1 /* 2 * QEMU System Emulator 3 * 4 * Copyright (c) 2003-2008 Fabrice Bellard 5 * Copyright (c) 2011-2015 Red Hat Inc 6 * 7 * Authors: 8 * Juan Quintela <quintela@redhat.com> 9 * 10 * Permission is hereby granted, free of charge, to any person obtaining a copy 11 * of this software and associated documentation files (the "Software"), to deal 12 * in the Software without restriction, including without limitation the rights 13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 14 * copies of the Software, and to permit persons to whom the Software is 15 * furnished to do so, subject to the following conditions: 16 * 17 * The above copyright notice and this permission notice shall be included in 18 * all copies or substantial portions of the Software. 19 * 20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 26 * THE SOFTWARE. 27 */ 28 29 #include "qemu/osdep.h" 30 #include "qemu/cutils.h" 31 #include "qemu/bitops.h" 32 #include "qemu/bitmap.h" 33 #include "qemu/madvise.h" 34 #include "qemu/main-loop.h" 35 #include "xbzrle.h" 36 #include "ram-compress.h" 37 #include "ram.h" 38 #include "migration.h" 39 #include "migration-stats.h" 40 #include "migration/register.h" 41 #include "migration/misc.h" 42 #include "qemu-file.h" 43 #include "postcopy-ram.h" 44 #include "page_cache.h" 45 #include "qemu/error-report.h" 46 #include "qapi/error.h" 47 #include "qapi/qapi-types-migration.h" 48 #include "qapi/qapi-events-migration.h" 49 #include "qapi/qapi-commands-migration.h" 50 #include "qapi/qmp/qerror.h" 51 #include "trace.h" 52 #include "exec/ram_addr.h" 53 #include "exec/target_page.h" 54 #include "qemu/rcu_queue.h" 55 #include "migration/colo.h" 56 #include "block.h" 57 #include "sysemu/cpu-throttle.h" 58 #include "savevm.h" 59 #include "qemu/iov.h" 60 #include "multifd.h" 61 #include "sysemu/runstate.h" 62 #include "rdma.h" 63 #include "options.h" 64 #include "sysemu/dirtylimit.h" 65 #include "sysemu/kvm.h" 66 67 #include "hw/boards.h" /* for machine_dump_guest_core() */ 68 69 #if defined(__linux__) 70 #include "qemu/userfaultfd.h" 71 #endif /* defined(__linux__) */ 72 73 /***********************************************************/ 74 /* ram save/restore */ 75 76 /* 77 * RAM_SAVE_FLAG_ZERO used to be named RAM_SAVE_FLAG_COMPRESS, it 78 * worked for pages that were filled with the same char. We switched 79 * it to only search for the zero value. And to avoid confusion with 80 * RAM_SAVE_FLAG_COMPRESS_PAGE just rename it. 81 */ 82 /* 83 * RAM_SAVE_FLAG_FULL was obsoleted in 2009, it can be reused now 84 */ 85 #define RAM_SAVE_FLAG_FULL 0x01 86 #define RAM_SAVE_FLAG_ZERO 0x02 87 #define RAM_SAVE_FLAG_MEM_SIZE 0x04 88 #define RAM_SAVE_FLAG_PAGE 0x08 89 #define RAM_SAVE_FLAG_EOS 0x10 90 #define RAM_SAVE_FLAG_CONTINUE 0x20 91 #define RAM_SAVE_FLAG_XBZRLE 0x40 92 /* 0x80 is reserved in rdma.h for RAM_SAVE_FLAG_HOOK */ 93 #define RAM_SAVE_FLAG_COMPRESS_PAGE 0x100 94 #define RAM_SAVE_FLAG_MULTIFD_FLUSH 0x200 95 /* We can't use any flag that is bigger than 0x200 */ 96 97 XBZRLECacheStats xbzrle_counters; 98 99 /* used by the search for pages to send */ 100 struct PageSearchStatus { 101 /* The migration channel used for a specific host page */ 102 QEMUFile *pss_channel; 103 /* Last block from where we have sent data */ 104 RAMBlock *last_sent_block; 105 /* Current block being searched */ 106 RAMBlock *block; 107 /* Current page to search from */ 108 unsigned long page; 109 /* Set once we wrap around */ 110 bool complete_round; 111 /* Whether we're sending a host page */ 112 bool host_page_sending; 113 /* The start/end of current host page. Invalid if host_page_sending==false */ 114 unsigned long host_page_start; 115 unsigned long host_page_end; 116 }; 117 typedef struct PageSearchStatus PageSearchStatus; 118 119 /* struct contains XBZRLE cache and a static page 120 used by the compression */ 121 static struct { 122 /* buffer used for XBZRLE encoding */ 123 uint8_t *encoded_buf; 124 /* buffer for storing page content */ 125 uint8_t *current_buf; 126 /* Cache for XBZRLE, Protected by lock. */ 127 PageCache *cache; 128 QemuMutex lock; 129 /* it will store a page full of zeros */ 130 uint8_t *zero_target_page; 131 /* buffer used for XBZRLE decoding */ 132 uint8_t *decoded_buf; 133 } XBZRLE; 134 135 static void XBZRLE_cache_lock(void) 136 { 137 if (migrate_xbzrle()) { 138 qemu_mutex_lock(&XBZRLE.lock); 139 } 140 } 141 142 static void XBZRLE_cache_unlock(void) 143 { 144 if (migrate_xbzrle()) { 145 qemu_mutex_unlock(&XBZRLE.lock); 146 } 147 } 148 149 /** 150 * xbzrle_cache_resize: resize the xbzrle cache 151 * 152 * This function is called from migrate_params_apply in main 153 * thread, possibly while a migration is in progress. A running 154 * migration may be using the cache and might finish during this call, 155 * hence changes to the cache are protected by XBZRLE.lock(). 156 * 157 * Returns 0 for success or -1 for error 158 * 159 * @new_size: new cache size 160 * @errp: set *errp if the check failed, with reason 161 */ 162 int xbzrle_cache_resize(uint64_t new_size, Error **errp) 163 { 164 PageCache *new_cache; 165 int64_t ret = 0; 166 167 /* Check for truncation */ 168 if (new_size != (size_t)new_size) { 169 error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cache size", 170 "exceeding address space"); 171 return -1; 172 } 173 174 if (new_size == migrate_xbzrle_cache_size()) { 175 /* nothing to do */ 176 return 0; 177 } 178 179 XBZRLE_cache_lock(); 180 181 if (XBZRLE.cache != NULL) { 182 new_cache = cache_init(new_size, TARGET_PAGE_SIZE, errp); 183 if (!new_cache) { 184 ret = -1; 185 goto out; 186 } 187 188 cache_fini(XBZRLE.cache); 189 XBZRLE.cache = new_cache; 190 } 191 out: 192 XBZRLE_cache_unlock(); 193 return ret; 194 } 195 196 static bool postcopy_preempt_active(void) 197 { 198 return migrate_postcopy_preempt() && migration_in_postcopy(); 199 } 200 201 bool migrate_ram_is_ignored(RAMBlock *block) 202 { 203 return !qemu_ram_is_migratable(block) || 204 (migrate_ignore_shared() && qemu_ram_is_shared(block) 205 && qemu_ram_is_named_file(block)); 206 } 207 208 #undef RAMBLOCK_FOREACH 209 210 int foreach_not_ignored_block(RAMBlockIterFunc func, void *opaque) 211 { 212 RAMBlock *block; 213 int ret = 0; 214 215 RCU_READ_LOCK_GUARD(); 216 217 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 218 ret = func(block, opaque); 219 if (ret) { 220 break; 221 } 222 } 223 return ret; 224 } 225 226 static void ramblock_recv_map_init(void) 227 { 228 RAMBlock *rb; 229 230 RAMBLOCK_FOREACH_NOT_IGNORED(rb) { 231 assert(!rb->receivedmap); 232 rb->receivedmap = bitmap_new(rb->max_length >> qemu_target_page_bits()); 233 } 234 } 235 236 int ramblock_recv_bitmap_test(RAMBlock *rb, void *host_addr) 237 { 238 return test_bit(ramblock_recv_bitmap_offset(host_addr, rb), 239 rb->receivedmap); 240 } 241 242 bool ramblock_recv_bitmap_test_byte_offset(RAMBlock *rb, uint64_t byte_offset) 243 { 244 return test_bit(byte_offset >> TARGET_PAGE_BITS, rb->receivedmap); 245 } 246 247 void ramblock_recv_bitmap_set(RAMBlock *rb, void *host_addr) 248 { 249 set_bit_atomic(ramblock_recv_bitmap_offset(host_addr, rb), rb->receivedmap); 250 } 251 252 void ramblock_recv_bitmap_set_range(RAMBlock *rb, void *host_addr, 253 size_t nr) 254 { 255 bitmap_set_atomic(rb->receivedmap, 256 ramblock_recv_bitmap_offset(host_addr, rb), 257 nr); 258 } 259 260 #define RAMBLOCK_RECV_BITMAP_ENDING (0x0123456789abcdefULL) 261 262 /* 263 * Format: bitmap_size (8 bytes) + whole_bitmap (N bytes). 264 * 265 * Returns >0 if success with sent bytes, or <0 if error. 266 */ 267 int64_t ramblock_recv_bitmap_send(QEMUFile *file, 268 const char *block_name) 269 { 270 RAMBlock *block = qemu_ram_block_by_name(block_name); 271 unsigned long *le_bitmap, nbits; 272 uint64_t size; 273 274 if (!block) { 275 error_report("%s: invalid block name: %s", __func__, block_name); 276 return -1; 277 } 278 279 nbits = block->postcopy_length >> TARGET_PAGE_BITS; 280 281 /* 282 * Make sure the tmp bitmap buffer is big enough, e.g., on 32bit 283 * machines we may need 4 more bytes for padding (see below 284 * comment). So extend it a bit before hand. 285 */ 286 le_bitmap = bitmap_new(nbits + BITS_PER_LONG); 287 288 /* 289 * Always use little endian when sending the bitmap. This is 290 * required that when source and destination VMs are not using the 291 * same endianness. (Note: big endian won't work.) 292 */ 293 bitmap_to_le(le_bitmap, block->receivedmap, nbits); 294 295 /* Size of the bitmap, in bytes */ 296 size = DIV_ROUND_UP(nbits, 8); 297 298 /* 299 * size is always aligned to 8 bytes for 64bit machines, but it 300 * may not be true for 32bit machines. We need this padding to 301 * make sure the migration can survive even between 32bit and 302 * 64bit machines. 303 */ 304 size = ROUND_UP(size, 8); 305 306 qemu_put_be64(file, size); 307 qemu_put_buffer(file, (const uint8_t *)le_bitmap, size); 308 g_free(le_bitmap); 309 /* 310 * Mark as an end, in case the middle part is screwed up due to 311 * some "mysterious" reason. 312 */ 313 qemu_put_be64(file, RAMBLOCK_RECV_BITMAP_ENDING); 314 int ret = qemu_fflush(file); 315 if (ret) { 316 return ret; 317 } 318 319 return size + sizeof(size); 320 } 321 322 /* 323 * An outstanding page request, on the source, having been received 324 * and queued 325 */ 326 struct RAMSrcPageRequest { 327 RAMBlock *rb; 328 hwaddr offset; 329 hwaddr len; 330 331 QSIMPLEQ_ENTRY(RAMSrcPageRequest) next_req; 332 }; 333 334 /* State of RAM for migration */ 335 struct RAMState { 336 /* 337 * PageSearchStatus structures for the channels when send pages. 338 * Protected by the bitmap_mutex. 339 */ 340 PageSearchStatus pss[RAM_CHANNEL_MAX]; 341 /* UFFD file descriptor, used in 'write-tracking' migration */ 342 int uffdio_fd; 343 /* total ram size in bytes */ 344 uint64_t ram_bytes_total; 345 /* Last block that we have visited searching for dirty pages */ 346 RAMBlock *last_seen_block; 347 /* Last dirty target page we have sent */ 348 ram_addr_t last_page; 349 /* last ram version we have seen */ 350 uint32_t last_version; 351 /* How many times we have dirty too many pages */ 352 int dirty_rate_high_cnt; 353 /* these variables are used for bitmap sync */ 354 /* last time we did a full bitmap_sync */ 355 int64_t time_last_bitmap_sync; 356 /* bytes transferred at start_time */ 357 uint64_t bytes_xfer_prev; 358 /* number of dirty pages since start_time */ 359 uint64_t num_dirty_pages_period; 360 /* xbzrle misses since the beginning of the period */ 361 uint64_t xbzrle_cache_miss_prev; 362 /* Amount of xbzrle pages since the beginning of the period */ 363 uint64_t xbzrle_pages_prev; 364 /* Amount of xbzrle encoded bytes since the beginning of the period */ 365 uint64_t xbzrle_bytes_prev; 366 /* Are we really using XBZRLE (e.g., after the first round). */ 367 bool xbzrle_started; 368 /* Are we on the last stage of migration */ 369 bool last_stage; 370 371 /* total handled target pages at the beginning of period */ 372 uint64_t target_page_count_prev; 373 /* total handled target pages since start */ 374 uint64_t target_page_count; 375 /* number of dirty bits in the bitmap */ 376 uint64_t migration_dirty_pages; 377 /* 378 * Protects: 379 * - dirty/clear bitmap 380 * - migration_dirty_pages 381 * - pss structures 382 */ 383 QemuMutex bitmap_mutex; 384 /* The RAMBlock used in the last src_page_requests */ 385 RAMBlock *last_req_rb; 386 /* Queue of outstanding page requests from the destination */ 387 QemuMutex src_page_req_mutex; 388 QSIMPLEQ_HEAD(, RAMSrcPageRequest) src_page_requests; 389 390 /* 391 * This is only used when postcopy is in recovery phase, to communicate 392 * between the migration thread and the return path thread on dirty 393 * bitmap synchronizations. This field is unused in other stages of 394 * RAM migration. 395 */ 396 unsigned int postcopy_bmap_sync_requested; 397 }; 398 typedef struct RAMState RAMState; 399 400 static RAMState *ram_state; 401 402 static NotifierWithReturnList precopy_notifier_list; 403 404 /* Whether postcopy has queued requests? */ 405 static bool postcopy_has_request(RAMState *rs) 406 { 407 return !QSIMPLEQ_EMPTY_ATOMIC(&rs->src_page_requests); 408 } 409 410 void precopy_infrastructure_init(void) 411 { 412 notifier_with_return_list_init(&precopy_notifier_list); 413 } 414 415 void precopy_add_notifier(NotifierWithReturn *n) 416 { 417 notifier_with_return_list_add(&precopy_notifier_list, n); 418 } 419 420 void precopy_remove_notifier(NotifierWithReturn *n) 421 { 422 notifier_with_return_remove(n); 423 } 424 425 int precopy_notify(PrecopyNotifyReason reason, Error **errp) 426 { 427 PrecopyNotifyData pnd; 428 pnd.reason = reason; 429 pnd.errp = errp; 430 431 return notifier_with_return_list_notify(&precopy_notifier_list, &pnd); 432 } 433 434 uint64_t ram_bytes_remaining(void) 435 { 436 return ram_state ? (ram_state->migration_dirty_pages * TARGET_PAGE_SIZE) : 437 0; 438 } 439 440 void ram_transferred_add(uint64_t bytes) 441 { 442 if (runstate_is_running()) { 443 stat64_add(&mig_stats.precopy_bytes, bytes); 444 } else if (migration_in_postcopy()) { 445 stat64_add(&mig_stats.postcopy_bytes, bytes); 446 } else { 447 stat64_add(&mig_stats.downtime_bytes, bytes); 448 } 449 } 450 451 struct MigrationOps { 452 int (*ram_save_target_page)(RAMState *rs, PageSearchStatus *pss); 453 }; 454 typedef struct MigrationOps MigrationOps; 455 456 MigrationOps *migration_ops; 457 458 static int ram_save_host_page_urgent(PageSearchStatus *pss); 459 460 /* NOTE: page is the PFN not real ram_addr_t. */ 461 static void pss_init(PageSearchStatus *pss, RAMBlock *rb, ram_addr_t page) 462 { 463 pss->block = rb; 464 pss->page = page; 465 pss->complete_round = false; 466 } 467 468 /* 469 * Check whether two PSSs are actively sending the same page. Return true 470 * if it is, false otherwise. 471 */ 472 static bool pss_overlap(PageSearchStatus *pss1, PageSearchStatus *pss2) 473 { 474 return pss1->host_page_sending && pss2->host_page_sending && 475 (pss1->host_page_start == pss2->host_page_start); 476 } 477 478 /** 479 * save_page_header: write page header to wire 480 * 481 * If this is the 1st block, it also writes the block identification 482 * 483 * Returns the number of bytes written 484 * 485 * @pss: current PSS channel status 486 * @block: block that contains the page we want to send 487 * @offset: offset inside the block for the page 488 * in the lower bits, it contains flags 489 */ 490 static size_t save_page_header(PageSearchStatus *pss, QEMUFile *f, 491 RAMBlock *block, ram_addr_t offset) 492 { 493 size_t size, len; 494 bool same_block = (block == pss->last_sent_block); 495 496 if (same_block) { 497 offset |= RAM_SAVE_FLAG_CONTINUE; 498 } 499 qemu_put_be64(f, offset); 500 size = 8; 501 502 if (!same_block) { 503 len = strlen(block->idstr); 504 qemu_put_byte(f, len); 505 qemu_put_buffer(f, (uint8_t *)block->idstr, len); 506 size += 1 + len; 507 pss->last_sent_block = block; 508 } 509 return size; 510 } 511 512 /** 513 * mig_throttle_guest_down: throttle down the guest 514 * 515 * Reduce amount of guest cpu execution to hopefully slow down memory 516 * writes. If guest dirty memory rate is reduced below the rate at 517 * which we can transfer pages to the destination then we should be 518 * able to complete migration. Some workloads dirty memory way too 519 * fast and will not effectively converge, even with auto-converge. 520 */ 521 static void mig_throttle_guest_down(uint64_t bytes_dirty_period, 522 uint64_t bytes_dirty_threshold) 523 { 524 uint64_t pct_initial = migrate_cpu_throttle_initial(); 525 uint64_t pct_increment = migrate_cpu_throttle_increment(); 526 bool pct_tailslow = migrate_cpu_throttle_tailslow(); 527 int pct_max = migrate_max_cpu_throttle(); 528 529 uint64_t throttle_now = cpu_throttle_get_percentage(); 530 uint64_t cpu_now, cpu_ideal, throttle_inc; 531 532 /* We have not started throttling yet. Let's start it. */ 533 if (!cpu_throttle_active()) { 534 cpu_throttle_set(pct_initial); 535 } else { 536 /* Throttling already on, just increase the rate */ 537 if (!pct_tailslow) { 538 throttle_inc = pct_increment; 539 } else { 540 /* Compute the ideal CPU percentage used by Guest, which may 541 * make the dirty rate match the dirty rate threshold. */ 542 cpu_now = 100 - throttle_now; 543 cpu_ideal = cpu_now * (bytes_dirty_threshold * 1.0 / 544 bytes_dirty_period); 545 throttle_inc = MIN(cpu_now - cpu_ideal, pct_increment); 546 } 547 cpu_throttle_set(MIN(throttle_now + throttle_inc, pct_max)); 548 } 549 } 550 551 void mig_throttle_counter_reset(void) 552 { 553 RAMState *rs = ram_state; 554 555 rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); 556 rs->num_dirty_pages_period = 0; 557 rs->bytes_xfer_prev = migration_transferred_bytes(); 558 } 559 560 /** 561 * xbzrle_cache_zero_page: insert a zero page in the XBZRLE cache 562 * 563 * @current_addr: address for the zero page 564 * 565 * Update the xbzrle cache to reflect a page that's been sent as all 0. 566 * The important thing is that a stale (not-yet-0'd) page be replaced 567 * by the new data. 568 * As a bonus, if the page wasn't in the cache it gets added so that 569 * when a small write is made into the 0'd page it gets XBZRLE sent. 570 */ 571 static void xbzrle_cache_zero_page(ram_addr_t current_addr) 572 { 573 /* We don't care if this fails to allocate a new cache page 574 * as long as it updated an old one */ 575 cache_insert(XBZRLE.cache, current_addr, XBZRLE.zero_target_page, 576 stat64_get(&mig_stats.dirty_sync_count)); 577 } 578 579 #define ENCODING_FLAG_XBZRLE 0x1 580 581 /** 582 * save_xbzrle_page: compress and send current page 583 * 584 * Returns: 1 means that we wrote the page 585 * 0 means that page is identical to the one already sent 586 * -1 means that xbzrle would be longer than normal 587 * 588 * @rs: current RAM state 589 * @pss: current PSS channel 590 * @current_data: pointer to the address of the page contents 591 * @current_addr: addr of the page 592 * @block: block that contains the page we want to send 593 * @offset: offset inside the block for the page 594 */ 595 static int save_xbzrle_page(RAMState *rs, PageSearchStatus *pss, 596 uint8_t **current_data, ram_addr_t current_addr, 597 RAMBlock *block, ram_addr_t offset) 598 { 599 int encoded_len = 0, bytes_xbzrle; 600 uint8_t *prev_cached_page; 601 QEMUFile *file = pss->pss_channel; 602 uint64_t generation = stat64_get(&mig_stats.dirty_sync_count); 603 604 if (!cache_is_cached(XBZRLE.cache, current_addr, generation)) { 605 xbzrle_counters.cache_miss++; 606 if (!rs->last_stage) { 607 if (cache_insert(XBZRLE.cache, current_addr, *current_data, 608 generation) == -1) { 609 return -1; 610 } else { 611 /* update *current_data when the page has been 612 inserted into cache */ 613 *current_data = get_cached_data(XBZRLE.cache, current_addr); 614 } 615 } 616 return -1; 617 } 618 619 /* 620 * Reaching here means the page has hit the xbzrle cache, no matter what 621 * encoding result it is (normal encoding, overflow or skipping the page), 622 * count the page as encoded. This is used to calculate the encoding rate. 623 * 624 * Example: 2 pages (8KB) being encoded, first page encoding generates 2KB, 625 * 2nd page turns out to be skipped (i.e. no new bytes written to the 626 * page), the overall encoding rate will be 8KB / 2KB = 4, which has the 627 * skipped page included. In this way, the encoding rate can tell if the 628 * guest page is good for xbzrle encoding. 629 */ 630 xbzrle_counters.pages++; 631 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr); 632 633 /* save current buffer into memory */ 634 memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE); 635 636 /* XBZRLE encoding (if there is no overflow) */ 637 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf, 638 TARGET_PAGE_SIZE, XBZRLE.encoded_buf, 639 TARGET_PAGE_SIZE); 640 641 /* 642 * Update the cache contents, so that it corresponds to the data 643 * sent, in all cases except where we skip the page. 644 */ 645 if (!rs->last_stage && encoded_len != 0) { 646 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE); 647 /* 648 * In the case where we couldn't compress, ensure that the caller 649 * sends the data from the cache, since the guest might have 650 * changed the RAM since we copied it. 651 */ 652 *current_data = prev_cached_page; 653 } 654 655 if (encoded_len == 0) { 656 trace_save_xbzrle_page_skipping(); 657 return 0; 658 } else if (encoded_len == -1) { 659 trace_save_xbzrle_page_overflow(); 660 xbzrle_counters.overflow++; 661 xbzrle_counters.bytes += TARGET_PAGE_SIZE; 662 return -1; 663 } 664 665 /* Send XBZRLE based compressed page */ 666 bytes_xbzrle = save_page_header(pss, pss->pss_channel, block, 667 offset | RAM_SAVE_FLAG_XBZRLE); 668 qemu_put_byte(file, ENCODING_FLAG_XBZRLE); 669 qemu_put_be16(file, encoded_len); 670 qemu_put_buffer(file, XBZRLE.encoded_buf, encoded_len); 671 bytes_xbzrle += encoded_len + 1 + 2; 672 /* 673 * Like compressed_size (please see update_compress_thread_counts), 674 * the xbzrle encoded bytes don't count the 8 byte header with 675 * RAM_SAVE_FLAG_CONTINUE. 676 */ 677 xbzrle_counters.bytes += bytes_xbzrle - 8; 678 ram_transferred_add(bytes_xbzrle); 679 680 return 1; 681 } 682 683 /** 684 * pss_find_next_dirty: find the next dirty page of current ramblock 685 * 686 * This function updates pss->page to point to the next dirty page index 687 * within the ramblock to migrate, or the end of ramblock when nothing 688 * found. Note that when pss->host_page_sending==true it means we're 689 * during sending a host page, so we won't look for dirty page that is 690 * outside the host page boundary. 691 * 692 * @pss: the current page search status 693 */ 694 static void pss_find_next_dirty(PageSearchStatus *pss) 695 { 696 RAMBlock *rb = pss->block; 697 unsigned long size = rb->used_length >> TARGET_PAGE_BITS; 698 unsigned long *bitmap = rb->bmap; 699 700 if (migrate_ram_is_ignored(rb)) { 701 /* Points directly to the end, so we know no dirty page */ 702 pss->page = size; 703 return; 704 } 705 706 /* 707 * If during sending a host page, only look for dirty pages within the 708 * current host page being send. 709 */ 710 if (pss->host_page_sending) { 711 assert(pss->host_page_end); 712 size = MIN(size, pss->host_page_end); 713 } 714 715 pss->page = find_next_bit(bitmap, size, pss->page); 716 } 717 718 static void migration_clear_memory_region_dirty_bitmap(RAMBlock *rb, 719 unsigned long page) 720 { 721 uint8_t shift; 722 hwaddr size, start; 723 724 if (!rb->clear_bmap || !clear_bmap_test_and_clear(rb, page)) { 725 return; 726 } 727 728 shift = rb->clear_bmap_shift; 729 /* 730 * CLEAR_BITMAP_SHIFT_MIN should always guarantee this... this 731 * can make things easier sometimes since then start address 732 * of the small chunk will always be 64 pages aligned so the 733 * bitmap will always be aligned to unsigned long. We should 734 * even be able to remove this restriction but I'm simply 735 * keeping it. 736 */ 737 assert(shift >= 6); 738 739 size = 1ULL << (TARGET_PAGE_BITS + shift); 740 start = QEMU_ALIGN_DOWN((ram_addr_t)page << TARGET_PAGE_BITS, size); 741 trace_migration_bitmap_clear_dirty(rb->idstr, start, size, page); 742 memory_region_clear_dirty_bitmap(rb->mr, start, size); 743 } 744 745 static void 746 migration_clear_memory_region_dirty_bitmap_range(RAMBlock *rb, 747 unsigned long start, 748 unsigned long npages) 749 { 750 unsigned long i, chunk_pages = 1UL << rb->clear_bmap_shift; 751 unsigned long chunk_start = QEMU_ALIGN_DOWN(start, chunk_pages); 752 unsigned long chunk_end = QEMU_ALIGN_UP(start + npages, chunk_pages); 753 754 /* 755 * Clear pages from start to start + npages - 1, so the end boundary is 756 * exclusive. 757 */ 758 for (i = chunk_start; i < chunk_end; i += chunk_pages) { 759 migration_clear_memory_region_dirty_bitmap(rb, i); 760 } 761 } 762 763 /* 764 * colo_bitmap_find_diry:find contiguous dirty pages from start 765 * 766 * Returns the page offset within memory region of the start of the contiguout 767 * dirty page 768 * 769 * @rs: current RAM state 770 * @rb: RAMBlock where to search for dirty pages 771 * @start: page where we start the search 772 * @num: the number of contiguous dirty pages 773 */ 774 static inline 775 unsigned long colo_bitmap_find_dirty(RAMState *rs, RAMBlock *rb, 776 unsigned long start, unsigned long *num) 777 { 778 unsigned long size = rb->used_length >> TARGET_PAGE_BITS; 779 unsigned long *bitmap = rb->bmap; 780 unsigned long first, next; 781 782 *num = 0; 783 784 if (migrate_ram_is_ignored(rb)) { 785 return size; 786 } 787 788 first = find_next_bit(bitmap, size, start); 789 if (first >= size) { 790 return first; 791 } 792 next = find_next_zero_bit(bitmap, size, first + 1); 793 assert(next >= first); 794 *num = next - first; 795 return first; 796 } 797 798 static inline bool migration_bitmap_clear_dirty(RAMState *rs, 799 RAMBlock *rb, 800 unsigned long page) 801 { 802 bool ret; 803 804 /* 805 * Clear dirty bitmap if needed. This _must_ be called before we 806 * send any of the page in the chunk because we need to make sure 807 * we can capture further page content changes when we sync dirty 808 * log the next time. So as long as we are going to send any of 809 * the page in the chunk we clear the remote dirty bitmap for all. 810 * Clearing it earlier won't be a problem, but too late will. 811 */ 812 migration_clear_memory_region_dirty_bitmap(rb, page); 813 814 ret = test_and_clear_bit(page, rb->bmap); 815 if (ret) { 816 rs->migration_dirty_pages--; 817 } 818 819 return ret; 820 } 821 822 static void dirty_bitmap_clear_section(MemoryRegionSection *section, 823 void *opaque) 824 { 825 const hwaddr offset = section->offset_within_region; 826 const hwaddr size = int128_get64(section->size); 827 const unsigned long start = offset >> TARGET_PAGE_BITS; 828 const unsigned long npages = size >> TARGET_PAGE_BITS; 829 RAMBlock *rb = section->mr->ram_block; 830 uint64_t *cleared_bits = opaque; 831 832 /* 833 * We don't grab ram_state->bitmap_mutex because we expect to run 834 * only when starting migration or during postcopy recovery where 835 * we don't have concurrent access. 836 */ 837 if (!migration_in_postcopy() && !migrate_background_snapshot()) { 838 migration_clear_memory_region_dirty_bitmap_range(rb, start, npages); 839 } 840 *cleared_bits += bitmap_count_one_with_offset(rb->bmap, start, npages); 841 bitmap_clear(rb->bmap, start, npages); 842 } 843 844 /* 845 * Exclude all dirty pages from migration that fall into a discarded range as 846 * managed by a RamDiscardManager responsible for the mapped memory region of 847 * the RAMBlock. Clear the corresponding bits in the dirty bitmaps. 848 * 849 * Discarded pages ("logically unplugged") have undefined content and must 850 * not get migrated, because even reading these pages for migration might 851 * result in undesired behavior. 852 * 853 * Returns the number of cleared bits in the RAMBlock dirty bitmap. 854 * 855 * Note: The result is only stable while migrating (precopy/postcopy). 856 */ 857 static uint64_t ramblock_dirty_bitmap_clear_discarded_pages(RAMBlock *rb) 858 { 859 uint64_t cleared_bits = 0; 860 861 if (rb->mr && rb->bmap && memory_region_has_ram_discard_manager(rb->mr)) { 862 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr); 863 MemoryRegionSection section = { 864 .mr = rb->mr, 865 .offset_within_region = 0, 866 .size = int128_make64(qemu_ram_get_used_length(rb)), 867 }; 868 869 ram_discard_manager_replay_discarded(rdm, §ion, 870 dirty_bitmap_clear_section, 871 &cleared_bits); 872 } 873 return cleared_bits; 874 } 875 876 /* 877 * Check if a host-page aligned page falls into a discarded range as managed by 878 * a RamDiscardManager responsible for the mapped memory region of the RAMBlock. 879 * 880 * Note: The result is only stable while migrating (precopy/postcopy). 881 */ 882 bool ramblock_page_is_discarded(RAMBlock *rb, ram_addr_t start) 883 { 884 if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) { 885 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr); 886 MemoryRegionSection section = { 887 .mr = rb->mr, 888 .offset_within_region = start, 889 .size = int128_make64(qemu_ram_pagesize(rb)), 890 }; 891 892 return !ram_discard_manager_is_populated(rdm, §ion); 893 } 894 return false; 895 } 896 897 /* Called with RCU critical section */ 898 static void ramblock_sync_dirty_bitmap(RAMState *rs, RAMBlock *rb) 899 { 900 uint64_t new_dirty_pages = 901 cpu_physical_memory_sync_dirty_bitmap(rb, 0, rb->used_length); 902 903 rs->migration_dirty_pages += new_dirty_pages; 904 rs->num_dirty_pages_period += new_dirty_pages; 905 } 906 907 /** 908 * ram_pagesize_summary: calculate all the pagesizes of a VM 909 * 910 * Returns a summary bitmap of the page sizes of all RAMBlocks 911 * 912 * For VMs with just normal pages this is equivalent to the host page 913 * size. If it's got some huge pages then it's the OR of all the 914 * different page sizes. 915 */ 916 uint64_t ram_pagesize_summary(void) 917 { 918 RAMBlock *block; 919 uint64_t summary = 0; 920 921 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 922 summary |= block->page_size; 923 } 924 925 return summary; 926 } 927 928 uint64_t ram_get_total_transferred_pages(void) 929 { 930 return stat64_get(&mig_stats.normal_pages) + 931 stat64_get(&mig_stats.zero_pages) + 932 compress_ram_pages() + xbzrle_counters.pages; 933 } 934 935 static void migration_update_rates(RAMState *rs, int64_t end_time) 936 { 937 uint64_t page_count = rs->target_page_count - rs->target_page_count_prev; 938 939 /* calculate period counters */ 940 stat64_set(&mig_stats.dirty_pages_rate, 941 rs->num_dirty_pages_period * 1000 / 942 (end_time - rs->time_last_bitmap_sync)); 943 944 if (!page_count) { 945 return; 946 } 947 948 if (migrate_xbzrle()) { 949 double encoded_size, unencoded_size; 950 951 xbzrle_counters.cache_miss_rate = (double)(xbzrle_counters.cache_miss - 952 rs->xbzrle_cache_miss_prev) / page_count; 953 rs->xbzrle_cache_miss_prev = xbzrle_counters.cache_miss; 954 unencoded_size = (xbzrle_counters.pages - rs->xbzrle_pages_prev) * 955 TARGET_PAGE_SIZE; 956 encoded_size = xbzrle_counters.bytes - rs->xbzrle_bytes_prev; 957 if (xbzrle_counters.pages == rs->xbzrle_pages_prev || !encoded_size) { 958 xbzrle_counters.encoding_rate = 0; 959 } else { 960 xbzrle_counters.encoding_rate = unencoded_size / encoded_size; 961 } 962 rs->xbzrle_pages_prev = xbzrle_counters.pages; 963 rs->xbzrle_bytes_prev = xbzrle_counters.bytes; 964 } 965 compress_update_rates(page_count); 966 } 967 968 /* 969 * Enable dirty-limit to throttle down the guest 970 */ 971 static void migration_dirty_limit_guest(void) 972 { 973 /* 974 * dirty page rate quota for all vCPUs fetched from 975 * migration parameter 'vcpu_dirty_limit' 976 */ 977 static int64_t quota_dirtyrate; 978 MigrationState *s = migrate_get_current(); 979 980 /* 981 * If dirty limit already enabled and migration parameter 982 * vcpu-dirty-limit untouched. 983 */ 984 if (dirtylimit_in_service() && 985 quota_dirtyrate == s->parameters.vcpu_dirty_limit) { 986 return; 987 } 988 989 quota_dirtyrate = s->parameters.vcpu_dirty_limit; 990 991 /* 992 * Set all vCPU a quota dirtyrate, note that the second 993 * parameter will be ignored if setting all vCPU for the vm 994 */ 995 qmp_set_vcpu_dirty_limit(false, -1, quota_dirtyrate, NULL); 996 trace_migration_dirty_limit_guest(quota_dirtyrate); 997 } 998 999 static void migration_trigger_throttle(RAMState *rs) 1000 { 1001 uint64_t threshold = migrate_throttle_trigger_threshold(); 1002 uint64_t bytes_xfer_period = 1003 migration_transferred_bytes() - rs->bytes_xfer_prev; 1004 uint64_t bytes_dirty_period = rs->num_dirty_pages_period * TARGET_PAGE_SIZE; 1005 uint64_t bytes_dirty_threshold = bytes_xfer_period * threshold / 100; 1006 1007 /* During block migration the auto-converge logic incorrectly detects 1008 * that ram migration makes no progress. Avoid this by disabling the 1009 * throttling logic during the bulk phase of block migration. */ 1010 if (blk_mig_bulk_active()) { 1011 return; 1012 } 1013 1014 /* 1015 * The following detection logic can be refined later. For now: 1016 * Check to see if the ratio between dirtied bytes and the approx. 1017 * amount of bytes that just got transferred since the last time 1018 * we were in this routine reaches the threshold. If that happens 1019 * twice, start or increase throttling. 1020 */ 1021 if ((bytes_dirty_period > bytes_dirty_threshold) && 1022 (++rs->dirty_rate_high_cnt >= 2)) { 1023 rs->dirty_rate_high_cnt = 0; 1024 if (migrate_auto_converge()) { 1025 trace_migration_throttle(); 1026 mig_throttle_guest_down(bytes_dirty_period, 1027 bytes_dirty_threshold); 1028 } else if (migrate_dirty_limit()) { 1029 migration_dirty_limit_guest(); 1030 } 1031 } 1032 } 1033 1034 static void migration_bitmap_sync(RAMState *rs, bool last_stage) 1035 { 1036 RAMBlock *block; 1037 int64_t end_time; 1038 1039 stat64_add(&mig_stats.dirty_sync_count, 1); 1040 1041 if (!rs->time_last_bitmap_sync) { 1042 rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); 1043 } 1044 1045 trace_migration_bitmap_sync_start(); 1046 memory_global_dirty_log_sync(last_stage); 1047 1048 qemu_mutex_lock(&rs->bitmap_mutex); 1049 WITH_RCU_READ_LOCK_GUARD() { 1050 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 1051 ramblock_sync_dirty_bitmap(rs, block); 1052 } 1053 stat64_set(&mig_stats.dirty_bytes_last_sync, ram_bytes_remaining()); 1054 } 1055 qemu_mutex_unlock(&rs->bitmap_mutex); 1056 1057 memory_global_after_dirty_log_sync(); 1058 trace_migration_bitmap_sync_end(rs->num_dirty_pages_period); 1059 1060 end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); 1061 1062 /* more than 1 second = 1000 millisecons */ 1063 if (end_time > rs->time_last_bitmap_sync + 1000) { 1064 migration_trigger_throttle(rs); 1065 1066 migration_update_rates(rs, end_time); 1067 1068 rs->target_page_count_prev = rs->target_page_count; 1069 1070 /* reset period counters */ 1071 rs->time_last_bitmap_sync = end_time; 1072 rs->num_dirty_pages_period = 0; 1073 rs->bytes_xfer_prev = migration_transferred_bytes(); 1074 } 1075 if (migrate_events()) { 1076 uint64_t generation = stat64_get(&mig_stats.dirty_sync_count); 1077 qapi_event_send_migration_pass(generation); 1078 } 1079 } 1080 1081 static void migration_bitmap_sync_precopy(RAMState *rs, bool last_stage) 1082 { 1083 Error *local_err = NULL; 1084 1085 /* 1086 * The current notifier usage is just an optimization to migration, so we 1087 * don't stop the normal migration process in the error case. 1088 */ 1089 if (precopy_notify(PRECOPY_NOTIFY_BEFORE_BITMAP_SYNC, &local_err)) { 1090 error_report_err(local_err); 1091 local_err = NULL; 1092 } 1093 1094 migration_bitmap_sync(rs, last_stage); 1095 1096 if (precopy_notify(PRECOPY_NOTIFY_AFTER_BITMAP_SYNC, &local_err)) { 1097 error_report_err(local_err); 1098 } 1099 } 1100 1101 void ram_release_page(const char *rbname, uint64_t offset) 1102 { 1103 if (!migrate_release_ram() || !migration_in_postcopy()) { 1104 return; 1105 } 1106 1107 ram_discard_range(rbname, offset, TARGET_PAGE_SIZE); 1108 } 1109 1110 /** 1111 * save_zero_page: send the zero page to the stream 1112 * 1113 * Returns the number of pages written. 1114 * 1115 * @rs: current RAM state 1116 * @pss: current PSS channel 1117 * @offset: offset inside the block for the page 1118 */ 1119 static int save_zero_page(RAMState *rs, PageSearchStatus *pss, 1120 ram_addr_t offset) 1121 { 1122 uint8_t *p = pss->block->host + offset; 1123 QEMUFile *file = pss->pss_channel; 1124 int len = 0; 1125 1126 if (!buffer_is_zero(p, TARGET_PAGE_SIZE)) { 1127 return 0; 1128 } 1129 1130 len += save_page_header(pss, file, pss->block, offset | RAM_SAVE_FLAG_ZERO); 1131 qemu_put_byte(file, 0); 1132 len += 1; 1133 ram_release_page(pss->block->idstr, offset); 1134 1135 stat64_add(&mig_stats.zero_pages, 1); 1136 ram_transferred_add(len); 1137 1138 /* 1139 * Must let xbzrle know, otherwise a previous (now 0'd) cached 1140 * page would be stale. 1141 */ 1142 if (rs->xbzrle_started) { 1143 XBZRLE_cache_lock(); 1144 xbzrle_cache_zero_page(pss->block->offset + offset); 1145 XBZRLE_cache_unlock(); 1146 } 1147 1148 return len; 1149 } 1150 1151 /* 1152 * @pages: the number of pages written by the control path, 1153 * < 0 - error 1154 * > 0 - number of pages written 1155 * 1156 * Return true if the pages has been saved, otherwise false is returned. 1157 */ 1158 static bool control_save_page(PageSearchStatus *pss, 1159 ram_addr_t offset, int *pages) 1160 { 1161 int ret; 1162 1163 ret = rdma_control_save_page(pss->pss_channel, pss->block->offset, offset, 1164 TARGET_PAGE_SIZE); 1165 if (ret == RAM_SAVE_CONTROL_NOT_SUPP) { 1166 return false; 1167 } 1168 1169 if (ret == RAM_SAVE_CONTROL_DELAYED) { 1170 *pages = 1; 1171 return true; 1172 } 1173 *pages = ret; 1174 return true; 1175 } 1176 1177 /* 1178 * directly send the page to the stream 1179 * 1180 * Returns the number of pages written. 1181 * 1182 * @pss: current PSS channel 1183 * @block: block that contains the page we want to send 1184 * @offset: offset inside the block for the page 1185 * @buf: the page to be sent 1186 * @async: send to page asyncly 1187 */ 1188 static int save_normal_page(PageSearchStatus *pss, RAMBlock *block, 1189 ram_addr_t offset, uint8_t *buf, bool async) 1190 { 1191 QEMUFile *file = pss->pss_channel; 1192 1193 ram_transferred_add(save_page_header(pss, pss->pss_channel, block, 1194 offset | RAM_SAVE_FLAG_PAGE)); 1195 if (async) { 1196 qemu_put_buffer_async(file, buf, TARGET_PAGE_SIZE, 1197 migrate_release_ram() && 1198 migration_in_postcopy()); 1199 } else { 1200 qemu_put_buffer(file, buf, TARGET_PAGE_SIZE); 1201 } 1202 ram_transferred_add(TARGET_PAGE_SIZE); 1203 stat64_add(&mig_stats.normal_pages, 1); 1204 return 1; 1205 } 1206 1207 /** 1208 * ram_save_page: send the given page to the stream 1209 * 1210 * Returns the number of pages written. 1211 * < 0 - error 1212 * >=0 - Number of pages written - this might legally be 0 1213 * if xbzrle noticed the page was the same. 1214 * 1215 * @rs: current RAM state 1216 * @block: block that contains the page we want to send 1217 * @offset: offset inside the block for the page 1218 */ 1219 static int ram_save_page(RAMState *rs, PageSearchStatus *pss) 1220 { 1221 int pages = -1; 1222 uint8_t *p; 1223 bool send_async = true; 1224 RAMBlock *block = pss->block; 1225 ram_addr_t offset = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS; 1226 ram_addr_t current_addr = block->offset + offset; 1227 1228 p = block->host + offset; 1229 trace_ram_save_page(block->idstr, (uint64_t)offset, p); 1230 1231 XBZRLE_cache_lock(); 1232 if (rs->xbzrle_started && !migration_in_postcopy()) { 1233 pages = save_xbzrle_page(rs, pss, &p, current_addr, 1234 block, offset); 1235 if (!rs->last_stage) { 1236 /* Can't send this cached data async, since the cache page 1237 * might get updated before it gets to the wire 1238 */ 1239 send_async = false; 1240 } 1241 } 1242 1243 /* XBZRLE overflow or normal page */ 1244 if (pages == -1) { 1245 pages = save_normal_page(pss, block, offset, p, send_async); 1246 } 1247 1248 XBZRLE_cache_unlock(); 1249 1250 return pages; 1251 } 1252 1253 static int ram_save_multifd_page(RAMBlock *block, ram_addr_t offset) 1254 { 1255 if (multifd_queue_page(block, offset) < 0) { 1256 return -1; 1257 } 1258 stat64_add(&mig_stats.normal_pages, 1); 1259 1260 return 1; 1261 } 1262 1263 int compress_send_queued_data(CompressParam *param) 1264 { 1265 PageSearchStatus *pss = &ram_state->pss[RAM_CHANNEL_PRECOPY]; 1266 MigrationState *ms = migrate_get_current(); 1267 QEMUFile *file = ms->to_dst_file; 1268 int len = 0; 1269 1270 RAMBlock *block = param->block; 1271 ram_addr_t offset = param->offset; 1272 1273 if (param->result == RES_NONE) { 1274 return 0; 1275 } 1276 1277 assert(block == pss->last_sent_block); 1278 1279 if (param->result == RES_ZEROPAGE) { 1280 assert(qemu_file_buffer_empty(param->file)); 1281 len += save_page_header(pss, file, block, offset | RAM_SAVE_FLAG_ZERO); 1282 qemu_put_byte(file, 0); 1283 len += 1; 1284 ram_release_page(block->idstr, offset); 1285 } else if (param->result == RES_COMPRESS) { 1286 assert(!qemu_file_buffer_empty(param->file)); 1287 len += save_page_header(pss, file, block, 1288 offset | RAM_SAVE_FLAG_COMPRESS_PAGE); 1289 len += qemu_put_qemu_file(file, param->file); 1290 } else { 1291 abort(); 1292 } 1293 1294 update_compress_thread_counts(param, len); 1295 1296 return len; 1297 } 1298 1299 #define PAGE_ALL_CLEAN 0 1300 #define PAGE_TRY_AGAIN 1 1301 #define PAGE_DIRTY_FOUND 2 1302 /** 1303 * find_dirty_block: find the next dirty page and update any state 1304 * associated with the search process. 1305 * 1306 * Returns: 1307 * <0: An error happened 1308 * PAGE_ALL_CLEAN: no dirty page found, give up 1309 * PAGE_TRY_AGAIN: no dirty page found, retry for next block 1310 * PAGE_DIRTY_FOUND: dirty page found 1311 * 1312 * @rs: current RAM state 1313 * @pss: data about the state of the current dirty page scan 1314 * @again: set to false if the search has scanned the whole of RAM 1315 */ 1316 static int find_dirty_block(RAMState *rs, PageSearchStatus *pss) 1317 { 1318 /* Update pss->page for the next dirty bit in ramblock */ 1319 pss_find_next_dirty(pss); 1320 1321 if (pss->complete_round && pss->block == rs->last_seen_block && 1322 pss->page >= rs->last_page) { 1323 /* 1324 * We've been once around the RAM and haven't found anything. 1325 * Give up. 1326 */ 1327 return PAGE_ALL_CLEAN; 1328 } 1329 if (!offset_in_ramblock(pss->block, 1330 ((ram_addr_t)pss->page) << TARGET_PAGE_BITS)) { 1331 /* Didn't find anything in this RAM Block */ 1332 pss->page = 0; 1333 pss->block = QLIST_NEXT_RCU(pss->block, next); 1334 if (!pss->block) { 1335 if (migrate_multifd() && 1336 !migrate_multifd_flush_after_each_section()) { 1337 QEMUFile *f = rs->pss[RAM_CHANNEL_PRECOPY].pss_channel; 1338 int ret = multifd_send_sync_main(); 1339 if (ret < 0) { 1340 return ret; 1341 } 1342 qemu_put_be64(f, RAM_SAVE_FLAG_MULTIFD_FLUSH); 1343 qemu_fflush(f); 1344 } 1345 /* 1346 * If memory migration starts over, we will meet a dirtied page 1347 * which may still exists in compression threads's ring, so we 1348 * should flush the compressed data to make sure the new page 1349 * is not overwritten by the old one in the destination. 1350 * 1351 * Also If xbzrle is on, stop using the data compression at this 1352 * point. In theory, xbzrle can do better than compression. 1353 */ 1354 compress_flush_data(); 1355 1356 /* Hit the end of the list */ 1357 pss->block = QLIST_FIRST_RCU(&ram_list.blocks); 1358 /* Flag that we've looped */ 1359 pss->complete_round = true; 1360 /* After the first round, enable XBZRLE. */ 1361 if (migrate_xbzrle()) { 1362 rs->xbzrle_started = true; 1363 } 1364 } 1365 /* Didn't find anything this time, but try again on the new block */ 1366 return PAGE_TRY_AGAIN; 1367 } else { 1368 /* We've found something */ 1369 return PAGE_DIRTY_FOUND; 1370 } 1371 } 1372 1373 /** 1374 * unqueue_page: gets a page of the queue 1375 * 1376 * Helper for 'get_queued_page' - gets a page off the queue 1377 * 1378 * Returns the block of the page (or NULL if none available) 1379 * 1380 * @rs: current RAM state 1381 * @offset: used to return the offset within the RAMBlock 1382 */ 1383 static RAMBlock *unqueue_page(RAMState *rs, ram_addr_t *offset) 1384 { 1385 struct RAMSrcPageRequest *entry; 1386 RAMBlock *block = NULL; 1387 1388 if (!postcopy_has_request(rs)) { 1389 return NULL; 1390 } 1391 1392 QEMU_LOCK_GUARD(&rs->src_page_req_mutex); 1393 1394 /* 1395 * This should _never_ change even after we take the lock, because no one 1396 * should be taking anything off the request list other than us. 1397 */ 1398 assert(postcopy_has_request(rs)); 1399 1400 entry = QSIMPLEQ_FIRST(&rs->src_page_requests); 1401 block = entry->rb; 1402 *offset = entry->offset; 1403 1404 if (entry->len > TARGET_PAGE_SIZE) { 1405 entry->len -= TARGET_PAGE_SIZE; 1406 entry->offset += TARGET_PAGE_SIZE; 1407 } else { 1408 memory_region_unref(block->mr); 1409 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req); 1410 g_free(entry); 1411 migration_consume_urgent_request(); 1412 } 1413 1414 return block; 1415 } 1416 1417 #if defined(__linux__) 1418 /** 1419 * poll_fault_page: try to get next UFFD write fault page and, if pending fault 1420 * is found, return RAM block pointer and page offset 1421 * 1422 * Returns pointer to the RAMBlock containing faulting page, 1423 * NULL if no write faults are pending 1424 * 1425 * @rs: current RAM state 1426 * @offset: page offset from the beginning of the block 1427 */ 1428 static RAMBlock *poll_fault_page(RAMState *rs, ram_addr_t *offset) 1429 { 1430 struct uffd_msg uffd_msg; 1431 void *page_address; 1432 RAMBlock *block; 1433 int res; 1434 1435 if (!migrate_background_snapshot()) { 1436 return NULL; 1437 } 1438 1439 res = uffd_read_events(rs->uffdio_fd, &uffd_msg, 1); 1440 if (res <= 0) { 1441 return NULL; 1442 } 1443 1444 page_address = (void *)(uintptr_t) uffd_msg.arg.pagefault.address; 1445 block = qemu_ram_block_from_host(page_address, false, offset); 1446 assert(block && (block->flags & RAM_UF_WRITEPROTECT) != 0); 1447 return block; 1448 } 1449 1450 /** 1451 * ram_save_release_protection: release UFFD write protection after 1452 * a range of pages has been saved 1453 * 1454 * @rs: current RAM state 1455 * @pss: page-search-status structure 1456 * @start_page: index of the first page in the range relative to pss->block 1457 * 1458 * Returns 0 on success, negative value in case of an error 1459 */ 1460 static int ram_save_release_protection(RAMState *rs, PageSearchStatus *pss, 1461 unsigned long start_page) 1462 { 1463 int res = 0; 1464 1465 /* Check if page is from UFFD-managed region. */ 1466 if (pss->block->flags & RAM_UF_WRITEPROTECT) { 1467 void *page_address = pss->block->host + (start_page << TARGET_PAGE_BITS); 1468 uint64_t run_length = (pss->page - start_page) << TARGET_PAGE_BITS; 1469 1470 /* Flush async buffers before un-protect. */ 1471 qemu_fflush(pss->pss_channel); 1472 /* Un-protect memory range. */ 1473 res = uffd_change_protection(rs->uffdio_fd, page_address, run_length, 1474 false, false); 1475 } 1476 1477 return res; 1478 } 1479 1480 /* ram_write_tracking_available: check if kernel supports required UFFD features 1481 * 1482 * Returns true if supports, false otherwise 1483 */ 1484 bool ram_write_tracking_available(void) 1485 { 1486 uint64_t uffd_features; 1487 int res; 1488 1489 res = uffd_query_features(&uffd_features); 1490 return (res == 0 && 1491 (uffd_features & UFFD_FEATURE_PAGEFAULT_FLAG_WP) != 0); 1492 } 1493 1494 /* ram_write_tracking_compatible: check if guest configuration is 1495 * compatible with 'write-tracking' 1496 * 1497 * Returns true if compatible, false otherwise 1498 */ 1499 bool ram_write_tracking_compatible(void) 1500 { 1501 const uint64_t uffd_ioctls_mask = BIT(_UFFDIO_WRITEPROTECT); 1502 int uffd_fd; 1503 RAMBlock *block; 1504 bool ret = false; 1505 1506 /* Open UFFD file descriptor */ 1507 uffd_fd = uffd_create_fd(UFFD_FEATURE_PAGEFAULT_FLAG_WP, false); 1508 if (uffd_fd < 0) { 1509 return false; 1510 } 1511 1512 RCU_READ_LOCK_GUARD(); 1513 1514 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 1515 uint64_t uffd_ioctls; 1516 1517 /* Nothing to do with read-only and MMIO-writable regions */ 1518 if (block->mr->readonly || block->mr->rom_device) { 1519 continue; 1520 } 1521 /* Try to register block memory via UFFD-IO to track writes */ 1522 if (uffd_register_memory(uffd_fd, block->host, block->max_length, 1523 UFFDIO_REGISTER_MODE_WP, &uffd_ioctls)) { 1524 goto out; 1525 } 1526 if ((uffd_ioctls & uffd_ioctls_mask) != uffd_ioctls_mask) { 1527 goto out; 1528 } 1529 } 1530 ret = true; 1531 1532 out: 1533 uffd_close_fd(uffd_fd); 1534 return ret; 1535 } 1536 1537 static inline void populate_read_range(RAMBlock *block, ram_addr_t offset, 1538 ram_addr_t size) 1539 { 1540 const ram_addr_t end = offset + size; 1541 1542 /* 1543 * We read one byte of each page; this will preallocate page tables if 1544 * required and populate the shared zeropage on MAP_PRIVATE anonymous memory 1545 * where no page was populated yet. This might require adaption when 1546 * supporting other mappings, like shmem. 1547 */ 1548 for (; offset < end; offset += block->page_size) { 1549 char tmp = *((char *)block->host + offset); 1550 1551 /* Don't optimize the read out */ 1552 asm volatile("" : "+r" (tmp)); 1553 } 1554 } 1555 1556 static inline int populate_read_section(MemoryRegionSection *section, 1557 void *opaque) 1558 { 1559 const hwaddr size = int128_get64(section->size); 1560 hwaddr offset = section->offset_within_region; 1561 RAMBlock *block = section->mr->ram_block; 1562 1563 populate_read_range(block, offset, size); 1564 return 0; 1565 } 1566 1567 /* 1568 * ram_block_populate_read: preallocate page tables and populate pages in the 1569 * RAM block by reading a byte of each page. 1570 * 1571 * Since it's solely used for userfault_fd WP feature, here we just 1572 * hardcode page size to qemu_real_host_page_size. 1573 * 1574 * @block: RAM block to populate 1575 */ 1576 static void ram_block_populate_read(RAMBlock *rb) 1577 { 1578 /* 1579 * Skip populating all pages that fall into a discarded range as managed by 1580 * a RamDiscardManager responsible for the mapped memory region of the 1581 * RAMBlock. Such discarded ("logically unplugged") parts of a RAMBlock 1582 * must not get populated automatically. We don't have to track 1583 * modifications via userfaultfd WP reliably, because these pages will 1584 * not be part of the migration stream either way -- see 1585 * ramblock_dirty_bitmap_exclude_discarded_pages(). 1586 * 1587 * Note: The result is only stable while migrating (precopy/postcopy). 1588 */ 1589 if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) { 1590 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr); 1591 MemoryRegionSection section = { 1592 .mr = rb->mr, 1593 .offset_within_region = 0, 1594 .size = rb->mr->size, 1595 }; 1596 1597 ram_discard_manager_replay_populated(rdm, §ion, 1598 populate_read_section, NULL); 1599 } else { 1600 populate_read_range(rb, 0, rb->used_length); 1601 } 1602 } 1603 1604 /* 1605 * ram_write_tracking_prepare: prepare for UFFD-WP memory tracking 1606 */ 1607 void ram_write_tracking_prepare(void) 1608 { 1609 RAMBlock *block; 1610 1611 RCU_READ_LOCK_GUARD(); 1612 1613 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 1614 /* Nothing to do with read-only and MMIO-writable regions */ 1615 if (block->mr->readonly || block->mr->rom_device) { 1616 continue; 1617 } 1618 1619 /* 1620 * Populate pages of the RAM block before enabling userfault_fd 1621 * write protection. 1622 * 1623 * This stage is required since ioctl(UFFDIO_WRITEPROTECT) with 1624 * UFFDIO_WRITEPROTECT_MODE_WP mode setting would silently skip 1625 * pages with pte_none() entries in page table. 1626 */ 1627 ram_block_populate_read(block); 1628 } 1629 } 1630 1631 static inline int uffd_protect_section(MemoryRegionSection *section, 1632 void *opaque) 1633 { 1634 const hwaddr size = int128_get64(section->size); 1635 const hwaddr offset = section->offset_within_region; 1636 RAMBlock *rb = section->mr->ram_block; 1637 int uffd_fd = (uintptr_t)opaque; 1638 1639 return uffd_change_protection(uffd_fd, rb->host + offset, size, true, 1640 false); 1641 } 1642 1643 static int ram_block_uffd_protect(RAMBlock *rb, int uffd_fd) 1644 { 1645 assert(rb->flags & RAM_UF_WRITEPROTECT); 1646 1647 /* See ram_block_populate_read() */ 1648 if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) { 1649 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr); 1650 MemoryRegionSection section = { 1651 .mr = rb->mr, 1652 .offset_within_region = 0, 1653 .size = rb->mr->size, 1654 }; 1655 1656 return ram_discard_manager_replay_populated(rdm, §ion, 1657 uffd_protect_section, 1658 (void *)(uintptr_t)uffd_fd); 1659 } 1660 return uffd_change_protection(uffd_fd, rb->host, 1661 rb->used_length, true, false); 1662 } 1663 1664 /* 1665 * ram_write_tracking_start: start UFFD-WP memory tracking 1666 * 1667 * Returns 0 for success or negative value in case of error 1668 */ 1669 int ram_write_tracking_start(void) 1670 { 1671 int uffd_fd; 1672 RAMState *rs = ram_state; 1673 RAMBlock *block; 1674 1675 /* Open UFFD file descriptor */ 1676 uffd_fd = uffd_create_fd(UFFD_FEATURE_PAGEFAULT_FLAG_WP, true); 1677 if (uffd_fd < 0) { 1678 return uffd_fd; 1679 } 1680 rs->uffdio_fd = uffd_fd; 1681 1682 RCU_READ_LOCK_GUARD(); 1683 1684 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 1685 /* Nothing to do with read-only and MMIO-writable regions */ 1686 if (block->mr->readonly || block->mr->rom_device) { 1687 continue; 1688 } 1689 1690 /* Register block memory with UFFD to track writes */ 1691 if (uffd_register_memory(rs->uffdio_fd, block->host, 1692 block->max_length, UFFDIO_REGISTER_MODE_WP, NULL)) { 1693 goto fail; 1694 } 1695 block->flags |= RAM_UF_WRITEPROTECT; 1696 memory_region_ref(block->mr); 1697 1698 /* Apply UFFD write protection to the block memory range */ 1699 if (ram_block_uffd_protect(block, uffd_fd)) { 1700 goto fail; 1701 } 1702 1703 trace_ram_write_tracking_ramblock_start(block->idstr, block->page_size, 1704 block->host, block->max_length); 1705 } 1706 1707 return 0; 1708 1709 fail: 1710 error_report("ram_write_tracking_start() failed: restoring initial memory state"); 1711 1712 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 1713 if ((block->flags & RAM_UF_WRITEPROTECT) == 0) { 1714 continue; 1715 } 1716 uffd_unregister_memory(rs->uffdio_fd, block->host, block->max_length); 1717 /* Cleanup flags and remove reference */ 1718 block->flags &= ~RAM_UF_WRITEPROTECT; 1719 memory_region_unref(block->mr); 1720 } 1721 1722 uffd_close_fd(uffd_fd); 1723 rs->uffdio_fd = -1; 1724 return -1; 1725 } 1726 1727 /** 1728 * ram_write_tracking_stop: stop UFFD-WP memory tracking and remove protection 1729 */ 1730 void ram_write_tracking_stop(void) 1731 { 1732 RAMState *rs = ram_state; 1733 RAMBlock *block; 1734 1735 RCU_READ_LOCK_GUARD(); 1736 1737 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 1738 if ((block->flags & RAM_UF_WRITEPROTECT) == 0) { 1739 continue; 1740 } 1741 uffd_unregister_memory(rs->uffdio_fd, block->host, block->max_length); 1742 1743 trace_ram_write_tracking_ramblock_stop(block->idstr, block->page_size, 1744 block->host, block->max_length); 1745 1746 /* Cleanup flags and remove reference */ 1747 block->flags &= ~RAM_UF_WRITEPROTECT; 1748 memory_region_unref(block->mr); 1749 } 1750 1751 /* Finally close UFFD file descriptor */ 1752 uffd_close_fd(rs->uffdio_fd); 1753 rs->uffdio_fd = -1; 1754 } 1755 1756 #else 1757 /* No target OS support, stubs just fail or ignore */ 1758 1759 static RAMBlock *poll_fault_page(RAMState *rs, ram_addr_t *offset) 1760 { 1761 (void) rs; 1762 (void) offset; 1763 1764 return NULL; 1765 } 1766 1767 static int ram_save_release_protection(RAMState *rs, PageSearchStatus *pss, 1768 unsigned long start_page) 1769 { 1770 (void) rs; 1771 (void) pss; 1772 (void) start_page; 1773 1774 return 0; 1775 } 1776 1777 bool ram_write_tracking_available(void) 1778 { 1779 return false; 1780 } 1781 1782 bool ram_write_tracking_compatible(void) 1783 { 1784 assert(0); 1785 return false; 1786 } 1787 1788 int ram_write_tracking_start(void) 1789 { 1790 assert(0); 1791 return -1; 1792 } 1793 1794 void ram_write_tracking_stop(void) 1795 { 1796 assert(0); 1797 } 1798 #endif /* defined(__linux__) */ 1799 1800 /** 1801 * get_queued_page: unqueue a page from the postcopy requests 1802 * 1803 * Skips pages that are already sent (!dirty) 1804 * 1805 * Returns true if a queued page is found 1806 * 1807 * @rs: current RAM state 1808 * @pss: data about the state of the current dirty page scan 1809 */ 1810 static bool get_queued_page(RAMState *rs, PageSearchStatus *pss) 1811 { 1812 RAMBlock *block; 1813 ram_addr_t offset; 1814 bool dirty; 1815 1816 do { 1817 block = unqueue_page(rs, &offset); 1818 /* 1819 * We're sending this page, and since it's postcopy nothing else 1820 * will dirty it, and we must make sure it doesn't get sent again 1821 * even if this queue request was received after the background 1822 * search already sent it. 1823 */ 1824 if (block) { 1825 unsigned long page; 1826 1827 page = offset >> TARGET_PAGE_BITS; 1828 dirty = test_bit(page, block->bmap); 1829 if (!dirty) { 1830 trace_get_queued_page_not_dirty(block->idstr, (uint64_t)offset, 1831 page); 1832 } else { 1833 trace_get_queued_page(block->idstr, (uint64_t)offset, page); 1834 } 1835 } 1836 1837 } while (block && !dirty); 1838 1839 if (!block) { 1840 /* 1841 * Poll write faults too if background snapshot is enabled; that's 1842 * when we have vcpus got blocked by the write protected pages. 1843 */ 1844 block = poll_fault_page(rs, &offset); 1845 } 1846 1847 if (block) { 1848 /* 1849 * We want the background search to continue from the queued page 1850 * since the guest is likely to want other pages near to the page 1851 * it just requested. 1852 */ 1853 pss->block = block; 1854 pss->page = offset >> TARGET_PAGE_BITS; 1855 1856 /* 1857 * This unqueued page would break the "one round" check, even is 1858 * really rare. 1859 */ 1860 pss->complete_round = false; 1861 } 1862 1863 return !!block; 1864 } 1865 1866 /** 1867 * migration_page_queue_free: drop any remaining pages in the ram 1868 * request queue 1869 * 1870 * It should be empty at the end anyway, but in error cases there may 1871 * be some left. in case that there is any page left, we drop it. 1872 * 1873 */ 1874 static void migration_page_queue_free(RAMState *rs) 1875 { 1876 struct RAMSrcPageRequest *mspr, *next_mspr; 1877 /* This queue generally should be empty - but in the case of a failed 1878 * migration might have some droppings in. 1879 */ 1880 RCU_READ_LOCK_GUARD(); 1881 QSIMPLEQ_FOREACH_SAFE(mspr, &rs->src_page_requests, next_req, next_mspr) { 1882 memory_region_unref(mspr->rb->mr); 1883 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req); 1884 g_free(mspr); 1885 } 1886 } 1887 1888 /** 1889 * ram_save_queue_pages: queue the page for transmission 1890 * 1891 * A request from postcopy destination for example. 1892 * 1893 * Returns zero on success or negative on error 1894 * 1895 * @rbname: Name of the RAMBLock of the request. NULL means the 1896 * same that last one. 1897 * @start: starting address from the start of the RAMBlock 1898 * @len: length (in bytes) to send 1899 */ 1900 int ram_save_queue_pages(const char *rbname, ram_addr_t start, ram_addr_t len, 1901 Error **errp) 1902 { 1903 RAMBlock *ramblock; 1904 RAMState *rs = ram_state; 1905 1906 stat64_add(&mig_stats.postcopy_requests, 1); 1907 RCU_READ_LOCK_GUARD(); 1908 1909 if (!rbname) { 1910 /* Reuse last RAMBlock */ 1911 ramblock = rs->last_req_rb; 1912 1913 if (!ramblock) { 1914 /* 1915 * Shouldn't happen, we can't reuse the last RAMBlock if 1916 * it's the 1st request. 1917 */ 1918 error_setg(errp, "MIG_RP_MSG_REQ_PAGES has no previous block"); 1919 return -1; 1920 } 1921 } else { 1922 ramblock = qemu_ram_block_by_name(rbname); 1923 1924 if (!ramblock) { 1925 /* We shouldn't be asked for a non-existent RAMBlock */ 1926 error_setg(errp, "MIG_RP_MSG_REQ_PAGES has no block '%s'", rbname); 1927 return -1; 1928 } 1929 rs->last_req_rb = ramblock; 1930 } 1931 trace_ram_save_queue_pages(ramblock->idstr, start, len); 1932 if (!offset_in_ramblock(ramblock, start + len - 1)) { 1933 error_setg(errp, "MIG_RP_MSG_REQ_PAGES request overrun, " 1934 "start=" RAM_ADDR_FMT " len=" 1935 RAM_ADDR_FMT " blocklen=" RAM_ADDR_FMT, 1936 start, len, ramblock->used_length); 1937 return -1; 1938 } 1939 1940 /* 1941 * When with postcopy preempt, we send back the page directly in the 1942 * rp-return thread. 1943 */ 1944 if (postcopy_preempt_active()) { 1945 ram_addr_t page_start = start >> TARGET_PAGE_BITS; 1946 size_t page_size = qemu_ram_pagesize(ramblock); 1947 PageSearchStatus *pss = &ram_state->pss[RAM_CHANNEL_POSTCOPY]; 1948 int ret = 0; 1949 1950 qemu_mutex_lock(&rs->bitmap_mutex); 1951 1952 pss_init(pss, ramblock, page_start); 1953 /* 1954 * Always use the preempt channel, and make sure it's there. It's 1955 * safe to access without lock, because when rp-thread is running 1956 * we should be the only one who operates on the qemufile 1957 */ 1958 pss->pss_channel = migrate_get_current()->postcopy_qemufile_src; 1959 assert(pss->pss_channel); 1960 1961 /* 1962 * It must be either one or multiple of host page size. Just 1963 * assert; if something wrong we're mostly split brain anyway. 1964 */ 1965 assert(len % page_size == 0); 1966 while (len) { 1967 if (ram_save_host_page_urgent(pss)) { 1968 error_setg(errp, "ram_save_host_page_urgent() failed: " 1969 "ramblock=%s, start_addr=0x"RAM_ADDR_FMT, 1970 ramblock->idstr, start); 1971 ret = -1; 1972 break; 1973 } 1974 /* 1975 * NOTE: after ram_save_host_page_urgent() succeeded, pss->page 1976 * will automatically be moved and point to the next host page 1977 * we're going to send, so no need to update here. 1978 * 1979 * Normally QEMU never sends >1 host page in requests, so 1980 * logically we don't even need that as the loop should only 1981 * run once, but just to be consistent. 1982 */ 1983 len -= page_size; 1984 }; 1985 qemu_mutex_unlock(&rs->bitmap_mutex); 1986 1987 return ret; 1988 } 1989 1990 struct RAMSrcPageRequest *new_entry = 1991 g_new0(struct RAMSrcPageRequest, 1); 1992 new_entry->rb = ramblock; 1993 new_entry->offset = start; 1994 new_entry->len = len; 1995 1996 memory_region_ref(ramblock->mr); 1997 qemu_mutex_lock(&rs->src_page_req_mutex); 1998 QSIMPLEQ_INSERT_TAIL(&rs->src_page_requests, new_entry, next_req); 1999 migration_make_urgent_request(); 2000 qemu_mutex_unlock(&rs->src_page_req_mutex); 2001 2002 return 0; 2003 } 2004 2005 /* 2006 * try to compress the page before posting it out, return true if the page 2007 * has been properly handled by compression, otherwise needs other 2008 * paths to handle it 2009 */ 2010 static bool save_compress_page(RAMState *rs, PageSearchStatus *pss, 2011 ram_addr_t offset) 2012 { 2013 if (!migrate_compress()) { 2014 return false; 2015 } 2016 2017 /* 2018 * When starting the process of a new block, the first page of 2019 * the block should be sent out before other pages in the same 2020 * block, and all the pages in last block should have been sent 2021 * out, keeping this order is important, because the 'cont' flag 2022 * is used to avoid resending the block name. 2023 * 2024 * We post the fist page as normal page as compression will take 2025 * much CPU resource. 2026 */ 2027 if (pss->block != pss->last_sent_block) { 2028 compress_flush_data(); 2029 return false; 2030 } 2031 2032 return compress_page_with_multi_thread(pss->block, offset, 2033 compress_send_queued_data); 2034 } 2035 2036 /** 2037 * ram_save_target_page_legacy: save one target page 2038 * 2039 * Returns the number of pages written 2040 * 2041 * @rs: current RAM state 2042 * @pss: data about the page we want to send 2043 */ 2044 static int ram_save_target_page_legacy(RAMState *rs, PageSearchStatus *pss) 2045 { 2046 RAMBlock *block = pss->block; 2047 ram_addr_t offset = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS; 2048 int res; 2049 2050 if (control_save_page(pss, offset, &res)) { 2051 return res; 2052 } 2053 2054 if (save_compress_page(rs, pss, offset)) { 2055 return 1; 2056 } 2057 2058 if (save_zero_page(rs, pss, offset)) { 2059 return 1; 2060 } 2061 2062 /* 2063 * Do not use multifd in postcopy as one whole host page should be 2064 * placed. Meanwhile postcopy requires atomic update of pages, so even 2065 * if host page size == guest page size the dest guest during run may 2066 * still see partially copied pages which is data corruption. 2067 */ 2068 if (migrate_multifd() && !migration_in_postcopy()) { 2069 return ram_save_multifd_page(block, offset); 2070 } 2071 2072 return ram_save_page(rs, pss); 2073 } 2074 2075 /* Should be called before sending a host page */ 2076 static void pss_host_page_prepare(PageSearchStatus *pss) 2077 { 2078 /* How many guest pages are there in one host page? */ 2079 size_t guest_pfns = qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS; 2080 2081 pss->host_page_sending = true; 2082 if (guest_pfns <= 1) { 2083 /* 2084 * This covers both when guest psize == host psize, or when guest 2085 * has larger psize than the host (guest_pfns==0). 2086 * 2087 * For the latter, we always send one whole guest page per 2088 * iteration of the host page (example: an Alpha VM on x86 host 2089 * will have guest psize 8K while host psize 4K). 2090 */ 2091 pss->host_page_start = pss->page; 2092 pss->host_page_end = pss->page + 1; 2093 } else { 2094 /* 2095 * The host page spans over multiple guest pages, we send them 2096 * within the same host page iteration. 2097 */ 2098 pss->host_page_start = ROUND_DOWN(pss->page, guest_pfns); 2099 pss->host_page_end = ROUND_UP(pss->page + 1, guest_pfns); 2100 } 2101 } 2102 2103 /* 2104 * Whether the page pointed by PSS is within the host page being sent. 2105 * Must be called after a previous pss_host_page_prepare(). 2106 */ 2107 static bool pss_within_range(PageSearchStatus *pss) 2108 { 2109 ram_addr_t ram_addr; 2110 2111 assert(pss->host_page_sending); 2112 2113 /* Over host-page boundary? */ 2114 if (pss->page >= pss->host_page_end) { 2115 return false; 2116 } 2117 2118 ram_addr = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS; 2119 2120 return offset_in_ramblock(pss->block, ram_addr); 2121 } 2122 2123 static void pss_host_page_finish(PageSearchStatus *pss) 2124 { 2125 pss->host_page_sending = false; 2126 /* This is not needed, but just to reset it */ 2127 pss->host_page_start = pss->host_page_end = 0; 2128 } 2129 2130 /* 2131 * Send an urgent host page specified by `pss'. Need to be called with 2132 * bitmap_mutex held. 2133 * 2134 * Returns 0 if save host page succeeded, false otherwise. 2135 */ 2136 static int ram_save_host_page_urgent(PageSearchStatus *pss) 2137 { 2138 bool page_dirty, sent = false; 2139 RAMState *rs = ram_state; 2140 int ret = 0; 2141 2142 trace_postcopy_preempt_send_host_page(pss->block->idstr, pss->page); 2143 pss_host_page_prepare(pss); 2144 2145 /* 2146 * If precopy is sending the same page, let it be done in precopy, or 2147 * we could send the same page in two channels and none of them will 2148 * receive the whole page. 2149 */ 2150 if (pss_overlap(pss, &ram_state->pss[RAM_CHANNEL_PRECOPY])) { 2151 trace_postcopy_preempt_hit(pss->block->idstr, 2152 pss->page << TARGET_PAGE_BITS); 2153 return 0; 2154 } 2155 2156 do { 2157 page_dirty = migration_bitmap_clear_dirty(rs, pss->block, pss->page); 2158 2159 if (page_dirty) { 2160 /* Be strict to return code; it must be 1, or what else? */ 2161 if (migration_ops->ram_save_target_page(rs, pss) != 1) { 2162 error_report_once("%s: ram_save_target_page failed", __func__); 2163 ret = -1; 2164 goto out; 2165 } 2166 sent = true; 2167 } 2168 pss_find_next_dirty(pss); 2169 } while (pss_within_range(pss)); 2170 out: 2171 pss_host_page_finish(pss); 2172 /* For urgent requests, flush immediately if sent */ 2173 if (sent) { 2174 qemu_fflush(pss->pss_channel); 2175 } 2176 return ret; 2177 } 2178 2179 /** 2180 * ram_save_host_page: save a whole host page 2181 * 2182 * Starting at *offset send pages up to the end of the current host 2183 * page. It's valid for the initial offset to point into the middle of 2184 * a host page in which case the remainder of the hostpage is sent. 2185 * Only dirty target pages are sent. Note that the host page size may 2186 * be a huge page for this block. 2187 * 2188 * The saving stops at the boundary of the used_length of the block 2189 * if the RAMBlock isn't a multiple of the host page size. 2190 * 2191 * The caller must be with ram_state.bitmap_mutex held to call this 2192 * function. Note that this function can temporarily release the lock, but 2193 * when the function is returned it'll make sure the lock is still held. 2194 * 2195 * Returns the number of pages written or negative on error 2196 * 2197 * @rs: current RAM state 2198 * @pss: data about the page we want to send 2199 */ 2200 static int ram_save_host_page(RAMState *rs, PageSearchStatus *pss) 2201 { 2202 bool page_dirty, preempt_active = postcopy_preempt_active(); 2203 int tmppages, pages = 0; 2204 size_t pagesize_bits = 2205 qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS; 2206 unsigned long start_page = pss->page; 2207 int res; 2208 2209 if (migrate_ram_is_ignored(pss->block)) { 2210 error_report("block %s should not be migrated !", pss->block->idstr); 2211 return 0; 2212 } 2213 2214 /* Update host page boundary information */ 2215 pss_host_page_prepare(pss); 2216 2217 do { 2218 page_dirty = migration_bitmap_clear_dirty(rs, pss->block, pss->page); 2219 2220 /* Check the pages is dirty and if it is send it */ 2221 if (page_dirty) { 2222 /* 2223 * Properly yield the lock only in postcopy preempt mode 2224 * because both migration thread and rp-return thread can 2225 * operate on the bitmaps. 2226 */ 2227 if (preempt_active) { 2228 qemu_mutex_unlock(&rs->bitmap_mutex); 2229 } 2230 tmppages = migration_ops->ram_save_target_page(rs, pss); 2231 if (tmppages >= 0) { 2232 pages += tmppages; 2233 /* 2234 * Allow rate limiting to happen in the middle of huge pages if 2235 * something is sent in the current iteration. 2236 */ 2237 if (pagesize_bits > 1 && tmppages > 0) { 2238 migration_rate_limit(); 2239 } 2240 } 2241 if (preempt_active) { 2242 qemu_mutex_lock(&rs->bitmap_mutex); 2243 } 2244 } else { 2245 tmppages = 0; 2246 } 2247 2248 if (tmppages < 0) { 2249 pss_host_page_finish(pss); 2250 return tmppages; 2251 } 2252 2253 pss_find_next_dirty(pss); 2254 } while (pss_within_range(pss)); 2255 2256 pss_host_page_finish(pss); 2257 2258 res = ram_save_release_protection(rs, pss, start_page); 2259 return (res < 0 ? res : pages); 2260 } 2261 2262 /** 2263 * ram_find_and_save_block: finds a dirty page and sends it to f 2264 * 2265 * Called within an RCU critical section. 2266 * 2267 * Returns the number of pages written where zero means no dirty pages, 2268 * or negative on error 2269 * 2270 * @rs: current RAM state 2271 * 2272 * On systems where host-page-size > target-page-size it will send all the 2273 * pages in a host page that are dirty. 2274 */ 2275 static int ram_find_and_save_block(RAMState *rs) 2276 { 2277 PageSearchStatus *pss = &rs->pss[RAM_CHANNEL_PRECOPY]; 2278 int pages = 0; 2279 2280 /* No dirty page as there is zero RAM */ 2281 if (!rs->ram_bytes_total) { 2282 return pages; 2283 } 2284 2285 /* 2286 * Always keep last_seen_block/last_page valid during this procedure, 2287 * because find_dirty_block() relies on these values (e.g., we compare 2288 * last_seen_block with pss.block to see whether we searched all the 2289 * ramblocks) to detect the completion of migration. Having NULL value 2290 * of last_seen_block can conditionally cause below loop to run forever. 2291 */ 2292 if (!rs->last_seen_block) { 2293 rs->last_seen_block = QLIST_FIRST_RCU(&ram_list.blocks); 2294 rs->last_page = 0; 2295 } 2296 2297 pss_init(pss, rs->last_seen_block, rs->last_page); 2298 2299 while (true){ 2300 if (!get_queued_page(rs, pss)) { 2301 /* priority queue empty, so just search for something dirty */ 2302 int res = find_dirty_block(rs, pss); 2303 if (res != PAGE_DIRTY_FOUND) { 2304 if (res == PAGE_ALL_CLEAN) { 2305 break; 2306 } else if (res == PAGE_TRY_AGAIN) { 2307 continue; 2308 } else if (res < 0) { 2309 pages = res; 2310 break; 2311 } 2312 } 2313 } 2314 pages = ram_save_host_page(rs, pss); 2315 if (pages) { 2316 break; 2317 } 2318 } 2319 2320 rs->last_seen_block = pss->block; 2321 rs->last_page = pss->page; 2322 2323 return pages; 2324 } 2325 2326 static uint64_t ram_bytes_total_with_ignored(void) 2327 { 2328 RAMBlock *block; 2329 uint64_t total = 0; 2330 2331 RCU_READ_LOCK_GUARD(); 2332 2333 RAMBLOCK_FOREACH_MIGRATABLE(block) { 2334 total += block->used_length; 2335 } 2336 return total; 2337 } 2338 2339 uint64_t ram_bytes_total(void) 2340 { 2341 RAMBlock *block; 2342 uint64_t total = 0; 2343 2344 RCU_READ_LOCK_GUARD(); 2345 2346 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 2347 total += block->used_length; 2348 } 2349 return total; 2350 } 2351 2352 static void xbzrle_load_setup(void) 2353 { 2354 XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE); 2355 } 2356 2357 static void xbzrle_load_cleanup(void) 2358 { 2359 g_free(XBZRLE.decoded_buf); 2360 XBZRLE.decoded_buf = NULL; 2361 } 2362 2363 static void ram_state_cleanup(RAMState **rsp) 2364 { 2365 if (*rsp) { 2366 migration_page_queue_free(*rsp); 2367 qemu_mutex_destroy(&(*rsp)->bitmap_mutex); 2368 qemu_mutex_destroy(&(*rsp)->src_page_req_mutex); 2369 g_free(*rsp); 2370 *rsp = NULL; 2371 } 2372 } 2373 2374 static void xbzrle_cleanup(void) 2375 { 2376 XBZRLE_cache_lock(); 2377 if (XBZRLE.cache) { 2378 cache_fini(XBZRLE.cache); 2379 g_free(XBZRLE.encoded_buf); 2380 g_free(XBZRLE.current_buf); 2381 g_free(XBZRLE.zero_target_page); 2382 XBZRLE.cache = NULL; 2383 XBZRLE.encoded_buf = NULL; 2384 XBZRLE.current_buf = NULL; 2385 XBZRLE.zero_target_page = NULL; 2386 } 2387 XBZRLE_cache_unlock(); 2388 } 2389 2390 static void ram_save_cleanup(void *opaque) 2391 { 2392 RAMState **rsp = opaque; 2393 RAMBlock *block; 2394 2395 /* We don't use dirty log with background snapshots */ 2396 if (!migrate_background_snapshot()) { 2397 /* caller have hold BQL or is in a bh, so there is 2398 * no writing race against the migration bitmap 2399 */ 2400 if (global_dirty_tracking & GLOBAL_DIRTY_MIGRATION) { 2401 /* 2402 * do not stop dirty log without starting it, since 2403 * memory_global_dirty_log_stop will assert that 2404 * memory_global_dirty_log_start/stop used in pairs 2405 */ 2406 memory_global_dirty_log_stop(GLOBAL_DIRTY_MIGRATION); 2407 } 2408 } 2409 2410 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 2411 g_free(block->clear_bmap); 2412 block->clear_bmap = NULL; 2413 g_free(block->bmap); 2414 block->bmap = NULL; 2415 } 2416 2417 xbzrle_cleanup(); 2418 compress_threads_save_cleanup(); 2419 ram_state_cleanup(rsp); 2420 g_free(migration_ops); 2421 migration_ops = NULL; 2422 } 2423 2424 static void ram_state_reset(RAMState *rs) 2425 { 2426 int i; 2427 2428 for (i = 0; i < RAM_CHANNEL_MAX; i++) { 2429 rs->pss[i].last_sent_block = NULL; 2430 } 2431 2432 rs->last_seen_block = NULL; 2433 rs->last_page = 0; 2434 rs->last_version = ram_list.version; 2435 rs->xbzrle_started = false; 2436 } 2437 2438 #define MAX_WAIT 50 /* ms, half buffered_file limit */ 2439 2440 /* **** functions for postcopy ***** */ 2441 2442 void ram_postcopy_migrated_memory_release(MigrationState *ms) 2443 { 2444 struct RAMBlock *block; 2445 2446 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 2447 unsigned long *bitmap = block->bmap; 2448 unsigned long range = block->used_length >> TARGET_PAGE_BITS; 2449 unsigned long run_start = find_next_zero_bit(bitmap, range, 0); 2450 2451 while (run_start < range) { 2452 unsigned long run_end = find_next_bit(bitmap, range, run_start + 1); 2453 ram_discard_range(block->idstr, 2454 ((ram_addr_t)run_start) << TARGET_PAGE_BITS, 2455 ((ram_addr_t)(run_end - run_start)) 2456 << TARGET_PAGE_BITS); 2457 run_start = find_next_zero_bit(bitmap, range, run_end + 1); 2458 } 2459 } 2460 } 2461 2462 /** 2463 * postcopy_send_discard_bm_ram: discard a RAMBlock 2464 * 2465 * Callback from postcopy_each_ram_send_discard for each RAMBlock 2466 * 2467 * @ms: current migration state 2468 * @block: RAMBlock to discard 2469 */ 2470 static void postcopy_send_discard_bm_ram(MigrationState *ms, RAMBlock *block) 2471 { 2472 unsigned long end = block->used_length >> TARGET_PAGE_BITS; 2473 unsigned long current; 2474 unsigned long *bitmap = block->bmap; 2475 2476 for (current = 0; current < end; ) { 2477 unsigned long one = find_next_bit(bitmap, end, current); 2478 unsigned long zero, discard_length; 2479 2480 if (one >= end) { 2481 break; 2482 } 2483 2484 zero = find_next_zero_bit(bitmap, end, one + 1); 2485 2486 if (zero >= end) { 2487 discard_length = end - one; 2488 } else { 2489 discard_length = zero - one; 2490 } 2491 postcopy_discard_send_range(ms, one, discard_length); 2492 current = one + discard_length; 2493 } 2494 } 2495 2496 static void postcopy_chunk_hostpages_pass(MigrationState *ms, RAMBlock *block); 2497 2498 /** 2499 * postcopy_each_ram_send_discard: discard all RAMBlocks 2500 * 2501 * Utility for the outgoing postcopy code. 2502 * Calls postcopy_send_discard_bm_ram for each RAMBlock 2503 * passing it bitmap indexes and name. 2504 * (qemu_ram_foreach_block ends up passing unscaled lengths 2505 * which would mean postcopy code would have to deal with target page) 2506 * 2507 * @ms: current migration state 2508 */ 2509 static void postcopy_each_ram_send_discard(MigrationState *ms) 2510 { 2511 struct RAMBlock *block; 2512 2513 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 2514 postcopy_discard_send_init(ms, block->idstr); 2515 2516 /* 2517 * Deal with TPS != HPS and huge pages. It discard any partially sent 2518 * host-page size chunks, mark any partially dirty host-page size 2519 * chunks as all dirty. In this case the host-page is the host-page 2520 * for the particular RAMBlock, i.e. it might be a huge page. 2521 */ 2522 postcopy_chunk_hostpages_pass(ms, block); 2523 2524 /* 2525 * Postcopy sends chunks of bitmap over the wire, but it 2526 * just needs indexes at this point, avoids it having 2527 * target page specific code. 2528 */ 2529 postcopy_send_discard_bm_ram(ms, block); 2530 postcopy_discard_send_finish(ms); 2531 } 2532 } 2533 2534 /** 2535 * postcopy_chunk_hostpages_pass: canonicalize bitmap in hostpages 2536 * 2537 * Helper for postcopy_chunk_hostpages; it's called twice to 2538 * canonicalize the two bitmaps, that are similar, but one is 2539 * inverted. 2540 * 2541 * Postcopy requires that all target pages in a hostpage are dirty or 2542 * clean, not a mix. This function canonicalizes the bitmaps. 2543 * 2544 * @ms: current migration state 2545 * @block: block that contains the page we want to canonicalize 2546 */ 2547 static void postcopy_chunk_hostpages_pass(MigrationState *ms, RAMBlock *block) 2548 { 2549 RAMState *rs = ram_state; 2550 unsigned long *bitmap = block->bmap; 2551 unsigned int host_ratio = block->page_size / TARGET_PAGE_SIZE; 2552 unsigned long pages = block->used_length >> TARGET_PAGE_BITS; 2553 unsigned long run_start; 2554 2555 if (block->page_size == TARGET_PAGE_SIZE) { 2556 /* Easy case - TPS==HPS for a non-huge page RAMBlock */ 2557 return; 2558 } 2559 2560 /* Find a dirty page */ 2561 run_start = find_next_bit(bitmap, pages, 0); 2562 2563 while (run_start < pages) { 2564 2565 /* 2566 * If the start of this run of pages is in the middle of a host 2567 * page, then we need to fixup this host page. 2568 */ 2569 if (QEMU_IS_ALIGNED(run_start, host_ratio)) { 2570 /* Find the end of this run */ 2571 run_start = find_next_zero_bit(bitmap, pages, run_start + 1); 2572 /* 2573 * If the end isn't at the start of a host page, then the 2574 * run doesn't finish at the end of a host page 2575 * and we need to discard. 2576 */ 2577 } 2578 2579 if (!QEMU_IS_ALIGNED(run_start, host_ratio)) { 2580 unsigned long page; 2581 unsigned long fixup_start_addr = QEMU_ALIGN_DOWN(run_start, 2582 host_ratio); 2583 run_start = QEMU_ALIGN_UP(run_start, host_ratio); 2584 2585 /* Clean up the bitmap */ 2586 for (page = fixup_start_addr; 2587 page < fixup_start_addr + host_ratio; page++) { 2588 /* 2589 * Remark them as dirty, updating the count for any pages 2590 * that weren't previously dirty. 2591 */ 2592 rs->migration_dirty_pages += !test_and_set_bit(page, bitmap); 2593 } 2594 } 2595 2596 /* Find the next dirty page for the next iteration */ 2597 run_start = find_next_bit(bitmap, pages, run_start); 2598 } 2599 } 2600 2601 /** 2602 * ram_postcopy_send_discard_bitmap: transmit the discard bitmap 2603 * 2604 * Transmit the set of pages to be discarded after precopy to the target 2605 * these are pages that: 2606 * a) Have been previously transmitted but are now dirty again 2607 * b) Pages that have never been transmitted, this ensures that 2608 * any pages on the destination that have been mapped by background 2609 * tasks get discarded (transparent huge pages is the specific concern) 2610 * Hopefully this is pretty sparse 2611 * 2612 * @ms: current migration state 2613 */ 2614 void ram_postcopy_send_discard_bitmap(MigrationState *ms) 2615 { 2616 RAMState *rs = ram_state; 2617 2618 RCU_READ_LOCK_GUARD(); 2619 2620 /* This should be our last sync, the src is now paused */ 2621 migration_bitmap_sync(rs, false); 2622 2623 /* Easiest way to make sure we don't resume in the middle of a host-page */ 2624 rs->pss[RAM_CHANNEL_PRECOPY].last_sent_block = NULL; 2625 rs->last_seen_block = NULL; 2626 rs->last_page = 0; 2627 2628 postcopy_each_ram_send_discard(ms); 2629 2630 trace_ram_postcopy_send_discard_bitmap(); 2631 } 2632 2633 /** 2634 * ram_discard_range: discard dirtied pages at the beginning of postcopy 2635 * 2636 * Returns zero on success 2637 * 2638 * @rbname: name of the RAMBlock of the request. NULL means the 2639 * same that last one. 2640 * @start: RAMBlock starting page 2641 * @length: RAMBlock size 2642 */ 2643 int ram_discard_range(const char *rbname, uint64_t start, size_t length) 2644 { 2645 trace_ram_discard_range(rbname, start, length); 2646 2647 RCU_READ_LOCK_GUARD(); 2648 RAMBlock *rb = qemu_ram_block_by_name(rbname); 2649 2650 if (!rb) { 2651 error_report("ram_discard_range: Failed to find block '%s'", rbname); 2652 return -1; 2653 } 2654 2655 /* 2656 * On source VM, we don't need to update the received bitmap since 2657 * we don't even have one. 2658 */ 2659 if (rb->receivedmap) { 2660 bitmap_clear(rb->receivedmap, start >> qemu_target_page_bits(), 2661 length >> qemu_target_page_bits()); 2662 } 2663 2664 return ram_block_discard_range(rb, start, length); 2665 } 2666 2667 /* 2668 * For every allocation, we will try not to crash the VM if the 2669 * allocation failed. 2670 */ 2671 static int xbzrle_init(void) 2672 { 2673 Error *local_err = NULL; 2674 2675 if (!migrate_xbzrle()) { 2676 return 0; 2677 } 2678 2679 XBZRLE_cache_lock(); 2680 2681 XBZRLE.zero_target_page = g_try_malloc0(TARGET_PAGE_SIZE); 2682 if (!XBZRLE.zero_target_page) { 2683 error_report("%s: Error allocating zero page", __func__); 2684 goto err_out; 2685 } 2686 2687 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size(), 2688 TARGET_PAGE_SIZE, &local_err); 2689 if (!XBZRLE.cache) { 2690 error_report_err(local_err); 2691 goto free_zero_page; 2692 } 2693 2694 XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE); 2695 if (!XBZRLE.encoded_buf) { 2696 error_report("%s: Error allocating encoded_buf", __func__); 2697 goto free_cache; 2698 } 2699 2700 XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE); 2701 if (!XBZRLE.current_buf) { 2702 error_report("%s: Error allocating current_buf", __func__); 2703 goto free_encoded_buf; 2704 } 2705 2706 /* We are all good */ 2707 XBZRLE_cache_unlock(); 2708 return 0; 2709 2710 free_encoded_buf: 2711 g_free(XBZRLE.encoded_buf); 2712 XBZRLE.encoded_buf = NULL; 2713 free_cache: 2714 cache_fini(XBZRLE.cache); 2715 XBZRLE.cache = NULL; 2716 free_zero_page: 2717 g_free(XBZRLE.zero_target_page); 2718 XBZRLE.zero_target_page = NULL; 2719 err_out: 2720 XBZRLE_cache_unlock(); 2721 return -ENOMEM; 2722 } 2723 2724 static int ram_state_init(RAMState **rsp) 2725 { 2726 *rsp = g_try_new0(RAMState, 1); 2727 2728 if (!*rsp) { 2729 error_report("%s: Init ramstate fail", __func__); 2730 return -1; 2731 } 2732 2733 qemu_mutex_init(&(*rsp)->bitmap_mutex); 2734 qemu_mutex_init(&(*rsp)->src_page_req_mutex); 2735 QSIMPLEQ_INIT(&(*rsp)->src_page_requests); 2736 (*rsp)->ram_bytes_total = ram_bytes_total(); 2737 2738 /* 2739 * Count the total number of pages used by ram blocks not including any 2740 * gaps due to alignment or unplugs. 2741 * This must match with the initial values of dirty bitmap. 2742 */ 2743 (*rsp)->migration_dirty_pages = (*rsp)->ram_bytes_total >> TARGET_PAGE_BITS; 2744 ram_state_reset(*rsp); 2745 2746 return 0; 2747 } 2748 2749 static void ram_list_init_bitmaps(void) 2750 { 2751 MigrationState *ms = migrate_get_current(); 2752 RAMBlock *block; 2753 unsigned long pages; 2754 uint8_t shift; 2755 2756 /* Skip setting bitmap if there is no RAM */ 2757 if (ram_bytes_total()) { 2758 shift = ms->clear_bitmap_shift; 2759 if (shift > CLEAR_BITMAP_SHIFT_MAX) { 2760 error_report("clear_bitmap_shift (%u) too big, using " 2761 "max value (%u)", shift, CLEAR_BITMAP_SHIFT_MAX); 2762 shift = CLEAR_BITMAP_SHIFT_MAX; 2763 } else if (shift < CLEAR_BITMAP_SHIFT_MIN) { 2764 error_report("clear_bitmap_shift (%u) too small, using " 2765 "min value (%u)", shift, CLEAR_BITMAP_SHIFT_MIN); 2766 shift = CLEAR_BITMAP_SHIFT_MIN; 2767 } 2768 2769 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 2770 pages = block->max_length >> TARGET_PAGE_BITS; 2771 /* 2772 * The initial dirty bitmap for migration must be set with all 2773 * ones to make sure we'll migrate every guest RAM page to 2774 * destination. 2775 * Here we set RAMBlock.bmap all to 1 because when rebegin a 2776 * new migration after a failed migration, ram_list. 2777 * dirty_memory[DIRTY_MEMORY_MIGRATION] don't include the whole 2778 * guest memory. 2779 */ 2780 block->bmap = bitmap_new(pages); 2781 bitmap_set(block->bmap, 0, pages); 2782 block->clear_bmap_shift = shift; 2783 block->clear_bmap = bitmap_new(clear_bmap_size(pages, shift)); 2784 } 2785 } 2786 } 2787 2788 static void migration_bitmap_clear_discarded_pages(RAMState *rs) 2789 { 2790 unsigned long pages; 2791 RAMBlock *rb; 2792 2793 RCU_READ_LOCK_GUARD(); 2794 2795 RAMBLOCK_FOREACH_NOT_IGNORED(rb) { 2796 pages = ramblock_dirty_bitmap_clear_discarded_pages(rb); 2797 rs->migration_dirty_pages -= pages; 2798 } 2799 } 2800 2801 static void ram_init_bitmaps(RAMState *rs) 2802 { 2803 qemu_mutex_lock_ramlist(); 2804 2805 WITH_RCU_READ_LOCK_GUARD() { 2806 ram_list_init_bitmaps(); 2807 /* We don't use dirty log with background snapshots */ 2808 if (!migrate_background_snapshot()) { 2809 memory_global_dirty_log_start(GLOBAL_DIRTY_MIGRATION); 2810 migration_bitmap_sync_precopy(rs, false); 2811 } 2812 } 2813 qemu_mutex_unlock_ramlist(); 2814 2815 /* 2816 * After an eventual first bitmap sync, fixup the initial bitmap 2817 * containing all 1s to exclude any discarded pages from migration. 2818 */ 2819 migration_bitmap_clear_discarded_pages(rs); 2820 } 2821 2822 static int ram_init_all(RAMState **rsp) 2823 { 2824 if (ram_state_init(rsp)) { 2825 return -1; 2826 } 2827 2828 if (xbzrle_init()) { 2829 ram_state_cleanup(rsp); 2830 return -1; 2831 } 2832 2833 ram_init_bitmaps(*rsp); 2834 2835 return 0; 2836 } 2837 2838 static void ram_state_resume_prepare(RAMState *rs, QEMUFile *out) 2839 { 2840 RAMBlock *block; 2841 uint64_t pages = 0; 2842 2843 /* 2844 * Postcopy is not using xbzrle/compression, so no need for that. 2845 * Also, since source are already halted, we don't need to care 2846 * about dirty page logging as well. 2847 */ 2848 2849 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 2850 pages += bitmap_count_one(block->bmap, 2851 block->used_length >> TARGET_PAGE_BITS); 2852 } 2853 2854 /* This may not be aligned with current bitmaps. Recalculate. */ 2855 rs->migration_dirty_pages = pages; 2856 2857 ram_state_reset(rs); 2858 2859 /* Update RAMState cache of output QEMUFile */ 2860 rs->pss[RAM_CHANNEL_PRECOPY].pss_channel = out; 2861 2862 trace_ram_state_resume_prepare(pages); 2863 } 2864 2865 /* 2866 * This function clears bits of the free pages reported by the caller from the 2867 * migration dirty bitmap. @addr is the host address corresponding to the 2868 * start of the continuous guest free pages, and @len is the total bytes of 2869 * those pages. 2870 */ 2871 void qemu_guest_free_page_hint(void *addr, size_t len) 2872 { 2873 RAMBlock *block; 2874 ram_addr_t offset; 2875 size_t used_len, start, npages; 2876 MigrationState *s = migrate_get_current(); 2877 2878 /* This function is currently expected to be used during live migration */ 2879 if (!migration_is_setup_or_active(s->state)) { 2880 return; 2881 } 2882 2883 for (; len > 0; len -= used_len, addr += used_len) { 2884 block = qemu_ram_block_from_host(addr, false, &offset); 2885 if (unlikely(!block || offset >= block->used_length)) { 2886 /* 2887 * The implementation might not support RAMBlock resize during 2888 * live migration, but it could happen in theory with future 2889 * updates. So we add a check here to capture that case. 2890 */ 2891 error_report_once("%s unexpected error", __func__); 2892 return; 2893 } 2894 2895 if (len <= block->used_length - offset) { 2896 used_len = len; 2897 } else { 2898 used_len = block->used_length - offset; 2899 } 2900 2901 start = offset >> TARGET_PAGE_BITS; 2902 npages = used_len >> TARGET_PAGE_BITS; 2903 2904 qemu_mutex_lock(&ram_state->bitmap_mutex); 2905 /* 2906 * The skipped free pages are equavalent to be sent from clear_bmap's 2907 * perspective, so clear the bits from the memory region bitmap which 2908 * are initially set. Otherwise those skipped pages will be sent in 2909 * the next round after syncing from the memory region bitmap. 2910 */ 2911 migration_clear_memory_region_dirty_bitmap_range(block, start, npages); 2912 ram_state->migration_dirty_pages -= 2913 bitmap_count_one_with_offset(block->bmap, start, npages); 2914 bitmap_clear(block->bmap, start, npages); 2915 qemu_mutex_unlock(&ram_state->bitmap_mutex); 2916 } 2917 } 2918 2919 /* 2920 * Each of ram_save_setup, ram_save_iterate and ram_save_complete has 2921 * long-running RCU critical section. When rcu-reclaims in the code 2922 * start to become numerous it will be necessary to reduce the 2923 * granularity of these critical sections. 2924 */ 2925 2926 /** 2927 * ram_save_setup: Setup RAM for migration 2928 * 2929 * Returns zero to indicate success and negative for error 2930 * 2931 * @f: QEMUFile where to send the data 2932 * @opaque: RAMState pointer 2933 */ 2934 static int ram_save_setup(QEMUFile *f, void *opaque) 2935 { 2936 RAMState **rsp = opaque; 2937 RAMBlock *block; 2938 int ret; 2939 2940 if (compress_threads_save_setup()) { 2941 return -1; 2942 } 2943 2944 /* migration has already setup the bitmap, reuse it. */ 2945 if (!migration_in_colo_state()) { 2946 if (ram_init_all(rsp) != 0) { 2947 compress_threads_save_cleanup(); 2948 return -1; 2949 } 2950 } 2951 (*rsp)->pss[RAM_CHANNEL_PRECOPY].pss_channel = f; 2952 2953 WITH_RCU_READ_LOCK_GUARD() { 2954 qemu_put_be64(f, ram_bytes_total_with_ignored() 2955 | RAM_SAVE_FLAG_MEM_SIZE); 2956 2957 RAMBLOCK_FOREACH_MIGRATABLE(block) { 2958 qemu_put_byte(f, strlen(block->idstr)); 2959 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr)); 2960 qemu_put_be64(f, block->used_length); 2961 if (migrate_postcopy_ram() && block->page_size != 2962 qemu_host_page_size) { 2963 qemu_put_be64(f, block->page_size); 2964 } 2965 if (migrate_ignore_shared()) { 2966 qemu_put_be64(f, block->mr->addr); 2967 } 2968 } 2969 } 2970 2971 ret = rdma_registration_start(f, RAM_CONTROL_SETUP); 2972 if (ret < 0) { 2973 qemu_file_set_error(f, ret); 2974 return ret; 2975 } 2976 2977 ret = rdma_registration_stop(f, RAM_CONTROL_SETUP); 2978 if (ret < 0) { 2979 qemu_file_set_error(f, ret); 2980 return ret; 2981 } 2982 2983 migration_ops = g_malloc0(sizeof(MigrationOps)); 2984 migration_ops->ram_save_target_page = ram_save_target_page_legacy; 2985 2986 bql_unlock(); 2987 ret = multifd_send_sync_main(); 2988 bql_lock(); 2989 if (ret < 0) { 2990 return ret; 2991 } 2992 2993 if (migrate_multifd() && !migrate_multifd_flush_after_each_section()) { 2994 qemu_put_be64(f, RAM_SAVE_FLAG_MULTIFD_FLUSH); 2995 } 2996 2997 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 2998 return qemu_fflush(f); 2999 } 3000 3001 /** 3002 * ram_save_iterate: iterative stage for migration 3003 * 3004 * Returns zero to indicate success and negative for error 3005 * 3006 * @f: QEMUFile where to send the data 3007 * @opaque: RAMState pointer 3008 */ 3009 static int ram_save_iterate(QEMUFile *f, void *opaque) 3010 { 3011 RAMState **temp = opaque; 3012 RAMState *rs = *temp; 3013 int ret = 0; 3014 int i; 3015 int64_t t0; 3016 int done = 0; 3017 3018 if (blk_mig_bulk_active()) { 3019 /* Avoid transferring ram during bulk phase of block migration as 3020 * the bulk phase will usually take a long time and transferring 3021 * ram updates during that time is pointless. */ 3022 goto out; 3023 } 3024 3025 /* 3026 * We'll take this lock a little bit long, but it's okay for two reasons. 3027 * Firstly, the only possible other thread to take it is who calls 3028 * qemu_guest_free_page_hint(), which should be rare; secondly, see 3029 * MAX_WAIT (if curious, further see commit 4508bd9ed8053ce) below, which 3030 * guarantees that we'll at least released it in a regular basis. 3031 */ 3032 WITH_QEMU_LOCK_GUARD(&rs->bitmap_mutex) { 3033 WITH_RCU_READ_LOCK_GUARD() { 3034 if (ram_list.version != rs->last_version) { 3035 ram_state_reset(rs); 3036 } 3037 3038 /* Read version before ram_list.blocks */ 3039 smp_rmb(); 3040 3041 ret = rdma_registration_start(f, RAM_CONTROL_ROUND); 3042 if (ret < 0) { 3043 qemu_file_set_error(f, ret); 3044 goto out; 3045 } 3046 3047 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 3048 i = 0; 3049 while ((ret = migration_rate_exceeded(f)) == 0 || 3050 postcopy_has_request(rs)) { 3051 int pages; 3052 3053 if (qemu_file_get_error(f)) { 3054 break; 3055 } 3056 3057 pages = ram_find_and_save_block(rs); 3058 /* no more pages to sent */ 3059 if (pages == 0) { 3060 done = 1; 3061 break; 3062 } 3063 3064 if (pages < 0) { 3065 qemu_file_set_error(f, pages); 3066 break; 3067 } 3068 3069 rs->target_page_count += pages; 3070 3071 /* 3072 * During postcopy, it is necessary to make sure one whole host 3073 * page is sent in one chunk. 3074 */ 3075 if (migrate_postcopy_ram()) { 3076 compress_flush_data(); 3077 } 3078 3079 /* 3080 * we want to check in the 1st loop, just in case it was the 1st 3081 * time and we had to sync the dirty bitmap. 3082 * qemu_clock_get_ns() is a bit expensive, so we only check each 3083 * some iterations 3084 */ 3085 if ((i & 63) == 0) { 3086 uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) / 3087 1000000; 3088 if (t1 > MAX_WAIT) { 3089 trace_ram_save_iterate_big_wait(t1, i); 3090 break; 3091 } 3092 } 3093 i++; 3094 } 3095 } 3096 } 3097 3098 /* 3099 * Must occur before EOS (or any QEMUFile operation) 3100 * because of RDMA protocol. 3101 */ 3102 ret = rdma_registration_stop(f, RAM_CONTROL_ROUND); 3103 if (ret < 0) { 3104 qemu_file_set_error(f, ret); 3105 } 3106 3107 out: 3108 if (ret >= 0 3109 && migration_is_setup_or_active(migrate_get_current()->state)) { 3110 if (migrate_multifd() && migrate_multifd_flush_after_each_section()) { 3111 ret = multifd_send_sync_main(); 3112 if (ret < 0) { 3113 return ret; 3114 } 3115 } 3116 3117 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 3118 ram_transferred_add(8); 3119 ret = qemu_fflush(f); 3120 } 3121 if (ret < 0) { 3122 return ret; 3123 } 3124 3125 return done; 3126 } 3127 3128 /** 3129 * ram_save_complete: function called to send the remaining amount of ram 3130 * 3131 * Returns zero to indicate success or negative on error 3132 * 3133 * Called with the BQL 3134 * 3135 * @f: QEMUFile where to send the data 3136 * @opaque: RAMState pointer 3137 */ 3138 static int ram_save_complete(QEMUFile *f, void *opaque) 3139 { 3140 RAMState **temp = opaque; 3141 RAMState *rs = *temp; 3142 int ret = 0; 3143 3144 rs->last_stage = !migration_in_colo_state(); 3145 3146 WITH_RCU_READ_LOCK_GUARD() { 3147 if (!migration_in_postcopy()) { 3148 migration_bitmap_sync_precopy(rs, true); 3149 } 3150 3151 ret = rdma_registration_start(f, RAM_CONTROL_FINISH); 3152 if (ret < 0) { 3153 qemu_file_set_error(f, ret); 3154 return ret; 3155 } 3156 3157 /* try transferring iterative blocks of memory */ 3158 3159 /* flush all remaining blocks regardless of rate limiting */ 3160 qemu_mutex_lock(&rs->bitmap_mutex); 3161 while (true) { 3162 int pages; 3163 3164 pages = ram_find_and_save_block(rs); 3165 /* no more blocks to sent */ 3166 if (pages == 0) { 3167 break; 3168 } 3169 if (pages < 0) { 3170 qemu_mutex_unlock(&rs->bitmap_mutex); 3171 return pages; 3172 } 3173 } 3174 qemu_mutex_unlock(&rs->bitmap_mutex); 3175 3176 compress_flush_data(); 3177 3178 ret = rdma_registration_stop(f, RAM_CONTROL_FINISH); 3179 if (ret < 0) { 3180 qemu_file_set_error(f, ret); 3181 return ret; 3182 } 3183 } 3184 3185 ret = multifd_send_sync_main(); 3186 if (ret < 0) { 3187 return ret; 3188 } 3189 3190 if (migrate_multifd() && !migrate_multifd_flush_after_each_section()) { 3191 qemu_put_be64(f, RAM_SAVE_FLAG_MULTIFD_FLUSH); 3192 } 3193 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 3194 return qemu_fflush(f); 3195 } 3196 3197 static void ram_state_pending_estimate(void *opaque, uint64_t *must_precopy, 3198 uint64_t *can_postcopy) 3199 { 3200 RAMState **temp = opaque; 3201 RAMState *rs = *temp; 3202 3203 uint64_t remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE; 3204 3205 if (migrate_postcopy_ram()) { 3206 /* We can do postcopy, and all the data is postcopiable */ 3207 *can_postcopy += remaining_size; 3208 } else { 3209 *must_precopy += remaining_size; 3210 } 3211 } 3212 3213 static void ram_state_pending_exact(void *opaque, uint64_t *must_precopy, 3214 uint64_t *can_postcopy) 3215 { 3216 MigrationState *s = migrate_get_current(); 3217 RAMState **temp = opaque; 3218 RAMState *rs = *temp; 3219 3220 uint64_t remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE; 3221 3222 if (!migration_in_postcopy() && remaining_size < s->threshold_size) { 3223 bql_lock(); 3224 WITH_RCU_READ_LOCK_GUARD() { 3225 migration_bitmap_sync_precopy(rs, false); 3226 } 3227 bql_unlock(); 3228 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE; 3229 } 3230 3231 if (migrate_postcopy_ram()) { 3232 /* We can do postcopy, and all the data is postcopiable */ 3233 *can_postcopy += remaining_size; 3234 } else { 3235 *must_precopy += remaining_size; 3236 } 3237 } 3238 3239 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host) 3240 { 3241 unsigned int xh_len; 3242 int xh_flags; 3243 uint8_t *loaded_data; 3244 3245 /* extract RLE header */ 3246 xh_flags = qemu_get_byte(f); 3247 xh_len = qemu_get_be16(f); 3248 3249 if (xh_flags != ENCODING_FLAG_XBZRLE) { 3250 error_report("Failed to load XBZRLE page - wrong compression!"); 3251 return -1; 3252 } 3253 3254 if (xh_len > TARGET_PAGE_SIZE) { 3255 error_report("Failed to load XBZRLE page - len overflow!"); 3256 return -1; 3257 } 3258 loaded_data = XBZRLE.decoded_buf; 3259 /* load data and decode */ 3260 /* it can change loaded_data to point to an internal buffer */ 3261 qemu_get_buffer_in_place(f, &loaded_data, xh_len); 3262 3263 /* decode RLE */ 3264 if (xbzrle_decode_buffer(loaded_data, xh_len, host, 3265 TARGET_PAGE_SIZE) == -1) { 3266 error_report("Failed to load XBZRLE page - decode error!"); 3267 return -1; 3268 } 3269 3270 return 0; 3271 } 3272 3273 /** 3274 * ram_block_from_stream: read a RAMBlock id from the migration stream 3275 * 3276 * Must be called from within a rcu critical section. 3277 * 3278 * Returns a pointer from within the RCU-protected ram_list. 3279 * 3280 * @mis: the migration incoming state pointer 3281 * @f: QEMUFile where to read the data from 3282 * @flags: Page flags (mostly to see if it's a continuation of previous block) 3283 * @channel: the channel we're using 3284 */ 3285 static inline RAMBlock *ram_block_from_stream(MigrationIncomingState *mis, 3286 QEMUFile *f, int flags, 3287 int channel) 3288 { 3289 RAMBlock *block = mis->last_recv_block[channel]; 3290 char id[256]; 3291 uint8_t len; 3292 3293 if (flags & RAM_SAVE_FLAG_CONTINUE) { 3294 if (!block) { 3295 error_report("Ack, bad migration stream!"); 3296 return NULL; 3297 } 3298 return block; 3299 } 3300 3301 len = qemu_get_byte(f); 3302 qemu_get_buffer(f, (uint8_t *)id, len); 3303 id[len] = 0; 3304 3305 block = qemu_ram_block_by_name(id); 3306 if (!block) { 3307 error_report("Can't find block %s", id); 3308 return NULL; 3309 } 3310 3311 if (migrate_ram_is_ignored(block)) { 3312 error_report("block %s should not be migrated !", id); 3313 return NULL; 3314 } 3315 3316 mis->last_recv_block[channel] = block; 3317 3318 return block; 3319 } 3320 3321 static inline void *host_from_ram_block_offset(RAMBlock *block, 3322 ram_addr_t offset) 3323 { 3324 if (!offset_in_ramblock(block, offset)) { 3325 return NULL; 3326 } 3327 3328 return block->host + offset; 3329 } 3330 3331 static void *host_page_from_ram_block_offset(RAMBlock *block, 3332 ram_addr_t offset) 3333 { 3334 /* Note: Explicitly no check against offset_in_ramblock(). */ 3335 return (void *)QEMU_ALIGN_DOWN((uintptr_t)(block->host + offset), 3336 block->page_size); 3337 } 3338 3339 static ram_addr_t host_page_offset_from_ram_block_offset(RAMBlock *block, 3340 ram_addr_t offset) 3341 { 3342 return ((uintptr_t)block->host + offset) & (block->page_size - 1); 3343 } 3344 3345 void colo_record_bitmap(RAMBlock *block, ram_addr_t *normal, uint32_t pages) 3346 { 3347 qemu_mutex_lock(&ram_state->bitmap_mutex); 3348 for (int i = 0; i < pages; i++) { 3349 ram_addr_t offset = normal[i]; 3350 ram_state->migration_dirty_pages += !test_and_set_bit( 3351 offset >> TARGET_PAGE_BITS, 3352 block->bmap); 3353 } 3354 qemu_mutex_unlock(&ram_state->bitmap_mutex); 3355 } 3356 3357 static inline void *colo_cache_from_block_offset(RAMBlock *block, 3358 ram_addr_t offset, bool record_bitmap) 3359 { 3360 if (!offset_in_ramblock(block, offset)) { 3361 return NULL; 3362 } 3363 if (!block->colo_cache) { 3364 error_report("%s: colo_cache is NULL in block :%s", 3365 __func__, block->idstr); 3366 return NULL; 3367 } 3368 3369 /* 3370 * During colo checkpoint, we need bitmap of these migrated pages. 3371 * It help us to decide which pages in ram cache should be flushed 3372 * into VM's RAM later. 3373 */ 3374 if (record_bitmap) { 3375 colo_record_bitmap(block, &offset, 1); 3376 } 3377 return block->colo_cache + offset; 3378 } 3379 3380 /** 3381 * ram_handle_zero: handle the zero page case 3382 * 3383 * If a page (or a whole RDMA chunk) has been 3384 * determined to be zero, then zap it. 3385 * 3386 * @host: host address for the zero page 3387 * @ch: what the page is filled from. We only support zero 3388 * @size: size of the zero page 3389 */ 3390 void ram_handle_zero(void *host, uint64_t size) 3391 { 3392 if (!buffer_is_zero(host, size)) { 3393 memset(host, 0, size); 3394 } 3395 } 3396 3397 static void colo_init_ram_state(void) 3398 { 3399 ram_state_init(&ram_state); 3400 } 3401 3402 /* 3403 * colo cache: this is for secondary VM, we cache the whole 3404 * memory of the secondary VM, it is need to hold the global lock 3405 * to call this helper. 3406 */ 3407 int colo_init_ram_cache(void) 3408 { 3409 RAMBlock *block; 3410 3411 WITH_RCU_READ_LOCK_GUARD() { 3412 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3413 block->colo_cache = qemu_anon_ram_alloc(block->used_length, 3414 NULL, false, false); 3415 if (!block->colo_cache) { 3416 error_report("%s: Can't alloc memory for COLO cache of block %s," 3417 "size 0x" RAM_ADDR_FMT, __func__, block->idstr, 3418 block->used_length); 3419 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3420 if (block->colo_cache) { 3421 qemu_anon_ram_free(block->colo_cache, block->used_length); 3422 block->colo_cache = NULL; 3423 } 3424 } 3425 return -errno; 3426 } 3427 if (!machine_dump_guest_core(current_machine)) { 3428 qemu_madvise(block->colo_cache, block->used_length, 3429 QEMU_MADV_DONTDUMP); 3430 } 3431 } 3432 } 3433 3434 /* 3435 * Record the dirty pages that sent by PVM, we use this dirty bitmap together 3436 * with to decide which page in cache should be flushed into SVM's RAM. Here 3437 * we use the same name 'ram_bitmap' as for migration. 3438 */ 3439 if (ram_bytes_total()) { 3440 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3441 unsigned long pages = block->max_length >> TARGET_PAGE_BITS; 3442 block->bmap = bitmap_new(pages); 3443 } 3444 } 3445 3446 colo_init_ram_state(); 3447 return 0; 3448 } 3449 3450 /* TODO: duplicated with ram_init_bitmaps */ 3451 void colo_incoming_start_dirty_log(void) 3452 { 3453 RAMBlock *block = NULL; 3454 /* For memory_global_dirty_log_start below. */ 3455 bql_lock(); 3456 qemu_mutex_lock_ramlist(); 3457 3458 memory_global_dirty_log_sync(false); 3459 WITH_RCU_READ_LOCK_GUARD() { 3460 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3461 ramblock_sync_dirty_bitmap(ram_state, block); 3462 /* Discard this dirty bitmap record */ 3463 bitmap_zero(block->bmap, block->max_length >> TARGET_PAGE_BITS); 3464 } 3465 memory_global_dirty_log_start(GLOBAL_DIRTY_MIGRATION); 3466 } 3467 ram_state->migration_dirty_pages = 0; 3468 qemu_mutex_unlock_ramlist(); 3469 bql_unlock(); 3470 } 3471 3472 /* It is need to hold the global lock to call this helper */ 3473 void colo_release_ram_cache(void) 3474 { 3475 RAMBlock *block; 3476 3477 memory_global_dirty_log_stop(GLOBAL_DIRTY_MIGRATION); 3478 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3479 g_free(block->bmap); 3480 block->bmap = NULL; 3481 } 3482 3483 WITH_RCU_READ_LOCK_GUARD() { 3484 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3485 if (block->colo_cache) { 3486 qemu_anon_ram_free(block->colo_cache, block->used_length); 3487 block->colo_cache = NULL; 3488 } 3489 } 3490 } 3491 ram_state_cleanup(&ram_state); 3492 } 3493 3494 /** 3495 * ram_load_setup: Setup RAM for migration incoming side 3496 * 3497 * Returns zero to indicate success and negative for error 3498 * 3499 * @f: QEMUFile where to receive the data 3500 * @opaque: RAMState pointer 3501 */ 3502 static int ram_load_setup(QEMUFile *f, void *opaque) 3503 { 3504 xbzrle_load_setup(); 3505 ramblock_recv_map_init(); 3506 3507 return 0; 3508 } 3509 3510 static int ram_load_cleanup(void *opaque) 3511 { 3512 RAMBlock *rb; 3513 3514 RAMBLOCK_FOREACH_NOT_IGNORED(rb) { 3515 qemu_ram_block_writeback(rb); 3516 } 3517 3518 xbzrle_load_cleanup(); 3519 3520 RAMBLOCK_FOREACH_NOT_IGNORED(rb) { 3521 g_free(rb->receivedmap); 3522 rb->receivedmap = NULL; 3523 } 3524 3525 return 0; 3526 } 3527 3528 /** 3529 * ram_postcopy_incoming_init: allocate postcopy data structures 3530 * 3531 * Returns 0 for success and negative if there was one error 3532 * 3533 * @mis: current migration incoming state 3534 * 3535 * Allocate data structures etc needed by incoming migration with 3536 * postcopy-ram. postcopy-ram's similarly names 3537 * postcopy_ram_incoming_init does the work. 3538 */ 3539 int ram_postcopy_incoming_init(MigrationIncomingState *mis) 3540 { 3541 return postcopy_ram_incoming_init(mis); 3542 } 3543 3544 /** 3545 * ram_load_postcopy: load a page in postcopy case 3546 * 3547 * Returns 0 for success or -errno in case of error 3548 * 3549 * Called in postcopy mode by ram_load(). 3550 * rcu_read_lock is taken prior to this being called. 3551 * 3552 * @f: QEMUFile where to send the data 3553 * @channel: the channel to use for loading 3554 */ 3555 int ram_load_postcopy(QEMUFile *f, int channel) 3556 { 3557 int flags = 0, ret = 0; 3558 bool place_needed = false; 3559 bool matches_target_page_size = false; 3560 MigrationIncomingState *mis = migration_incoming_get_current(); 3561 PostcopyTmpPage *tmp_page = &mis->postcopy_tmp_pages[channel]; 3562 3563 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) { 3564 ram_addr_t addr; 3565 void *page_buffer = NULL; 3566 void *place_source = NULL; 3567 RAMBlock *block = NULL; 3568 uint8_t ch; 3569 int len; 3570 3571 addr = qemu_get_be64(f); 3572 3573 /* 3574 * If qemu file error, we should stop here, and then "addr" 3575 * may be invalid 3576 */ 3577 ret = qemu_file_get_error(f); 3578 if (ret) { 3579 break; 3580 } 3581 3582 flags = addr & ~TARGET_PAGE_MASK; 3583 addr &= TARGET_PAGE_MASK; 3584 3585 trace_ram_load_postcopy_loop(channel, (uint64_t)addr, flags); 3586 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE | 3587 RAM_SAVE_FLAG_COMPRESS_PAGE)) { 3588 block = ram_block_from_stream(mis, f, flags, channel); 3589 if (!block) { 3590 ret = -EINVAL; 3591 break; 3592 } 3593 3594 /* 3595 * Relying on used_length is racy and can result in false positives. 3596 * We might place pages beyond used_length in case RAM was shrunk 3597 * while in postcopy, which is fine - trying to place via 3598 * UFFDIO_COPY/UFFDIO_ZEROPAGE will never segfault. 3599 */ 3600 if (!block->host || addr >= block->postcopy_length) { 3601 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr); 3602 ret = -EINVAL; 3603 break; 3604 } 3605 tmp_page->target_pages++; 3606 matches_target_page_size = block->page_size == TARGET_PAGE_SIZE; 3607 /* 3608 * Postcopy requires that we place whole host pages atomically; 3609 * these may be huge pages for RAMBlocks that are backed by 3610 * hugetlbfs. 3611 * To make it atomic, the data is read into a temporary page 3612 * that's moved into place later. 3613 * The migration protocol uses, possibly smaller, target-pages 3614 * however the source ensures it always sends all the components 3615 * of a host page in one chunk. 3616 */ 3617 page_buffer = tmp_page->tmp_huge_page + 3618 host_page_offset_from_ram_block_offset(block, addr); 3619 /* If all TP are zero then we can optimise the place */ 3620 if (tmp_page->target_pages == 1) { 3621 tmp_page->host_addr = 3622 host_page_from_ram_block_offset(block, addr); 3623 } else if (tmp_page->host_addr != 3624 host_page_from_ram_block_offset(block, addr)) { 3625 /* not the 1st TP within the HP */ 3626 error_report("Non-same host page detected on channel %d: " 3627 "Target host page %p, received host page %p " 3628 "(rb %s offset 0x"RAM_ADDR_FMT" target_pages %d)", 3629 channel, tmp_page->host_addr, 3630 host_page_from_ram_block_offset(block, addr), 3631 block->idstr, addr, tmp_page->target_pages); 3632 ret = -EINVAL; 3633 break; 3634 } 3635 3636 /* 3637 * If it's the last part of a host page then we place the host 3638 * page 3639 */ 3640 if (tmp_page->target_pages == 3641 (block->page_size / TARGET_PAGE_SIZE)) { 3642 place_needed = true; 3643 } 3644 place_source = tmp_page->tmp_huge_page; 3645 } 3646 3647 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) { 3648 case RAM_SAVE_FLAG_ZERO: 3649 ch = qemu_get_byte(f); 3650 if (ch != 0) { 3651 error_report("Found a zero page with value %d", ch); 3652 ret = -EINVAL; 3653 break; 3654 } 3655 /* 3656 * Can skip to set page_buffer when 3657 * this is a zero page and (block->page_size == TARGET_PAGE_SIZE). 3658 */ 3659 if (!matches_target_page_size) { 3660 memset(page_buffer, ch, TARGET_PAGE_SIZE); 3661 } 3662 break; 3663 3664 case RAM_SAVE_FLAG_PAGE: 3665 tmp_page->all_zero = false; 3666 if (!matches_target_page_size) { 3667 /* For huge pages, we always use temporary buffer */ 3668 qemu_get_buffer(f, page_buffer, TARGET_PAGE_SIZE); 3669 } else { 3670 /* 3671 * For small pages that matches target page size, we 3672 * avoid the qemu_file copy. Instead we directly use 3673 * the buffer of QEMUFile to place the page. Note: we 3674 * cannot do any QEMUFile operation before using that 3675 * buffer to make sure the buffer is valid when 3676 * placing the page. 3677 */ 3678 qemu_get_buffer_in_place(f, (uint8_t **)&place_source, 3679 TARGET_PAGE_SIZE); 3680 } 3681 break; 3682 case RAM_SAVE_FLAG_COMPRESS_PAGE: 3683 tmp_page->all_zero = false; 3684 len = qemu_get_be32(f); 3685 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) { 3686 error_report("Invalid compressed data length: %d", len); 3687 ret = -EINVAL; 3688 break; 3689 } 3690 decompress_data_with_multi_threads(f, page_buffer, len); 3691 break; 3692 case RAM_SAVE_FLAG_MULTIFD_FLUSH: 3693 multifd_recv_sync_main(); 3694 break; 3695 case RAM_SAVE_FLAG_EOS: 3696 /* normal exit */ 3697 if (migrate_multifd() && 3698 migrate_multifd_flush_after_each_section()) { 3699 multifd_recv_sync_main(); 3700 } 3701 break; 3702 default: 3703 error_report("Unknown combination of migration flags: 0x%x" 3704 " (postcopy mode)", flags); 3705 ret = -EINVAL; 3706 break; 3707 } 3708 3709 /* Got the whole host page, wait for decompress before placing. */ 3710 if (place_needed) { 3711 ret |= wait_for_decompress_done(); 3712 } 3713 3714 /* Detect for any possible file errors */ 3715 if (!ret && qemu_file_get_error(f)) { 3716 ret = qemu_file_get_error(f); 3717 } 3718 3719 if (!ret && place_needed) { 3720 if (tmp_page->all_zero) { 3721 ret = postcopy_place_page_zero(mis, tmp_page->host_addr, block); 3722 } else { 3723 ret = postcopy_place_page(mis, tmp_page->host_addr, 3724 place_source, block); 3725 } 3726 place_needed = false; 3727 postcopy_temp_page_reset(tmp_page); 3728 } 3729 } 3730 3731 return ret; 3732 } 3733 3734 static bool postcopy_is_running(void) 3735 { 3736 PostcopyState ps = postcopy_state_get(); 3737 return ps >= POSTCOPY_INCOMING_LISTENING && ps < POSTCOPY_INCOMING_END; 3738 } 3739 3740 /* 3741 * Flush content of RAM cache into SVM's memory. 3742 * Only flush the pages that be dirtied by PVM or SVM or both. 3743 */ 3744 void colo_flush_ram_cache(void) 3745 { 3746 RAMBlock *block = NULL; 3747 void *dst_host; 3748 void *src_host; 3749 unsigned long offset = 0; 3750 3751 memory_global_dirty_log_sync(false); 3752 qemu_mutex_lock(&ram_state->bitmap_mutex); 3753 WITH_RCU_READ_LOCK_GUARD() { 3754 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3755 ramblock_sync_dirty_bitmap(ram_state, block); 3756 } 3757 } 3758 3759 trace_colo_flush_ram_cache_begin(ram_state->migration_dirty_pages); 3760 WITH_RCU_READ_LOCK_GUARD() { 3761 block = QLIST_FIRST_RCU(&ram_list.blocks); 3762 3763 while (block) { 3764 unsigned long num = 0; 3765 3766 offset = colo_bitmap_find_dirty(ram_state, block, offset, &num); 3767 if (!offset_in_ramblock(block, 3768 ((ram_addr_t)offset) << TARGET_PAGE_BITS)) { 3769 offset = 0; 3770 num = 0; 3771 block = QLIST_NEXT_RCU(block, next); 3772 } else { 3773 unsigned long i = 0; 3774 3775 for (i = 0; i < num; i++) { 3776 migration_bitmap_clear_dirty(ram_state, block, offset + i); 3777 } 3778 dst_host = block->host 3779 + (((ram_addr_t)offset) << TARGET_PAGE_BITS); 3780 src_host = block->colo_cache 3781 + (((ram_addr_t)offset) << TARGET_PAGE_BITS); 3782 memcpy(dst_host, src_host, TARGET_PAGE_SIZE * num); 3783 offset += num; 3784 } 3785 } 3786 } 3787 qemu_mutex_unlock(&ram_state->bitmap_mutex); 3788 trace_colo_flush_ram_cache_end(); 3789 } 3790 3791 static int parse_ramblock(QEMUFile *f, RAMBlock *block, ram_addr_t length) 3792 { 3793 int ret = 0; 3794 /* ADVISE is earlier, it shows the source has the postcopy capability on */ 3795 bool postcopy_advised = migration_incoming_postcopy_advised(); 3796 3797 assert(block); 3798 3799 if (!qemu_ram_is_migratable(block)) { 3800 error_report("block %s should not be migrated !", block->idstr); 3801 return -EINVAL; 3802 } 3803 3804 if (length != block->used_length) { 3805 Error *local_err = NULL; 3806 3807 ret = qemu_ram_resize(block, length, &local_err); 3808 if (local_err) { 3809 error_report_err(local_err); 3810 return ret; 3811 } 3812 } 3813 /* For postcopy we need to check hugepage sizes match */ 3814 if (postcopy_advised && migrate_postcopy_ram() && 3815 block->page_size != qemu_host_page_size) { 3816 uint64_t remote_page_size = qemu_get_be64(f); 3817 if (remote_page_size != block->page_size) { 3818 error_report("Mismatched RAM page size %s " 3819 "(local) %zd != %" PRId64, block->idstr, 3820 block->page_size, remote_page_size); 3821 return -EINVAL; 3822 } 3823 } 3824 if (migrate_ignore_shared()) { 3825 hwaddr addr = qemu_get_be64(f); 3826 if (migrate_ram_is_ignored(block) && 3827 block->mr->addr != addr) { 3828 error_report("Mismatched GPAs for block %s " 3829 "%" PRId64 "!= %" PRId64, block->idstr, 3830 (uint64_t)addr, (uint64_t)block->mr->addr); 3831 return -EINVAL; 3832 } 3833 } 3834 ret = rdma_block_notification_handle(f, block->idstr); 3835 if (ret < 0) { 3836 qemu_file_set_error(f, ret); 3837 } 3838 3839 return ret; 3840 } 3841 3842 static int parse_ramblocks(QEMUFile *f, ram_addr_t total_ram_bytes) 3843 { 3844 int ret = 0; 3845 3846 /* Synchronize RAM block list */ 3847 while (!ret && total_ram_bytes) { 3848 RAMBlock *block; 3849 char id[256]; 3850 ram_addr_t length; 3851 int len = qemu_get_byte(f); 3852 3853 qemu_get_buffer(f, (uint8_t *)id, len); 3854 id[len] = 0; 3855 length = qemu_get_be64(f); 3856 3857 block = qemu_ram_block_by_name(id); 3858 if (block) { 3859 ret = parse_ramblock(f, block, length); 3860 } else { 3861 error_report("Unknown ramblock \"%s\", cannot accept " 3862 "migration", id); 3863 ret = -EINVAL; 3864 } 3865 total_ram_bytes -= length; 3866 } 3867 3868 return ret; 3869 } 3870 3871 /** 3872 * ram_load_precopy: load pages in precopy case 3873 * 3874 * Returns 0 for success or -errno in case of error 3875 * 3876 * Called in precopy mode by ram_load(). 3877 * rcu_read_lock is taken prior to this being called. 3878 * 3879 * @f: QEMUFile where to send the data 3880 */ 3881 static int ram_load_precopy(QEMUFile *f) 3882 { 3883 MigrationIncomingState *mis = migration_incoming_get_current(); 3884 int flags = 0, ret = 0, invalid_flags = 0, len = 0, i = 0; 3885 3886 if (!migrate_compress()) { 3887 invalid_flags |= RAM_SAVE_FLAG_COMPRESS_PAGE; 3888 } 3889 3890 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) { 3891 ram_addr_t addr; 3892 void *host = NULL, *host_bak = NULL; 3893 uint8_t ch; 3894 3895 /* 3896 * Yield periodically to let main loop run, but an iteration of 3897 * the main loop is expensive, so do it each some iterations 3898 */ 3899 if ((i & 32767) == 0 && qemu_in_coroutine()) { 3900 aio_co_schedule(qemu_get_current_aio_context(), 3901 qemu_coroutine_self()); 3902 qemu_coroutine_yield(); 3903 } 3904 i++; 3905 3906 addr = qemu_get_be64(f); 3907 flags = addr & ~TARGET_PAGE_MASK; 3908 addr &= TARGET_PAGE_MASK; 3909 3910 if (flags & invalid_flags) { 3911 if (flags & invalid_flags & RAM_SAVE_FLAG_COMPRESS_PAGE) { 3912 error_report("Received an unexpected compressed page"); 3913 } 3914 3915 ret = -EINVAL; 3916 break; 3917 } 3918 3919 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE | 3920 RAM_SAVE_FLAG_COMPRESS_PAGE | RAM_SAVE_FLAG_XBZRLE)) { 3921 RAMBlock *block = ram_block_from_stream(mis, f, flags, 3922 RAM_CHANNEL_PRECOPY); 3923 3924 host = host_from_ram_block_offset(block, addr); 3925 /* 3926 * After going into COLO stage, we should not load the page 3927 * into SVM's memory directly, we put them into colo_cache firstly. 3928 * NOTE: We need to keep a copy of SVM's ram in colo_cache. 3929 * Previously, we copied all these memory in preparing stage of COLO 3930 * while we need to stop VM, which is a time-consuming process. 3931 * Here we optimize it by a trick, back-up every page while in 3932 * migration process while COLO is enabled, though it affects the 3933 * speed of the migration, but it obviously reduce the downtime of 3934 * back-up all SVM'S memory in COLO preparing stage. 3935 */ 3936 if (migration_incoming_colo_enabled()) { 3937 if (migration_incoming_in_colo_state()) { 3938 /* In COLO stage, put all pages into cache temporarily */ 3939 host = colo_cache_from_block_offset(block, addr, true); 3940 } else { 3941 /* 3942 * In migration stage but before COLO stage, 3943 * Put all pages into both cache and SVM's memory. 3944 */ 3945 host_bak = colo_cache_from_block_offset(block, addr, false); 3946 } 3947 } 3948 if (!host) { 3949 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr); 3950 ret = -EINVAL; 3951 break; 3952 } 3953 if (!migration_incoming_in_colo_state()) { 3954 ramblock_recv_bitmap_set(block, host); 3955 } 3956 3957 trace_ram_load_loop(block->idstr, (uint64_t)addr, flags, host); 3958 } 3959 3960 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) { 3961 case RAM_SAVE_FLAG_MEM_SIZE: 3962 ret = parse_ramblocks(f, addr); 3963 break; 3964 3965 case RAM_SAVE_FLAG_ZERO: 3966 ch = qemu_get_byte(f); 3967 if (ch != 0) { 3968 error_report("Found a zero page with value %d", ch); 3969 ret = -EINVAL; 3970 break; 3971 } 3972 ram_handle_zero(host, TARGET_PAGE_SIZE); 3973 break; 3974 3975 case RAM_SAVE_FLAG_PAGE: 3976 qemu_get_buffer(f, host, TARGET_PAGE_SIZE); 3977 break; 3978 3979 case RAM_SAVE_FLAG_COMPRESS_PAGE: 3980 len = qemu_get_be32(f); 3981 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) { 3982 error_report("Invalid compressed data length: %d", len); 3983 ret = -EINVAL; 3984 break; 3985 } 3986 decompress_data_with_multi_threads(f, host, len); 3987 break; 3988 3989 case RAM_SAVE_FLAG_XBZRLE: 3990 if (load_xbzrle(f, addr, host) < 0) { 3991 error_report("Failed to decompress XBZRLE page at " 3992 RAM_ADDR_FMT, addr); 3993 ret = -EINVAL; 3994 break; 3995 } 3996 break; 3997 case RAM_SAVE_FLAG_MULTIFD_FLUSH: 3998 multifd_recv_sync_main(); 3999 break; 4000 case RAM_SAVE_FLAG_EOS: 4001 /* normal exit */ 4002 if (migrate_multifd() && 4003 migrate_multifd_flush_after_each_section()) { 4004 multifd_recv_sync_main(); 4005 } 4006 break; 4007 case RAM_SAVE_FLAG_HOOK: 4008 ret = rdma_registration_handle(f); 4009 if (ret < 0) { 4010 qemu_file_set_error(f, ret); 4011 } 4012 break; 4013 default: 4014 error_report("Unknown combination of migration flags: 0x%x", flags); 4015 ret = -EINVAL; 4016 } 4017 if (!ret) { 4018 ret = qemu_file_get_error(f); 4019 } 4020 if (!ret && host_bak) { 4021 memcpy(host_bak, host, TARGET_PAGE_SIZE); 4022 } 4023 } 4024 4025 ret |= wait_for_decompress_done(); 4026 return ret; 4027 } 4028 4029 static int ram_load(QEMUFile *f, void *opaque, int version_id) 4030 { 4031 int ret = 0; 4032 static uint64_t seq_iter; 4033 /* 4034 * If system is running in postcopy mode, page inserts to host memory must 4035 * be atomic 4036 */ 4037 bool postcopy_running = postcopy_is_running(); 4038 4039 seq_iter++; 4040 4041 if (version_id != 4) { 4042 return -EINVAL; 4043 } 4044 4045 /* 4046 * This RCU critical section can be very long running. 4047 * When RCU reclaims in the code start to become numerous, 4048 * it will be necessary to reduce the granularity of this 4049 * critical section. 4050 */ 4051 WITH_RCU_READ_LOCK_GUARD() { 4052 if (postcopy_running) { 4053 /* 4054 * Note! Here RAM_CHANNEL_PRECOPY is the precopy channel of 4055 * postcopy migration, we have another RAM_CHANNEL_POSTCOPY to 4056 * service fast page faults. 4057 */ 4058 ret = ram_load_postcopy(f, RAM_CHANNEL_PRECOPY); 4059 } else { 4060 ret = ram_load_precopy(f); 4061 } 4062 } 4063 trace_ram_load_complete(ret, seq_iter); 4064 4065 return ret; 4066 } 4067 4068 static bool ram_has_postcopy(void *opaque) 4069 { 4070 RAMBlock *rb; 4071 RAMBLOCK_FOREACH_NOT_IGNORED(rb) { 4072 if (ramblock_is_pmem(rb)) { 4073 info_report("Block: %s, host: %p is a nvdimm memory, postcopy" 4074 "is not supported now!", rb->idstr, rb->host); 4075 return false; 4076 } 4077 } 4078 4079 return migrate_postcopy_ram(); 4080 } 4081 4082 /* Sync all the dirty bitmap with destination VM. */ 4083 static int ram_dirty_bitmap_sync_all(MigrationState *s, RAMState *rs) 4084 { 4085 RAMBlock *block; 4086 QEMUFile *file = s->to_dst_file; 4087 4088 trace_ram_dirty_bitmap_sync_start(); 4089 4090 qatomic_set(&rs->postcopy_bmap_sync_requested, 0); 4091 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 4092 qemu_savevm_send_recv_bitmap(file, block->idstr); 4093 trace_ram_dirty_bitmap_request(block->idstr); 4094 qatomic_inc(&rs->postcopy_bmap_sync_requested); 4095 } 4096 4097 trace_ram_dirty_bitmap_sync_wait(); 4098 4099 /* Wait until all the ramblocks' dirty bitmap synced */ 4100 while (qatomic_read(&rs->postcopy_bmap_sync_requested)) { 4101 if (migration_rp_wait(s)) { 4102 return -1; 4103 } 4104 } 4105 4106 trace_ram_dirty_bitmap_sync_complete(); 4107 4108 return 0; 4109 } 4110 4111 /* 4112 * Read the received bitmap, revert it as the initial dirty bitmap. 4113 * This is only used when the postcopy migration is paused but wants 4114 * to resume from a middle point. 4115 * 4116 * Returns true if succeeded, false for errors. 4117 */ 4118 bool ram_dirty_bitmap_reload(MigrationState *s, RAMBlock *block, Error **errp) 4119 { 4120 /* from_dst_file is always valid because we're within rp_thread */ 4121 QEMUFile *file = s->rp_state.from_dst_file; 4122 g_autofree unsigned long *le_bitmap = NULL; 4123 unsigned long nbits = block->used_length >> TARGET_PAGE_BITS; 4124 uint64_t local_size = DIV_ROUND_UP(nbits, 8); 4125 uint64_t size, end_mark; 4126 RAMState *rs = ram_state; 4127 4128 trace_ram_dirty_bitmap_reload_begin(block->idstr); 4129 4130 if (s->state != MIGRATION_STATUS_POSTCOPY_RECOVER) { 4131 error_setg(errp, "Reload bitmap in incorrect state %s", 4132 MigrationStatus_str(s->state)); 4133 return false; 4134 } 4135 4136 /* 4137 * Note: see comments in ramblock_recv_bitmap_send() on why we 4138 * need the endianness conversion, and the paddings. 4139 */ 4140 local_size = ROUND_UP(local_size, 8); 4141 4142 /* Add paddings */ 4143 le_bitmap = bitmap_new(nbits + BITS_PER_LONG); 4144 4145 size = qemu_get_be64(file); 4146 4147 /* The size of the bitmap should match with our ramblock */ 4148 if (size != local_size) { 4149 error_setg(errp, "ramblock '%s' bitmap size mismatch (0x%"PRIx64 4150 " != 0x%"PRIx64")", block->idstr, size, local_size); 4151 return false; 4152 } 4153 4154 size = qemu_get_buffer(file, (uint8_t *)le_bitmap, local_size); 4155 end_mark = qemu_get_be64(file); 4156 4157 if (qemu_file_get_error(file) || size != local_size) { 4158 error_setg(errp, "read bitmap failed for ramblock '%s': " 4159 "(size 0x%"PRIx64", got: 0x%"PRIx64")", 4160 block->idstr, local_size, size); 4161 return false; 4162 } 4163 4164 if (end_mark != RAMBLOCK_RECV_BITMAP_ENDING) { 4165 error_setg(errp, "ramblock '%s' end mark incorrect: 0x%"PRIx64, 4166 block->idstr, end_mark); 4167 return false; 4168 } 4169 4170 /* 4171 * Endianness conversion. We are during postcopy (though paused). 4172 * The dirty bitmap won't change. We can directly modify it. 4173 */ 4174 bitmap_from_le(block->bmap, le_bitmap, nbits); 4175 4176 /* 4177 * What we received is "received bitmap". Revert it as the initial 4178 * dirty bitmap for this ramblock. 4179 */ 4180 bitmap_complement(block->bmap, block->bmap, nbits); 4181 4182 /* Clear dirty bits of discarded ranges that we don't want to migrate. */ 4183 ramblock_dirty_bitmap_clear_discarded_pages(block); 4184 4185 /* We'll recalculate migration_dirty_pages in ram_state_resume_prepare(). */ 4186 trace_ram_dirty_bitmap_reload_complete(block->idstr); 4187 4188 qatomic_dec(&rs->postcopy_bmap_sync_requested); 4189 4190 /* 4191 * We succeeded to sync bitmap for current ramblock. Always kick the 4192 * migration thread to check whether all requested bitmaps are 4193 * reloaded. NOTE: it's racy to only kick when requested==0, because 4194 * we don't know whether the migration thread may still be increasing 4195 * it. 4196 */ 4197 migration_rp_kick(s); 4198 4199 return true; 4200 } 4201 4202 static int ram_resume_prepare(MigrationState *s, void *opaque) 4203 { 4204 RAMState *rs = *(RAMState **)opaque; 4205 int ret; 4206 4207 ret = ram_dirty_bitmap_sync_all(s, rs); 4208 if (ret) { 4209 return ret; 4210 } 4211 4212 ram_state_resume_prepare(rs, s->to_dst_file); 4213 4214 return 0; 4215 } 4216 4217 void postcopy_preempt_shutdown_file(MigrationState *s) 4218 { 4219 qemu_put_be64(s->postcopy_qemufile_src, RAM_SAVE_FLAG_EOS); 4220 qemu_fflush(s->postcopy_qemufile_src); 4221 } 4222 4223 static SaveVMHandlers savevm_ram_handlers = { 4224 .save_setup = ram_save_setup, 4225 .save_live_iterate = ram_save_iterate, 4226 .save_live_complete_postcopy = ram_save_complete, 4227 .save_live_complete_precopy = ram_save_complete, 4228 .has_postcopy = ram_has_postcopy, 4229 .state_pending_exact = ram_state_pending_exact, 4230 .state_pending_estimate = ram_state_pending_estimate, 4231 .load_state = ram_load, 4232 .save_cleanup = ram_save_cleanup, 4233 .load_setup = ram_load_setup, 4234 .load_cleanup = ram_load_cleanup, 4235 .resume_prepare = ram_resume_prepare, 4236 }; 4237 4238 static void ram_mig_ram_block_resized(RAMBlockNotifier *n, void *host, 4239 size_t old_size, size_t new_size) 4240 { 4241 PostcopyState ps = postcopy_state_get(); 4242 ram_addr_t offset; 4243 RAMBlock *rb = qemu_ram_block_from_host(host, false, &offset); 4244 Error *err = NULL; 4245 4246 if (!rb) { 4247 error_report("RAM block not found"); 4248 return; 4249 } 4250 4251 if (migrate_ram_is_ignored(rb)) { 4252 return; 4253 } 4254 4255 if (!migration_is_idle()) { 4256 /* 4257 * Precopy code on the source cannot deal with the size of RAM blocks 4258 * changing at random points in time - especially after sending the 4259 * RAM block sizes in the migration stream, they must no longer change. 4260 * Abort and indicate a proper reason. 4261 */ 4262 error_setg(&err, "RAM block '%s' resized during precopy.", rb->idstr); 4263 migration_cancel(err); 4264 error_free(err); 4265 } 4266 4267 switch (ps) { 4268 case POSTCOPY_INCOMING_ADVISE: 4269 /* 4270 * Update what ram_postcopy_incoming_init()->init_range() does at the 4271 * time postcopy was advised. Syncing RAM blocks with the source will 4272 * result in RAM resizes. 4273 */ 4274 if (old_size < new_size) { 4275 if (ram_discard_range(rb->idstr, old_size, new_size - old_size)) { 4276 error_report("RAM block '%s' discard of resized RAM failed", 4277 rb->idstr); 4278 } 4279 } 4280 rb->postcopy_length = new_size; 4281 break; 4282 case POSTCOPY_INCOMING_NONE: 4283 case POSTCOPY_INCOMING_RUNNING: 4284 case POSTCOPY_INCOMING_END: 4285 /* 4286 * Once our guest is running, postcopy does no longer care about 4287 * resizes. When growing, the new memory was not available on the 4288 * source, no handler needed. 4289 */ 4290 break; 4291 default: 4292 error_report("RAM block '%s' resized during postcopy state: %d", 4293 rb->idstr, ps); 4294 exit(-1); 4295 } 4296 } 4297 4298 static RAMBlockNotifier ram_mig_ram_notifier = { 4299 .ram_block_resized = ram_mig_ram_block_resized, 4300 }; 4301 4302 void ram_mig_init(void) 4303 { 4304 qemu_mutex_init(&XBZRLE.lock); 4305 register_savevm_live("ram", 0, 4, &savevm_ram_handlers, &ram_state); 4306 ram_block_notifier_add(&ram_mig_ram_notifier); 4307 } 4308