1 /* 2 * QEMU System Emulator 3 * 4 * Copyright (c) 2003-2008 Fabrice Bellard 5 * Copyright (c) 2011-2015 Red Hat Inc 6 * 7 * Authors: 8 * Juan Quintela <quintela@redhat.com> 9 * 10 * Permission is hereby granted, free of charge, to any person obtaining a copy 11 * of this software and associated documentation files (the "Software"), to deal 12 * in the Software without restriction, including without limitation the rights 13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 14 * copies of the Software, and to permit persons to whom the Software is 15 * furnished to do so, subject to the following conditions: 16 * 17 * The above copyright notice and this permission notice shall be included in 18 * all copies or substantial portions of the Software. 19 * 20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 26 * THE SOFTWARE. 27 */ 28 #include "qemu/osdep.h" 29 #include "qemu-common.h" 30 #include "cpu.h" 31 #include <zlib.h> 32 #include "qapi-event.h" 33 #include "qemu/cutils.h" 34 #include "qemu/bitops.h" 35 #include "qemu/bitmap.h" 36 #include "qemu/timer.h" 37 #include "qemu/main-loop.h" 38 #include "migration/migration.h" 39 #include "migration/postcopy-ram.h" 40 #include "exec/address-spaces.h" 41 #include "migration/page_cache.h" 42 #include "qemu/error-report.h" 43 #include "trace.h" 44 #include "exec/ram_addr.h" 45 #include "qemu/rcu_queue.h" 46 47 #ifdef DEBUG_MIGRATION_RAM 48 #define DPRINTF(fmt, ...) \ 49 do { fprintf(stdout, "migration_ram: " fmt, ## __VA_ARGS__); } while (0) 50 #else 51 #define DPRINTF(fmt, ...) \ 52 do { } while (0) 53 #endif 54 55 static int dirty_rate_high_cnt; 56 57 static uint64_t bitmap_sync_count; 58 59 /***********************************************************/ 60 /* ram save/restore */ 61 62 #define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */ 63 #define RAM_SAVE_FLAG_COMPRESS 0x02 64 #define RAM_SAVE_FLAG_MEM_SIZE 0x04 65 #define RAM_SAVE_FLAG_PAGE 0x08 66 #define RAM_SAVE_FLAG_EOS 0x10 67 #define RAM_SAVE_FLAG_CONTINUE 0x20 68 #define RAM_SAVE_FLAG_XBZRLE 0x40 69 /* 0x80 is reserved in migration.h start with 0x100 next */ 70 #define RAM_SAVE_FLAG_COMPRESS_PAGE 0x100 71 72 static const uint8_t ZERO_TARGET_PAGE[TARGET_PAGE_SIZE]; 73 74 static inline bool is_zero_range(uint8_t *p, uint64_t size) 75 { 76 return buffer_is_zero(p, size); 77 } 78 79 /* struct contains XBZRLE cache and a static page 80 used by the compression */ 81 static struct { 82 /* buffer used for XBZRLE encoding */ 83 uint8_t *encoded_buf; 84 /* buffer for storing page content */ 85 uint8_t *current_buf; 86 /* Cache for XBZRLE, Protected by lock. */ 87 PageCache *cache; 88 QemuMutex lock; 89 } XBZRLE; 90 91 /* buffer used for XBZRLE decoding */ 92 static uint8_t *xbzrle_decoded_buf; 93 94 static void XBZRLE_cache_lock(void) 95 { 96 if (migrate_use_xbzrle()) 97 qemu_mutex_lock(&XBZRLE.lock); 98 } 99 100 static void XBZRLE_cache_unlock(void) 101 { 102 if (migrate_use_xbzrle()) 103 qemu_mutex_unlock(&XBZRLE.lock); 104 } 105 106 /* 107 * called from qmp_migrate_set_cache_size in main thread, possibly while 108 * a migration is in progress. 109 * A running migration maybe using the cache and might finish during this 110 * call, hence changes to the cache are protected by XBZRLE.lock(). 111 */ 112 int64_t xbzrle_cache_resize(int64_t new_size) 113 { 114 PageCache *new_cache; 115 int64_t ret; 116 117 if (new_size < TARGET_PAGE_SIZE) { 118 return -1; 119 } 120 121 XBZRLE_cache_lock(); 122 123 if (XBZRLE.cache != NULL) { 124 if (pow2floor(new_size) == migrate_xbzrle_cache_size()) { 125 goto out_new_size; 126 } 127 new_cache = cache_init(new_size / TARGET_PAGE_SIZE, 128 TARGET_PAGE_SIZE); 129 if (!new_cache) { 130 error_report("Error creating cache"); 131 ret = -1; 132 goto out; 133 } 134 135 cache_fini(XBZRLE.cache); 136 XBZRLE.cache = new_cache; 137 } 138 139 out_new_size: 140 ret = pow2floor(new_size); 141 out: 142 XBZRLE_cache_unlock(); 143 return ret; 144 } 145 146 /* accounting for migration statistics */ 147 typedef struct AccountingInfo { 148 uint64_t dup_pages; 149 uint64_t skipped_pages; 150 uint64_t norm_pages; 151 uint64_t iterations; 152 uint64_t xbzrle_bytes; 153 uint64_t xbzrle_pages; 154 uint64_t xbzrle_cache_miss; 155 double xbzrle_cache_miss_rate; 156 uint64_t xbzrle_overflows; 157 } AccountingInfo; 158 159 static AccountingInfo acct_info; 160 161 static void acct_clear(void) 162 { 163 memset(&acct_info, 0, sizeof(acct_info)); 164 } 165 166 uint64_t dup_mig_bytes_transferred(void) 167 { 168 return acct_info.dup_pages * TARGET_PAGE_SIZE; 169 } 170 171 uint64_t dup_mig_pages_transferred(void) 172 { 173 return acct_info.dup_pages; 174 } 175 176 uint64_t skipped_mig_bytes_transferred(void) 177 { 178 return acct_info.skipped_pages * TARGET_PAGE_SIZE; 179 } 180 181 uint64_t skipped_mig_pages_transferred(void) 182 { 183 return acct_info.skipped_pages; 184 } 185 186 uint64_t norm_mig_bytes_transferred(void) 187 { 188 return acct_info.norm_pages * TARGET_PAGE_SIZE; 189 } 190 191 uint64_t norm_mig_pages_transferred(void) 192 { 193 return acct_info.norm_pages; 194 } 195 196 uint64_t xbzrle_mig_bytes_transferred(void) 197 { 198 return acct_info.xbzrle_bytes; 199 } 200 201 uint64_t xbzrle_mig_pages_transferred(void) 202 { 203 return acct_info.xbzrle_pages; 204 } 205 206 uint64_t xbzrle_mig_pages_cache_miss(void) 207 { 208 return acct_info.xbzrle_cache_miss; 209 } 210 211 double xbzrle_mig_cache_miss_rate(void) 212 { 213 return acct_info.xbzrle_cache_miss_rate; 214 } 215 216 uint64_t xbzrle_mig_pages_overflow(void) 217 { 218 return acct_info.xbzrle_overflows; 219 } 220 221 /* This is the last block that we have visited serching for dirty pages 222 */ 223 static RAMBlock *last_seen_block; 224 /* This is the last block from where we have sent data */ 225 static RAMBlock *last_sent_block; 226 static ram_addr_t last_offset; 227 static QemuMutex migration_bitmap_mutex; 228 static uint64_t migration_dirty_pages; 229 static uint32_t last_version; 230 static bool ram_bulk_stage; 231 232 /* used by the search for pages to send */ 233 struct PageSearchStatus { 234 /* Current block being searched */ 235 RAMBlock *block; 236 /* Current offset to search from */ 237 ram_addr_t offset; 238 /* Set once we wrap around */ 239 bool complete_round; 240 }; 241 typedef struct PageSearchStatus PageSearchStatus; 242 243 static struct BitmapRcu { 244 struct rcu_head rcu; 245 /* Main migration bitmap */ 246 unsigned long *bmap; 247 /* bitmap of pages that haven't been sent even once 248 * only maintained and used in postcopy at the moment 249 * where it's used to send the dirtymap at the start 250 * of the postcopy phase 251 */ 252 unsigned long *unsentmap; 253 } *migration_bitmap_rcu; 254 255 struct CompressParam { 256 bool done; 257 bool quit; 258 QEMUFile *file; 259 QemuMutex mutex; 260 QemuCond cond; 261 RAMBlock *block; 262 ram_addr_t offset; 263 }; 264 typedef struct CompressParam CompressParam; 265 266 struct DecompressParam { 267 bool done; 268 bool quit; 269 QemuMutex mutex; 270 QemuCond cond; 271 void *des; 272 uint8_t *compbuf; 273 int len; 274 }; 275 typedef struct DecompressParam DecompressParam; 276 277 static CompressParam *comp_param; 278 static QemuThread *compress_threads; 279 /* comp_done_cond is used to wake up the migration thread when 280 * one of the compression threads has finished the compression. 281 * comp_done_lock is used to co-work with comp_done_cond. 282 */ 283 static QemuMutex comp_done_lock; 284 static QemuCond comp_done_cond; 285 /* The empty QEMUFileOps will be used by file in CompressParam */ 286 static const QEMUFileOps empty_ops = { }; 287 288 static bool compression_switch; 289 static DecompressParam *decomp_param; 290 static QemuThread *decompress_threads; 291 static QemuMutex decomp_done_lock; 292 static QemuCond decomp_done_cond; 293 294 static int do_compress_ram_page(QEMUFile *f, RAMBlock *block, 295 ram_addr_t offset); 296 297 static void *do_data_compress(void *opaque) 298 { 299 CompressParam *param = opaque; 300 RAMBlock *block; 301 ram_addr_t offset; 302 303 qemu_mutex_lock(¶m->mutex); 304 while (!param->quit) { 305 if (param->block) { 306 block = param->block; 307 offset = param->offset; 308 param->block = NULL; 309 qemu_mutex_unlock(¶m->mutex); 310 311 do_compress_ram_page(param->file, block, offset); 312 313 qemu_mutex_lock(&comp_done_lock); 314 param->done = true; 315 qemu_cond_signal(&comp_done_cond); 316 qemu_mutex_unlock(&comp_done_lock); 317 318 qemu_mutex_lock(¶m->mutex); 319 } else { 320 qemu_cond_wait(¶m->cond, ¶m->mutex); 321 } 322 } 323 qemu_mutex_unlock(¶m->mutex); 324 325 return NULL; 326 } 327 328 static inline void terminate_compression_threads(void) 329 { 330 int idx, thread_count; 331 332 thread_count = migrate_compress_threads(); 333 for (idx = 0; idx < thread_count; idx++) { 334 qemu_mutex_lock(&comp_param[idx].mutex); 335 comp_param[idx].quit = true; 336 qemu_cond_signal(&comp_param[idx].cond); 337 qemu_mutex_unlock(&comp_param[idx].mutex); 338 } 339 } 340 341 void migrate_compress_threads_join(void) 342 { 343 int i, thread_count; 344 345 if (!migrate_use_compression()) { 346 return; 347 } 348 terminate_compression_threads(); 349 thread_count = migrate_compress_threads(); 350 for (i = 0; i < thread_count; i++) { 351 qemu_thread_join(compress_threads + i); 352 qemu_fclose(comp_param[i].file); 353 qemu_mutex_destroy(&comp_param[i].mutex); 354 qemu_cond_destroy(&comp_param[i].cond); 355 } 356 qemu_mutex_destroy(&comp_done_lock); 357 qemu_cond_destroy(&comp_done_cond); 358 g_free(compress_threads); 359 g_free(comp_param); 360 compress_threads = NULL; 361 comp_param = NULL; 362 } 363 364 void migrate_compress_threads_create(void) 365 { 366 int i, thread_count; 367 368 if (!migrate_use_compression()) { 369 return; 370 } 371 compression_switch = true; 372 thread_count = migrate_compress_threads(); 373 compress_threads = g_new0(QemuThread, thread_count); 374 comp_param = g_new0(CompressParam, thread_count); 375 qemu_cond_init(&comp_done_cond); 376 qemu_mutex_init(&comp_done_lock); 377 for (i = 0; i < thread_count; i++) { 378 /* comp_param[i].file is just used as a dummy buffer to save data, 379 * set its ops to empty. 380 */ 381 comp_param[i].file = qemu_fopen_ops(NULL, &empty_ops); 382 comp_param[i].done = true; 383 comp_param[i].quit = false; 384 qemu_mutex_init(&comp_param[i].mutex); 385 qemu_cond_init(&comp_param[i].cond); 386 qemu_thread_create(compress_threads + i, "compress", 387 do_data_compress, comp_param + i, 388 QEMU_THREAD_JOINABLE); 389 } 390 } 391 392 /** 393 * save_page_header: Write page header to wire 394 * 395 * If this is the 1st block, it also writes the block identification 396 * 397 * Returns: Number of bytes written 398 * 399 * @f: QEMUFile where to send the data 400 * @block: block that contains the page we want to send 401 * @offset: offset inside the block for the page 402 * in the lower bits, it contains flags 403 */ 404 static size_t save_page_header(QEMUFile *f, RAMBlock *block, ram_addr_t offset) 405 { 406 size_t size, len; 407 408 qemu_put_be64(f, offset); 409 size = 8; 410 411 if (!(offset & RAM_SAVE_FLAG_CONTINUE)) { 412 len = strlen(block->idstr); 413 qemu_put_byte(f, len); 414 qemu_put_buffer(f, (uint8_t *)block->idstr, len); 415 size += 1 + len; 416 } 417 return size; 418 } 419 420 /* Reduce amount of guest cpu execution to hopefully slow down memory writes. 421 * If guest dirty memory rate is reduced below the rate at which we can 422 * transfer pages to the destination then we should be able to complete 423 * migration. Some workloads dirty memory way too fast and will not effectively 424 * converge, even with auto-converge. 425 */ 426 static void mig_throttle_guest_down(void) 427 { 428 MigrationState *s = migrate_get_current(); 429 uint64_t pct_initial = s->parameters.cpu_throttle_initial; 430 uint64_t pct_icrement = s->parameters.cpu_throttle_increment; 431 432 /* We have not started throttling yet. Let's start it. */ 433 if (!cpu_throttle_active()) { 434 cpu_throttle_set(pct_initial); 435 } else { 436 /* Throttling already on, just increase the rate */ 437 cpu_throttle_set(cpu_throttle_get_percentage() + pct_icrement); 438 } 439 } 440 441 /* Update the xbzrle cache to reflect a page that's been sent as all 0. 442 * The important thing is that a stale (not-yet-0'd) page be replaced 443 * by the new data. 444 * As a bonus, if the page wasn't in the cache it gets added so that 445 * when a small write is made into the 0'd page it gets XBZRLE sent 446 */ 447 static void xbzrle_cache_zero_page(ram_addr_t current_addr) 448 { 449 if (ram_bulk_stage || !migrate_use_xbzrle()) { 450 return; 451 } 452 453 /* We don't care if this fails to allocate a new cache page 454 * as long as it updated an old one */ 455 cache_insert(XBZRLE.cache, current_addr, ZERO_TARGET_PAGE, 456 bitmap_sync_count); 457 } 458 459 #define ENCODING_FLAG_XBZRLE 0x1 460 461 /** 462 * save_xbzrle_page: compress and send current page 463 * 464 * Returns: 1 means that we wrote the page 465 * 0 means that page is identical to the one already sent 466 * -1 means that xbzrle would be longer than normal 467 * 468 * @f: QEMUFile where to send the data 469 * @current_data: 470 * @current_addr: 471 * @block: block that contains the page we want to send 472 * @offset: offset inside the block for the page 473 * @last_stage: if we are at the completion stage 474 * @bytes_transferred: increase it with the number of transferred bytes 475 */ 476 static int save_xbzrle_page(QEMUFile *f, uint8_t **current_data, 477 ram_addr_t current_addr, RAMBlock *block, 478 ram_addr_t offset, bool last_stage, 479 uint64_t *bytes_transferred) 480 { 481 int encoded_len = 0, bytes_xbzrle; 482 uint8_t *prev_cached_page; 483 484 if (!cache_is_cached(XBZRLE.cache, current_addr, bitmap_sync_count)) { 485 acct_info.xbzrle_cache_miss++; 486 if (!last_stage) { 487 if (cache_insert(XBZRLE.cache, current_addr, *current_data, 488 bitmap_sync_count) == -1) { 489 return -1; 490 } else { 491 /* update *current_data when the page has been 492 inserted into cache */ 493 *current_data = get_cached_data(XBZRLE.cache, current_addr); 494 } 495 } 496 return -1; 497 } 498 499 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr); 500 501 /* save current buffer into memory */ 502 memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE); 503 504 /* XBZRLE encoding (if there is no overflow) */ 505 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf, 506 TARGET_PAGE_SIZE, XBZRLE.encoded_buf, 507 TARGET_PAGE_SIZE); 508 if (encoded_len == 0) { 509 DPRINTF("Skipping unmodified page\n"); 510 return 0; 511 } else if (encoded_len == -1) { 512 DPRINTF("Overflow\n"); 513 acct_info.xbzrle_overflows++; 514 /* update data in the cache */ 515 if (!last_stage) { 516 memcpy(prev_cached_page, *current_data, TARGET_PAGE_SIZE); 517 *current_data = prev_cached_page; 518 } 519 return -1; 520 } 521 522 /* we need to update the data in the cache, in order to get the same data */ 523 if (!last_stage) { 524 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE); 525 } 526 527 /* Send XBZRLE based compressed page */ 528 bytes_xbzrle = save_page_header(f, block, offset | RAM_SAVE_FLAG_XBZRLE); 529 qemu_put_byte(f, ENCODING_FLAG_XBZRLE); 530 qemu_put_be16(f, encoded_len); 531 qemu_put_buffer(f, XBZRLE.encoded_buf, encoded_len); 532 bytes_xbzrle += encoded_len + 1 + 2; 533 acct_info.xbzrle_pages++; 534 acct_info.xbzrle_bytes += bytes_xbzrle; 535 *bytes_transferred += bytes_xbzrle; 536 537 return 1; 538 } 539 540 /* Called with rcu_read_lock() to protect migration_bitmap 541 * rb: The RAMBlock to search for dirty pages in 542 * start: Start address (typically so we can continue from previous page) 543 * ram_addr_abs: Pointer into which to store the address of the dirty page 544 * within the global ram_addr space 545 * 546 * Returns: byte offset within memory region of the start of a dirty page 547 */ 548 static inline 549 ram_addr_t migration_bitmap_find_dirty(RAMBlock *rb, 550 ram_addr_t start, 551 ram_addr_t *ram_addr_abs) 552 { 553 unsigned long base = rb->offset >> TARGET_PAGE_BITS; 554 unsigned long nr = base + (start >> TARGET_PAGE_BITS); 555 uint64_t rb_size = rb->used_length; 556 unsigned long size = base + (rb_size >> TARGET_PAGE_BITS); 557 unsigned long *bitmap; 558 559 unsigned long next; 560 561 bitmap = atomic_rcu_read(&migration_bitmap_rcu)->bmap; 562 if (ram_bulk_stage && nr > base) { 563 next = nr + 1; 564 } else { 565 next = find_next_bit(bitmap, size, nr); 566 } 567 568 *ram_addr_abs = next << TARGET_PAGE_BITS; 569 return (next - base) << TARGET_PAGE_BITS; 570 } 571 572 static inline bool migration_bitmap_clear_dirty(ram_addr_t addr) 573 { 574 bool ret; 575 int nr = addr >> TARGET_PAGE_BITS; 576 unsigned long *bitmap = atomic_rcu_read(&migration_bitmap_rcu)->bmap; 577 578 ret = test_and_clear_bit(nr, bitmap); 579 580 if (ret) { 581 migration_dirty_pages--; 582 } 583 return ret; 584 } 585 586 static void migration_bitmap_sync_range(ram_addr_t start, ram_addr_t length) 587 { 588 unsigned long *bitmap; 589 bitmap = atomic_rcu_read(&migration_bitmap_rcu)->bmap; 590 migration_dirty_pages += 591 cpu_physical_memory_sync_dirty_bitmap(bitmap, start, length); 592 } 593 594 /* Fix me: there are too many global variables used in migration process. */ 595 static int64_t start_time; 596 static int64_t bytes_xfer_prev; 597 static int64_t num_dirty_pages_period; 598 static uint64_t xbzrle_cache_miss_prev; 599 static uint64_t iterations_prev; 600 601 static void migration_bitmap_sync_init(void) 602 { 603 start_time = 0; 604 bytes_xfer_prev = 0; 605 num_dirty_pages_period = 0; 606 xbzrle_cache_miss_prev = 0; 607 iterations_prev = 0; 608 } 609 610 static void migration_bitmap_sync(void) 611 { 612 RAMBlock *block; 613 uint64_t num_dirty_pages_init = migration_dirty_pages; 614 MigrationState *s = migrate_get_current(); 615 int64_t end_time; 616 int64_t bytes_xfer_now; 617 618 bitmap_sync_count++; 619 620 if (!bytes_xfer_prev) { 621 bytes_xfer_prev = ram_bytes_transferred(); 622 } 623 624 if (!start_time) { 625 start_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); 626 } 627 628 trace_migration_bitmap_sync_start(); 629 memory_global_dirty_log_sync(); 630 631 qemu_mutex_lock(&migration_bitmap_mutex); 632 rcu_read_lock(); 633 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { 634 migration_bitmap_sync_range(block->offset, block->used_length); 635 } 636 rcu_read_unlock(); 637 qemu_mutex_unlock(&migration_bitmap_mutex); 638 639 trace_migration_bitmap_sync_end(migration_dirty_pages 640 - num_dirty_pages_init); 641 num_dirty_pages_period += migration_dirty_pages - num_dirty_pages_init; 642 end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); 643 644 /* more than 1 second = 1000 millisecons */ 645 if (end_time > start_time + 1000) { 646 if (migrate_auto_converge()) { 647 /* The following detection logic can be refined later. For now: 648 Check to see if the dirtied bytes is 50% more than the approx. 649 amount of bytes that just got transferred since the last time we 650 were in this routine. If that happens twice, start or increase 651 throttling */ 652 bytes_xfer_now = ram_bytes_transferred(); 653 654 if (s->dirty_pages_rate && 655 (num_dirty_pages_period * TARGET_PAGE_SIZE > 656 (bytes_xfer_now - bytes_xfer_prev)/2) && 657 (dirty_rate_high_cnt++ >= 2)) { 658 trace_migration_throttle(); 659 dirty_rate_high_cnt = 0; 660 mig_throttle_guest_down(); 661 } 662 bytes_xfer_prev = bytes_xfer_now; 663 } 664 665 if (migrate_use_xbzrle()) { 666 if (iterations_prev != acct_info.iterations) { 667 acct_info.xbzrle_cache_miss_rate = 668 (double)(acct_info.xbzrle_cache_miss - 669 xbzrle_cache_miss_prev) / 670 (acct_info.iterations - iterations_prev); 671 } 672 iterations_prev = acct_info.iterations; 673 xbzrle_cache_miss_prev = acct_info.xbzrle_cache_miss; 674 } 675 s->dirty_pages_rate = num_dirty_pages_period * 1000 676 / (end_time - start_time); 677 s->dirty_bytes_rate = s->dirty_pages_rate * TARGET_PAGE_SIZE; 678 start_time = end_time; 679 num_dirty_pages_period = 0; 680 } 681 s->dirty_sync_count = bitmap_sync_count; 682 if (migrate_use_events()) { 683 qapi_event_send_migration_pass(bitmap_sync_count, NULL); 684 } 685 } 686 687 /** 688 * save_zero_page: Send the zero page to the stream 689 * 690 * Returns: Number of pages written. 691 * 692 * @f: QEMUFile where to send the data 693 * @block: block that contains the page we want to send 694 * @offset: offset inside the block for the page 695 * @p: pointer to the page 696 * @bytes_transferred: increase it with the number of transferred bytes 697 */ 698 static int save_zero_page(QEMUFile *f, RAMBlock *block, ram_addr_t offset, 699 uint8_t *p, uint64_t *bytes_transferred) 700 { 701 int pages = -1; 702 703 if (is_zero_range(p, TARGET_PAGE_SIZE)) { 704 acct_info.dup_pages++; 705 *bytes_transferred += save_page_header(f, block, 706 offset | RAM_SAVE_FLAG_COMPRESS); 707 qemu_put_byte(f, 0); 708 *bytes_transferred += 1; 709 pages = 1; 710 } 711 712 return pages; 713 } 714 715 /** 716 * ram_save_page: Send the given page to the stream 717 * 718 * Returns: Number of pages written. 719 * < 0 - error 720 * >=0 - Number of pages written - this might legally be 0 721 * if xbzrle noticed the page was the same. 722 * 723 * @f: QEMUFile where to send the data 724 * @block: block that contains the page we want to send 725 * @offset: offset inside the block for the page 726 * @last_stage: if we are at the completion stage 727 * @bytes_transferred: increase it with the number of transferred bytes 728 */ 729 static int ram_save_page(QEMUFile *f, PageSearchStatus *pss, 730 bool last_stage, uint64_t *bytes_transferred) 731 { 732 int pages = -1; 733 uint64_t bytes_xmit; 734 ram_addr_t current_addr; 735 uint8_t *p; 736 int ret; 737 bool send_async = true; 738 RAMBlock *block = pss->block; 739 ram_addr_t offset = pss->offset; 740 741 p = block->host + offset; 742 743 /* In doubt sent page as normal */ 744 bytes_xmit = 0; 745 ret = ram_control_save_page(f, block->offset, 746 offset, TARGET_PAGE_SIZE, &bytes_xmit); 747 if (bytes_xmit) { 748 *bytes_transferred += bytes_xmit; 749 pages = 1; 750 } 751 752 XBZRLE_cache_lock(); 753 754 current_addr = block->offset + offset; 755 756 if (block == last_sent_block) { 757 offset |= RAM_SAVE_FLAG_CONTINUE; 758 } 759 if (ret != RAM_SAVE_CONTROL_NOT_SUPP) { 760 if (ret != RAM_SAVE_CONTROL_DELAYED) { 761 if (bytes_xmit > 0) { 762 acct_info.norm_pages++; 763 } else if (bytes_xmit == 0) { 764 acct_info.dup_pages++; 765 } 766 } 767 } else { 768 pages = save_zero_page(f, block, offset, p, bytes_transferred); 769 if (pages > 0) { 770 /* Must let xbzrle know, otherwise a previous (now 0'd) cached 771 * page would be stale 772 */ 773 xbzrle_cache_zero_page(current_addr); 774 } else if (!ram_bulk_stage && migrate_use_xbzrle()) { 775 pages = save_xbzrle_page(f, &p, current_addr, block, 776 offset, last_stage, bytes_transferred); 777 if (!last_stage) { 778 /* Can't send this cached data async, since the cache page 779 * might get updated before it gets to the wire 780 */ 781 send_async = false; 782 } 783 } 784 } 785 786 /* XBZRLE overflow or normal page */ 787 if (pages == -1) { 788 *bytes_transferred += save_page_header(f, block, 789 offset | RAM_SAVE_FLAG_PAGE); 790 if (send_async) { 791 qemu_put_buffer_async(f, p, TARGET_PAGE_SIZE); 792 } else { 793 qemu_put_buffer(f, p, TARGET_PAGE_SIZE); 794 } 795 *bytes_transferred += TARGET_PAGE_SIZE; 796 pages = 1; 797 acct_info.norm_pages++; 798 } 799 800 XBZRLE_cache_unlock(); 801 802 return pages; 803 } 804 805 static int do_compress_ram_page(QEMUFile *f, RAMBlock *block, 806 ram_addr_t offset) 807 { 808 int bytes_sent, blen; 809 uint8_t *p = block->host + (offset & TARGET_PAGE_MASK); 810 811 bytes_sent = save_page_header(f, block, offset | 812 RAM_SAVE_FLAG_COMPRESS_PAGE); 813 blen = qemu_put_compression_data(f, p, TARGET_PAGE_SIZE, 814 migrate_compress_level()); 815 if (blen < 0) { 816 bytes_sent = 0; 817 qemu_file_set_error(migrate_get_current()->to_dst_file, blen); 818 error_report("compressed data failed!"); 819 } else { 820 bytes_sent += blen; 821 } 822 823 return bytes_sent; 824 } 825 826 static uint64_t bytes_transferred; 827 828 static void flush_compressed_data(QEMUFile *f) 829 { 830 int idx, len, thread_count; 831 832 if (!migrate_use_compression()) { 833 return; 834 } 835 thread_count = migrate_compress_threads(); 836 837 qemu_mutex_lock(&comp_done_lock); 838 for (idx = 0; idx < thread_count; idx++) { 839 while (!comp_param[idx].done) { 840 qemu_cond_wait(&comp_done_cond, &comp_done_lock); 841 } 842 } 843 qemu_mutex_unlock(&comp_done_lock); 844 845 for (idx = 0; idx < thread_count; idx++) { 846 qemu_mutex_lock(&comp_param[idx].mutex); 847 if (!comp_param[idx].quit) { 848 len = qemu_put_qemu_file(f, comp_param[idx].file); 849 bytes_transferred += len; 850 } 851 qemu_mutex_unlock(&comp_param[idx].mutex); 852 } 853 } 854 855 static inline void set_compress_params(CompressParam *param, RAMBlock *block, 856 ram_addr_t offset) 857 { 858 param->block = block; 859 param->offset = offset; 860 } 861 862 static int compress_page_with_multi_thread(QEMUFile *f, RAMBlock *block, 863 ram_addr_t offset, 864 uint64_t *bytes_transferred) 865 { 866 int idx, thread_count, bytes_xmit = -1, pages = -1; 867 868 thread_count = migrate_compress_threads(); 869 qemu_mutex_lock(&comp_done_lock); 870 while (true) { 871 for (idx = 0; idx < thread_count; idx++) { 872 if (comp_param[idx].done) { 873 comp_param[idx].done = false; 874 bytes_xmit = qemu_put_qemu_file(f, comp_param[idx].file); 875 qemu_mutex_lock(&comp_param[idx].mutex); 876 set_compress_params(&comp_param[idx], block, offset); 877 qemu_cond_signal(&comp_param[idx].cond); 878 qemu_mutex_unlock(&comp_param[idx].mutex); 879 pages = 1; 880 acct_info.norm_pages++; 881 *bytes_transferred += bytes_xmit; 882 break; 883 } 884 } 885 if (pages > 0) { 886 break; 887 } else { 888 qemu_cond_wait(&comp_done_cond, &comp_done_lock); 889 } 890 } 891 qemu_mutex_unlock(&comp_done_lock); 892 893 return pages; 894 } 895 896 /** 897 * ram_save_compressed_page: compress the given page and send it to the stream 898 * 899 * Returns: Number of pages written. 900 * 901 * @f: QEMUFile where to send the data 902 * @block: block that contains the page we want to send 903 * @offset: offset inside the block for the page 904 * @last_stage: if we are at the completion stage 905 * @bytes_transferred: increase it with the number of transferred bytes 906 */ 907 static int ram_save_compressed_page(QEMUFile *f, PageSearchStatus *pss, 908 bool last_stage, 909 uint64_t *bytes_transferred) 910 { 911 int pages = -1; 912 uint64_t bytes_xmit = 0; 913 uint8_t *p; 914 int ret, blen; 915 RAMBlock *block = pss->block; 916 ram_addr_t offset = pss->offset; 917 918 p = block->host + offset; 919 920 ret = ram_control_save_page(f, block->offset, 921 offset, TARGET_PAGE_SIZE, &bytes_xmit); 922 if (bytes_xmit) { 923 *bytes_transferred += bytes_xmit; 924 pages = 1; 925 } 926 if (ret != RAM_SAVE_CONTROL_NOT_SUPP) { 927 if (ret != RAM_SAVE_CONTROL_DELAYED) { 928 if (bytes_xmit > 0) { 929 acct_info.norm_pages++; 930 } else if (bytes_xmit == 0) { 931 acct_info.dup_pages++; 932 } 933 } 934 } else { 935 /* When starting the process of a new block, the first page of 936 * the block should be sent out before other pages in the same 937 * block, and all the pages in last block should have been sent 938 * out, keeping this order is important, because the 'cont' flag 939 * is used to avoid resending the block name. 940 */ 941 if (block != last_sent_block) { 942 flush_compressed_data(f); 943 pages = save_zero_page(f, block, offset, p, bytes_transferred); 944 if (pages == -1) { 945 /* Make sure the first page is sent out before other pages */ 946 bytes_xmit = save_page_header(f, block, offset | 947 RAM_SAVE_FLAG_COMPRESS_PAGE); 948 blen = qemu_put_compression_data(f, p, TARGET_PAGE_SIZE, 949 migrate_compress_level()); 950 if (blen > 0) { 951 *bytes_transferred += bytes_xmit + blen; 952 acct_info.norm_pages++; 953 pages = 1; 954 } else { 955 qemu_file_set_error(f, blen); 956 error_report("compressed data failed!"); 957 } 958 } 959 } else { 960 offset |= RAM_SAVE_FLAG_CONTINUE; 961 pages = save_zero_page(f, block, offset, p, bytes_transferred); 962 if (pages == -1) { 963 pages = compress_page_with_multi_thread(f, block, offset, 964 bytes_transferred); 965 } 966 } 967 } 968 969 return pages; 970 } 971 972 /* 973 * Find the next dirty page and update any state associated with 974 * the search process. 975 * 976 * Returns: True if a page is found 977 * 978 * @f: Current migration stream. 979 * @pss: Data about the state of the current dirty page scan. 980 * @*again: Set to false if the search has scanned the whole of RAM 981 * *ram_addr_abs: Pointer into which to store the address of the dirty page 982 * within the global ram_addr space 983 */ 984 static bool find_dirty_block(QEMUFile *f, PageSearchStatus *pss, 985 bool *again, ram_addr_t *ram_addr_abs) 986 { 987 pss->offset = migration_bitmap_find_dirty(pss->block, pss->offset, 988 ram_addr_abs); 989 if (pss->complete_round && pss->block == last_seen_block && 990 pss->offset >= last_offset) { 991 /* 992 * We've been once around the RAM and haven't found anything. 993 * Give up. 994 */ 995 *again = false; 996 return false; 997 } 998 if (pss->offset >= pss->block->used_length) { 999 /* Didn't find anything in this RAM Block */ 1000 pss->offset = 0; 1001 pss->block = QLIST_NEXT_RCU(pss->block, next); 1002 if (!pss->block) { 1003 /* Hit the end of the list */ 1004 pss->block = QLIST_FIRST_RCU(&ram_list.blocks); 1005 /* Flag that we've looped */ 1006 pss->complete_round = true; 1007 ram_bulk_stage = false; 1008 if (migrate_use_xbzrle()) { 1009 /* If xbzrle is on, stop using the data compression at this 1010 * point. In theory, xbzrle can do better than compression. 1011 */ 1012 flush_compressed_data(f); 1013 compression_switch = false; 1014 } 1015 } 1016 /* Didn't find anything this time, but try again on the new block */ 1017 *again = true; 1018 return false; 1019 } else { 1020 /* Can go around again, but... */ 1021 *again = true; 1022 /* We've found something so probably don't need to */ 1023 return true; 1024 } 1025 } 1026 1027 /* 1028 * Helper for 'get_queued_page' - gets a page off the queue 1029 * ms: MigrationState in 1030 * *offset: Used to return the offset within the RAMBlock 1031 * ram_addr_abs: global offset in the dirty/sent bitmaps 1032 * 1033 * Returns: block (or NULL if none available) 1034 */ 1035 static RAMBlock *unqueue_page(MigrationState *ms, ram_addr_t *offset, 1036 ram_addr_t *ram_addr_abs) 1037 { 1038 RAMBlock *block = NULL; 1039 1040 qemu_mutex_lock(&ms->src_page_req_mutex); 1041 if (!QSIMPLEQ_EMPTY(&ms->src_page_requests)) { 1042 struct MigrationSrcPageRequest *entry = 1043 QSIMPLEQ_FIRST(&ms->src_page_requests); 1044 block = entry->rb; 1045 *offset = entry->offset; 1046 *ram_addr_abs = (entry->offset + entry->rb->offset) & 1047 TARGET_PAGE_MASK; 1048 1049 if (entry->len > TARGET_PAGE_SIZE) { 1050 entry->len -= TARGET_PAGE_SIZE; 1051 entry->offset += TARGET_PAGE_SIZE; 1052 } else { 1053 memory_region_unref(block->mr); 1054 QSIMPLEQ_REMOVE_HEAD(&ms->src_page_requests, next_req); 1055 g_free(entry); 1056 } 1057 } 1058 qemu_mutex_unlock(&ms->src_page_req_mutex); 1059 1060 return block; 1061 } 1062 1063 /* 1064 * Unqueue a page from the queue fed by postcopy page requests; skips pages 1065 * that are already sent (!dirty) 1066 * 1067 * ms: MigrationState in 1068 * pss: PageSearchStatus structure updated with found block/offset 1069 * ram_addr_abs: global offset in the dirty/sent bitmaps 1070 * 1071 * Returns: true if a queued page is found 1072 */ 1073 static bool get_queued_page(MigrationState *ms, PageSearchStatus *pss, 1074 ram_addr_t *ram_addr_abs) 1075 { 1076 RAMBlock *block; 1077 ram_addr_t offset; 1078 bool dirty; 1079 1080 do { 1081 block = unqueue_page(ms, &offset, ram_addr_abs); 1082 /* 1083 * We're sending this page, and since it's postcopy nothing else 1084 * will dirty it, and we must make sure it doesn't get sent again 1085 * even if this queue request was received after the background 1086 * search already sent it. 1087 */ 1088 if (block) { 1089 unsigned long *bitmap; 1090 bitmap = atomic_rcu_read(&migration_bitmap_rcu)->bmap; 1091 dirty = test_bit(*ram_addr_abs >> TARGET_PAGE_BITS, bitmap); 1092 if (!dirty) { 1093 trace_get_queued_page_not_dirty( 1094 block->idstr, (uint64_t)offset, 1095 (uint64_t)*ram_addr_abs, 1096 test_bit(*ram_addr_abs >> TARGET_PAGE_BITS, 1097 atomic_rcu_read(&migration_bitmap_rcu)->unsentmap)); 1098 } else { 1099 trace_get_queued_page(block->idstr, 1100 (uint64_t)offset, 1101 (uint64_t)*ram_addr_abs); 1102 } 1103 } 1104 1105 } while (block && !dirty); 1106 1107 if (block) { 1108 /* 1109 * As soon as we start servicing pages out of order, then we have 1110 * to kill the bulk stage, since the bulk stage assumes 1111 * in (migration_bitmap_find_and_reset_dirty) that every page is 1112 * dirty, that's no longer true. 1113 */ 1114 ram_bulk_stage = false; 1115 1116 /* 1117 * We want the background search to continue from the queued page 1118 * since the guest is likely to want other pages near to the page 1119 * it just requested. 1120 */ 1121 pss->block = block; 1122 pss->offset = offset; 1123 } 1124 1125 return !!block; 1126 } 1127 1128 /** 1129 * flush_page_queue: Flush any remaining pages in the ram request queue 1130 * it should be empty at the end anyway, but in error cases there may be 1131 * some left. 1132 * 1133 * ms: MigrationState 1134 */ 1135 void flush_page_queue(MigrationState *ms) 1136 { 1137 struct MigrationSrcPageRequest *mspr, *next_mspr; 1138 /* This queue generally should be empty - but in the case of a failed 1139 * migration might have some droppings in. 1140 */ 1141 rcu_read_lock(); 1142 QSIMPLEQ_FOREACH_SAFE(mspr, &ms->src_page_requests, next_req, next_mspr) { 1143 memory_region_unref(mspr->rb->mr); 1144 QSIMPLEQ_REMOVE_HEAD(&ms->src_page_requests, next_req); 1145 g_free(mspr); 1146 } 1147 rcu_read_unlock(); 1148 } 1149 1150 /** 1151 * Queue the pages for transmission, e.g. a request from postcopy destination 1152 * ms: MigrationStatus in which the queue is held 1153 * rbname: The RAMBlock the request is for - may be NULL (to mean reuse last) 1154 * start: Offset from the start of the RAMBlock 1155 * len: Length (in bytes) to send 1156 * Return: 0 on success 1157 */ 1158 int ram_save_queue_pages(MigrationState *ms, const char *rbname, 1159 ram_addr_t start, ram_addr_t len) 1160 { 1161 RAMBlock *ramblock; 1162 1163 ms->postcopy_requests++; 1164 rcu_read_lock(); 1165 if (!rbname) { 1166 /* Reuse last RAMBlock */ 1167 ramblock = ms->last_req_rb; 1168 1169 if (!ramblock) { 1170 /* 1171 * Shouldn't happen, we can't reuse the last RAMBlock if 1172 * it's the 1st request. 1173 */ 1174 error_report("ram_save_queue_pages no previous block"); 1175 goto err; 1176 } 1177 } else { 1178 ramblock = qemu_ram_block_by_name(rbname); 1179 1180 if (!ramblock) { 1181 /* We shouldn't be asked for a non-existent RAMBlock */ 1182 error_report("ram_save_queue_pages no block '%s'", rbname); 1183 goto err; 1184 } 1185 ms->last_req_rb = ramblock; 1186 } 1187 trace_ram_save_queue_pages(ramblock->idstr, start, len); 1188 if (start+len > ramblock->used_length) { 1189 error_report("%s request overrun start=" RAM_ADDR_FMT " len=" 1190 RAM_ADDR_FMT " blocklen=" RAM_ADDR_FMT, 1191 __func__, start, len, ramblock->used_length); 1192 goto err; 1193 } 1194 1195 struct MigrationSrcPageRequest *new_entry = 1196 g_malloc0(sizeof(struct MigrationSrcPageRequest)); 1197 new_entry->rb = ramblock; 1198 new_entry->offset = start; 1199 new_entry->len = len; 1200 1201 memory_region_ref(ramblock->mr); 1202 qemu_mutex_lock(&ms->src_page_req_mutex); 1203 QSIMPLEQ_INSERT_TAIL(&ms->src_page_requests, new_entry, next_req); 1204 qemu_mutex_unlock(&ms->src_page_req_mutex); 1205 rcu_read_unlock(); 1206 1207 return 0; 1208 1209 err: 1210 rcu_read_unlock(); 1211 return -1; 1212 } 1213 1214 /** 1215 * ram_save_target_page: Save one target page 1216 * 1217 * 1218 * @f: QEMUFile where to send the data 1219 * @block: pointer to block that contains the page we want to send 1220 * @offset: offset inside the block for the page; 1221 * @last_stage: if we are at the completion stage 1222 * @bytes_transferred: increase it with the number of transferred bytes 1223 * @dirty_ram_abs: Address of the start of the dirty page in ram_addr_t space 1224 * 1225 * Returns: Number of pages written. 1226 */ 1227 static int ram_save_target_page(MigrationState *ms, QEMUFile *f, 1228 PageSearchStatus *pss, 1229 bool last_stage, 1230 uint64_t *bytes_transferred, 1231 ram_addr_t dirty_ram_abs) 1232 { 1233 int res = 0; 1234 1235 /* Check the pages is dirty and if it is send it */ 1236 if (migration_bitmap_clear_dirty(dirty_ram_abs)) { 1237 unsigned long *unsentmap; 1238 if (compression_switch && migrate_use_compression()) { 1239 res = ram_save_compressed_page(f, pss, 1240 last_stage, 1241 bytes_transferred); 1242 } else { 1243 res = ram_save_page(f, pss, last_stage, 1244 bytes_transferred); 1245 } 1246 1247 if (res < 0) { 1248 return res; 1249 } 1250 unsentmap = atomic_rcu_read(&migration_bitmap_rcu)->unsentmap; 1251 if (unsentmap) { 1252 clear_bit(dirty_ram_abs >> TARGET_PAGE_BITS, unsentmap); 1253 } 1254 /* Only update last_sent_block if a block was actually sent; xbzrle 1255 * might have decided the page was identical so didn't bother writing 1256 * to the stream. 1257 */ 1258 if (res > 0) { 1259 last_sent_block = pss->block; 1260 } 1261 } 1262 1263 return res; 1264 } 1265 1266 /** 1267 * ram_save_host_page: Starting at *offset send pages up to the end 1268 * of the current host page. It's valid for the initial 1269 * offset to point into the middle of a host page 1270 * in which case the remainder of the hostpage is sent. 1271 * Only dirty target pages are sent. 1272 * 1273 * Returns: Number of pages written. 1274 * 1275 * @f: QEMUFile where to send the data 1276 * @block: pointer to block that contains the page we want to send 1277 * @offset: offset inside the block for the page; updated to last target page 1278 * sent 1279 * @last_stage: if we are at the completion stage 1280 * @bytes_transferred: increase it with the number of transferred bytes 1281 * @dirty_ram_abs: Address of the start of the dirty page in ram_addr_t space 1282 */ 1283 static int ram_save_host_page(MigrationState *ms, QEMUFile *f, 1284 PageSearchStatus *pss, 1285 bool last_stage, 1286 uint64_t *bytes_transferred, 1287 ram_addr_t dirty_ram_abs) 1288 { 1289 int tmppages, pages = 0; 1290 do { 1291 tmppages = ram_save_target_page(ms, f, pss, last_stage, 1292 bytes_transferred, dirty_ram_abs); 1293 if (tmppages < 0) { 1294 return tmppages; 1295 } 1296 1297 pages += tmppages; 1298 pss->offset += TARGET_PAGE_SIZE; 1299 dirty_ram_abs += TARGET_PAGE_SIZE; 1300 } while (pss->offset & (qemu_host_page_size - 1)); 1301 1302 /* The offset we leave with is the last one we looked at */ 1303 pss->offset -= TARGET_PAGE_SIZE; 1304 return pages; 1305 } 1306 1307 /** 1308 * ram_find_and_save_block: Finds a dirty page and sends it to f 1309 * 1310 * Called within an RCU critical section. 1311 * 1312 * Returns: The number of pages written 1313 * 0 means no dirty pages 1314 * 1315 * @f: QEMUFile where to send the data 1316 * @last_stage: if we are at the completion stage 1317 * @bytes_transferred: increase it with the number of transferred bytes 1318 * 1319 * On systems where host-page-size > target-page-size it will send all the 1320 * pages in a host page that are dirty. 1321 */ 1322 1323 static int ram_find_and_save_block(QEMUFile *f, bool last_stage, 1324 uint64_t *bytes_transferred) 1325 { 1326 PageSearchStatus pss; 1327 MigrationState *ms = migrate_get_current(); 1328 int pages = 0; 1329 bool again, found; 1330 ram_addr_t dirty_ram_abs; /* Address of the start of the dirty page in 1331 ram_addr_t space */ 1332 1333 pss.block = last_seen_block; 1334 pss.offset = last_offset; 1335 pss.complete_round = false; 1336 1337 if (!pss.block) { 1338 pss.block = QLIST_FIRST_RCU(&ram_list.blocks); 1339 } 1340 1341 do { 1342 again = true; 1343 found = get_queued_page(ms, &pss, &dirty_ram_abs); 1344 1345 if (!found) { 1346 /* priority queue empty, so just search for something dirty */ 1347 found = find_dirty_block(f, &pss, &again, &dirty_ram_abs); 1348 } 1349 1350 if (found) { 1351 pages = ram_save_host_page(ms, f, &pss, 1352 last_stage, bytes_transferred, 1353 dirty_ram_abs); 1354 } 1355 } while (!pages && again); 1356 1357 last_seen_block = pss.block; 1358 last_offset = pss.offset; 1359 1360 return pages; 1361 } 1362 1363 void acct_update_position(QEMUFile *f, size_t size, bool zero) 1364 { 1365 uint64_t pages = size / TARGET_PAGE_SIZE; 1366 if (zero) { 1367 acct_info.dup_pages += pages; 1368 } else { 1369 acct_info.norm_pages += pages; 1370 bytes_transferred += size; 1371 qemu_update_position(f, size); 1372 } 1373 } 1374 1375 static ram_addr_t ram_save_remaining(void) 1376 { 1377 return migration_dirty_pages; 1378 } 1379 1380 uint64_t ram_bytes_remaining(void) 1381 { 1382 return ram_save_remaining() * TARGET_PAGE_SIZE; 1383 } 1384 1385 uint64_t ram_bytes_transferred(void) 1386 { 1387 return bytes_transferred; 1388 } 1389 1390 uint64_t ram_bytes_total(void) 1391 { 1392 RAMBlock *block; 1393 uint64_t total = 0; 1394 1395 rcu_read_lock(); 1396 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) 1397 total += block->used_length; 1398 rcu_read_unlock(); 1399 return total; 1400 } 1401 1402 void free_xbzrle_decoded_buf(void) 1403 { 1404 g_free(xbzrle_decoded_buf); 1405 xbzrle_decoded_buf = NULL; 1406 } 1407 1408 static void migration_bitmap_free(struct BitmapRcu *bmap) 1409 { 1410 g_free(bmap->bmap); 1411 g_free(bmap->unsentmap); 1412 g_free(bmap); 1413 } 1414 1415 static void ram_migration_cleanup(void *opaque) 1416 { 1417 /* caller have hold iothread lock or is in a bh, so there is 1418 * no writing race against this migration_bitmap 1419 */ 1420 struct BitmapRcu *bitmap = migration_bitmap_rcu; 1421 atomic_rcu_set(&migration_bitmap_rcu, NULL); 1422 if (bitmap) { 1423 memory_global_dirty_log_stop(); 1424 call_rcu(bitmap, migration_bitmap_free, rcu); 1425 } 1426 1427 XBZRLE_cache_lock(); 1428 if (XBZRLE.cache) { 1429 cache_fini(XBZRLE.cache); 1430 g_free(XBZRLE.encoded_buf); 1431 g_free(XBZRLE.current_buf); 1432 XBZRLE.cache = NULL; 1433 XBZRLE.encoded_buf = NULL; 1434 XBZRLE.current_buf = NULL; 1435 } 1436 XBZRLE_cache_unlock(); 1437 } 1438 1439 static void reset_ram_globals(void) 1440 { 1441 last_seen_block = NULL; 1442 last_sent_block = NULL; 1443 last_offset = 0; 1444 last_version = ram_list.version; 1445 ram_bulk_stage = true; 1446 } 1447 1448 #define MAX_WAIT 50 /* ms, half buffered_file limit */ 1449 1450 void migration_bitmap_extend(ram_addr_t old, ram_addr_t new) 1451 { 1452 /* called in qemu main thread, so there is 1453 * no writing race against this migration_bitmap 1454 */ 1455 if (migration_bitmap_rcu) { 1456 struct BitmapRcu *old_bitmap = migration_bitmap_rcu, *bitmap; 1457 bitmap = g_new(struct BitmapRcu, 1); 1458 bitmap->bmap = bitmap_new(new); 1459 1460 /* prevent migration_bitmap content from being set bit 1461 * by migration_bitmap_sync_range() at the same time. 1462 * it is safe to migration if migration_bitmap is cleared bit 1463 * at the same time. 1464 */ 1465 qemu_mutex_lock(&migration_bitmap_mutex); 1466 bitmap_copy(bitmap->bmap, old_bitmap->bmap, old); 1467 bitmap_set(bitmap->bmap, old, new - old); 1468 1469 /* We don't have a way to safely extend the sentmap 1470 * with RCU; so mark it as missing, entry to postcopy 1471 * will fail. 1472 */ 1473 bitmap->unsentmap = NULL; 1474 1475 atomic_rcu_set(&migration_bitmap_rcu, bitmap); 1476 qemu_mutex_unlock(&migration_bitmap_mutex); 1477 migration_dirty_pages += new - old; 1478 call_rcu(old_bitmap, migration_bitmap_free, rcu); 1479 } 1480 } 1481 1482 /* 1483 * 'expected' is the value you expect the bitmap mostly to be full 1484 * of; it won't bother printing lines that are all this value. 1485 * If 'todump' is null the migration bitmap is dumped. 1486 */ 1487 void ram_debug_dump_bitmap(unsigned long *todump, bool expected) 1488 { 1489 int64_t ram_pages = last_ram_offset() >> TARGET_PAGE_BITS; 1490 1491 int64_t cur; 1492 int64_t linelen = 128; 1493 char linebuf[129]; 1494 1495 if (!todump) { 1496 todump = atomic_rcu_read(&migration_bitmap_rcu)->bmap; 1497 } 1498 1499 for (cur = 0; cur < ram_pages; cur += linelen) { 1500 int64_t curb; 1501 bool found = false; 1502 /* 1503 * Last line; catch the case where the line length 1504 * is longer than remaining ram 1505 */ 1506 if (cur + linelen > ram_pages) { 1507 linelen = ram_pages - cur; 1508 } 1509 for (curb = 0; curb < linelen; curb++) { 1510 bool thisbit = test_bit(cur + curb, todump); 1511 linebuf[curb] = thisbit ? '1' : '.'; 1512 found = found || (thisbit != expected); 1513 } 1514 if (found) { 1515 linebuf[curb] = '\0'; 1516 fprintf(stderr, "0x%08" PRIx64 " : %s\n", cur, linebuf); 1517 } 1518 } 1519 } 1520 1521 /* **** functions for postcopy ***** */ 1522 1523 /* 1524 * Callback from postcopy_each_ram_send_discard for each RAMBlock 1525 * Note: At this point the 'unsentmap' is the processed bitmap combined 1526 * with the dirtymap; so a '1' means it's either dirty or unsent. 1527 * start,length: Indexes into the bitmap for the first bit 1528 * representing the named block and length in target-pages 1529 */ 1530 static int postcopy_send_discard_bm_ram(MigrationState *ms, 1531 PostcopyDiscardState *pds, 1532 unsigned long start, 1533 unsigned long length) 1534 { 1535 unsigned long end = start + length; /* one after the end */ 1536 unsigned long current; 1537 unsigned long *unsentmap; 1538 1539 unsentmap = atomic_rcu_read(&migration_bitmap_rcu)->unsentmap; 1540 for (current = start; current < end; ) { 1541 unsigned long one = find_next_bit(unsentmap, end, current); 1542 1543 if (one <= end) { 1544 unsigned long zero = find_next_zero_bit(unsentmap, end, one + 1); 1545 unsigned long discard_length; 1546 1547 if (zero >= end) { 1548 discard_length = end - one; 1549 } else { 1550 discard_length = zero - one; 1551 } 1552 if (discard_length) { 1553 postcopy_discard_send_range(ms, pds, one, discard_length); 1554 } 1555 current = one + discard_length; 1556 } else { 1557 current = one; 1558 } 1559 } 1560 1561 return 0; 1562 } 1563 1564 /* 1565 * Utility for the outgoing postcopy code. 1566 * Calls postcopy_send_discard_bm_ram for each RAMBlock 1567 * passing it bitmap indexes and name. 1568 * Returns: 0 on success 1569 * (qemu_ram_foreach_block ends up passing unscaled lengths 1570 * which would mean postcopy code would have to deal with target page) 1571 */ 1572 static int postcopy_each_ram_send_discard(MigrationState *ms) 1573 { 1574 struct RAMBlock *block; 1575 int ret; 1576 1577 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { 1578 unsigned long first = block->offset >> TARGET_PAGE_BITS; 1579 PostcopyDiscardState *pds = postcopy_discard_send_init(ms, 1580 first, 1581 block->idstr); 1582 1583 /* 1584 * Postcopy sends chunks of bitmap over the wire, but it 1585 * just needs indexes at this point, avoids it having 1586 * target page specific code. 1587 */ 1588 ret = postcopy_send_discard_bm_ram(ms, pds, first, 1589 block->used_length >> TARGET_PAGE_BITS); 1590 postcopy_discard_send_finish(ms, pds); 1591 if (ret) { 1592 return ret; 1593 } 1594 } 1595 1596 return 0; 1597 } 1598 1599 /* 1600 * Helper for postcopy_chunk_hostpages; it's called twice to cleanup 1601 * the two bitmaps, that are similar, but one is inverted. 1602 * 1603 * We search for runs of target-pages that don't start or end on a 1604 * host page boundary; 1605 * unsent_pass=true: Cleans up partially unsent host pages by searching 1606 * the unsentmap 1607 * unsent_pass=false: Cleans up partially dirty host pages by searching 1608 * the main migration bitmap 1609 * 1610 */ 1611 static void postcopy_chunk_hostpages_pass(MigrationState *ms, bool unsent_pass, 1612 RAMBlock *block, 1613 PostcopyDiscardState *pds) 1614 { 1615 unsigned long *bitmap; 1616 unsigned long *unsentmap; 1617 unsigned int host_ratio = qemu_host_page_size / TARGET_PAGE_SIZE; 1618 unsigned long first = block->offset >> TARGET_PAGE_BITS; 1619 unsigned long len = block->used_length >> TARGET_PAGE_BITS; 1620 unsigned long last = first + (len - 1); 1621 unsigned long run_start; 1622 1623 bitmap = atomic_rcu_read(&migration_bitmap_rcu)->bmap; 1624 unsentmap = atomic_rcu_read(&migration_bitmap_rcu)->unsentmap; 1625 1626 if (unsent_pass) { 1627 /* Find a sent page */ 1628 run_start = find_next_zero_bit(unsentmap, last + 1, first); 1629 } else { 1630 /* Find a dirty page */ 1631 run_start = find_next_bit(bitmap, last + 1, first); 1632 } 1633 1634 while (run_start <= last) { 1635 bool do_fixup = false; 1636 unsigned long fixup_start_addr; 1637 unsigned long host_offset; 1638 1639 /* 1640 * If the start of this run of pages is in the middle of a host 1641 * page, then we need to fixup this host page. 1642 */ 1643 host_offset = run_start % host_ratio; 1644 if (host_offset) { 1645 do_fixup = true; 1646 run_start -= host_offset; 1647 fixup_start_addr = run_start; 1648 /* For the next pass */ 1649 run_start = run_start + host_ratio; 1650 } else { 1651 /* Find the end of this run */ 1652 unsigned long run_end; 1653 if (unsent_pass) { 1654 run_end = find_next_bit(unsentmap, last + 1, run_start + 1); 1655 } else { 1656 run_end = find_next_zero_bit(bitmap, last + 1, run_start + 1); 1657 } 1658 /* 1659 * If the end isn't at the start of a host page, then the 1660 * run doesn't finish at the end of a host page 1661 * and we need to discard. 1662 */ 1663 host_offset = run_end % host_ratio; 1664 if (host_offset) { 1665 do_fixup = true; 1666 fixup_start_addr = run_end - host_offset; 1667 /* 1668 * This host page has gone, the next loop iteration starts 1669 * from after the fixup 1670 */ 1671 run_start = fixup_start_addr + host_ratio; 1672 } else { 1673 /* 1674 * No discards on this iteration, next loop starts from 1675 * next sent/dirty page 1676 */ 1677 run_start = run_end + 1; 1678 } 1679 } 1680 1681 if (do_fixup) { 1682 unsigned long page; 1683 1684 /* Tell the destination to discard this page */ 1685 if (unsent_pass || !test_bit(fixup_start_addr, unsentmap)) { 1686 /* For the unsent_pass we: 1687 * discard partially sent pages 1688 * For the !unsent_pass (dirty) we: 1689 * discard partially dirty pages that were sent 1690 * (any partially sent pages were already discarded 1691 * by the previous unsent_pass) 1692 */ 1693 postcopy_discard_send_range(ms, pds, fixup_start_addr, 1694 host_ratio); 1695 } 1696 1697 /* Clean up the bitmap */ 1698 for (page = fixup_start_addr; 1699 page < fixup_start_addr + host_ratio; page++) { 1700 /* All pages in this host page are now not sent */ 1701 set_bit(page, unsentmap); 1702 1703 /* 1704 * Remark them as dirty, updating the count for any pages 1705 * that weren't previously dirty. 1706 */ 1707 migration_dirty_pages += !test_and_set_bit(page, bitmap); 1708 } 1709 } 1710 1711 if (unsent_pass) { 1712 /* Find the next sent page for the next iteration */ 1713 run_start = find_next_zero_bit(unsentmap, last + 1, 1714 run_start); 1715 } else { 1716 /* Find the next dirty page for the next iteration */ 1717 run_start = find_next_bit(bitmap, last + 1, run_start); 1718 } 1719 } 1720 } 1721 1722 /* 1723 * Utility for the outgoing postcopy code. 1724 * 1725 * Discard any partially sent host-page size chunks, mark any partially 1726 * dirty host-page size chunks as all dirty. 1727 * 1728 * Returns: 0 on success 1729 */ 1730 static int postcopy_chunk_hostpages(MigrationState *ms) 1731 { 1732 struct RAMBlock *block; 1733 1734 if (qemu_host_page_size == TARGET_PAGE_SIZE) { 1735 /* Easy case - TPS==HPS - nothing to be done */ 1736 return 0; 1737 } 1738 1739 /* Easiest way to make sure we don't resume in the middle of a host-page */ 1740 last_seen_block = NULL; 1741 last_sent_block = NULL; 1742 last_offset = 0; 1743 1744 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { 1745 unsigned long first = block->offset >> TARGET_PAGE_BITS; 1746 1747 PostcopyDiscardState *pds = 1748 postcopy_discard_send_init(ms, first, block->idstr); 1749 1750 /* First pass: Discard all partially sent host pages */ 1751 postcopy_chunk_hostpages_pass(ms, true, block, pds); 1752 /* 1753 * Second pass: Ensure that all partially dirty host pages are made 1754 * fully dirty. 1755 */ 1756 postcopy_chunk_hostpages_pass(ms, false, block, pds); 1757 1758 postcopy_discard_send_finish(ms, pds); 1759 } /* ram_list loop */ 1760 1761 return 0; 1762 } 1763 1764 /* 1765 * Transmit the set of pages to be discarded after precopy to the target 1766 * these are pages that: 1767 * a) Have been previously transmitted but are now dirty again 1768 * b) Pages that have never been transmitted, this ensures that 1769 * any pages on the destination that have been mapped by background 1770 * tasks get discarded (transparent huge pages is the specific concern) 1771 * Hopefully this is pretty sparse 1772 */ 1773 int ram_postcopy_send_discard_bitmap(MigrationState *ms) 1774 { 1775 int ret; 1776 unsigned long *bitmap, *unsentmap; 1777 1778 rcu_read_lock(); 1779 1780 /* This should be our last sync, the src is now paused */ 1781 migration_bitmap_sync(); 1782 1783 unsentmap = atomic_rcu_read(&migration_bitmap_rcu)->unsentmap; 1784 if (!unsentmap) { 1785 /* We don't have a safe way to resize the sentmap, so 1786 * if the bitmap was resized it will be NULL at this 1787 * point. 1788 */ 1789 error_report("migration ram resized during precopy phase"); 1790 rcu_read_unlock(); 1791 return -EINVAL; 1792 } 1793 1794 /* Deal with TPS != HPS */ 1795 ret = postcopy_chunk_hostpages(ms); 1796 if (ret) { 1797 rcu_read_unlock(); 1798 return ret; 1799 } 1800 1801 /* 1802 * Update the unsentmap to be unsentmap = unsentmap | dirty 1803 */ 1804 bitmap = atomic_rcu_read(&migration_bitmap_rcu)->bmap; 1805 bitmap_or(unsentmap, unsentmap, bitmap, 1806 last_ram_offset() >> TARGET_PAGE_BITS); 1807 1808 1809 trace_ram_postcopy_send_discard_bitmap(); 1810 #ifdef DEBUG_POSTCOPY 1811 ram_debug_dump_bitmap(unsentmap, true); 1812 #endif 1813 1814 ret = postcopy_each_ram_send_discard(ms); 1815 rcu_read_unlock(); 1816 1817 return ret; 1818 } 1819 1820 /* 1821 * At the start of the postcopy phase of migration, any now-dirty 1822 * precopied pages are discarded. 1823 * 1824 * start, length describe a byte address range within the RAMBlock 1825 * 1826 * Returns 0 on success. 1827 */ 1828 int ram_discard_range(MigrationIncomingState *mis, 1829 const char *block_name, 1830 uint64_t start, size_t length) 1831 { 1832 int ret = -1; 1833 1834 rcu_read_lock(); 1835 RAMBlock *rb = qemu_ram_block_by_name(block_name); 1836 1837 if (!rb) { 1838 error_report("ram_discard_range: Failed to find block '%s'", 1839 block_name); 1840 goto err; 1841 } 1842 1843 uint8_t *host_startaddr = rb->host + start; 1844 1845 if ((uintptr_t)host_startaddr & (qemu_host_page_size - 1)) { 1846 error_report("ram_discard_range: Unaligned start address: %p", 1847 host_startaddr); 1848 goto err; 1849 } 1850 1851 if ((start + length) <= rb->used_length) { 1852 uint8_t *host_endaddr = host_startaddr + length; 1853 if ((uintptr_t)host_endaddr & (qemu_host_page_size - 1)) { 1854 error_report("ram_discard_range: Unaligned end address: %p", 1855 host_endaddr); 1856 goto err; 1857 } 1858 ret = postcopy_ram_discard_range(mis, host_startaddr, length); 1859 } else { 1860 error_report("ram_discard_range: Overrun block '%s' (%" PRIu64 1861 "/%zx/" RAM_ADDR_FMT")", 1862 block_name, start, length, rb->used_length); 1863 } 1864 1865 err: 1866 rcu_read_unlock(); 1867 1868 return ret; 1869 } 1870 1871 1872 /* Each of ram_save_setup, ram_save_iterate and ram_save_complete has 1873 * long-running RCU critical section. When rcu-reclaims in the code 1874 * start to become numerous it will be necessary to reduce the 1875 * granularity of these critical sections. 1876 */ 1877 1878 static int ram_save_setup(QEMUFile *f, void *opaque) 1879 { 1880 RAMBlock *block; 1881 int64_t ram_bitmap_pages; /* Size of bitmap in pages, including gaps */ 1882 1883 dirty_rate_high_cnt = 0; 1884 bitmap_sync_count = 0; 1885 migration_bitmap_sync_init(); 1886 qemu_mutex_init(&migration_bitmap_mutex); 1887 1888 if (migrate_use_xbzrle()) { 1889 XBZRLE_cache_lock(); 1890 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size() / 1891 TARGET_PAGE_SIZE, 1892 TARGET_PAGE_SIZE); 1893 if (!XBZRLE.cache) { 1894 XBZRLE_cache_unlock(); 1895 error_report("Error creating cache"); 1896 return -1; 1897 } 1898 XBZRLE_cache_unlock(); 1899 1900 /* We prefer not to abort if there is no memory */ 1901 XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE); 1902 if (!XBZRLE.encoded_buf) { 1903 error_report("Error allocating encoded_buf"); 1904 return -1; 1905 } 1906 1907 XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE); 1908 if (!XBZRLE.current_buf) { 1909 error_report("Error allocating current_buf"); 1910 g_free(XBZRLE.encoded_buf); 1911 XBZRLE.encoded_buf = NULL; 1912 return -1; 1913 } 1914 1915 acct_clear(); 1916 } 1917 1918 /* For memory_global_dirty_log_start below. */ 1919 qemu_mutex_lock_iothread(); 1920 1921 qemu_mutex_lock_ramlist(); 1922 rcu_read_lock(); 1923 bytes_transferred = 0; 1924 reset_ram_globals(); 1925 1926 ram_bitmap_pages = last_ram_offset() >> TARGET_PAGE_BITS; 1927 migration_bitmap_rcu = g_new0(struct BitmapRcu, 1); 1928 migration_bitmap_rcu->bmap = bitmap_new(ram_bitmap_pages); 1929 bitmap_set(migration_bitmap_rcu->bmap, 0, ram_bitmap_pages); 1930 1931 if (migrate_postcopy_ram()) { 1932 migration_bitmap_rcu->unsentmap = bitmap_new(ram_bitmap_pages); 1933 bitmap_set(migration_bitmap_rcu->unsentmap, 0, ram_bitmap_pages); 1934 } 1935 1936 /* 1937 * Count the total number of pages used by ram blocks not including any 1938 * gaps due to alignment or unplugs. 1939 */ 1940 migration_dirty_pages = ram_bytes_total() >> TARGET_PAGE_BITS; 1941 1942 memory_global_dirty_log_start(); 1943 migration_bitmap_sync(); 1944 qemu_mutex_unlock_ramlist(); 1945 qemu_mutex_unlock_iothread(); 1946 1947 qemu_put_be64(f, ram_bytes_total() | RAM_SAVE_FLAG_MEM_SIZE); 1948 1949 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { 1950 qemu_put_byte(f, strlen(block->idstr)); 1951 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr)); 1952 qemu_put_be64(f, block->used_length); 1953 } 1954 1955 rcu_read_unlock(); 1956 1957 ram_control_before_iterate(f, RAM_CONTROL_SETUP); 1958 ram_control_after_iterate(f, RAM_CONTROL_SETUP); 1959 1960 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 1961 1962 return 0; 1963 } 1964 1965 static int ram_save_iterate(QEMUFile *f, void *opaque) 1966 { 1967 int ret; 1968 int i; 1969 int64_t t0; 1970 int pages_sent = 0; 1971 1972 rcu_read_lock(); 1973 if (ram_list.version != last_version) { 1974 reset_ram_globals(); 1975 } 1976 1977 /* Read version before ram_list.blocks */ 1978 smp_rmb(); 1979 1980 ram_control_before_iterate(f, RAM_CONTROL_ROUND); 1981 1982 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 1983 i = 0; 1984 while ((ret = qemu_file_rate_limit(f)) == 0) { 1985 int pages; 1986 1987 pages = ram_find_and_save_block(f, false, &bytes_transferred); 1988 /* no more pages to sent */ 1989 if (pages == 0) { 1990 break; 1991 } 1992 pages_sent += pages; 1993 acct_info.iterations++; 1994 1995 /* we want to check in the 1st loop, just in case it was the 1st time 1996 and we had to sync the dirty bitmap. 1997 qemu_get_clock_ns() is a bit expensive, so we only check each some 1998 iterations 1999 */ 2000 if ((i & 63) == 0) { 2001 uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) / 1000000; 2002 if (t1 > MAX_WAIT) { 2003 DPRINTF("big wait: %" PRIu64 " milliseconds, %d iterations\n", 2004 t1, i); 2005 break; 2006 } 2007 } 2008 i++; 2009 } 2010 flush_compressed_data(f); 2011 rcu_read_unlock(); 2012 2013 /* 2014 * Must occur before EOS (or any QEMUFile operation) 2015 * because of RDMA protocol. 2016 */ 2017 ram_control_after_iterate(f, RAM_CONTROL_ROUND); 2018 2019 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 2020 bytes_transferred += 8; 2021 2022 ret = qemu_file_get_error(f); 2023 if (ret < 0) { 2024 return ret; 2025 } 2026 2027 return pages_sent; 2028 } 2029 2030 /* Called with iothread lock */ 2031 static int ram_save_complete(QEMUFile *f, void *opaque) 2032 { 2033 rcu_read_lock(); 2034 2035 if (!migration_in_postcopy(migrate_get_current())) { 2036 migration_bitmap_sync(); 2037 } 2038 2039 ram_control_before_iterate(f, RAM_CONTROL_FINISH); 2040 2041 /* try transferring iterative blocks of memory */ 2042 2043 /* flush all remaining blocks regardless of rate limiting */ 2044 while (true) { 2045 int pages; 2046 2047 pages = ram_find_and_save_block(f, true, &bytes_transferred); 2048 /* no more blocks to sent */ 2049 if (pages == 0) { 2050 break; 2051 } 2052 } 2053 2054 flush_compressed_data(f); 2055 ram_control_after_iterate(f, RAM_CONTROL_FINISH); 2056 2057 rcu_read_unlock(); 2058 2059 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 2060 2061 return 0; 2062 } 2063 2064 static void ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size, 2065 uint64_t *non_postcopiable_pending, 2066 uint64_t *postcopiable_pending) 2067 { 2068 uint64_t remaining_size; 2069 2070 remaining_size = ram_save_remaining() * TARGET_PAGE_SIZE; 2071 2072 if (!migration_in_postcopy(migrate_get_current()) && 2073 remaining_size < max_size) { 2074 qemu_mutex_lock_iothread(); 2075 rcu_read_lock(); 2076 migration_bitmap_sync(); 2077 rcu_read_unlock(); 2078 qemu_mutex_unlock_iothread(); 2079 remaining_size = ram_save_remaining() * TARGET_PAGE_SIZE; 2080 } 2081 2082 /* We can do postcopy, and all the data is postcopiable */ 2083 *postcopiable_pending += remaining_size; 2084 } 2085 2086 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host) 2087 { 2088 unsigned int xh_len; 2089 int xh_flags; 2090 uint8_t *loaded_data; 2091 2092 if (!xbzrle_decoded_buf) { 2093 xbzrle_decoded_buf = g_malloc(TARGET_PAGE_SIZE); 2094 } 2095 loaded_data = xbzrle_decoded_buf; 2096 2097 /* extract RLE header */ 2098 xh_flags = qemu_get_byte(f); 2099 xh_len = qemu_get_be16(f); 2100 2101 if (xh_flags != ENCODING_FLAG_XBZRLE) { 2102 error_report("Failed to load XBZRLE page - wrong compression!"); 2103 return -1; 2104 } 2105 2106 if (xh_len > TARGET_PAGE_SIZE) { 2107 error_report("Failed to load XBZRLE page - len overflow!"); 2108 return -1; 2109 } 2110 /* load data and decode */ 2111 qemu_get_buffer_in_place(f, &loaded_data, xh_len); 2112 2113 /* decode RLE */ 2114 if (xbzrle_decode_buffer(loaded_data, xh_len, host, 2115 TARGET_PAGE_SIZE) == -1) { 2116 error_report("Failed to load XBZRLE page - decode error!"); 2117 return -1; 2118 } 2119 2120 return 0; 2121 } 2122 2123 /* Must be called from within a rcu critical section. 2124 * Returns a pointer from within the RCU-protected ram_list. 2125 */ 2126 /* 2127 * Read a RAMBlock ID from the stream f. 2128 * 2129 * f: Stream to read from 2130 * flags: Page flags (mostly to see if it's a continuation of previous block) 2131 */ 2132 static inline RAMBlock *ram_block_from_stream(QEMUFile *f, 2133 int flags) 2134 { 2135 static RAMBlock *block = NULL; 2136 char id[256]; 2137 uint8_t len; 2138 2139 if (flags & RAM_SAVE_FLAG_CONTINUE) { 2140 if (!block) { 2141 error_report("Ack, bad migration stream!"); 2142 return NULL; 2143 } 2144 return block; 2145 } 2146 2147 len = qemu_get_byte(f); 2148 qemu_get_buffer(f, (uint8_t *)id, len); 2149 id[len] = 0; 2150 2151 block = qemu_ram_block_by_name(id); 2152 if (!block) { 2153 error_report("Can't find block %s", id); 2154 return NULL; 2155 } 2156 2157 return block; 2158 } 2159 2160 static inline void *host_from_ram_block_offset(RAMBlock *block, 2161 ram_addr_t offset) 2162 { 2163 if (!offset_in_ramblock(block, offset)) { 2164 return NULL; 2165 } 2166 2167 return block->host + offset; 2168 } 2169 2170 /* 2171 * If a page (or a whole RDMA chunk) has been 2172 * determined to be zero, then zap it. 2173 */ 2174 void ram_handle_compressed(void *host, uint8_t ch, uint64_t size) 2175 { 2176 if (ch != 0 || !is_zero_range(host, size)) { 2177 memset(host, ch, size); 2178 } 2179 } 2180 2181 static void *do_data_decompress(void *opaque) 2182 { 2183 DecompressParam *param = opaque; 2184 unsigned long pagesize; 2185 uint8_t *des; 2186 int len; 2187 2188 qemu_mutex_lock(¶m->mutex); 2189 while (!param->quit) { 2190 if (param->des) { 2191 des = param->des; 2192 len = param->len; 2193 param->des = 0; 2194 qemu_mutex_unlock(¶m->mutex); 2195 2196 pagesize = TARGET_PAGE_SIZE; 2197 /* uncompress() will return failed in some case, especially 2198 * when the page is dirted when doing the compression, it's 2199 * not a problem because the dirty page will be retransferred 2200 * and uncompress() won't break the data in other pages. 2201 */ 2202 uncompress((Bytef *)des, &pagesize, 2203 (const Bytef *)param->compbuf, len); 2204 2205 qemu_mutex_lock(&decomp_done_lock); 2206 param->done = true; 2207 qemu_cond_signal(&decomp_done_cond); 2208 qemu_mutex_unlock(&decomp_done_lock); 2209 2210 qemu_mutex_lock(¶m->mutex); 2211 } else { 2212 qemu_cond_wait(¶m->cond, ¶m->mutex); 2213 } 2214 } 2215 qemu_mutex_unlock(¶m->mutex); 2216 2217 return NULL; 2218 } 2219 2220 static void wait_for_decompress_done(void) 2221 { 2222 int idx, thread_count; 2223 2224 if (!migrate_use_compression()) { 2225 return; 2226 } 2227 2228 thread_count = migrate_decompress_threads(); 2229 qemu_mutex_lock(&decomp_done_lock); 2230 for (idx = 0; idx < thread_count; idx++) { 2231 while (!decomp_param[idx].done) { 2232 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock); 2233 } 2234 } 2235 qemu_mutex_unlock(&decomp_done_lock); 2236 } 2237 2238 void migrate_decompress_threads_create(void) 2239 { 2240 int i, thread_count; 2241 2242 thread_count = migrate_decompress_threads(); 2243 decompress_threads = g_new0(QemuThread, thread_count); 2244 decomp_param = g_new0(DecompressParam, thread_count); 2245 qemu_mutex_init(&decomp_done_lock); 2246 qemu_cond_init(&decomp_done_cond); 2247 for (i = 0; i < thread_count; i++) { 2248 qemu_mutex_init(&decomp_param[i].mutex); 2249 qemu_cond_init(&decomp_param[i].cond); 2250 decomp_param[i].compbuf = g_malloc0(compressBound(TARGET_PAGE_SIZE)); 2251 decomp_param[i].done = true; 2252 decomp_param[i].quit = false; 2253 qemu_thread_create(decompress_threads + i, "decompress", 2254 do_data_decompress, decomp_param + i, 2255 QEMU_THREAD_JOINABLE); 2256 } 2257 } 2258 2259 void migrate_decompress_threads_join(void) 2260 { 2261 int i, thread_count; 2262 2263 thread_count = migrate_decompress_threads(); 2264 for (i = 0; i < thread_count; i++) { 2265 qemu_mutex_lock(&decomp_param[i].mutex); 2266 decomp_param[i].quit = true; 2267 qemu_cond_signal(&decomp_param[i].cond); 2268 qemu_mutex_unlock(&decomp_param[i].mutex); 2269 } 2270 for (i = 0; i < thread_count; i++) { 2271 qemu_thread_join(decompress_threads + i); 2272 qemu_mutex_destroy(&decomp_param[i].mutex); 2273 qemu_cond_destroy(&decomp_param[i].cond); 2274 g_free(decomp_param[i].compbuf); 2275 } 2276 g_free(decompress_threads); 2277 g_free(decomp_param); 2278 decompress_threads = NULL; 2279 decomp_param = NULL; 2280 } 2281 2282 static void decompress_data_with_multi_threads(QEMUFile *f, 2283 void *host, int len) 2284 { 2285 int idx, thread_count; 2286 2287 thread_count = migrate_decompress_threads(); 2288 qemu_mutex_lock(&decomp_done_lock); 2289 while (true) { 2290 for (idx = 0; idx < thread_count; idx++) { 2291 if (decomp_param[idx].done) { 2292 decomp_param[idx].done = false; 2293 qemu_mutex_lock(&decomp_param[idx].mutex); 2294 qemu_get_buffer(f, decomp_param[idx].compbuf, len); 2295 decomp_param[idx].des = host; 2296 decomp_param[idx].len = len; 2297 qemu_cond_signal(&decomp_param[idx].cond); 2298 qemu_mutex_unlock(&decomp_param[idx].mutex); 2299 break; 2300 } 2301 } 2302 if (idx < thread_count) { 2303 break; 2304 } else { 2305 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock); 2306 } 2307 } 2308 qemu_mutex_unlock(&decomp_done_lock); 2309 } 2310 2311 /* 2312 * Allocate data structures etc needed by incoming migration with postcopy-ram 2313 * postcopy-ram's similarly names postcopy_ram_incoming_init does the work 2314 */ 2315 int ram_postcopy_incoming_init(MigrationIncomingState *mis) 2316 { 2317 size_t ram_pages = last_ram_offset() >> TARGET_PAGE_BITS; 2318 2319 return postcopy_ram_incoming_init(mis, ram_pages); 2320 } 2321 2322 /* 2323 * Called in postcopy mode by ram_load(). 2324 * rcu_read_lock is taken prior to this being called. 2325 */ 2326 static int ram_load_postcopy(QEMUFile *f) 2327 { 2328 int flags = 0, ret = 0; 2329 bool place_needed = false; 2330 bool matching_page_sizes = qemu_host_page_size == TARGET_PAGE_SIZE; 2331 MigrationIncomingState *mis = migration_incoming_get_current(); 2332 /* Temporary page that is later 'placed' */ 2333 void *postcopy_host_page = postcopy_get_tmp_page(mis); 2334 void *last_host = NULL; 2335 bool all_zero = false; 2336 2337 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) { 2338 ram_addr_t addr; 2339 void *host = NULL; 2340 void *page_buffer = NULL; 2341 void *place_source = NULL; 2342 uint8_t ch; 2343 2344 addr = qemu_get_be64(f); 2345 flags = addr & ~TARGET_PAGE_MASK; 2346 addr &= TARGET_PAGE_MASK; 2347 2348 trace_ram_load_postcopy_loop((uint64_t)addr, flags); 2349 place_needed = false; 2350 if (flags & (RAM_SAVE_FLAG_COMPRESS | RAM_SAVE_FLAG_PAGE)) { 2351 RAMBlock *block = ram_block_from_stream(f, flags); 2352 2353 host = host_from_ram_block_offset(block, addr); 2354 if (!host) { 2355 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr); 2356 ret = -EINVAL; 2357 break; 2358 } 2359 /* 2360 * Postcopy requires that we place whole host pages atomically. 2361 * To make it atomic, the data is read into a temporary page 2362 * that's moved into place later. 2363 * The migration protocol uses, possibly smaller, target-pages 2364 * however the source ensures it always sends all the components 2365 * of a host page in order. 2366 */ 2367 page_buffer = postcopy_host_page + 2368 ((uintptr_t)host & ~qemu_host_page_mask); 2369 /* If all TP are zero then we can optimise the place */ 2370 if (!((uintptr_t)host & ~qemu_host_page_mask)) { 2371 all_zero = true; 2372 } else { 2373 /* not the 1st TP within the HP */ 2374 if (host != (last_host + TARGET_PAGE_SIZE)) { 2375 error_report("Non-sequential target page %p/%p", 2376 host, last_host); 2377 ret = -EINVAL; 2378 break; 2379 } 2380 } 2381 2382 2383 /* 2384 * If it's the last part of a host page then we place the host 2385 * page 2386 */ 2387 place_needed = (((uintptr_t)host + TARGET_PAGE_SIZE) & 2388 ~qemu_host_page_mask) == 0; 2389 place_source = postcopy_host_page; 2390 } 2391 last_host = host; 2392 2393 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) { 2394 case RAM_SAVE_FLAG_COMPRESS: 2395 ch = qemu_get_byte(f); 2396 memset(page_buffer, ch, TARGET_PAGE_SIZE); 2397 if (ch) { 2398 all_zero = false; 2399 } 2400 break; 2401 2402 case RAM_SAVE_FLAG_PAGE: 2403 all_zero = false; 2404 if (!place_needed || !matching_page_sizes) { 2405 qemu_get_buffer(f, page_buffer, TARGET_PAGE_SIZE); 2406 } else { 2407 /* Avoids the qemu_file copy during postcopy, which is 2408 * going to do a copy later; can only do it when we 2409 * do this read in one go (matching page sizes) 2410 */ 2411 qemu_get_buffer_in_place(f, (uint8_t **)&place_source, 2412 TARGET_PAGE_SIZE); 2413 } 2414 break; 2415 case RAM_SAVE_FLAG_EOS: 2416 /* normal exit */ 2417 break; 2418 default: 2419 error_report("Unknown combination of migration flags: %#x" 2420 " (postcopy mode)", flags); 2421 ret = -EINVAL; 2422 } 2423 2424 if (place_needed) { 2425 /* This gets called at the last target page in the host page */ 2426 if (all_zero) { 2427 ret = postcopy_place_page_zero(mis, 2428 host + TARGET_PAGE_SIZE - 2429 qemu_host_page_size); 2430 } else { 2431 ret = postcopy_place_page(mis, host + TARGET_PAGE_SIZE - 2432 qemu_host_page_size, 2433 place_source); 2434 } 2435 } 2436 if (!ret) { 2437 ret = qemu_file_get_error(f); 2438 } 2439 } 2440 2441 return ret; 2442 } 2443 2444 static int ram_load(QEMUFile *f, void *opaque, int version_id) 2445 { 2446 int flags = 0, ret = 0; 2447 static uint64_t seq_iter; 2448 int len = 0; 2449 /* 2450 * If system is running in postcopy mode, page inserts to host memory must 2451 * be atomic 2452 */ 2453 bool postcopy_running = postcopy_state_get() >= POSTCOPY_INCOMING_LISTENING; 2454 2455 seq_iter++; 2456 2457 if (version_id != 4) { 2458 ret = -EINVAL; 2459 } 2460 2461 /* This RCU critical section can be very long running. 2462 * When RCU reclaims in the code start to become numerous, 2463 * it will be necessary to reduce the granularity of this 2464 * critical section. 2465 */ 2466 rcu_read_lock(); 2467 2468 if (postcopy_running) { 2469 ret = ram_load_postcopy(f); 2470 } 2471 2472 while (!postcopy_running && !ret && !(flags & RAM_SAVE_FLAG_EOS)) { 2473 ram_addr_t addr, total_ram_bytes; 2474 void *host = NULL; 2475 uint8_t ch; 2476 2477 addr = qemu_get_be64(f); 2478 flags = addr & ~TARGET_PAGE_MASK; 2479 addr &= TARGET_PAGE_MASK; 2480 2481 if (flags & (RAM_SAVE_FLAG_COMPRESS | RAM_SAVE_FLAG_PAGE | 2482 RAM_SAVE_FLAG_COMPRESS_PAGE | RAM_SAVE_FLAG_XBZRLE)) { 2483 RAMBlock *block = ram_block_from_stream(f, flags); 2484 2485 host = host_from_ram_block_offset(block, addr); 2486 if (!host) { 2487 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr); 2488 ret = -EINVAL; 2489 break; 2490 } 2491 } 2492 2493 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) { 2494 case RAM_SAVE_FLAG_MEM_SIZE: 2495 /* Synchronize RAM block list */ 2496 total_ram_bytes = addr; 2497 while (!ret && total_ram_bytes) { 2498 RAMBlock *block; 2499 char id[256]; 2500 ram_addr_t length; 2501 2502 len = qemu_get_byte(f); 2503 qemu_get_buffer(f, (uint8_t *)id, len); 2504 id[len] = 0; 2505 length = qemu_get_be64(f); 2506 2507 block = qemu_ram_block_by_name(id); 2508 if (block) { 2509 if (length != block->used_length) { 2510 Error *local_err = NULL; 2511 2512 ret = qemu_ram_resize(block, length, 2513 &local_err); 2514 if (local_err) { 2515 error_report_err(local_err); 2516 } 2517 } 2518 ram_control_load_hook(f, RAM_CONTROL_BLOCK_REG, 2519 block->idstr); 2520 } else { 2521 error_report("Unknown ramblock \"%s\", cannot " 2522 "accept migration", id); 2523 ret = -EINVAL; 2524 } 2525 2526 total_ram_bytes -= length; 2527 } 2528 break; 2529 2530 case RAM_SAVE_FLAG_COMPRESS: 2531 ch = qemu_get_byte(f); 2532 ram_handle_compressed(host, ch, TARGET_PAGE_SIZE); 2533 break; 2534 2535 case RAM_SAVE_FLAG_PAGE: 2536 qemu_get_buffer(f, host, TARGET_PAGE_SIZE); 2537 break; 2538 2539 case RAM_SAVE_FLAG_COMPRESS_PAGE: 2540 len = qemu_get_be32(f); 2541 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) { 2542 error_report("Invalid compressed data length: %d", len); 2543 ret = -EINVAL; 2544 break; 2545 } 2546 decompress_data_with_multi_threads(f, host, len); 2547 break; 2548 2549 case RAM_SAVE_FLAG_XBZRLE: 2550 if (load_xbzrle(f, addr, host) < 0) { 2551 error_report("Failed to decompress XBZRLE page at " 2552 RAM_ADDR_FMT, addr); 2553 ret = -EINVAL; 2554 break; 2555 } 2556 break; 2557 case RAM_SAVE_FLAG_EOS: 2558 /* normal exit */ 2559 break; 2560 default: 2561 if (flags & RAM_SAVE_FLAG_HOOK) { 2562 ram_control_load_hook(f, RAM_CONTROL_HOOK, NULL); 2563 } else { 2564 error_report("Unknown combination of migration flags: %#x", 2565 flags); 2566 ret = -EINVAL; 2567 } 2568 } 2569 if (!ret) { 2570 ret = qemu_file_get_error(f); 2571 } 2572 } 2573 2574 wait_for_decompress_done(); 2575 rcu_read_unlock(); 2576 DPRINTF("Completed load of VM with exit code %d seq iteration " 2577 "%" PRIu64 "\n", ret, seq_iter); 2578 return ret; 2579 } 2580 2581 static SaveVMHandlers savevm_ram_handlers = { 2582 .save_live_setup = ram_save_setup, 2583 .save_live_iterate = ram_save_iterate, 2584 .save_live_complete_postcopy = ram_save_complete, 2585 .save_live_complete_precopy = ram_save_complete, 2586 .save_live_pending = ram_save_pending, 2587 .load_state = ram_load, 2588 .cleanup = ram_migration_cleanup, 2589 }; 2590 2591 void ram_mig_init(void) 2592 { 2593 qemu_mutex_init(&XBZRLE.lock); 2594 register_savevm_live(NULL, "ram", 0, 4, &savevm_ram_handlers, NULL); 2595 } 2596