1 /* 2 * QEMU System Emulator 3 * 4 * Copyright (c) 2003-2008 Fabrice Bellard 5 * Copyright (c) 2011-2015 Red Hat Inc 6 * 7 * Authors: 8 * Juan Quintela <quintela@redhat.com> 9 * 10 * Permission is hereby granted, free of charge, to any person obtaining a copy 11 * of this software and associated documentation files (the "Software"), to deal 12 * in the Software without restriction, including without limitation the rights 13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 14 * copies of the Software, and to permit persons to whom the Software is 15 * furnished to do so, subject to the following conditions: 16 * 17 * The above copyright notice and this permission notice shall be included in 18 * all copies or substantial portions of the Software. 19 * 20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 26 * THE SOFTWARE. 27 */ 28 29 #include "qemu/osdep.h" 30 #include "qemu/cutils.h" 31 #include "qemu/bitops.h" 32 #include "qemu/bitmap.h" 33 #include "qemu/madvise.h" 34 #include "qemu/main-loop.h" 35 #include "xbzrle.h" 36 #include "ram-compress.h" 37 #include "ram.h" 38 #include "migration.h" 39 #include "migration-stats.h" 40 #include "migration/register.h" 41 #include "migration/misc.h" 42 #include "qemu-file.h" 43 #include "postcopy-ram.h" 44 #include "page_cache.h" 45 #include "qemu/error-report.h" 46 #include "qapi/error.h" 47 #include "qapi/qapi-types-migration.h" 48 #include "qapi/qapi-events-migration.h" 49 #include "qapi/qapi-commands-migration.h" 50 #include "qapi/qmp/qerror.h" 51 #include "trace.h" 52 #include "exec/ram_addr.h" 53 #include "exec/target_page.h" 54 #include "qemu/rcu_queue.h" 55 #include "migration/colo.h" 56 #include "block.h" 57 #include "sysemu/cpu-throttle.h" 58 #include "savevm.h" 59 #include "qemu/iov.h" 60 #include "multifd.h" 61 #include "sysemu/runstate.h" 62 #include "rdma.h" 63 #include "options.h" 64 #include "sysemu/dirtylimit.h" 65 #include "sysemu/kvm.h" 66 67 #include "hw/boards.h" /* for machine_dump_guest_core() */ 68 69 #if defined(__linux__) 70 #include "qemu/userfaultfd.h" 71 #endif /* defined(__linux__) */ 72 73 /***********************************************************/ 74 /* ram save/restore */ 75 76 /* 77 * RAM_SAVE_FLAG_ZERO used to be named RAM_SAVE_FLAG_COMPRESS, it 78 * worked for pages that were filled with the same char. We switched 79 * it to only search for the zero value. And to avoid confusion with 80 * RAM_SAVE_FLAG_COMPRESS_PAGE just rename it. 81 */ 82 /* 83 * RAM_SAVE_FLAG_FULL was obsoleted in 2009, it can be reused now 84 */ 85 #define RAM_SAVE_FLAG_FULL 0x01 86 #define RAM_SAVE_FLAG_ZERO 0x02 87 #define RAM_SAVE_FLAG_MEM_SIZE 0x04 88 #define RAM_SAVE_FLAG_PAGE 0x08 89 #define RAM_SAVE_FLAG_EOS 0x10 90 #define RAM_SAVE_FLAG_CONTINUE 0x20 91 #define RAM_SAVE_FLAG_XBZRLE 0x40 92 /* 0x80 is reserved in rdma.h for RAM_SAVE_FLAG_HOOK */ 93 #define RAM_SAVE_FLAG_COMPRESS_PAGE 0x100 94 #define RAM_SAVE_FLAG_MULTIFD_FLUSH 0x200 95 /* We can't use any flag that is bigger than 0x200 */ 96 97 XBZRLECacheStats xbzrle_counters; 98 99 /* used by the search for pages to send */ 100 struct PageSearchStatus { 101 /* The migration channel used for a specific host page */ 102 QEMUFile *pss_channel; 103 /* Last block from where we have sent data */ 104 RAMBlock *last_sent_block; 105 /* Current block being searched */ 106 RAMBlock *block; 107 /* Current page to search from */ 108 unsigned long page; 109 /* Set once we wrap around */ 110 bool complete_round; 111 /* Whether we're sending a host page */ 112 bool host_page_sending; 113 /* The start/end of current host page. Invalid if host_page_sending==false */ 114 unsigned long host_page_start; 115 unsigned long host_page_end; 116 }; 117 typedef struct PageSearchStatus PageSearchStatus; 118 119 /* struct contains XBZRLE cache and a static page 120 used by the compression */ 121 static struct { 122 /* buffer used for XBZRLE encoding */ 123 uint8_t *encoded_buf; 124 /* buffer for storing page content */ 125 uint8_t *current_buf; 126 /* Cache for XBZRLE, Protected by lock. */ 127 PageCache *cache; 128 QemuMutex lock; 129 /* it will store a page full of zeros */ 130 uint8_t *zero_target_page; 131 /* buffer used for XBZRLE decoding */ 132 uint8_t *decoded_buf; 133 } XBZRLE; 134 135 static void XBZRLE_cache_lock(void) 136 { 137 if (migrate_xbzrle()) { 138 qemu_mutex_lock(&XBZRLE.lock); 139 } 140 } 141 142 static void XBZRLE_cache_unlock(void) 143 { 144 if (migrate_xbzrle()) { 145 qemu_mutex_unlock(&XBZRLE.lock); 146 } 147 } 148 149 /** 150 * xbzrle_cache_resize: resize the xbzrle cache 151 * 152 * This function is called from migrate_params_apply in main 153 * thread, possibly while a migration is in progress. A running 154 * migration may be using the cache and might finish during this call, 155 * hence changes to the cache are protected by XBZRLE.lock(). 156 * 157 * Returns 0 for success or -1 for error 158 * 159 * @new_size: new cache size 160 * @errp: set *errp if the check failed, with reason 161 */ 162 int xbzrle_cache_resize(uint64_t new_size, Error **errp) 163 { 164 PageCache *new_cache; 165 int64_t ret = 0; 166 167 /* Check for truncation */ 168 if (new_size != (size_t)new_size) { 169 error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cache size", 170 "exceeding address space"); 171 return -1; 172 } 173 174 if (new_size == migrate_xbzrle_cache_size()) { 175 /* nothing to do */ 176 return 0; 177 } 178 179 XBZRLE_cache_lock(); 180 181 if (XBZRLE.cache != NULL) { 182 new_cache = cache_init(new_size, TARGET_PAGE_SIZE, errp); 183 if (!new_cache) { 184 ret = -1; 185 goto out; 186 } 187 188 cache_fini(XBZRLE.cache); 189 XBZRLE.cache = new_cache; 190 } 191 out: 192 XBZRLE_cache_unlock(); 193 return ret; 194 } 195 196 static bool postcopy_preempt_active(void) 197 { 198 return migrate_postcopy_preempt() && migration_in_postcopy(); 199 } 200 201 bool migrate_ram_is_ignored(RAMBlock *block) 202 { 203 return !qemu_ram_is_migratable(block) || 204 (migrate_ignore_shared() && qemu_ram_is_shared(block) 205 && qemu_ram_is_named_file(block)); 206 } 207 208 #undef RAMBLOCK_FOREACH 209 210 int foreach_not_ignored_block(RAMBlockIterFunc func, void *opaque) 211 { 212 RAMBlock *block; 213 int ret = 0; 214 215 RCU_READ_LOCK_GUARD(); 216 217 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 218 ret = func(block, opaque); 219 if (ret) { 220 break; 221 } 222 } 223 return ret; 224 } 225 226 static void ramblock_recv_map_init(void) 227 { 228 RAMBlock *rb; 229 230 RAMBLOCK_FOREACH_NOT_IGNORED(rb) { 231 assert(!rb->receivedmap); 232 rb->receivedmap = bitmap_new(rb->max_length >> qemu_target_page_bits()); 233 } 234 } 235 236 int ramblock_recv_bitmap_test(RAMBlock *rb, void *host_addr) 237 { 238 return test_bit(ramblock_recv_bitmap_offset(host_addr, rb), 239 rb->receivedmap); 240 } 241 242 bool ramblock_recv_bitmap_test_byte_offset(RAMBlock *rb, uint64_t byte_offset) 243 { 244 return test_bit(byte_offset >> TARGET_PAGE_BITS, rb->receivedmap); 245 } 246 247 void ramblock_recv_bitmap_set(RAMBlock *rb, void *host_addr) 248 { 249 set_bit_atomic(ramblock_recv_bitmap_offset(host_addr, rb), rb->receivedmap); 250 } 251 252 void ramblock_recv_bitmap_set_range(RAMBlock *rb, void *host_addr, 253 size_t nr) 254 { 255 bitmap_set_atomic(rb->receivedmap, 256 ramblock_recv_bitmap_offset(host_addr, rb), 257 nr); 258 } 259 260 #define RAMBLOCK_RECV_BITMAP_ENDING (0x0123456789abcdefULL) 261 262 /* 263 * Format: bitmap_size (8 bytes) + whole_bitmap (N bytes). 264 * 265 * Returns >0 if success with sent bytes, or <0 if error. 266 */ 267 int64_t ramblock_recv_bitmap_send(QEMUFile *file, 268 const char *block_name) 269 { 270 RAMBlock *block = qemu_ram_block_by_name(block_name); 271 unsigned long *le_bitmap, nbits; 272 uint64_t size; 273 274 if (!block) { 275 error_report("%s: invalid block name: %s", __func__, block_name); 276 return -1; 277 } 278 279 nbits = block->postcopy_length >> TARGET_PAGE_BITS; 280 281 /* 282 * Make sure the tmp bitmap buffer is big enough, e.g., on 32bit 283 * machines we may need 4 more bytes for padding (see below 284 * comment). So extend it a bit before hand. 285 */ 286 le_bitmap = bitmap_new(nbits + BITS_PER_LONG); 287 288 /* 289 * Always use little endian when sending the bitmap. This is 290 * required that when source and destination VMs are not using the 291 * same endianness. (Note: big endian won't work.) 292 */ 293 bitmap_to_le(le_bitmap, block->receivedmap, nbits); 294 295 /* Size of the bitmap, in bytes */ 296 size = DIV_ROUND_UP(nbits, 8); 297 298 /* 299 * size is always aligned to 8 bytes for 64bit machines, but it 300 * may not be true for 32bit machines. We need this padding to 301 * make sure the migration can survive even between 32bit and 302 * 64bit machines. 303 */ 304 size = ROUND_UP(size, 8); 305 306 qemu_put_be64(file, size); 307 qemu_put_buffer(file, (const uint8_t *)le_bitmap, size); 308 g_free(le_bitmap); 309 /* 310 * Mark as an end, in case the middle part is screwed up due to 311 * some "mysterious" reason. 312 */ 313 qemu_put_be64(file, RAMBLOCK_RECV_BITMAP_ENDING); 314 int ret = qemu_fflush(file); 315 if (ret) { 316 return ret; 317 } 318 319 return size + sizeof(size); 320 } 321 322 /* 323 * An outstanding page request, on the source, having been received 324 * and queued 325 */ 326 struct RAMSrcPageRequest { 327 RAMBlock *rb; 328 hwaddr offset; 329 hwaddr len; 330 331 QSIMPLEQ_ENTRY(RAMSrcPageRequest) next_req; 332 }; 333 334 /* State of RAM for migration */ 335 struct RAMState { 336 /* 337 * PageSearchStatus structures for the channels when send pages. 338 * Protected by the bitmap_mutex. 339 */ 340 PageSearchStatus pss[RAM_CHANNEL_MAX]; 341 /* UFFD file descriptor, used in 'write-tracking' migration */ 342 int uffdio_fd; 343 /* total ram size in bytes */ 344 uint64_t ram_bytes_total; 345 /* Last block that we have visited searching for dirty pages */ 346 RAMBlock *last_seen_block; 347 /* Last dirty target page we have sent */ 348 ram_addr_t last_page; 349 /* last ram version we have seen */ 350 uint32_t last_version; 351 /* How many times we have dirty too many pages */ 352 int dirty_rate_high_cnt; 353 /* these variables are used for bitmap sync */ 354 /* last time we did a full bitmap_sync */ 355 int64_t time_last_bitmap_sync; 356 /* bytes transferred at start_time */ 357 uint64_t bytes_xfer_prev; 358 /* number of dirty pages since start_time */ 359 uint64_t num_dirty_pages_period; 360 /* xbzrle misses since the beginning of the period */ 361 uint64_t xbzrle_cache_miss_prev; 362 /* Amount of xbzrle pages since the beginning of the period */ 363 uint64_t xbzrle_pages_prev; 364 /* Amount of xbzrle encoded bytes since the beginning of the period */ 365 uint64_t xbzrle_bytes_prev; 366 /* Are we really using XBZRLE (e.g., after the first round). */ 367 bool xbzrle_started; 368 /* Are we on the last stage of migration */ 369 bool last_stage; 370 371 /* total handled target pages at the beginning of period */ 372 uint64_t target_page_count_prev; 373 /* total handled target pages since start */ 374 uint64_t target_page_count; 375 /* number of dirty bits in the bitmap */ 376 uint64_t migration_dirty_pages; 377 /* 378 * Protects: 379 * - dirty/clear bitmap 380 * - migration_dirty_pages 381 * - pss structures 382 */ 383 QemuMutex bitmap_mutex; 384 /* The RAMBlock used in the last src_page_requests */ 385 RAMBlock *last_req_rb; 386 /* Queue of outstanding page requests from the destination */ 387 QemuMutex src_page_req_mutex; 388 QSIMPLEQ_HEAD(, RAMSrcPageRequest) src_page_requests; 389 390 /* 391 * This is only used when postcopy is in recovery phase, to communicate 392 * between the migration thread and the return path thread on dirty 393 * bitmap synchronizations. This field is unused in other stages of 394 * RAM migration. 395 */ 396 unsigned int postcopy_bmap_sync_requested; 397 }; 398 typedef struct RAMState RAMState; 399 400 static RAMState *ram_state; 401 402 static NotifierWithReturnList precopy_notifier_list; 403 404 /* Whether postcopy has queued requests? */ 405 static bool postcopy_has_request(RAMState *rs) 406 { 407 return !QSIMPLEQ_EMPTY_ATOMIC(&rs->src_page_requests); 408 } 409 410 void precopy_infrastructure_init(void) 411 { 412 notifier_with_return_list_init(&precopy_notifier_list); 413 } 414 415 void precopy_add_notifier(NotifierWithReturn *n) 416 { 417 notifier_with_return_list_add(&precopy_notifier_list, n); 418 } 419 420 void precopy_remove_notifier(NotifierWithReturn *n) 421 { 422 notifier_with_return_remove(n); 423 } 424 425 int precopy_notify(PrecopyNotifyReason reason, Error **errp) 426 { 427 PrecopyNotifyData pnd; 428 pnd.reason = reason; 429 430 return notifier_with_return_list_notify(&precopy_notifier_list, &pnd, errp); 431 } 432 433 uint64_t ram_bytes_remaining(void) 434 { 435 return ram_state ? (ram_state->migration_dirty_pages * TARGET_PAGE_SIZE) : 436 0; 437 } 438 439 void ram_transferred_add(uint64_t bytes) 440 { 441 if (runstate_is_running()) { 442 stat64_add(&mig_stats.precopy_bytes, bytes); 443 } else if (migration_in_postcopy()) { 444 stat64_add(&mig_stats.postcopy_bytes, bytes); 445 } else { 446 stat64_add(&mig_stats.downtime_bytes, bytes); 447 } 448 } 449 450 struct MigrationOps { 451 int (*ram_save_target_page)(RAMState *rs, PageSearchStatus *pss); 452 }; 453 typedef struct MigrationOps MigrationOps; 454 455 MigrationOps *migration_ops; 456 457 static int ram_save_host_page_urgent(PageSearchStatus *pss); 458 459 /* NOTE: page is the PFN not real ram_addr_t. */ 460 static void pss_init(PageSearchStatus *pss, RAMBlock *rb, ram_addr_t page) 461 { 462 pss->block = rb; 463 pss->page = page; 464 pss->complete_round = false; 465 } 466 467 /* 468 * Check whether two PSSs are actively sending the same page. Return true 469 * if it is, false otherwise. 470 */ 471 static bool pss_overlap(PageSearchStatus *pss1, PageSearchStatus *pss2) 472 { 473 return pss1->host_page_sending && pss2->host_page_sending && 474 (pss1->host_page_start == pss2->host_page_start); 475 } 476 477 /** 478 * save_page_header: write page header to wire 479 * 480 * If this is the 1st block, it also writes the block identification 481 * 482 * Returns the number of bytes written 483 * 484 * @pss: current PSS channel status 485 * @block: block that contains the page we want to send 486 * @offset: offset inside the block for the page 487 * in the lower bits, it contains flags 488 */ 489 static size_t save_page_header(PageSearchStatus *pss, QEMUFile *f, 490 RAMBlock *block, ram_addr_t offset) 491 { 492 size_t size, len; 493 bool same_block = (block == pss->last_sent_block); 494 495 if (same_block) { 496 offset |= RAM_SAVE_FLAG_CONTINUE; 497 } 498 qemu_put_be64(f, offset); 499 size = 8; 500 501 if (!same_block) { 502 len = strlen(block->idstr); 503 qemu_put_byte(f, len); 504 qemu_put_buffer(f, (uint8_t *)block->idstr, len); 505 size += 1 + len; 506 pss->last_sent_block = block; 507 } 508 return size; 509 } 510 511 /** 512 * mig_throttle_guest_down: throttle down the guest 513 * 514 * Reduce amount of guest cpu execution to hopefully slow down memory 515 * writes. If guest dirty memory rate is reduced below the rate at 516 * which we can transfer pages to the destination then we should be 517 * able to complete migration. Some workloads dirty memory way too 518 * fast and will not effectively converge, even with auto-converge. 519 */ 520 static void mig_throttle_guest_down(uint64_t bytes_dirty_period, 521 uint64_t bytes_dirty_threshold) 522 { 523 uint64_t pct_initial = migrate_cpu_throttle_initial(); 524 uint64_t pct_increment = migrate_cpu_throttle_increment(); 525 bool pct_tailslow = migrate_cpu_throttle_tailslow(); 526 int pct_max = migrate_max_cpu_throttle(); 527 528 uint64_t throttle_now = cpu_throttle_get_percentage(); 529 uint64_t cpu_now, cpu_ideal, throttle_inc; 530 531 /* We have not started throttling yet. Let's start it. */ 532 if (!cpu_throttle_active()) { 533 cpu_throttle_set(pct_initial); 534 } else { 535 /* Throttling already on, just increase the rate */ 536 if (!pct_tailslow) { 537 throttle_inc = pct_increment; 538 } else { 539 /* Compute the ideal CPU percentage used by Guest, which may 540 * make the dirty rate match the dirty rate threshold. */ 541 cpu_now = 100 - throttle_now; 542 cpu_ideal = cpu_now * (bytes_dirty_threshold * 1.0 / 543 bytes_dirty_period); 544 throttle_inc = MIN(cpu_now - cpu_ideal, pct_increment); 545 } 546 cpu_throttle_set(MIN(throttle_now + throttle_inc, pct_max)); 547 } 548 } 549 550 void mig_throttle_counter_reset(void) 551 { 552 RAMState *rs = ram_state; 553 554 rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); 555 rs->num_dirty_pages_period = 0; 556 rs->bytes_xfer_prev = migration_transferred_bytes(); 557 } 558 559 /** 560 * xbzrle_cache_zero_page: insert a zero page in the XBZRLE cache 561 * 562 * @current_addr: address for the zero page 563 * 564 * Update the xbzrle cache to reflect a page that's been sent as all 0. 565 * The important thing is that a stale (not-yet-0'd) page be replaced 566 * by the new data. 567 * As a bonus, if the page wasn't in the cache it gets added so that 568 * when a small write is made into the 0'd page it gets XBZRLE sent. 569 */ 570 static void xbzrle_cache_zero_page(ram_addr_t current_addr) 571 { 572 /* We don't care if this fails to allocate a new cache page 573 * as long as it updated an old one */ 574 cache_insert(XBZRLE.cache, current_addr, XBZRLE.zero_target_page, 575 stat64_get(&mig_stats.dirty_sync_count)); 576 } 577 578 #define ENCODING_FLAG_XBZRLE 0x1 579 580 /** 581 * save_xbzrle_page: compress and send current page 582 * 583 * Returns: 1 means that we wrote the page 584 * 0 means that page is identical to the one already sent 585 * -1 means that xbzrle would be longer than normal 586 * 587 * @rs: current RAM state 588 * @pss: current PSS channel 589 * @current_data: pointer to the address of the page contents 590 * @current_addr: addr of the page 591 * @block: block that contains the page we want to send 592 * @offset: offset inside the block for the page 593 */ 594 static int save_xbzrle_page(RAMState *rs, PageSearchStatus *pss, 595 uint8_t **current_data, ram_addr_t current_addr, 596 RAMBlock *block, ram_addr_t offset) 597 { 598 int encoded_len = 0, bytes_xbzrle; 599 uint8_t *prev_cached_page; 600 QEMUFile *file = pss->pss_channel; 601 uint64_t generation = stat64_get(&mig_stats.dirty_sync_count); 602 603 if (!cache_is_cached(XBZRLE.cache, current_addr, generation)) { 604 xbzrle_counters.cache_miss++; 605 if (!rs->last_stage) { 606 if (cache_insert(XBZRLE.cache, current_addr, *current_data, 607 generation) == -1) { 608 return -1; 609 } else { 610 /* update *current_data when the page has been 611 inserted into cache */ 612 *current_data = get_cached_data(XBZRLE.cache, current_addr); 613 } 614 } 615 return -1; 616 } 617 618 /* 619 * Reaching here means the page has hit the xbzrle cache, no matter what 620 * encoding result it is (normal encoding, overflow or skipping the page), 621 * count the page as encoded. This is used to calculate the encoding rate. 622 * 623 * Example: 2 pages (8KB) being encoded, first page encoding generates 2KB, 624 * 2nd page turns out to be skipped (i.e. no new bytes written to the 625 * page), the overall encoding rate will be 8KB / 2KB = 4, which has the 626 * skipped page included. In this way, the encoding rate can tell if the 627 * guest page is good for xbzrle encoding. 628 */ 629 xbzrle_counters.pages++; 630 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr); 631 632 /* save current buffer into memory */ 633 memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE); 634 635 /* XBZRLE encoding (if there is no overflow) */ 636 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf, 637 TARGET_PAGE_SIZE, XBZRLE.encoded_buf, 638 TARGET_PAGE_SIZE); 639 640 /* 641 * Update the cache contents, so that it corresponds to the data 642 * sent, in all cases except where we skip the page. 643 */ 644 if (!rs->last_stage && encoded_len != 0) { 645 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE); 646 /* 647 * In the case where we couldn't compress, ensure that the caller 648 * sends the data from the cache, since the guest might have 649 * changed the RAM since we copied it. 650 */ 651 *current_data = prev_cached_page; 652 } 653 654 if (encoded_len == 0) { 655 trace_save_xbzrle_page_skipping(); 656 return 0; 657 } else if (encoded_len == -1) { 658 trace_save_xbzrle_page_overflow(); 659 xbzrle_counters.overflow++; 660 xbzrle_counters.bytes += TARGET_PAGE_SIZE; 661 return -1; 662 } 663 664 /* Send XBZRLE based compressed page */ 665 bytes_xbzrle = save_page_header(pss, pss->pss_channel, block, 666 offset | RAM_SAVE_FLAG_XBZRLE); 667 qemu_put_byte(file, ENCODING_FLAG_XBZRLE); 668 qemu_put_be16(file, encoded_len); 669 qemu_put_buffer(file, XBZRLE.encoded_buf, encoded_len); 670 bytes_xbzrle += encoded_len + 1 + 2; 671 /* 672 * Like compressed_size (please see update_compress_thread_counts), 673 * the xbzrle encoded bytes don't count the 8 byte header with 674 * RAM_SAVE_FLAG_CONTINUE. 675 */ 676 xbzrle_counters.bytes += bytes_xbzrle - 8; 677 ram_transferred_add(bytes_xbzrle); 678 679 return 1; 680 } 681 682 /** 683 * pss_find_next_dirty: find the next dirty page of current ramblock 684 * 685 * This function updates pss->page to point to the next dirty page index 686 * within the ramblock to migrate, or the end of ramblock when nothing 687 * found. Note that when pss->host_page_sending==true it means we're 688 * during sending a host page, so we won't look for dirty page that is 689 * outside the host page boundary. 690 * 691 * @pss: the current page search status 692 */ 693 static void pss_find_next_dirty(PageSearchStatus *pss) 694 { 695 RAMBlock *rb = pss->block; 696 unsigned long size = rb->used_length >> TARGET_PAGE_BITS; 697 unsigned long *bitmap = rb->bmap; 698 699 if (migrate_ram_is_ignored(rb)) { 700 /* Points directly to the end, so we know no dirty page */ 701 pss->page = size; 702 return; 703 } 704 705 /* 706 * If during sending a host page, only look for dirty pages within the 707 * current host page being send. 708 */ 709 if (pss->host_page_sending) { 710 assert(pss->host_page_end); 711 size = MIN(size, pss->host_page_end); 712 } 713 714 pss->page = find_next_bit(bitmap, size, pss->page); 715 } 716 717 static void migration_clear_memory_region_dirty_bitmap(RAMBlock *rb, 718 unsigned long page) 719 { 720 uint8_t shift; 721 hwaddr size, start; 722 723 if (!rb->clear_bmap || !clear_bmap_test_and_clear(rb, page)) { 724 return; 725 } 726 727 shift = rb->clear_bmap_shift; 728 /* 729 * CLEAR_BITMAP_SHIFT_MIN should always guarantee this... this 730 * can make things easier sometimes since then start address 731 * of the small chunk will always be 64 pages aligned so the 732 * bitmap will always be aligned to unsigned long. We should 733 * even be able to remove this restriction but I'm simply 734 * keeping it. 735 */ 736 assert(shift >= 6); 737 738 size = 1ULL << (TARGET_PAGE_BITS + shift); 739 start = QEMU_ALIGN_DOWN((ram_addr_t)page << TARGET_PAGE_BITS, size); 740 trace_migration_bitmap_clear_dirty(rb->idstr, start, size, page); 741 memory_region_clear_dirty_bitmap(rb->mr, start, size); 742 } 743 744 static void 745 migration_clear_memory_region_dirty_bitmap_range(RAMBlock *rb, 746 unsigned long start, 747 unsigned long npages) 748 { 749 unsigned long i, chunk_pages = 1UL << rb->clear_bmap_shift; 750 unsigned long chunk_start = QEMU_ALIGN_DOWN(start, chunk_pages); 751 unsigned long chunk_end = QEMU_ALIGN_UP(start + npages, chunk_pages); 752 753 /* 754 * Clear pages from start to start + npages - 1, so the end boundary is 755 * exclusive. 756 */ 757 for (i = chunk_start; i < chunk_end; i += chunk_pages) { 758 migration_clear_memory_region_dirty_bitmap(rb, i); 759 } 760 } 761 762 /* 763 * colo_bitmap_find_diry:find contiguous dirty pages from start 764 * 765 * Returns the page offset within memory region of the start of the contiguout 766 * dirty page 767 * 768 * @rs: current RAM state 769 * @rb: RAMBlock where to search for dirty pages 770 * @start: page where we start the search 771 * @num: the number of contiguous dirty pages 772 */ 773 static inline 774 unsigned long colo_bitmap_find_dirty(RAMState *rs, RAMBlock *rb, 775 unsigned long start, unsigned long *num) 776 { 777 unsigned long size = rb->used_length >> TARGET_PAGE_BITS; 778 unsigned long *bitmap = rb->bmap; 779 unsigned long first, next; 780 781 *num = 0; 782 783 if (migrate_ram_is_ignored(rb)) { 784 return size; 785 } 786 787 first = find_next_bit(bitmap, size, start); 788 if (first >= size) { 789 return first; 790 } 791 next = find_next_zero_bit(bitmap, size, first + 1); 792 assert(next >= first); 793 *num = next - first; 794 return first; 795 } 796 797 static inline bool migration_bitmap_clear_dirty(RAMState *rs, 798 RAMBlock *rb, 799 unsigned long page) 800 { 801 bool ret; 802 803 /* 804 * Clear dirty bitmap if needed. This _must_ be called before we 805 * send any of the page in the chunk because we need to make sure 806 * we can capture further page content changes when we sync dirty 807 * log the next time. So as long as we are going to send any of 808 * the page in the chunk we clear the remote dirty bitmap for all. 809 * Clearing it earlier won't be a problem, but too late will. 810 */ 811 migration_clear_memory_region_dirty_bitmap(rb, page); 812 813 ret = test_and_clear_bit(page, rb->bmap); 814 if (ret) { 815 rs->migration_dirty_pages--; 816 } 817 818 return ret; 819 } 820 821 static void dirty_bitmap_clear_section(MemoryRegionSection *section, 822 void *opaque) 823 { 824 const hwaddr offset = section->offset_within_region; 825 const hwaddr size = int128_get64(section->size); 826 const unsigned long start = offset >> TARGET_PAGE_BITS; 827 const unsigned long npages = size >> TARGET_PAGE_BITS; 828 RAMBlock *rb = section->mr->ram_block; 829 uint64_t *cleared_bits = opaque; 830 831 /* 832 * We don't grab ram_state->bitmap_mutex because we expect to run 833 * only when starting migration or during postcopy recovery where 834 * we don't have concurrent access. 835 */ 836 if (!migration_in_postcopy() && !migrate_background_snapshot()) { 837 migration_clear_memory_region_dirty_bitmap_range(rb, start, npages); 838 } 839 *cleared_bits += bitmap_count_one_with_offset(rb->bmap, start, npages); 840 bitmap_clear(rb->bmap, start, npages); 841 } 842 843 /* 844 * Exclude all dirty pages from migration that fall into a discarded range as 845 * managed by a RamDiscardManager responsible for the mapped memory region of 846 * the RAMBlock. Clear the corresponding bits in the dirty bitmaps. 847 * 848 * Discarded pages ("logically unplugged") have undefined content and must 849 * not get migrated, because even reading these pages for migration might 850 * result in undesired behavior. 851 * 852 * Returns the number of cleared bits in the RAMBlock dirty bitmap. 853 * 854 * Note: The result is only stable while migrating (precopy/postcopy). 855 */ 856 static uint64_t ramblock_dirty_bitmap_clear_discarded_pages(RAMBlock *rb) 857 { 858 uint64_t cleared_bits = 0; 859 860 if (rb->mr && rb->bmap && memory_region_has_ram_discard_manager(rb->mr)) { 861 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr); 862 MemoryRegionSection section = { 863 .mr = rb->mr, 864 .offset_within_region = 0, 865 .size = int128_make64(qemu_ram_get_used_length(rb)), 866 }; 867 868 ram_discard_manager_replay_discarded(rdm, §ion, 869 dirty_bitmap_clear_section, 870 &cleared_bits); 871 } 872 return cleared_bits; 873 } 874 875 /* 876 * Check if a host-page aligned page falls into a discarded range as managed by 877 * a RamDiscardManager responsible for the mapped memory region of the RAMBlock. 878 * 879 * Note: The result is only stable while migrating (precopy/postcopy). 880 */ 881 bool ramblock_page_is_discarded(RAMBlock *rb, ram_addr_t start) 882 { 883 if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) { 884 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr); 885 MemoryRegionSection section = { 886 .mr = rb->mr, 887 .offset_within_region = start, 888 .size = int128_make64(qemu_ram_pagesize(rb)), 889 }; 890 891 return !ram_discard_manager_is_populated(rdm, §ion); 892 } 893 return false; 894 } 895 896 /* Called with RCU critical section */ 897 static void ramblock_sync_dirty_bitmap(RAMState *rs, RAMBlock *rb) 898 { 899 uint64_t new_dirty_pages = 900 cpu_physical_memory_sync_dirty_bitmap(rb, 0, rb->used_length); 901 902 rs->migration_dirty_pages += new_dirty_pages; 903 rs->num_dirty_pages_period += new_dirty_pages; 904 } 905 906 /** 907 * ram_pagesize_summary: calculate all the pagesizes of a VM 908 * 909 * Returns a summary bitmap of the page sizes of all RAMBlocks 910 * 911 * For VMs with just normal pages this is equivalent to the host page 912 * size. If it's got some huge pages then it's the OR of all the 913 * different page sizes. 914 */ 915 uint64_t ram_pagesize_summary(void) 916 { 917 RAMBlock *block; 918 uint64_t summary = 0; 919 920 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 921 summary |= block->page_size; 922 } 923 924 return summary; 925 } 926 927 uint64_t ram_get_total_transferred_pages(void) 928 { 929 return stat64_get(&mig_stats.normal_pages) + 930 stat64_get(&mig_stats.zero_pages) + 931 compress_ram_pages() + xbzrle_counters.pages; 932 } 933 934 static void migration_update_rates(RAMState *rs, int64_t end_time) 935 { 936 uint64_t page_count = rs->target_page_count - rs->target_page_count_prev; 937 938 /* calculate period counters */ 939 stat64_set(&mig_stats.dirty_pages_rate, 940 rs->num_dirty_pages_period * 1000 / 941 (end_time - rs->time_last_bitmap_sync)); 942 943 if (!page_count) { 944 return; 945 } 946 947 if (migrate_xbzrle()) { 948 double encoded_size, unencoded_size; 949 950 xbzrle_counters.cache_miss_rate = (double)(xbzrle_counters.cache_miss - 951 rs->xbzrle_cache_miss_prev) / page_count; 952 rs->xbzrle_cache_miss_prev = xbzrle_counters.cache_miss; 953 unencoded_size = (xbzrle_counters.pages - rs->xbzrle_pages_prev) * 954 TARGET_PAGE_SIZE; 955 encoded_size = xbzrle_counters.bytes - rs->xbzrle_bytes_prev; 956 if (xbzrle_counters.pages == rs->xbzrle_pages_prev || !encoded_size) { 957 xbzrle_counters.encoding_rate = 0; 958 } else { 959 xbzrle_counters.encoding_rate = unencoded_size / encoded_size; 960 } 961 rs->xbzrle_pages_prev = xbzrle_counters.pages; 962 rs->xbzrle_bytes_prev = xbzrle_counters.bytes; 963 } 964 compress_update_rates(page_count); 965 } 966 967 /* 968 * Enable dirty-limit to throttle down the guest 969 */ 970 static void migration_dirty_limit_guest(void) 971 { 972 /* 973 * dirty page rate quota for all vCPUs fetched from 974 * migration parameter 'vcpu_dirty_limit' 975 */ 976 static int64_t quota_dirtyrate; 977 MigrationState *s = migrate_get_current(); 978 979 /* 980 * If dirty limit already enabled and migration parameter 981 * vcpu-dirty-limit untouched. 982 */ 983 if (dirtylimit_in_service() && 984 quota_dirtyrate == s->parameters.vcpu_dirty_limit) { 985 return; 986 } 987 988 quota_dirtyrate = s->parameters.vcpu_dirty_limit; 989 990 /* 991 * Set all vCPU a quota dirtyrate, note that the second 992 * parameter will be ignored if setting all vCPU for the vm 993 */ 994 qmp_set_vcpu_dirty_limit(false, -1, quota_dirtyrate, NULL); 995 trace_migration_dirty_limit_guest(quota_dirtyrate); 996 } 997 998 static void migration_trigger_throttle(RAMState *rs) 999 { 1000 uint64_t threshold = migrate_throttle_trigger_threshold(); 1001 uint64_t bytes_xfer_period = 1002 migration_transferred_bytes() - rs->bytes_xfer_prev; 1003 uint64_t bytes_dirty_period = rs->num_dirty_pages_period * TARGET_PAGE_SIZE; 1004 uint64_t bytes_dirty_threshold = bytes_xfer_period * threshold / 100; 1005 1006 /* During block migration the auto-converge logic incorrectly detects 1007 * that ram migration makes no progress. Avoid this by disabling the 1008 * throttling logic during the bulk phase of block migration. */ 1009 if (blk_mig_bulk_active()) { 1010 return; 1011 } 1012 1013 /* 1014 * The following detection logic can be refined later. For now: 1015 * Check to see if the ratio between dirtied bytes and the approx. 1016 * amount of bytes that just got transferred since the last time 1017 * we were in this routine reaches the threshold. If that happens 1018 * twice, start or increase throttling. 1019 */ 1020 if ((bytes_dirty_period > bytes_dirty_threshold) && 1021 (++rs->dirty_rate_high_cnt >= 2)) { 1022 rs->dirty_rate_high_cnt = 0; 1023 if (migrate_auto_converge()) { 1024 trace_migration_throttle(); 1025 mig_throttle_guest_down(bytes_dirty_period, 1026 bytes_dirty_threshold); 1027 } else if (migrate_dirty_limit()) { 1028 migration_dirty_limit_guest(); 1029 } 1030 } 1031 } 1032 1033 static void migration_bitmap_sync(RAMState *rs, bool last_stage) 1034 { 1035 RAMBlock *block; 1036 int64_t end_time; 1037 1038 stat64_add(&mig_stats.dirty_sync_count, 1); 1039 1040 if (!rs->time_last_bitmap_sync) { 1041 rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); 1042 } 1043 1044 trace_migration_bitmap_sync_start(); 1045 memory_global_dirty_log_sync(last_stage); 1046 1047 qemu_mutex_lock(&rs->bitmap_mutex); 1048 WITH_RCU_READ_LOCK_GUARD() { 1049 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 1050 ramblock_sync_dirty_bitmap(rs, block); 1051 } 1052 stat64_set(&mig_stats.dirty_bytes_last_sync, ram_bytes_remaining()); 1053 } 1054 qemu_mutex_unlock(&rs->bitmap_mutex); 1055 1056 memory_global_after_dirty_log_sync(); 1057 trace_migration_bitmap_sync_end(rs->num_dirty_pages_period); 1058 1059 end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); 1060 1061 /* more than 1 second = 1000 millisecons */ 1062 if (end_time > rs->time_last_bitmap_sync + 1000) { 1063 migration_trigger_throttle(rs); 1064 1065 migration_update_rates(rs, end_time); 1066 1067 rs->target_page_count_prev = rs->target_page_count; 1068 1069 /* reset period counters */ 1070 rs->time_last_bitmap_sync = end_time; 1071 rs->num_dirty_pages_period = 0; 1072 rs->bytes_xfer_prev = migration_transferred_bytes(); 1073 } 1074 if (migrate_events()) { 1075 uint64_t generation = stat64_get(&mig_stats.dirty_sync_count); 1076 qapi_event_send_migration_pass(generation); 1077 } 1078 } 1079 1080 static void migration_bitmap_sync_precopy(RAMState *rs, bool last_stage) 1081 { 1082 Error *local_err = NULL; 1083 1084 /* 1085 * The current notifier usage is just an optimization to migration, so we 1086 * don't stop the normal migration process in the error case. 1087 */ 1088 if (precopy_notify(PRECOPY_NOTIFY_BEFORE_BITMAP_SYNC, &local_err)) { 1089 error_report_err(local_err); 1090 local_err = NULL; 1091 } 1092 1093 migration_bitmap_sync(rs, last_stage); 1094 1095 if (precopy_notify(PRECOPY_NOTIFY_AFTER_BITMAP_SYNC, &local_err)) { 1096 error_report_err(local_err); 1097 } 1098 } 1099 1100 void ram_release_page(const char *rbname, uint64_t offset) 1101 { 1102 if (!migrate_release_ram() || !migration_in_postcopy()) { 1103 return; 1104 } 1105 1106 ram_discard_range(rbname, offset, TARGET_PAGE_SIZE); 1107 } 1108 1109 /** 1110 * save_zero_page: send the zero page to the stream 1111 * 1112 * Returns the number of pages written. 1113 * 1114 * @rs: current RAM state 1115 * @pss: current PSS channel 1116 * @offset: offset inside the block for the page 1117 */ 1118 static int save_zero_page(RAMState *rs, PageSearchStatus *pss, 1119 ram_addr_t offset) 1120 { 1121 uint8_t *p = pss->block->host + offset; 1122 QEMUFile *file = pss->pss_channel; 1123 int len = 0; 1124 1125 if (!buffer_is_zero(p, TARGET_PAGE_SIZE)) { 1126 return 0; 1127 } 1128 1129 len += save_page_header(pss, file, pss->block, offset | RAM_SAVE_FLAG_ZERO); 1130 qemu_put_byte(file, 0); 1131 len += 1; 1132 ram_release_page(pss->block->idstr, offset); 1133 1134 stat64_add(&mig_stats.zero_pages, 1); 1135 ram_transferred_add(len); 1136 1137 /* 1138 * Must let xbzrle know, otherwise a previous (now 0'd) cached 1139 * page would be stale. 1140 */ 1141 if (rs->xbzrle_started) { 1142 XBZRLE_cache_lock(); 1143 xbzrle_cache_zero_page(pss->block->offset + offset); 1144 XBZRLE_cache_unlock(); 1145 } 1146 1147 return len; 1148 } 1149 1150 /* 1151 * @pages: the number of pages written by the control path, 1152 * < 0 - error 1153 * > 0 - number of pages written 1154 * 1155 * Return true if the pages has been saved, otherwise false is returned. 1156 */ 1157 static bool control_save_page(PageSearchStatus *pss, 1158 ram_addr_t offset, int *pages) 1159 { 1160 int ret; 1161 1162 ret = rdma_control_save_page(pss->pss_channel, pss->block->offset, offset, 1163 TARGET_PAGE_SIZE); 1164 if (ret == RAM_SAVE_CONTROL_NOT_SUPP) { 1165 return false; 1166 } 1167 1168 if (ret == RAM_SAVE_CONTROL_DELAYED) { 1169 *pages = 1; 1170 return true; 1171 } 1172 *pages = ret; 1173 return true; 1174 } 1175 1176 /* 1177 * directly send the page to the stream 1178 * 1179 * Returns the number of pages written. 1180 * 1181 * @pss: current PSS channel 1182 * @block: block that contains the page we want to send 1183 * @offset: offset inside the block for the page 1184 * @buf: the page to be sent 1185 * @async: send to page asyncly 1186 */ 1187 static int save_normal_page(PageSearchStatus *pss, RAMBlock *block, 1188 ram_addr_t offset, uint8_t *buf, bool async) 1189 { 1190 QEMUFile *file = pss->pss_channel; 1191 1192 ram_transferred_add(save_page_header(pss, pss->pss_channel, block, 1193 offset | RAM_SAVE_FLAG_PAGE)); 1194 if (async) { 1195 qemu_put_buffer_async(file, buf, TARGET_PAGE_SIZE, 1196 migrate_release_ram() && 1197 migration_in_postcopy()); 1198 } else { 1199 qemu_put_buffer(file, buf, TARGET_PAGE_SIZE); 1200 } 1201 ram_transferred_add(TARGET_PAGE_SIZE); 1202 stat64_add(&mig_stats.normal_pages, 1); 1203 return 1; 1204 } 1205 1206 /** 1207 * ram_save_page: send the given page to the stream 1208 * 1209 * Returns the number of pages written. 1210 * < 0 - error 1211 * >=0 - Number of pages written - this might legally be 0 1212 * if xbzrle noticed the page was the same. 1213 * 1214 * @rs: current RAM state 1215 * @block: block that contains the page we want to send 1216 * @offset: offset inside the block for the page 1217 */ 1218 static int ram_save_page(RAMState *rs, PageSearchStatus *pss) 1219 { 1220 int pages = -1; 1221 uint8_t *p; 1222 bool send_async = true; 1223 RAMBlock *block = pss->block; 1224 ram_addr_t offset = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS; 1225 ram_addr_t current_addr = block->offset + offset; 1226 1227 p = block->host + offset; 1228 trace_ram_save_page(block->idstr, (uint64_t)offset, p); 1229 1230 XBZRLE_cache_lock(); 1231 if (rs->xbzrle_started && !migration_in_postcopy()) { 1232 pages = save_xbzrle_page(rs, pss, &p, current_addr, 1233 block, offset); 1234 if (!rs->last_stage) { 1235 /* Can't send this cached data async, since the cache page 1236 * might get updated before it gets to the wire 1237 */ 1238 send_async = false; 1239 } 1240 } 1241 1242 /* XBZRLE overflow or normal page */ 1243 if (pages == -1) { 1244 pages = save_normal_page(pss, block, offset, p, send_async); 1245 } 1246 1247 XBZRLE_cache_unlock(); 1248 1249 return pages; 1250 } 1251 1252 static int ram_save_multifd_page(RAMBlock *block, ram_addr_t offset) 1253 { 1254 if (!multifd_queue_page(block, offset)) { 1255 return -1; 1256 } 1257 stat64_add(&mig_stats.normal_pages, 1); 1258 1259 return 1; 1260 } 1261 1262 int compress_send_queued_data(CompressParam *param) 1263 { 1264 PageSearchStatus *pss = &ram_state->pss[RAM_CHANNEL_PRECOPY]; 1265 MigrationState *ms = migrate_get_current(); 1266 QEMUFile *file = ms->to_dst_file; 1267 int len = 0; 1268 1269 RAMBlock *block = param->block; 1270 ram_addr_t offset = param->offset; 1271 1272 if (param->result == RES_NONE) { 1273 return 0; 1274 } 1275 1276 assert(block == pss->last_sent_block); 1277 1278 if (param->result == RES_ZEROPAGE) { 1279 assert(qemu_file_buffer_empty(param->file)); 1280 len += save_page_header(pss, file, block, offset | RAM_SAVE_FLAG_ZERO); 1281 qemu_put_byte(file, 0); 1282 len += 1; 1283 ram_release_page(block->idstr, offset); 1284 } else if (param->result == RES_COMPRESS) { 1285 assert(!qemu_file_buffer_empty(param->file)); 1286 len += save_page_header(pss, file, block, 1287 offset | RAM_SAVE_FLAG_COMPRESS_PAGE); 1288 len += qemu_put_qemu_file(file, param->file); 1289 } else { 1290 abort(); 1291 } 1292 1293 update_compress_thread_counts(param, len); 1294 1295 return len; 1296 } 1297 1298 #define PAGE_ALL_CLEAN 0 1299 #define PAGE_TRY_AGAIN 1 1300 #define PAGE_DIRTY_FOUND 2 1301 /** 1302 * find_dirty_block: find the next dirty page and update any state 1303 * associated with the search process. 1304 * 1305 * Returns: 1306 * <0: An error happened 1307 * PAGE_ALL_CLEAN: no dirty page found, give up 1308 * PAGE_TRY_AGAIN: no dirty page found, retry for next block 1309 * PAGE_DIRTY_FOUND: dirty page found 1310 * 1311 * @rs: current RAM state 1312 * @pss: data about the state of the current dirty page scan 1313 * @again: set to false if the search has scanned the whole of RAM 1314 */ 1315 static int find_dirty_block(RAMState *rs, PageSearchStatus *pss) 1316 { 1317 /* Update pss->page for the next dirty bit in ramblock */ 1318 pss_find_next_dirty(pss); 1319 1320 if (pss->complete_round && pss->block == rs->last_seen_block && 1321 pss->page >= rs->last_page) { 1322 /* 1323 * We've been once around the RAM and haven't found anything. 1324 * Give up. 1325 */ 1326 return PAGE_ALL_CLEAN; 1327 } 1328 if (!offset_in_ramblock(pss->block, 1329 ((ram_addr_t)pss->page) << TARGET_PAGE_BITS)) { 1330 /* Didn't find anything in this RAM Block */ 1331 pss->page = 0; 1332 pss->block = QLIST_NEXT_RCU(pss->block, next); 1333 if (!pss->block) { 1334 if (migrate_multifd() && 1335 !migrate_multifd_flush_after_each_section()) { 1336 QEMUFile *f = rs->pss[RAM_CHANNEL_PRECOPY].pss_channel; 1337 int ret = multifd_send_sync_main(); 1338 if (ret < 0) { 1339 return ret; 1340 } 1341 qemu_put_be64(f, RAM_SAVE_FLAG_MULTIFD_FLUSH); 1342 qemu_fflush(f); 1343 } 1344 /* 1345 * If memory migration starts over, we will meet a dirtied page 1346 * which may still exists in compression threads's ring, so we 1347 * should flush the compressed data to make sure the new page 1348 * is not overwritten by the old one in the destination. 1349 * 1350 * Also If xbzrle is on, stop using the data compression at this 1351 * point. In theory, xbzrle can do better than compression. 1352 */ 1353 compress_flush_data(); 1354 1355 /* Hit the end of the list */ 1356 pss->block = QLIST_FIRST_RCU(&ram_list.blocks); 1357 /* Flag that we've looped */ 1358 pss->complete_round = true; 1359 /* After the first round, enable XBZRLE. */ 1360 if (migrate_xbzrle()) { 1361 rs->xbzrle_started = true; 1362 } 1363 } 1364 /* Didn't find anything this time, but try again on the new block */ 1365 return PAGE_TRY_AGAIN; 1366 } else { 1367 /* We've found something */ 1368 return PAGE_DIRTY_FOUND; 1369 } 1370 } 1371 1372 /** 1373 * unqueue_page: gets a page of the queue 1374 * 1375 * Helper for 'get_queued_page' - gets a page off the queue 1376 * 1377 * Returns the block of the page (or NULL if none available) 1378 * 1379 * @rs: current RAM state 1380 * @offset: used to return the offset within the RAMBlock 1381 */ 1382 static RAMBlock *unqueue_page(RAMState *rs, ram_addr_t *offset) 1383 { 1384 struct RAMSrcPageRequest *entry; 1385 RAMBlock *block = NULL; 1386 1387 if (!postcopy_has_request(rs)) { 1388 return NULL; 1389 } 1390 1391 QEMU_LOCK_GUARD(&rs->src_page_req_mutex); 1392 1393 /* 1394 * This should _never_ change even after we take the lock, because no one 1395 * should be taking anything off the request list other than us. 1396 */ 1397 assert(postcopy_has_request(rs)); 1398 1399 entry = QSIMPLEQ_FIRST(&rs->src_page_requests); 1400 block = entry->rb; 1401 *offset = entry->offset; 1402 1403 if (entry->len > TARGET_PAGE_SIZE) { 1404 entry->len -= TARGET_PAGE_SIZE; 1405 entry->offset += TARGET_PAGE_SIZE; 1406 } else { 1407 memory_region_unref(block->mr); 1408 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req); 1409 g_free(entry); 1410 migration_consume_urgent_request(); 1411 } 1412 1413 return block; 1414 } 1415 1416 #if defined(__linux__) 1417 /** 1418 * poll_fault_page: try to get next UFFD write fault page and, if pending fault 1419 * is found, return RAM block pointer and page offset 1420 * 1421 * Returns pointer to the RAMBlock containing faulting page, 1422 * NULL if no write faults are pending 1423 * 1424 * @rs: current RAM state 1425 * @offset: page offset from the beginning of the block 1426 */ 1427 static RAMBlock *poll_fault_page(RAMState *rs, ram_addr_t *offset) 1428 { 1429 struct uffd_msg uffd_msg; 1430 void *page_address; 1431 RAMBlock *block; 1432 int res; 1433 1434 if (!migrate_background_snapshot()) { 1435 return NULL; 1436 } 1437 1438 res = uffd_read_events(rs->uffdio_fd, &uffd_msg, 1); 1439 if (res <= 0) { 1440 return NULL; 1441 } 1442 1443 page_address = (void *)(uintptr_t) uffd_msg.arg.pagefault.address; 1444 block = qemu_ram_block_from_host(page_address, false, offset); 1445 assert(block && (block->flags & RAM_UF_WRITEPROTECT) != 0); 1446 return block; 1447 } 1448 1449 /** 1450 * ram_save_release_protection: release UFFD write protection after 1451 * a range of pages has been saved 1452 * 1453 * @rs: current RAM state 1454 * @pss: page-search-status structure 1455 * @start_page: index of the first page in the range relative to pss->block 1456 * 1457 * Returns 0 on success, negative value in case of an error 1458 */ 1459 static int ram_save_release_protection(RAMState *rs, PageSearchStatus *pss, 1460 unsigned long start_page) 1461 { 1462 int res = 0; 1463 1464 /* Check if page is from UFFD-managed region. */ 1465 if (pss->block->flags & RAM_UF_WRITEPROTECT) { 1466 void *page_address = pss->block->host + (start_page << TARGET_PAGE_BITS); 1467 uint64_t run_length = (pss->page - start_page) << TARGET_PAGE_BITS; 1468 1469 /* Flush async buffers before un-protect. */ 1470 qemu_fflush(pss->pss_channel); 1471 /* Un-protect memory range. */ 1472 res = uffd_change_protection(rs->uffdio_fd, page_address, run_length, 1473 false, false); 1474 } 1475 1476 return res; 1477 } 1478 1479 /* ram_write_tracking_available: check if kernel supports required UFFD features 1480 * 1481 * Returns true if supports, false otherwise 1482 */ 1483 bool ram_write_tracking_available(void) 1484 { 1485 uint64_t uffd_features; 1486 int res; 1487 1488 res = uffd_query_features(&uffd_features); 1489 return (res == 0 && 1490 (uffd_features & UFFD_FEATURE_PAGEFAULT_FLAG_WP) != 0); 1491 } 1492 1493 /* ram_write_tracking_compatible: check if guest configuration is 1494 * compatible with 'write-tracking' 1495 * 1496 * Returns true if compatible, false otherwise 1497 */ 1498 bool ram_write_tracking_compatible(void) 1499 { 1500 const uint64_t uffd_ioctls_mask = BIT(_UFFDIO_WRITEPROTECT); 1501 int uffd_fd; 1502 RAMBlock *block; 1503 bool ret = false; 1504 1505 /* Open UFFD file descriptor */ 1506 uffd_fd = uffd_create_fd(UFFD_FEATURE_PAGEFAULT_FLAG_WP, false); 1507 if (uffd_fd < 0) { 1508 return false; 1509 } 1510 1511 RCU_READ_LOCK_GUARD(); 1512 1513 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 1514 uint64_t uffd_ioctls; 1515 1516 /* Nothing to do with read-only and MMIO-writable regions */ 1517 if (block->mr->readonly || block->mr->rom_device) { 1518 continue; 1519 } 1520 /* Try to register block memory via UFFD-IO to track writes */ 1521 if (uffd_register_memory(uffd_fd, block->host, block->max_length, 1522 UFFDIO_REGISTER_MODE_WP, &uffd_ioctls)) { 1523 goto out; 1524 } 1525 if ((uffd_ioctls & uffd_ioctls_mask) != uffd_ioctls_mask) { 1526 goto out; 1527 } 1528 } 1529 ret = true; 1530 1531 out: 1532 uffd_close_fd(uffd_fd); 1533 return ret; 1534 } 1535 1536 static inline void populate_read_range(RAMBlock *block, ram_addr_t offset, 1537 ram_addr_t size) 1538 { 1539 const ram_addr_t end = offset + size; 1540 1541 /* 1542 * We read one byte of each page; this will preallocate page tables if 1543 * required and populate the shared zeropage on MAP_PRIVATE anonymous memory 1544 * where no page was populated yet. This might require adaption when 1545 * supporting other mappings, like shmem. 1546 */ 1547 for (; offset < end; offset += block->page_size) { 1548 char tmp = *((char *)block->host + offset); 1549 1550 /* Don't optimize the read out */ 1551 asm volatile("" : "+r" (tmp)); 1552 } 1553 } 1554 1555 static inline int populate_read_section(MemoryRegionSection *section, 1556 void *opaque) 1557 { 1558 const hwaddr size = int128_get64(section->size); 1559 hwaddr offset = section->offset_within_region; 1560 RAMBlock *block = section->mr->ram_block; 1561 1562 populate_read_range(block, offset, size); 1563 return 0; 1564 } 1565 1566 /* 1567 * ram_block_populate_read: preallocate page tables and populate pages in the 1568 * RAM block by reading a byte of each page. 1569 * 1570 * Since it's solely used for userfault_fd WP feature, here we just 1571 * hardcode page size to qemu_real_host_page_size. 1572 * 1573 * @block: RAM block to populate 1574 */ 1575 static void ram_block_populate_read(RAMBlock *rb) 1576 { 1577 /* 1578 * Skip populating all pages that fall into a discarded range as managed by 1579 * a RamDiscardManager responsible for the mapped memory region of the 1580 * RAMBlock. Such discarded ("logically unplugged") parts of a RAMBlock 1581 * must not get populated automatically. We don't have to track 1582 * modifications via userfaultfd WP reliably, because these pages will 1583 * not be part of the migration stream either way -- see 1584 * ramblock_dirty_bitmap_exclude_discarded_pages(). 1585 * 1586 * Note: The result is only stable while migrating (precopy/postcopy). 1587 */ 1588 if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) { 1589 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr); 1590 MemoryRegionSection section = { 1591 .mr = rb->mr, 1592 .offset_within_region = 0, 1593 .size = rb->mr->size, 1594 }; 1595 1596 ram_discard_manager_replay_populated(rdm, §ion, 1597 populate_read_section, NULL); 1598 } else { 1599 populate_read_range(rb, 0, rb->used_length); 1600 } 1601 } 1602 1603 /* 1604 * ram_write_tracking_prepare: prepare for UFFD-WP memory tracking 1605 */ 1606 void ram_write_tracking_prepare(void) 1607 { 1608 RAMBlock *block; 1609 1610 RCU_READ_LOCK_GUARD(); 1611 1612 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 1613 /* Nothing to do with read-only and MMIO-writable regions */ 1614 if (block->mr->readonly || block->mr->rom_device) { 1615 continue; 1616 } 1617 1618 /* 1619 * Populate pages of the RAM block before enabling userfault_fd 1620 * write protection. 1621 * 1622 * This stage is required since ioctl(UFFDIO_WRITEPROTECT) with 1623 * UFFDIO_WRITEPROTECT_MODE_WP mode setting would silently skip 1624 * pages with pte_none() entries in page table. 1625 */ 1626 ram_block_populate_read(block); 1627 } 1628 } 1629 1630 static inline int uffd_protect_section(MemoryRegionSection *section, 1631 void *opaque) 1632 { 1633 const hwaddr size = int128_get64(section->size); 1634 const hwaddr offset = section->offset_within_region; 1635 RAMBlock *rb = section->mr->ram_block; 1636 int uffd_fd = (uintptr_t)opaque; 1637 1638 return uffd_change_protection(uffd_fd, rb->host + offset, size, true, 1639 false); 1640 } 1641 1642 static int ram_block_uffd_protect(RAMBlock *rb, int uffd_fd) 1643 { 1644 assert(rb->flags & RAM_UF_WRITEPROTECT); 1645 1646 /* See ram_block_populate_read() */ 1647 if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) { 1648 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr); 1649 MemoryRegionSection section = { 1650 .mr = rb->mr, 1651 .offset_within_region = 0, 1652 .size = rb->mr->size, 1653 }; 1654 1655 return ram_discard_manager_replay_populated(rdm, §ion, 1656 uffd_protect_section, 1657 (void *)(uintptr_t)uffd_fd); 1658 } 1659 return uffd_change_protection(uffd_fd, rb->host, 1660 rb->used_length, true, false); 1661 } 1662 1663 /* 1664 * ram_write_tracking_start: start UFFD-WP memory tracking 1665 * 1666 * Returns 0 for success or negative value in case of error 1667 */ 1668 int ram_write_tracking_start(void) 1669 { 1670 int uffd_fd; 1671 RAMState *rs = ram_state; 1672 RAMBlock *block; 1673 1674 /* Open UFFD file descriptor */ 1675 uffd_fd = uffd_create_fd(UFFD_FEATURE_PAGEFAULT_FLAG_WP, true); 1676 if (uffd_fd < 0) { 1677 return uffd_fd; 1678 } 1679 rs->uffdio_fd = uffd_fd; 1680 1681 RCU_READ_LOCK_GUARD(); 1682 1683 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 1684 /* Nothing to do with read-only and MMIO-writable regions */ 1685 if (block->mr->readonly || block->mr->rom_device) { 1686 continue; 1687 } 1688 1689 /* Register block memory with UFFD to track writes */ 1690 if (uffd_register_memory(rs->uffdio_fd, block->host, 1691 block->max_length, UFFDIO_REGISTER_MODE_WP, NULL)) { 1692 goto fail; 1693 } 1694 block->flags |= RAM_UF_WRITEPROTECT; 1695 memory_region_ref(block->mr); 1696 1697 /* Apply UFFD write protection to the block memory range */ 1698 if (ram_block_uffd_protect(block, uffd_fd)) { 1699 goto fail; 1700 } 1701 1702 trace_ram_write_tracking_ramblock_start(block->idstr, block->page_size, 1703 block->host, block->max_length); 1704 } 1705 1706 return 0; 1707 1708 fail: 1709 error_report("ram_write_tracking_start() failed: restoring initial memory state"); 1710 1711 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 1712 if ((block->flags & RAM_UF_WRITEPROTECT) == 0) { 1713 continue; 1714 } 1715 uffd_unregister_memory(rs->uffdio_fd, block->host, block->max_length); 1716 /* Cleanup flags and remove reference */ 1717 block->flags &= ~RAM_UF_WRITEPROTECT; 1718 memory_region_unref(block->mr); 1719 } 1720 1721 uffd_close_fd(uffd_fd); 1722 rs->uffdio_fd = -1; 1723 return -1; 1724 } 1725 1726 /** 1727 * ram_write_tracking_stop: stop UFFD-WP memory tracking and remove protection 1728 */ 1729 void ram_write_tracking_stop(void) 1730 { 1731 RAMState *rs = ram_state; 1732 RAMBlock *block; 1733 1734 RCU_READ_LOCK_GUARD(); 1735 1736 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 1737 if ((block->flags & RAM_UF_WRITEPROTECT) == 0) { 1738 continue; 1739 } 1740 uffd_unregister_memory(rs->uffdio_fd, block->host, block->max_length); 1741 1742 trace_ram_write_tracking_ramblock_stop(block->idstr, block->page_size, 1743 block->host, block->max_length); 1744 1745 /* Cleanup flags and remove reference */ 1746 block->flags &= ~RAM_UF_WRITEPROTECT; 1747 memory_region_unref(block->mr); 1748 } 1749 1750 /* Finally close UFFD file descriptor */ 1751 uffd_close_fd(rs->uffdio_fd); 1752 rs->uffdio_fd = -1; 1753 } 1754 1755 #else 1756 /* No target OS support, stubs just fail or ignore */ 1757 1758 static RAMBlock *poll_fault_page(RAMState *rs, ram_addr_t *offset) 1759 { 1760 (void) rs; 1761 (void) offset; 1762 1763 return NULL; 1764 } 1765 1766 static int ram_save_release_protection(RAMState *rs, PageSearchStatus *pss, 1767 unsigned long start_page) 1768 { 1769 (void) rs; 1770 (void) pss; 1771 (void) start_page; 1772 1773 return 0; 1774 } 1775 1776 bool ram_write_tracking_available(void) 1777 { 1778 return false; 1779 } 1780 1781 bool ram_write_tracking_compatible(void) 1782 { 1783 assert(0); 1784 return false; 1785 } 1786 1787 int ram_write_tracking_start(void) 1788 { 1789 assert(0); 1790 return -1; 1791 } 1792 1793 void ram_write_tracking_stop(void) 1794 { 1795 assert(0); 1796 } 1797 #endif /* defined(__linux__) */ 1798 1799 /** 1800 * get_queued_page: unqueue a page from the postcopy requests 1801 * 1802 * Skips pages that are already sent (!dirty) 1803 * 1804 * Returns true if a queued page is found 1805 * 1806 * @rs: current RAM state 1807 * @pss: data about the state of the current dirty page scan 1808 */ 1809 static bool get_queued_page(RAMState *rs, PageSearchStatus *pss) 1810 { 1811 RAMBlock *block; 1812 ram_addr_t offset; 1813 bool dirty; 1814 1815 do { 1816 block = unqueue_page(rs, &offset); 1817 /* 1818 * We're sending this page, and since it's postcopy nothing else 1819 * will dirty it, and we must make sure it doesn't get sent again 1820 * even if this queue request was received after the background 1821 * search already sent it. 1822 */ 1823 if (block) { 1824 unsigned long page; 1825 1826 page = offset >> TARGET_PAGE_BITS; 1827 dirty = test_bit(page, block->bmap); 1828 if (!dirty) { 1829 trace_get_queued_page_not_dirty(block->idstr, (uint64_t)offset, 1830 page); 1831 } else { 1832 trace_get_queued_page(block->idstr, (uint64_t)offset, page); 1833 } 1834 } 1835 1836 } while (block && !dirty); 1837 1838 if (!block) { 1839 /* 1840 * Poll write faults too if background snapshot is enabled; that's 1841 * when we have vcpus got blocked by the write protected pages. 1842 */ 1843 block = poll_fault_page(rs, &offset); 1844 } 1845 1846 if (block) { 1847 /* 1848 * We want the background search to continue from the queued page 1849 * since the guest is likely to want other pages near to the page 1850 * it just requested. 1851 */ 1852 pss->block = block; 1853 pss->page = offset >> TARGET_PAGE_BITS; 1854 1855 /* 1856 * This unqueued page would break the "one round" check, even is 1857 * really rare. 1858 */ 1859 pss->complete_round = false; 1860 } 1861 1862 return !!block; 1863 } 1864 1865 /** 1866 * migration_page_queue_free: drop any remaining pages in the ram 1867 * request queue 1868 * 1869 * It should be empty at the end anyway, but in error cases there may 1870 * be some left. in case that there is any page left, we drop it. 1871 * 1872 */ 1873 static void migration_page_queue_free(RAMState *rs) 1874 { 1875 struct RAMSrcPageRequest *mspr, *next_mspr; 1876 /* This queue generally should be empty - but in the case of a failed 1877 * migration might have some droppings in. 1878 */ 1879 RCU_READ_LOCK_GUARD(); 1880 QSIMPLEQ_FOREACH_SAFE(mspr, &rs->src_page_requests, next_req, next_mspr) { 1881 memory_region_unref(mspr->rb->mr); 1882 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req); 1883 g_free(mspr); 1884 } 1885 } 1886 1887 /** 1888 * ram_save_queue_pages: queue the page for transmission 1889 * 1890 * A request from postcopy destination for example. 1891 * 1892 * Returns zero on success or negative on error 1893 * 1894 * @rbname: Name of the RAMBLock of the request. NULL means the 1895 * same that last one. 1896 * @start: starting address from the start of the RAMBlock 1897 * @len: length (in bytes) to send 1898 */ 1899 int ram_save_queue_pages(const char *rbname, ram_addr_t start, ram_addr_t len, 1900 Error **errp) 1901 { 1902 RAMBlock *ramblock; 1903 RAMState *rs = ram_state; 1904 1905 stat64_add(&mig_stats.postcopy_requests, 1); 1906 RCU_READ_LOCK_GUARD(); 1907 1908 if (!rbname) { 1909 /* Reuse last RAMBlock */ 1910 ramblock = rs->last_req_rb; 1911 1912 if (!ramblock) { 1913 /* 1914 * Shouldn't happen, we can't reuse the last RAMBlock if 1915 * it's the 1st request. 1916 */ 1917 error_setg(errp, "MIG_RP_MSG_REQ_PAGES has no previous block"); 1918 return -1; 1919 } 1920 } else { 1921 ramblock = qemu_ram_block_by_name(rbname); 1922 1923 if (!ramblock) { 1924 /* We shouldn't be asked for a non-existent RAMBlock */ 1925 error_setg(errp, "MIG_RP_MSG_REQ_PAGES has no block '%s'", rbname); 1926 return -1; 1927 } 1928 rs->last_req_rb = ramblock; 1929 } 1930 trace_ram_save_queue_pages(ramblock->idstr, start, len); 1931 if (!offset_in_ramblock(ramblock, start + len - 1)) { 1932 error_setg(errp, "MIG_RP_MSG_REQ_PAGES request overrun, " 1933 "start=" RAM_ADDR_FMT " len=" 1934 RAM_ADDR_FMT " blocklen=" RAM_ADDR_FMT, 1935 start, len, ramblock->used_length); 1936 return -1; 1937 } 1938 1939 /* 1940 * When with postcopy preempt, we send back the page directly in the 1941 * rp-return thread. 1942 */ 1943 if (postcopy_preempt_active()) { 1944 ram_addr_t page_start = start >> TARGET_PAGE_BITS; 1945 size_t page_size = qemu_ram_pagesize(ramblock); 1946 PageSearchStatus *pss = &ram_state->pss[RAM_CHANNEL_POSTCOPY]; 1947 int ret = 0; 1948 1949 qemu_mutex_lock(&rs->bitmap_mutex); 1950 1951 pss_init(pss, ramblock, page_start); 1952 /* 1953 * Always use the preempt channel, and make sure it's there. It's 1954 * safe to access without lock, because when rp-thread is running 1955 * we should be the only one who operates on the qemufile 1956 */ 1957 pss->pss_channel = migrate_get_current()->postcopy_qemufile_src; 1958 assert(pss->pss_channel); 1959 1960 /* 1961 * It must be either one or multiple of host page size. Just 1962 * assert; if something wrong we're mostly split brain anyway. 1963 */ 1964 assert(len % page_size == 0); 1965 while (len) { 1966 if (ram_save_host_page_urgent(pss)) { 1967 error_setg(errp, "ram_save_host_page_urgent() failed: " 1968 "ramblock=%s, start_addr=0x"RAM_ADDR_FMT, 1969 ramblock->idstr, start); 1970 ret = -1; 1971 break; 1972 } 1973 /* 1974 * NOTE: after ram_save_host_page_urgent() succeeded, pss->page 1975 * will automatically be moved and point to the next host page 1976 * we're going to send, so no need to update here. 1977 * 1978 * Normally QEMU never sends >1 host page in requests, so 1979 * logically we don't even need that as the loop should only 1980 * run once, but just to be consistent. 1981 */ 1982 len -= page_size; 1983 }; 1984 qemu_mutex_unlock(&rs->bitmap_mutex); 1985 1986 return ret; 1987 } 1988 1989 struct RAMSrcPageRequest *new_entry = 1990 g_new0(struct RAMSrcPageRequest, 1); 1991 new_entry->rb = ramblock; 1992 new_entry->offset = start; 1993 new_entry->len = len; 1994 1995 memory_region_ref(ramblock->mr); 1996 qemu_mutex_lock(&rs->src_page_req_mutex); 1997 QSIMPLEQ_INSERT_TAIL(&rs->src_page_requests, new_entry, next_req); 1998 migration_make_urgent_request(); 1999 qemu_mutex_unlock(&rs->src_page_req_mutex); 2000 2001 return 0; 2002 } 2003 2004 /* 2005 * try to compress the page before posting it out, return true if the page 2006 * has been properly handled by compression, otherwise needs other 2007 * paths to handle it 2008 */ 2009 static bool save_compress_page(RAMState *rs, PageSearchStatus *pss, 2010 ram_addr_t offset) 2011 { 2012 if (!migrate_compress()) { 2013 return false; 2014 } 2015 2016 /* 2017 * When starting the process of a new block, the first page of 2018 * the block should be sent out before other pages in the same 2019 * block, and all the pages in last block should have been sent 2020 * out, keeping this order is important, because the 'cont' flag 2021 * is used to avoid resending the block name. 2022 * 2023 * We post the fist page as normal page as compression will take 2024 * much CPU resource. 2025 */ 2026 if (pss->block != pss->last_sent_block) { 2027 compress_flush_data(); 2028 return false; 2029 } 2030 2031 return compress_page_with_multi_thread(pss->block, offset, 2032 compress_send_queued_data); 2033 } 2034 2035 /** 2036 * ram_save_target_page_legacy: save one target page 2037 * 2038 * Returns the number of pages written 2039 * 2040 * @rs: current RAM state 2041 * @pss: data about the page we want to send 2042 */ 2043 static int ram_save_target_page_legacy(RAMState *rs, PageSearchStatus *pss) 2044 { 2045 RAMBlock *block = pss->block; 2046 ram_addr_t offset = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS; 2047 int res; 2048 2049 if (control_save_page(pss, offset, &res)) { 2050 return res; 2051 } 2052 2053 if (save_compress_page(rs, pss, offset)) { 2054 return 1; 2055 } 2056 2057 if (save_zero_page(rs, pss, offset)) { 2058 return 1; 2059 } 2060 2061 /* 2062 * Do not use multifd in postcopy as one whole host page should be 2063 * placed. Meanwhile postcopy requires atomic update of pages, so even 2064 * if host page size == guest page size the dest guest during run may 2065 * still see partially copied pages which is data corruption. 2066 */ 2067 if (migrate_multifd() && !migration_in_postcopy()) { 2068 return ram_save_multifd_page(block, offset); 2069 } 2070 2071 return ram_save_page(rs, pss); 2072 } 2073 2074 /* Should be called before sending a host page */ 2075 static void pss_host_page_prepare(PageSearchStatus *pss) 2076 { 2077 /* How many guest pages are there in one host page? */ 2078 size_t guest_pfns = qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS; 2079 2080 pss->host_page_sending = true; 2081 if (guest_pfns <= 1) { 2082 /* 2083 * This covers both when guest psize == host psize, or when guest 2084 * has larger psize than the host (guest_pfns==0). 2085 * 2086 * For the latter, we always send one whole guest page per 2087 * iteration of the host page (example: an Alpha VM on x86 host 2088 * will have guest psize 8K while host psize 4K). 2089 */ 2090 pss->host_page_start = pss->page; 2091 pss->host_page_end = pss->page + 1; 2092 } else { 2093 /* 2094 * The host page spans over multiple guest pages, we send them 2095 * within the same host page iteration. 2096 */ 2097 pss->host_page_start = ROUND_DOWN(pss->page, guest_pfns); 2098 pss->host_page_end = ROUND_UP(pss->page + 1, guest_pfns); 2099 } 2100 } 2101 2102 /* 2103 * Whether the page pointed by PSS is within the host page being sent. 2104 * Must be called after a previous pss_host_page_prepare(). 2105 */ 2106 static bool pss_within_range(PageSearchStatus *pss) 2107 { 2108 ram_addr_t ram_addr; 2109 2110 assert(pss->host_page_sending); 2111 2112 /* Over host-page boundary? */ 2113 if (pss->page >= pss->host_page_end) { 2114 return false; 2115 } 2116 2117 ram_addr = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS; 2118 2119 return offset_in_ramblock(pss->block, ram_addr); 2120 } 2121 2122 static void pss_host_page_finish(PageSearchStatus *pss) 2123 { 2124 pss->host_page_sending = false; 2125 /* This is not needed, but just to reset it */ 2126 pss->host_page_start = pss->host_page_end = 0; 2127 } 2128 2129 /* 2130 * Send an urgent host page specified by `pss'. Need to be called with 2131 * bitmap_mutex held. 2132 * 2133 * Returns 0 if save host page succeeded, false otherwise. 2134 */ 2135 static int ram_save_host_page_urgent(PageSearchStatus *pss) 2136 { 2137 bool page_dirty, sent = false; 2138 RAMState *rs = ram_state; 2139 int ret = 0; 2140 2141 trace_postcopy_preempt_send_host_page(pss->block->idstr, pss->page); 2142 pss_host_page_prepare(pss); 2143 2144 /* 2145 * If precopy is sending the same page, let it be done in precopy, or 2146 * we could send the same page in two channels and none of them will 2147 * receive the whole page. 2148 */ 2149 if (pss_overlap(pss, &ram_state->pss[RAM_CHANNEL_PRECOPY])) { 2150 trace_postcopy_preempt_hit(pss->block->idstr, 2151 pss->page << TARGET_PAGE_BITS); 2152 return 0; 2153 } 2154 2155 do { 2156 page_dirty = migration_bitmap_clear_dirty(rs, pss->block, pss->page); 2157 2158 if (page_dirty) { 2159 /* Be strict to return code; it must be 1, or what else? */ 2160 if (migration_ops->ram_save_target_page(rs, pss) != 1) { 2161 error_report_once("%s: ram_save_target_page failed", __func__); 2162 ret = -1; 2163 goto out; 2164 } 2165 sent = true; 2166 } 2167 pss_find_next_dirty(pss); 2168 } while (pss_within_range(pss)); 2169 out: 2170 pss_host_page_finish(pss); 2171 /* For urgent requests, flush immediately if sent */ 2172 if (sent) { 2173 qemu_fflush(pss->pss_channel); 2174 } 2175 return ret; 2176 } 2177 2178 /** 2179 * ram_save_host_page: save a whole host page 2180 * 2181 * Starting at *offset send pages up to the end of the current host 2182 * page. It's valid for the initial offset to point into the middle of 2183 * a host page in which case the remainder of the hostpage is sent. 2184 * Only dirty target pages are sent. Note that the host page size may 2185 * be a huge page for this block. 2186 * 2187 * The saving stops at the boundary of the used_length of the block 2188 * if the RAMBlock isn't a multiple of the host page size. 2189 * 2190 * The caller must be with ram_state.bitmap_mutex held to call this 2191 * function. Note that this function can temporarily release the lock, but 2192 * when the function is returned it'll make sure the lock is still held. 2193 * 2194 * Returns the number of pages written or negative on error 2195 * 2196 * @rs: current RAM state 2197 * @pss: data about the page we want to send 2198 */ 2199 static int ram_save_host_page(RAMState *rs, PageSearchStatus *pss) 2200 { 2201 bool page_dirty, preempt_active = postcopy_preempt_active(); 2202 int tmppages, pages = 0; 2203 size_t pagesize_bits = 2204 qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS; 2205 unsigned long start_page = pss->page; 2206 int res; 2207 2208 if (migrate_ram_is_ignored(pss->block)) { 2209 error_report("block %s should not be migrated !", pss->block->idstr); 2210 return 0; 2211 } 2212 2213 /* Update host page boundary information */ 2214 pss_host_page_prepare(pss); 2215 2216 do { 2217 page_dirty = migration_bitmap_clear_dirty(rs, pss->block, pss->page); 2218 2219 /* Check the pages is dirty and if it is send it */ 2220 if (page_dirty) { 2221 /* 2222 * Properly yield the lock only in postcopy preempt mode 2223 * because both migration thread and rp-return thread can 2224 * operate on the bitmaps. 2225 */ 2226 if (preempt_active) { 2227 qemu_mutex_unlock(&rs->bitmap_mutex); 2228 } 2229 tmppages = migration_ops->ram_save_target_page(rs, pss); 2230 if (tmppages >= 0) { 2231 pages += tmppages; 2232 /* 2233 * Allow rate limiting to happen in the middle of huge pages if 2234 * something is sent in the current iteration. 2235 */ 2236 if (pagesize_bits > 1 && tmppages > 0) { 2237 migration_rate_limit(); 2238 } 2239 } 2240 if (preempt_active) { 2241 qemu_mutex_lock(&rs->bitmap_mutex); 2242 } 2243 } else { 2244 tmppages = 0; 2245 } 2246 2247 if (tmppages < 0) { 2248 pss_host_page_finish(pss); 2249 return tmppages; 2250 } 2251 2252 pss_find_next_dirty(pss); 2253 } while (pss_within_range(pss)); 2254 2255 pss_host_page_finish(pss); 2256 2257 res = ram_save_release_protection(rs, pss, start_page); 2258 return (res < 0 ? res : pages); 2259 } 2260 2261 /** 2262 * ram_find_and_save_block: finds a dirty page and sends it to f 2263 * 2264 * Called within an RCU critical section. 2265 * 2266 * Returns the number of pages written where zero means no dirty pages, 2267 * or negative on error 2268 * 2269 * @rs: current RAM state 2270 * 2271 * On systems where host-page-size > target-page-size it will send all the 2272 * pages in a host page that are dirty. 2273 */ 2274 static int ram_find_and_save_block(RAMState *rs) 2275 { 2276 PageSearchStatus *pss = &rs->pss[RAM_CHANNEL_PRECOPY]; 2277 int pages = 0; 2278 2279 /* No dirty page as there is zero RAM */ 2280 if (!rs->ram_bytes_total) { 2281 return pages; 2282 } 2283 2284 /* 2285 * Always keep last_seen_block/last_page valid during this procedure, 2286 * because find_dirty_block() relies on these values (e.g., we compare 2287 * last_seen_block with pss.block to see whether we searched all the 2288 * ramblocks) to detect the completion of migration. Having NULL value 2289 * of last_seen_block can conditionally cause below loop to run forever. 2290 */ 2291 if (!rs->last_seen_block) { 2292 rs->last_seen_block = QLIST_FIRST_RCU(&ram_list.blocks); 2293 rs->last_page = 0; 2294 } 2295 2296 pss_init(pss, rs->last_seen_block, rs->last_page); 2297 2298 while (true){ 2299 if (!get_queued_page(rs, pss)) { 2300 /* priority queue empty, so just search for something dirty */ 2301 int res = find_dirty_block(rs, pss); 2302 if (res != PAGE_DIRTY_FOUND) { 2303 if (res == PAGE_ALL_CLEAN) { 2304 break; 2305 } else if (res == PAGE_TRY_AGAIN) { 2306 continue; 2307 } else if (res < 0) { 2308 pages = res; 2309 break; 2310 } 2311 } 2312 } 2313 pages = ram_save_host_page(rs, pss); 2314 if (pages) { 2315 break; 2316 } 2317 } 2318 2319 rs->last_seen_block = pss->block; 2320 rs->last_page = pss->page; 2321 2322 return pages; 2323 } 2324 2325 static uint64_t ram_bytes_total_with_ignored(void) 2326 { 2327 RAMBlock *block; 2328 uint64_t total = 0; 2329 2330 RCU_READ_LOCK_GUARD(); 2331 2332 RAMBLOCK_FOREACH_MIGRATABLE(block) { 2333 total += block->used_length; 2334 } 2335 return total; 2336 } 2337 2338 uint64_t ram_bytes_total(void) 2339 { 2340 RAMBlock *block; 2341 uint64_t total = 0; 2342 2343 RCU_READ_LOCK_GUARD(); 2344 2345 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 2346 total += block->used_length; 2347 } 2348 return total; 2349 } 2350 2351 static void xbzrle_load_setup(void) 2352 { 2353 XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE); 2354 } 2355 2356 static void xbzrle_load_cleanup(void) 2357 { 2358 g_free(XBZRLE.decoded_buf); 2359 XBZRLE.decoded_buf = NULL; 2360 } 2361 2362 static void ram_state_cleanup(RAMState **rsp) 2363 { 2364 if (*rsp) { 2365 migration_page_queue_free(*rsp); 2366 qemu_mutex_destroy(&(*rsp)->bitmap_mutex); 2367 qemu_mutex_destroy(&(*rsp)->src_page_req_mutex); 2368 g_free(*rsp); 2369 *rsp = NULL; 2370 } 2371 } 2372 2373 static void xbzrle_cleanup(void) 2374 { 2375 XBZRLE_cache_lock(); 2376 if (XBZRLE.cache) { 2377 cache_fini(XBZRLE.cache); 2378 g_free(XBZRLE.encoded_buf); 2379 g_free(XBZRLE.current_buf); 2380 g_free(XBZRLE.zero_target_page); 2381 XBZRLE.cache = NULL; 2382 XBZRLE.encoded_buf = NULL; 2383 XBZRLE.current_buf = NULL; 2384 XBZRLE.zero_target_page = NULL; 2385 } 2386 XBZRLE_cache_unlock(); 2387 } 2388 2389 static void ram_save_cleanup(void *opaque) 2390 { 2391 RAMState **rsp = opaque; 2392 RAMBlock *block; 2393 2394 /* We don't use dirty log with background snapshots */ 2395 if (!migrate_background_snapshot()) { 2396 /* caller have hold BQL or is in a bh, so there is 2397 * no writing race against the migration bitmap 2398 */ 2399 if (global_dirty_tracking & GLOBAL_DIRTY_MIGRATION) { 2400 /* 2401 * do not stop dirty log without starting it, since 2402 * memory_global_dirty_log_stop will assert that 2403 * memory_global_dirty_log_start/stop used in pairs 2404 */ 2405 memory_global_dirty_log_stop(GLOBAL_DIRTY_MIGRATION); 2406 } 2407 } 2408 2409 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 2410 g_free(block->clear_bmap); 2411 block->clear_bmap = NULL; 2412 g_free(block->bmap); 2413 block->bmap = NULL; 2414 } 2415 2416 xbzrle_cleanup(); 2417 compress_threads_save_cleanup(); 2418 ram_state_cleanup(rsp); 2419 g_free(migration_ops); 2420 migration_ops = NULL; 2421 } 2422 2423 static void ram_state_reset(RAMState *rs) 2424 { 2425 int i; 2426 2427 for (i = 0; i < RAM_CHANNEL_MAX; i++) { 2428 rs->pss[i].last_sent_block = NULL; 2429 } 2430 2431 rs->last_seen_block = NULL; 2432 rs->last_page = 0; 2433 rs->last_version = ram_list.version; 2434 rs->xbzrle_started = false; 2435 } 2436 2437 #define MAX_WAIT 50 /* ms, half buffered_file limit */ 2438 2439 /* **** functions for postcopy ***** */ 2440 2441 void ram_postcopy_migrated_memory_release(MigrationState *ms) 2442 { 2443 struct RAMBlock *block; 2444 2445 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 2446 unsigned long *bitmap = block->bmap; 2447 unsigned long range = block->used_length >> TARGET_PAGE_BITS; 2448 unsigned long run_start = find_next_zero_bit(bitmap, range, 0); 2449 2450 while (run_start < range) { 2451 unsigned long run_end = find_next_bit(bitmap, range, run_start + 1); 2452 ram_discard_range(block->idstr, 2453 ((ram_addr_t)run_start) << TARGET_PAGE_BITS, 2454 ((ram_addr_t)(run_end - run_start)) 2455 << TARGET_PAGE_BITS); 2456 run_start = find_next_zero_bit(bitmap, range, run_end + 1); 2457 } 2458 } 2459 } 2460 2461 /** 2462 * postcopy_send_discard_bm_ram: discard a RAMBlock 2463 * 2464 * Callback from postcopy_each_ram_send_discard for each RAMBlock 2465 * 2466 * @ms: current migration state 2467 * @block: RAMBlock to discard 2468 */ 2469 static void postcopy_send_discard_bm_ram(MigrationState *ms, RAMBlock *block) 2470 { 2471 unsigned long end = block->used_length >> TARGET_PAGE_BITS; 2472 unsigned long current; 2473 unsigned long *bitmap = block->bmap; 2474 2475 for (current = 0; current < end; ) { 2476 unsigned long one = find_next_bit(bitmap, end, current); 2477 unsigned long zero, discard_length; 2478 2479 if (one >= end) { 2480 break; 2481 } 2482 2483 zero = find_next_zero_bit(bitmap, end, one + 1); 2484 2485 if (zero >= end) { 2486 discard_length = end - one; 2487 } else { 2488 discard_length = zero - one; 2489 } 2490 postcopy_discard_send_range(ms, one, discard_length); 2491 current = one + discard_length; 2492 } 2493 } 2494 2495 static void postcopy_chunk_hostpages_pass(MigrationState *ms, RAMBlock *block); 2496 2497 /** 2498 * postcopy_each_ram_send_discard: discard all RAMBlocks 2499 * 2500 * Utility for the outgoing postcopy code. 2501 * Calls postcopy_send_discard_bm_ram for each RAMBlock 2502 * passing it bitmap indexes and name. 2503 * (qemu_ram_foreach_block ends up passing unscaled lengths 2504 * which would mean postcopy code would have to deal with target page) 2505 * 2506 * @ms: current migration state 2507 */ 2508 static void postcopy_each_ram_send_discard(MigrationState *ms) 2509 { 2510 struct RAMBlock *block; 2511 2512 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 2513 postcopy_discard_send_init(ms, block->idstr); 2514 2515 /* 2516 * Deal with TPS != HPS and huge pages. It discard any partially sent 2517 * host-page size chunks, mark any partially dirty host-page size 2518 * chunks as all dirty. In this case the host-page is the host-page 2519 * for the particular RAMBlock, i.e. it might be a huge page. 2520 */ 2521 postcopy_chunk_hostpages_pass(ms, block); 2522 2523 /* 2524 * Postcopy sends chunks of bitmap over the wire, but it 2525 * just needs indexes at this point, avoids it having 2526 * target page specific code. 2527 */ 2528 postcopy_send_discard_bm_ram(ms, block); 2529 postcopy_discard_send_finish(ms); 2530 } 2531 } 2532 2533 /** 2534 * postcopy_chunk_hostpages_pass: canonicalize bitmap in hostpages 2535 * 2536 * Helper for postcopy_chunk_hostpages; it's called twice to 2537 * canonicalize the two bitmaps, that are similar, but one is 2538 * inverted. 2539 * 2540 * Postcopy requires that all target pages in a hostpage are dirty or 2541 * clean, not a mix. This function canonicalizes the bitmaps. 2542 * 2543 * @ms: current migration state 2544 * @block: block that contains the page we want to canonicalize 2545 */ 2546 static void postcopy_chunk_hostpages_pass(MigrationState *ms, RAMBlock *block) 2547 { 2548 RAMState *rs = ram_state; 2549 unsigned long *bitmap = block->bmap; 2550 unsigned int host_ratio = block->page_size / TARGET_PAGE_SIZE; 2551 unsigned long pages = block->used_length >> TARGET_PAGE_BITS; 2552 unsigned long run_start; 2553 2554 if (block->page_size == TARGET_PAGE_SIZE) { 2555 /* Easy case - TPS==HPS for a non-huge page RAMBlock */ 2556 return; 2557 } 2558 2559 /* Find a dirty page */ 2560 run_start = find_next_bit(bitmap, pages, 0); 2561 2562 while (run_start < pages) { 2563 2564 /* 2565 * If the start of this run of pages is in the middle of a host 2566 * page, then we need to fixup this host page. 2567 */ 2568 if (QEMU_IS_ALIGNED(run_start, host_ratio)) { 2569 /* Find the end of this run */ 2570 run_start = find_next_zero_bit(bitmap, pages, run_start + 1); 2571 /* 2572 * If the end isn't at the start of a host page, then the 2573 * run doesn't finish at the end of a host page 2574 * and we need to discard. 2575 */ 2576 } 2577 2578 if (!QEMU_IS_ALIGNED(run_start, host_ratio)) { 2579 unsigned long page; 2580 unsigned long fixup_start_addr = QEMU_ALIGN_DOWN(run_start, 2581 host_ratio); 2582 run_start = QEMU_ALIGN_UP(run_start, host_ratio); 2583 2584 /* Clean up the bitmap */ 2585 for (page = fixup_start_addr; 2586 page < fixup_start_addr + host_ratio; page++) { 2587 /* 2588 * Remark them as dirty, updating the count for any pages 2589 * that weren't previously dirty. 2590 */ 2591 rs->migration_dirty_pages += !test_and_set_bit(page, bitmap); 2592 } 2593 } 2594 2595 /* Find the next dirty page for the next iteration */ 2596 run_start = find_next_bit(bitmap, pages, run_start); 2597 } 2598 } 2599 2600 /** 2601 * ram_postcopy_send_discard_bitmap: transmit the discard bitmap 2602 * 2603 * Transmit the set of pages to be discarded after precopy to the target 2604 * these are pages that: 2605 * a) Have been previously transmitted but are now dirty again 2606 * b) Pages that have never been transmitted, this ensures that 2607 * any pages on the destination that have been mapped by background 2608 * tasks get discarded (transparent huge pages is the specific concern) 2609 * Hopefully this is pretty sparse 2610 * 2611 * @ms: current migration state 2612 */ 2613 void ram_postcopy_send_discard_bitmap(MigrationState *ms) 2614 { 2615 RAMState *rs = ram_state; 2616 2617 RCU_READ_LOCK_GUARD(); 2618 2619 /* This should be our last sync, the src is now paused */ 2620 migration_bitmap_sync(rs, false); 2621 2622 /* Easiest way to make sure we don't resume in the middle of a host-page */ 2623 rs->pss[RAM_CHANNEL_PRECOPY].last_sent_block = NULL; 2624 rs->last_seen_block = NULL; 2625 rs->last_page = 0; 2626 2627 postcopy_each_ram_send_discard(ms); 2628 2629 trace_ram_postcopy_send_discard_bitmap(); 2630 } 2631 2632 /** 2633 * ram_discard_range: discard dirtied pages at the beginning of postcopy 2634 * 2635 * Returns zero on success 2636 * 2637 * @rbname: name of the RAMBlock of the request. NULL means the 2638 * same that last one. 2639 * @start: RAMBlock starting page 2640 * @length: RAMBlock size 2641 */ 2642 int ram_discard_range(const char *rbname, uint64_t start, size_t length) 2643 { 2644 trace_ram_discard_range(rbname, start, length); 2645 2646 RCU_READ_LOCK_GUARD(); 2647 RAMBlock *rb = qemu_ram_block_by_name(rbname); 2648 2649 if (!rb) { 2650 error_report("ram_discard_range: Failed to find block '%s'", rbname); 2651 return -1; 2652 } 2653 2654 /* 2655 * On source VM, we don't need to update the received bitmap since 2656 * we don't even have one. 2657 */ 2658 if (rb->receivedmap) { 2659 bitmap_clear(rb->receivedmap, start >> qemu_target_page_bits(), 2660 length >> qemu_target_page_bits()); 2661 } 2662 2663 return ram_block_discard_range(rb, start, length); 2664 } 2665 2666 /* 2667 * For every allocation, we will try not to crash the VM if the 2668 * allocation failed. 2669 */ 2670 static int xbzrle_init(void) 2671 { 2672 Error *local_err = NULL; 2673 2674 if (!migrate_xbzrle()) { 2675 return 0; 2676 } 2677 2678 XBZRLE_cache_lock(); 2679 2680 XBZRLE.zero_target_page = g_try_malloc0(TARGET_PAGE_SIZE); 2681 if (!XBZRLE.zero_target_page) { 2682 error_report("%s: Error allocating zero page", __func__); 2683 goto err_out; 2684 } 2685 2686 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size(), 2687 TARGET_PAGE_SIZE, &local_err); 2688 if (!XBZRLE.cache) { 2689 error_report_err(local_err); 2690 goto free_zero_page; 2691 } 2692 2693 XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE); 2694 if (!XBZRLE.encoded_buf) { 2695 error_report("%s: Error allocating encoded_buf", __func__); 2696 goto free_cache; 2697 } 2698 2699 XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE); 2700 if (!XBZRLE.current_buf) { 2701 error_report("%s: Error allocating current_buf", __func__); 2702 goto free_encoded_buf; 2703 } 2704 2705 /* We are all good */ 2706 XBZRLE_cache_unlock(); 2707 return 0; 2708 2709 free_encoded_buf: 2710 g_free(XBZRLE.encoded_buf); 2711 XBZRLE.encoded_buf = NULL; 2712 free_cache: 2713 cache_fini(XBZRLE.cache); 2714 XBZRLE.cache = NULL; 2715 free_zero_page: 2716 g_free(XBZRLE.zero_target_page); 2717 XBZRLE.zero_target_page = NULL; 2718 err_out: 2719 XBZRLE_cache_unlock(); 2720 return -ENOMEM; 2721 } 2722 2723 static int ram_state_init(RAMState **rsp) 2724 { 2725 *rsp = g_try_new0(RAMState, 1); 2726 2727 if (!*rsp) { 2728 error_report("%s: Init ramstate fail", __func__); 2729 return -1; 2730 } 2731 2732 qemu_mutex_init(&(*rsp)->bitmap_mutex); 2733 qemu_mutex_init(&(*rsp)->src_page_req_mutex); 2734 QSIMPLEQ_INIT(&(*rsp)->src_page_requests); 2735 (*rsp)->ram_bytes_total = ram_bytes_total(); 2736 2737 /* 2738 * Count the total number of pages used by ram blocks not including any 2739 * gaps due to alignment or unplugs. 2740 * This must match with the initial values of dirty bitmap. 2741 */ 2742 (*rsp)->migration_dirty_pages = (*rsp)->ram_bytes_total >> TARGET_PAGE_BITS; 2743 ram_state_reset(*rsp); 2744 2745 return 0; 2746 } 2747 2748 static void ram_list_init_bitmaps(void) 2749 { 2750 MigrationState *ms = migrate_get_current(); 2751 RAMBlock *block; 2752 unsigned long pages; 2753 uint8_t shift; 2754 2755 /* Skip setting bitmap if there is no RAM */ 2756 if (ram_bytes_total()) { 2757 shift = ms->clear_bitmap_shift; 2758 if (shift > CLEAR_BITMAP_SHIFT_MAX) { 2759 error_report("clear_bitmap_shift (%u) too big, using " 2760 "max value (%u)", shift, CLEAR_BITMAP_SHIFT_MAX); 2761 shift = CLEAR_BITMAP_SHIFT_MAX; 2762 } else if (shift < CLEAR_BITMAP_SHIFT_MIN) { 2763 error_report("clear_bitmap_shift (%u) too small, using " 2764 "min value (%u)", shift, CLEAR_BITMAP_SHIFT_MIN); 2765 shift = CLEAR_BITMAP_SHIFT_MIN; 2766 } 2767 2768 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 2769 pages = block->max_length >> TARGET_PAGE_BITS; 2770 /* 2771 * The initial dirty bitmap for migration must be set with all 2772 * ones to make sure we'll migrate every guest RAM page to 2773 * destination. 2774 * Here we set RAMBlock.bmap all to 1 because when rebegin a 2775 * new migration after a failed migration, ram_list. 2776 * dirty_memory[DIRTY_MEMORY_MIGRATION] don't include the whole 2777 * guest memory. 2778 */ 2779 block->bmap = bitmap_new(pages); 2780 bitmap_set(block->bmap, 0, pages); 2781 block->clear_bmap_shift = shift; 2782 block->clear_bmap = bitmap_new(clear_bmap_size(pages, shift)); 2783 } 2784 } 2785 } 2786 2787 static void migration_bitmap_clear_discarded_pages(RAMState *rs) 2788 { 2789 unsigned long pages; 2790 RAMBlock *rb; 2791 2792 RCU_READ_LOCK_GUARD(); 2793 2794 RAMBLOCK_FOREACH_NOT_IGNORED(rb) { 2795 pages = ramblock_dirty_bitmap_clear_discarded_pages(rb); 2796 rs->migration_dirty_pages -= pages; 2797 } 2798 } 2799 2800 static void ram_init_bitmaps(RAMState *rs) 2801 { 2802 qemu_mutex_lock_ramlist(); 2803 2804 WITH_RCU_READ_LOCK_GUARD() { 2805 ram_list_init_bitmaps(); 2806 /* We don't use dirty log with background snapshots */ 2807 if (!migrate_background_snapshot()) { 2808 memory_global_dirty_log_start(GLOBAL_DIRTY_MIGRATION); 2809 migration_bitmap_sync_precopy(rs, false); 2810 } 2811 } 2812 qemu_mutex_unlock_ramlist(); 2813 2814 /* 2815 * After an eventual first bitmap sync, fixup the initial bitmap 2816 * containing all 1s to exclude any discarded pages from migration. 2817 */ 2818 migration_bitmap_clear_discarded_pages(rs); 2819 } 2820 2821 static int ram_init_all(RAMState **rsp) 2822 { 2823 if (ram_state_init(rsp)) { 2824 return -1; 2825 } 2826 2827 if (xbzrle_init()) { 2828 ram_state_cleanup(rsp); 2829 return -1; 2830 } 2831 2832 ram_init_bitmaps(*rsp); 2833 2834 return 0; 2835 } 2836 2837 static void ram_state_resume_prepare(RAMState *rs, QEMUFile *out) 2838 { 2839 RAMBlock *block; 2840 uint64_t pages = 0; 2841 2842 /* 2843 * Postcopy is not using xbzrle/compression, so no need for that. 2844 * Also, since source are already halted, we don't need to care 2845 * about dirty page logging as well. 2846 */ 2847 2848 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 2849 pages += bitmap_count_one(block->bmap, 2850 block->used_length >> TARGET_PAGE_BITS); 2851 } 2852 2853 /* This may not be aligned with current bitmaps. Recalculate. */ 2854 rs->migration_dirty_pages = pages; 2855 2856 ram_state_reset(rs); 2857 2858 /* Update RAMState cache of output QEMUFile */ 2859 rs->pss[RAM_CHANNEL_PRECOPY].pss_channel = out; 2860 2861 trace_ram_state_resume_prepare(pages); 2862 } 2863 2864 /* 2865 * This function clears bits of the free pages reported by the caller from the 2866 * migration dirty bitmap. @addr is the host address corresponding to the 2867 * start of the continuous guest free pages, and @len is the total bytes of 2868 * those pages. 2869 */ 2870 void qemu_guest_free_page_hint(void *addr, size_t len) 2871 { 2872 RAMBlock *block; 2873 ram_addr_t offset; 2874 size_t used_len, start, npages; 2875 MigrationState *s = migrate_get_current(); 2876 2877 /* This function is currently expected to be used during live migration */ 2878 if (!migration_is_setup_or_active(s->state)) { 2879 return; 2880 } 2881 2882 for (; len > 0; len -= used_len, addr += used_len) { 2883 block = qemu_ram_block_from_host(addr, false, &offset); 2884 if (unlikely(!block || offset >= block->used_length)) { 2885 /* 2886 * The implementation might not support RAMBlock resize during 2887 * live migration, but it could happen in theory with future 2888 * updates. So we add a check here to capture that case. 2889 */ 2890 error_report_once("%s unexpected error", __func__); 2891 return; 2892 } 2893 2894 if (len <= block->used_length - offset) { 2895 used_len = len; 2896 } else { 2897 used_len = block->used_length - offset; 2898 } 2899 2900 start = offset >> TARGET_PAGE_BITS; 2901 npages = used_len >> TARGET_PAGE_BITS; 2902 2903 qemu_mutex_lock(&ram_state->bitmap_mutex); 2904 /* 2905 * The skipped free pages are equavalent to be sent from clear_bmap's 2906 * perspective, so clear the bits from the memory region bitmap which 2907 * are initially set. Otherwise those skipped pages will be sent in 2908 * the next round after syncing from the memory region bitmap. 2909 */ 2910 migration_clear_memory_region_dirty_bitmap_range(block, start, npages); 2911 ram_state->migration_dirty_pages -= 2912 bitmap_count_one_with_offset(block->bmap, start, npages); 2913 bitmap_clear(block->bmap, start, npages); 2914 qemu_mutex_unlock(&ram_state->bitmap_mutex); 2915 } 2916 } 2917 2918 /* 2919 * Each of ram_save_setup, ram_save_iterate and ram_save_complete has 2920 * long-running RCU critical section. When rcu-reclaims in the code 2921 * start to become numerous it will be necessary to reduce the 2922 * granularity of these critical sections. 2923 */ 2924 2925 /** 2926 * ram_save_setup: Setup RAM for migration 2927 * 2928 * Returns zero to indicate success and negative for error 2929 * 2930 * @f: QEMUFile where to send the data 2931 * @opaque: RAMState pointer 2932 */ 2933 static int ram_save_setup(QEMUFile *f, void *opaque) 2934 { 2935 RAMState **rsp = opaque; 2936 RAMBlock *block; 2937 int ret, max_hg_page_size; 2938 2939 if (compress_threads_save_setup()) { 2940 return -1; 2941 } 2942 2943 /* migration has already setup the bitmap, reuse it. */ 2944 if (!migration_in_colo_state()) { 2945 if (ram_init_all(rsp) != 0) { 2946 compress_threads_save_cleanup(); 2947 return -1; 2948 } 2949 } 2950 (*rsp)->pss[RAM_CHANNEL_PRECOPY].pss_channel = f; 2951 2952 /* 2953 * ??? Mirrors the previous value of qemu_host_page_size, 2954 * but is this really what was intended for the migration? 2955 */ 2956 max_hg_page_size = MAX(qemu_real_host_page_size(), TARGET_PAGE_SIZE); 2957 2958 WITH_RCU_READ_LOCK_GUARD() { 2959 qemu_put_be64(f, ram_bytes_total_with_ignored() 2960 | RAM_SAVE_FLAG_MEM_SIZE); 2961 2962 RAMBLOCK_FOREACH_MIGRATABLE(block) { 2963 qemu_put_byte(f, strlen(block->idstr)); 2964 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr)); 2965 qemu_put_be64(f, block->used_length); 2966 if (migrate_postcopy_ram() && 2967 block->page_size != max_hg_page_size) { 2968 qemu_put_be64(f, block->page_size); 2969 } 2970 if (migrate_ignore_shared()) { 2971 qemu_put_be64(f, block->mr->addr); 2972 } 2973 } 2974 } 2975 2976 ret = rdma_registration_start(f, RAM_CONTROL_SETUP); 2977 if (ret < 0) { 2978 qemu_file_set_error(f, ret); 2979 return ret; 2980 } 2981 2982 ret = rdma_registration_stop(f, RAM_CONTROL_SETUP); 2983 if (ret < 0) { 2984 qemu_file_set_error(f, ret); 2985 return ret; 2986 } 2987 2988 migration_ops = g_malloc0(sizeof(MigrationOps)); 2989 migration_ops->ram_save_target_page = ram_save_target_page_legacy; 2990 2991 bql_unlock(); 2992 ret = multifd_send_sync_main(); 2993 bql_lock(); 2994 if (ret < 0) { 2995 return ret; 2996 } 2997 2998 if (migrate_multifd() && !migrate_multifd_flush_after_each_section()) { 2999 qemu_put_be64(f, RAM_SAVE_FLAG_MULTIFD_FLUSH); 3000 } 3001 3002 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 3003 return qemu_fflush(f); 3004 } 3005 3006 /** 3007 * ram_save_iterate: iterative stage for migration 3008 * 3009 * Returns zero to indicate success and negative for error 3010 * 3011 * @f: QEMUFile where to send the data 3012 * @opaque: RAMState pointer 3013 */ 3014 static int ram_save_iterate(QEMUFile *f, void *opaque) 3015 { 3016 RAMState **temp = opaque; 3017 RAMState *rs = *temp; 3018 int ret = 0; 3019 int i; 3020 int64_t t0; 3021 int done = 0; 3022 3023 if (blk_mig_bulk_active()) { 3024 /* Avoid transferring ram during bulk phase of block migration as 3025 * the bulk phase will usually take a long time and transferring 3026 * ram updates during that time is pointless. */ 3027 goto out; 3028 } 3029 3030 /* 3031 * We'll take this lock a little bit long, but it's okay for two reasons. 3032 * Firstly, the only possible other thread to take it is who calls 3033 * qemu_guest_free_page_hint(), which should be rare; secondly, see 3034 * MAX_WAIT (if curious, further see commit 4508bd9ed8053ce) below, which 3035 * guarantees that we'll at least released it in a regular basis. 3036 */ 3037 WITH_QEMU_LOCK_GUARD(&rs->bitmap_mutex) { 3038 WITH_RCU_READ_LOCK_GUARD() { 3039 if (ram_list.version != rs->last_version) { 3040 ram_state_reset(rs); 3041 } 3042 3043 /* Read version before ram_list.blocks */ 3044 smp_rmb(); 3045 3046 ret = rdma_registration_start(f, RAM_CONTROL_ROUND); 3047 if (ret < 0) { 3048 qemu_file_set_error(f, ret); 3049 goto out; 3050 } 3051 3052 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 3053 i = 0; 3054 while ((ret = migration_rate_exceeded(f)) == 0 || 3055 postcopy_has_request(rs)) { 3056 int pages; 3057 3058 if (qemu_file_get_error(f)) { 3059 break; 3060 } 3061 3062 pages = ram_find_and_save_block(rs); 3063 /* no more pages to sent */ 3064 if (pages == 0) { 3065 done = 1; 3066 break; 3067 } 3068 3069 if (pages < 0) { 3070 qemu_file_set_error(f, pages); 3071 break; 3072 } 3073 3074 rs->target_page_count += pages; 3075 3076 /* 3077 * During postcopy, it is necessary to make sure one whole host 3078 * page is sent in one chunk. 3079 */ 3080 if (migrate_postcopy_ram()) { 3081 compress_flush_data(); 3082 } 3083 3084 /* 3085 * we want to check in the 1st loop, just in case it was the 1st 3086 * time and we had to sync the dirty bitmap. 3087 * qemu_clock_get_ns() is a bit expensive, so we only check each 3088 * some iterations 3089 */ 3090 if ((i & 63) == 0) { 3091 uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) / 3092 1000000; 3093 if (t1 > MAX_WAIT) { 3094 trace_ram_save_iterate_big_wait(t1, i); 3095 break; 3096 } 3097 } 3098 i++; 3099 } 3100 } 3101 } 3102 3103 /* 3104 * Must occur before EOS (or any QEMUFile operation) 3105 * because of RDMA protocol. 3106 */ 3107 ret = rdma_registration_stop(f, RAM_CONTROL_ROUND); 3108 if (ret < 0) { 3109 qemu_file_set_error(f, ret); 3110 } 3111 3112 out: 3113 if (ret >= 0 3114 && migration_is_setup_or_active(migrate_get_current()->state)) { 3115 if (migrate_multifd() && migrate_multifd_flush_after_each_section()) { 3116 ret = multifd_send_sync_main(); 3117 if (ret < 0) { 3118 return ret; 3119 } 3120 } 3121 3122 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 3123 ram_transferred_add(8); 3124 ret = qemu_fflush(f); 3125 } 3126 if (ret < 0) { 3127 return ret; 3128 } 3129 3130 return done; 3131 } 3132 3133 /** 3134 * ram_save_complete: function called to send the remaining amount of ram 3135 * 3136 * Returns zero to indicate success or negative on error 3137 * 3138 * Called with the BQL 3139 * 3140 * @f: QEMUFile where to send the data 3141 * @opaque: RAMState pointer 3142 */ 3143 static int ram_save_complete(QEMUFile *f, void *opaque) 3144 { 3145 RAMState **temp = opaque; 3146 RAMState *rs = *temp; 3147 int ret = 0; 3148 3149 rs->last_stage = !migration_in_colo_state(); 3150 3151 WITH_RCU_READ_LOCK_GUARD() { 3152 if (!migration_in_postcopy()) { 3153 migration_bitmap_sync_precopy(rs, true); 3154 } 3155 3156 ret = rdma_registration_start(f, RAM_CONTROL_FINISH); 3157 if (ret < 0) { 3158 qemu_file_set_error(f, ret); 3159 return ret; 3160 } 3161 3162 /* try transferring iterative blocks of memory */ 3163 3164 /* flush all remaining blocks regardless of rate limiting */ 3165 qemu_mutex_lock(&rs->bitmap_mutex); 3166 while (true) { 3167 int pages; 3168 3169 pages = ram_find_and_save_block(rs); 3170 /* no more blocks to sent */ 3171 if (pages == 0) { 3172 break; 3173 } 3174 if (pages < 0) { 3175 qemu_mutex_unlock(&rs->bitmap_mutex); 3176 return pages; 3177 } 3178 } 3179 qemu_mutex_unlock(&rs->bitmap_mutex); 3180 3181 compress_flush_data(); 3182 3183 ret = rdma_registration_stop(f, RAM_CONTROL_FINISH); 3184 if (ret < 0) { 3185 qemu_file_set_error(f, ret); 3186 return ret; 3187 } 3188 } 3189 3190 ret = multifd_send_sync_main(); 3191 if (ret < 0) { 3192 return ret; 3193 } 3194 3195 if (migrate_multifd() && !migrate_multifd_flush_after_each_section()) { 3196 qemu_put_be64(f, RAM_SAVE_FLAG_MULTIFD_FLUSH); 3197 } 3198 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 3199 return qemu_fflush(f); 3200 } 3201 3202 static void ram_state_pending_estimate(void *opaque, uint64_t *must_precopy, 3203 uint64_t *can_postcopy) 3204 { 3205 RAMState **temp = opaque; 3206 RAMState *rs = *temp; 3207 3208 uint64_t remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE; 3209 3210 if (migrate_postcopy_ram()) { 3211 /* We can do postcopy, and all the data is postcopiable */ 3212 *can_postcopy += remaining_size; 3213 } else { 3214 *must_precopy += remaining_size; 3215 } 3216 } 3217 3218 static void ram_state_pending_exact(void *opaque, uint64_t *must_precopy, 3219 uint64_t *can_postcopy) 3220 { 3221 RAMState **temp = opaque; 3222 RAMState *rs = *temp; 3223 uint64_t remaining_size; 3224 3225 if (!migration_in_postcopy()) { 3226 bql_lock(); 3227 WITH_RCU_READ_LOCK_GUARD() { 3228 migration_bitmap_sync_precopy(rs, false); 3229 } 3230 bql_unlock(); 3231 } 3232 3233 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE; 3234 3235 if (migrate_postcopy_ram()) { 3236 /* We can do postcopy, and all the data is postcopiable */ 3237 *can_postcopy += remaining_size; 3238 } else { 3239 *must_precopy += remaining_size; 3240 } 3241 } 3242 3243 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host) 3244 { 3245 unsigned int xh_len; 3246 int xh_flags; 3247 uint8_t *loaded_data; 3248 3249 /* extract RLE header */ 3250 xh_flags = qemu_get_byte(f); 3251 xh_len = qemu_get_be16(f); 3252 3253 if (xh_flags != ENCODING_FLAG_XBZRLE) { 3254 error_report("Failed to load XBZRLE page - wrong compression!"); 3255 return -1; 3256 } 3257 3258 if (xh_len > TARGET_PAGE_SIZE) { 3259 error_report("Failed to load XBZRLE page - len overflow!"); 3260 return -1; 3261 } 3262 loaded_data = XBZRLE.decoded_buf; 3263 /* load data and decode */ 3264 /* it can change loaded_data to point to an internal buffer */ 3265 qemu_get_buffer_in_place(f, &loaded_data, xh_len); 3266 3267 /* decode RLE */ 3268 if (xbzrle_decode_buffer(loaded_data, xh_len, host, 3269 TARGET_PAGE_SIZE) == -1) { 3270 error_report("Failed to load XBZRLE page - decode error!"); 3271 return -1; 3272 } 3273 3274 return 0; 3275 } 3276 3277 /** 3278 * ram_block_from_stream: read a RAMBlock id from the migration stream 3279 * 3280 * Must be called from within a rcu critical section. 3281 * 3282 * Returns a pointer from within the RCU-protected ram_list. 3283 * 3284 * @mis: the migration incoming state pointer 3285 * @f: QEMUFile where to read the data from 3286 * @flags: Page flags (mostly to see if it's a continuation of previous block) 3287 * @channel: the channel we're using 3288 */ 3289 static inline RAMBlock *ram_block_from_stream(MigrationIncomingState *mis, 3290 QEMUFile *f, int flags, 3291 int channel) 3292 { 3293 RAMBlock *block = mis->last_recv_block[channel]; 3294 char id[256]; 3295 uint8_t len; 3296 3297 if (flags & RAM_SAVE_FLAG_CONTINUE) { 3298 if (!block) { 3299 error_report("Ack, bad migration stream!"); 3300 return NULL; 3301 } 3302 return block; 3303 } 3304 3305 len = qemu_get_byte(f); 3306 qemu_get_buffer(f, (uint8_t *)id, len); 3307 id[len] = 0; 3308 3309 block = qemu_ram_block_by_name(id); 3310 if (!block) { 3311 error_report("Can't find block %s", id); 3312 return NULL; 3313 } 3314 3315 if (migrate_ram_is_ignored(block)) { 3316 error_report("block %s should not be migrated !", id); 3317 return NULL; 3318 } 3319 3320 mis->last_recv_block[channel] = block; 3321 3322 return block; 3323 } 3324 3325 static inline void *host_from_ram_block_offset(RAMBlock *block, 3326 ram_addr_t offset) 3327 { 3328 if (!offset_in_ramblock(block, offset)) { 3329 return NULL; 3330 } 3331 3332 return block->host + offset; 3333 } 3334 3335 static void *host_page_from_ram_block_offset(RAMBlock *block, 3336 ram_addr_t offset) 3337 { 3338 /* Note: Explicitly no check against offset_in_ramblock(). */ 3339 return (void *)QEMU_ALIGN_DOWN((uintptr_t)(block->host + offset), 3340 block->page_size); 3341 } 3342 3343 static ram_addr_t host_page_offset_from_ram_block_offset(RAMBlock *block, 3344 ram_addr_t offset) 3345 { 3346 return ((uintptr_t)block->host + offset) & (block->page_size - 1); 3347 } 3348 3349 void colo_record_bitmap(RAMBlock *block, ram_addr_t *normal, uint32_t pages) 3350 { 3351 qemu_mutex_lock(&ram_state->bitmap_mutex); 3352 for (int i = 0; i < pages; i++) { 3353 ram_addr_t offset = normal[i]; 3354 ram_state->migration_dirty_pages += !test_and_set_bit( 3355 offset >> TARGET_PAGE_BITS, 3356 block->bmap); 3357 } 3358 qemu_mutex_unlock(&ram_state->bitmap_mutex); 3359 } 3360 3361 static inline void *colo_cache_from_block_offset(RAMBlock *block, 3362 ram_addr_t offset, bool record_bitmap) 3363 { 3364 if (!offset_in_ramblock(block, offset)) { 3365 return NULL; 3366 } 3367 if (!block->colo_cache) { 3368 error_report("%s: colo_cache is NULL in block :%s", 3369 __func__, block->idstr); 3370 return NULL; 3371 } 3372 3373 /* 3374 * During colo checkpoint, we need bitmap of these migrated pages. 3375 * It help us to decide which pages in ram cache should be flushed 3376 * into VM's RAM later. 3377 */ 3378 if (record_bitmap) { 3379 colo_record_bitmap(block, &offset, 1); 3380 } 3381 return block->colo_cache + offset; 3382 } 3383 3384 /** 3385 * ram_handle_zero: handle the zero page case 3386 * 3387 * If a page (or a whole RDMA chunk) has been 3388 * determined to be zero, then zap it. 3389 * 3390 * @host: host address for the zero page 3391 * @ch: what the page is filled from. We only support zero 3392 * @size: size of the zero page 3393 */ 3394 void ram_handle_zero(void *host, uint64_t size) 3395 { 3396 if (!buffer_is_zero(host, size)) { 3397 memset(host, 0, size); 3398 } 3399 } 3400 3401 static void colo_init_ram_state(void) 3402 { 3403 ram_state_init(&ram_state); 3404 } 3405 3406 /* 3407 * colo cache: this is for secondary VM, we cache the whole 3408 * memory of the secondary VM, it is need to hold the global lock 3409 * to call this helper. 3410 */ 3411 int colo_init_ram_cache(void) 3412 { 3413 RAMBlock *block; 3414 3415 WITH_RCU_READ_LOCK_GUARD() { 3416 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3417 block->colo_cache = qemu_anon_ram_alloc(block->used_length, 3418 NULL, false, false); 3419 if (!block->colo_cache) { 3420 error_report("%s: Can't alloc memory for COLO cache of block %s," 3421 "size 0x" RAM_ADDR_FMT, __func__, block->idstr, 3422 block->used_length); 3423 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3424 if (block->colo_cache) { 3425 qemu_anon_ram_free(block->colo_cache, block->used_length); 3426 block->colo_cache = NULL; 3427 } 3428 } 3429 return -errno; 3430 } 3431 if (!machine_dump_guest_core(current_machine)) { 3432 qemu_madvise(block->colo_cache, block->used_length, 3433 QEMU_MADV_DONTDUMP); 3434 } 3435 } 3436 } 3437 3438 /* 3439 * Record the dirty pages that sent by PVM, we use this dirty bitmap together 3440 * with to decide which page in cache should be flushed into SVM's RAM. Here 3441 * we use the same name 'ram_bitmap' as for migration. 3442 */ 3443 if (ram_bytes_total()) { 3444 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3445 unsigned long pages = block->max_length >> TARGET_PAGE_BITS; 3446 block->bmap = bitmap_new(pages); 3447 } 3448 } 3449 3450 colo_init_ram_state(); 3451 return 0; 3452 } 3453 3454 /* TODO: duplicated with ram_init_bitmaps */ 3455 void colo_incoming_start_dirty_log(void) 3456 { 3457 RAMBlock *block = NULL; 3458 /* For memory_global_dirty_log_start below. */ 3459 bql_lock(); 3460 qemu_mutex_lock_ramlist(); 3461 3462 memory_global_dirty_log_sync(false); 3463 WITH_RCU_READ_LOCK_GUARD() { 3464 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3465 ramblock_sync_dirty_bitmap(ram_state, block); 3466 /* Discard this dirty bitmap record */ 3467 bitmap_zero(block->bmap, block->max_length >> TARGET_PAGE_BITS); 3468 } 3469 memory_global_dirty_log_start(GLOBAL_DIRTY_MIGRATION); 3470 } 3471 ram_state->migration_dirty_pages = 0; 3472 qemu_mutex_unlock_ramlist(); 3473 bql_unlock(); 3474 } 3475 3476 /* It is need to hold the global lock to call this helper */ 3477 void colo_release_ram_cache(void) 3478 { 3479 RAMBlock *block; 3480 3481 memory_global_dirty_log_stop(GLOBAL_DIRTY_MIGRATION); 3482 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3483 g_free(block->bmap); 3484 block->bmap = NULL; 3485 } 3486 3487 WITH_RCU_READ_LOCK_GUARD() { 3488 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3489 if (block->colo_cache) { 3490 qemu_anon_ram_free(block->colo_cache, block->used_length); 3491 block->colo_cache = NULL; 3492 } 3493 } 3494 } 3495 ram_state_cleanup(&ram_state); 3496 } 3497 3498 /** 3499 * ram_load_setup: Setup RAM for migration incoming side 3500 * 3501 * Returns zero to indicate success and negative for error 3502 * 3503 * @f: QEMUFile where to receive the data 3504 * @opaque: RAMState pointer 3505 */ 3506 static int ram_load_setup(QEMUFile *f, void *opaque) 3507 { 3508 xbzrle_load_setup(); 3509 ramblock_recv_map_init(); 3510 3511 return 0; 3512 } 3513 3514 static int ram_load_cleanup(void *opaque) 3515 { 3516 RAMBlock *rb; 3517 3518 RAMBLOCK_FOREACH_NOT_IGNORED(rb) { 3519 qemu_ram_block_writeback(rb); 3520 } 3521 3522 xbzrle_load_cleanup(); 3523 3524 RAMBLOCK_FOREACH_NOT_IGNORED(rb) { 3525 g_free(rb->receivedmap); 3526 rb->receivedmap = NULL; 3527 } 3528 3529 return 0; 3530 } 3531 3532 /** 3533 * ram_postcopy_incoming_init: allocate postcopy data structures 3534 * 3535 * Returns 0 for success and negative if there was one error 3536 * 3537 * @mis: current migration incoming state 3538 * 3539 * Allocate data structures etc needed by incoming migration with 3540 * postcopy-ram. postcopy-ram's similarly names 3541 * postcopy_ram_incoming_init does the work. 3542 */ 3543 int ram_postcopy_incoming_init(MigrationIncomingState *mis) 3544 { 3545 return postcopy_ram_incoming_init(mis); 3546 } 3547 3548 /** 3549 * ram_load_postcopy: load a page in postcopy case 3550 * 3551 * Returns 0 for success or -errno in case of error 3552 * 3553 * Called in postcopy mode by ram_load(). 3554 * rcu_read_lock is taken prior to this being called. 3555 * 3556 * @f: QEMUFile where to send the data 3557 * @channel: the channel to use for loading 3558 */ 3559 int ram_load_postcopy(QEMUFile *f, int channel) 3560 { 3561 int flags = 0, ret = 0; 3562 bool place_needed = false; 3563 bool matches_target_page_size = false; 3564 MigrationIncomingState *mis = migration_incoming_get_current(); 3565 PostcopyTmpPage *tmp_page = &mis->postcopy_tmp_pages[channel]; 3566 3567 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) { 3568 ram_addr_t addr; 3569 void *page_buffer = NULL; 3570 void *place_source = NULL; 3571 RAMBlock *block = NULL; 3572 uint8_t ch; 3573 int len; 3574 3575 addr = qemu_get_be64(f); 3576 3577 /* 3578 * If qemu file error, we should stop here, and then "addr" 3579 * may be invalid 3580 */ 3581 ret = qemu_file_get_error(f); 3582 if (ret) { 3583 break; 3584 } 3585 3586 flags = addr & ~TARGET_PAGE_MASK; 3587 addr &= TARGET_PAGE_MASK; 3588 3589 trace_ram_load_postcopy_loop(channel, (uint64_t)addr, flags); 3590 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE | 3591 RAM_SAVE_FLAG_COMPRESS_PAGE)) { 3592 block = ram_block_from_stream(mis, f, flags, channel); 3593 if (!block) { 3594 ret = -EINVAL; 3595 break; 3596 } 3597 3598 /* 3599 * Relying on used_length is racy and can result in false positives. 3600 * We might place pages beyond used_length in case RAM was shrunk 3601 * while in postcopy, which is fine - trying to place via 3602 * UFFDIO_COPY/UFFDIO_ZEROPAGE will never segfault. 3603 */ 3604 if (!block->host || addr >= block->postcopy_length) { 3605 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr); 3606 ret = -EINVAL; 3607 break; 3608 } 3609 tmp_page->target_pages++; 3610 matches_target_page_size = block->page_size == TARGET_PAGE_SIZE; 3611 /* 3612 * Postcopy requires that we place whole host pages atomically; 3613 * these may be huge pages for RAMBlocks that are backed by 3614 * hugetlbfs. 3615 * To make it atomic, the data is read into a temporary page 3616 * that's moved into place later. 3617 * The migration protocol uses, possibly smaller, target-pages 3618 * however the source ensures it always sends all the components 3619 * of a host page in one chunk. 3620 */ 3621 page_buffer = tmp_page->tmp_huge_page + 3622 host_page_offset_from_ram_block_offset(block, addr); 3623 /* If all TP are zero then we can optimise the place */ 3624 if (tmp_page->target_pages == 1) { 3625 tmp_page->host_addr = 3626 host_page_from_ram_block_offset(block, addr); 3627 } else if (tmp_page->host_addr != 3628 host_page_from_ram_block_offset(block, addr)) { 3629 /* not the 1st TP within the HP */ 3630 error_report("Non-same host page detected on channel %d: " 3631 "Target host page %p, received host page %p " 3632 "(rb %s offset 0x"RAM_ADDR_FMT" target_pages %d)", 3633 channel, tmp_page->host_addr, 3634 host_page_from_ram_block_offset(block, addr), 3635 block->idstr, addr, tmp_page->target_pages); 3636 ret = -EINVAL; 3637 break; 3638 } 3639 3640 /* 3641 * If it's the last part of a host page then we place the host 3642 * page 3643 */ 3644 if (tmp_page->target_pages == 3645 (block->page_size / TARGET_PAGE_SIZE)) { 3646 place_needed = true; 3647 } 3648 place_source = tmp_page->tmp_huge_page; 3649 } 3650 3651 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) { 3652 case RAM_SAVE_FLAG_ZERO: 3653 ch = qemu_get_byte(f); 3654 if (ch != 0) { 3655 error_report("Found a zero page with value %d", ch); 3656 ret = -EINVAL; 3657 break; 3658 } 3659 /* 3660 * Can skip to set page_buffer when 3661 * this is a zero page and (block->page_size == TARGET_PAGE_SIZE). 3662 */ 3663 if (!matches_target_page_size) { 3664 memset(page_buffer, ch, TARGET_PAGE_SIZE); 3665 } 3666 break; 3667 3668 case RAM_SAVE_FLAG_PAGE: 3669 tmp_page->all_zero = false; 3670 if (!matches_target_page_size) { 3671 /* For huge pages, we always use temporary buffer */ 3672 qemu_get_buffer(f, page_buffer, TARGET_PAGE_SIZE); 3673 } else { 3674 /* 3675 * For small pages that matches target page size, we 3676 * avoid the qemu_file copy. Instead we directly use 3677 * the buffer of QEMUFile to place the page. Note: we 3678 * cannot do any QEMUFile operation before using that 3679 * buffer to make sure the buffer is valid when 3680 * placing the page. 3681 */ 3682 qemu_get_buffer_in_place(f, (uint8_t **)&place_source, 3683 TARGET_PAGE_SIZE); 3684 } 3685 break; 3686 case RAM_SAVE_FLAG_COMPRESS_PAGE: 3687 tmp_page->all_zero = false; 3688 len = qemu_get_be32(f); 3689 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) { 3690 error_report("Invalid compressed data length: %d", len); 3691 ret = -EINVAL; 3692 break; 3693 } 3694 decompress_data_with_multi_threads(f, page_buffer, len); 3695 break; 3696 case RAM_SAVE_FLAG_MULTIFD_FLUSH: 3697 multifd_recv_sync_main(); 3698 break; 3699 case RAM_SAVE_FLAG_EOS: 3700 /* normal exit */ 3701 if (migrate_multifd() && 3702 migrate_multifd_flush_after_each_section()) { 3703 multifd_recv_sync_main(); 3704 } 3705 break; 3706 default: 3707 error_report("Unknown combination of migration flags: 0x%x" 3708 " (postcopy mode)", flags); 3709 ret = -EINVAL; 3710 break; 3711 } 3712 3713 /* Got the whole host page, wait for decompress before placing. */ 3714 if (place_needed) { 3715 ret |= wait_for_decompress_done(); 3716 } 3717 3718 /* Detect for any possible file errors */ 3719 if (!ret && qemu_file_get_error(f)) { 3720 ret = qemu_file_get_error(f); 3721 } 3722 3723 if (!ret && place_needed) { 3724 if (tmp_page->all_zero) { 3725 ret = postcopy_place_page_zero(mis, tmp_page->host_addr, block); 3726 } else { 3727 ret = postcopy_place_page(mis, tmp_page->host_addr, 3728 place_source, block); 3729 } 3730 place_needed = false; 3731 postcopy_temp_page_reset(tmp_page); 3732 } 3733 } 3734 3735 return ret; 3736 } 3737 3738 static bool postcopy_is_running(void) 3739 { 3740 PostcopyState ps = postcopy_state_get(); 3741 return ps >= POSTCOPY_INCOMING_LISTENING && ps < POSTCOPY_INCOMING_END; 3742 } 3743 3744 /* 3745 * Flush content of RAM cache into SVM's memory. 3746 * Only flush the pages that be dirtied by PVM or SVM or both. 3747 */ 3748 void colo_flush_ram_cache(void) 3749 { 3750 RAMBlock *block = NULL; 3751 void *dst_host; 3752 void *src_host; 3753 unsigned long offset = 0; 3754 3755 memory_global_dirty_log_sync(false); 3756 qemu_mutex_lock(&ram_state->bitmap_mutex); 3757 WITH_RCU_READ_LOCK_GUARD() { 3758 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3759 ramblock_sync_dirty_bitmap(ram_state, block); 3760 } 3761 } 3762 3763 trace_colo_flush_ram_cache_begin(ram_state->migration_dirty_pages); 3764 WITH_RCU_READ_LOCK_GUARD() { 3765 block = QLIST_FIRST_RCU(&ram_list.blocks); 3766 3767 while (block) { 3768 unsigned long num = 0; 3769 3770 offset = colo_bitmap_find_dirty(ram_state, block, offset, &num); 3771 if (!offset_in_ramblock(block, 3772 ((ram_addr_t)offset) << TARGET_PAGE_BITS)) { 3773 offset = 0; 3774 num = 0; 3775 block = QLIST_NEXT_RCU(block, next); 3776 } else { 3777 unsigned long i = 0; 3778 3779 for (i = 0; i < num; i++) { 3780 migration_bitmap_clear_dirty(ram_state, block, offset + i); 3781 } 3782 dst_host = block->host 3783 + (((ram_addr_t)offset) << TARGET_PAGE_BITS); 3784 src_host = block->colo_cache 3785 + (((ram_addr_t)offset) << TARGET_PAGE_BITS); 3786 memcpy(dst_host, src_host, TARGET_PAGE_SIZE * num); 3787 offset += num; 3788 } 3789 } 3790 } 3791 qemu_mutex_unlock(&ram_state->bitmap_mutex); 3792 trace_colo_flush_ram_cache_end(); 3793 } 3794 3795 static int parse_ramblock(QEMUFile *f, RAMBlock *block, ram_addr_t length) 3796 { 3797 int ret = 0; 3798 /* ADVISE is earlier, it shows the source has the postcopy capability on */ 3799 bool postcopy_advised = migration_incoming_postcopy_advised(); 3800 int max_hg_page_size; 3801 3802 assert(block); 3803 3804 if (!qemu_ram_is_migratable(block)) { 3805 error_report("block %s should not be migrated !", block->idstr); 3806 return -EINVAL; 3807 } 3808 3809 if (length != block->used_length) { 3810 Error *local_err = NULL; 3811 3812 ret = qemu_ram_resize(block, length, &local_err); 3813 if (local_err) { 3814 error_report_err(local_err); 3815 return ret; 3816 } 3817 } 3818 3819 /* 3820 * ??? Mirrors the previous value of qemu_host_page_size, 3821 * but is this really what was intended for the migration? 3822 */ 3823 max_hg_page_size = MAX(qemu_real_host_page_size(), TARGET_PAGE_SIZE); 3824 3825 /* For postcopy we need to check hugepage sizes match */ 3826 if (postcopy_advised && migrate_postcopy_ram() && 3827 block->page_size != max_hg_page_size) { 3828 uint64_t remote_page_size = qemu_get_be64(f); 3829 if (remote_page_size != block->page_size) { 3830 error_report("Mismatched RAM page size %s " 3831 "(local) %zd != %" PRId64, block->idstr, 3832 block->page_size, remote_page_size); 3833 return -EINVAL; 3834 } 3835 } 3836 if (migrate_ignore_shared()) { 3837 hwaddr addr = qemu_get_be64(f); 3838 if (migrate_ram_is_ignored(block) && 3839 block->mr->addr != addr) { 3840 error_report("Mismatched GPAs for block %s " 3841 "%" PRId64 "!= %" PRId64, block->idstr, 3842 (uint64_t)addr, (uint64_t)block->mr->addr); 3843 return -EINVAL; 3844 } 3845 } 3846 ret = rdma_block_notification_handle(f, block->idstr); 3847 if (ret < 0) { 3848 qemu_file_set_error(f, ret); 3849 } 3850 3851 return ret; 3852 } 3853 3854 static int parse_ramblocks(QEMUFile *f, ram_addr_t total_ram_bytes) 3855 { 3856 int ret = 0; 3857 3858 /* Synchronize RAM block list */ 3859 while (!ret && total_ram_bytes) { 3860 RAMBlock *block; 3861 char id[256]; 3862 ram_addr_t length; 3863 int len = qemu_get_byte(f); 3864 3865 qemu_get_buffer(f, (uint8_t *)id, len); 3866 id[len] = 0; 3867 length = qemu_get_be64(f); 3868 3869 block = qemu_ram_block_by_name(id); 3870 if (block) { 3871 ret = parse_ramblock(f, block, length); 3872 } else { 3873 error_report("Unknown ramblock \"%s\", cannot accept " 3874 "migration", id); 3875 ret = -EINVAL; 3876 } 3877 total_ram_bytes -= length; 3878 } 3879 3880 return ret; 3881 } 3882 3883 /** 3884 * ram_load_precopy: load pages in precopy case 3885 * 3886 * Returns 0 for success or -errno in case of error 3887 * 3888 * Called in precopy mode by ram_load(). 3889 * rcu_read_lock is taken prior to this being called. 3890 * 3891 * @f: QEMUFile where to send the data 3892 */ 3893 static int ram_load_precopy(QEMUFile *f) 3894 { 3895 MigrationIncomingState *mis = migration_incoming_get_current(); 3896 int flags = 0, ret = 0, invalid_flags = 0, len = 0, i = 0; 3897 3898 if (!migrate_compress()) { 3899 invalid_flags |= RAM_SAVE_FLAG_COMPRESS_PAGE; 3900 } 3901 3902 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) { 3903 ram_addr_t addr; 3904 void *host = NULL, *host_bak = NULL; 3905 uint8_t ch; 3906 3907 /* 3908 * Yield periodically to let main loop run, but an iteration of 3909 * the main loop is expensive, so do it each some iterations 3910 */ 3911 if ((i & 32767) == 0 && qemu_in_coroutine()) { 3912 aio_co_schedule(qemu_get_current_aio_context(), 3913 qemu_coroutine_self()); 3914 qemu_coroutine_yield(); 3915 } 3916 i++; 3917 3918 addr = qemu_get_be64(f); 3919 flags = addr & ~TARGET_PAGE_MASK; 3920 addr &= TARGET_PAGE_MASK; 3921 3922 if (flags & invalid_flags) { 3923 if (flags & invalid_flags & RAM_SAVE_FLAG_COMPRESS_PAGE) { 3924 error_report("Received an unexpected compressed page"); 3925 } 3926 3927 ret = -EINVAL; 3928 break; 3929 } 3930 3931 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE | 3932 RAM_SAVE_FLAG_COMPRESS_PAGE | RAM_SAVE_FLAG_XBZRLE)) { 3933 RAMBlock *block = ram_block_from_stream(mis, f, flags, 3934 RAM_CHANNEL_PRECOPY); 3935 3936 host = host_from_ram_block_offset(block, addr); 3937 /* 3938 * After going into COLO stage, we should not load the page 3939 * into SVM's memory directly, we put them into colo_cache firstly. 3940 * NOTE: We need to keep a copy of SVM's ram in colo_cache. 3941 * Previously, we copied all these memory in preparing stage of COLO 3942 * while we need to stop VM, which is a time-consuming process. 3943 * Here we optimize it by a trick, back-up every page while in 3944 * migration process while COLO is enabled, though it affects the 3945 * speed of the migration, but it obviously reduce the downtime of 3946 * back-up all SVM'S memory in COLO preparing stage. 3947 */ 3948 if (migration_incoming_colo_enabled()) { 3949 if (migration_incoming_in_colo_state()) { 3950 /* In COLO stage, put all pages into cache temporarily */ 3951 host = colo_cache_from_block_offset(block, addr, true); 3952 } else { 3953 /* 3954 * In migration stage but before COLO stage, 3955 * Put all pages into both cache and SVM's memory. 3956 */ 3957 host_bak = colo_cache_from_block_offset(block, addr, false); 3958 } 3959 } 3960 if (!host) { 3961 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr); 3962 ret = -EINVAL; 3963 break; 3964 } 3965 if (!migration_incoming_in_colo_state()) { 3966 ramblock_recv_bitmap_set(block, host); 3967 } 3968 3969 trace_ram_load_loop(block->idstr, (uint64_t)addr, flags, host); 3970 } 3971 3972 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) { 3973 case RAM_SAVE_FLAG_MEM_SIZE: 3974 ret = parse_ramblocks(f, addr); 3975 break; 3976 3977 case RAM_SAVE_FLAG_ZERO: 3978 ch = qemu_get_byte(f); 3979 if (ch != 0) { 3980 error_report("Found a zero page with value %d", ch); 3981 ret = -EINVAL; 3982 break; 3983 } 3984 ram_handle_zero(host, TARGET_PAGE_SIZE); 3985 break; 3986 3987 case RAM_SAVE_FLAG_PAGE: 3988 qemu_get_buffer(f, host, TARGET_PAGE_SIZE); 3989 break; 3990 3991 case RAM_SAVE_FLAG_COMPRESS_PAGE: 3992 len = qemu_get_be32(f); 3993 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) { 3994 error_report("Invalid compressed data length: %d", len); 3995 ret = -EINVAL; 3996 break; 3997 } 3998 decompress_data_with_multi_threads(f, host, len); 3999 break; 4000 4001 case RAM_SAVE_FLAG_XBZRLE: 4002 if (load_xbzrle(f, addr, host) < 0) { 4003 error_report("Failed to decompress XBZRLE page at " 4004 RAM_ADDR_FMT, addr); 4005 ret = -EINVAL; 4006 break; 4007 } 4008 break; 4009 case RAM_SAVE_FLAG_MULTIFD_FLUSH: 4010 multifd_recv_sync_main(); 4011 break; 4012 case RAM_SAVE_FLAG_EOS: 4013 /* normal exit */ 4014 if (migrate_multifd() && 4015 migrate_multifd_flush_after_each_section()) { 4016 multifd_recv_sync_main(); 4017 } 4018 break; 4019 case RAM_SAVE_FLAG_HOOK: 4020 ret = rdma_registration_handle(f); 4021 if (ret < 0) { 4022 qemu_file_set_error(f, ret); 4023 } 4024 break; 4025 default: 4026 error_report("Unknown combination of migration flags: 0x%x", flags); 4027 ret = -EINVAL; 4028 } 4029 if (!ret) { 4030 ret = qemu_file_get_error(f); 4031 } 4032 if (!ret && host_bak) { 4033 memcpy(host_bak, host, TARGET_PAGE_SIZE); 4034 } 4035 } 4036 4037 ret |= wait_for_decompress_done(); 4038 return ret; 4039 } 4040 4041 static int ram_load(QEMUFile *f, void *opaque, int version_id) 4042 { 4043 int ret = 0; 4044 static uint64_t seq_iter; 4045 /* 4046 * If system is running in postcopy mode, page inserts to host memory must 4047 * be atomic 4048 */ 4049 bool postcopy_running = postcopy_is_running(); 4050 4051 seq_iter++; 4052 4053 if (version_id != 4) { 4054 return -EINVAL; 4055 } 4056 4057 /* 4058 * This RCU critical section can be very long running. 4059 * When RCU reclaims in the code start to become numerous, 4060 * it will be necessary to reduce the granularity of this 4061 * critical section. 4062 */ 4063 WITH_RCU_READ_LOCK_GUARD() { 4064 if (postcopy_running) { 4065 /* 4066 * Note! Here RAM_CHANNEL_PRECOPY is the precopy channel of 4067 * postcopy migration, we have another RAM_CHANNEL_POSTCOPY to 4068 * service fast page faults. 4069 */ 4070 ret = ram_load_postcopy(f, RAM_CHANNEL_PRECOPY); 4071 } else { 4072 ret = ram_load_precopy(f); 4073 } 4074 } 4075 trace_ram_load_complete(ret, seq_iter); 4076 4077 return ret; 4078 } 4079 4080 static bool ram_has_postcopy(void *opaque) 4081 { 4082 RAMBlock *rb; 4083 RAMBLOCK_FOREACH_NOT_IGNORED(rb) { 4084 if (ramblock_is_pmem(rb)) { 4085 info_report("Block: %s, host: %p is a nvdimm memory, postcopy" 4086 "is not supported now!", rb->idstr, rb->host); 4087 return false; 4088 } 4089 } 4090 4091 return migrate_postcopy_ram(); 4092 } 4093 4094 /* Sync all the dirty bitmap with destination VM. */ 4095 static int ram_dirty_bitmap_sync_all(MigrationState *s, RAMState *rs) 4096 { 4097 RAMBlock *block; 4098 QEMUFile *file = s->to_dst_file; 4099 4100 trace_ram_dirty_bitmap_sync_start(); 4101 4102 qatomic_set(&rs->postcopy_bmap_sync_requested, 0); 4103 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 4104 qemu_savevm_send_recv_bitmap(file, block->idstr); 4105 trace_ram_dirty_bitmap_request(block->idstr); 4106 qatomic_inc(&rs->postcopy_bmap_sync_requested); 4107 } 4108 4109 trace_ram_dirty_bitmap_sync_wait(); 4110 4111 /* Wait until all the ramblocks' dirty bitmap synced */ 4112 while (qatomic_read(&rs->postcopy_bmap_sync_requested)) { 4113 if (migration_rp_wait(s)) { 4114 return -1; 4115 } 4116 } 4117 4118 trace_ram_dirty_bitmap_sync_complete(); 4119 4120 return 0; 4121 } 4122 4123 /* 4124 * Read the received bitmap, revert it as the initial dirty bitmap. 4125 * This is only used when the postcopy migration is paused but wants 4126 * to resume from a middle point. 4127 * 4128 * Returns true if succeeded, false for errors. 4129 */ 4130 bool ram_dirty_bitmap_reload(MigrationState *s, RAMBlock *block, Error **errp) 4131 { 4132 /* from_dst_file is always valid because we're within rp_thread */ 4133 QEMUFile *file = s->rp_state.from_dst_file; 4134 g_autofree unsigned long *le_bitmap = NULL; 4135 unsigned long nbits = block->used_length >> TARGET_PAGE_BITS; 4136 uint64_t local_size = DIV_ROUND_UP(nbits, 8); 4137 uint64_t size, end_mark; 4138 RAMState *rs = ram_state; 4139 4140 trace_ram_dirty_bitmap_reload_begin(block->idstr); 4141 4142 if (s->state != MIGRATION_STATUS_POSTCOPY_RECOVER) { 4143 error_setg(errp, "Reload bitmap in incorrect state %s", 4144 MigrationStatus_str(s->state)); 4145 return false; 4146 } 4147 4148 /* 4149 * Note: see comments in ramblock_recv_bitmap_send() on why we 4150 * need the endianness conversion, and the paddings. 4151 */ 4152 local_size = ROUND_UP(local_size, 8); 4153 4154 /* Add paddings */ 4155 le_bitmap = bitmap_new(nbits + BITS_PER_LONG); 4156 4157 size = qemu_get_be64(file); 4158 4159 /* The size of the bitmap should match with our ramblock */ 4160 if (size != local_size) { 4161 error_setg(errp, "ramblock '%s' bitmap size mismatch (0x%"PRIx64 4162 " != 0x%"PRIx64")", block->idstr, size, local_size); 4163 return false; 4164 } 4165 4166 size = qemu_get_buffer(file, (uint8_t *)le_bitmap, local_size); 4167 end_mark = qemu_get_be64(file); 4168 4169 if (qemu_file_get_error(file) || size != local_size) { 4170 error_setg(errp, "read bitmap failed for ramblock '%s': " 4171 "(size 0x%"PRIx64", got: 0x%"PRIx64")", 4172 block->idstr, local_size, size); 4173 return false; 4174 } 4175 4176 if (end_mark != RAMBLOCK_RECV_BITMAP_ENDING) { 4177 error_setg(errp, "ramblock '%s' end mark incorrect: 0x%"PRIx64, 4178 block->idstr, end_mark); 4179 return false; 4180 } 4181 4182 /* 4183 * Endianness conversion. We are during postcopy (though paused). 4184 * The dirty bitmap won't change. We can directly modify it. 4185 */ 4186 bitmap_from_le(block->bmap, le_bitmap, nbits); 4187 4188 /* 4189 * What we received is "received bitmap". Revert it as the initial 4190 * dirty bitmap for this ramblock. 4191 */ 4192 bitmap_complement(block->bmap, block->bmap, nbits); 4193 4194 /* Clear dirty bits of discarded ranges that we don't want to migrate. */ 4195 ramblock_dirty_bitmap_clear_discarded_pages(block); 4196 4197 /* We'll recalculate migration_dirty_pages in ram_state_resume_prepare(). */ 4198 trace_ram_dirty_bitmap_reload_complete(block->idstr); 4199 4200 qatomic_dec(&rs->postcopy_bmap_sync_requested); 4201 4202 /* 4203 * We succeeded to sync bitmap for current ramblock. Always kick the 4204 * migration thread to check whether all requested bitmaps are 4205 * reloaded. NOTE: it's racy to only kick when requested==0, because 4206 * we don't know whether the migration thread may still be increasing 4207 * it. 4208 */ 4209 migration_rp_kick(s); 4210 4211 return true; 4212 } 4213 4214 static int ram_resume_prepare(MigrationState *s, void *opaque) 4215 { 4216 RAMState *rs = *(RAMState **)opaque; 4217 int ret; 4218 4219 ret = ram_dirty_bitmap_sync_all(s, rs); 4220 if (ret) { 4221 return ret; 4222 } 4223 4224 ram_state_resume_prepare(rs, s->to_dst_file); 4225 4226 return 0; 4227 } 4228 4229 void postcopy_preempt_shutdown_file(MigrationState *s) 4230 { 4231 qemu_put_be64(s->postcopy_qemufile_src, RAM_SAVE_FLAG_EOS); 4232 qemu_fflush(s->postcopy_qemufile_src); 4233 } 4234 4235 static SaveVMHandlers savevm_ram_handlers = { 4236 .save_setup = ram_save_setup, 4237 .save_live_iterate = ram_save_iterate, 4238 .save_live_complete_postcopy = ram_save_complete, 4239 .save_live_complete_precopy = ram_save_complete, 4240 .has_postcopy = ram_has_postcopy, 4241 .state_pending_exact = ram_state_pending_exact, 4242 .state_pending_estimate = ram_state_pending_estimate, 4243 .load_state = ram_load, 4244 .save_cleanup = ram_save_cleanup, 4245 .load_setup = ram_load_setup, 4246 .load_cleanup = ram_load_cleanup, 4247 .resume_prepare = ram_resume_prepare, 4248 }; 4249 4250 static void ram_mig_ram_block_resized(RAMBlockNotifier *n, void *host, 4251 size_t old_size, size_t new_size) 4252 { 4253 PostcopyState ps = postcopy_state_get(); 4254 ram_addr_t offset; 4255 RAMBlock *rb = qemu_ram_block_from_host(host, false, &offset); 4256 Error *err = NULL; 4257 4258 if (!rb) { 4259 error_report("RAM block not found"); 4260 return; 4261 } 4262 4263 if (migrate_ram_is_ignored(rb)) { 4264 return; 4265 } 4266 4267 if (!migration_is_idle()) { 4268 /* 4269 * Precopy code on the source cannot deal with the size of RAM blocks 4270 * changing at random points in time - especially after sending the 4271 * RAM block sizes in the migration stream, they must no longer change. 4272 * Abort and indicate a proper reason. 4273 */ 4274 error_setg(&err, "RAM block '%s' resized during precopy.", rb->idstr); 4275 migration_cancel(err); 4276 error_free(err); 4277 } 4278 4279 switch (ps) { 4280 case POSTCOPY_INCOMING_ADVISE: 4281 /* 4282 * Update what ram_postcopy_incoming_init()->init_range() does at the 4283 * time postcopy was advised. Syncing RAM blocks with the source will 4284 * result in RAM resizes. 4285 */ 4286 if (old_size < new_size) { 4287 if (ram_discard_range(rb->idstr, old_size, new_size - old_size)) { 4288 error_report("RAM block '%s' discard of resized RAM failed", 4289 rb->idstr); 4290 } 4291 } 4292 rb->postcopy_length = new_size; 4293 break; 4294 case POSTCOPY_INCOMING_NONE: 4295 case POSTCOPY_INCOMING_RUNNING: 4296 case POSTCOPY_INCOMING_END: 4297 /* 4298 * Once our guest is running, postcopy does no longer care about 4299 * resizes. When growing, the new memory was not available on the 4300 * source, no handler needed. 4301 */ 4302 break; 4303 default: 4304 error_report("RAM block '%s' resized during postcopy state: %d", 4305 rb->idstr, ps); 4306 exit(-1); 4307 } 4308 } 4309 4310 static RAMBlockNotifier ram_mig_ram_notifier = { 4311 .ram_block_resized = ram_mig_ram_block_resized, 4312 }; 4313 4314 void ram_mig_init(void) 4315 { 4316 qemu_mutex_init(&XBZRLE.lock); 4317 register_savevm_live("ram", 0, 4, &savevm_ram_handlers, &ram_state); 4318 ram_block_notifier_add(&ram_mig_ram_notifier); 4319 } 4320