xref: /openbmc/qemu/migration/ram.c (revision e5a00700)
1 /*
2  * QEMU System Emulator
3  *
4  * Copyright (c) 2003-2008 Fabrice Bellard
5  * Copyright (c) 2011-2015 Red Hat Inc
6  *
7  * Authors:
8  *  Juan Quintela <quintela@redhat.com>
9  *
10  * Permission is hereby granted, free of charge, to any person obtaining a copy
11  * of this software and associated documentation files (the "Software"), to deal
12  * in the Software without restriction, including without limitation the rights
13  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
14  * copies of the Software, and to permit persons to whom the Software is
15  * furnished to do so, subject to the following conditions:
16  *
17  * The above copyright notice and this permission notice shall be included in
18  * all copies or substantial portions of the Software.
19  *
20  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
25  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26  * THE SOFTWARE.
27  */
28 
29 #include "qemu/osdep.h"
30 #include "qemu/cutils.h"
31 #include "qemu/bitops.h"
32 #include "qemu/bitmap.h"
33 #include "qemu/madvise.h"
34 #include "qemu/main-loop.h"
35 #include "xbzrle.h"
36 #include "ram.h"
37 #include "migration.h"
38 #include "migration-stats.h"
39 #include "migration/register.h"
40 #include "migration/misc.h"
41 #include "qemu-file.h"
42 #include "postcopy-ram.h"
43 #include "page_cache.h"
44 #include "qemu/error-report.h"
45 #include "qapi/error.h"
46 #include "qapi/qapi-types-migration.h"
47 #include "qapi/qapi-events-migration.h"
48 #include "qapi/qapi-commands-migration.h"
49 #include "qapi/qmp/qerror.h"
50 #include "trace.h"
51 #include "exec/ram_addr.h"
52 #include "exec/target_page.h"
53 #include "qemu/rcu_queue.h"
54 #include "migration/colo.h"
55 #include "sysemu/cpu-throttle.h"
56 #include "savevm.h"
57 #include "qemu/iov.h"
58 #include "multifd.h"
59 #include "sysemu/runstate.h"
60 #include "rdma.h"
61 #include "options.h"
62 #include "sysemu/dirtylimit.h"
63 #include "sysemu/kvm.h"
64 
65 #include "hw/boards.h" /* for machine_dump_guest_core() */
66 
67 #if defined(__linux__)
68 #include "qemu/userfaultfd.h"
69 #endif /* defined(__linux__) */
70 
71 /***********************************************************/
72 /* ram save/restore */
73 
74 /*
75  * RAM_SAVE_FLAG_ZERO used to be named RAM_SAVE_FLAG_COMPRESS, it
76  * worked for pages that were filled with the same char.  We switched
77  * it to only search for the zero value.  And to avoid confusion with
78  * RAM_SAVE_FLAG_COMPRESS_PAGE just rename it.
79  *
80  * RAM_SAVE_FLAG_FULL was obsoleted in 2009.
81  *
82  * RAM_SAVE_FLAG_COMPRESS_PAGE (0x100) was removed in QEMU 9.1.
83  */
84 #define RAM_SAVE_FLAG_FULL     0x01
85 #define RAM_SAVE_FLAG_ZERO     0x02
86 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
87 #define RAM_SAVE_FLAG_PAGE     0x08
88 #define RAM_SAVE_FLAG_EOS      0x10
89 #define RAM_SAVE_FLAG_CONTINUE 0x20
90 #define RAM_SAVE_FLAG_XBZRLE   0x40
91 /* 0x80 is reserved in rdma.h for RAM_SAVE_FLAG_HOOK */
92 #define RAM_SAVE_FLAG_MULTIFD_FLUSH    0x200
93 /* We can't use any flag that is bigger than 0x200 */
94 
95 /*
96  * mapped-ram migration supports O_DIRECT, so we need to make sure the
97  * userspace buffer, the IO operation size and the file offset are
98  * aligned according to the underlying device's block size. The first
99  * two are already aligned to page size, but we need to add padding to
100  * the file to align the offset.  We cannot read the block size
101  * dynamically because the migration file can be moved between
102  * different systems, so use 1M to cover most block sizes and to keep
103  * the file offset aligned at page size as well.
104  */
105 #define MAPPED_RAM_FILE_OFFSET_ALIGNMENT 0x100000
106 
107 /*
108  * When doing mapped-ram migration, this is the amount we read from
109  * the pages region in the migration file at a time.
110  */
111 #define MAPPED_RAM_LOAD_BUF_SIZE 0x100000
112 
113 XBZRLECacheStats xbzrle_counters;
114 
115 /* used by the search for pages to send */
116 struct PageSearchStatus {
117     /* The migration channel used for a specific host page */
118     QEMUFile    *pss_channel;
119     /* Last block from where we have sent data */
120     RAMBlock *last_sent_block;
121     /* Current block being searched */
122     RAMBlock    *block;
123     /* Current page to search from */
124     unsigned long page;
125     /* Set once we wrap around */
126     bool         complete_round;
127     /* Whether we're sending a host page */
128     bool          host_page_sending;
129     /* The start/end of current host page.  Invalid if host_page_sending==false */
130     unsigned long host_page_start;
131     unsigned long host_page_end;
132 };
133 typedef struct PageSearchStatus PageSearchStatus;
134 
135 /* struct contains XBZRLE cache and a static page
136    used by the compression */
137 static struct {
138     /* buffer used for XBZRLE encoding */
139     uint8_t *encoded_buf;
140     /* buffer for storing page content */
141     uint8_t *current_buf;
142     /* Cache for XBZRLE, Protected by lock. */
143     PageCache *cache;
144     QemuMutex lock;
145     /* it will store a page full of zeros */
146     uint8_t *zero_target_page;
147     /* buffer used for XBZRLE decoding */
148     uint8_t *decoded_buf;
149 } XBZRLE;
150 
151 static void XBZRLE_cache_lock(void)
152 {
153     if (migrate_xbzrle()) {
154         qemu_mutex_lock(&XBZRLE.lock);
155     }
156 }
157 
158 static void XBZRLE_cache_unlock(void)
159 {
160     if (migrate_xbzrle()) {
161         qemu_mutex_unlock(&XBZRLE.lock);
162     }
163 }
164 
165 /**
166  * xbzrle_cache_resize: resize the xbzrle cache
167  *
168  * This function is called from migrate_params_apply in main
169  * thread, possibly while a migration is in progress.  A running
170  * migration may be using the cache and might finish during this call,
171  * hence changes to the cache are protected by XBZRLE.lock().
172  *
173  * Returns 0 for success or -1 for error
174  *
175  * @new_size: new cache size
176  * @errp: set *errp if the check failed, with reason
177  */
178 int xbzrle_cache_resize(uint64_t new_size, Error **errp)
179 {
180     PageCache *new_cache;
181     int64_t ret = 0;
182 
183     /* Check for truncation */
184     if (new_size != (size_t)new_size) {
185         error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cache size",
186                    "exceeding address space");
187         return -1;
188     }
189 
190     if (new_size == migrate_xbzrle_cache_size()) {
191         /* nothing to do */
192         return 0;
193     }
194 
195     XBZRLE_cache_lock();
196 
197     if (XBZRLE.cache != NULL) {
198         new_cache = cache_init(new_size, TARGET_PAGE_SIZE, errp);
199         if (!new_cache) {
200             ret = -1;
201             goto out;
202         }
203 
204         cache_fini(XBZRLE.cache);
205         XBZRLE.cache = new_cache;
206     }
207 out:
208     XBZRLE_cache_unlock();
209     return ret;
210 }
211 
212 static bool postcopy_preempt_active(void)
213 {
214     return migrate_postcopy_preempt() && migration_in_postcopy();
215 }
216 
217 bool migrate_ram_is_ignored(RAMBlock *block)
218 {
219     return !qemu_ram_is_migratable(block) ||
220            (migrate_ignore_shared() && qemu_ram_is_shared(block)
221                                     && qemu_ram_is_named_file(block));
222 }
223 
224 #undef RAMBLOCK_FOREACH
225 
226 int foreach_not_ignored_block(RAMBlockIterFunc func, void *opaque)
227 {
228     RAMBlock *block;
229     int ret = 0;
230 
231     RCU_READ_LOCK_GUARD();
232 
233     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
234         ret = func(block, opaque);
235         if (ret) {
236             break;
237         }
238     }
239     return ret;
240 }
241 
242 static void ramblock_recv_map_init(void)
243 {
244     RAMBlock *rb;
245 
246     RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
247         assert(!rb->receivedmap);
248         rb->receivedmap = bitmap_new(rb->max_length >> qemu_target_page_bits());
249     }
250 }
251 
252 int ramblock_recv_bitmap_test(RAMBlock *rb, void *host_addr)
253 {
254     return test_bit(ramblock_recv_bitmap_offset(host_addr, rb),
255                     rb->receivedmap);
256 }
257 
258 bool ramblock_recv_bitmap_test_byte_offset(RAMBlock *rb, uint64_t byte_offset)
259 {
260     return test_bit(byte_offset >> TARGET_PAGE_BITS, rb->receivedmap);
261 }
262 
263 void ramblock_recv_bitmap_set(RAMBlock *rb, void *host_addr)
264 {
265     set_bit_atomic(ramblock_recv_bitmap_offset(host_addr, rb), rb->receivedmap);
266 }
267 
268 void ramblock_recv_bitmap_set_range(RAMBlock *rb, void *host_addr,
269                                     size_t nr)
270 {
271     bitmap_set_atomic(rb->receivedmap,
272                       ramblock_recv_bitmap_offset(host_addr, rb),
273                       nr);
274 }
275 
276 void ramblock_recv_bitmap_set_offset(RAMBlock *rb, uint64_t byte_offset)
277 {
278     set_bit_atomic(byte_offset >> TARGET_PAGE_BITS, rb->receivedmap);
279 }
280 #define  RAMBLOCK_RECV_BITMAP_ENDING  (0x0123456789abcdefULL)
281 
282 /*
283  * Format: bitmap_size (8 bytes) + whole_bitmap (N bytes).
284  *
285  * Returns >0 if success with sent bytes, or <0 if error.
286  */
287 int64_t ramblock_recv_bitmap_send(QEMUFile *file,
288                                   const char *block_name)
289 {
290     RAMBlock *block = qemu_ram_block_by_name(block_name);
291     unsigned long *le_bitmap, nbits;
292     uint64_t size;
293 
294     if (!block) {
295         error_report("%s: invalid block name: %s", __func__, block_name);
296         return -1;
297     }
298 
299     nbits = block->postcopy_length >> TARGET_PAGE_BITS;
300 
301     /*
302      * Make sure the tmp bitmap buffer is big enough, e.g., on 32bit
303      * machines we may need 4 more bytes for padding (see below
304      * comment). So extend it a bit before hand.
305      */
306     le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
307 
308     /*
309      * Always use little endian when sending the bitmap. This is
310      * required that when source and destination VMs are not using the
311      * same endianness. (Note: big endian won't work.)
312      */
313     bitmap_to_le(le_bitmap, block->receivedmap, nbits);
314 
315     /* Size of the bitmap, in bytes */
316     size = DIV_ROUND_UP(nbits, 8);
317 
318     /*
319      * size is always aligned to 8 bytes for 64bit machines, but it
320      * may not be true for 32bit machines. We need this padding to
321      * make sure the migration can survive even between 32bit and
322      * 64bit machines.
323      */
324     size = ROUND_UP(size, 8);
325 
326     qemu_put_be64(file, size);
327     qemu_put_buffer(file, (const uint8_t *)le_bitmap, size);
328     g_free(le_bitmap);
329     /*
330      * Mark as an end, in case the middle part is screwed up due to
331      * some "mysterious" reason.
332      */
333     qemu_put_be64(file, RAMBLOCK_RECV_BITMAP_ENDING);
334     int ret = qemu_fflush(file);
335     if (ret) {
336         return ret;
337     }
338 
339     return size + sizeof(size);
340 }
341 
342 /*
343  * An outstanding page request, on the source, having been received
344  * and queued
345  */
346 struct RAMSrcPageRequest {
347     RAMBlock *rb;
348     hwaddr    offset;
349     hwaddr    len;
350 
351     QSIMPLEQ_ENTRY(RAMSrcPageRequest) next_req;
352 };
353 
354 /* State of RAM for migration */
355 struct RAMState {
356     /*
357      * PageSearchStatus structures for the channels when send pages.
358      * Protected by the bitmap_mutex.
359      */
360     PageSearchStatus pss[RAM_CHANNEL_MAX];
361     /* UFFD file descriptor, used in 'write-tracking' migration */
362     int uffdio_fd;
363     /* total ram size in bytes */
364     uint64_t ram_bytes_total;
365     /* Last block that we have visited searching for dirty pages */
366     RAMBlock *last_seen_block;
367     /* Last dirty target page we have sent */
368     ram_addr_t last_page;
369     /* last ram version we have seen */
370     uint32_t last_version;
371     /* How many times we have dirty too many pages */
372     int dirty_rate_high_cnt;
373     /* these variables are used for bitmap sync */
374     /* last time we did a full bitmap_sync */
375     int64_t time_last_bitmap_sync;
376     /* bytes transferred at start_time */
377     uint64_t bytes_xfer_prev;
378     /* number of dirty pages since start_time */
379     uint64_t num_dirty_pages_period;
380     /* xbzrle misses since the beginning of the period */
381     uint64_t xbzrle_cache_miss_prev;
382     /* Amount of xbzrle pages since the beginning of the period */
383     uint64_t xbzrle_pages_prev;
384     /* Amount of xbzrle encoded bytes since the beginning of the period */
385     uint64_t xbzrle_bytes_prev;
386     /* Are we really using XBZRLE (e.g., after the first round). */
387     bool xbzrle_started;
388     /* Are we on the last stage of migration */
389     bool last_stage;
390 
391     /* total handled target pages at the beginning of period */
392     uint64_t target_page_count_prev;
393     /* total handled target pages since start */
394     uint64_t target_page_count;
395     /* number of dirty bits in the bitmap */
396     uint64_t migration_dirty_pages;
397     /*
398      * Protects:
399      * - dirty/clear bitmap
400      * - migration_dirty_pages
401      * - pss structures
402      */
403     QemuMutex bitmap_mutex;
404     /* The RAMBlock used in the last src_page_requests */
405     RAMBlock *last_req_rb;
406     /* Queue of outstanding page requests from the destination */
407     QemuMutex src_page_req_mutex;
408     QSIMPLEQ_HEAD(, RAMSrcPageRequest) src_page_requests;
409 
410     /*
411      * This is only used when postcopy is in recovery phase, to communicate
412      * between the migration thread and the return path thread on dirty
413      * bitmap synchronizations.  This field is unused in other stages of
414      * RAM migration.
415      */
416     unsigned int postcopy_bmap_sync_requested;
417 };
418 typedef struct RAMState RAMState;
419 
420 static RAMState *ram_state;
421 
422 static NotifierWithReturnList precopy_notifier_list;
423 
424 /* Whether postcopy has queued requests? */
425 static bool postcopy_has_request(RAMState *rs)
426 {
427     return !QSIMPLEQ_EMPTY_ATOMIC(&rs->src_page_requests);
428 }
429 
430 void precopy_infrastructure_init(void)
431 {
432     notifier_with_return_list_init(&precopy_notifier_list);
433 }
434 
435 void precopy_add_notifier(NotifierWithReturn *n)
436 {
437     notifier_with_return_list_add(&precopy_notifier_list, n);
438 }
439 
440 void precopy_remove_notifier(NotifierWithReturn *n)
441 {
442     notifier_with_return_remove(n);
443 }
444 
445 int precopy_notify(PrecopyNotifyReason reason, Error **errp)
446 {
447     PrecopyNotifyData pnd;
448     pnd.reason = reason;
449 
450     return notifier_with_return_list_notify(&precopy_notifier_list, &pnd, errp);
451 }
452 
453 uint64_t ram_bytes_remaining(void)
454 {
455     return ram_state ? (ram_state->migration_dirty_pages * TARGET_PAGE_SIZE) :
456                        0;
457 }
458 
459 void ram_transferred_add(uint64_t bytes)
460 {
461     if (runstate_is_running()) {
462         stat64_add(&mig_stats.precopy_bytes, bytes);
463     } else if (migration_in_postcopy()) {
464         stat64_add(&mig_stats.postcopy_bytes, bytes);
465     } else {
466         stat64_add(&mig_stats.downtime_bytes, bytes);
467     }
468 }
469 
470 struct MigrationOps {
471     int (*ram_save_target_page)(RAMState *rs, PageSearchStatus *pss);
472 };
473 typedef struct MigrationOps MigrationOps;
474 
475 MigrationOps *migration_ops;
476 
477 static int ram_save_host_page_urgent(PageSearchStatus *pss);
478 
479 /* NOTE: page is the PFN not real ram_addr_t. */
480 static void pss_init(PageSearchStatus *pss, RAMBlock *rb, ram_addr_t page)
481 {
482     pss->block = rb;
483     pss->page = page;
484     pss->complete_round = false;
485 }
486 
487 /*
488  * Check whether two PSSs are actively sending the same page.  Return true
489  * if it is, false otherwise.
490  */
491 static bool pss_overlap(PageSearchStatus *pss1, PageSearchStatus *pss2)
492 {
493     return pss1->host_page_sending && pss2->host_page_sending &&
494         (pss1->host_page_start == pss2->host_page_start);
495 }
496 
497 /**
498  * save_page_header: write page header to wire
499  *
500  * If this is the 1st block, it also writes the block identification
501  *
502  * Returns the number of bytes written
503  *
504  * @pss: current PSS channel status
505  * @block: block that contains the page we want to send
506  * @offset: offset inside the block for the page
507  *          in the lower bits, it contains flags
508  */
509 static size_t save_page_header(PageSearchStatus *pss, QEMUFile *f,
510                                RAMBlock *block, ram_addr_t offset)
511 {
512     size_t size, len;
513     bool same_block = (block == pss->last_sent_block);
514 
515     if (same_block) {
516         offset |= RAM_SAVE_FLAG_CONTINUE;
517     }
518     qemu_put_be64(f, offset);
519     size = 8;
520 
521     if (!same_block) {
522         len = strlen(block->idstr);
523         qemu_put_byte(f, len);
524         qemu_put_buffer(f, (uint8_t *)block->idstr, len);
525         size += 1 + len;
526         pss->last_sent_block = block;
527     }
528     return size;
529 }
530 
531 /**
532  * mig_throttle_guest_down: throttle down the guest
533  *
534  * Reduce amount of guest cpu execution to hopefully slow down memory
535  * writes. If guest dirty memory rate is reduced below the rate at
536  * which we can transfer pages to the destination then we should be
537  * able to complete migration. Some workloads dirty memory way too
538  * fast and will not effectively converge, even with auto-converge.
539  */
540 static void mig_throttle_guest_down(uint64_t bytes_dirty_period,
541                                     uint64_t bytes_dirty_threshold)
542 {
543     uint64_t pct_initial = migrate_cpu_throttle_initial();
544     uint64_t pct_increment = migrate_cpu_throttle_increment();
545     bool pct_tailslow = migrate_cpu_throttle_tailslow();
546     int pct_max = migrate_max_cpu_throttle();
547 
548     uint64_t throttle_now = cpu_throttle_get_percentage();
549     uint64_t cpu_now, cpu_ideal, throttle_inc;
550 
551     /* We have not started throttling yet. Let's start it. */
552     if (!cpu_throttle_active()) {
553         cpu_throttle_set(pct_initial);
554     } else {
555         /* Throttling already on, just increase the rate */
556         if (!pct_tailslow) {
557             throttle_inc = pct_increment;
558         } else {
559             /* Compute the ideal CPU percentage used by Guest, which may
560              * make the dirty rate match the dirty rate threshold. */
561             cpu_now = 100 - throttle_now;
562             cpu_ideal = cpu_now * (bytes_dirty_threshold * 1.0 /
563                         bytes_dirty_period);
564             throttle_inc = MIN(cpu_now - cpu_ideal, pct_increment);
565         }
566         cpu_throttle_set(MIN(throttle_now + throttle_inc, pct_max));
567     }
568 }
569 
570 void mig_throttle_counter_reset(void)
571 {
572     RAMState *rs = ram_state;
573 
574     rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
575     rs->num_dirty_pages_period = 0;
576     rs->bytes_xfer_prev = migration_transferred_bytes();
577 }
578 
579 /**
580  * xbzrle_cache_zero_page: insert a zero page in the XBZRLE cache
581  *
582  * @current_addr: address for the zero page
583  *
584  * Update the xbzrle cache to reflect a page that's been sent as all 0.
585  * The important thing is that a stale (not-yet-0'd) page be replaced
586  * by the new data.
587  * As a bonus, if the page wasn't in the cache it gets added so that
588  * when a small write is made into the 0'd page it gets XBZRLE sent.
589  */
590 static void xbzrle_cache_zero_page(ram_addr_t current_addr)
591 {
592     /* We don't care if this fails to allocate a new cache page
593      * as long as it updated an old one */
594     cache_insert(XBZRLE.cache, current_addr, XBZRLE.zero_target_page,
595                  stat64_get(&mig_stats.dirty_sync_count));
596 }
597 
598 #define ENCODING_FLAG_XBZRLE 0x1
599 
600 /**
601  * save_xbzrle_page: compress and send current page
602  *
603  * Returns: 1 means that we wrote the page
604  *          0 means that page is identical to the one already sent
605  *          -1 means that xbzrle would be longer than normal
606  *
607  * @rs: current RAM state
608  * @pss: current PSS channel
609  * @current_data: pointer to the address of the page contents
610  * @current_addr: addr of the page
611  * @block: block that contains the page we want to send
612  * @offset: offset inside the block for the page
613  */
614 static int save_xbzrle_page(RAMState *rs, PageSearchStatus *pss,
615                             uint8_t **current_data, ram_addr_t current_addr,
616                             RAMBlock *block, ram_addr_t offset)
617 {
618     int encoded_len = 0, bytes_xbzrle;
619     uint8_t *prev_cached_page;
620     QEMUFile *file = pss->pss_channel;
621     uint64_t generation = stat64_get(&mig_stats.dirty_sync_count);
622 
623     if (!cache_is_cached(XBZRLE.cache, current_addr, generation)) {
624         xbzrle_counters.cache_miss++;
625         if (!rs->last_stage) {
626             if (cache_insert(XBZRLE.cache, current_addr, *current_data,
627                              generation) == -1) {
628                 return -1;
629             } else {
630                 /* update *current_data when the page has been
631                    inserted into cache */
632                 *current_data = get_cached_data(XBZRLE.cache, current_addr);
633             }
634         }
635         return -1;
636     }
637 
638     /*
639      * Reaching here means the page has hit the xbzrle cache, no matter what
640      * encoding result it is (normal encoding, overflow or skipping the page),
641      * count the page as encoded. This is used to calculate the encoding rate.
642      *
643      * Example: 2 pages (8KB) being encoded, first page encoding generates 2KB,
644      * 2nd page turns out to be skipped (i.e. no new bytes written to the
645      * page), the overall encoding rate will be 8KB / 2KB = 4, which has the
646      * skipped page included. In this way, the encoding rate can tell if the
647      * guest page is good for xbzrle encoding.
648      */
649     xbzrle_counters.pages++;
650     prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
651 
652     /* save current buffer into memory */
653     memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE);
654 
655     /* XBZRLE encoding (if there is no overflow) */
656     encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
657                                        TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
658                                        TARGET_PAGE_SIZE);
659 
660     /*
661      * Update the cache contents, so that it corresponds to the data
662      * sent, in all cases except where we skip the page.
663      */
664     if (!rs->last_stage && encoded_len != 0) {
665         memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
666         /*
667          * In the case where we couldn't compress, ensure that the caller
668          * sends the data from the cache, since the guest might have
669          * changed the RAM since we copied it.
670          */
671         *current_data = prev_cached_page;
672     }
673 
674     if (encoded_len == 0) {
675         trace_save_xbzrle_page_skipping();
676         return 0;
677     } else if (encoded_len == -1) {
678         trace_save_xbzrle_page_overflow();
679         xbzrle_counters.overflow++;
680         xbzrle_counters.bytes += TARGET_PAGE_SIZE;
681         return -1;
682     }
683 
684     /* Send XBZRLE based compressed page */
685     bytes_xbzrle = save_page_header(pss, pss->pss_channel, block,
686                                     offset | RAM_SAVE_FLAG_XBZRLE);
687     qemu_put_byte(file, ENCODING_FLAG_XBZRLE);
688     qemu_put_be16(file, encoded_len);
689     qemu_put_buffer(file, XBZRLE.encoded_buf, encoded_len);
690     bytes_xbzrle += encoded_len + 1 + 2;
691     /*
692      * The xbzrle encoded bytes don't count the 8 byte header with
693      * RAM_SAVE_FLAG_CONTINUE.
694      */
695     xbzrle_counters.bytes += bytes_xbzrle - 8;
696     ram_transferred_add(bytes_xbzrle);
697 
698     return 1;
699 }
700 
701 /**
702  * pss_find_next_dirty: find the next dirty page of current ramblock
703  *
704  * This function updates pss->page to point to the next dirty page index
705  * within the ramblock to migrate, or the end of ramblock when nothing
706  * found.  Note that when pss->host_page_sending==true it means we're
707  * during sending a host page, so we won't look for dirty page that is
708  * outside the host page boundary.
709  *
710  * @pss: the current page search status
711  */
712 static void pss_find_next_dirty(PageSearchStatus *pss)
713 {
714     RAMBlock *rb = pss->block;
715     unsigned long size = rb->used_length >> TARGET_PAGE_BITS;
716     unsigned long *bitmap = rb->bmap;
717 
718     if (migrate_ram_is_ignored(rb)) {
719         /* Points directly to the end, so we know no dirty page */
720         pss->page = size;
721         return;
722     }
723 
724     /*
725      * If during sending a host page, only look for dirty pages within the
726      * current host page being send.
727      */
728     if (pss->host_page_sending) {
729         assert(pss->host_page_end);
730         size = MIN(size, pss->host_page_end);
731     }
732 
733     pss->page = find_next_bit(bitmap, size, pss->page);
734 }
735 
736 static void migration_clear_memory_region_dirty_bitmap(RAMBlock *rb,
737                                                        unsigned long page)
738 {
739     uint8_t shift;
740     hwaddr size, start;
741 
742     if (!rb->clear_bmap || !clear_bmap_test_and_clear(rb, page)) {
743         return;
744     }
745 
746     shift = rb->clear_bmap_shift;
747     /*
748      * CLEAR_BITMAP_SHIFT_MIN should always guarantee this... this
749      * can make things easier sometimes since then start address
750      * of the small chunk will always be 64 pages aligned so the
751      * bitmap will always be aligned to unsigned long. We should
752      * even be able to remove this restriction but I'm simply
753      * keeping it.
754      */
755     assert(shift >= 6);
756 
757     size = 1ULL << (TARGET_PAGE_BITS + shift);
758     start = QEMU_ALIGN_DOWN((ram_addr_t)page << TARGET_PAGE_BITS, size);
759     trace_migration_bitmap_clear_dirty(rb->idstr, start, size, page);
760     memory_region_clear_dirty_bitmap(rb->mr, start, size);
761 }
762 
763 static void
764 migration_clear_memory_region_dirty_bitmap_range(RAMBlock *rb,
765                                                  unsigned long start,
766                                                  unsigned long npages)
767 {
768     unsigned long i, chunk_pages = 1UL << rb->clear_bmap_shift;
769     unsigned long chunk_start = QEMU_ALIGN_DOWN(start, chunk_pages);
770     unsigned long chunk_end = QEMU_ALIGN_UP(start + npages, chunk_pages);
771 
772     /*
773      * Clear pages from start to start + npages - 1, so the end boundary is
774      * exclusive.
775      */
776     for (i = chunk_start; i < chunk_end; i += chunk_pages) {
777         migration_clear_memory_region_dirty_bitmap(rb, i);
778     }
779 }
780 
781 /*
782  * colo_bitmap_find_diry:find contiguous dirty pages from start
783  *
784  * Returns the page offset within memory region of the start of the contiguout
785  * dirty page
786  *
787  * @rs: current RAM state
788  * @rb: RAMBlock where to search for dirty pages
789  * @start: page where we start the search
790  * @num: the number of contiguous dirty pages
791  */
792 static inline
793 unsigned long colo_bitmap_find_dirty(RAMState *rs, RAMBlock *rb,
794                                      unsigned long start, unsigned long *num)
795 {
796     unsigned long size = rb->used_length >> TARGET_PAGE_BITS;
797     unsigned long *bitmap = rb->bmap;
798     unsigned long first, next;
799 
800     *num = 0;
801 
802     if (migrate_ram_is_ignored(rb)) {
803         return size;
804     }
805 
806     first = find_next_bit(bitmap, size, start);
807     if (first >= size) {
808         return first;
809     }
810     next = find_next_zero_bit(bitmap, size, first + 1);
811     assert(next >= first);
812     *num = next - first;
813     return first;
814 }
815 
816 static inline bool migration_bitmap_clear_dirty(RAMState *rs,
817                                                 RAMBlock *rb,
818                                                 unsigned long page)
819 {
820     bool ret;
821 
822     /*
823      * Clear dirty bitmap if needed.  This _must_ be called before we
824      * send any of the page in the chunk because we need to make sure
825      * we can capture further page content changes when we sync dirty
826      * log the next time.  So as long as we are going to send any of
827      * the page in the chunk we clear the remote dirty bitmap for all.
828      * Clearing it earlier won't be a problem, but too late will.
829      */
830     migration_clear_memory_region_dirty_bitmap(rb, page);
831 
832     ret = test_and_clear_bit(page, rb->bmap);
833     if (ret) {
834         rs->migration_dirty_pages--;
835     }
836 
837     return ret;
838 }
839 
840 static void dirty_bitmap_clear_section(MemoryRegionSection *section,
841                                        void *opaque)
842 {
843     const hwaddr offset = section->offset_within_region;
844     const hwaddr size = int128_get64(section->size);
845     const unsigned long start = offset >> TARGET_PAGE_BITS;
846     const unsigned long npages = size >> TARGET_PAGE_BITS;
847     RAMBlock *rb = section->mr->ram_block;
848     uint64_t *cleared_bits = opaque;
849 
850     /*
851      * We don't grab ram_state->bitmap_mutex because we expect to run
852      * only when starting migration or during postcopy recovery where
853      * we don't have concurrent access.
854      */
855     if (!migration_in_postcopy() && !migrate_background_snapshot()) {
856         migration_clear_memory_region_dirty_bitmap_range(rb, start, npages);
857     }
858     *cleared_bits += bitmap_count_one_with_offset(rb->bmap, start, npages);
859     bitmap_clear(rb->bmap, start, npages);
860 }
861 
862 /*
863  * Exclude all dirty pages from migration that fall into a discarded range as
864  * managed by a RamDiscardManager responsible for the mapped memory region of
865  * the RAMBlock. Clear the corresponding bits in the dirty bitmaps.
866  *
867  * Discarded pages ("logically unplugged") have undefined content and must
868  * not get migrated, because even reading these pages for migration might
869  * result in undesired behavior.
870  *
871  * Returns the number of cleared bits in the RAMBlock dirty bitmap.
872  *
873  * Note: The result is only stable while migrating (precopy/postcopy).
874  */
875 static uint64_t ramblock_dirty_bitmap_clear_discarded_pages(RAMBlock *rb)
876 {
877     uint64_t cleared_bits = 0;
878 
879     if (rb->mr && rb->bmap && memory_region_has_ram_discard_manager(rb->mr)) {
880         RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr);
881         MemoryRegionSection section = {
882             .mr = rb->mr,
883             .offset_within_region = 0,
884             .size = int128_make64(qemu_ram_get_used_length(rb)),
885         };
886 
887         ram_discard_manager_replay_discarded(rdm, &section,
888                                              dirty_bitmap_clear_section,
889                                              &cleared_bits);
890     }
891     return cleared_bits;
892 }
893 
894 /*
895  * Check if a host-page aligned page falls into a discarded range as managed by
896  * a RamDiscardManager responsible for the mapped memory region of the RAMBlock.
897  *
898  * Note: The result is only stable while migrating (precopy/postcopy).
899  */
900 bool ramblock_page_is_discarded(RAMBlock *rb, ram_addr_t start)
901 {
902     if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) {
903         RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr);
904         MemoryRegionSection section = {
905             .mr = rb->mr,
906             .offset_within_region = start,
907             .size = int128_make64(qemu_ram_pagesize(rb)),
908         };
909 
910         return !ram_discard_manager_is_populated(rdm, &section);
911     }
912     return false;
913 }
914 
915 /* Called with RCU critical section */
916 static void ramblock_sync_dirty_bitmap(RAMState *rs, RAMBlock *rb)
917 {
918     uint64_t new_dirty_pages =
919         cpu_physical_memory_sync_dirty_bitmap(rb, 0, rb->used_length);
920 
921     rs->migration_dirty_pages += new_dirty_pages;
922     rs->num_dirty_pages_period += new_dirty_pages;
923 }
924 
925 /**
926  * ram_pagesize_summary: calculate all the pagesizes of a VM
927  *
928  * Returns a summary bitmap of the page sizes of all RAMBlocks
929  *
930  * For VMs with just normal pages this is equivalent to the host page
931  * size. If it's got some huge pages then it's the OR of all the
932  * different page sizes.
933  */
934 uint64_t ram_pagesize_summary(void)
935 {
936     RAMBlock *block;
937     uint64_t summary = 0;
938 
939     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
940         summary |= block->page_size;
941     }
942 
943     return summary;
944 }
945 
946 uint64_t ram_get_total_transferred_pages(void)
947 {
948     return stat64_get(&mig_stats.normal_pages) +
949         stat64_get(&mig_stats.zero_pages) +
950         xbzrle_counters.pages;
951 }
952 
953 static void migration_update_rates(RAMState *rs, int64_t end_time)
954 {
955     uint64_t page_count = rs->target_page_count - rs->target_page_count_prev;
956 
957     /* calculate period counters */
958     stat64_set(&mig_stats.dirty_pages_rate,
959                rs->num_dirty_pages_period * 1000 /
960                (end_time - rs->time_last_bitmap_sync));
961 
962     if (!page_count) {
963         return;
964     }
965 
966     if (migrate_xbzrle()) {
967         double encoded_size, unencoded_size;
968 
969         xbzrle_counters.cache_miss_rate = (double)(xbzrle_counters.cache_miss -
970             rs->xbzrle_cache_miss_prev) / page_count;
971         rs->xbzrle_cache_miss_prev = xbzrle_counters.cache_miss;
972         unencoded_size = (xbzrle_counters.pages - rs->xbzrle_pages_prev) *
973                          TARGET_PAGE_SIZE;
974         encoded_size = xbzrle_counters.bytes - rs->xbzrle_bytes_prev;
975         if (xbzrle_counters.pages == rs->xbzrle_pages_prev || !encoded_size) {
976             xbzrle_counters.encoding_rate = 0;
977         } else {
978             xbzrle_counters.encoding_rate = unencoded_size / encoded_size;
979         }
980         rs->xbzrle_pages_prev = xbzrle_counters.pages;
981         rs->xbzrle_bytes_prev = xbzrle_counters.bytes;
982     }
983 }
984 
985 /*
986  * Enable dirty-limit to throttle down the guest
987  */
988 static void migration_dirty_limit_guest(void)
989 {
990     /*
991      * dirty page rate quota for all vCPUs fetched from
992      * migration parameter 'vcpu_dirty_limit'
993      */
994     static int64_t quota_dirtyrate;
995     MigrationState *s = migrate_get_current();
996 
997     /*
998      * If dirty limit already enabled and migration parameter
999      * vcpu-dirty-limit untouched.
1000      */
1001     if (dirtylimit_in_service() &&
1002         quota_dirtyrate == s->parameters.vcpu_dirty_limit) {
1003         return;
1004     }
1005 
1006     quota_dirtyrate = s->parameters.vcpu_dirty_limit;
1007 
1008     /*
1009      * Set all vCPU a quota dirtyrate, note that the second
1010      * parameter will be ignored if setting all vCPU for the vm
1011      */
1012     qmp_set_vcpu_dirty_limit(false, -1, quota_dirtyrate, NULL);
1013     trace_migration_dirty_limit_guest(quota_dirtyrate);
1014 }
1015 
1016 static void migration_trigger_throttle(RAMState *rs)
1017 {
1018     uint64_t threshold = migrate_throttle_trigger_threshold();
1019     uint64_t bytes_xfer_period =
1020         migration_transferred_bytes() - rs->bytes_xfer_prev;
1021     uint64_t bytes_dirty_period = rs->num_dirty_pages_period * TARGET_PAGE_SIZE;
1022     uint64_t bytes_dirty_threshold = bytes_xfer_period * threshold / 100;
1023 
1024     /*
1025      * The following detection logic can be refined later. For now:
1026      * Check to see if the ratio between dirtied bytes and the approx.
1027      * amount of bytes that just got transferred since the last time
1028      * we were in this routine reaches the threshold. If that happens
1029      * twice, start or increase throttling.
1030      */
1031     if ((bytes_dirty_period > bytes_dirty_threshold) &&
1032         (++rs->dirty_rate_high_cnt >= 2)) {
1033         rs->dirty_rate_high_cnt = 0;
1034         if (migrate_auto_converge()) {
1035             trace_migration_throttle();
1036             mig_throttle_guest_down(bytes_dirty_period,
1037                                     bytes_dirty_threshold);
1038         } else if (migrate_dirty_limit()) {
1039             migration_dirty_limit_guest();
1040         }
1041     }
1042 }
1043 
1044 static void migration_bitmap_sync(RAMState *rs, bool last_stage)
1045 {
1046     RAMBlock *block;
1047     int64_t end_time;
1048 
1049     stat64_add(&mig_stats.dirty_sync_count, 1);
1050 
1051     if (!rs->time_last_bitmap_sync) {
1052         rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
1053     }
1054 
1055     trace_migration_bitmap_sync_start();
1056     memory_global_dirty_log_sync(last_stage);
1057 
1058     WITH_QEMU_LOCK_GUARD(&rs->bitmap_mutex) {
1059         WITH_RCU_READ_LOCK_GUARD() {
1060             RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1061                 ramblock_sync_dirty_bitmap(rs, block);
1062             }
1063             stat64_set(&mig_stats.dirty_bytes_last_sync, ram_bytes_remaining());
1064         }
1065     }
1066 
1067     memory_global_after_dirty_log_sync();
1068     trace_migration_bitmap_sync_end(rs->num_dirty_pages_period);
1069 
1070     end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
1071 
1072     /* more than 1 second = 1000 millisecons */
1073     if (end_time > rs->time_last_bitmap_sync + 1000) {
1074         migration_trigger_throttle(rs);
1075 
1076         migration_update_rates(rs, end_time);
1077 
1078         rs->target_page_count_prev = rs->target_page_count;
1079 
1080         /* reset period counters */
1081         rs->time_last_bitmap_sync = end_time;
1082         rs->num_dirty_pages_period = 0;
1083         rs->bytes_xfer_prev = migration_transferred_bytes();
1084     }
1085     if (migrate_events()) {
1086         uint64_t generation = stat64_get(&mig_stats.dirty_sync_count);
1087         qapi_event_send_migration_pass(generation);
1088     }
1089 }
1090 
1091 static void migration_bitmap_sync_precopy(RAMState *rs, bool last_stage)
1092 {
1093     Error *local_err = NULL;
1094 
1095     /*
1096      * The current notifier usage is just an optimization to migration, so we
1097      * don't stop the normal migration process in the error case.
1098      */
1099     if (precopy_notify(PRECOPY_NOTIFY_BEFORE_BITMAP_SYNC, &local_err)) {
1100         error_report_err(local_err);
1101         local_err = NULL;
1102     }
1103 
1104     migration_bitmap_sync(rs, last_stage);
1105 
1106     if (precopy_notify(PRECOPY_NOTIFY_AFTER_BITMAP_SYNC, &local_err)) {
1107         error_report_err(local_err);
1108     }
1109 }
1110 
1111 void ram_release_page(const char *rbname, uint64_t offset)
1112 {
1113     if (!migrate_release_ram() || !migration_in_postcopy()) {
1114         return;
1115     }
1116 
1117     ram_discard_range(rbname, offset, TARGET_PAGE_SIZE);
1118 }
1119 
1120 /**
1121  * save_zero_page: send the zero page to the stream
1122  *
1123  * Returns the number of pages written.
1124  *
1125  * @rs: current RAM state
1126  * @pss: current PSS channel
1127  * @offset: offset inside the block for the page
1128  */
1129 static int save_zero_page(RAMState *rs, PageSearchStatus *pss,
1130                           ram_addr_t offset)
1131 {
1132     uint8_t *p = pss->block->host + offset;
1133     QEMUFile *file = pss->pss_channel;
1134     int len = 0;
1135 
1136     if (migrate_zero_page_detection() == ZERO_PAGE_DETECTION_NONE) {
1137         return 0;
1138     }
1139 
1140     if (!buffer_is_zero(p, TARGET_PAGE_SIZE)) {
1141         return 0;
1142     }
1143 
1144     stat64_add(&mig_stats.zero_pages, 1);
1145 
1146     if (migrate_mapped_ram()) {
1147         /* zero pages are not transferred with mapped-ram */
1148         clear_bit_atomic(offset >> TARGET_PAGE_BITS, pss->block->file_bmap);
1149         return 1;
1150     }
1151 
1152     len += save_page_header(pss, file, pss->block, offset | RAM_SAVE_FLAG_ZERO);
1153     qemu_put_byte(file, 0);
1154     len += 1;
1155     ram_release_page(pss->block->idstr, offset);
1156     ram_transferred_add(len);
1157 
1158     /*
1159      * Must let xbzrle know, otherwise a previous (now 0'd) cached
1160      * page would be stale.
1161      */
1162     if (rs->xbzrle_started) {
1163         XBZRLE_cache_lock();
1164         xbzrle_cache_zero_page(pss->block->offset + offset);
1165         XBZRLE_cache_unlock();
1166     }
1167 
1168     return len;
1169 }
1170 
1171 /*
1172  * @pages: the number of pages written by the control path,
1173  *        < 0 - error
1174  *        > 0 - number of pages written
1175  *
1176  * Return true if the pages has been saved, otherwise false is returned.
1177  */
1178 static bool control_save_page(PageSearchStatus *pss,
1179                               ram_addr_t offset, int *pages)
1180 {
1181     int ret;
1182 
1183     ret = rdma_control_save_page(pss->pss_channel, pss->block->offset, offset,
1184                                  TARGET_PAGE_SIZE);
1185     if (ret == RAM_SAVE_CONTROL_NOT_SUPP) {
1186         return false;
1187     }
1188 
1189     if (ret == RAM_SAVE_CONTROL_DELAYED) {
1190         *pages = 1;
1191         return true;
1192     }
1193     *pages = ret;
1194     return true;
1195 }
1196 
1197 /*
1198  * directly send the page to the stream
1199  *
1200  * Returns the number of pages written.
1201  *
1202  * @pss: current PSS channel
1203  * @block: block that contains the page we want to send
1204  * @offset: offset inside the block for the page
1205  * @buf: the page to be sent
1206  * @async: send to page asyncly
1207  */
1208 static int save_normal_page(PageSearchStatus *pss, RAMBlock *block,
1209                             ram_addr_t offset, uint8_t *buf, bool async)
1210 {
1211     QEMUFile *file = pss->pss_channel;
1212 
1213     if (migrate_mapped_ram()) {
1214         qemu_put_buffer_at(file, buf, TARGET_PAGE_SIZE,
1215                            block->pages_offset + offset);
1216         set_bit(offset >> TARGET_PAGE_BITS, block->file_bmap);
1217     } else {
1218         ram_transferred_add(save_page_header(pss, pss->pss_channel, block,
1219                                              offset | RAM_SAVE_FLAG_PAGE));
1220         if (async) {
1221             qemu_put_buffer_async(file, buf, TARGET_PAGE_SIZE,
1222                                   migrate_release_ram() &&
1223                                   migration_in_postcopy());
1224         } else {
1225             qemu_put_buffer(file, buf, TARGET_PAGE_SIZE);
1226         }
1227     }
1228     ram_transferred_add(TARGET_PAGE_SIZE);
1229     stat64_add(&mig_stats.normal_pages, 1);
1230     return 1;
1231 }
1232 
1233 /**
1234  * ram_save_page: send the given page to the stream
1235  *
1236  * Returns the number of pages written.
1237  *          < 0 - error
1238  *          >=0 - Number of pages written - this might legally be 0
1239  *                if xbzrle noticed the page was the same.
1240  *
1241  * @rs: current RAM state
1242  * @block: block that contains the page we want to send
1243  * @offset: offset inside the block for the page
1244  */
1245 static int ram_save_page(RAMState *rs, PageSearchStatus *pss)
1246 {
1247     int pages = -1;
1248     uint8_t *p;
1249     bool send_async = true;
1250     RAMBlock *block = pss->block;
1251     ram_addr_t offset = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS;
1252     ram_addr_t current_addr = block->offset + offset;
1253 
1254     p = block->host + offset;
1255     trace_ram_save_page(block->idstr, (uint64_t)offset, p);
1256 
1257     XBZRLE_cache_lock();
1258     if (rs->xbzrle_started && !migration_in_postcopy()) {
1259         pages = save_xbzrle_page(rs, pss, &p, current_addr,
1260                                  block, offset);
1261         if (!rs->last_stage) {
1262             /* Can't send this cached data async, since the cache page
1263              * might get updated before it gets to the wire
1264              */
1265             send_async = false;
1266         }
1267     }
1268 
1269     /* XBZRLE overflow or normal page */
1270     if (pages == -1) {
1271         pages = save_normal_page(pss, block, offset, p, send_async);
1272     }
1273 
1274     XBZRLE_cache_unlock();
1275 
1276     return pages;
1277 }
1278 
1279 static int ram_save_multifd_page(RAMBlock *block, ram_addr_t offset)
1280 {
1281     if (!multifd_queue_page(block, offset)) {
1282         return -1;
1283     }
1284 
1285     return 1;
1286 }
1287 
1288 
1289 #define PAGE_ALL_CLEAN 0
1290 #define PAGE_TRY_AGAIN 1
1291 #define PAGE_DIRTY_FOUND 2
1292 /**
1293  * find_dirty_block: find the next dirty page and update any state
1294  * associated with the search process.
1295  *
1296  * Returns:
1297  *         <0: An error happened
1298  *         PAGE_ALL_CLEAN: no dirty page found, give up
1299  *         PAGE_TRY_AGAIN: no dirty page found, retry for next block
1300  *         PAGE_DIRTY_FOUND: dirty page found
1301  *
1302  * @rs: current RAM state
1303  * @pss: data about the state of the current dirty page scan
1304  * @again: set to false if the search has scanned the whole of RAM
1305  */
1306 static int find_dirty_block(RAMState *rs, PageSearchStatus *pss)
1307 {
1308     /* Update pss->page for the next dirty bit in ramblock */
1309     pss_find_next_dirty(pss);
1310 
1311     if (pss->complete_round && pss->block == rs->last_seen_block &&
1312         pss->page >= rs->last_page) {
1313         /*
1314          * We've been once around the RAM and haven't found anything.
1315          * Give up.
1316          */
1317         return PAGE_ALL_CLEAN;
1318     }
1319     if (!offset_in_ramblock(pss->block,
1320                             ((ram_addr_t)pss->page) << TARGET_PAGE_BITS)) {
1321         /* Didn't find anything in this RAM Block */
1322         pss->page = 0;
1323         pss->block = QLIST_NEXT_RCU(pss->block, next);
1324         if (!pss->block) {
1325             if (migrate_multifd() &&
1326                 (!migrate_multifd_flush_after_each_section() ||
1327                  migrate_mapped_ram())) {
1328                 QEMUFile *f = rs->pss[RAM_CHANNEL_PRECOPY].pss_channel;
1329                 int ret = multifd_ram_flush_and_sync();
1330                 if (ret < 0) {
1331                     return ret;
1332                 }
1333 
1334                 if (!migrate_mapped_ram()) {
1335                     qemu_put_be64(f, RAM_SAVE_FLAG_MULTIFD_FLUSH);
1336                     qemu_fflush(f);
1337                 }
1338             }
1339 
1340             /* Hit the end of the list */
1341             pss->block = QLIST_FIRST_RCU(&ram_list.blocks);
1342             /* Flag that we've looped */
1343             pss->complete_round = true;
1344             /* After the first round, enable XBZRLE. */
1345             if (migrate_xbzrle()) {
1346                 rs->xbzrle_started = true;
1347             }
1348         }
1349         /* Didn't find anything this time, but try again on the new block */
1350         return PAGE_TRY_AGAIN;
1351     } else {
1352         /* We've found something */
1353         return PAGE_DIRTY_FOUND;
1354     }
1355 }
1356 
1357 /**
1358  * unqueue_page: gets a page of the queue
1359  *
1360  * Helper for 'get_queued_page' - gets a page off the queue
1361  *
1362  * Returns the block of the page (or NULL if none available)
1363  *
1364  * @rs: current RAM state
1365  * @offset: used to return the offset within the RAMBlock
1366  */
1367 static RAMBlock *unqueue_page(RAMState *rs, ram_addr_t *offset)
1368 {
1369     struct RAMSrcPageRequest *entry;
1370     RAMBlock *block = NULL;
1371 
1372     if (!postcopy_has_request(rs)) {
1373         return NULL;
1374     }
1375 
1376     QEMU_LOCK_GUARD(&rs->src_page_req_mutex);
1377 
1378     /*
1379      * This should _never_ change even after we take the lock, because no one
1380      * should be taking anything off the request list other than us.
1381      */
1382     assert(postcopy_has_request(rs));
1383 
1384     entry = QSIMPLEQ_FIRST(&rs->src_page_requests);
1385     block = entry->rb;
1386     *offset = entry->offset;
1387 
1388     if (entry->len > TARGET_PAGE_SIZE) {
1389         entry->len -= TARGET_PAGE_SIZE;
1390         entry->offset += TARGET_PAGE_SIZE;
1391     } else {
1392         memory_region_unref(block->mr);
1393         QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
1394         g_free(entry);
1395         migration_consume_urgent_request();
1396     }
1397 
1398     return block;
1399 }
1400 
1401 #if defined(__linux__)
1402 /**
1403  * poll_fault_page: try to get next UFFD write fault page and, if pending fault
1404  *   is found, return RAM block pointer and page offset
1405  *
1406  * Returns pointer to the RAMBlock containing faulting page,
1407  *   NULL if no write faults are pending
1408  *
1409  * @rs: current RAM state
1410  * @offset: page offset from the beginning of the block
1411  */
1412 static RAMBlock *poll_fault_page(RAMState *rs, ram_addr_t *offset)
1413 {
1414     struct uffd_msg uffd_msg;
1415     void *page_address;
1416     RAMBlock *block;
1417     int res;
1418 
1419     if (!migrate_background_snapshot()) {
1420         return NULL;
1421     }
1422 
1423     res = uffd_read_events(rs->uffdio_fd, &uffd_msg, 1);
1424     if (res <= 0) {
1425         return NULL;
1426     }
1427 
1428     page_address = (void *)(uintptr_t) uffd_msg.arg.pagefault.address;
1429     block = qemu_ram_block_from_host(page_address, false, offset);
1430     assert(block && (block->flags & RAM_UF_WRITEPROTECT) != 0);
1431     return block;
1432 }
1433 
1434 /**
1435  * ram_save_release_protection: release UFFD write protection after
1436  *   a range of pages has been saved
1437  *
1438  * @rs: current RAM state
1439  * @pss: page-search-status structure
1440  * @start_page: index of the first page in the range relative to pss->block
1441  *
1442  * Returns 0 on success, negative value in case of an error
1443 */
1444 static int ram_save_release_protection(RAMState *rs, PageSearchStatus *pss,
1445         unsigned long start_page)
1446 {
1447     int res = 0;
1448 
1449     /* Check if page is from UFFD-managed region. */
1450     if (pss->block->flags & RAM_UF_WRITEPROTECT) {
1451         void *page_address = pss->block->host + (start_page << TARGET_PAGE_BITS);
1452         uint64_t run_length = (pss->page - start_page) << TARGET_PAGE_BITS;
1453 
1454         /* Flush async buffers before un-protect. */
1455         qemu_fflush(pss->pss_channel);
1456         /* Un-protect memory range. */
1457         res = uffd_change_protection(rs->uffdio_fd, page_address, run_length,
1458                 false, false);
1459     }
1460 
1461     return res;
1462 }
1463 
1464 /* ram_write_tracking_available: check if kernel supports required UFFD features
1465  *
1466  * Returns true if supports, false otherwise
1467  */
1468 bool ram_write_tracking_available(void)
1469 {
1470     uint64_t uffd_features;
1471     int res;
1472 
1473     res = uffd_query_features(&uffd_features);
1474     return (res == 0 &&
1475             (uffd_features & UFFD_FEATURE_PAGEFAULT_FLAG_WP) != 0);
1476 }
1477 
1478 /* ram_write_tracking_compatible: check if guest configuration is
1479  *   compatible with 'write-tracking'
1480  *
1481  * Returns true if compatible, false otherwise
1482  */
1483 bool ram_write_tracking_compatible(void)
1484 {
1485     const uint64_t uffd_ioctls_mask = BIT(_UFFDIO_WRITEPROTECT);
1486     int uffd_fd;
1487     RAMBlock *block;
1488     bool ret = false;
1489 
1490     /* Open UFFD file descriptor */
1491     uffd_fd = uffd_create_fd(UFFD_FEATURE_PAGEFAULT_FLAG_WP, false);
1492     if (uffd_fd < 0) {
1493         return false;
1494     }
1495 
1496     RCU_READ_LOCK_GUARD();
1497 
1498     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1499         uint64_t uffd_ioctls;
1500 
1501         /* Nothing to do with read-only and MMIO-writable regions */
1502         if (block->mr->readonly || block->mr->rom_device) {
1503             continue;
1504         }
1505         /* Try to register block memory via UFFD-IO to track writes */
1506         if (uffd_register_memory(uffd_fd, block->host, block->max_length,
1507                 UFFDIO_REGISTER_MODE_WP, &uffd_ioctls)) {
1508             goto out;
1509         }
1510         if ((uffd_ioctls & uffd_ioctls_mask) != uffd_ioctls_mask) {
1511             goto out;
1512         }
1513     }
1514     ret = true;
1515 
1516 out:
1517     uffd_close_fd(uffd_fd);
1518     return ret;
1519 }
1520 
1521 static inline void populate_read_range(RAMBlock *block, ram_addr_t offset,
1522                                        ram_addr_t size)
1523 {
1524     const ram_addr_t end = offset + size;
1525 
1526     /*
1527      * We read one byte of each page; this will preallocate page tables if
1528      * required and populate the shared zeropage on MAP_PRIVATE anonymous memory
1529      * where no page was populated yet. This might require adaption when
1530      * supporting other mappings, like shmem.
1531      */
1532     for (; offset < end; offset += block->page_size) {
1533         char tmp = *((char *)block->host + offset);
1534 
1535         /* Don't optimize the read out */
1536         asm volatile("" : "+r" (tmp));
1537     }
1538 }
1539 
1540 static inline int populate_read_section(MemoryRegionSection *section,
1541                                         void *opaque)
1542 {
1543     const hwaddr size = int128_get64(section->size);
1544     hwaddr offset = section->offset_within_region;
1545     RAMBlock *block = section->mr->ram_block;
1546 
1547     populate_read_range(block, offset, size);
1548     return 0;
1549 }
1550 
1551 /*
1552  * ram_block_populate_read: preallocate page tables and populate pages in the
1553  *   RAM block by reading a byte of each page.
1554  *
1555  * Since it's solely used for userfault_fd WP feature, here we just
1556  *   hardcode page size to qemu_real_host_page_size.
1557  *
1558  * @block: RAM block to populate
1559  */
1560 static void ram_block_populate_read(RAMBlock *rb)
1561 {
1562     /*
1563      * Skip populating all pages that fall into a discarded range as managed by
1564      * a RamDiscardManager responsible for the mapped memory region of the
1565      * RAMBlock. Such discarded ("logically unplugged") parts of a RAMBlock
1566      * must not get populated automatically. We don't have to track
1567      * modifications via userfaultfd WP reliably, because these pages will
1568      * not be part of the migration stream either way -- see
1569      * ramblock_dirty_bitmap_exclude_discarded_pages().
1570      *
1571      * Note: The result is only stable while migrating (precopy/postcopy).
1572      */
1573     if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) {
1574         RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr);
1575         MemoryRegionSection section = {
1576             .mr = rb->mr,
1577             .offset_within_region = 0,
1578             .size = rb->mr->size,
1579         };
1580 
1581         ram_discard_manager_replay_populated(rdm, &section,
1582                                              populate_read_section, NULL);
1583     } else {
1584         populate_read_range(rb, 0, rb->used_length);
1585     }
1586 }
1587 
1588 /*
1589  * ram_write_tracking_prepare: prepare for UFFD-WP memory tracking
1590  */
1591 void ram_write_tracking_prepare(void)
1592 {
1593     RAMBlock *block;
1594 
1595     RCU_READ_LOCK_GUARD();
1596 
1597     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1598         /* Nothing to do with read-only and MMIO-writable regions */
1599         if (block->mr->readonly || block->mr->rom_device) {
1600             continue;
1601         }
1602 
1603         /*
1604          * Populate pages of the RAM block before enabling userfault_fd
1605          * write protection.
1606          *
1607          * This stage is required since ioctl(UFFDIO_WRITEPROTECT) with
1608          * UFFDIO_WRITEPROTECT_MODE_WP mode setting would silently skip
1609          * pages with pte_none() entries in page table.
1610          */
1611         ram_block_populate_read(block);
1612     }
1613 }
1614 
1615 static inline int uffd_protect_section(MemoryRegionSection *section,
1616                                        void *opaque)
1617 {
1618     const hwaddr size = int128_get64(section->size);
1619     const hwaddr offset = section->offset_within_region;
1620     RAMBlock *rb = section->mr->ram_block;
1621     int uffd_fd = (uintptr_t)opaque;
1622 
1623     return uffd_change_protection(uffd_fd, rb->host + offset, size, true,
1624                                   false);
1625 }
1626 
1627 static int ram_block_uffd_protect(RAMBlock *rb, int uffd_fd)
1628 {
1629     assert(rb->flags & RAM_UF_WRITEPROTECT);
1630 
1631     /* See ram_block_populate_read() */
1632     if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) {
1633         RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr);
1634         MemoryRegionSection section = {
1635             .mr = rb->mr,
1636             .offset_within_region = 0,
1637             .size = rb->mr->size,
1638         };
1639 
1640         return ram_discard_manager_replay_populated(rdm, &section,
1641                                                     uffd_protect_section,
1642                                                     (void *)(uintptr_t)uffd_fd);
1643     }
1644     return uffd_change_protection(uffd_fd, rb->host,
1645                                   rb->used_length, true, false);
1646 }
1647 
1648 /*
1649  * ram_write_tracking_start: start UFFD-WP memory tracking
1650  *
1651  * Returns 0 for success or negative value in case of error
1652  */
1653 int ram_write_tracking_start(void)
1654 {
1655     int uffd_fd;
1656     RAMState *rs = ram_state;
1657     RAMBlock *block;
1658 
1659     /* Open UFFD file descriptor */
1660     uffd_fd = uffd_create_fd(UFFD_FEATURE_PAGEFAULT_FLAG_WP, true);
1661     if (uffd_fd < 0) {
1662         return uffd_fd;
1663     }
1664     rs->uffdio_fd = uffd_fd;
1665 
1666     RCU_READ_LOCK_GUARD();
1667 
1668     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1669         /* Nothing to do with read-only and MMIO-writable regions */
1670         if (block->mr->readonly || block->mr->rom_device) {
1671             continue;
1672         }
1673 
1674         /* Register block memory with UFFD to track writes */
1675         if (uffd_register_memory(rs->uffdio_fd, block->host,
1676                 block->max_length, UFFDIO_REGISTER_MODE_WP, NULL)) {
1677             goto fail;
1678         }
1679         block->flags |= RAM_UF_WRITEPROTECT;
1680         memory_region_ref(block->mr);
1681 
1682         /* Apply UFFD write protection to the block memory range */
1683         if (ram_block_uffd_protect(block, uffd_fd)) {
1684             goto fail;
1685         }
1686 
1687         trace_ram_write_tracking_ramblock_start(block->idstr, block->page_size,
1688                 block->host, block->max_length);
1689     }
1690 
1691     return 0;
1692 
1693 fail:
1694     error_report("ram_write_tracking_start() failed: restoring initial memory state");
1695 
1696     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1697         if ((block->flags & RAM_UF_WRITEPROTECT) == 0) {
1698             continue;
1699         }
1700         uffd_unregister_memory(rs->uffdio_fd, block->host, block->max_length);
1701         /* Cleanup flags and remove reference */
1702         block->flags &= ~RAM_UF_WRITEPROTECT;
1703         memory_region_unref(block->mr);
1704     }
1705 
1706     uffd_close_fd(uffd_fd);
1707     rs->uffdio_fd = -1;
1708     return -1;
1709 }
1710 
1711 /**
1712  * ram_write_tracking_stop: stop UFFD-WP memory tracking and remove protection
1713  */
1714 void ram_write_tracking_stop(void)
1715 {
1716     RAMState *rs = ram_state;
1717     RAMBlock *block;
1718 
1719     RCU_READ_LOCK_GUARD();
1720 
1721     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1722         if ((block->flags & RAM_UF_WRITEPROTECT) == 0) {
1723             continue;
1724         }
1725         uffd_unregister_memory(rs->uffdio_fd, block->host, block->max_length);
1726 
1727         trace_ram_write_tracking_ramblock_stop(block->idstr, block->page_size,
1728                 block->host, block->max_length);
1729 
1730         /* Cleanup flags and remove reference */
1731         block->flags &= ~RAM_UF_WRITEPROTECT;
1732         memory_region_unref(block->mr);
1733     }
1734 
1735     /* Finally close UFFD file descriptor */
1736     uffd_close_fd(rs->uffdio_fd);
1737     rs->uffdio_fd = -1;
1738 }
1739 
1740 #else
1741 /* No target OS support, stubs just fail or ignore */
1742 
1743 static RAMBlock *poll_fault_page(RAMState *rs, ram_addr_t *offset)
1744 {
1745     (void) rs;
1746     (void) offset;
1747 
1748     return NULL;
1749 }
1750 
1751 static int ram_save_release_protection(RAMState *rs, PageSearchStatus *pss,
1752         unsigned long start_page)
1753 {
1754     (void) rs;
1755     (void) pss;
1756     (void) start_page;
1757 
1758     return 0;
1759 }
1760 
1761 bool ram_write_tracking_available(void)
1762 {
1763     return false;
1764 }
1765 
1766 bool ram_write_tracking_compatible(void)
1767 {
1768     g_assert_not_reached();
1769 }
1770 
1771 int ram_write_tracking_start(void)
1772 {
1773     g_assert_not_reached();
1774 }
1775 
1776 void ram_write_tracking_stop(void)
1777 {
1778     g_assert_not_reached();
1779 }
1780 #endif /* defined(__linux__) */
1781 
1782 /**
1783  * get_queued_page: unqueue a page from the postcopy requests
1784  *
1785  * Skips pages that are already sent (!dirty)
1786  *
1787  * Returns true if a queued page is found
1788  *
1789  * @rs: current RAM state
1790  * @pss: data about the state of the current dirty page scan
1791  */
1792 static bool get_queued_page(RAMState *rs, PageSearchStatus *pss)
1793 {
1794     RAMBlock  *block;
1795     ram_addr_t offset;
1796     bool dirty;
1797 
1798     do {
1799         block = unqueue_page(rs, &offset);
1800         /*
1801          * We're sending this page, and since it's postcopy nothing else
1802          * will dirty it, and we must make sure it doesn't get sent again
1803          * even if this queue request was received after the background
1804          * search already sent it.
1805          */
1806         if (block) {
1807             unsigned long page;
1808 
1809             page = offset >> TARGET_PAGE_BITS;
1810             dirty = test_bit(page, block->bmap);
1811             if (!dirty) {
1812                 trace_get_queued_page_not_dirty(block->idstr, (uint64_t)offset,
1813                                                 page);
1814             } else {
1815                 trace_get_queued_page(block->idstr, (uint64_t)offset, page);
1816             }
1817         }
1818 
1819     } while (block && !dirty);
1820 
1821     if (!block) {
1822         /*
1823          * Poll write faults too if background snapshot is enabled; that's
1824          * when we have vcpus got blocked by the write protected pages.
1825          */
1826         block = poll_fault_page(rs, &offset);
1827     }
1828 
1829     if (block) {
1830         /*
1831          * We want the background search to continue from the queued page
1832          * since the guest is likely to want other pages near to the page
1833          * it just requested.
1834          */
1835         pss->block = block;
1836         pss->page = offset >> TARGET_PAGE_BITS;
1837 
1838         /*
1839          * This unqueued page would break the "one round" check, even is
1840          * really rare.
1841          */
1842         pss->complete_round = false;
1843     }
1844 
1845     return !!block;
1846 }
1847 
1848 /**
1849  * migration_page_queue_free: drop any remaining pages in the ram
1850  * request queue
1851  *
1852  * It should be empty at the end anyway, but in error cases there may
1853  * be some left.  in case that there is any page left, we drop it.
1854  *
1855  */
1856 static void migration_page_queue_free(RAMState *rs)
1857 {
1858     struct RAMSrcPageRequest *mspr, *next_mspr;
1859     /* This queue generally should be empty - but in the case of a failed
1860      * migration might have some droppings in.
1861      */
1862     RCU_READ_LOCK_GUARD();
1863     QSIMPLEQ_FOREACH_SAFE(mspr, &rs->src_page_requests, next_req, next_mspr) {
1864         memory_region_unref(mspr->rb->mr);
1865         QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
1866         g_free(mspr);
1867     }
1868 }
1869 
1870 /**
1871  * ram_save_queue_pages: queue the page for transmission
1872  *
1873  * A request from postcopy destination for example.
1874  *
1875  * Returns zero on success or negative on error
1876  *
1877  * @rbname: Name of the RAMBLock of the request. NULL means the
1878  *          same that last one.
1879  * @start: starting address from the start of the RAMBlock
1880  * @len: length (in bytes) to send
1881  */
1882 int ram_save_queue_pages(const char *rbname, ram_addr_t start, ram_addr_t len,
1883                          Error **errp)
1884 {
1885     RAMBlock *ramblock;
1886     RAMState *rs = ram_state;
1887 
1888     stat64_add(&mig_stats.postcopy_requests, 1);
1889     RCU_READ_LOCK_GUARD();
1890 
1891     if (!rbname) {
1892         /* Reuse last RAMBlock */
1893         ramblock = rs->last_req_rb;
1894 
1895         if (!ramblock) {
1896             /*
1897              * Shouldn't happen, we can't reuse the last RAMBlock if
1898              * it's the 1st request.
1899              */
1900             error_setg(errp, "MIG_RP_MSG_REQ_PAGES has no previous block");
1901             return -1;
1902         }
1903     } else {
1904         ramblock = qemu_ram_block_by_name(rbname);
1905 
1906         if (!ramblock) {
1907             /* We shouldn't be asked for a non-existent RAMBlock */
1908             error_setg(errp, "MIG_RP_MSG_REQ_PAGES has no block '%s'", rbname);
1909             return -1;
1910         }
1911         rs->last_req_rb = ramblock;
1912     }
1913     trace_ram_save_queue_pages(ramblock->idstr, start, len);
1914     if (!offset_in_ramblock(ramblock, start + len - 1)) {
1915         error_setg(errp, "MIG_RP_MSG_REQ_PAGES request overrun, "
1916                    "start=" RAM_ADDR_FMT " len="
1917                    RAM_ADDR_FMT " blocklen=" RAM_ADDR_FMT,
1918                    start, len, ramblock->used_length);
1919         return -1;
1920     }
1921 
1922     /*
1923      * When with postcopy preempt, we send back the page directly in the
1924      * rp-return thread.
1925      */
1926     if (postcopy_preempt_active()) {
1927         ram_addr_t page_start = start >> TARGET_PAGE_BITS;
1928         size_t page_size = qemu_ram_pagesize(ramblock);
1929         PageSearchStatus *pss = &ram_state->pss[RAM_CHANNEL_POSTCOPY];
1930         int ret = 0;
1931 
1932         qemu_mutex_lock(&rs->bitmap_mutex);
1933 
1934         pss_init(pss, ramblock, page_start);
1935         /*
1936          * Always use the preempt channel, and make sure it's there.  It's
1937          * safe to access without lock, because when rp-thread is running
1938          * we should be the only one who operates on the qemufile
1939          */
1940         pss->pss_channel = migrate_get_current()->postcopy_qemufile_src;
1941         assert(pss->pss_channel);
1942 
1943         /*
1944          * It must be either one or multiple of host page size.  Just
1945          * assert; if something wrong we're mostly split brain anyway.
1946          */
1947         assert(len % page_size == 0);
1948         while (len) {
1949             if (ram_save_host_page_urgent(pss)) {
1950                 error_setg(errp, "ram_save_host_page_urgent() failed: "
1951                            "ramblock=%s, start_addr=0x"RAM_ADDR_FMT,
1952                            ramblock->idstr, start);
1953                 ret = -1;
1954                 break;
1955             }
1956             /*
1957              * NOTE: after ram_save_host_page_urgent() succeeded, pss->page
1958              * will automatically be moved and point to the next host page
1959              * we're going to send, so no need to update here.
1960              *
1961              * Normally QEMU never sends >1 host page in requests, so
1962              * logically we don't even need that as the loop should only
1963              * run once, but just to be consistent.
1964              */
1965             len -= page_size;
1966         };
1967         qemu_mutex_unlock(&rs->bitmap_mutex);
1968 
1969         return ret;
1970     }
1971 
1972     struct RAMSrcPageRequest *new_entry =
1973         g_new0(struct RAMSrcPageRequest, 1);
1974     new_entry->rb = ramblock;
1975     new_entry->offset = start;
1976     new_entry->len = len;
1977 
1978     memory_region_ref(ramblock->mr);
1979     qemu_mutex_lock(&rs->src_page_req_mutex);
1980     QSIMPLEQ_INSERT_TAIL(&rs->src_page_requests, new_entry, next_req);
1981     migration_make_urgent_request();
1982     qemu_mutex_unlock(&rs->src_page_req_mutex);
1983 
1984     return 0;
1985 }
1986 
1987 /**
1988  * ram_save_target_page_legacy: save one target page
1989  *
1990  * Returns the number of pages written
1991  *
1992  * @rs: current RAM state
1993  * @pss: data about the page we want to send
1994  */
1995 static int ram_save_target_page_legacy(RAMState *rs, PageSearchStatus *pss)
1996 {
1997     ram_addr_t offset = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS;
1998     int res;
1999 
2000     if (control_save_page(pss, offset, &res)) {
2001         return res;
2002     }
2003 
2004     if (save_zero_page(rs, pss, offset)) {
2005         return 1;
2006     }
2007 
2008     return ram_save_page(rs, pss);
2009 }
2010 
2011 /**
2012  * ram_save_target_page_multifd: send one target page to multifd workers
2013  *
2014  * Returns 1 if the page was queued, -1 otherwise.
2015  *
2016  * @rs: current RAM state
2017  * @pss: data about the page we want to send
2018  */
2019 static int ram_save_target_page_multifd(RAMState *rs, PageSearchStatus *pss)
2020 {
2021     RAMBlock *block = pss->block;
2022     ram_addr_t offset = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS;
2023 
2024     /*
2025      * While using multifd live migration, we still need to handle zero
2026      * page checking on the migration main thread.
2027      */
2028     if (migrate_zero_page_detection() == ZERO_PAGE_DETECTION_LEGACY) {
2029         if (save_zero_page(rs, pss, offset)) {
2030             return 1;
2031         }
2032     }
2033 
2034     return ram_save_multifd_page(block, offset);
2035 }
2036 
2037 /* Should be called before sending a host page */
2038 static void pss_host_page_prepare(PageSearchStatus *pss)
2039 {
2040     /* How many guest pages are there in one host page? */
2041     size_t guest_pfns = qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS;
2042 
2043     pss->host_page_sending = true;
2044     if (guest_pfns <= 1) {
2045         /*
2046          * This covers both when guest psize == host psize, or when guest
2047          * has larger psize than the host (guest_pfns==0).
2048          *
2049          * For the latter, we always send one whole guest page per
2050          * iteration of the host page (example: an Alpha VM on x86 host
2051          * will have guest psize 8K while host psize 4K).
2052          */
2053         pss->host_page_start = pss->page;
2054         pss->host_page_end = pss->page + 1;
2055     } else {
2056         /*
2057          * The host page spans over multiple guest pages, we send them
2058          * within the same host page iteration.
2059          */
2060         pss->host_page_start = ROUND_DOWN(pss->page, guest_pfns);
2061         pss->host_page_end = ROUND_UP(pss->page + 1, guest_pfns);
2062     }
2063 }
2064 
2065 /*
2066  * Whether the page pointed by PSS is within the host page being sent.
2067  * Must be called after a previous pss_host_page_prepare().
2068  */
2069 static bool pss_within_range(PageSearchStatus *pss)
2070 {
2071     ram_addr_t ram_addr;
2072 
2073     assert(pss->host_page_sending);
2074 
2075     /* Over host-page boundary? */
2076     if (pss->page >= pss->host_page_end) {
2077         return false;
2078     }
2079 
2080     ram_addr = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS;
2081 
2082     return offset_in_ramblock(pss->block, ram_addr);
2083 }
2084 
2085 static void pss_host_page_finish(PageSearchStatus *pss)
2086 {
2087     pss->host_page_sending = false;
2088     /* This is not needed, but just to reset it */
2089     pss->host_page_start = pss->host_page_end = 0;
2090 }
2091 
2092 /*
2093  * Send an urgent host page specified by `pss'.  Need to be called with
2094  * bitmap_mutex held.
2095  *
2096  * Returns 0 if save host page succeeded, false otherwise.
2097  */
2098 static int ram_save_host_page_urgent(PageSearchStatus *pss)
2099 {
2100     bool page_dirty, sent = false;
2101     RAMState *rs = ram_state;
2102     int ret = 0;
2103 
2104     trace_postcopy_preempt_send_host_page(pss->block->idstr, pss->page);
2105     pss_host_page_prepare(pss);
2106 
2107     /*
2108      * If precopy is sending the same page, let it be done in precopy, or
2109      * we could send the same page in two channels and none of them will
2110      * receive the whole page.
2111      */
2112     if (pss_overlap(pss, &ram_state->pss[RAM_CHANNEL_PRECOPY])) {
2113         trace_postcopy_preempt_hit(pss->block->idstr,
2114                                    pss->page << TARGET_PAGE_BITS);
2115         return 0;
2116     }
2117 
2118     do {
2119         page_dirty = migration_bitmap_clear_dirty(rs, pss->block, pss->page);
2120 
2121         if (page_dirty) {
2122             /* Be strict to return code; it must be 1, or what else? */
2123             if (migration_ops->ram_save_target_page(rs, pss) != 1) {
2124                 error_report_once("%s: ram_save_target_page failed", __func__);
2125                 ret = -1;
2126                 goto out;
2127             }
2128             sent = true;
2129         }
2130         pss_find_next_dirty(pss);
2131     } while (pss_within_range(pss));
2132 out:
2133     pss_host_page_finish(pss);
2134     /* For urgent requests, flush immediately if sent */
2135     if (sent) {
2136         qemu_fflush(pss->pss_channel);
2137     }
2138     return ret;
2139 }
2140 
2141 /**
2142  * ram_save_host_page: save a whole host page
2143  *
2144  * Starting at *offset send pages up to the end of the current host
2145  * page. It's valid for the initial offset to point into the middle of
2146  * a host page in which case the remainder of the hostpage is sent.
2147  * Only dirty target pages are sent. Note that the host page size may
2148  * be a huge page for this block.
2149  *
2150  * The saving stops at the boundary of the used_length of the block
2151  * if the RAMBlock isn't a multiple of the host page size.
2152  *
2153  * The caller must be with ram_state.bitmap_mutex held to call this
2154  * function.  Note that this function can temporarily release the lock, but
2155  * when the function is returned it'll make sure the lock is still held.
2156  *
2157  * Returns the number of pages written or negative on error
2158  *
2159  * @rs: current RAM state
2160  * @pss: data about the page we want to send
2161  */
2162 static int ram_save_host_page(RAMState *rs, PageSearchStatus *pss)
2163 {
2164     bool page_dirty, preempt_active = postcopy_preempt_active();
2165     int tmppages, pages = 0;
2166     size_t pagesize_bits =
2167         qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS;
2168     unsigned long start_page = pss->page;
2169     int res;
2170 
2171     if (migrate_ram_is_ignored(pss->block)) {
2172         error_report("block %s should not be migrated !", pss->block->idstr);
2173         return 0;
2174     }
2175 
2176     /* Update host page boundary information */
2177     pss_host_page_prepare(pss);
2178 
2179     do {
2180         page_dirty = migration_bitmap_clear_dirty(rs, pss->block, pss->page);
2181 
2182         /* Check the pages is dirty and if it is send it */
2183         if (page_dirty) {
2184             /*
2185              * Properly yield the lock only in postcopy preempt mode
2186              * because both migration thread and rp-return thread can
2187              * operate on the bitmaps.
2188              */
2189             if (preempt_active) {
2190                 qemu_mutex_unlock(&rs->bitmap_mutex);
2191             }
2192             tmppages = migration_ops->ram_save_target_page(rs, pss);
2193             if (tmppages >= 0) {
2194                 pages += tmppages;
2195                 /*
2196                  * Allow rate limiting to happen in the middle of huge pages if
2197                  * something is sent in the current iteration.
2198                  */
2199                 if (pagesize_bits > 1 && tmppages > 0) {
2200                     migration_rate_limit();
2201                 }
2202             }
2203             if (preempt_active) {
2204                 qemu_mutex_lock(&rs->bitmap_mutex);
2205             }
2206         } else {
2207             tmppages = 0;
2208         }
2209 
2210         if (tmppages < 0) {
2211             pss_host_page_finish(pss);
2212             return tmppages;
2213         }
2214 
2215         pss_find_next_dirty(pss);
2216     } while (pss_within_range(pss));
2217 
2218     pss_host_page_finish(pss);
2219 
2220     res = ram_save_release_protection(rs, pss, start_page);
2221     return (res < 0 ? res : pages);
2222 }
2223 
2224 /**
2225  * ram_find_and_save_block: finds a dirty page and sends it to f
2226  *
2227  * Called within an RCU critical section.
2228  *
2229  * Returns the number of pages written where zero means no dirty pages,
2230  * or negative on error
2231  *
2232  * @rs: current RAM state
2233  *
2234  * On systems where host-page-size > target-page-size it will send all the
2235  * pages in a host page that are dirty.
2236  */
2237 static int ram_find_and_save_block(RAMState *rs)
2238 {
2239     PageSearchStatus *pss = &rs->pss[RAM_CHANNEL_PRECOPY];
2240     int pages = 0;
2241 
2242     /* No dirty page as there is zero RAM */
2243     if (!rs->ram_bytes_total) {
2244         return pages;
2245     }
2246 
2247     /*
2248      * Always keep last_seen_block/last_page valid during this procedure,
2249      * because find_dirty_block() relies on these values (e.g., we compare
2250      * last_seen_block with pss.block to see whether we searched all the
2251      * ramblocks) to detect the completion of migration.  Having NULL value
2252      * of last_seen_block can conditionally cause below loop to run forever.
2253      */
2254     if (!rs->last_seen_block) {
2255         rs->last_seen_block = QLIST_FIRST_RCU(&ram_list.blocks);
2256         rs->last_page = 0;
2257     }
2258 
2259     pss_init(pss, rs->last_seen_block, rs->last_page);
2260 
2261     while (true){
2262         if (!get_queued_page(rs, pss)) {
2263             /* priority queue empty, so just search for something dirty */
2264             int res = find_dirty_block(rs, pss);
2265             if (res != PAGE_DIRTY_FOUND) {
2266                 if (res == PAGE_ALL_CLEAN) {
2267                     break;
2268                 } else if (res == PAGE_TRY_AGAIN) {
2269                     continue;
2270                 } else if (res < 0) {
2271                     pages = res;
2272                     break;
2273                 }
2274             }
2275         }
2276         pages = ram_save_host_page(rs, pss);
2277         if (pages) {
2278             break;
2279         }
2280     }
2281 
2282     rs->last_seen_block = pss->block;
2283     rs->last_page = pss->page;
2284 
2285     return pages;
2286 }
2287 
2288 static uint64_t ram_bytes_total_with_ignored(void)
2289 {
2290     RAMBlock *block;
2291     uint64_t total = 0;
2292 
2293     RCU_READ_LOCK_GUARD();
2294 
2295     RAMBLOCK_FOREACH_MIGRATABLE(block) {
2296         total += block->used_length;
2297     }
2298     return total;
2299 }
2300 
2301 uint64_t ram_bytes_total(void)
2302 {
2303     RAMBlock *block;
2304     uint64_t total = 0;
2305 
2306     RCU_READ_LOCK_GUARD();
2307 
2308     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2309         total += block->used_length;
2310     }
2311     return total;
2312 }
2313 
2314 static void xbzrle_load_setup(void)
2315 {
2316     XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE);
2317 }
2318 
2319 static void xbzrle_load_cleanup(void)
2320 {
2321     g_free(XBZRLE.decoded_buf);
2322     XBZRLE.decoded_buf = NULL;
2323 }
2324 
2325 static void ram_state_cleanup(RAMState **rsp)
2326 {
2327     if (*rsp) {
2328         migration_page_queue_free(*rsp);
2329         qemu_mutex_destroy(&(*rsp)->bitmap_mutex);
2330         qemu_mutex_destroy(&(*rsp)->src_page_req_mutex);
2331         g_free(*rsp);
2332         *rsp = NULL;
2333     }
2334 }
2335 
2336 static void xbzrle_cleanup(void)
2337 {
2338     XBZRLE_cache_lock();
2339     if (XBZRLE.cache) {
2340         cache_fini(XBZRLE.cache);
2341         g_free(XBZRLE.encoded_buf);
2342         g_free(XBZRLE.current_buf);
2343         g_free(XBZRLE.zero_target_page);
2344         XBZRLE.cache = NULL;
2345         XBZRLE.encoded_buf = NULL;
2346         XBZRLE.current_buf = NULL;
2347         XBZRLE.zero_target_page = NULL;
2348     }
2349     XBZRLE_cache_unlock();
2350 }
2351 
2352 static void ram_bitmaps_destroy(void)
2353 {
2354     RAMBlock *block;
2355 
2356     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2357         g_free(block->clear_bmap);
2358         block->clear_bmap = NULL;
2359         g_free(block->bmap);
2360         block->bmap = NULL;
2361         g_free(block->file_bmap);
2362         block->file_bmap = NULL;
2363     }
2364 }
2365 
2366 static void ram_save_cleanup(void *opaque)
2367 {
2368     RAMState **rsp = opaque;
2369 
2370     /* We don't use dirty log with background snapshots */
2371     if (!migrate_background_snapshot()) {
2372         /* caller have hold BQL or is in a bh, so there is
2373          * no writing race against the migration bitmap
2374          */
2375         if (global_dirty_tracking & GLOBAL_DIRTY_MIGRATION) {
2376             /*
2377              * do not stop dirty log without starting it, since
2378              * memory_global_dirty_log_stop will assert that
2379              * memory_global_dirty_log_start/stop used in pairs
2380              */
2381             memory_global_dirty_log_stop(GLOBAL_DIRTY_MIGRATION);
2382         }
2383     }
2384 
2385     ram_bitmaps_destroy();
2386 
2387     xbzrle_cleanup();
2388     multifd_ram_save_cleanup();
2389     ram_state_cleanup(rsp);
2390     g_free(migration_ops);
2391     migration_ops = NULL;
2392 }
2393 
2394 static void ram_state_reset(RAMState *rs)
2395 {
2396     int i;
2397 
2398     for (i = 0; i < RAM_CHANNEL_MAX; i++) {
2399         rs->pss[i].last_sent_block = NULL;
2400     }
2401 
2402     rs->last_seen_block = NULL;
2403     rs->last_page = 0;
2404     rs->last_version = ram_list.version;
2405     rs->xbzrle_started = false;
2406 }
2407 
2408 #define MAX_WAIT 50 /* ms, half buffered_file limit */
2409 
2410 /* **** functions for postcopy ***** */
2411 
2412 void ram_postcopy_migrated_memory_release(MigrationState *ms)
2413 {
2414     struct RAMBlock *block;
2415 
2416     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2417         unsigned long *bitmap = block->bmap;
2418         unsigned long range = block->used_length >> TARGET_PAGE_BITS;
2419         unsigned long run_start = find_next_zero_bit(bitmap, range, 0);
2420 
2421         while (run_start < range) {
2422             unsigned long run_end = find_next_bit(bitmap, range, run_start + 1);
2423             ram_discard_range(block->idstr,
2424                               ((ram_addr_t)run_start) << TARGET_PAGE_BITS,
2425                               ((ram_addr_t)(run_end - run_start))
2426                                 << TARGET_PAGE_BITS);
2427             run_start = find_next_zero_bit(bitmap, range, run_end + 1);
2428         }
2429     }
2430 }
2431 
2432 /**
2433  * postcopy_send_discard_bm_ram: discard a RAMBlock
2434  *
2435  * Callback from postcopy_each_ram_send_discard for each RAMBlock
2436  *
2437  * @ms: current migration state
2438  * @block: RAMBlock to discard
2439  */
2440 static void postcopy_send_discard_bm_ram(MigrationState *ms, RAMBlock *block)
2441 {
2442     unsigned long end = block->used_length >> TARGET_PAGE_BITS;
2443     unsigned long current;
2444     unsigned long *bitmap = block->bmap;
2445 
2446     for (current = 0; current < end; ) {
2447         unsigned long one = find_next_bit(bitmap, end, current);
2448         unsigned long zero, discard_length;
2449 
2450         if (one >= end) {
2451             break;
2452         }
2453 
2454         zero = find_next_zero_bit(bitmap, end, one + 1);
2455 
2456         if (zero >= end) {
2457             discard_length = end - one;
2458         } else {
2459             discard_length = zero - one;
2460         }
2461         postcopy_discard_send_range(ms, one, discard_length);
2462         current = one + discard_length;
2463     }
2464 }
2465 
2466 static void postcopy_chunk_hostpages_pass(MigrationState *ms, RAMBlock *block);
2467 
2468 /**
2469  * postcopy_each_ram_send_discard: discard all RAMBlocks
2470  *
2471  * Utility for the outgoing postcopy code.
2472  *   Calls postcopy_send_discard_bm_ram for each RAMBlock
2473  *   passing it bitmap indexes and name.
2474  * (qemu_ram_foreach_block ends up passing unscaled lengths
2475  *  which would mean postcopy code would have to deal with target page)
2476  *
2477  * @ms: current migration state
2478  */
2479 static void postcopy_each_ram_send_discard(MigrationState *ms)
2480 {
2481     struct RAMBlock *block;
2482 
2483     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2484         postcopy_discard_send_init(ms, block->idstr);
2485 
2486         /*
2487          * Deal with TPS != HPS and huge pages.  It discard any partially sent
2488          * host-page size chunks, mark any partially dirty host-page size
2489          * chunks as all dirty.  In this case the host-page is the host-page
2490          * for the particular RAMBlock, i.e. it might be a huge page.
2491          */
2492         postcopy_chunk_hostpages_pass(ms, block);
2493 
2494         /*
2495          * Postcopy sends chunks of bitmap over the wire, but it
2496          * just needs indexes at this point, avoids it having
2497          * target page specific code.
2498          */
2499         postcopy_send_discard_bm_ram(ms, block);
2500         postcopy_discard_send_finish(ms);
2501     }
2502 }
2503 
2504 /**
2505  * postcopy_chunk_hostpages_pass: canonicalize bitmap in hostpages
2506  *
2507  * Helper for postcopy_chunk_hostpages; it's called twice to
2508  * canonicalize the two bitmaps, that are similar, but one is
2509  * inverted.
2510  *
2511  * Postcopy requires that all target pages in a hostpage are dirty or
2512  * clean, not a mix.  This function canonicalizes the bitmaps.
2513  *
2514  * @ms: current migration state
2515  * @block: block that contains the page we want to canonicalize
2516  */
2517 static void postcopy_chunk_hostpages_pass(MigrationState *ms, RAMBlock *block)
2518 {
2519     RAMState *rs = ram_state;
2520     unsigned long *bitmap = block->bmap;
2521     unsigned int host_ratio = block->page_size / TARGET_PAGE_SIZE;
2522     unsigned long pages = block->used_length >> TARGET_PAGE_BITS;
2523     unsigned long run_start;
2524 
2525     if (block->page_size == TARGET_PAGE_SIZE) {
2526         /* Easy case - TPS==HPS for a non-huge page RAMBlock */
2527         return;
2528     }
2529 
2530     /* Find a dirty page */
2531     run_start = find_next_bit(bitmap, pages, 0);
2532 
2533     while (run_start < pages) {
2534 
2535         /*
2536          * If the start of this run of pages is in the middle of a host
2537          * page, then we need to fixup this host page.
2538          */
2539         if (QEMU_IS_ALIGNED(run_start, host_ratio)) {
2540             /* Find the end of this run */
2541             run_start = find_next_zero_bit(bitmap, pages, run_start + 1);
2542             /*
2543              * If the end isn't at the start of a host page, then the
2544              * run doesn't finish at the end of a host page
2545              * and we need to discard.
2546              */
2547         }
2548 
2549         if (!QEMU_IS_ALIGNED(run_start, host_ratio)) {
2550             unsigned long page;
2551             unsigned long fixup_start_addr = QEMU_ALIGN_DOWN(run_start,
2552                                                              host_ratio);
2553             run_start = QEMU_ALIGN_UP(run_start, host_ratio);
2554 
2555             /* Clean up the bitmap */
2556             for (page = fixup_start_addr;
2557                  page < fixup_start_addr + host_ratio; page++) {
2558                 /*
2559                  * Remark them as dirty, updating the count for any pages
2560                  * that weren't previously dirty.
2561                  */
2562                 rs->migration_dirty_pages += !test_and_set_bit(page, bitmap);
2563             }
2564         }
2565 
2566         /* Find the next dirty page for the next iteration */
2567         run_start = find_next_bit(bitmap, pages, run_start);
2568     }
2569 }
2570 
2571 /**
2572  * ram_postcopy_send_discard_bitmap: transmit the discard bitmap
2573  *
2574  * Transmit the set of pages to be discarded after precopy to the target
2575  * these are pages that:
2576  *     a) Have been previously transmitted but are now dirty again
2577  *     b) Pages that have never been transmitted, this ensures that
2578  *        any pages on the destination that have been mapped by background
2579  *        tasks get discarded (transparent huge pages is the specific concern)
2580  * Hopefully this is pretty sparse
2581  *
2582  * @ms: current migration state
2583  */
2584 void ram_postcopy_send_discard_bitmap(MigrationState *ms)
2585 {
2586     RAMState *rs = ram_state;
2587 
2588     RCU_READ_LOCK_GUARD();
2589 
2590     /* This should be our last sync, the src is now paused */
2591     migration_bitmap_sync(rs, false);
2592 
2593     /* Easiest way to make sure we don't resume in the middle of a host-page */
2594     rs->pss[RAM_CHANNEL_PRECOPY].last_sent_block = NULL;
2595     rs->last_seen_block = NULL;
2596     rs->last_page = 0;
2597 
2598     postcopy_each_ram_send_discard(ms);
2599 
2600     trace_ram_postcopy_send_discard_bitmap();
2601 }
2602 
2603 /**
2604  * ram_discard_range: discard dirtied pages at the beginning of postcopy
2605  *
2606  * Returns zero on success
2607  *
2608  * @rbname: name of the RAMBlock of the request. NULL means the
2609  *          same that last one.
2610  * @start: RAMBlock starting page
2611  * @length: RAMBlock size
2612  */
2613 int ram_discard_range(const char *rbname, uint64_t start, size_t length)
2614 {
2615     trace_ram_discard_range(rbname, start, length);
2616 
2617     RCU_READ_LOCK_GUARD();
2618     RAMBlock *rb = qemu_ram_block_by_name(rbname);
2619 
2620     if (!rb) {
2621         error_report("ram_discard_range: Failed to find block '%s'", rbname);
2622         return -1;
2623     }
2624 
2625     /*
2626      * On source VM, we don't need to update the received bitmap since
2627      * we don't even have one.
2628      */
2629     if (rb->receivedmap) {
2630         bitmap_clear(rb->receivedmap, start >> qemu_target_page_bits(),
2631                      length >> qemu_target_page_bits());
2632     }
2633 
2634     return ram_block_discard_range(rb, start, length);
2635 }
2636 
2637 /*
2638  * For every allocation, we will try not to crash the VM if the
2639  * allocation failed.
2640  */
2641 static bool xbzrle_init(Error **errp)
2642 {
2643     if (!migrate_xbzrle()) {
2644         return true;
2645     }
2646 
2647     XBZRLE_cache_lock();
2648 
2649     XBZRLE.zero_target_page = g_try_malloc0(TARGET_PAGE_SIZE);
2650     if (!XBZRLE.zero_target_page) {
2651         error_setg(errp, "%s: Error allocating zero page", __func__);
2652         goto err_out;
2653     }
2654 
2655     XBZRLE.cache = cache_init(migrate_xbzrle_cache_size(),
2656                               TARGET_PAGE_SIZE, errp);
2657     if (!XBZRLE.cache) {
2658         goto free_zero_page;
2659     }
2660 
2661     XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE);
2662     if (!XBZRLE.encoded_buf) {
2663         error_setg(errp, "%s: Error allocating encoded_buf", __func__);
2664         goto free_cache;
2665     }
2666 
2667     XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE);
2668     if (!XBZRLE.current_buf) {
2669         error_setg(errp, "%s: Error allocating current_buf", __func__);
2670         goto free_encoded_buf;
2671     }
2672 
2673     /* We are all good */
2674     XBZRLE_cache_unlock();
2675     return true;
2676 
2677 free_encoded_buf:
2678     g_free(XBZRLE.encoded_buf);
2679     XBZRLE.encoded_buf = NULL;
2680 free_cache:
2681     cache_fini(XBZRLE.cache);
2682     XBZRLE.cache = NULL;
2683 free_zero_page:
2684     g_free(XBZRLE.zero_target_page);
2685     XBZRLE.zero_target_page = NULL;
2686 err_out:
2687     XBZRLE_cache_unlock();
2688     return false;
2689 }
2690 
2691 static bool ram_state_init(RAMState **rsp, Error **errp)
2692 {
2693     *rsp = g_try_new0(RAMState, 1);
2694 
2695     if (!*rsp) {
2696         error_setg(errp, "%s: Init ramstate fail", __func__);
2697         return false;
2698     }
2699 
2700     qemu_mutex_init(&(*rsp)->bitmap_mutex);
2701     qemu_mutex_init(&(*rsp)->src_page_req_mutex);
2702     QSIMPLEQ_INIT(&(*rsp)->src_page_requests);
2703     (*rsp)->ram_bytes_total = ram_bytes_total();
2704 
2705     /*
2706      * Count the total number of pages used by ram blocks not including any
2707      * gaps due to alignment or unplugs.
2708      * This must match with the initial values of dirty bitmap.
2709      */
2710     (*rsp)->migration_dirty_pages = (*rsp)->ram_bytes_total >> TARGET_PAGE_BITS;
2711     ram_state_reset(*rsp);
2712 
2713     return true;
2714 }
2715 
2716 static void ram_list_init_bitmaps(void)
2717 {
2718     MigrationState *ms = migrate_get_current();
2719     RAMBlock *block;
2720     unsigned long pages;
2721     uint8_t shift;
2722 
2723     /* Skip setting bitmap if there is no RAM */
2724     if (ram_bytes_total()) {
2725         shift = ms->clear_bitmap_shift;
2726         if (shift > CLEAR_BITMAP_SHIFT_MAX) {
2727             error_report("clear_bitmap_shift (%u) too big, using "
2728                          "max value (%u)", shift, CLEAR_BITMAP_SHIFT_MAX);
2729             shift = CLEAR_BITMAP_SHIFT_MAX;
2730         } else if (shift < CLEAR_BITMAP_SHIFT_MIN) {
2731             error_report("clear_bitmap_shift (%u) too small, using "
2732                          "min value (%u)", shift, CLEAR_BITMAP_SHIFT_MIN);
2733             shift = CLEAR_BITMAP_SHIFT_MIN;
2734         }
2735 
2736         RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2737             pages = block->max_length >> TARGET_PAGE_BITS;
2738             /*
2739              * The initial dirty bitmap for migration must be set with all
2740              * ones to make sure we'll migrate every guest RAM page to
2741              * destination.
2742              * Here we set RAMBlock.bmap all to 1 because when rebegin a
2743              * new migration after a failed migration, ram_list.
2744              * dirty_memory[DIRTY_MEMORY_MIGRATION] don't include the whole
2745              * guest memory.
2746              */
2747             block->bmap = bitmap_new(pages);
2748             bitmap_set(block->bmap, 0, pages);
2749             if (migrate_mapped_ram()) {
2750                 block->file_bmap = bitmap_new(pages);
2751             }
2752             block->clear_bmap_shift = shift;
2753             block->clear_bmap = bitmap_new(clear_bmap_size(pages, shift));
2754         }
2755     }
2756 }
2757 
2758 static void migration_bitmap_clear_discarded_pages(RAMState *rs)
2759 {
2760     unsigned long pages;
2761     RAMBlock *rb;
2762 
2763     RCU_READ_LOCK_GUARD();
2764 
2765     RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
2766             pages = ramblock_dirty_bitmap_clear_discarded_pages(rb);
2767             rs->migration_dirty_pages -= pages;
2768     }
2769 }
2770 
2771 static bool ram_init_bitmaps(RAMState *rs, Error **errp)
2772 {
2773     bool ret = true;
2774 
2775     qemu_mutex_lock_ramlist();
2776 
2777     WITH_RCU_READ_LOCK_GUARD() {
2778         ram_list_init_bitmaps();
2779         /* We don't use dirty log with background snapshots */
2780         if (!migrate_background_snapshot()) {
2781             ret = memory_global_dirty_log_start(GLOBAL_DIRTY_MIGRATION, errp);
2782             if (!ret) {
2783                 goto out_unlock;
2784             }
2785             migration_bitmap_sync_precopy(rs, false);
2786         }
2787     }
2788 out_unlock:
2789     qemu_mutex_unlock_ramlist();
2790 
2791     if (!ret) {
2792         ram_bitmaps_destroy();
2793         return false;
2794     }
2795 
2796     /*
2797      * After an eventual first bitmap sync, fixup the initial bitmap
2798      * containing all 1s to exclude any discarded pages from migration.
2799      */
2800     migration_bitmap_clear_discarded_pages(rs);
2801     return true;
2802 }
2803 
2804 static int ram_init_all(RAMState **rsp, Error **errp)
2805 {
2806     if (!ram_state_init(rsp, errp)) {
2807         return -1;
2808     }
2809 
2810     if (!xbzrle_init(errp)) {
2811         ram_state_cleanup(rsp);
2812         return -1;
2813     }
2814 
2815     if (!ram_init_bitmaps(*rsp, errp)) {
2816         return -1;
2817     }
2818 
2819     return 0;
2820 }
2821 
2822 static void ram_state_resume_prepare(RAMState *rs, QEMUFile *out)
2823 {
2824     RAMBlock *block;
2825     uint64_t pages = 0;
2826 
2827     /*
2828      * Postcopy is not using xbzrle/compression, so no need for that.
2829      * Also, since source are already halted, we don't need to care
2830      * about dirty page logging as well.
2831      */
2832 
2833     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2834         pages += bitmap_count_one(block->bmap,
2835                                   block->used_length >> TARGET_PAGE_BITS);
2836     }
2837 
2838     /* This may not be aligned with current bitmaps. Recalculate. */
2839     rs->migration_dirty_pages = pages;
2840 
2841     ram_state_reset(rs);
2842 
2843     /* Update RAMState cache of output QEMUFile */
2844     rs->pss[RAM_CHANNEL_PRECOPY].pss_channel = out;
2845 
2846     trace_ram_state_resume_prepare(pages);
2847 }
2848 
2849 /*
2850  * This function clears bits of the free pages reported by the caller from the
2851  * migration dirty bitmap. @addr is the host address corresponding to the
2852  * start of the continuous guest free pages, and @len is the total bytes of
2853  * those pages.
2854  */
2855 void qemu_guest_free_page_hint(void *addr, size_t len)
2856 {
2857     RAMBlock *block;
2858     ram_addr_t offset;
2859     size_t used_len, start, npages;
2860 
2861     /* This function is currently expected to be used during live migration */
2862     if (!migration_is_setup_or_active()) {
2863         return;
2864     }
2865 
2866     for (; len > 0; len -= used_len, addr += used_len) {
2867         block = qemu_ram_block_from_host(addr, false, &offset);
2868         if (unlikely(!block || offset >= block->used_length)) {
2869             /*
2870              * The implementation might not support RAMBlock resize during
2871              * live migration, but it could happen in theory with future
2872              * updates. So we add a check here to capture that case.
2873              */
2874             error_report_once("%s unexpected error", __func__);
2875             return;
2876         }
2877 
2878         if (len <= block->used_length - offset) {
2879             used_len = len;
2880         } else {
2881             used_len = block->used_length - offset;
2882         }
2883 
2884         start = offset >> TARGET_PAGE_BITS;
2885         npages = used_len >> TARGET_PAGE_BITS;
2886 
2887         qemu_mutex_lock(&ram_state->bitmap_mutex);
2888         /*
2889          * The skipped free pages are equavalent to be sent from clear_bmap's
2890          * perspective, so clear the bits from the memory region bitmap which
2891          * are initially set. Otherwise those skipped pages will be sent in
2892          * the next round after syncing from the memory region bitmap.
2893          */
2894         migration_clear_memory_region_dirty_bitmap_range(block, start, npages);
2895         ram_state->migration_dirty_pages -=
2896                       bitmap_count_one_with_offset(block->bmap, start, npages);
2897         bitmap_clear(block->bmap, start, npages);
2898         qemu_mutex_unlock(&ram_state->bitmap_mutex);
2899     }
2900 }
2901 
2902 #define MAPPED_RAM_HDR_VERSION 1
2903 struct MappedRamHeader {
2904     uint32_t version;
2905     /*
2906      * The target's page size, so we know how many pages are in the
2907      * bitmap.
2908      */
2909     uint64_t page_size;
2910     /*
2911      * The offset in the migration file where the pages bitmap is
2912      * stored.
2913      */
2914     uint64_t bitmap_offset;
2915     /*
2916      * The offset in the migration file where the actual pages (data)
2917      * are stored.
2918      */
2919     uint64_t pages_offset;
2920 } QEMU_PACKED;
2921 typedef struct MappedRamHeader MappedRamHeader;
2922 
2923 static void mapped_ram_setup_ramblock(QEMUFile *file, RAMBlock *block)
2924 {
2925     g_autofree MappedRamHeader *header = NULL;
2926     size_t header_size, bitmap_size;
2927     long num_pages;
2928 
2929     header = g_new0(MappedRamHeader, 1);
2930     header_size = sizeof(MappedRamHeader);
2931 
2932     num_pages = block->used_length >> TARGET_PAGE_BITS;
2933     bitmap_size = BITS_TO_LONGS(num_pages) * sizeof(unsigned long);
2934 
2935     /*
2936      * Save the file offsets of where the bitmap and the pages should
2937      * go as they are written at the end of migration and during the
2938      * iterative phase, respectively.
2939      */
2940     block->bitmap_offset = qemu_get_offset(file) + header_size;
2941     block->pages_offset = ROUND_UP(block->bitmap_offset +
2942                                    bitmap_size,
2943                                    MAPPED_RAM_FILE_OFFSET_ALIGNMENT);
2944 
2945     header->version = cpu_to_be32(MAPPED_RAM_HDR_VERSION);
2946     header->page_size = cpu_to_be64(TARGET_PAGE_SIZE);
2947     header->bitmap_offset = cpu_to_be64(block->bitmap_offset);
2948     header->pages_offset = cpu_to_be64(block->pages_offset);
2949 
2950     qemu_put_buffer(file, (uint8_t *) header, header_size);
2951 
2952     /* prepare offset for next ramblock */
2953     qemu_set_offset(file, block->pages_offset + block->used_length, SEEK_SET);
2954 }
2955 
2956 static bool mapped_ram_read_header(QEMUFile *file, MappedRamHeader *header,
2957                                    Error **errp)
2958 {
2959     size_t ret, header_size = sizeof(MappedRamHeader);
2960 
2961     ret = qemu_get_buffer(file, (uint8_t *)header, header_size);
2962     if (ret != header_size) {
2963         error_setg(errp, "Could not read whole mapped-ram migration header "
2964                    "(expected %zd, got %zd bytes)", header_size, ret);
2965         return false;
2966     }
2967 
2968     /* migration stream is big-endian */
2969     header->version = be32_to_cpu(header->version);
2970 
2971     if (header->version > MAPPED_RAM_HDR_VERSION) {
2972         error_setg(errp, "Migration mapped-ram capability version not "
2973                    "supported (expected <= %d, got %d)", MAPPED_RAM_HDR_VERSION,
2974                    header->version);
2975         return false;
2976     }
2977 
2978     header->page_size = be64_to_cpu(header->page_size);
2979     header->bitmap_offset = be64_to_cpu(header->bitmap_offset);
2980     header->pages_offset = be64_to_cpu(header->pages_offset);
2981 
2982     return true;
2983 }
2984 
2985 /*
2986  * Each of ram_save_setup, ram_save_iterate and ram_save_complete has
2987  * long-running RCU critical section.  When rcu-reclaims in the code
2988  * start to become numerous it will be necessary to reduce the
2989  * granularity of these critical sections.
2990  */
2991 
2992 /**
2993  * ram_save_setup: Setup RAM for migration
2994  *
2995  * Returns zero to indicate success and negative for error
2996  *
2997  * @f: QEMUFile where to send the data
2998  * @opaque: RAMState pointer
2999  * @errp: pointer to Error*, to store an error if it happens.
3000  */
3001 static int ram_save_setup(QEMUFile *f, void *opaque, Error **errp)
3002 {
3003     RAMState **rsp = opaque;
3004     RAMBlock *block;
3005     int ret, max_hg_page_size;
3006 
3007     /* migration has already setup the bitmap, reuse it. */
3008     if (!migration_in_colo_state()) {
3009         if (ram_init_all(rsp, errp) != 0) {
3010             return -1;
3011         }
3012     }
3013     (*rsp)->pss[RAM_CHANNEL_PRECOPY].pss_channel = f;
3014 
3015     /*
3016      * ??? Mirrors the previous value of qemu_host_page_size,
3017      * but is this really what was intended for the migration?
3018      */
3019     max_hg_page_size = MAX(qemu_real_host_page_size(), TARGET_PAGE_SIZE);
3020 
3021     WITH_RCU_READ_LOCK_GUARD() {
3022         qemu_put_be64(f, ram_bytes_total_with_ignored()
3023                          | RAM_SAVE_FLAG_MEM_SIZE);
3024 
3025         RAMBLOCK_FOREACH_MIGRATABLE(block) {
3026             qemu_put_byte(f, strlen(block->idstr));
3027             qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
3028             qemu_put_be64(f, block->used_length);
3029             if (migrate_postcopy_ram() &&
3030                 block->page_size != max_hg_page_size) {
3031                 qemu_put_be64(f, block->page_size);
3032             }
3033             if (migrate_ignore_shared()) {
3034                 qemu_put_be64(f, block->mr->addr);
3035             }
3036 
3037             if (migrate_mapped_ram()) {
3038                 mapped_ram_setup_ramblock(f, block);
3039             }
3040         }
3041     }
3042 
3043     ret = rdma_registration_start(f, RAM_CONTROL_SETUP);
3044     if (ret < 0) {
3045         error_setg(errp, "%s: failed to start RDMA registration", __func__);
3046         qemu_file_set_error(f, ret);
3047         return ret;
3048     }
3049 
3050     ret = rdma_registration_stop(f, RAM_CONTROL_SETUP);
3051     if (ret < 0) {
3052         error_setg(errp, "%s: failed to stop RDMA registration", __func__);
3053         qemu_file_set_error(f, ret);
3054         return ret;
3055     }
3056 
3057     migration_ops = g_malloc0(sizeof(MigrationOps));
3058 
3059     if (migrate_multifd()) {
3060         multifd_ram_save_setup();
3061         migration_ops->ram_save_target_page = ram_save_target_page_multifd;
3062     } else {
3063         migration_ops->ram_save_target_page = ram_save_target_page_legacy;
3064     }
3065 
3066     bql_unlock();
3067     ret = multifd_ram_flush_and_sync();
3068     bql_lock();
3069     if (ret < 0) {
3070         error_setg(errp, "%s: multifd synchronization failed", __func__);
3071         return ret;
3072     }
3073 
3074     if (migrate_multifd() && !migrate_multifd_flush_after_each_section()
3075         && !migrate_mapped_ram()) {
3076         qemu_put_be64(f, RAM_SAVE_FLAG_MULTIFD_FLUSH);
3077     }
3078 
3079     qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3080     ret = qemu_fflush(f);
3081     if (ret < 0) {
3082         error_setg_errno(errp, -ret, "%s failed", __func__);
3083     }
3084     return ret;
3085 }
3086 
3087 static void ram_save_file_bmap(QEMUFile *f)
3088 {
3089     RAMBlock *block;
3090 
3091     RAMBLOCK_FOREACH_MIGRATABLE(block) {
3092         long num_pages = block->used_length >> TARGET_PAGE_BITS;
3093         long bitmap_size = BITS_TO_LONGS(num_pages) * sizeof(unsigned long);
3094 
3095         qemu_put_buffer_at(f, (uint8_t *)block->file_bmap, bitmap_size,
3096                            block->bitmap_offset);
3097         ram_transferred_add(bitmap_size);
3098 
3099         /*
3100          * Free the bitmap here to catch any synchronization issues
3101          * with multifd channels. No channels should be sending pages
3102          * after we've written the bitmap to file.
3103          */
3104         g_free(block->file_bmap);
3105         block->file_bmap = NULL;
3106     }
3107 }
3108 
3109 void ramblock_set_file_bmap_atomic(RAMBlock *block, ram_addr_t offset, bool set)
3110 {
3111     if (set) {
3112         set_bit_atomic(offset >> TARGET_PAGE_BITS, block->file_bmap);
3113     } else {
3114         clear_bit_atomic(offset >> TARGET_PAGE_BITS, block->file_bmap);
3115     }
3116 }
3117 
3118 /**
3119  * ram_save_iterate: iterative stage for migration
3120  *
3121  * Returns zero to indicate success and negative for error
3122  *
3123  * @f: QEMUFile where to send the data
3124  * @opaque: RAMState pointer
3125  */
3126 static int ram_save_iterate(QEMUFile *f, void *opaque)
3127 {
3128     RAMState **temp = opaque;
3129     RAMState *rs = *temp;
3130     int ret = 0;
3131     int i;
3132     int64_t t0;
3133     int done = 0;
3134 
3135     /*
3136      * We'll take this lock a little bit long, but it's okay for two reasons.
3137      * Firstly, the only possible other thread to take it is who calls
3138      * qemu_guest_free_page_hint(), which should be rare; secondly, see
3139      * MAX_WAIT (if curious, further see commit 4508bd9ed8053ce) below, which
3140      * guarantees that we'll at least released it in a regular basis.
3141      */
3142     WITH_QEMU_LOCK_GUARD(&rs->bitmap_mutex) {
3143         WITH_RCU_READ_LOCK_GUARD() {
3144             if (ram_list.version != rs->last_version) {
3145                 ram_state_reset(rs);
3146             }
3147 
3148             /* Read version before ram_list.blocks */
3149             smp_rmb();
3150 
3151             ret = rdma_registration_start(f, RAM_CONTROL_ROUND);
3152             if (ret < 0) {
3153                 qemu_file_set_error(f, ret);
3154                 goto out;
3155             }
3156 
3157             t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
3158             i = 0;
3159             while ((ret = migration_rate_exceeded(f)) == 0 ||
3160                    postcopy_has_request(rs)) {
3161                 int pages;
3162 
3163                 if (qemu_file_get_error(f)) {
3164                     break;
3165                 }
3166 
3167                 pages = ram_find_and_save_block(rs);
3168                 /* no more pages to sent */
3169                 if (pages == 0) {
3170                     done = 1;
3171                     break;
3172                 }
3173 
3174                 if (pages < 0) {
3175                     qemu_file_set_error(f, pages);
3176                     break;
3177                 }
3178 
3179                 rs->target_page_count += pages;
3180 
3181                 /*
3182                  * we want to check in the 1st loop, just in case it was the 1st
3183                  * time and we had to sync the dirty bitmap.
3184                  * qemu_clock_get_ns() is a bit expensive, so we only check each
3185                  * some iterations
3186                  */
3187                 if ((i & 63) == 0) {
3188                     uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) /
3189                         1000000;
3190                     if (t1 > MAX_WAIT) {
3191                         trace_ram_save_iterate_big_wait(t1, i);
3192                         break;
3193                     }
3194                 }
3195                 i++;
3196             }
3197         }
3198     }
3199 
3200     /*
3201      * Must occur before EOS (or any QEMUFile operation)
3202      * because of RDMA protocol.
3203      */
3204     ret = rdma_registration_stop(f, RAM_CONTROL_ROUND);
3205     if (ret < 0) {
3206         qemu_file_set_error(f, ret);
3207     }
3208 
3209 out:
3210     if (ret >= 0
3211         && migration_is_setup_or_active()) {
3212         if (migrate_multifd() && migrate_multifd_flush_after_each_section() &&
3213             !migrate_mapped_ram()) {
3214             ret = multifd_ram_flush_and_sync();
3215             if (ret < 0) {
3216                 return ret;
3217             }
3218         }
3219 
3220         qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3221         ram_transferred_add(8);
3222         ret = qemu_fflush(f);
3223     }
3224     if (ret < 0) {
3225         return ret;
3226     }
3227 
3228     return done;
3229 }
3230 
3231 /**
3232  * ram_save_complete: function called to send the remaining amount of ram
3233  *
3234  * Returns zero to indicate success or negative on error
3235  *
3236  * Called with the BQL
3237  *
3238  * @f: QEMUFile where to send the data
3239  * @opaque: RAMState pointer
3240  */
3241 static int ram_save_complete(QEMUFile *f, void *opaque)
3242 {
3243     RAMState **temp = opaque;
3244     RAMState *rs = *temp;
3245     int ret = 0;
3246 
3247     rs->last_stage = !migration_in_colo_state();
3248 
3249     WITH_RCU_READ_LOCK_GUARD() {
3250         if (!migration_in_postcopy()) {
3251             migration_bitmap_sync_precopy(rs, true);
3252         }
3253 
3254         ret = rdma_registration_start(f, RAM_CONTROL_FINISH);
3255         if (ret < 0) {
3256             qemu_file_set_error(f, ret);
3257             return ret;
3258         }
3259 
3260         /* try transferring iterative blocks of memory */
3261 
3262         /* flush all remaining blocks regardless of rate limiting */
3263         qemu_mutex_lock(&rs->bitmap_mutex);
3264         while (true) {
3265             int pages;
3266 
3267             pages = ram_find_and_save_block(rs);
3268             /* no more blocks to sent */
3269             if (pages == 0) {
3270                 break;
3271             }
3272             if (pages < 0) {
3273                 qemu_mutex_unlock(&rs->bitmap_mutex);
3274                 return pages;
3275             }
3276         }
3277         qemu_mutex_unlock(&rs->bitmap_mutex);
3278 
3279         ret = rdma_registration_stop(f, RAM_CONTROL_FINISH);
3280         if (ret < 0) {
3281             qemu_file_set_error(f, ret);
3282             return ret;
3283         }
3284     }
3285 
3286     ret = multifd_ram_flush_and_sync();
3287     if (ret < 0) {
3288         return ret;
3289     }
3290 
3291     if (migrate_mapped_ram()) {
3292         ram_save_file_bmap(f);
3293 
3294         if (qemu_file_get_error(f)) {
3295             Error *local_err = NULL;
3296             int err = qemu_file_get_error_obj(f, &local_err);
3297 
3298             error_reportf_err(local_err, "Failed to write bitmap to file: ");
3299             return -err;
3300         }
3301     }
3302 
3303     qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3304     return qemu_fflush(f);
3305 }
3306 
3307 static void ram_state_pending_estimate(void *opaque, uint64_t *must_precopy,
3308                                        uint64_t *can_postcopy)
3309 {
3310     RAMState **temp = opaque;
3311     RAMState *rs = *temp;
3312 
3313     uint64_t remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
3314 
3315     if (migrate_postcopy_ram()) {
3316         /* We can do postcopy, and all the data is postcopiable */
3317         *can_postcopy += remaining_size;
3318     } else {
3319         *must_precopy += remaining_size;
3320     }
3321 }
3322 
3323 static void ram_state_pending_exact(void *opaque, uint64_t *must_precopy,
3324                                     uint64_t *can_postcopy)
3325 {
3326     RAMState **temp = opaque;
3327     RAMState *rs = *temp;
3328     uint64_t remaining_size;
3329 
3330     if (!migration_in_postcopy()) {
3331         bql_lock();
3332         WITH_RCU_READ_LOCK_GUARD() {
3333             migration_bitmap_sync_precopy(rs, false);
3334         }
3335         bql_unlock();
3336     }
3337 
3338     remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
3339 
3340     if (migrate_postcopy_ram()) {
3341         /* We can do postcopy, and all the data is postcopiable */
3342         *can_postcopy += remaining_size;
3343     } else {
3344         *must_precopy += remaining_size;
3345     }
3346 }
3347 
3348 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
3349 {
3350     unsigned int xh_len;
3351     int xh_flags;
3352     uint8_t *loaded_data;
3353 
3354     /* extract RLE header */
3355     xh_flags = qemu_get_byte(f);
3356     xh_len = qemu_get_be16(f);
3357 
3358     if (xh_flags != ENCODING_FLAG_XBZRLE) {
3359         error_report("Failed to load XBZRLE page - wrong compression!");
3360         return -1;
3361     }
3362 
3363     if (xh_len > TARGET_PAGE_SIZE) {
3364         error_report("Failed to load XBZRLE page - len overflow!");
3365         return -1;
3366     }
3367     loaded_data = XBZRLE.decoded_buf;
3368     /* load data and decode */
3369     /* it can change loaded_data to point to an internal buffer */
3370     qemu_get_buffer_in_place(f, &loaded_data, xh_len);
3371 
3372     /* decode RLE */
3373     if (xbzrle_decode_buffer(loaded_data, xh_len, host,
3374                              TARGET_PAGE_SIZE) == -1) {
3375         error_report("Failed to load XBZRLE page - decode error!");
3376         return -1;
3377     }
3378 
3379     return 0;
3380 }
3381 
3382 /**
3383  * ram_block_from_stream: read a RAMBlock id from the migration stream
3384  *
3385  * Must be called from within a rcu critical section.
3386  *
3387  * Returns a pointer from within the RCU-protected ram_list.
3388  *
3389  * @mis: the migration incoming state pointer
3390  * @f: QEMUFile where to read the data from
3391  * @flags: Page flags (mostly to see if it's a continuation of previous block)
3392  * @channel: the channel we're using
3393  */
3394 static inline RAMBlock *ram_block_from_stream(MigrationIncomingState *mis,
3395                                               QEMUFile *f, int flags,
3396                                               int channel)
3397 {
3398     RAMBlock *block = mis->last_recv_block[channel];
3399     char id[256];
3400     uint8_t len;
3401 
3402     if (flags & RAM_SAVE_FLAG_CONTINUE) {
3403         if (!block) {
3404             error_report("Ack, bad migration stream!");
3405             return NULL;
3406         }
3407         return block;
3408     }
3409 
3410     len = qemu_get_byte(f);
3411     qemu_get_buffer(f, (uint8_t *)id, len);
3412     id[len] = 0;
3413 
3414     block = qemu_ram_block_by_name(id);
3415     if (!block) {
3416         error_report("Can't find block %s", id);
3417         return NULL;
3418     }
3419 
3420     if (migrate_ram_is_ignored(block)) {
3421         error_report("block %s should not be migrated !", id);
3422         return NULL;
3423     }
3424 
3425     mis->last_recv_block[channel] = block;
3426 
3427     return block;
3428 }
3429 
3430 static inline void *host_from_ram_block_offset(RAMBlock *block,
3431                                                ram_addr_t offset)
3432 {
3433     if (!offset_in_ramblock(block, offset)) {
3434         return NULL;
3435     }
3436 
3437     return block->host + offset;
3438 }
3439 
3440 static void *host_page_from_ram_block_offset(RAMBlock *block,
3441                                              ram_addr_t offset)
3442 {
3443     /* Note: Explicitly no check against offset_in_ramblock(). */
3444     return (void *)QEMU_ALIGN_DOWN((uintptr_t)(block->host + offset),
3445                                    block->page_size);
3446 }
3447 
3448 static ram_addr_t host_page_offset_from_ram_block_offset(RAMBlock *block,
3449                                                          ram_addr_t offset)
3450 {
3451     return ((uintptr_t)block->host + offset) & (block->page_size - 1);
3452 }
3453 
3454 void colo_record_bitmap(RAMBlock *block, ram_addr_t *normal, uint32_t pages)
3455 {
3456     qemu_mutex_lock(&ram_state->bitmap_mutex);
3457     for (int i = 0; i < pages; i++) {
3458         ram_addr_t offset = normal[i];
3459         ram_state->migration_dirty_pages += !test_and_set_bit(
3460                                                 offset >> TARGET_PAGE_BITS,
3461                                                 block->bmap);
3462     }
3463     qemu_mutex_unlock(&ram_state->bitmap_mutex);
3464 }
3465 
3466 static inline void *colo_cache_from_block_offset(RAMBlock *block,
3467                              ram_addr_t offset, bool record_bitmap)
3468 {
3469     if (!offset_in_ramblock(block, offset)) {
3470         return NULL;
3471     }
3472     if (!block->colo_cache) {
3473         error_report("%s: colo_cache is NULL in block :%s",
3474                      __func__, block->idstr);
3475         return NULL;
3476     }
3477 
3478     /*
3479     * During colo checkpoint, we need bitmap of these migrated pages.
3480     * It help us to decide which pages in ram cache should be flushed
3481     * into VM's RAM later.
3482     */
3483     if (record_bitmap) {
3484         colo_record_bitmap(block, &offset, 1);
3485     }
3486     return block->colo_cache + offset;
3487 }
3488 
3489 /**
3490  * ram_handle_zero: handle the zero page case
3491  *
3492  * If a page (or a whole RDMA chunk) has been
3493  * determined to be zero, then zap it.
3494  *
3495  * @host: host address for the zero page
3496  * @ch: what the page is filled from.  We only support zero
3497  * @size: size of the zero page
3498  */
3499 void ram_handle_zero(void *host, uint64_t size)
3500 {
3501     if (!buffer_is_zero(host, size)) {
3502         memset(host, 0, size);
3503     }
3504 }
3505 
3506 static void colo_init_ram_state(void)
3507 {
3508     Error *local_err = NULL;
3509 
3510     if (!ram_state_init(&ram_state, &local_err)) {
3511         error_report_err(local_err);
3512     }
3513 }
3514 
3515 /*
3516  * colo cache: this is for secondary VM, we cache the whole
3517  * memory of the secondary VM, it is need to hold the global lock
3518  * to call this helper.
3519  */
3520 int colo_init_ram_cache(void)
3521 {
3522     RAMBlock *block;
3523 
3524     WITH_RCU_READ_LOCK_GUARD() {
3525         RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3526             block->colo_cache = qemu_anon_ram_alloc(block->used_length,
3527                                                     NULL, false, false);
3528             if (!block->colo_cache) {
3529                 error_report("%s: Can't alloc memory for COLO cache of block %s,"
3530                              "size 0x" RAM_ADDR_FMT, __func__, block->idstr,
3531                              block->used_length);
3532                 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3533                     if (block->colo_cache) {
3534                         qemu_anon_ram_free(block->colo_cache, block->used_length);
3535                         block->colo_cache = NULL;
3536                     }
3537                 }
3538                 return -errno;
3539             }
3540             if (!machine_dump_guest_core(current_machine)) {
3541                 qemu_madvise(block->colo_cache, block->used_length,
3542                              QEMU_MADV_DONTDUMP);
3543             }
3544         }
3545     }
3546 
3547     /*
3548     * Record the dirty pages that sent by PVM, we use this dirty bitmap together
3549     * with to decide which page in cache should be flushed into SVM's RAM. Here
3550     * we use the same name 'ram_bitmap' as for migration.
3551     */
3552     if (ram_bytes_total()) {
3553         RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3554             unsigned long pages = block->max_length >> TARGET_PAGE_BITS;
3555             block->bmap = bitmap_new(pages);
3556         }
3557     }
3558 
3559     colo_init_ram_state();
3560     return 0;
3561 }
3562 
3563 /* TODO: duplicated with ram_init_bitmaps */
3564 void colo_incoming_start_dirty_log(void)
3565 {
3566     RAMBlock *block = NULL;
3567     Error *local_err = NULL;
3568 
3569     /* For memory_global_dirty_log_start below. */
3570     bql_lock();
3571     qemu_mutex_lock_ramlist();
3572 
3573     memory_global_dirty_log_sync(false);
3574     WITH_RCU_READ_LOCK_GUARD() {
3575         RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3576             ramblock_sync_dirty_bitmap(ram_state, block);
3577             /* Discard this dirty bitmap record */
3578             bitmap_zero(block->bmap, block->max_length >> TARGET_PAGE_BITS);
3579         }
3580         if (!memory_global_dirty_log_start(GLOBAL_DIRTY_MIGRATION,
3581                                            &local_err)) {
3582             error_report_err(local_err);
3583         }
3584     }
3585     ram_state->migration_dirty_pages = 0;
3586     qemu_mutex_unlock_ramlist();
3587     bql_unlock();
3588 }
3589 
3590 /* It is need to hold the global lock to call this helper */
3591 void colo_release_ram_cache(void)
3592 {
3593     RAMBlock *block;
3594 
3595     memory_global_dirty_log_stop(GLOBAL_DIRTY_MIGRATION);
3596     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3597         g_free(block->bmap);
3598         block->bmap = NULL;
3599     }
3600 
3601     WITH_RCU_READ_LOCK_GUARD() {
3602         RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3603             if (block->colo_cache) {
3604                 qemu_anon_ram_free(block->colo_cache, block->used_length);
3605                 block->colo_cache = NULL;
3606             }
3607         }
3608     }
3609     ram_state_cleanup(&ram_state);
3610 }
3611 
3612 /**
3613  * ram_load_setup: Setup RAM for migration incoming side
3614  *
3615  * Returns zero to indicate success and negative for error
3616  *
3617  * @f: QEMUFile where to receive the data
3618  * @opaque: RAMState pointer
3619  * @errp: pointer to Error*, to store an error if it happens.
3620  */
3621 static int ram_load_setup(QEMUFile *f, void *opaque, Error **errp)
3622 {
3623     xbzrle_load_setup();
3624     ramblock_recv_map_init();
3625 
3626     return 0;
3627 }
3628 
3629 static int ram_load_cleanup(void *opaque)
3630 {
3631     RAMBlock *rb;
3632 
3633     RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
3634         qemu_ram_block_writeback(rb);
3635     }
3636 
3637     xbzrle_load_cleanup();
3638 
3639     RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
3640         g_free(rb->receivedmap);
3641         rb->receivedmap = NULL;
3642     }
3643 
3644     return 0;
3645 }
3646 
3647 /**
3648  * ram_postcopy_incoming_init: allocate postcopy data structures
3649  *
3650  * Returns 0 for success and negative if there was one error
3651  *
3652  * @mis: current migration incoming state
3653  *
3654  * Allocate data structures etc needed by incoming migration with
3655  * postcopy-ram. postcopy-ram's similarly names
3656  * postcopy_ram_incoming_init does the work.
3657  */
3658 int ram_postcopy_incoming_init(MigrationIncomingState *mis)
3659 {
3660     return postcopy_ram_incoming_init(mis);
3661 }
3662 
3663 /**
3664  * ram_load_postcopy: load a page in postcopy case
3665  *
3666  * Returns 0 for success or -errno in case of error
3667  *
3668  * Called in postcopy mode by ram_load().
3669  * rcu_read_lock is taken prior to this being called.
3670  *
3671  * @f: QEMUFile where to send the data
3672  * @channel: the channel to use for loading
3673  */
3674 int ram_load_postcopy(QEMUFile *f, int channel)
3675 {
3676     int flags = 0, ret = 0;
3677     bool place_needed = false;
3678     bool matches_target_page_size = false;
3679     MigrationIncomingState *mis = migration_incoming_get_current();
3680     PostcopyTmpPage *tmp_page = &mis->postcopy_tmp_pages[channel];
3681 
3682     while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
3683         ram_addr_t addr;
3684         void *page_buffer = NULL;
3685         void *place_source = NULL;
3686         RAMBlock *block = NULL;
3687         uint8_t ch;
3688 
3689         addr = qemu_get_be64(f);
3690 
3691         /*
3692          * If qemu file error, we should stop here, and then "addr"
3693          * may be invalid
3694          */
3695         ret = qemu_file_get_error(f);
3696         if (ret) {
3697             break;
3698         }
3699 
3700         flags = addr & ~TARGET_PAGE_MASK;
3701         addr &= TARGET_PAGE_MASK;
3702 
3703         trace_ram_load_postcopy_loop(channel, (uint64_t)addr, flags);
3704         if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE)) {
3705             block = ram_block_from_stream(mis, f, flags, channel);
3706             if (!block) {
3707                 ret = -EINVAL;
3708                 break;
3709             }
3710 
3711             /*
3712              * Relying on used_length is racy and can result in false positives.
3713              * We might place pages beyond used_length in case RAM was shrunk
3714              * while in postcopy, which is fine - trying to place via
3715              * UFFDIO_COPY/UFFDIO_ZEROPAGE will never segfault.
3716              */
3717             if (!block->host || addr >= block->postcopy_length) {
3718                 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
3719                 ret = -EINVAL;
3720                 break;
3721             }
3722             tmp_page->target_pages++;
3723             matches_target_page_size = block->page_size == TARGET_PAGE_SIZE;
3724             /*
3725              * Postcopy requires that we place whole host pages atomically;
3726              * these may be huge pages for RAMBlocks that are backed by
3727              * hugetlbfs.
3728              * To make it atomic, the data is read into a temporary page
3729              * that's moved into place later.
3730              * The migration protocol uses,  possibly smaller, target-pages
3731              * however the source ensures it always sends all the components
3732              * of a host page in one chunk.
3733              */
3734             page_buffer = tmp_page->tmp_huge_page +
3735                           host_page_offset_from_ram_block_offset(block, addr);
3736             /* If all TP are zero then we can optimise the place */
3737             if (tmp_page->target_pages == 1) {
3738                 tmp_page->host_addr =
3739                     host_page_from_ram_block_offset(block, addr);
3740             } else if (tmp_page->host_addr !=
3741                        host_page_from_ram_block_offset(block, addr)) {
3742                 /* not the 1st TP within the HP */
3743                 error_report("Non-same host page detected on channel %d: "
3744                              "Target host page %p, received host page %p "
3745                              "(rb %s offset 0x"RAM_ADDR_FMT" target_pages %d)",
3746                              channel, tmp_page->host_addr,
3747                              host_page_from_ram_block_offset(block, addr),
3748                              block->idstr, addr, tmp_page->target_pages);
3749                 ret = -EINVAL;
3750                 break;
3751             }
3752 
3753             /*
3754              * If it's the last part of a host page then we place the host
3755              * page
3756              */
3757             if (tmp_page->target_pages ==
3758                 (block->page_size / TARGET_PAGE_SIZE)) {
3759                 place_needed = true;
3760             }
3761             place_source = tmp_page->tmp_huge_page;
3762         }
3763 
3764         switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
3765         case RAM_SAVE_FLAG_ZERO:
3766             ch = qemu_get_byte(f);
3767             if (ch != 0) {
3768                 error_report("Found a zero page with value %d", ch);
3769                 ret = -EINVAL;
3770                 break;
3771             }
3772             /*
3773              * Can skip to set page_buffer when
3774              * this is a zero page and (block->page_size == TARGET_PAGE_SIZE).
3775              */
3776             if (!matches_target_page_size) {
3777                 memset(page_buffer, ch, TARGET_PAGE_SIZE);
3778             }
3779             break;
3780 
3781         case RAM_SAVE_FLAG_PAGE:
3782             tmp_page->all_zero = false;
3783             if (!matches_target_page_size) {
3784                 /* For huge pages, we always use temporary buffer */
3785                 qemu_get_buffer(f, page_buffer, TARGET_PAGE_SIZE);
3786             } else {
3787                 /*
3788                  * For small pages that matches target page size, we
3789                  * avoid the qemu_file copy.  Instead we directly use
3790                  * the buffer of QEMUFile to place the page.  Note: we
3791                  * cannot do any QEMUFile operation before using that
3792                  * buffer to make sure the buffer is valid when
3793                  * placing the page.
3794                  */
3795                 qemu_get_buffer_in_place(f, (uint8_t **)&place_source,
3796                                          TARGET_PAGE_SIZE);
3797             }
3798             break;
3799         case RAM_SAVE_FLAG_MULTIFD_FLUSH:
3800             multifd_recv_sync_main();
3801             break;
3802         case RAM_SAVE_FLAG_EOS:
3803             /* normal exit */
3804             if (migrate_multifd() &&
3805                 migrate_multifd_flush_after_each_section()) {
3806                 multifd_recv_sync_main();
3807             }
3808             break;
3809         default:
3810             error_report("Unknown combination of migration flags: 0x%x"
3811                          " (postcopy mode)", flags);
3812             ret = -EINVAL;
3813             break;
3814         }
3815 
3816         /* Detect for any possible file errors */
3817         if (!ret && qemu_file_get_error(f)) {
3818             ret = qemu_file_get_error(f);
3819         }
3820 
3821         if (!ret && place_needed) {
3822             if (tmp_page->all_zero) {
3823                 ret = postcopy_place_page_zero(mis, tmp_page->host_addr, block);
3824             } else {
3825                 ret = postcopy_place_page(mis, tmp_page->host_addr,
3826                                           place_source, block);
3827             }
3828             place_needed = false;
3829             postcopy_temp_page_reset(tmp_page);
3830         }
3831     }
3832 
3833     return ret;
3834 }
3835 
3836 static bool postcopy_is_running(void)
3837 {
3838     PostcopyState ps = postcopy_state_get();
3839     return ps >= POSTCOPY_INCOMING_LISTENING && ps < POSTCOPY_INCOMING_END;
3840 }
3841 
3842 /*
3843  * Flush content of RAM cache into SVM's memory.
3844  * Only flush the pages that be dirtied by PVM or SVM or both.
3845  */
3846 void colo_flush_ram_cache(void)
3847 {
3848     RAMBlock *block = NULL;
3849     void *dst_host;
3850     void *src_host;
3851     unsigned long offset = 0;
3852 
3853     memory_global_dirty_log_sync(false);
3854     qemu_mutex_lock(&ram_state->bitmap_mutex);
3855     WITH_RCU_READ_LOCK_GUARD() {
3856         RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3857             ramblock_sync_dirty_bitmap(ram_state, block);
3858         }
3859     }
3860 
3861     trace_colo_flush_ram_cache_begin(ram_state->migration_dirty_pages);
3862     WITH_RCU_READ_LOCK_GUARD() {
3863         block = QLIST_FIRST_RCU(&ram_list.blocks);
3864 
3865         while (block) {
3866             unsigned long num = 0;
3867 
3868             offset = colo_bitmap_find_dirty(ram_state, block, offset, &num);
3869             if (!offset_in_ramblock(block,
3870                                     ((ram_addr_t)offset) << TARGET_PAGE_BITS)) {
3871                 offset = 0;
3872                 num = 0;
3873                 block = QLIST_NEXT_RCU(block, next);
3874             } else {
3875                 unsigned long i = 0;
3876 
3877                 for (i = 0; i < num; i++) {
3878                     migration_bitmap_clear_dirty(ram_state, block, offset + i);
3879                 }
3880                 dst_host = block->host
3881                          + (((ram_addr_t)offset) << TARGET_PAGE_BITS);
3882                 src_host = block->colo_cache
3883                          + (((ram_addr_t)offset) << TARGET_PAGE_BITS);
3884                 memcpy(dst_host, src_host, TARGET_PAGE_SIZE * num);
3885                 offset += num;
3886             }
3887         }
3888     }
3889     qemu_mutex_unlock(&ram_state->bitmap_mutex);
3890     trace_colo_flush_ram_cache_end();
3891 }
3892 
3893 static size_t ram_load_multifd_pages(void *host_addr, size_t size,
3894                                      uint64_t offset)
3895 {
3896     MultiFDRecvData *data = multifd_get_recv_data();
3897 
3898     data->opaque = host_addr;
3899     data->file_offset = offset;
3900     data->size = size;
3901 
3902     if (!multifd_recv()) {
3903         return 0;
3904     }
3905 
3906     return size;
3907 }
3908 
3909 static bool read_ramblock_mapped_ram(QEMUFile *f, RAMBlock *block,
3910                                      long num_pages, unsigned long *bitmap,
3911                                      Error **errp)
3912 {
3913     ERRP_GUARD();
3914     unsigned long set_bit_idx, clear_bit_idx;
3915     ram_addr_t offset;
3916     void *host;
3917     size_t read, unread, size;
3918 
3919     for (set_bit_idx = find_first_bit(bitmap, num_pages);
3920          set_bit_idx < num_pages;
3921          set_bit_idx = find_next_bit(bitmap, num_pages, clear_bit_idx + 1)) {
3922 
3923         clear_bit_idx = find_next_zero_bit(bitmap, num_pages, set_bit_idx + 1);
3924 
3925         unread = TARGET_PAGE_SIZE * (clear_bit_idx - set_bit_idx);
3926         offset = set_bit_idx << TARGET_PAGE_BITS;
3927 
3928         while (unread > 0) {
3929             host = host_from_ram_block_offset(block, offset);
3930             if (!host) {
3931                 error_setg(errp, "page outside of ramblock %s range",
3932                            block->idstr);
3933                 return false;
3934             }
3935 
3936             size = MIN(unread, MAPPED_RAM_LOAD_BUF_SIZE);
3937 
3938             if (migrate_multifd()) {
3939                 read = ram_load_multifd_pages(host, size,
3940                                               block->pages_offset + offset);
3941             } else {
3942                 read = qemu_get_buffer_at(f, host, size,
3943                                           block->pages_offset + offset);
3944             }
3945 
3946             if (!read) {
3947                 goto err;
3948             }
3949             offset += read;
3950             unread -= read;
3951         }
3952     }
3953 
3954     return true;
3955 
3956 err:
3957     qemu_file_get_error_obj(f, errp);
3958     error_prepend(errp, "(%s) failed to read page " RAM_ADDR_FMT
3959                   "from file offset %" PRIx64 ": ", block->idstr, offset,
3960                   block->pages_offset + offset);
3961     return false;
3962 }
3963 
3964 static void parse_ramblock_mapped_ram(QEMUFile *f, RAMBlock *block,
3965                                       ram_addr_t length, Error **errp)
3966 {
3967     g_autofree unsigned long *bitmap = NULL;
3968     MappedRamHeader header;
3969     size_t bitmap_size;
3970     long num_pages;
3971 
3972     if (!mapped_ram_read_header(f, &header, errp)) {
3973         return;
3974     }
3975 
3976     block->pages_offset = header.pages_offset;
3977 
3978     /*
3979      * Check the alignment of the file region that contains pages. We
3980      * don't enforce MAPPED_RAM_FILE_OFFSET_ALIGNMENT to allow that
3981      * value to change in the future. Do only a sanity check with page
3982      * size alignment.
3983      */
3984     if (!QEMU_IS_ALIGNED(block->pages_offset, TARGET_PAGE_SIZE)) {
3985         error_setg(errp,
3986                    "Error reading ramblock %s pages, region has bad alignment",
3987                    block->idstr);
3988         return;
3989     }
3990 
3991     num_pages = length / header.page_size;
3992     bitmap_size = BITS_TO_LONGS(num_pages) * sizeof(unsigned long);
3993 
3994     bitmap = g_malloc0(bitmap_size);
3995     if (qemu_get_buffer_at(f, (uint8_t *)bitmap, bitmap_size,
3996                            header.bitmap_offset) != bitmap_size) {
3997         error_setg(errp, "Error reading dirty bitmap");
3998         return;
3999     }
4000 
4001     if (!read_ramblock_mapped_ram(f, block, num_pages, bitmap, errp)) {
4002         return;
4003     }
4004 
4005     /* Skip pages array */
4006     qemu_set_offset(f, block->pages_offset + length, SEEK_SET);
4007 
4008     return;
4009 }
4010 
4011 static int parse_ramblock(QEMUFile *f, RAMBlock *block, ram_addr_t length)
4012 {
4013     int ret = 0;
4014     /* ADVISE is earlier, it shows the source has the postcopy capability on */
4015     bool postcopy_advised = migration_incoming_postcopy_advised();
4016     int max_hg_page_size;
4017     Error *local_err = NULL;
4018 
4019     assert(block);
4020 
4021     if (migrate_mapped_ram()) {
4022         parse_ramblock_mapped_ram(f, block, length, &local_err);
4023         if (local_err) {
4024             error_report_err(local_err);
4025             return -EINVAL;
4026         }
4027         return 0;
4028     }
4029 
4030     if (!qemu_ram_is_migratable(block)) {
4031         error_report("block %s should not be migrated !", block->idstr);
4032         return -EINVAL;
4033     }
4034 
4035     if (length != block->used_length) {
4036         ret = qemu_ram_resize(block, length, &local_err);
4037         if (local_err) {
4038             error_report_err(local_err);
4039             return ret;
4040         }
4041     }
4042 
4043     /*
4044      * ??? Mirrors the previous value of qemu_host_page_size,
4045      * but is this really what was intended for the migration?
4046      */
4047     max_hg_page_size = MAX(qemu_real_host_page_size(), TARGET_PAGE_SIZE);
4048 
4049     /* For postcopy we need to check hugepage sizes match */
4050     if (postcopy_advised && migrate_postcopy_ram() &&
4051         block->page_size != max_hg_page_size) {
4052         uint64_t remote_page_size = qemu_get_be64(f);
4053         if (remote_page_size != block->page_size) {
4054             error_report("Mismatched RAM page size %s "
4055                          "(local) %zd != %" PRId64, block->idstr,
4056                          block->page_size, remote_page_size);
4057             return -EINVAL;
4058         }
4059     }
4060     if (migrate_ignore_shared()) {
4061         hwaddr addr = qemu_get_be64(f);
4062         if (migrate_ram_is_ignored(block) &&
4063             block->mr->addr != addr) {
4064             error_report("Mismatched GPAs for block %s "
4065                          "%" PRId64 "!= %" PRId64, block->idstr,
4066                          (uint64_t)addr, (uint64_t)block->mr->addr);
4067             return -EINVAL;
4068         }
4069     }
4070     ret = rdma_block_notification_handle(f, block->idstr);
4071     if (ret < 0) {
4072         qemu_file_set_error(f, ret);
4073     }
4074 
4075     return ret;
4076 }
4077 
4078 static int parse_ramblocks(QEMUFile *f, ram_addr_t total_ram_bytes)
4079 {
4080     int ret = 0;
4081 
4082     /* Synchronize RAM block list */
4083     while (!ret && total_ram_bytes) {
4084         RAMBlock *block;
4085         char id[256];
4086         ram_addr_t length;
4087         int len = qemu_get_byte(f);
4088 
4089         qemu_get_buffer(f, (uint8_t *)id, len);
4090         id[len] = 0;
4091         length = qemu_get_be64(f);
4092 
4093         block = qemu_ram_block_by_name(id);
4094         if (block) {
4095             ret = parse_ramblock(f, block, length);
4096         } else {
4097             error_report("Unknown ramblock \"%s\", cannot accept "
4098                          "migration", id);
4099             ret = -EINVAL;
4100         }
4101         total_ram_bytes -= length;
4102     }
4103 
4104     return ret;
4105 }
4106 
4107 /**
4108  * ram_load_precopy: load pages in precopy case
4109  *
4110  * Returns 0 for success or -errno in case of error
4111  *
4112  * Called in precopy mode by ram_load().
4113  * rcu_read_lock is taken prior to this being called.
4114  *
4115  * @f: QEMUFile where to send the data
4116  */
4117 static int ram_load_precopy(QEMUFile *f)
4118 {
4119     MigrationIncomingState *mis = migration_incoming_get_current();
4120     int flags = 0, ret = 0, invalid_flags = 0, i = 0;
4121 
4122     if (migrate_mapped_ram()) {
4123         invalid_flags |= (RAM_SAVE_FLAG_HOOK | RAM_SAVE_FLAG_MULTIFD_FLUSH |
4124                           RAM_SAVE_FLAG_PAGE | RAM_SAVE_FLAG_XBZRLE |
4125                           RAM_SAVE_FLAG_ZERO);
4126     }
4127 
4128     while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
4129         ram_addr_t addr;
4130         void *host = NULL, *host_bak = NULL;
4131         uint8_t ch;
4132 
4133         /*
4134          * Yield periodically to let main loop run, but an iteration of
4135          * the main loop is expensive, so do it each some iterations
4136          */
4137         if ((i & 32767) == 0 && qemu_in_coroutine()) {
4138             aio_co_schedule(qemu_get_current_aio_context(),
4139                             qemu_coroutine_self());
4140             qemu_coroutine_yield();
4141         }
4142         i++;
4143 
4144         addr = qemu_get_be64(f);
4145         ret = qemu_file_get_error(f);
4146         if (ret) {
4147             error_report("Getting RAM address failed");
4148             break;
4149         }
4150 
4151         flags = addr & ~TARGET_PAGE_MASK;
4152         addr &= TARGET_PAGE_MASK;
4153 
4154         if (flags & invalid_flags) {
4155             error_report("Unexpected RAM flags: %d", flags & invalid_flags);
4156 
4157             ret = -EINVAL;
4158             break;
4159         }
4160 
4161         if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE |
4162                      RAM_SAVE_FLAG_XBZRLE)) {
4163             RAMBlock *block = ram_block_from_stream(mis, f, flags,
4164                                                     RAM_CHANNEL_PRECOPY);
4165 
4166             host = host_from_ram_block_offset(block, addr);
4167             /*
4168              * After going into COLO stage, we should not load the page
4169              * into SVM's memory directly, we put them into colo_cache firstly.
4170              * NOTE: We need to keep a copy of SVM's ram in colo_cache.
4171              * Previously, we copied all these memory in preparing stage of COLO
4172              * while we need to stop VM, which is a time-consuming process.
4173              * Here we optimize it by a trick, back-up every page while in
4174              * migration process while COLO is enabled, though it affects the
4175              * speed of the migration, but it obviously reduce the downtime of
4176              * back-up all SVM'S memory in COLO preparing stage.
4177              */
4178             if (migration_incoming_colo_enabled()) {
4179                 if (migration_incoming_in_colo_state()) {
4180                     /* In COLO stage, put all pages into cache temporarily */
4181                     host = colo_cache_from_block_offset(block, addr, true);
4182                 } else {
4183                    /*
4184                     * In migration stage but before COLO stage,
4185                     * Put all pages into both cache and SVM's memory.
4186                     */
4187                     host_bak = colo_cache_from_block_offset(block, addr, false);
4188                 }
4189             }
4190             if (!host) {
4191                 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
4192                 ret = -EINVAL;
4193                 break;
4194             }
4195             if (!migration_incoming_in_colo_state()) {
4196                 ramblock_recv_bitmap_set(block, host);
4197             }
4198 
4199             trace_ram_load_loop(block->idstr, (uint64_t)addr, flags, host);
4200         }
4201 
4202         switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
4203         case RAM_SAVE_FLAG_MEM_SIZE:
4204             ret = parse_ramblocks(f, addr);
4205             /*
4206              * For mapped-ram migration (to a file) using multifd, we sync
4207              * once and for all here to make sure all tasks we queued to
4208              * multifd threads are completed, so that all the ramblocks
4209              * (including all the guest memory pages within) are fully
4210              * loaded after this sync returns.
4211              */
4212             if (migrate_mapped_ram()) {
4213                 multifd_recv_sync_main();
4214             }
4215             break;
4216 
4217         case RAM_SAVE_FLAG_ZERO:
4218             ch = qemu_get_byte(f);
4219             if (ch != 0) {
4220                 error_report("Found a zero page with value %d", ch);
4221                 ret = -EINVAL;
4222                 break;
4223             }
4224             ram_handle_zero(host, TARGET_PAGE_SIZE);
4225             break;
4226 
4227         case RAM_SAVE_FLAG_PAGE:
4228             qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
4229             break;
4230 
4231         case RAM_SAVE_FLAG_XBZRLE:
4232             if (load_xbzrle(f, addr, host) < 0) {
4233                 error_report("Failed to decompress XBZRLE page at "
4234                              RAM_ADDR_FMT, addr);
4235                 ret = -EINVAL;
4236                 break;
4237             }
4238             break;
4239         case RAM_SAVE_FLAG_MULTIFD_FLUSH:
4240             multifd_recv_sync_main();
4241             break;
4242         case RAM_SAVE_FLAG_EOS:
4243             /* normal exit */
4244             if (migrate_multifd() &&
4245                 migrate_multifd_flush_after_each_section() &&
4246                 /*
4247                  * Mapped-ram migration flushes once and for all after
4248                  * parsing ramblocks. Always ignore EOS for it.
4249                  */
4250                 !migrate_mapped_ram()) {
4251                 multifd_recv_sync_main();
4252             }
4253             break;
4254         case RAM_SAVE_FLAG_HOOK:
4255             ret = rdma_registration_handle(f);
4256             if (ret < 0) {
4257                 qemu_file_set_error(f, ret);
4258             }
4259             break;
4260         default:
4261             error_report("Unknown combination of migration flags: 0x%x", flags);
4262             ret = -EINVAL;
4263         }
4264         if (!ret) {
4265             ret = qemu_file_get_error(f);
4266         }
4267         if (!ret && host_bak) {
4268             memcpy(host_bak, host, TARGET_PAGE_SIZE);
4269         }
4270     }
4271 
4272     return ret;
4273 }
4274 
4275 static int ram_load(QEMUFile *f, void *opaque, int version_id)
4276 {
4277     int ret = 0;
4278     static uint64_t seq_iter;
4279     /*
4280      * If system is running in postcopy mode, page inserts to host memory must
4281      * be atomic
4282      */
4283     bool postcopy_running = postcopy_is_running();
4284 
4285     seq_iter++;
4286 
4287     if (version_id != 4) {
4288         return -EINVAL;
4289     }
4290 
4291     /*
4292      * This RCU critical section can be very long running.
4293      * When RCU reclaims in the code start to become numerous,
4294      * it will be necessary to reduce the granularity of this
4295      * critical section.
4296      */
4297     WITH_RCU_READ_LOCK_GUARD() {
4298         if (postcopy_running) {
4299             /*
4300              * Note!  Here RAM_CHANNEL_PRECOPY is the precopy channel of
4301              * postcopy migration, we have another RAM_CHANNEL_POSTCOPY to
4302              * service fast page faults.
4303              */
4304             ret = ram_load_postcopy(f, RAM_CHANNEL_PRECOPY);
4305         } else {
4306             ret = ram_load_precopy(f);
4307         }
4308     }
4309     trace_ram_load_complete(ret, seq_iter);
4310 
4311     return ret;
4312 }
4313 
4314 static bool ram_has_postcopy(void *opaque)
4315 {
4316     RAMBlock *rb;
4317     RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
4318         if (ramblock_is_pmem(rb)) {
4319             info_report("Block: %s, host: %p is a nvdimm memory, postcopy"
4320                          "is not supported now!", rb->idstr, rb->host);
4321             return false;
4322         }
4323     }
4324 
4325     return migrate_postcopy_ram();
4326 }
4327 
4328 /* Sync all the dirty bitmap with destination VM.  */
4329 static int ram_dirty_bitmap_sync_all(MigrationState *s, RAMState *rs)
4330 {
4331     RAMBlock *block;
4332     QEMUFile *file = s->to_dst_file;
4333 
4334     trace_ram_dirty_bitmap_sync_start();
4335 
4336     qatomic_set(&rs->postcopy_bmap_sync_requested, 0);
4337     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
4338         qemu_savevm_send_recv_bitmap(file, block->idstr);
4339         trace_ram_dirty_bitmap_request(block->idstr);
4340         qatomic_inc(&rs->postcopy_bmap_sync_requested);
4341     }
4342 
4343     trace_ram_dirty_bitmap_sync_wait();
4344 
4345     /* Wait until all the ramblocks' dirty bitmap synced */
4346     while (qatomic_read(&rs->postcopy_bmap_sync_requested)) {
4347         if (migration_rp_wait(s)) {
4348             return -1;
4349         }
4350     }
4351 
4352     trace_ram_dirty_bitmap_sync_complete();
4353 
4354     return 0;
4355 }
4356 
4357 /*
4358  * Read the received bitmap, revert it as the initial dirty bitmap.
4359  * This is only used when the postcopy migration is paused but wants
4360  * to resume from a middle point.
4361  *
4362  * Returns true if succeeded, false for errors.
4363  */
4364 bool ram_dirty_bitmap_reload(MigrationState *s, RAMBlock *block, Error **errp)
4365 {
4366     /* from_dst_file is always valid because we're within rp_thread */
4367     QEMUFile *file = s->rp_state.from_dst_file;
4368     g_autofree unsigned long *le_bitmap = NULL;
4369     unsigned long nbits = block->used_length >> TARGET_PAGE_BITS;
4370     uint64_t local_size = DIV_ROUND_UP(nbits, 8);
4371     uint64_t size, end_mark;
4372     RAMState *rs = ram_state;
4373 
4374     trace_ram_dirty_bitmap_reload_begin(block->idstr);
4375 
4376     if (s->state != MIGRATION_STATUS_POSTCOPY_RECOVER) {
4377         error_setg(errp, "Reload bitmap in incorrect state %s",
4378                    MigrationStatus_str(s->state));
4379         return false;
4380     }
4381 
4382     /*
4383      * Note: see comments in ramblock_recv_bitmap_send() on why we
4384      * need the endianness conversion, and the paddings.
4385      */
4386     local_size = ROUND_UP(local_size, 8);
4387 
4388     /* Add paddings */
4389     le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
4390 
4391     size = qemu_get_be64(file);
4392 
4393     /* The size of the bitmap should match with our ramblock */
4394     if (size != local_size) {
4395         error_setg(errp, "ramblock '%s' bitmap size mismatch (0x%"PRIx64
4396                    " != 0x%"PRIx64")", block->idstr, size, local_size);
4397         return false;
4398     }
4399 
4400     size = qemu_get_buffer(file, (uint8_t *)le_bitmap, local_size);
4401     end_mark = qemu_get_be64(file);
4402 
4403     if (qemu_file_get_error(file) || size != local_size) {
4404         error_setg(errp, "read bitmap failed for ramblock '%s': "
4405                    "(size 0x%"PRIx64", got: 0x%"PRIx64")",
4406                    block->idstr, local_size, size);
4407         return false;
4408     }
4409 
4410     if (end_mark != RAMBLOCK_RECV_BITMAP_ENDING) {
4411         error_setg(errp, "ramblock '%s' end mark incorrect: 0x%"PRIx64,
4412                    block->idstr, end_mark);
4413         return false;
4414     }
4415 
4416     /*
4417      * Endianness conversion. We are during postcopy (though paused).
4418      * The dirty bitmap won't change. We can directly modify it.
4419      */
4420     bitmap_from_le(block->bmap, le_bitmap, nbits);
4421 
4422     /*
4423      * What we received is "received bitmap". Revert it as the initial
4424      * dirty bitmap for this ramblock.
4425      */
4426     bitmap_complement(block->bmap, block->bmap, nbits);
4427 
4428     /* Clear dirty bits of discarded ranges that we don't want to migrate. */
4429     ramblock_dirty_bitmap_clear_discarded_pages(block);
4430 
4431     /* We'll recalculate migration_dirty_pages in ram_state_resume_prepare(). */
4432     trace_ram_dirty_bitmap_reload_complete(block->idstr);
4433 
4434     qatomic_dec(&rs->postcopy_bmap_sync_requested);
4435 
4436     /*
4437      * We succeeded to sync bitmap for current ramblock. Always kick the
4438      * migration thread to check whether all requested bitmaps are
4439      * reloaded.  NOTE: it's racy to only kick when requested==0, because
4440      * we don't know whether the migration thread may still be increasing
4441      * it.
4442      */
4443     migration_rp_kick(s);
4444 
4445     return true;
4446 }
4447 
4448 static int ram_resume_prepare(MigrationState *s, void *opaque)
4449 {
4450     RAMState *rs = *(RAMState **)opaque;
4451     int ret;
4452 
4453     ret = ram_dirty_bitmap_sync_all(s, rs);
4454     if (ret) {
4455         return ret;
4456     }
4457 
4458     ram_state_resume_prepare(rs, s->to_dst_file);
4459 
4460     return 0;
4461 }
4462 
4463 void postcopy_preempt_shutdown_file(MigrationState *s)
4464 {
4465     qemu_put_be64(s->postcopy_qemufile_src, RAM_SAVE_FLAG_EOS);
4466     qemu_fflush(s->postcopy_qemufile_src);
4467 }
4468 
4469 static SaveVMHandlers savevm_ram_handlers = {
4470     .save_setup = ram_save_setup,
4471     .save_live_iterate = ram_save_iterate,
4472     .save_live_complete_postcopy = ram_save_complete,
4473     .save_live_complete_precopy = ram_save_complete,
4474     .has_postcopy = ram_has_postcopy,
4475     .state_pending_exact = ram_state_pending_exact,
4476     .state_pending_estimate = ram_state_pending_estimate,
4477     .load_state = ram_load,
4478     .save_cleanup = ram_save_cleanup,
4479     .load_setup = ram_load_setup,
4480     .load_cleanup = ram_load_cleanup,
4481     .resume_prepare = ram_resume_prepare,
4482 };
4483 
4484 static void ram_mig_ram_block_resized(RAMBlockNotifier *n, void *host,
4485                                       size_t old_size, size_t new_size)
4486 {
4487     PostcopyState ps = postcopy_state_get();
4488     ram_addr_t offset;
4489     RAMBlock *rb = qemu_ram_block_from_host(host, false, &offset);
4490     Error *err = NULL;
4491 
4492     if (!rb) {
4493         error_report("RAM block not found");
4494         return;
4495     }
4496 
4497     if (migrate_ram_is_ignored(rb)) {
4498         return;
4499     }
4500 
4501     if (!migration_is_idle()) {
4502         /*
4503          * Precopy code on the source cannot deal with the size of RAM blocks
4504          * changing at random points in time - especially after sending the
4505          * RAM block sizes in the migration stream, they must no longer change.
4506          * Abort and indicate a proper reason.
4507          */
4508         error_setg(&err, "RAM block '%s' resized during precopy.", rb->idstr);
4509         migration_cancel(err);
4510         error_free(err);
4511     }
4512 
4513     switch (ps) {
4514     case POSTCOPY_INCOMING_ADVISE:
4515         /*
4516          * Update what ram_postcopy_incoming_init()->init_range() does at the
4517          * time postcopy was advised. Syncing RAM blocks with the source will
4518          * result in RAM resizes.
4519          */
4520         if (old_size < new_size) {
4521             if (ram_discard_range(rb->idstr, old_size, new_size - old_size)) {
4522                 error_report("RAM block '%s' discard of resized RAM failed",
4523                              rb->idstr);
4524             }
4525         }
4526         rb->postcopy_length = new_size;
4527         break;
4528     case POSTCOPY_INCOMING_NONE:
4529     case POSTCOPY_INCOMING_RUNNING:
4530     case POSTCOPY_INCOMING_END:
4531         /*
4532          * Once our guest is running, postcopy does no longer care about
4533          * resizes. When growing, the new memory was not available on the
4534          * source, no handler needed.
4535          */
4536         break;
4537     default:
4538         error_report("RAM block '%s' resized during postcopy state: %d",
4539                      rb->idstr, ps);
4540         exit(-1);
4541     }
4542 }
4543 
4544 static RAMBlockNotifier ram_mig_ram_notifier = {
4545     .ram_block_resized = ram_mig_ram_block_resized,
4546 };
4547 
4548 void ram_mig_init(void)
4549 {
4550     qemu_mutex_init(&XBZRLE.lock);
4551     register_savevm_live("ram", 0, 4, &savevm_ram_handlers, &ram_state);
4552     ram_block_notifier_add(&ram_mig_ram_notifier);
4553 }
4554