 break; 2395 } 2396 } 2397 2398 rs->last_seen_block = pss->block; 2399 rs->last_page = pss->page; 2400 2401 return pages; 2402 } 2403 2404 static uint64_t ram_bytes_total_with_ignored(void) 2405 { 2406 RAMBlock *block; 2407 uint64_t total = 0; 2408 2409 RCU_READ_LOCK_GUARD(); 2410 2411 RAMBLOCK_FOREACH_MIGRATABLE(block) { 2412 total += block->used_length; 2413 } 2414 return total; 2415 } 2416 2417 uint64_t ram_bytes_total(void) 2418 { 2419 RAMBlock *block; 2420 uint64_t total = 0; 2421 2422 RCU_READ_LOCK_GUARD(); 2423 2424 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 2425 total += block->used_length; 2426 } 2427 return total; 2428 } 2429 2430 static void xbzrle_load_setup(void) 2431 { 2432 XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE); 2433 } 2434 2435 static void xbzrle_load_cleanup(void) 2436 { 2437 g_free(XBZRLE.decoded_buf); 2438 XBZRLE.decoded_buf = NULL; 2439 } 2440 2441 static void ram_state_cleanup(RAMState **rsp) 2442 { 2443 if (*rsp) { 2444 migration_page_queue_free(*rsp); 2445 qemu_mutex_destroy(&(*rsp)->bitmap_mutex); 2446 qemu_mutex_destroy(&(*rsp)->src_page_req_mutex); 2447 g_free(*rsp); 2448 *rsp = NULL; 2449 } 2450 } 2451 2452 static void xbzrle_cleanup(void) 2453 { 2454 XBZRLE_cache_lock(); 2455 if (XBZRLE.cache) { 2456 cache_fini(XBZRLE.cache); 2457 g_free(XBZRLE.encoded_buf); 2458 g_free(XBZRLE.current_buf); 2459 g_free(XBZRLE.zero_target_page); 2460 XBZRLE.cache = NULL; 2461 XBZRLE.encoded_buf = NULL; 2462 XBZRLE.current_buf = NULL; 2463 XBZRLE.zero_target_page = NULL; 2464 } 2465 XBZRLE_cache_unlock(); 2466 } 2467 2468 static void ram_save_cleanup(void *opaque) 2469 { 2470 RAMState **rsp = opaque; 2471 RAMBlock *block; 2472 2473 /* We don't use dirty log with background snapshots */ 2474 if (!migrate_background_snapshot()) { 2475 /* caller have hold iothread lock or is in a bh, so there is 2476 * no writing race against the migration bitmap 2477 */ 2478 if (global_dirty_tracking & GLOBAL_DIRTY_MIGRATION) { 2479 /* 2480 * do not stop dirty log without starting it, since 2481 * memory_global_dirty_log_stop will assert that 2482 * memory_global_dirty_log_start/stop used in pairs 2483 */ 2484 memory_global_dirty_log_stop(GLOBAL_DIRTY_MIGRATION); 2485 } 2486 } 2487 2488 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 2489 g_free(block->clear_bmap); 2490 block->clear_bmap = NULL; 2491 g_free(block->bmap); 2492 block->bmap = NULL; 2493 } 2494 2495 xbzrle_cleanup(); 2496 compress_threads_save_cleanup(); 2497 ram_state_cleanup(rsp); 2498 g_free(migration_ops); 2499 migration_ops = NULL; 2500 } 2501 2502 static void ram_state_reset(RAMState *rs) 2503 { 2504 int i; 2505 2506 for (i = 0; i < RAM_CHANNEL_MAX; i++) { 2507 rs->pss[i].last_sent_block = NULL; 2508 } 2509 2510 rs->last_seen_block = NULL; 2511 rs->last_page = 0; 2512 rs->last_version = ram_list.version; 2513 rs->xbzrle_started = false; 2514 } 2515 2516 #define MAX_WAIT 50 /* ms, half buffered_file limit */ 2517 2518 /* **** functions for postcopy ***** */ 2519 2520 void ram_postcopy_migrated_memory_release(MigrationState *ms) 2521 { 2522 struct RAMBlock *block; 2523 2524 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 2525 unsigned long *bitmap = block->bmap; 2526 unsigned long range = block->used_length >> TARGET_PAGE_BITS; 2527 unsigned long run_start = find_next_zero_bit(bitmap, range, 0); 2528 2529 while (run_start < range) { 2530 unsigned long run_end = find_next_bit(bitmap, range, run_start + 1); 2531 ram_discard_range(block->idstr, 2532 ((ram_addr_t)run_start) << TARGET_PAGE_BITS, 2533 ((ram_addr_t)(run_end - run_start)) 2534 << TARGET_PAGE_BITS); 2535 run_start = find_next_zero_bit(bitmap, range, run_end + 1); 2536 } 2537 } 2538 } 2539 2540 /** 2541 * postcopy_send_discard_bm_ram: discard a RAMBlock 2542 * 2543 * Callback from postcopy_each_ram_send_discard for each RAMBlock 2544 * 2545 * @ms: current migration state 2546 * @block: RAMBlock to discard 2547 */ 2548 static void postcopy_send_discard_bm_ram(MigrationState *ms, RAMBlock *block) 2549 { 2550 unsigned long end = block->used_length >> TARGET_PAGE_BITS; 2551 unsigned long current; 2552 unsigned long *bitmap = block->bmap; 2553 2554 for (current = 0; current < end; ) { 2555 unsigned long one = find_next_bit(bitmap, end, current); 2556 unsigned long zero, discard_length; 2557 2558 if (one >= end) { 2559 break; 2560 } 2561 2562 zero = find_next_zero_bit(bitmap, end, one + 1); 2563 2564 if (zero >= end) { 2565 discard_length = end - one; 2566 } else { 2567 discard_length = zero - one; 2568 } 2569 postcopy_discard_send_range(ms, one, discard_length); 2570 current = one + discard_length; 2571 } 2572 } 2573 2574 static void postcopy_chunk_hostpages_pass(MigrationState *ms, RAMBlock *block); 2575 2576 /** 2577 * postcopy_each_ram_send_discard: discard all RAMBlocks 2578 * 2579 * Utility for the outgoing postcopy code. 2580 * Calls postcopy_send_discard_bm_ram for each RAMBlock 2581 * passing it bitmap indexes and name. 2582 * (qemu_ram_foreach_block ends up passing unscaled lengths 2583 * which would mean postcopy code would have to deal with target page) 2584 * 2585 * @ms: current migration state 2586 */ 2587 static void postcopy_each_ram_send_discard(MigrationState *ms) 2588 { 2589 struct RAMBlock *block; 2590 2591 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 2592 postcopy_discard_send_init(ms, block->idstr); 2593 2594 /* 2595 * Deal with TPS != HPS and huge pages. It discard any partially sent 2596 * host-page size chunks, mark any partially dirty host-page size 2597 * chunks as all dirty. In this case the host-page is the host-page 2598 * for the particular RAMBlock, i.e. it might be a huge page. 2599 */ 2600 postcopy_chunk_hostpages_pass(ms, block); 2601 2602 /* 2603 * Postcopy sends chunks of bitmap over the wire, but it 2604 * just needs indexes at this point, avoids it having 2605 * target page specific code. 2606 */ 2607 postcopy_send_discard_bm_ram(ms, block); 2608 postcopy_discard_send_finish(ms); 2609 } 2610 } 2611 2612 /** 2613 * postcopy_chunk_hostpages_pass: canonicalize bitmap in hostpages 2614 * 2615 * Helper for postcopy_chunk_hostpages; it's called twice to 2616 * canonicalize the two bitmaps, that are similar, but one is 2617 * inverted. 2618 * 2619 * Postcopy requires that all target pages in a hostpage are dirty or 2620 * clean, not a mix. This function canonicalizes the bitmaps. 2621 * 2622 * @ms: current migration state 2623 * @block: block that contains the page we want to canonicalize 2624 */ 2625 static void postcopy_chunk_hostpages_pass(MigrationState *ms, RAMBlock *block) 2626 { 2627 RAMState *rs = ram_state; 2628 unsigned long *bitmap = block->bmap; 2629 unsigned int host_ratio = block->page_size / TARGET_PAGE_SIZE; 2630 unsigned long pages = block->used_length >> TARGET_PAGE_BITS; 2631 unsigned long run_start; 2632 2633 if (block->page_size == TARGET_PAGE_SIZE) { 2634 /* Easy case - TPS==HPS for a non-huge page RAMBlock */ 2635 return; 2636 } 2637 2638 /* Find a dirty page */ 2639 run_start = find_next_bit(bitmap, pages, 0); 2640 2641 while (run_start < pages) { 2642 2643 /* 2644 * If the start of this run of pages is in the middle of a host 2645 * page, then we need to fixup this host page. 2646 */ 2647 if (QEMU_IS_ALIGNED(run_start, host_ratio)) { 2648 /* Find the end of this run */ 2649 run_start = find_next_zero_bit(bitmap, pages, run_start + 1); 2650 /* 2651 * If the end isn't at the start of a host page, then the 2652 * run doesn't finish at the end of a host page 2653 * and we need to discard. 2654 */ 2655 } 2656 2657 if (!QEMU_IS_ALIGNED(run_start, host_ratio)) { 2658 unsigned long page; 2659 unsigned long fixup_start_addr = QEMU_ALIGN_DOWN(run_start, 2660 host_ratio); 2661 run_start = QEMU_ALIGN_UP(run_start, host_ratio); 2662 2663 /* Clean up the bitmap */ 2664 for (page = fixup_start_addr; 2665 page < fixup_start_addr + host_ratio; page++) { 2666 /* 2667 * Remark them as dirty, updating the count for any pages 2668 * that weren't previously dirty. 2669 */ 2670 rs->migration_dirty_pages += !test_and_set_bit(page, bitmap); 2671 } 2672 } 2673 2674 /* Find the next dirty page for the next iteration */ 2675 run_start = find_next_bit(bitmap, pages, run_start); 2676 } 2677 } 2678 2679 /** 2680 * ram_postcopy_send_discard_bitmap: transmit the discard bitmap 2681 * 2682 * Transmit the set of pages to be discarded after precopy to the target 2683 * these are pages that: 2684 * a) Have been previously transmitted but are now dirty again 2685 * b) Pages that have never been transmitted, this ensures that 2686 * any pages on the destination that have been mapped by background 2687 * tasks get discarded (transparent huge pages is the specific concern) 2688 * Hopefully this is pretty sparse 2689 * 2690 * @ms: current migration state 2691 */ 2692 void ram_postcopy_send_discard_bitmap(MigrationState *ms) 2693 { 2694 RAMState *rs = ram_state; 2695 2696 RCU_READ_LOCK_GUARD(); 2697 2698 /* This should be our last sync, the src is now paused */ 2699 migration_bitmap_sync(rs, false); 2700 2701 /* Easiest way to make sure we don't resume in the middle of a host-page */ 2702 rs->pss[RAM_CHANNEL_PRECOPY].last_sent_block = NULL; 2703 rs->last_seen_block = NULL; 2704 rs->last_page = 0; 2705 2706 postcopy_each_ram_send_discard(ms); 2707 2708 trace_ram_postcopy_send_discard_bitmap(); 2709 } 2710 2711 /** 2712 * ram_discard_range: discard dirtied pages at the beginning of postcopy 2713 * 2714 * Returns zero on success 2715 * 2716 * @rbname: name of the RAMBlock of the request. NULL means the 2717 * same that last one. 2718 * @start: RAMBlock starting page 2719 * @length: RAMBlock size 2720 */ 2721 int ram_discard_range(const char *rbname, uint64_t start, size_t length) 2722 { 2723 trace_ram_discard_range(rbname, start, length); 2724 2725 RCU_READ_LOCK_GUARD(); 2726 RAMBlock *rb = qemu_ram_block_by_name(rbname); 2727 2728 if (!rb) { 2729 error_report("ram_discard_range: Failed to find block '%s'", rbname); 2730 return -1; 2731 } 2732 2733 /* 2734 * On source VM, we don't need to update the received bitmap since 2735 * we don't even have one. 2736 */ 2737 if (rb->receivedmap) { 2738 bitmap_clear(rb->receivedmap, start >> qemu_target_page_bits(), 2739 length >> qemu_target_page_bits()); 2740 } 2741 2742 return ram_block_discard_range(rb, start, length); 2743 } 2744 2745 /* 2746 * For every allocation, we will try not to crash the VM if the 2747 * allocation failed. 2748 */ 2749 static int xbzrle_init(void) 2750 { 2751 Error *local_err = NULL; 2752 2753 if (!migrate_xbzrle()) { 2754 return 0; 2755 } 2756 2757 XBZRLE_cache_lock(); 2758 2759 XBZRLE.zero_target_page = g_try_malloc0(TARGET_PAGE_SIZE); 2760 if (!XBZRLE.zero_target_page) { 2761 error_report("%s: Error allocating zero page", __func__); 2762 goto err_out; 2763 } 2764 2765 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size(), 2766 TARGET_PAGE_SIZE, &local_err); 2767 if (!XBZRLE.cache) { 2768 error_report_err(local_err); 2769 goto free_zero_page; 2770 } 2771 2772 XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE); 2773 if (!XBZRLE.encoded_buf) { 2774 error_report("%s: Error allocating encoded_buf", __func__); 2775 goto free_cache; 2776 } 2777 2778 XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE); 2779 if (!XBZRLE.current_buf) { 2780 error_report("%s: Error allocating current_buf", __func__); 2781 goto free_encoded_buf; 2782 } 2783 2784 /* We are all good */ 2785 XBZRLE_cache_unlock(); 2786 return 0; 2787 2788 free_encoded_buf: 2789 g_free(XBZRLE.encoded_buf); 2790 XBZRLE.encoded_buf = NULL; 2791 free_cache: 2792 cache_fini(XBZRLE.cache); 2793 XBZRLE.cache = NULL; 2794 free_zero_page: 2795 g_free(XBZRLE.zero_target_page); 2796 XBZRLE.zero_target_page = NULL; 2797 err_out: 2798 XBZRLE_cache_unlock(); 2799 return -ENOMEM; 2800 } 2801 2802 static int ram_state_init(RAMState **rsp) 2803 { 2804 *rsp = g_try_new0(RAMState, 1); 2805 2806 if (!*rsp) { 2807 error_report("%s: Init ramstate fail", __func__); 2808 return -1; 2809 } 2810 2811 qemu_mutex_init(&(*rsp)->bitmap_mutex); 2812 qemu_mutex_init(&(*rsp)->src_page_req_mutex); 2813 QSIMPLEQ_INIT(&(*rsp)->src_page_requests); 2814 (*rsp)->ram_bytes_total = ram_bytes_total(); 2815 2816 /* 2817 * Count the total number of pages used by ram blocks not including any 2818 * gaps due to alignment or unplugs. 2819 * This must match with the initial values of dirty bitmap. 2820 */ 2821 (*rsp)->migration_dirty_pages = (*rsp)->ram_bytes_total >> TARGET_PAGE_BITS; 2822 ram_state_reset(*rsp); 2823 2824 return 0; 2825 } 2826 2827 static void ram_list_init_bitmaps(void) 2828 { 2829 MigrationState *ms = migrate_get_current(); 2830 RAMBlock *block; 2831 unsigned long pages; 2832 uint8_t shift; 2833 2834 /* Skip setting bitmap if there is no RAM */ 2835 if (ram_bytes_total()) { 2836 shift = ms->clear_bitmap_shift; 2837 if (shift > CLEAR_BITMAP_SHIFT_MAX) { 2838 error_report("clear_bitmap_shift (%u) too big, using " 2839 "max value (%u)", shift, CLEAR_BITMAP_SHIFT_MAX); 2840 shift = CLEAR_BITMAP_SHIFT_MAX; 2841 } else if (shift < CLEAR_BITMAP_SHIFT_MIN) { 2842 error_report("clear_bitmap_shift (%u) too small, using " 2843 "min value (%u)", shift, CLEAR_BITMAP_SHIFT_MIN); 2844 shift = CLEAR_BITMAP_SHIFT_MIN; 2845 } 2846 2847 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 2848 pages = block->max_length >> TARGET_PAGE_BITS; 2849 /* 2850 * The initial dirty bitmap for migration must be set with all 2851 * ones to make sure we'll migrate every guest RAM page to 2852 * destination. 2853 * Here we set RAMBlock.bmap all to 1 because when rebegin a 2854 * new migration after a failed migration, ram_list. 2855 * dirty_memory[DIRTY_MEMORY_MIGRATION] don't include the whole 2856 * guest memory. 2857 */ 2858 block->bmap = bitmap_new(pages); 2859 bitmap_set(block->bmap, 0, pages); 2860 block->clear_bmap_shift = shift; 2861 block->clear_bmap = bitmap_new(clear_bmap_size(pages, shift)); 2862 } 2863 } 2864 } 2865 2866 static void migration_bitmap_clear_discarded_pages(RAMState *rs) 2867 { 2868 unsigned long pages; 2869 RAMBlock *rb; 2870 2871 RCU_READ_LOCK_GUARD(); 2872 2873 RAMBLOCK_FOREACH_NOT_IGNORED(rb) { 2874 pages = ramblock_dirty_bitmap_clear_discarded_pages(rb); 2875 rs->migration_dirty_pages -= pages; 2876 } 2877 } 2878 2879 static void ram_init_bitmaps(RAMState *rs) 2880 { 2881 qemu_mutex_lock_ramlist(); 2882 2883 WITH_RCU_READ_LOCK_GUARD() { 2884 ram_list_init_bitmaps(); 2885 /* We don't use dirty log with background snapshots */ 2886 if (!migrate_background_snapshot()) { 2887 memory_global_dirty_log_start(GLOBAL_DIRTY_MIGRATION); 2888 migration_bitmap_sync_precopy(rs, false); 2889 } 2890 } 2891 qemu_mutex_unlock_ramlist(); 2892 2893 /* 2894 * After an eventual first bitmap sync, fixup the initial bitmap 2895 * containing all 1s to exclude any discarded pages from migration. 2896 */ 2897 migration_bitmap_clear_discarded_pages(rs); 2898 } 2899 2900 static int ram_init_all(RAMState **rsp) 2901 { 2902 if (ram_state_init(rsp)) { 2903 return -1; 2904 } 2905 2906 if (xbzrle_init()) { 2907 ram_state_cleanup(rsp); 2908 return -1; 2909 } 2910 2911 ram_init_bitmaps(*rsp); 2912 2913 return 0; 2914 } 2915 2916 static void ram_state_resume_prepare(RAMState *rs, QEMUFile *out) 2917 { 2918 RAMBlock *block; 2919 uint64_t pages = 0; 2920 2921 /* 2922 * Postcopy is not using xbzrle/compression, so no need for that. 2923 * Also, since source are already halted, we don't need to care 2924 * about dirty page logging as well. 2925 */ 2926 2927 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 2928 pages += bitmap_count_one(block->bmap, 2929 block->used_length >> TARGET_PAGE_BITS); 2930 } 2931 2932 /* This may not be aligned with current bitmaps. Recalculate. */ 2933 rs->migration_dirty_pages = pages; 2934 2935 ram_state_reset(rs); 2936 2937 /* Update RAMState cache of output QEMUFile */ 2938 rs->pss[RAM_CHANNEL_PRECOPY].pss_channel = out; 2939 2940 trace_ram_state_resume_prepare(pages); 2941 } 2942 2943 /* 2944 * This function clears bits of the free pages reported by the caller from the 2945 * migration dirty bitmap. @addr is the host address corresponding to the 2946 * start of the continuous guest free pages, and @len is the total bytes of 2947 * those pages. 2948 */ 2949 void qemu_guest_free_page_hint(void *addr, size_t len) 2950 { 2951 RAMBlock *block; 2952 ram_addr_t offset; 2953 size_t used_len, start, npages; 2954 MigrationState *s = migrate_get_current(); 2955 2956 /* This function is currently expected to be used during live migration */ 2957 if (!migration_is_setup_or_active(s->state)) { 2958 return; 2959 } 2960 2961 for (; len > 0; len -= used_len, addr += used_len) { 2962 block = qemu_ram_block_from_host(addr, false, &offset); 2963 if (unlikely(!block || offset >= block->used_length)) { 2964 /* 2965 * The implementation might not support RAMBlock resize during 2966 * live migration, but it could happen in theory with future 2967 * updates. So we add a check here to capture that case. 2968 */ 2969 error_report_once("%s unexpected error", __func__); 2970 return; 2971 } 2972 2973 if (len <= block->used_length - offset) { 2974 used_len = len; 2975 } else { 2976 used_len = block->used_length - offset; 2977 } 2978 2979 start = offset >> TARGET_PAGE_BITS; 2980 npages = used_len >> TARGET_PAGE_BITS; 2981 2982 qemu_mutex_lock(&ram_state->bitmap_mutex); 2983 /* 2984 * The skipped free pages are equavalent to be sent from clear_bmap's 2985 * perspective, so clear the bits from the memory region bitmap which 2986 * are initially set. Otherwise those skipped pages will be sent in 2987 * the next round after syncing from the memory region bitmap. 2988 */ 2989 migration_clear_memory_region_dirty_bitmap_range(block, start, npages); 2990 ram_state->migration_dirty_pages -= 2991 bitmap_count_one_with_offset(block->bmap, start, npages); 2992 bitmap_clear(block->bmap, start, npages); 2993 qemu_mutex_unlock(&ram_state->bitmap_mutex); 2994 } 2995 } 2996 2997 /* 2998 * Each of ram_save_setup, ram_save_iterate and ram_save_complete has 2999 * long-running RCU critical section. When rcu-reclaims in the code 3000 * start to become numerous it will be necessary to reduce the 3001 * granularity of these critical sections. 3002 */ 3003 3004 /** 3005 * ram_save_setup: Setup RAM for migration 3006 * 3007 * Returns zero to indicate success and negative for error 3008 * 3009 * @f: QEMUFile where to send the data 3010 * @opaque: RAMState pointer 3011 */ 3012 static int ram_save_setup(QEMUFile *f, void *opaque) 3013 { 3014 RAMState **rsp = opaque; 3015 RAMBlock *block; 3016 int ret; 3017 3018 if (compress_threads_save_setup()) { 3019 return -1; 3020 } 3021 3022 /* migration has already setup the bitmap, reuse it. */ 3023 if (!migration_in_colo_state()) { 3024 if (ram_init_all(rsp) != 0) { 3025 compress_threads_save_cleanup(); 3026 return -1; 3027 } 3028 } 3029 (*rsp)->pss[RAM_CHANNEL_PRECOPY].pss_channel = f; 3030 3031 WITH_RCU_READ_LOCK_GUARD() { 3032 qemu_put_be64(f, ram_bytes_total_with_ignored() 3033 | RAM_SAVE_FLAG_MEM_SIZE); 3034 3035 RAMBLOCK_FOREACH_MIGRATABLE(block) { 3036 qemu_put_byte(f, strlen(block->idstr)); 3037 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr)); 3038 qemu_put_be64(f, block->used_length); 3039 if (migrate_postcopy_ram() && block->page_size != 3040 qemu_host_page_size) { 3041 qemu_put_be64(f, block->page_size); 3042 } 3043 if (migrate_ignore_shared()) { 3044 qemu_put_be64(f, block->mr->addr); 3045 } 3046 } 3047 } 3048 3049 ret = rdma_registration_start(f, RAM_CONTROL_SETUP); 3050 if (ret < 0) { 3051 qemu_file_set_error(f, ret); 3052 } 3053 3054 ret = rdma_registration_stop(f, RAM_CONTROL_SETUP); 3055 if (ret < 0) { 3056 qemu_file_set_error(f, ret); 3057 } 3058 3059 migration_ops = g_malloc0(sizeof(MigrationOps)); 3060 migration_ops->ram_save_target_page = ram_save_target_page_legacy; 3061 3062 qemu_mutex_unlock_iothread(); 3063 ret = multifd_send_sync_main(f); 3064 qemu_mutex_lock_iothread(); 3065 if (ret < 0) { 3066 return ret; 3067 } 3068 3069 if (migrate_multifd() && !migrate_multifd_flush_after_each_section()) { 3070 qemu_put_be64(f, RAM_SAVE_FLAG_MULTIFD_FLUSH); 3071 } 3072 3073 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 3074 qemu_fflush(f); 3075 3076 return 0; 3077 } 3078 3079 /** 3080 * ram_save_iterate: iterative stage for migration 3081 * 3082 * Returns zero to indicate success and negative for error 3083 * 3084 * @f: QEMUFile where to send the data 3085 * @opaque: RAMState pointer 3086 */ 3087 static int ram_save_iterate(QEMUFile *f, void *opaque) 3088 { 3089 RAMState **temp = opaque; 3090 RAMState *rs = *temp; 3091 int ret = 0; 3092 int i; 3093 int64_t t0; 3094 int done = 0; 3095 3096 if (blk_mig_bulk_active()) { 3097 /* Avoid transferring ram during bulk phase of block migration as 3098 * the bulk phase will usually take a long time and transferring 3099 * ram updates during that time is pointless. */ 3100 goto out; 3101 } 3102 3103 /* 3104 * We'll take this lock a little bit long, but it's okay for two reasons. 3105 * Firstly, the only possible other thread to take it is who calls 3106 * qemu_guest_free_page_hint(), which should be rare; secondly, see 3107 * MAX_WAIT (if curious, further see commit 4508bd9ed8053ce) below, which 3108 * guarantees that we'll at least released it in a regular basis. 3109 */ 3110 qemu_mutex_lock(&rs->bitmap_mutex); 3111 WITH_RCU_READ_LOCK_GUARD() { 3112 if (ram_list.version != rs->last_version) { 3113 ram_state_reset(rs); 3114 } 3115 3116 /* Read version before ram_list.blocks */ 3117 smp_rmb(); 3118 3119 ret = rdma_registration_start(f, RAM_CONTROL_ROUND); 3120 if (ret < 0) { 3121 qemu_file_set_error(f, ret); 3122 } 3123 3124 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 3125 i = 0; 3126 while ((ret = migration_rate_exceeded(f)) == 0 || 3127 postcopy_has_request(rs)) { 3128 int pages; 3129 3130 if (qemu_file_get_error(f)) { 3131 break; 3132 } 3133 3134 pages = ram_find_and_save_block(rs); 3135 /* no more pages to sent */ 3136 if (pages == 0) { 3137 done = 1; 3138 break; 3139 } 3140 3141 if (pages < 0) { 3142 qemu_file_set_error(f, pages); 3143 break; 3144 } 3145 3146 rs->target_page_count += pages; 3147 3148 /* 3149 * During postcopy, it is necessary to make sure one whole host 3150 * page is sent in one chunk. 3151 */ 3152 if (migrate_postcopy_ram()) { 3153 ram_flush_compressed_data(rs); 3154 } 3155 3156 /* 3157 * we want to check in the 1st loop, just in case it was the 1st 3158 * time and we had to sync the dirty bitmap. 3159 * qemu_clock_get_ns() is a bit expensive, so we only check each 3160 * some iterations 3161 */ 3162 if ((i & 63) == 0) { 3163 uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) / 3164 1000000; 3165 if (t1 > MAX_WAIT) { 3166 trace_ram_save_iterate_big_wait(t1, i); 3167 break; 3168 } 3169 } 3170 i++; 3171 } 3172 } 3173 qemu_mutex_unlock(&rs->bitmap_mutex); 3174 3175 /* 3176 * Must occur before EOS (or any QEMUFile operation) 3177 * because of RDMA protocol. 3178 */ 3179 ret = rdma_registration_stop(f, RAM_CONTROL_ROUND); 3180 if (ret < 0) { 3181 qemu_file_set_error(f, ret); 3182 } 3183 3184 out: 3185 if (ret >= 0 3186 && migration_is_setup_or_active(migrate_get_current()->state)) { 3187 if (migrate_multifd() && migrate_multifd_flush_after_each_section()) { 3188 ret = multifd_send_sync_main(rs->pss[RAM_CHANNEL_PRECOPY].pss_channel); 3189 if (ret < 0) { 3190 return ret; 3191 } 3192 } 3193 3194 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 3195 qemu_fflush(f); 3196 ram_transferred_add(8); 3197 3198 ret = qemu_file_get_error(f); 3199 } 3200 if (ret < 0) { 3201 return ret; 3202 } 3203 3204 return done; 3205 } 3206 3207 /** 3208 * ram_save_complete: function called to send the remaining amount of ram 3209 * 3210 * Returns zero to indicate success or negative on error 3211 * 3212 * Called with iothread lock 3213 * 3214 * @f: QEMUFile where to send the data 3215 * @opaque: RAMState pointer 3216 */ 3217 static int ram_save_complete(QEMUFile *f, void *opaque) 3218 { 3219 RAMState **temp = opaque; 3220 RAMState *rs = *temp; 3221 int ret = 0; 3222 3223 rs->last_stage = !migration_in_colo_state(); 3224 3225 WITH_RCU_READ_LOCK_GUARD() { 3226 if (!migration_in_postcopy()) { 3227 migration_bitmap_sync_precopy(rs, true); 3228 } 3229 3230 ret = rdma_registration_start(f, RAM_CONTROL_FINISH); 3231 if (ret < 0) { 3232 qemu_file_set_error(f, ret); 3233 } 3234 3235 /* try transferring iterative blocks of memory */ 3236 3237 /* flush all remaining blocks regardless of rate limiting */ 3238 qemu_mutex_lock(&rs->bitmap_mutex); 3239 while (true) { 3240 int pages; 3241 3242 pages = ram_find_and_save_block(rs); 3243 /* no more blocks to sent */ 3244 if (pages == 0) { 3245 break; 3246 } 3247 if (pages < 0) { 3248 ret = pages; 3249 break; 3250 } 3251 } 3252 qemu_mutex_unlock(&rs->bitmap_mutex); 3253 3254 ram_flush_compressed_data(rs); 3255 3256 int ret = rdma_registration_stop(f, RAM_CONTROL_FINISH); 3257 if (ret < 0) { 3258 qemu_file_set_error(f, ret); 3259 } 3260 } 3261 3262 if (ret < 0) { 3263 return ret; 3264 } 3265 3266 ret = multifd_send_sync_main(rs->pss[RAM_CHANNEL_PRECOPY].pss_channel); 3267 if (ret < 0) { 3268 return ret; 3269 } 3270 3271 if (migrate_multifd() && !migrate_multifd_flush_after_each_section()) { 3272 qemu_put_be64(f, RAM_SAVE_FLAG_MULTIFD_FLUSH); 3273 } 3274 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 3275 qemu_fflush(f); 3276 3277 return 0; 3278 } 3279 3280 static void ram_state_pending_estimate(void *opaque, uint64_t *must_precopy, 3281 uint64_t *can_postcopy) 3282 { 3283 RAMState **temp = opaque; 3284 RAMState *rs = *temp; 3285 3286 uint64_t remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE; 3287 3288 if (migrate_postcopy_ram()) { 3289 /* We can do postcopy, and all the data is postcopiable */ 3290 *can_postcopy += remaining_size; 3291 } else { 3292 *must_precopy += remaining_size; 3293 } 3294 } 3295 3296 static void ram_state_pending_exact(void *opaque, uint64_t *must_precopy, 3297 uint64_t *can_postcopy) 3298 { 3299 MigrationState *s = migrate_get_current(); 3300 RAMState **temp = opaque; 3301 RAMState *rs = *temp; 3302 3303 uint64_t remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE; 3304 3305 if (!migration_in_postcopy() && remaining_size < s->threshold_size) { 3306 qemu_mutex_lock_iothread(); 3307 WITH_RCU_READ_LOCK_GUARD() { 3308 migration_bitmap_sync_precopy(rs, false); 3309 } 3310 qemu_mutex_unlock_iothread(); 3311 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE; 3312 } 3313 3314 if (migrate_postcopy_ram()) { 3315 /* We can do postcopy, and all the data is postcopiable */ 3316 *can_postcopy += remaining_size; 3317 } else { 3318 *must_precopy += remaining_size; 3319 } 3320 } 3321 3322 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host) 3323 { 3324 unsigned int xh_len; 3325 int xh_flags; 3326 uint8_t *loaded_data; 3327 3328 /* extract RLE header */ 3329 xh_flags = qemu_get_byte(f); 3330 xh_len = qemu_get_be16(f); 3331 3332 if (xh_flags != ENCODING_FLAG_XBZRLE) { 3333 error_report("Failed to load XBZRLE page - wrong compression!"); 3334 return -1; 3335 } 3336 3337 if (xh_len > TARGET_PAGE_SIZE) { 3338 error_report("Failed to load XBZRLE page - len overflow!"); 3339 return -1; 3340 } 3341 loaded_data = XBZRLE.decoded_buf; 3342 /* load data and decode */ 3343 /* it can change loaded_data to point to an internal buffer */ 3344 qemu_get_buffer_in_place(f, &loaded_data, xh_len); 3345 3346 /* decode RLE */ 3347 if (xbzrle_decode_buffer(loaded_data, xh_len, host, 3348 TARGET_PAGE_SIZE) == -1) { 3349 error_report("Failed to load XBZRLE page - decode error!"); 3350 return -1; 3351 } 3352 3353 return 0; 3354 } 3355 3356 /** 3357 * ram_block_from_stream: read a RAMBlock id from the migration stream 3358 * 3359 * Must be called from within a rcu critical section. 3360 * 3361 * Returns a pointer from within the RCU-protected ram_list. 3362 * 3363 * @mis: the migration incoming state pointer 3364 * @f: QEMUFile where to read the data from 3365 * @flags: Page flags (mostly to see if it's a continuation of previous block) 3366 * @channel: the channel we're using 3367 */ 3368 static inline RAMBlock *ram_block_from_stream(MigrationIncomingState *mis, 3369 QEMUFile *f, int flags, 3370 int channel) 3371 { 3372 RAMBlock *block = mis->last_recv_block[channel]; 3373 char id[256]; 3374 uint8_t len; 3375 3376 if (flags & RAM_SAVE_FLAG_CONTINUE) { 3377 if (!block) { 3378 error_report("Ack, bad migration stream!"); 3379 return NULL; 3380 } 3381 return block; 3382 } 3383 3384 len = qemu_get_byte(f); 3385 qemu_get_buffer(f, (uint8_t *)id, len); 3386 id[len] = 0; 3387 3388 block = qemu_ram_block_by_name(id); 3389 if (!block) { 3390 error_report("Can't find block %s", id); 3391 return NULL; 3392 } 3393 3394 if (migrate_ram_is_ignored(block)) { 3395 error_report("block %s should not be migrated !", id); 3396 return NULL; 3397 } 3398 3399 mis->last_recv_block[channel] = block; 3400 3401 return block; 3402 } 3403 3404 static inline void *host_from_ram_block_offset(RAMBlock *block, 3405 ram_addr_t offset) 3406 { 3407 if (!offset_in_ramblock(block, offset)) { 3408 return NULL; 3409 } 3410 3411 return block->host + offset; 3412 } 3413 3414 static void *host_page_from_ram_block_offset(RAMBlock *block, 3415 ram_addr_t offset) 3416 { 3417 /* Note: Explicitly no check against offset_in_ramblock(). */ 3418 return (void *)QEMU_ALIGN_DOWN((uintptr_t)(block->host + offset), 3419 block->page_size); 3420 } 3421 3422 static ram_addr_t host_page_offset_from_ram_block_offset(RAMBlock *block, 3423 ram_addr_t offset) 3424 { 3425 return ((uintptr_t)block->host + offset) & (block->page_size - 1); 3426 } 3427 3428 void colo_record_bitmap(RAMBlock *block, ram_addr_t *normal, uint32_t pages) 3429 { 3430 qemu_mutex_lock(&ram_state->bitmap_mutex); 3431 for (int i = 0; i < pages; i++) { 3432 ram_addr_t offset = normal[i]; 3433 ram_state->migration_dirty_pages += !test_and_set_bit( 3434 offset >> TARGET_PAGE_BITS, 3435 block->bmap); 3436 } 3437 qemu_mutex_unlock(&ram_state->bitmap_mutex); 3438 } 3439 3440 static inline void *colo_cache_from_block_offset(RAMBlock *block, 3441 ram_addr_t offset, bool record_bitmap) 3442 { 3443 if (!offset_in_ramblock(block, offset)) { 3444 return NULL; 3445 } 3446 if (!block->colo_cache) { 3447 error_report("%s: colo_cache is NULL in block :%s", 3448 __func__, block->idstr); 3449 return NULL; 3450 } 3451 3452 /* 3453 * During colo checkpoint, we need bitmap of these migrated pages. 3454 * It help us to decide which pages in ram cache should be flushed 3455 * into VM's RAM later. 3456 */ 3457 if (record_bitmap) { 3458 colo_record_bitmap(block, &offset, 1); 3459 } 3460 return block->colo_cache + offset; 3461 } 3462 3463 /** 3464 * ram_handle_compressed: handle the zero page case 3465 * 3466 * If a page (or a whole RDMA chunk) has been 3467 * determined to be zero, then zap it. 3468 * 3469 * @host: host address for the zero page 3470 * @ch: what the page is filled from. We only support zero 3471 * @size: size of the zero page 3472 */ 3473 void ram_handle_compressed(void *host, uint8_t ch, uint64_t size) 3474 { 3475 if (ch != 0 || !buffer_is_zero(host, size)) { 3476 memset(host, ch, size); 3477 } 3478 } 3479 3480 static void colo_init_ram_state(void) 3481 { 3482 ram_state_init(&ram_state); 3483 } 3484 3485 /* 3486 * colo cache: this is for secondary VM, we cache the whole 3487 * memory of the secondary VM, it is need to hold the global lock 3488 * to call this helper. 3489 */ 3490 int colo_init_ram_cache(void) 3491 { 3492 RAMBlock *block; 3493 3494 WITH_RCU_READ_LOCK_GUARD() { 3495 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3496 block->colo_cache = qemu_anon_ram_alloc(block->used_length, 3497 NULL, false, false); 3498 if (!block->colo_cache) { 3499 error_report("%s: Can't alloc memory for COLO cache of block %s," 3500 "size 0x" RAM_ADDR_FMT, __func__, block->idstr, 3501 block->used_length); 3502 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3503 if (block->colo_cache) { 3504 qemu_anon_ram_free(block->colo_cache, block->used_length); 3505 block->colo_cache = NULL; 3506 } 3507 } 3508 return -errno; 3509 } 3510 if (!machine_dump_guest_core(current_machine)) { 3511 qemu_madvise(block->colo_cache, block->used_length, 3512 QEMU_MADV_DONTDUMP); 3513 } 3514 } 3515 } 3516 3517 /* 3518 * Record the dirty pages that sent by PVM, we use this dirty bitmap together 3519 * with to decide which page in cache should be flushed into SVM's RAM. Here 3520 * we use the same name 'ram_bitmap' as for migration. 3521 */ 3522 if (ram_bytes_total()) { 3523 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3524 unsigned long pages = block->max_length >> TARGET_PAGE_BITS; 3525 block->bmap = bitmap_new(pages); 3526 } 3527 } 3528 3529 colo_init_ram_state(); 3530 return 0; 3531 } 3532 3533 /* TODO: duplicated with ram_init_bitmaps */ 3534 void colo_incoming_start_dirty_log(void) 3535 { 3536 RAMBlock *block = NULL; 3537 /* For memory_global_dirty_log_start below. */ 3538 qemu_mutex_lock_iothread(); 3539 qemu_mutex_lock_ramlist(); 3540 3541 memory_global_dirty_log_sync(false); 3542 WITH_RCU_READ_LOCK_GUARD() { 3543 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3544 ramblock_sync_dirty_bitmap(ram_state, block); 3545 /* Discard this dirty bitmap record */ 3546 bitmap_zero(block->bmap, block->max_length >> TARGET_PAGE_BITS); 3547 } 3548 memory_global_dirty_log_start(GLOBAL_DIRTY_MIGRATION); 3549 } 3550 ram_state->migration_dirty_pages = 0; 3551 qemu_mutex_unlock_ramlist(); 3552 qemu_mutex_unlock_iothread(); 3553 } 3554 3555 /* It is need to hold the global lock to call this helper */ 3556 void colo_release_ram_cache(void) 3557 { 3558 RAMBlock *block; 3559 3560 memory_global_dirty_log_stop(GLOBAL_DIRTY_MIGRATION); 3561 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3562 g_free(block->bmap); 3563 block->bmap = NULL; 3564 } 3565 3566 WITH_RCU_READ_LOCK_GUARD() { 3567 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3568 if (block->colo_cache) { 3569 qemu_anon_ram_free(block->colo_cache, block->used_length); 3570 block->colo_cache = NULL; 3571 } 3572 } 3573 } 3574 ram_state_cleanup(&ram_state); 3575 } 3576 3577 /** 3578 * ram_load_setup: Setup RAM for migration incoming side 3579 * 3580 * Returns zero to indicate success and negative for error 3581 * 3582 * @f: QEMUFile where to receive the data 3583 * @opaque: RAMState pointer 3584 */ 3585 static int ram_load_setup(QEMUFile *f, void *opaque) 3586 { 3587 xbzrle_load_setup(); 3588 ramblock_recv_map_init(); 3589 3590 return 0; 3591 } 3592 3593 static int ram_load_cleanup(void *opaque) 3594 { 3595 RAMBlock *rb; 3596 3597 RAMBLOCK_FOREACH_NOT_IGNORED(rb) { 3598 qemu_ram_block_writeback(rb); 3599 } 3600 3601 xbzrle_load_cleanup(); 3602 3603 RAMBLOCK_FOREACH_NOT_IGNORED(rb) { 3604 g_free(rb->receivedmap); 3605 rb->receivedmap = NULL; 3606 } 3607 3608 return 0; 3609 } 3610 3611 /** 3612 * ram_postcopy_incoming_init: allocate postcopy data structures 3613 * 3614 * Returns 0 for success and negative if there was one error 3615 * 3616 * @mis: current migration incoming state 3617 * 3618 * Allocate data structures etc needed by incoming migration with 3619 * postcopy-ram. postcopy-ram's similarly names 3620 * postcopy_ram_incoming_init does the work. 3621 */ 3622 int ram_postcopy_incoming_init(MigrationIncomingState *mis) 3623 { 3624 return postcopy_ram_incoming_init(mis); 3625 } 3626 3627 /** 3628 * ram_load_postcopy: load a page in postcopy case 3629 * 3630 * Returns 0 for success or -errno in case of error 3631 * 3632 * Called in postcopy mode by ram_load(). 3633 * rcu_read_lock is taken prior to this being called. 3634 * 3635 * @f: QEMUFile where to send the data 3636 * @channel: the channel to use for loading 3637 */ 3638 int ram_load_postcopy(QEMUFile *f, int channel) 3639 { 3640 int flags = 0, ret = 0; 3641 bool place_needed = false; 3642 bool matches_target_page_size = false; 3643 MigrationIncomingState *mis = migration_incoming_get_current(); 3644 PostcopyTmpPage *tmp_page = &mis->postcopy_tmp_pages[channel]; 3645 3646 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) { 3647 ram_addr_t addr; 3648 void *page_buffer = NULL; 3649 void *place_source = NULL; 3650 RAMBlock *block = NULL; 3651 uint8_t ch; 3652 int len; 3653 3654 addr = qemu_get_be64(f); 3655 3656 /* 3657 * If qemu file error, we should stop here, and then "addr" 3658 * may be invalid 3659 */ 3660 ret = qemu_file_get_error(f); 3661 if (ret) { 3662 break; 3663 } 3664 3665 flags = addr & ~TARGET_PAGE_MASK; 3666 addr &= TARGET_PAGE_MASK; 3667 3668 trace_ram_load_postcopy_loop(channel, (uint64_t)addr, flags); 3669 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE | 3670 RAM_SAVE_FLAG_COMPRESS_PAGE)) { 3671 block = ram_block_from_stream(mis, f, flags, channel); 3672 if (!block) { 3673 ret = -EINVAL; 3674 break; 3675 } 3676 3677 /* 3678 * Relying on used_length is racy and can result in false positives. 3679 * We might place pages beyond used_length in case RAM was shrunk 3680 * while in postcopy, which is fine - trying to place via 3681 * UFFDIO_COPY/UFFDIO_ZEROPAGE will never segfault. 3682 */ 3683 if (!block->host || addr >= block->postcopy_length) { 3684 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr); 3685 ret = -EINVAL; 3686 break; 3687 } 3688 tmp_page->target_pages++; 3689 matches_target_page_size = block->page_size == TARGET_PAGE_SIZE; 3690 /* 3691 * Postcopy requires that we place whole host pages atomically; 3692 * these may be huge pages for RAMBlocks that are backed by 3693 * hugetlbfs. 3694 * To make it atomic, the data is read into a temporary page 3695 * that's moved into place later. 3696 * The migration protocol uses, possibly smaller, target-pages 3697 * however the source ensures it always sends all the components 3698 * of a host page in one chunk. 3699 */ 3700 page_buffer = tmp_page->tmp_huge_page + 3701 host_page_offset_from_ram_block_offset(block, addr); 3702 /* If all TP are zero then we can optimise the place */ 3703 if (tmp_page->target_pages == 1) { 3704 tmp_page->host_addr = 3705 host_page_from_ram_block_offset(block, addr); 3706 } else if (tmp_page->host_addr != 3707 host_page_from_ram_block_offset(block, addr)) { 3708 /* not the 1st TP within the HP */ 3709 error_report("Non-same host page detected on channel %d: " 3710 "Target host page %p, received host page %p " 3711 "(rb %s offset 0x"RAM_ADDR_FMT" target_pages %d)", 3712 channel, tmp_page->host_addr, 3713 host_page_from_ram_block_offset(block, addr), 3714 block->idstr, addr, tmp_page->target_pages); 3715 ret = -EINVAL; 3716 break; 3717 } 3718 3719 /* 3720 * If it's the last part of a host page then we place the host 3721 * page 3722 */ 3723 if (tmp_page->target_pages == 3724 (block->page_size / TARGET_PAGE_SIZE)) { 3725 place_needed = true; 3726 } 3727 place_source = tmp_page->tmp_huge_page; 3728 } 3729 3730 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) { 3731 case RAM_SAVE_FLAG_ZERO: 3732 ch = qemu_get_byte(f); 3733 /* 3734 * Can skip to set page_buffer when 3735 * this is a zero page and (block->page_size == TARGET_PAGE_SIZE). 3736 */ 3737 if (ch || !matches_target_page_size) { 3738 memset(page_buffer, ch, TARGET_PAGE_SIZE); 3739 } 3740 if (ch) { 3741 tmp_page->all_zero = false; 3742 } 3743 break; 3744 3745 case RAM_SAVE_FLAG_PAGE: 3746 tmp_page->all_zero = false; 3747 if (!matches_target_page_size) { 3748 /* For huge pages, we always use temporary buffer */ 3749 qemu_get_buffer(f, page_buffer, TARGET_PAGE_SIZE); 3750 } else { 3751 /* 3752 * For small pages that matches target page size, we 3753 * avoid the qemu_file copy. Instead we directly use 3754 * the buffer of QEMUFile to place the page. Note: we 3755 * cannot do any QEMUFile operation before using that 3756 * buffer to make sure the buffer is valid when 3757 * placing the page. 3758 */ 3759 qemu_get_buffer_in_place(f, (uint8_t **)&place_source, 3760 TARGET_PAGE_SIZE); 3761 } 3762 break; 3763 case RAM_SAVE_FLAG_COMPRESS_PAGE: 3764 tmp_page->all_zero = false; 3765 len = qemu_get_be32(f); 3766 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) { 3767 error_report("Invalid compressed data length: %d", len); 3768 ret = -EINVAL; 3769 break; 3770 } 3771 decompress_data_with_multi_threads(f, page_buffer, len); 3772 break; 3773 case RAM_SAVE_FLAG_MULTIFD_FLUSH: 3774 multifd_recv_sync_main(); 3775 break; 3776 case RAM_SAVE_FLAG_EOS: 3777 /* normal exit */ 3778 if (migrate_multifd() && 3779 migrate_multifd_flush_after_each_section()) { 3780 multifd_recv_sync_main(); 3781 } 3782 break; 3783 default: 3784 error_report("Unknown combination of migration flags: 0x%x" 3785 " (postcopy mode)", flags); 3786 ret = -EINVAL; 3787 break; 3788 } 3789 3790 /* Got the whole host page, wait for decompress before placing. */ 3791 if (place_needed) { 3792 ret |= wait_for_decompress_done(); 3793 } 3794 3795 /* Detect for any possible file errors */ 3796 if (!ret && qemu_file_get_error(f)) { 3797 ret = qemu_file_get_error(f); 3798 } 3799 3800 if (!ret && place_needed) { 3801 if (tmp_page->all_zero) { 3802 ret = postcopy_place_page_zero(mis, tmp_page->host_addr, block); 3803 } else { 3804 ret = postcopy_place_page(mis, tmp_page->host_addr, 3805 place_source, block); 3806 } 3807 place_needed = false; 3808 postcopy_temp_page_reset(tmp_page); 3809 } 3810 } 3811 3812 return ret; 3813 } 3814 3815 static bool postcopy_is_running(void) 3816 { 3817 PostcopyState ps = postcopy_state_get(); 3818 return ps >= POSTCOPY_INCOMING_LISTENING && ps < POSTCOPY_INCOMING_END; 3819 } 3820 3821 /* 3822 * Flush content of RAM cache into SVM's memory. 3823 * Only flush the pages that be dirtied by PVM or SVM or both. 3824 */ 3825 void colo_flush_ram_cache(void) 3826 { 3827 RAMBlock *block = NULL; 3828 void *dst_host; 3829 void *src_host; 3830 unsigned long offset = 0; 3831 3832 memory_global_dirty_log_sync(false); 3833 qemu_mutex_lock(&ram_state->bitmap_mutex); 3834 WITH_RCU_READ_LOCK_GUARD() { 3835 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3836 ramblock_sync_dirty_bitmap(ram_state, block); 3837 } 3838 } 3839 3840 trace_colo_flush_ram_cache_begin(ram_state->migration_dirty_pages); 3841 WITH_RCU_READ_LOCK_GUARD() { 3842 block = QLIST_FIRST_RCU(&ram_list.blocks); 3843 3844 while (block) { 3845 unsigned long num = 0; 3846 3847 offset = colo_bitmap_find_dirty(ram_state, block, offset, &num); 3848 if (!offset_in_ramblock(block, 3849 ((ram_addr_t)offset) << TARGET_PAGE_BITS)) { 3850 offset = 0; 3851 num = 0; 3852 block = QLIST_NEXT_RCU(block, next); 3853 } else { 3854 unsigned long i = 0; 3855 3856 for (i = 0; i < num; i++) { 3857 migration_bitmap_clear_dirty(ram_state, block, offset + i); 3858 } 3859 dst_host = block->host 3860 + (((ram_addr_t)offset) << TARGET_PAGE_BITS); 3861 src_host = block->colo_cache 3862 + (((ram_addr_t)offset) << TARGET_PAGE_BITS); 3863 memcpy(dst_host, src_host, TARGET_PAGE_SIZE * num); 3864 offset += num; 3865 } 3866 } 3867 } 3868 qemu_mutex_unlock(&ram_state->bitmap_mutex); 3869 trace_colo_flush_ram_cache_end(); 3870 } 3871 3872 static int parse_ramblock(QEMUFile *f, RAMBlock *block, ram_addr_t length) 3873 { 3874 int ret = 0; 3875 /* ADVISE is earlier, it shows the source has the postcopy capability on */ 3876 bool postcopy_advised = migration_incoming_postcopy_advised(); 3877 3878 assert(block); 3879 3880 if (!qemu_ram_is_migratable(block)) { 3881 error_report("block %s should not be migrated !", block->idstr); 3882 return -EINVAL; 3883 } 3884 3885 if (length != block->used_length) { 3886 Error *local_err = NULL; 3887 3888 ret = qemu_ram_resize(block, length, &local_err); 3889 if (local_err) { 3890 error_report_err(local_err); 3891 } 3892 } 3893 /* For postcopy we need to check hugepage sizes match */ 3894 if (postcopy_advised && migrate_postcopy_ram() && 3895 block->page_size != qemu_host_page_size) { 3896 uint64_t remote_page_size = qemu_get_be64(f); 3897 if (remote_page_size != block->page_size) { 3898 error_report("Mismatched RAM page size %s " 3899 "(local) %zd != %" PRId64, block->idstr, 3900 block->page_size, remote_page_size); 3901 ret = -EINVAL; 3902 } 3903 } 3904 if (migrate_ignore_shared()) { 3905 hwaddr addr = qemu_get_be64(f); 3906 if (migrate_ram_is_ignored(block) && 3907 block->mr->addr != addr) { 3908 error_report("Mismatched GPAs for block %s " 3909 "%" PRId64 "!= %" PRId64, block->idstr, 3910 (uint64_t)addr, (uint64_t)block->mr->addr); 3911 ret = -EINVAL; 3912 } 3913 } 3914 ret = rdma_block_notification_handle(f, block->idstr); 3915 if (ret < 0) { 3916 qemu_file_set_error(f, ret); 3917 } 3918 3919 return ret; 3920 } 3921 3922 static int parse_ramblocks(QEMUFile *f, ram_addr_t total_ram_bytes) 3923 { 3924 int ret = 0; 3925 3926 /* Synchronize RAM block list */ 3927 while (!ret && total_ram_bytes) { 3928 RAMBlock *block; 3929 char id[256]; 3930 ram_addr_t length; 3931 int len = qemu_get_byte(f); 3932 3933 qemu_get_buffer(f, (uint8_t *)id, len); 3934 id[len] = 0; 3935 length = qemu_get_be64(f); 3936 3937 block = qemu_ram_block_by_name(id); 3938 if (block) { 3939 ret = parse_ramblock(f, block, length); 3940 } else { 3941 error_report("Unknown ramblock \"%s\", cannot accept " 3942 "migration", id); 3943 ret = -EINVAL; 3944 } 3945 total_ram_bytes -= length; 3946 } 3947 3948 return ret; 3949 } 3950 3951 /** 3952 * ram_load_precopy: load pages in precopy case 3953 * 3954 * Returns 0 for success or -errno in case of error 3955 * 3956 * Called in precopy mode by ram_load(). 3957 * rcu_read_lock is taken prior to this being called. 3958 * 3959 * @f: QEMUFile where to send the data 3960 */ 3961 static int ram_load_precopy(QEMUFile *f) 3962 { 3963 MigrationIncomingState *mis = migration_incoming_get_current(); 3964 int flags = 0, ret = 0, invalid_flags = 0, len = 0, i = 0; 3965 3966 if (!migrate_compress()) { 3967 invalid_flags |= RAM_SAVE_FLAG_COMPRESS_PAGE; 3968 } 3969 3970 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) { 3971 ram_addr_t addr; 3972 void *host = NULL, *host_bak = NULL; 3973 uint8_t ch; 3974 3975 /* 3976 * Yield periodically to let main loop run, but an iteration of 3977 * the main loop is expensive, so do it each some iterations 3978 */ 3979 if ((i & 32767) == 0 && qemu_in_coroutine()) { 3980 aio_co_schedule(qemu_get_current_aio_context(), 3981 qemu_coroutine_self()); 3982 qemu_coroutine_yield(); 3983 } 3984 i++; 3985 3986 addr = qemu_get_be64(f); 3987 flags = addr & ~TARGET_PAGE_MASK; 3988 addr &= TARGET_PAGE_MASK; 3989 3990 if (flags & invalid_flags) { 3991 if (flags & invalid_flags & RAM_SAVE_FLAG_COMPRESS_PAGE) { 3992 error_report("Received an unexpected compressed page"); 3993 } 3994 3995 ret = -EINVAL; 3996 break; 3997 } 3998 3999 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE | 4000 RAM_SAVE_FLAG_COMPRESS_PAGE | RAM_SAVE_FLAG_XBZRLE)) { 4001 RAMBlock *block = ram_block_from_stream(mis, f, flags, 4002 RAM_CHANNEL_PRECOPY); 4003 4004 host = host_from_ram_block_offset(block, addr); 4005 /* 4006 * After going into COLO stage, we should not load the page 4007 * into SVM's memory directly, we put them into colo_cache firstly. 4008 * NOTE: We need to keep a copy of SVM's ram in colo_cache. 4009 * Previously, we copied all these memory in preparing stage of COLO 4010 * while we need to stop VM, which is a time-consuming process. 4011 * Here we optimize it by a trick, back-up every page while in 4012 * migration process while COLO is enabled, though it affects the 4013 * speed of the migration, but it obviously reduce the downtime of 4014 * back-up all SVM'S memory in COLO preparing stage. 4015 */ 4016 if (migration_incoming_colo_enabled()) { 4017 if (migration_incoming_in_colo_state()) { 4018 /* In COLO stage, put all pages into cache temporarily */ 4019 host = colo_cache_from_block_offset(block, addr, true); 4020 } else { 4021 /* 4022 * In migration stage but before COLO stage, 4023 * Put all pages into both cache and SVM's memory. 4024 */ 4025 host_bak = colo_cache_from_block_offset(block, addr, false); 4026 } 4027 } 4028 if (!host) { 4029 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr); 4030 ret = -EINVAL; 4031 break; 4032 } 4033 if (!migration_incoming_in_colo_state()) { 4034 ramblock_recv_bitmap_set(block, host); 4035 } 4036 4037 trace_ram_load_loop(block->idstr, (uint64_t)addr, flags, host); 4038 } 4039 4040 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) { 4041 case RAM_SAVE_FLAG_MEM_SIZE: 4042 ret = parse_ramblocks(f, addr); 4043 break; 4044 4045 case RAM_SAVE_FLAG_ZERO: 4046 ch = qemu_get_byte(f); 4047 ram_handle_compressed(host, ch, TARGET_PAGE_SIZE); 4048 break; 4049 4050 case RAM_SAVE_FLAG_PAGE: 4051 qemu_get_buffer(f, host, TARGET_PAGE_SIZE); 4052 break; 4053 4054 case RAM_SAVE_FLAG_COMPRESS_PAGE: 4055 len = qemu_get_be32(f); 4056 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) { 4057 error_report("Invalid compressed data length: %d", len); 4058 ret = -EINVAL; 4059 break; 4060 } 4061 decompress_data_with_multi_threads(f, host, len); 4062 break; 4063 4064 case RAM_SAVE_FLAG_XBZRLE: 4065 if (load_xbzrle(f, addr, host) < 0) { 4066 error_report("Failed to decompress XBZRLE page at " 4067 RAM_ADDR_FMT, addr); 4068 ret = -EINVAL; 4069 break; 4070 } 4071 break; 4072 case RAM_SAVE_FLAG_MULTIFD_FLUSH: 4073 multifd_recv_sync_main(); 4074 break; 4075 case RAM_SAVE_FLAG_EOS: 4076 /* normal exit */ 4077 if (migrate_multifd() && 4078 migrate_multifd_flush_after_each_section()) { 4079 multifd_recv_sync_main(); 4080 } 4081 break; 4082 case RAM_SAVE_FLAG_HOOK: 4083 ret = rdma_registration_handle(f); 4084 if (ret < 0) { 4085 qemu_file_set_error(f, ret); 4086 } 4087 break; 4088 default: 4089 error_report("Unknown combination of migration flags: 0x%x", flags); 4090 ret = -EINVAL; 4091 } 4092 if (!ret) { 4093 ret = qemu_file_get_error(f); 4094 } 4095 if (!ret && host_bak) { 4096 memcpy(host_bak, host, TARGET_PAGE_SIZE); 4097 } 4098 } 4099 4100 ret |= wait_for_decompress_done(); 4101 return ret; 4102 } 4103 4104 static int ram_load(QEMUFile *f, void *opaque, int version_id) 4105 { 4106 int ret = 0; 4107 static uint64_t seq_iter; 4108 /* 4109 * If system is running in postcopy mode, page inserts to host memory must 4110 * be atomic 4111 */ 4112 bool postcopy_running = postcopy_is_running(); 4113 4114 seq_iter++; 4115 4116 if (version_id != 4) { 4117 return -EINVAL; 4118 } 4119 4120 /* 4121 * This RCU critical section can be very long running. 4122 * When RCU reclaims in the code start to become numerous, 4123 * it will be necessary to reduce the granularity of this 4124 * critical section. 4125 */ 4126 WITH_RCU_READ_LOCK_GUARD() { 4127 if (postcopy_running) { 4128 /* 4129 * Note! Here RAM_CHANNEL_PRECOPY is the precopy channel of 4130 * postcopy migration, we have another RAM_CHANNEL_POSTCOPY to 4131 * service fast page faults. 4132 */ 4133 ret = ram_load_postcopy(f, RAM_CHANNEL_PRECOPY); 4134 } else { 4135 ret = ram_load_precopy(f); 4136 } 4137 } 4138 trace_ram_load_complete(ret, seq_iter); 4139 4140 return ret; 4141 } 4142 4143 static bool ram_has_postcopy(void *opaque) 4144 { 4145 RAMBlock *rb; 4146 RAMBLOCK_FOREACH_NOT_IGNORED(rb) { 4147 if (ramblock_is_pmem(rb)) { 4148 info_report("Block: %s, host: %p is a nvdimm memory, postcopy" 4149 "is not supported now!", rb->idstr, rb->host); 4150 return false; 4151 } 4152 } 4153 4154 return migrate_postcopy_ram(); 4155 } 4156 4157 /* Sync all the dirty bitmap with destination VM. */ 4158 static int ram_dirty_bitmap_sync_all(MigrationState *s, RAMState *rs) 4159 { 4160 RAMBlock *block; 4161 QEMUFile *file = s->to_dst_file; 4162 4163 trace_ram_dirty_bitmap_sync_start(); 4164 4165 qatomic_set(&rs->postcopy_bmap_sync_requested, 0); 4166 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 4167 qemu_savevm_send_recv_bitmap(file, block->idstr); 4168 trace_ram_dirty_bitmap_request(block->idstr); 4169 qatomic_inc(&rs->postcopy_bmap_sync_requested); 4170 } 4171 4172 trace_ram_dirty_bitmap_sync_wait(); 4173 4174 /* Wait until all the ramblocks' dirty bitmap synced */ 4175 while (qatomic_read(&rs->postcopy_bmap_sync_requested)) { 4176 migration_rp_wait(s); 4177 } 4178 4179 trace_ram_dirty_bitmap_sync_complete(); 4180 4181 return 0; 4182 } 4183 4184 /* 4185 * Read the received bitmap, revert it as the initial dirty bitmap. 4186 * This is only used when the postcopy migration is paused but wants 4187 * to resume from a middle point. 4188 */ 4189 int ram_dirty_bitmap_reload(MigrationState *s, RAMBlock *block) 4190 { 4191 int ret = -EINVAL; 4192 /* from_dst_file is always valid because we're within rp_thread */ 4193 QEMUFile *file = s->rp_state.from_dst_file; 4194 g_autofree unsigned long *le_bitmap = NULL; 4195 unsigned long nbits = block->used_length >> TARGET_PAGE_BITS; 4196 uint64_t local_size = DIV_ROUND_UP(nbits, 8); 4197 uint64_t size, end_mark; 4198 RAMState *rs = ram_state; 4199 4200 trace_ram_dirty_bitmap_reload_begin(block->idstr); 4201 4202 if (s->state != MIGRATION_STATUS_POSTCOPY_RECOVER) { 4203 error_report("%s: incorrect state %s", __func__, 4204 MigrationStatus_str(s->state)); 4205 return -EINVAL; 4206 } 4207 4208 /* 4209 * Note: see comments in ramblock_recv_bitmap_send() on why we 4210 * need the endianness conversion, and the paddings. 4211 */ 4212 local_size = ROUND_UP(local_size, 8); 4213 4214 /* Add paddings */ 4215 le_bitmap = bitmap_new(nbits + BITS_PER_LONG); 4216 4217 size = qemu_get_be64(file); 4218 4219 /* The size of the bitmap should match with our ramblock */ 4220 if (size != local_size) { 4221 error_report("%s: ramblock '%s' bitmap size mismatch " 4222 "(0x%"PRIx64" != 0x%"PRIx64")", __func__, 4223 block->idstr, size, local_size); 4224 return -EINVAL; 4225 } 4226 4227 size = qemu_get_buffer(file, (uint8_t *)le_bitmap, local_size); 4228 end_mark = qemu_get_be64(file); 4229 4230 ret = qemu_file_get_error(file); 4231 if (ret || size != local_size) { 4232 error_report("%s: read bitmap failed for ramblock '%s': %d" 4233 " (size 0x%"PRIx64", got: 0x%"PRIx64")", 4234 __func__, block->idstr, ret, local_size, size); 4235 return -EIO; 4236 } 4237 4238 if (end_mark != RAMBLOCK_RECV_BITMAP_ENDING) { 4239 error_report("%s: ramblock '%s' end mark incorrect: 0x%"PRIx64, 4240 __func__, block->idstr, end_mark); 4241 return -EINVAL; 4242 } 4243 4244 /* 4245 * Endianness conversion. We are during postcopy (though paused). 4246 * The dirty bitmap won't change. We can directly modify it. 4247 */ 4248 bitmap_from_le(block->bmap, le_bitmap, nbits); 4249 4250 /* 4251 * What we received is "received bitmap". Revert it as the initial 4252 * dirty bitmap for this ramblock. 4253 */ 4254 bitmap_complement(block->bmap, block->bmap, nbits); 4255 4256 /* Clear dirty bits of discarded ranges that we don't want to migrate. */ 4257 ramblock_dirty_bitmap_clear_discarded_pages(block); 4258 4259 /* We'll recalculate migration_dirty_pages in ram_state_resume_prepare(). */ 4260 trace_ram_dirty_bitmap_reload_complete(block->idstr); 4261 4262 qatomic_dec(&rs->postcopy_bmap_sync_requested); 4263 4264 /* 4265 * We succeeded to sync bitmap for current ramblock. Always kick the 4266 * migration thread to check whether all requested bitmaps are 4267 * reloaded. NOTE: it's racy to only kick when requested==0, because 4268 * we don't know whether the migration thread may still be increasing 4269 * it. 4270 */ 4271 migration_rp_kick(s); 4272 4273 return 0; 4274 } 4275 4276 static int ram_resume_prepare(MigrationState *s, void *opaque) 4277 { 4278 RAMState *rs = *(RAMState **)opaque; 4279 int ret; 4280 4281 ret = ram_dirty_bitmap_sync_all(s, rs); 4282 if (ret) { 4283 return ret; 4284 } 4285 4286 ram_state_resume_prepare(rs, s->to_dst_file); 4287 4288 return 0; 4289 } 4290 4291 void postcopy_preempt_shutdown_file(MigrationState *s) 4292 { 4293 qemu_put_be64(s->postcopy_qemufile_src, RAM_SAVE_FLAG_EOS); 4294 qemu_fflush(s->postcopy_qemufile_src); 4295 } 4296 4297 static SaveVMHandlers savevm_ram_handlers = { 4298 .save_setup = ram_save_setup, 4299 .save_live_iterate = ram_save_iterate, 4300 .save_live_complete_postcopy = ram_save_complete, 4301 .save_live_complete_precopy = ram_save_complete, 4302 .has_postcopy = ram_has_postcopy, 4303 .state_pending_exact = ram_state_pending_exact, 4304 .state_pending_estimate = ram_state_pending_estimate, 4305 .load_state = ram_load, 4306 .save_cleanup = ram_save_cleanup, 4307 .load_setup = ram_load_setup, 4308 .load_cleanup = ram_load_cleanup, 4309 .resume_prepare = ram_resume_prepare, 4310 }; 4311 4312 static void ram_mig_ram_block_resized(RAMBlockNotifier *n, void *host, 4313 size_t old_size, size_t new_size) 4314 { 4315 PostcopyState ps = postcopy_state_get(); 4316 ram_addr_t offset; 4317 RAMBlock *rb = qemu_ram_block_from_host(host, false, &offset); 4318 Error *err = NULL; 4319 4320 if (!rb) { 4321 error_report("RAM block not found"); 4322 return; 4323 } 4324 4325 if (migrate_ram_is_ignored(rb)) { 4326 return; 4327 } 4328 4329 if (!migration_is_idle()) { 4330 /* 4331 * Precopy code on the source cannot deal with the size of RAM blocks 4332 * changing at random points in time - especially after sending the 4333 * RAM block sizes in the migration stream, they must no longer change. 4334 * Abort and indicate a proper reason. 4335 */ 4336 error_setg(&err, "RAM block '%s' resized during precopy.", rb->idstr); 4337 migration_cancel(err); 4338 error_free(err); 4339 } 4340 4341 switch (ps) { 4342 case POSTCOPY_INCOMING_ADVISE: 4343 /* 4344 * Update what ram_postcopy_incoming_init()->init_range() does at the 4345 * time postcopy was advised. Syncing RAM blocks with the source will 4346 * result in RAM resizes. 4347 */ 4348 if (old_size < new_size) { 4349 if (ram_discard_range(rb->idstr, old_size, new_size - old_size)) { 4350 error_report("RAM block '%s' discard of resized RAM failed", 4351 rb->idstr); 4352 } 4353 } 4354 rb->postcopy_length = new_size; 4355 break; 4356 case POSTCOPY_INCOMING_NONE: 4357 case POSTCOPY_INCOMING_RUNNING: 4358 case POSTCOPY_INCOMING_END: 4359 /* 4360 * Once our guest is running, postcopy does no longer care about 4361 * resizes. When growing, the new memory was not available on the 4362 * source, no handler needed. 4363 */ 4364 break; 4365 default: 4366 error_report("RAM block '%s' resized during postcopy state: %d", 4367 rb->idstr, ps); 4368 exit(-1); 4369 } 4370 } 4371 4372 static RAMBlockNotifier ram_mig_ram_notifier = { 4373 .ram_block_resized = ram_mig_ram_block_resized, 4374 }; 4375 4376 void ram_mig_init(void) 4377 { 4378 qemu_mutex_init(&XBZRLE.lock); 4379 register_savevm_live("ram", 0, 4, &savevm_ram_handlers, &ram_state); 4380 ram_block_notifier_add(&ram_mig_ram_notifier); 4381 } 4382