1 /* 2 * QEMU System Emulator 3 * 4 * Copyright (c) 2003-2008 Fabrice Bellard 5 * Copyright (c) 2011-2015 Red Hat Inc 6 * 7 * Authors: 8 * Juan Quintela <quintela@redhat.com> 9 * 10 * Permission is hereby granted, free of charge, to any person obtaining a copy 11 * of this software and associated documentation files (the "Software"), to deal 12 * in the Software without restriction, including without limitation the rights 13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 14 * copies of the Software, and to permit persons to whom the Software is 15 * furnished to do so, subject to the following conditions: 16 * 17 * The above copyright notice and this permission notice shall be included in 18 * all copies or substantial portions of the Software. 19 * 20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 26 * THE SOFTWARE. 27 */ 28 #include "qemu/osdep.h" 29 #include "cpu.h" 30 #include <zlib.h> 31 #include "qapi-event.h" 32 #include "qemu/cutils.h" 33 #include "qemu/bitops.h" 34 #include "qemu/bitmap.h" 35 #include "qemu/main-loop.h" 36 #include "xbzrle.h" 37 #include "ram.h" 38 #include "migration.h" 39 #include "migration/register.h" 40 #include "migration/misc.h" 41 #include "qemu-file.h" 42 #include "postcopy-ram.h" 43 #include "migration/page_cache.h" 44 #include "qemu/error-report.h" 45 #include "qapi/qmp/qerror.h" 46 #include "trace.h" 47 #include "exec/ram_addr.h" 48 #include "exec/target_page.h" 49 #include "qemu/rcu_queue.h" 50 #include "migration/colo.h" 51 #include "migration/block.h" 52 53 /***********************************************************/ 54 /* ram save/restore */ 55 56 /* RAM_SAVE_FLAG_ZERO used to be named RAM_SAVE_FLAG_COMPRESS, it 57 * worked for pages that where filled with the same char. We switched 58 * it to only search for the zero value. And to avoid confusion with 59 * RAM_SSAVE_FLAG_COMPRESS_PAGE just rename it. 60 */ 61 62 #define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */ 63 #define RAM_SAVE_FLAG_ZERO 0x02 64 #define RAM_SAVE_FLAG_MEM_SIZE 0x04 65 #define RAM_SAVE_FLAG_PAGE 0x08 66 #define RAM_SAVE_FLAG_EOS 0x10 67 #define RAM_SAVE_FLAG_CONTINUE 0x20 68 #define RAM_SAVE_FLAG_XBZRLE 0x40 69 /* 0x80 is reserved in migration.h start with 0x100 next */ 70 #define RAM_SAVE_FLAG_COMPRESS_PAGE 0x100 71 72 static inline bool is_zero_range(uint8_t *p, uint64_t size) 73 { 74 return buffer_is_zero(p, size); 75 } 76 77 XBZRLECacheStats xbzrle_counters; 78 79 /* struct contains XBZRLE cache and a static page 80 used by the compression */ 81 static struct { 82 /* buffer used for XBZRLE encoding */ 83 uint8_t *encoded_buf; 84 /* buffer for storing page content */ 85 uint8_t *current_buf; 86 /* Cache for XBZRLE, Protected by lock. */ 87 PageCache *cache; 88 QemuMutex lock; 89 /* it will store a page full of zeros */ 90 uint8_t *zero_target_page; 91 /* buffer used for XBZRLE decoding */ 92 uint8_t *decoded_buf; 93 } XBZRLE; 94 95 static void XBZRLE_cache_lock(void) 96 { 97 if (migrate_use_xbzrle()) 98 qemu_mutex_lock(&XBZRLE.lock); 99 } 100 101 static void XBZRLE_cache_unlock(void) 102 { 103 if (migrate_use_xbzrle()) 104 qemu_mutex_unlock(&XBZRLE.lock); 105 } 106 107 /** 108 * xbzrle_cache_resize: resize the xbzrle cache 109 * 110 * This function is called from qmp_migrate_set_cache_size in main 111 * thread, possibly while a migration is in progress. A running 112 * migration may be using the cache and might finish during this call, 113 * hence changes to the cache are protected by XBZRLE.lock(). 114 * 115 * Returns 0 for success or -1 for error 116 * 117 * @new_size: new cache size 118 * @errp: set *errp if the check failed, with reason 119 */ 120 int xbzrle_cache_resize(int64_t new_size, Error **errp) 121 { 122 PageCache *new_cache; 123 int64_t ret = 0; 124 125 /* Check for truncation */ 126 if (new_size != (size_t)new_size) { 127 error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cache size", 128 "exceeding address space"); 129 return -1; 130 } 131 132 if (new_size == migrate_xbzrle_cache_size()) { 133 /* nothing to do */ 134 return 0; 135 } 136 137 XBZRLE_cache_lock(); 138 139 if (XBZRLE.cache != NULL) { 140 new_cache = cache_init(new_size, TARGET_PAGE_SIZE, errp); 141 if (!new_cache) { 142 ret = -1; 143 goto out; 144 } 145 146 cache_fini(XBZRLE.cache); 147 XBZRLE.cache = new_cache; 148 } 149 out: 150 XBZRLE_cache_unlock(); 151 return ret; 152 } 153 154 static void ramblock_recv_map_init(void) 155 { 156 RAMBlock *rb; 157 158 RAMBLOCK_FOREACH(rb) { 159 assert(!rb->receivedmap); 160 rb->receivedmap = bitmap_new(rb->max_length >> qemu_target_page_bits()); 161 } 162 } 163 164 int ramblock_recv_bitmap_test(RAMBlock *rb, void *host_addr) 165 { 166 return test_bit(ramblock_recv_bitmap_offset(host_addr, rb), 167 rb->receivedmap); 168 } 169 170 void ramblock_recv_bitmap_set(RAMBlock *rb, void *host_addr) 171 { 172 set_bit_atomic(ramblock_recv_bitmap_offset(host_addr, rb), rb->receivedmap); 173 } 174 175 void ramblock_recv_bitmap_set_range(RAMBlock *rb, void *host_addr, 176 size_t nr) 177 { 178 bitmap_set_atomic(rb->receivedmap, 179 ramblock_recv_bitmap_offset(host_addr, rb), 180 nr); 181 } 182 183 /* 184 * An outstanding page request, on the source, having been received 185 * and queued 186 */ 187 struct RAMSrcPageRequest { 188 RAMBlock *rb; 189 hwaddr offset; 190 hwaddr len; 191 192 QSIMPLEQ_ENTRY(RAMSrcPageRequest) next_req; 193 }; 194 195 /* State of RAM for migration */ 196 struct RAMState { 197 /* QEMUFile used for this migration */ 198 QEMUFile *f; 199 /* Last block that we have visited searching for dirty pages */ 200 RAMBlock *last_seen_block; 201 /* Last block from where we have sent data */ 202 RAMBlock *last_sent_block; 203 /* Last dirty target page we have sent */ 204 ram_addr_t last_page; 205 /* last ram version we have seen */ 206 uint32_t last_version; 207 /* We are in the first round */ 208 bool ram_bulk_stage; 209 /* How many times we have dirty too many pages */ 210 int dirty_rate_high_cnt; 211 /* these variables are used for bitmap sync */ 212 /* last time we did a full bitmap_sync */ 213 int64_t time_last_bitmap_sync; 214 /* bytes transferred at start_time */ 215 uint64_t bytes_xfer_prev; 216 /* number of dirty pages since start_time */ 217 uint64_t num_dirty_pages_period; 218 /* xbzrle misses since the beginning of the period */ 219 uint64_t xbzrle_cache_miss_prev; 220 /* number of iterations at the beginning of period */ 221 uint64_t iterations_prev; 222 /* Iterations since start */ 223 uint64_t iterations; 224 /* number of dirty bits in the bitmap */ 225 uint64_t migration_dirty_pages; 226 /* protects modification of the bitmap */ 227 QemuMutex bitmap_mutex; 228 /* The RAMBlock used in the last src_page_requests */ 229 RAMBlock *last_req_rb; 230 /* Queue of outstanding page requests from the destination */ 231 QemuMutex src_page_req_mutex; 232 QSIMPLEQ_HEAD(src_page_requests, RAMSrcPageRequest) src_page_requests; 233 }; 234 typedef struct RAMState RAMState; 235 236 static RAMState *ram_state; 237 238 uint64_t ram_bytes_remaining(void) 239 { 240 return ram_state ? (ram_state->migration_dirty_pages * TARGET_PAGE_SIZE) : 241 0; 242 } 243 244 MigrationStats ram_counters; 245 246 /* used by the search for pages to send */ 247 struct PageSearchStatus { 248 /* Current block being searched */ 249 RAMBlock *block; 250 /* Current page to search from */ 251 unsigned long page; 252 /* Set once we wrap around */ 253 bool complete_round; 254 }; 255 typedef struct PageSearchStatus PageSearchStatus; 256 257 struct CompressParam { 258 bool done; 259 bool quit; 260 QEMUFile *file; 261 QemuMutex mutex; 262 QemuCond cond; 263 RAMBlock *block; 264 ram_addr_t offset; 265 }; 266 typedef struct CompressParam CompressParam; 267 268 struct DecompressParam { 269 bool done; 270 bool quit; 271 QemuMutex mutex; 272 QemuCond cond; 273 void *des; 274 uint8_t *compbuf; 275 int len; 276 }; 277 typedef struct DecompressParam DecompressParam; 278 279 static CompressParam *comp_param; 280 static QemuThread *compress_threads; 281 /* comp_done_cond is used to wake up the migration thread when 282 * one of the compression threads has finished the compression. 283 * comp_done_lock is used to co-work with comp_done_cond. 284 */ 285 static QemuMutex comp_done_lock; 286 static QemuCond comp_done_cond; 287 /* The empty QEMUFileOps will be used by file in CompressParam */ 288 static const QEMUFileOps empty_ops = { }; 289 290 static DecompressParam *decomp_param; 291 static QemuThread *decompress_threads; 292 static QemuMutex decomp_done_lock; 293 static QemuCond decomp_done_cond; 294 295 static int do_compress_ram_page(QEMUFile *f, RAMBlock *block, 296 ram_addr_t offset); 297 298 static void *do_data_compress(void *opaque) 299 { 300 CompressParam *param = opaque; 301 RAMBlock *block; 302 ram_addr_t offset; 303 304 qemu_mutex_lock(¶m->mutex); 305 while (!param->quit) { 306 if (param->block) { 307 block = param->block; 308 offset = param->offset; 309 param->block = NULL; 310 qemu_mutex_unlock(¶m->mutex); 311 312 do_compress_ram_page(param->file, block, offset); 313 314 qemu_mutex_lock(&comp_done_lock); 315 param->done = true; 316 qemu_cond_signal(&comp_done_cond); 317 qemu_mutex_unlock(&comp_done_lock); 318 319 qemu_mutex_lock(¶m->mutex); 320 } else { 321 qemu_cond_wait(¶m->cond, ¶m->mutex); 322 } 323 } 324 qemu_mutex_unlock(¶m->mutex); 325 326 return NULL; 327 } 328 329 static inline void terminate_compression_threads(void) 330 { 331 int idx, thread_count; 332 333 thread_count = migrate_compress_threads(); 334 335 for (idx = 0; idx < thread_count; idx++) { 336 qemu_mutex_lock(&comp_param[idx].mutex); 337 comp_param[idx].quit = true; 338 qemu_cond_signal(&comp_param[idx].cond); 339 qemu_mutex_unlock(&comp_param[idx].mutex); 340 } 341 } 342 343 static void compress_threads_save_cleanup(void) 344 { 345 int i, thread_count; 346 347 if (!migrate_use_compression()) { 348 return; 349 } 350 terminate_compression_threads(); 351 thread_count = migrate_compress_threads(); 352 for (i = 0; i < thread_count; i++) { 353 qemu_thread_join(compress_threads + i); 354 qemu_fclose(comp_param[i].file); 355 qemu_mutex_destroy(&comp_param[i].mutex); 356 qemu_cond_destroy(&comp_param[i].cond); 357 } 358 qemu_mutex_destroy(&comp_done_lock); 359 qemu_cond_destroy(&comp_done_cond); 360 g_free(compress_threads); 361 g_free(comp_param); 362 compress_threads = NULL; 363 comp_param = NULL; 364 } 365 366 static void compress_threads_save_setup(void) 367 { 368 int i, thread_count; 369 370 if (!migrate_use_compression()) { 371 return; 372 } 373 thread_count = migrate_compress_threads(); 374 compress_threads = g_new0(QemuThread, thread_count); 375 comp_param = g_new0(CompressParam, thread_count); 376 qemu_cond_init(&comp_done_cond); 377 qemu_mutex_init(&comp_done_lock); 378 for (i = 0; i < thread_count; i++) { 379 /* comp_param[i].file is just used as a dummy buffer to save data, 380 * set its ops to empty. 381 */ 382 comp_param[i].file = qemu_fopen_ops(NULL, &empty_ops); 383 comp_param[i].done = true; 384 comp_param[i].quit = false; 385 qemu_mutex_init(&comp_param[i].mutex); 386 qemu_cond_init(&comp_param[i].cond); 387 qemu_thread_create(compress_threads + i, "compress", 388 do_data_compress, comp_param + i, 389 QEMU_THREAD_JOINABLE); 390 } 391 } 392 393 /* Multiple fd's */ 394 395 struct MultiFDSendParams { 396 uint8_t id; 397 char *name; 398 QemuThread thread; 399 QemuSemaphore sem; 400 QemuMutex mutex; 401 bool quit; 402 }; 403 typedef struct MultiFDSendParams MultiFDSendParams; 404 405 struct { 406 MultiFDSendParams *params; 407 /* number of created threads */ 408 int count; 409 } *multifd_send_state; 410 411 static void terminate_multifd_send_threads(Error *errp) 412 { 413 int i; 414 415 for (i = 0; i < multifd_send_state->count; i++) { 416 MultiFDSendParams *p = &multifd_send_state->params[i]; 417 418 qemu_mutex_lock(&p->mutex); 419 p->quit = true; 420 qemu_sem_post(&p->sem); 421 qemu_mutex_unlock(&p->mutex); 422 } 423 } 424 425 int multifd_save_cleanup(Error **errp) 426 { 427 int i; 428 int ret = 0; 429 430 if (!migrate_use_multifd()) { 431 return 0; 432 } 433 terminate_multifd_send_threads(NULL); 434 for (i = 0; i < multifd_send_state->count; i++) { 435 MultiFDSendParams *p = &multifd_send_state->params[i]; 436 437 qemu_thread_join(&p->thread); 438 qemu_mutex_destroy(&p->mutex); 439 qemu_sem_destroy(&p->sem); 440 g_free(p->name); 441 p->name = NULL; 442 } 443 g_free(multifd_send_state->params); 444 multifd_send_state->params = NULL; 445 g_free(multifd_send_state); 446 multifd_send_state = NULL; 447 return ret; 448 } 449 450 static void *multifd_send_thread(void *opaque) 451 { 452 MultiFDSendParams *p = opaque; 453 454 while (true) { 455 qemu_mutex_lock(&p->mutex); 456 if (p->quit) { 457 qemu_mutex_unlock(&p->mutex); 458 break; 459 } 460 qemu_mutex_unlock(&p->mutex); 461 qemu_sem_wait(&p->sem); 462 } 463 464 return NULL; 465 } 466 467 int multifd_save_setup(void) 468 { 469 int thread_count; 470 uint8_t i; 471 472 if (!migrate_use_multifd()) { 473 return 0; 474 } 475 thread_count = migrate_multifd_channels(); 476 multifd_send_state = g_malloc0(sizeof(*multifd_send_state)); 477 multifd_send_state->params = g_new0(MultiFDSendParams, thread_count); 478 multifd_send_state->count = 0; 479 for (i = 0; i < thread_count; i++) { 480 MultiFDSendParams *p = &multifd_send_state->params[i]; 481 482 qemu_mutex_init(&p->mutex); 483 qemu_sem_init(&p->sem, 0); 484 p->quit = false; 485 p->id = i; 486 p->name = g_strdup_printf("multifdsend_%d", i); 487 qemu_thread_create(&p->thread, p->name, multifd_send_thread, p, 488 QEMU_THREAD_JOINABLE); 489 490 multifd_send_state->count++; 491 } 492 return 0; 493 } 494 495 struct MultiFDRecvParams { 496 uint8_t id; 497 char *name; 498 QemuThread thread; 499 QemuSemaphore sem; 500 QemuMutex mutex; 501 bool quit; 502 }; 503 typedef struct MultiFDRecvParams MultiFDRecvParams; 504 505 struct { 506 MultiFDRecvParams *params; 507 /* number of created threads */ 508 int count; 509 } *multifd_recv_state; 510 511 static void terminate_multifd_recv_threads(Error *errp) 512 { 513 int i; 514 515 for (i = 0; i < multifd_recv_state->count; i++) { 516 MultiFDRecvParams *p = &multifd_recv_state->params[i]; 517 518 qemu_mutex_lock(&p->mutex); 519 p->quit = true; 520 qemu_sem_post(&p->sem); 521 qemu_mutex_unlock(&p->mutex); 522 } 523 } 524 525 int multifd_load_cleanup(Error **errp) 526 { 527 int i; 528 int ret = 0; 529 530 if (!migrate_use_multifd()) { 531 return 0; 532 } 533 terminate_multifd_recv_threads(NULL); 534 for (i = 0; i < multifd_recv_state->count; i++) { 535 MultiFDRecvParams *p = &multifd_recv_state->params[i]; 536 537 qemu_thread_join(&p->thread); 538 qemu_mutex_destroy(&p->mutex); 539 qemu_sem_destroy(&p->sem); 540 g_free(p->name); 541 p->name = NULL; 542 } 543 g_free(multifd_recv_state->params); 544 multifd_recv_state->params = NULL; 545 g_free(multifd_recv_state); 546 multifd_recv_state = NULL; 547 548 return ret; 549 } 550 551 static void *multifd_recv_thread(void *opaque) 552 { 553 MultiFDRecvParams *p = opaque; 554 555 while (true) { 556 qemu_mutex_lock(&p->mutex); 557 if (p->quit) { 558 qemu_mutex_unlock(&p->mutex); 559 break; 560 } 561 qemu_mutex_unlock(&p->mutex); 562 qemu_sem_wait(&p->sem); 563 } 564 565 return NULL; 566 } 567 568 int multifd_load_setup(void) 569 { 570 int thread_count; 571 uint8_t i; 572 573 if (!migrate_use_multifd()) { 574 return 0; 575 } 576 thread_count = migrate_multifd_channels(); 577 multifd_recv_state = g_malloc0(sizeof(*multifd_recv_state)); 578 multifd_recv_state->params = g_new0(MultiFDRecvParams, thread_count); 579 multifd_recv_state->count = 0; 580 for (i = 0; i < thread_count; i++) { 581 MultiFDRecvParams *p = &multifd_recv_state->params[i]; 582 583 qemu_mutex_init(&p->mutex); 584 qemu_sem_init(&p->sem, 0); 585 p->quit = false; 586 p->id = i; 587 p->name = g_strdup_printf("multifdrecv_%d", i); 588 qemu_thread_create(&p->thread, p->name, multifd_recv_thread, p, 589 QEMU_THREAD_JOINABLE); 590 multifd_recv_state->count++; 591 } 592 return 0; 593 } 594 595 /** 596 * save_page_header: write page header to wire 597 * 598 * If this is the 1st block, it also writes the block identification 599 * 600 * Returns the number of bytes written 601 * 602 * @f: QEMUFile where to send the data 603 * @block: block that contains the page we want to send 604 * @offset: offset inside the block for the page 605 * in the lower bits, it contains flags 606 */ 607 static size_t save_page_header(RAMState *rs, QEMUFile *f, RAMBlock *block, 608 ram_addr_t offset) 609 { 610 size_t size, len; 611 612 if (block == rs->last_sent_block) { 613 offset |= RAM_SAVE_FLAG_CONTINUE; 614 } 615 qemu_put_be64(f, offset); 616 size = 8; 617 618 if (!(offset & RAM_SAVE_FLAG_CONTINUE)) { 619 len = strlen(block->idstr); 620 qemu_put_byte(f, len); 621 qemu_put_buffer(f, (uint8_t *)block->idstr, len); 622 size += 1 + len; 623 rs->last_sent_block = block; 624 } 625 return size; 626 } 627 628 /** 629 * mig_throttle_guest_down: throotle down the guest 630 * 631 * Reduce amount of guest cpu execution to hopefully slow down memory 632 * writes. If guest dirty memory rate is reduced below the rate at 633 * which we can transfer pages to the destination then we should be 634 * able to complete migration. Some workloads dirty memory way too 635 * fast and will not effectively converge, even with auto-converge. 636 */ 637 static void mig_throttle_guest_down(void) 638 { 639 MigrationState *s = migrate_get_current(); 640 uint64_t pct_initial = s->parameters.cpu_throttle_initial; 641 uint64_t pct_icrement = s->parameters.cpu_throttle_increment; 642 643 /* We have not started throttling yet. Let's start it. */ 644 if (!cpu_throttle_active()) { 645 cpu_throttle_set(pct_initial); 646 } else { 647 /* Throttling already on, just increase the rate */ 648 cpu_throttle_set(cpu_throttle_get_percentage() + pct_icrement); 649 } 650 } 651 652 /** 653 * xbzrle_cache_zero_page: insert a zero page in the XBZRLE cache 654 * 655 * @rs: current RAM state 656 * @current_addr: address for the zero page 657 * 658 * Update the xbzrle cache to reflect a page that's been sent as all 0. 659 * The important thing is that a stale (not-yet-0'd) page be replaced 660 * by the new data. 661 * As a bonus, if the page wasn't in the cache it gets added so that 662 * when a small write is made into the 0'd page it gets XBZRLE sent. 663 */ 664 static void xbzrle_cache_zero_page(RAMState *rs, ram_addr_t current_addr) 665 { 666 if (rs->ram_bulk_stage || !migrate_use_xbzrle()) { 667 return; 668 } 669 670 /* We don't care if this fails to allocate a new cache page 671 * as long as it updated an old one */ 672 cache_insert(XBZRLE.cache, current_addr, XBZRLE.zero_target_page, 673 ram_counters.dirty_sync_count); 674 } 675 676 #define ENCODING_FLAG_XBZRLE 0x1 677 678 /** 679 * save_xbzrle_page: compress and send current page 680 * 681 * Returns: 1 means that we wrote the page 682 * 0 means that page is identical to the one already sent 683 * -1 means that xbzrle would be longer than normal 684 * 685 * @rs: current RAM state 686 * @current_data: pointer to the address of the page contents 687 * @current_addr: addr of the page 688 * @block: block that contains the page we want to send 689 * @offset: offset inside the block for the page 690 * @last_stage: if we are at the completion stage 691 */ 692 static int save_xbzrle_page(RAMState *rs, uint8_t **current_data, 693 ram_addr_t current_addr, RAMBlock *block, 694 ram_addr_t offset, bool last_stage) 695 { 696 int encoded_len = 0, bytes_xbzrle; 697 uint8_t *prev_cached_page; 698 699 if (!cache_is_cached(XBZRLE.cache, current_addr, 700 ram_counters.dirty_sync_count)) { 701 xbzrle_counters.cache_miss++; 702 if (!last_stage) { 703 if (cache_insert(XBZRLE.cache, current_addr, *current_data, 704 ram_counters.dirty_sync_count) == -1) { 705 return -1; 706 } else { 707 /* update *current_data when the page has been 708 inserted into cache */ 709 *current_data = get_cached_data(XBZRLE.cache, current_addr); 710 } 711 } 712 return -1; 713 } 714 715 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr); 716 717 /* save current buffer into memory */ 718 memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE); 719 720 /* XBZRLE encoding (if there is no overflow) */ 721 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf, 722 TARGET_PAGE_SIZE, XBZRLE.encoded_buf, 723 TARGET_PAGE_SIZE); 724 if (encoded_len == 0) { 725 trace_save_xbzrle_page_skipping(); 726 return 0; 727 } else if (encoded_len == -1) { 728 trace_save_xbzrle_page_overflow(); 729 xbzrle_counters.overflow++; 730 /* update data in the cache */ 731 if (!last_stage) { 732 memcpy(prev_cached_page, *current_data, TARGET_PAGE_SIZE); 733 *current_data = prev_cached_page; 734 } 735 return -1; 736 } 737 738 /* we need to update the data in the cache, in order to get the same data */ 739 if (!last_stage) { 740 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE); 741 } 742 743 /* Send XBZRLE based compressed page */ 744 bytes_xbzrle = save_page_header(rs, rs->f, block, 745 offset | RAM_SAVE_FLAG_XBZRLE); 746 qemu_put_byte(rs->f, ENCODING_FLAG_XBZRLE); 747 qemu_put_be16(rs->f, encoded_len); 748 qemu_put_buffer(rs->f, XBZRLE.encoded_buf, encoded_len); 749 bytes_xbzrle += encoded_len + 1 + 2; 750 xbzrle_counters.pages++; 751 xbzrle_counters.bytes += bytes_xbzrle; 752 ram_counters.transferred += bytes_xbzrle; 753 754 return 1; 755 } 756 757 /** 758 * migration_bitmap_find_dirty: find the next dirty page from start 759 * 760 * Called with rcu_read_lock() to protect migration_bitmap 761 * 762 * Returns the byte offset within memory region of the start of a dirty page 763 * 764 * @rs: current RAM state 765 * @rb: RAMBlock where to search for dirty pages 766 * @start: page where we start the search 767 */ 768 static inline 769 unsigned long migration_bitmap_find_dirty(RAMState *rs, RAMBlock *rb, 770 unsigned long start) 771 { 772 unsigned long size = rb->used_length >> TARGET_PAGE_BITS; 773 unsigned long *bitmap = rb->bmap; 774 unsigned long next; 775 776 if (rs->ram_bulk_stage && start > 0) { 777 next = start + 1; 778 } else { 779 next = find_next_bit(bitmap, size, start); 780 } 781 782 return next; 783 } 784 785 static inline bool migration_bitmap_clear_dirty(RAMState *rs, 786 RAMBlock *rb, 787 unsigned long page) 788 { 789 bool ret; 790 791 ret = test_and_clear_bit(page, rb->bmap); 792 793 if (ret) { 794 rs->migration_dirty_pages--; 795 } 796 return ret; 797 } 798 799 static void migration_bitmap_sync_range(RAMState *rs, RAMBlock *rb, 800 ram_addr_t start, ram_addr_t length) 801 { 802 rs->migration_dirty_pages += 803 cpu_physical_memory_sync_dirty_bitmap(rb, start, length, 804 &rs->num_dirty_pages_period); 805 } 806 807 /** 808 * ram_pagesize_summary: calculate all the pagesizes of a VM 809 * 810 * Returns a summary bitmap of the page sizes of all RAMBlocks 811 * 812 * For VMs with just normal pages this is equivalent to the host page 813 * size. If it's got some huge pages then it's the OR of all the 814 * different page sizes. 815 */ 816 uint64_t ram_pagesize_summary(void) 817 { 818 RAMBlock *block; 819 uint64_t summary = 0; 820 821 RAMBLOCK_FOREACH(block) { 822 summary |= block->page_size; 823 } 824 825 return summary; 826 } 827 828 static void migration_bitmap_sync(RAMState *rs) 829 { 830 RAMBlock *block; 831 int64_t end_time; 832 uint64_t bytes_xfer_now; 833 834 ram_counters.dirty_sync_count++; 835 836 if (!rs->time_last_bitmap_sync) { 837 rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); 838 } 839 840 trace_migration_bitmap_sync_start(); 841 memory_global_dirty_log_sync(); 842 843 qemu_mutex_lock(&rs->bitmap_mutex); 844 rcu_read_lock(); 845 RAMBLOCK_FOREACH(block) { 846 migration_bitmap_sync_range(rs, block, 0, block->used_length); 847 } 848 rcu_read_unlock(); 849 qemu_mutex_unlock(&rs->bitmap_mutex); 850 851 trace_migration_bitmap_sync_end(rs->num_dirty_pages_period); 852 853 end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); 854 855 /* more than 1 second = 1000 millisecons */ 856 if (end_time > rs->time_last_bitmap_sync + 1000) { 857 /* calculate period counters */ 858 ram_counters.dirty_pages_rate = rs->num_dirty_pages_period * 1000 859 / (end_time - rs->time_last_bitmap_sync); 860 bytes_xfer_now = ram_counters.transferred; 861 862 /* During block migration the auto-converge logic incorrectly detects 863 * that ram migration makes no progress. Avoid this by disabling the 864 * throttling logic during the bulk phase of block migration. */ 865 if (migrate_auto_converge() && !blk_mig_bulk_active()) { 866 /* The following detection logic can be refined later. For now: 867 Check to see if the dirtied bytes is 50% more than the approx. 868 amount of bytes that just got transferred since the last time we 869 were in this routine. If that happens twice, start or increase 870 throttling */ 871 872 if ((rs->num_dirty_pages_period * TARGET_PAGE_SIZE > 873 (bytes_xfer_now - rs->bytes_xfer_prev) / 2) && 874 (++rs->dirty_rate_high_cnt >= 2)) { 875 trace_migration_throttle(); 876 rs->dirty_rate_high_cnt = 0; 877 mig_throttle_guest_down(); 878 } 879 } 880 881 if (migrate_use_xbzrle()) { 882 if (rs->iterations_prev != rs->iterations) { 883 xbzrle_counters.cache_miss_rate = 884 (double)(xbzrle_counters.cache_miss - 885 rs->xbzrle_cache_miss_prev) / 886 (rs->iterations - rs->iterations_prev); 887 } 888 rs->iterations_prev = rs->iterations; 889 rs->xbzrle_cache_miss_prev = xbzrle_counters.cache_miss; 890 } 891 892 /* reset period counters */ 893 rs->time_last_bitmap_sync = end_time; 894 rs->num_dirty_pages_period = 0; 895 rs->bytes_xfer_prev = bytes_xfer_now; 896 } 897 if (migrate_use_events()) { 898 qapi_event_send_migration_pass(ram_counters.dirty_sync_count, NULL); 899 } 900 } 901 902 /** 903 * save_zero_page: send the zero page to the stream 904 * 905 * Returns the number of pages written. 906 * 907 * @rs: current RAM state 908 * @block: block that contains the page we want to send 909 * @offset: offset inside the block for the page 910 */ 911 static int save_zero_page(RAMState *rs, RAMBlock *block, ram_addr_t offset) 912 { 913 uint8_t *p = block->host + offset; 914 int pages = -1; 915 916 if (is_zero_range(p, TARGET_PAGE_SIZE)) { 917 ram_counters.duplicate++; 918 ram_counters.transferred += 919 save_page_header(rs, rs->f, block, offset | RAM_SAVE_FLAG_ZERO); 920 qemu_put_byte(rs->f, 0); 921 ram_counters.transferred += 1; 922 pages = 1; 923 } 924 925 return pages; 926 } 927 928 static void ram_release_pages(const char *rbname, uint64_t offset, int pages) 929 { 930 if (!migrate_release_ram() || !migration_in_postcopy()) { 931 return; 932 } 933 934 ram_discard_range(rbname, offset, pages << TARGET_PAGE_BITS); 935 } 936 937 /** 938 * ram_save_page: send the given page to the stream 939 * 940 * Returns the number of pages written. 941 * < 0 - error 942 * >=0 - Number of pages written - this might legally be 0 943 * if xbzrle noticed the page was the same. 944 * 945 * @rs: current RAM state 946 * @block: block that contains the page we want to send 947 * @offset: offset inside the block for the page 948 * @last_stage: if we are at the completion stage 949 */ 950 static int ram_save_page(RAMState *rs, PageSearchStatus *pss, bool last_stage) 951 { 952 int pages = -1; 953 uint64_t bytes_xmit; 954 ram_addr_t current_addr; 955 uint8_t *p; 956 int ret; 957 bool send_async = true; 958 RAMBlock *block = pss->block; 959 ram_addr_t offset = pss->page << TARGET_PAGE_BITS; 960 961 p = block->host + offset; 962 trace_ram_save_page(block->idstr, (uint64_t)offset, p); 963 964 /* In doubt sent page as normal */ 965 bytes_xmit = 0; 966 ret = ram_control_save_page(rs->f, block->offset, 967 offset, TARGET_PAGE_SIZE, &bytes_xmit); 968 if (bytes_xmit) { 969 ram_counters.transferred += bytes_xmit; 970 pages = 1; 971 } 972 973 XBZRLE_cache_lock(); 974 975 current_addr = block->offset + offset; 976 977 if (ret != RAM_SAVE_CONTROL_NOT_SUPP) { 978 if (ret != RAM_SAVE_CONTROL_DELAYED) { 979 if (bytes_xmit > 0) { 980 ram_counters.normal++; 981 } else if (bytes_xmit == 0) { 982 ram_counters.duplicate++; 983 } 984 } 985 } else { 986 pages = save_zero_page(rs, block, offset); 987 if (pages > 0) { 988 /* Must let xbzrle know, otherwise a previous (now 0'd) cached 989 * page would be stale 990 */ 991 xbzrle_cache_zero_page(rs, current_addr); 992 ram_release_pages(block->idstr, offset, pages); 993 } else if (!rs->ram_bulk_stage && 994 !migration_in_postcopy() && migrate_use_xbzrle()) { 995 pages = save_xbzrle_page(rs, &p, current_addr, block, 996 offset, last_stage); 997 if (!last_stage) { 998 /* Can't send this cached data async, since the cache page 999 * might get updated before it gets to the wire 1000 */ 1001 send_async = false; 1002 } 1003 } 1004 } 1005 1006 /* XBZRLE overflow or normal page */ 1007 if (pages == -1) { 1008 ram_counters.transferred += 1009 save_page_header(rs, rs->f, block, offset | RAM_SAVE_FLAG_PAGE); 1010 if (send_async) { 1011 qemu_put_buffer_async(rs->f, p, TARGET_PAGE_SIZE, 1012 migrate_release_ram() & 1013 migration_in_postcopy()); 1014 } else { 1015 qemu_put_buffer(rs->f, p, TARGET_PAGE_SIZE); 1016 } 1017 ram_counters.transferred += TARGET_PAGE_SIZE; 1018 pages = 1; 1019 ram_counters.normal++; 1020 } 1021 1022 XBZRLE_cache_unlock(); 1023 1024 return pages; 1025 } 1026 1027 static int do_compress_ram_page(QEMUFile *f, RAMBlock *block, 1028 ram_addr_t offset) 1029 { 1030 RAMState *rs = ram_state; 1031 int bytes_sent, blen; 1032 uint8_t *p = block->host + (offset & TARGET_PAGE_MASK); 1033 1034 bytes_sent = save_page_header(rs, f, block, offset | 1035 RAM_SAVE_FLAG_COMPRESS_PAGE); 1036 blen = qemu_put_compression_data(f, p, TARGET_PAGE_SIZE, 1037 migrate_compress_level()); 1038 if (blen < 0) { 1039 bytes_sent = 0; 1040 qemu_file_set_error(migrate_get_current()->to_dst_file, blen); 1041 error_report("compressed data failed!"); 1042 } else { 1043 bytes_sent += blen; 1044 ram_release_pages(block->idstr, offset & TARGET_PAGE_MASK, 1); 1045 } 1046 1047 return bytes_sent; 1048 } 1049 1050 static void flush_compressed_data(RAMState *rs) 1051 { 1052 int idx, len, thread_count; 1053 1054 if (!migrate_use_compression()) { 1055 return; 1056 } 1057 thread_count = migrate_compress_threads(); 1058 1059 qemu_mutex_lock(&comp_done_lock); 1060 for (idx = 0; idx < thread_count; idx++) { 1061 while (!comp_param[idx].done) { 1062 qemu_cond_wait(&comp_done_cond, &comp_done_lock); 1063 } 1064 } 1065 qemu_mutex_unlock(&comp_done_lock); 1066 1067 for (idx = 0; idx < thread_count; idx++) { 1068 qemu_mutex_lock(&comp_param[idx].mutex); 1069 if (!comp_param[idx].quit) { 1070 len = qemu_put_qemu_file(rs->f, comp_param[idx].file); 1071 ram_counters.transferred += len; 1072 } 1073 qemu_mutex_unlock(&comp_param[idx].mutex); 1074 } 1075 } 1076 1077 static inline void set_compress_params(CompressParam *param, RAMBlock *block, 1078 ram_addr_t offset) 1079 { 1080 param->block = block; 1081 param->offset = offset; 1082 } 1083 1084 static int compress_page_with_multi_thread(RAMState *rs, RAMBlock *block, 1085 ram_addr_t offset) 1086 { 1087 int idx, thread_count, bytes_xmit = -1, pages = -1; 1088 1089 thread_count = migrate_compress_threads(); 1090 qemu_mutex_lock(&comp_done_lock); 1091 while (true) { 1092 for (idx = 0; idx < thread_count; idx++) { 1093 if (comp_param[idx].done) { 1094 comp_param[idx].done = false; 1095 bytes_xmit = qemu_put_qemu_file(rs->f, comp_param[idx].file); 1096 qemu_mutex_lock(&comp_param[idx].mutex); 1097 set_compress_params(&comp_param[idx], block, offset); 1098 qemu_cond_signal(&comp_param[idx].cond); 1099 qemu_mutex_unlock(&comp_param[idx].mutex); 1100 pages = 1; 1101 ram_counters.normal++; 1102 ram_counters.transferred += bytes_xmit; 1103 break; 1104 } 1105 } 1106 if (pages > 0) { 1107 break; 1108 } else { 1109 qemu_cond_wait(&comp_done_cond, &comp_done_lock); 1110 } 1111 } 1112 qemu_mutex_unlock(&comp_done_lock); 1113 1114 return pages; 1115 } 1116 1117 /** 1118 * ram_save_compressed_page: compress the given page and send it to the stream 1119 * 1120 * Returns the number of pages written. 1121 * 1122 * @rs: current RAM state 1123 * @block: block that contains the page we want to send 1124 * @offset: offset inside the block for the page 1125 * @last_stage: if we are at the completion stage 1126 */ 1127 static int ram_save_compressed_page(RAMState *rs, PageSearchStatus *pss, 1128 bool last_stage) 1129 { 1130 int pages = -1; 1131 uint64_t bytes_xmit = 0; 1132 uint8_t *p; 1133 int ret, blen; 1134 RAMBlock *block = pss->block; 1135 ram_addr_t offset = pss->page << TARGET_PAGE_BITS; 1136 1137 p = block->host + offset; 1138 1139 ret = ram_control_save_page(rs->f, block->offset, 1140 offset, TARGET_PAGE_SIZE, &bytes_xmit); 1141 if (bytes_xmit) { 1142 ram_counters.transferred += bytes_xmit; 1143 pages = 1; 1144 } 1145 if (ret != RAM_SAVE_CONTROL_NOT_SUPP) { 1146 if (ret != RAM_SAVE_CONTROL_DELAYED) { 1147 if (bytes_xmit > 0) { 1148 ram_counters.normal++; 1149 } else if (bytes_xmit == 0) { 1150 ram_counters.duplicate++; 1151 } 1152 } 1153 } else { 1154 /* When starting the process of a new block, the first page of 1155 * the block should be sent out before other pages in the same 1156 * block, and all the pages in last block should have been sent 1157 * out, keeping this order is important, because the 'cont' flag 1158 * is used to avoid resending the block name. 1159 */ 1160 if (block != rs->last_sent_block) { 1161 flush_compressed_data(rs); 1162 pages = save_zero_page(rs, block, offset); 1163 if (pages == -1) { 1164 /* Make sure the first page is sent out before other pages */ 1165 bytes_xmit = save_page_header(rs, rs->f, block, offset | 1166 RAM_SAVE_FLAG_COMPRESS_PAGE); 1167 blen = qemu_put_compression_data(rs->f, p, TARGET_PAGE_SIZE, 1168 migrate_compress_level()); 1169 if (blen > 0) { 1170 ram_counters.transferred += bytes_xmit + blen; 1171 ram_counters.normal++; 1172 pages = 1; 1173 } else { 1174 qemu_file_set_error(rs->f, blen); 1175 error_report("compressed data failed!"); 1176 } 1177 } 1178 if (pages > 0) { 1179 ram_release_pages(block->idstr, offset, pages); 1180 } 1181 } else { 1182 pages = save_zero_page(rs, block, offset); 1183 if (pages == -1) { 1184 pages = compress_page_with_multi_thread(rs, block, offset); 1185 } else { 1186 ram_release_pages(block->idstr, offset, pages); 1187 } 1188 } 1189 } 1190 1191 return pages; 1192 } 1193 1194 /** 1195 * find_dirty_block: find the next dirty page and update any state 1196 * associated with the search process. 1197 * 1198 * Returns if a page is found 1199 * 1200 * @rs: current RAM state 1201 * @pss: data about the state of the current dirty page scan 1202 * @again: set to false if the search has scanned the whole of RAM 1203 */ 1204 static bool find_dirty_block(RAMState *rs, PageSearchStatus *pss, bool *again) 1205 { 1206 pss->page = migration_bitmap_find_dirty(rs, pss->block, pss->page); 1207 if (pss->complete_round && pss->block == rs->last_seen_block && 1208 pss->page >= rs->last_page) { 1209 /* 1210 * We've been once around the RAM and haven't found anything. 1211 * Give up. 1212 */ 1213 *again = false; 1214 return false; 1215 } 1216 if ((pss->page << TARGET_PAGE_BITS) >= pss->block->used_length) { 1217 /* Didn't find anything in this RAM Block */ 1218 pss->page = 0; 1219 pss->block = QLIST_NEXT_RCU(pss->block, next); 1220 if (!pss->block) { 1221 /* Hit the end of the list */ 1222 pss->block = QLIST_FIRST_RCU(&ram_list.blocks); 1223 /* Flag that we've looped */ 1224 pss->complete_round = true; 1225 rs->ram_bulk_stage = false; 1226 if (migrate_use_xbzrle()) { 1227 /* If xbzrle is on, stop using the data compression at this 1228 * point. In theory, xbzrle can do better than compression. 1229 */ 1230 flush_compressed_data(rs); 1231 } 1232 } 1233 /* Didn't find anything this time, but try again on the new block */ 1234 *again = true; 1235 return false; 1236 } else { 1237 /* Can go around again, but... */ 1238 *again = true; 1239 /* We've found something so probably don't need to */ 1240 return true; 1241 } 1242 } 1243 1244 /** 1245 * unqueue_page: gets a page of the queue 1246 * 1247 * Helper for 'get_queued_page' - gets a page off the queue 1248 * 1249 * Returns the block of the page (or NULL if none available) 1250 * 1251 * @rs: current RAM state 1252 * @offset: used to return the offset within the RAMBlock 1253 */ 1254 static RAMBlock *unqueue_page(RAMState *rs, ram_addr_t *offset) 1255 { 1256 RAMBlock *block = NULL; 1257 1258 qemu_mutex_lock(&rs->src_page_req_mutex); 1259 if (!QSIMPLEQ_EMPTY(&rs->src_page_requests)) { 1260 struct RAMSrcPageRequest *entry = 1261 QSIMPLEQ_FIRST(&rs->src_page_requests); 1262 block = entry->rb; 1263 *offset = entry->offset; 1264 1265 if (entry->len > TARGET_PAGE_SIZE) { 1266 entry->len -= TARGET_PAGE_SIZE; 1267 entry->offset += TARGET_PAGE_SIZE; 1268 } else { 1269 memory_region_unref(block->mr); 1270 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req); 1271 g_free(entry); 1272 } 1273 } 1274 qemu_mutex_unlock(&rs->src_page_req_mutex); 1275 1276 return block; 1277 } 1278 1279 /** 1280 * get_queued_page: unqueue a page from the postocpy requests 1281 * 1282 * Skips pages that are already sent (!dirty) 1283 * 1284 * Returns if a queued page is found 1285 * 1286 * @rs: current RAM state 1287 * @pss: data about the state of the current dirty page scan 1288 */ 1289 static bool get_queued_page(RAMState *rs, PageSearchStatus *pss) 1290 { 1291 RAMBlock *block; 1292 ram_addr_t offset; 1293 bool dirty; 1294 1295 do { 1296 block = unqueue_page(rs, &offset); 1297 /* 1298 * We're sending this page, and since it's postcopy nothing else 1299 * will dirty it, and we must make sure it doesn't get sent again 1300 * even if this queue request was received after the background 1301 * search already sent it. 1302 */ 1303 if (block) { 1304 unsigned long page; 1305 1306 page = offset >> TARGET_PAGE_BITS; 1307 dirty = test_bit(page, block->bmap); 1308 if (!dirty) { 1309 trace_get_queued_page_not_dirty(block->idstr, (uint64_t)offset, 1310 page, test_bit(page, block->unsentmap)); 1311 } else { 1312 trace_get_queued_page(block->idstr, (uint64_t)offset, page); 1313 } 1314 } 1315 1316 } while (block && !dirty); 1317 1318 if (block) { 1319 /* 1320 * As soon as we start servicing pages out of order, then we have 1321 * to kill the bulk stage, since the bulk stage assumes 1322 * in (migration_bitmap_find_and_reset_dirty) that every page is 1323 * dirty, that's no longer true. 1324 */ 1325 rs->ram_bulk_stage = false; 1326 1327 /* 1328 * We want the background search to continue from the queued page 1329 * since the guest is likely to want other pages near to the page 1330 * it just requested. 1331 */ 1332 pss->block = block; 1333 pss->page = offset >> TARGET_PAGE_BITS; 1334 } 1335 1336 return !!block; 1337 } 1338 1339 /** 1340 * migration_page_queue_free: drop any remaining pages in the ram 1341 * request queue 1342 * 1343 * It should be empty at the end anyway, but in error cases there may 1344 * be some left. in case that there is any page left, we drop it. 1345 * 1346 */ 1347 static void migration_page_queue_free(RAMState *rs) 1348 { 1349 struct RAMSrcPageRequest *mspr, *next_mspr; 1350 /* This queue generally should be empty - but in the case of a failed 1351 * migration might have some droppings in. 1352 */ 1353 rcu_read_lock(); 1354 QSIMPLEQ_FOREACH_SAFE(mspr, &rs->src_page_requests, next_req, next_mspr) { 1355 memory_region_unref(mspr->rb->mr); 1356 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req); 1357 g_free(mspr); 1358 } 1359 rcu_read_unlock(); 1360 } 1361 1362 /** 1363 * ram_save_queue_pages: queue the page for transmission 1364 * 1365 * A request from postcopy destination for example. 1366 * 1367 * Returns zero on success or negative on error 1368 * 1369 * @rbname: Name of the RAMBLock of the request. NULL means the 1370 * same that last one. 1371 * @start: starting address from the start of the RAMBlock 1372 * @len: length (in bytes) to send 1373 */ 1374 int ram_save_queue_pages(const char *rbname, ram_addr_t start, ram_addr_t len) 1375 { 1376 RAMBlock *ramblock; 1377 RAMState *rs = ram_state; 1378 1379 ram_counters.postcopy_requests++; 1380 rcu_read_lock(); 1381 if (!rbname) { 1382 /* Reuse last RAMBlock */ 1383 ramblock = rs->last_req_rb; 1384 1385 if (!ramblock) { 1386 /* 1387 * Shouldn't happen, we can't reuse the last RAMBlock if 1388 * it's the 1st request. 1389 */ 1390 error_report("ram_save_queue_pages no previous block"); 1391 goto err; 1392 } 1393 } else { 1394 ramblock = qemu_ram_block_by_name(rbname); 1395 1396 if (!ramblock) { 1397 /* We shouldn't be asked for a non-existent RAMBlock */ 1398 error_report("ram_save_queue_pages no block '%s'", rbname); 1399 goto err; 1400 } 1401 rs->last_req_rb = ramblock; 1402 } 1403 trace_ram_save_queue_pages(ramblock->idstr, start, len); 1404 if (start+len > ramblock->used_length) { 1405 error_report("%s request overrun start=" RAM_ADDR_FMT " len=" 1406 RAM_ADDR_FMT " blocklen=" RAM_ADDR_FMT, 1407 __func__, start, len, ramblock->used_length); 1408 goto err; 1409 } 1410 1411 struct RAMSrcPageRequest *new_entry = 1412 g_malloc0(sizeof(struct RAMSrcPageRequest)); 1413 new_entry->rb = ramblock; 1414 new_entry->offset = start; 1415 new_entry->len = len; 1416 1417 memory_region_ref(ramblock->mr); 1418 qemu_mutex_lock(&rs->src_page_req_mutex); 1419 QSIMPLEQ_INSERT_TAIL(&rs->src_page_requests, new_entry, next_req); 1420 qemu_mutex_unlock(&rs->src_page_req_mutex); 1421 rcu_read_unlock(); 1422 1423 return 0; 1424 1425 err: 1426 rcu_read_unlock(); 1427 return -1; 1428 } 1429 1430 /** 1431 * ram_save_target_page: save one target page 1432 * 1433 * Returns the number of pages written 1434 * 1435 * @rs: current RAM state 1436 * @ms: current migration state 1437 * @pss: data about the page we want to send 1438 * @last_stage: if we are at the completion stage 1439 */ 1440 static int ram_save_target_page(RAMState *rs, PageSearchStatus *pss, 1441 bool last_stage) 1442 { 1443 int res = 0; 1444 1445 /* Check the pages is dirty and if it is send it */ 1446 if (migration_bitmap_clear_dirty(rs, pss->block, pss->page)) { 1447 /* 1448 * If xbzrle is on, stop using the data compression after first 1449 * round of migration even if compression is enabled. In theory, 1450 * xbzrle can do better than compression. 1451 */ 1452 if (migrate_use_compression() && 1453 (rs->ram_bulk_stage || !migrate_use_xbzrle())) { 1454 res = ram_save_compressed_page(rs, pss, last_stage); 1455 } else { 1456 res = ram_save_page(rs, pss, last_stage); 1457 } 1458 1459 if (res < 0) { 1460 return res; 1461 } 1462 if (pss->block->unsentmap) { 1463 clear_bit(pss->page, pss->block->unsentmap); 1464 } 1465 } 1466 1467 return res; 1468 } 1469 1470 /** 1471 * ram_save_host_page: save a whole host page 1472 * 1473 * Starting at *offset send pages up to the end of the current host 1474 * page. It's valid for the initial offset to point into the middle of 1475 * a host page in which case the remainder of the hostpage is sent. 1476 * Only dirty target pages are sent. Note that the host page size may 1477 * be a huge page for this block. 1478 * The saving stops at the boundary of the used_length of the block 1479 * if the RAMBlock isn't a multiple of the host page size. 1480 * 1481 * Returns the number of pages written or negative on error 1482 * 1483 * @rs: current RAM state 1484 * @ms: current migration state 1485 * @pss: data about the page we want to send 1486 * @last_stage: if we are at the completion stage 1487 */ 1488 static int ram_save_host_page(RAMState *rs, PageSearchStatus *pss, 1489 bool last_stage) 1490 { 1491 int tmppages, pages = 0; 1492 size_t pagesize_bits = 1493 qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS; 1494 1495 do { 1496 tmppages = ram_save_target_page(rs, pss, last_stage); 1497 if (tmppages < 0) { 1498 return tmppages; 1499 } 1500 1501 pages += tmppages; 1502 pss->page++; 1503 } while ((pss->page & (pagesize_bits - 1)) && 1504 offset_in_ramblock(pss->block, pss->page << TARGET_PAGE_BITS)); 1505 1506 /* The offset we leave with is the last one we looked at */ 1507 pss->page--; 1508 return pages; 1509 } 1510 1511 /** 1512 * ram_find_and_save_block: finds a dirty page and sends it to f 1513 * 1514 * Called within an RCU critical section. 1515 * 1516 * Returns the number of pages written where zero means no dirty pages 1517 * 1518 * @rs: current RAM state 1519 * @last_stage: if we are at the completion stage 1520 * 1521 * On systems where host-page-size > target-page-size it will send all the 1522 * pages in a host page that are dirty. 1523 */ 1524 1525 static int ram_find_and_save_block(RAMState *rs, bool last_stage) 1526 { 1527 PageSearchStatus pss; 1528 int pages = 0; 1529 bool again, found; 1530 1531 /* No dirty page as there is zero RAM */ 1532 if (!ram_bytes_total()) { 1533 return pages; 1534 } 1535 1536 pss.block = rs->last_seen_block; 1537 pss.page = rs->last_page; 1538 pss.complete_round = false; 1539 1540 if (!pss.block) { 1541 pss.block = QLIST_FIRST_RCU(&ram_list.blocks); 1542 } 1543 1544 do { 1545 again = true; 1546 found = get_queued_page(rs, &pss); 1547 1548 if (!found) { 1549 /* priority queue empty, so just search for something dirty */ 1550 found = find_dirty_block(rs, &pss, &again); 1551 } 1552 1553 if (found) { 1554 pages = ram_save_host_page(rs, &pss, last_stage); 1555 } 1556 } while (!pages && again); 1557 1558 rs->last_seen_block = pss.block; 1559 rs->last_page = pss.page; 1560 1561 return pages; 1562 } 1563 1564 void acct_update_position(QEMUFile *f, size_t size, bool zero) 1565 { 1566 uint64_t pages = size / TARGET_PAGE_SIZE; 1567 1568 if (zero) { 1569 ram_counters.duplicate += pages; 1570 } else { 1571 ram_counters.normal += pages; 1572 ram_counters.transferred += size; 1573 qemu_update_position(f, size); 1574 } 1575 } 1576 1577 uint64_t ram_bytes_total(void) 1578 { 1579 RAMBlock *block; 1580 uint64_t total = 0; 1581 1582 rcu_read_lock(); 1583 RAMBLOCK_FOREACH(block) { 1584 total += block->used_length; 1585 } 1586 rcu_read_unlock(); 1587 return total; 1588 } 1589 1590 static void xbzrle_load_setup(void) 1591 { 1592 XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE); 1593 } 1594 1595 static void xbzrle_load_cleanup(void) 1596 { 1597 g_free(XBZRLE.decoded_buf); 1598 XBZRLE.decoded_buf = NULL; 1599 } 1600 1601 static void ram_state_cleanup(RAMState **rsp) 1602 { 1603 migration_page_queue_free(*rsp); 1604 qemu_mutex_destroy(&(*rsp)->bitmap_mutex); 1605 qemu_mutex_destroy(&(*rsp)->src_page_req_mutex); 1606 g_free(*rsp); 1607 *rsp = NULL; 1608 } 1609 1610 static void xbzrle_cleanup(void) 1611 { 1612 XBZRLE_cache_lock(); 1613 if (XBZRLE.cache) { 1614 cache_fini(XBZRLE.cache); 1615 g_free(XBZRLE.encoded_buf); 1616 g_free(XBZRLE.current_buf); 1617 g_free(XBZRLE.zero_target_page); 1618 XBZRLE.cache = NULL; 1619 XBZRLE.encoded_buf = NULL; 1620 XBZRLE.current_buf = NULL; 1621 XBZRLE.zero_target_page = NULL; 1622 } 1623 XBZRLE_cache_unlock(); 1624 } 1625 1626 static void ram_save_cleanup(void *opaque) 1627 { 1628 RAMState **rsp = opaque; 1629 RAMBlock *block; 1630 1631 /* caller have hold iothread lock or is in a bh, so there is 1632 * no writing race against this migration_bitmap 1633 */ 1634 memory_global_dirty_log_stop(); 1635 1636 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { 1637 g_free(block->bmap); 1638 block->bmap = NULL; 1639 g_free(block->unsentmap); 1640 block->unsentmap = NULL; 1641 } 1642 1643 xbzrle_cleanup(); 1644 compress_threads_save_cleanup(); 1645 ram_state_cleanup(rsp); 1646 } 1647 1648 static void ram_state_reset(RAMState *rs) 1649 { 1650 rs->last_seen_block = NULL; 1651 rs->last_sent_block = NULL; 1652 rs->last_page = 0; 1653 rs->last_version = ram_list.version; 1654 rs->ram_bulk_stage = true; 1655 } 1656 1657 #define MAX_WAIT 50 /* ms, half buffered_file limit */ 1658 1659 /* 1660 * 'expected' is the value you expect the bitmap mostly to be full 1661 * of; it won't bother printing lines that are all this value. 1662 * If 'todump' is null the migration bitmap is dumped. 1663 */ 1664 void ram_debug_dump_bitmap(unsigned long *todump, bool expected, 1665 unsigned long pages) 1666 { 1667 int64_t cur; 1668 int64_t linelen = 128; 1669 char linebuf[129]; 1670 1671 for (cur = 0; cur < pages; cur += linelen) { 1672 int64_t curb; 1673 bool found = false; 1674 /* 1675 * Last line; catch the case where the line length 1676 * is longer than remaining ram 1677 */ 1678 if (cur + linelen > pages) { 1679 linelen = pages - cur; 1680 } 1681 for (curb = 0; curb < linelen; curb++) { 1682 bool thisbit = test_bit(cur + curb, todump); 1683 linebuf[curb] = thisbit ? '1' : '.'; 1684 found = found || (thisbit != expected); 1685 } 1686 if (found) { 1687 linebuf[curb] = '\0'; 1688 fprintf(stderr, "0x%08" PRIx64 " : %s\n", cur, linebuf); 1689 } 1690 } 1691 } 1692 1693 /* **** functions for postcopy ***** */ 1694 1695 void ram_postcopy_migrated_memory_release(MigrationState *ms) 1696 { 1697 struct RAMBlock *block; 1698 1699 RAMBLOCK_FOREACH(block) { 1700 unsigned long *bitmap = block->bmap; 1701 unsigned long range = block->used_length >> TARGET_PAGE_BITS; 1702 unsigned long run_start = find_next_zero_bit(bitmap, range, 0); 1703 1704 while (run_start < range) { 1705 unsigned long run_end = find_next_bit(bitmap, range, run_start + 1); 1706 ram_discard_range(block->idstr, run_start << TARGET_PAGE_BITS, 1707 (run_end - run_start) << TARGET_PAGE_BITS); 1708 run_start = find_next_zero_bit(bitmap, range, run_end + 1); 1709 } 1710 } 1711 } 1712 1713 /** 1714 * postcopy_send_discard_bm_ram: discard a RAMBlock 1715 * 1716 * Returns zero on success 1717 * 1718 * Callback from postcopy_each_ram_send_discard for each RAMBlock 1719 * Note: At this point the 'unsentmap' is the processed bitmap combined 1720 * with the dirtymap; so a '1' means it's either dirty or unsent. 1721 * 1722 * @ms: current migration state 1723 * @pds: state for postcopy 1724 * @start: RAMBlock starting page 1725 * @length: RAMBlock size 1726 */ 1727 static int postcopy_send_discard_bm_ram(MigrationState *ms, 1728 PostcopyDiscardState *pds, 1729 RAMBlock *block) 1730 { 1731 unsigned long end = block->used_length >> TARGET_PAGE_BITS; 1732 unsigned long current; 1733 unsigned long *unsentmap = block->unsentmap; 1734 1735 for (current = 0; current < end; ) { 1736 unsigned long one = find_next_bit(unsentmap, end, current); 1737 1738 if (one <= end) { 1739 unsigned long zero = find_next_zero_bit(unsentmap, end, one + 1); 1740 unsigned long discard_length; 1741 1742 if (zero >= end) { 1743 discard_length = end - one; 1744 } else { 1745 discard_length = zero - one; 1746 } 1747 if (discard_length) { 1748 postcopy_discard_send_range(ms, pds, one, discard_length); 1749 } 1750 current = one + discard_length; 1751 } else { 1752 current = one; 1753 } 1754 } 1755 1756 return 0; 1757 } 1758 1759 /** 1760 * postcopy_each_ram_send_discard: discard all RAMBlocks 1761 * 1762 * Returns 0 for success or negative for error 1763 * 1764 * Utility for the outgoing postcopy code. 1765 * Calls postcopy_send_discard_bm_ram for each RAMBlock 1766 * passing it bitmap indexes and name. 1767 * (qemu_ram_foreach_block ends up passing unscaled lengths 1768 * which would mean postcopy code would have to deal with target page) 1769 * 1770 * @ms: current migration state 1771 */ 1772 static int postcopy_each_ram_send_discard(MigrationState *ms) 1773 { 1774 struct RAMBlock *block; 1775 int ret; 1776 1777 RAMBLOCK_FOREACH(block) { 1778 PostcopyDiscardState *pds = 1779 postcopy_discard_send_init(ms, block->idstr); 1780 1781 /* 1782 * Postcopy sends chunks of bitmap over the wire, but it 1783 * just needs indexes at this point, avoids it having 1784 * target page specific code. 1785 */ 1786 ret = postcopy_send_discard_bm_ram(ms, pds, block); 1787 postcopy_discard_send_finish(ms, pds); 1788 if (ret) { 1789 return ret; 1790 } 1791 } 1792 1793 return 0; 1794 } 1795 1796 /** 1797 * postcopy_chunk_hostpages_pass: canocalize bitmap in hostpages 1798 * 1799 * Helper for postcopy_chunk_hostpages; it's called twice to 1800 * canonicalize the two bitmaps, that are similar, but one is 1801 * inverted. 1802 * 1803 * Postcopy requires that all target pages in a hostpage are dirty or 1804 * clean, not a mix. This function canonicalizes the bitmaps. 1805 * 1806 * @ms: current migration state 1807 * @unsent_pass: if true we need to canonicalize partially unsent host pages 1808 * otherwise we need to canonicalize partially dirty host pages 1809 * @block: block that contains the page we want to canonicalize 1810 * @pds: state for postcopy 1811 */ 1812 static void postcopy_chunk_hostpages_pass(MigrationState *ms, bool unsent_pass, 1813 RAMBlock *block, 1814 PostcopyDiscardState *pds) 1815 { 1816 RAMState *rs = ram_state; 1817 unsigned long *bitmap = block->bmap; 1818 unsigned long *unsentmap = block->unsentmap; 1819 unsigned int host_ratio = block->page_size / TARGET_PAGE_SIZE; 1820 unsigned long pages = block->used_length >> TARGET_PAGE_BITS; 1821 unsigned long run_start; 1822 1823 if (block->page_size == TARGET_PAGE_SIZE) { 1824 /* Easy case - TPS==HPS for a non-huge page RAMBlock */ 1825 return; 1826 } 1827 1828 if (unsent_pass) { 1829 /* Find a sent page */ 1830 run_start = find_next_zero_bit(unsentmap, pages, 0); 1831 } else { 1832 /* Find a dirty page */ 1833 run_start = find_next_bit(bitmap, pages, 0); 1834 } 1835 1836 while (run_start < pages) { 1837 bool do_fixup = false; 1838 unsigned long fixup_start_addr; 1839 unsigned long host_offset; 1840 1841 /* 1842 * If the start of this run of pages is in the middle of a host 1843 * page, then we need to fixup this host page. 1844 */ 1845 host_offset = run_start % host_ratio; 1846 if (host_offset) { 1847 do_fixup = true; 1848 run_start -= host_offset; 1849 fixup_start_addr = run_start; 1850 /* For the next pass */ 1851 run_start = run_start + host_ratio; 1852 } else { 1853 /* Find the end of this run */ 1854 unsigned long run_end; 1855 if (unsent_pass) { 1856 run_end = find_next_bit(unsentmap, pages, run_start + 1); 1857 } else { 1858 run_end = find_next_zero_bit(bitmap, pages, run_start + 1); 1859 } 1860 /* 1861 * If the end isn't at the start of a host page, then the 1862 * run doesn't finish at the end of a host page 1863 * and we need to discard. 1864 */ 1865 host_offset = run_end % host_ratio; 1866 if (host_offset) { 1867 do_fixup = true; 1868 fixup_start_addr = run_end - host_offset; 1869 /* 1870 * This host page has gone, the next loop iteration starts 1871 * from after the fixup 1872 */ 1873 run_start = fixup_start_addr + host_ratio; 1874 } else { 1875 /* 1876 * No discards on this iteration, next loop starts from 1877 * next sent/dirty page 1878 */ 1879 run_start = run_end + 1; 1880 } 1881 } 1882 1883 if (do_fixup) { 1884 unsigned long page; 1885 1886 /* Tell the destination to discard this page */ 1887 if (unsent_pass || !test_bit(fixup_start_addr, unsentmap)) { 1888 /* For the unsent_pass we: 1889 * discard partially sent pages 1890 * For the !unsent_pass (dirty) we: 1891 * discard partially dirty pages that were sent 1892 * (any partially sent pages were already discarded 1893 * by the previous unsent_pass) 1894 */ 1895 postcopy_discard_send_range(ms, pds, fixup_start_addr, 1896 host_ratio); 1897 } 1898 1899 /* Clean up the bitmap */ 1900 for (page = fixup_start_addr; 1901 page < fixup_start_addr + host_ratio; page++) { 1902 /* All pages in this host page are now not sent */ 1903 set_bit(page, unsentmap); 1904 1905 /* 1906 * Remark them as dirty, updating the count for any pages 1907 * that weren't previously dirty. 1908 */ 1909 rs->migration_dirty_pages += !test_and_set_bit(page, bitmap); 1910 } 1911 } 1912 1913 if (unsent_pass) { 1914 /* Find the next sent page for the next iteration */ 1915 run_start = find_next_zero_bit(unsentmap, pages, run_start); 1916 } else { 1917 /* Find the next dirty page for the next iteration */ 1918 run_start = find_next_bit(bitmap, pages, run_start); 1919 } 1920 } 1921 } 1922 1923 /** 1924 * postcopy_chuck_hostpages: discrad any partially sent host page 1925 * 1926 * Utility for the outgoing postcopy code. 1927 * 1928 * Discard any partially sent host-page size chunks, mark any partially 1929 * dirty host-page size chunks as all dirty. In this case the host-page 1930 * is the host-page for the particular RAMBlock, i.e. it might be a huge page 1931 * 1932 * Returns zero on success 1933 * 1934 * @ms: current migration state 1935 * @block: block we want to work with 1936 */ 1937 static int postcopy_chunk_hostpages(MigrationState *ms, RAMBlock *block) 1938 { 1939 PostcopyDiscardState *pds = 1940 postcopy_discard_send_init(ms, block->idstr); 1941 1942 /* First pass: Discard all partially sent host pages */ 1943 postcopy_chunk_hostpages_pass(ms, true, block, pds); 1944 /* 1945 * Second pass: Ensure that all partially dirty host pages are made 1946 * fully dirty. 1947 */ 1948 postcopy_chunk_hostpages_pass(ms, false, block, pds); 1949 1950 postcopy_discard_send_finish(ms, pds); 1951 return 0; 1952 } 1953 1954 /** 1955 * ram_postcopy_send_discard_bitmap: transmit the discard bitmap 1956 * 1957 * Returns zero on success 1958 * 1959 * Transmit the set of pages to be discarded after precopy to the target 1960 * these are pages that: 1961 * a) Have been previously transmitted but are now dirty again 1962 * b) Pages that have never been transmitted, this ensures that 1963 * any pages on the destination that have been mapped by background 1964 * tasks get discarded (transparent huge pages is the specific concern) 1965 * Hopefully this is pretty sparse 1966 * 1967 * @ms: current migration state 1968 */ 1969 int ram_postcopy_send_discard_bitmap(MigrationState *ms) 1970 { 1971 RAMState *rs = ram_state; 1972 RAMBlock *block; 1973 int ret; 1974 1975 rcu_read_lock(); 1976 1977 /* This should be our last sync, the src is now paused */ 1978 migration_bitmap_sync(rs); 1979 1980 /* Easiest way to make sure we don't resume in the middle of a host-page */ 1981 rs->last_seen_block = NULL; 1982 rs->last_sent_block = NULL; 1983 rs->last_page = 0; 1984 1985 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { 1986 unsigned long pages = block->used_length >> TARGET_PAGE_BITS; 1987 unsigned long *bitmap = block->bmap; 1988 unsigned long *unsentmap = block->unsentmap; 1989 1990 if (!unsentmap) { 1991 /* We don't have a safe way to resize the sentmap, so 1992 * if the bitmap was resized it will be NULL at this 1993 * point. 1994 */ 1995 error_report("migration ram resized during precopy phase"); 1996 rcu_read_unlock(); 1997 return -EINVAL; 1998 } 1999 /* Deal with TPS != HPS and huge pages */ 2000 ret = postcopy_chunk_hostpages(ms, block); 2001 if (ret) { 2002 rcu_read_unlock(); 2003 return ret; 2004 } 2005 2006 /* 2007 * Update the unsentmap to be unsentmap = unsentmap | dirty 2008 */ 2009 bitmap_or(unsentmap, unsentmap, bitmap, pages); 2010 #ifdef DEBUG_POSTCOPY 2011 ram_debug_dump_bitmap(unsentmap, true, pages); 2012 #endif 2013 } 2014 trace_ram_postcopy_send_discard_bitmap(); 2015 2016 ret = postcopy_each_ram_send_discard(ms); 2017 rcu_read_unlock(); 2018 2019 return ret; 2020 } 2021 2022 /** 2023 * ram_discard_range: discard dirtied pages at the beginning of postcopy 2024 * 2025 * Returns zero on success 2026 * 2027 * @rbname: name of the RAMBlock of the request. NULL means the 2028 * same that last one. 2029 * @start: RAMBlock starting page 2030 * @length: RAMBlock size 2031 */ 2032 int ram_discard_range(const char *rbname, uint64_t start, size_t length) 2033 { 2034 int ret = -1; 2035 2036 trace_ram_discard_range(rbname, start, length); 2037 2038 rcu_read_lock(); 2039 RAMBlock *rb = qemu_ram_block_by_name(rbname); 2040 2041 if (!rb) { 2042 error_report("ram_discard_range: Failed to find block '%s'", rbname); 2043 goto err; 2044 } 2045 2046 bitmap_clear(rb->receivedmap, start >> qemu_target_page_bits(), 2047 length >> qemu_target_page_bits()); 2048 ret = ram_block_discard_range(rb, start, length); 2049 2050 err: 2051 rcu_read_unlock(); 2052 2053 return ret; 2054 } 2055 2056 /* 2057 * For every allocation, we will try not to crash the VM if the 2058 * allocation failed. 2059 */ 2060 static int xbzrle_init(void) 2061 { 2062 Error *local_err = NULL; 2063 2064 if (!migrate_use_xbzrle()) { 2065 return 0; 2066 } 2067 2068 XBZRLE_cache_lock(); 2069 2070 XBZRLE.zero_target_page = g_try_malloc0(TARGET_PAGE_SIZE); 2071 if (!XBZRLE.zero_target_page) { 2072 error_report("%s: Error allocating zero page", __func__); 2073 goto err_out; 2074 } 2075 2076 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size(), 2077 TARGET_PAGE_SIZE, &local_err); 2078 if (!XBZRLE.cache) { 2079 error_report_err(local_err); 2080 goto free_zero_page; 2081 } 2082 2083 XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE); 2084 if (!XBZRLE.encoded_buf) { 2085 error_report("%s: Error allocating encoded_buf", __func__); 2086 goto free_cache; 2087 } 2088 2089 XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE); 2090 if (!XBZRLE.current_buf) { 2091 error_report("%s: Error allocating current_buf", __func__); 2092 goto free_encoded_buf; 2093 } 2094 2095 /* We are all good */ 2096 XBZRLE_cache_unlock(); 2097 return 0; 2098 2099 free_encoded_buf: 2100 g_free(XBZRLE.encoded_buf); 2101 XBZRLE.encoded_buf = NULL; 2102 free_cache: 2103 cache_fini(XBZRLE.cache); 2104 XBZRLE.cache = NULL; 2105 free_zero_page: 2106 g_free(XBZRLE.zero_target_page); 2107 XBZRLE.zero_target_page = NULL; 2108 err_out: 2109 XBZRLE_cache_unlock(); 2110 return -ENOMEM; 2111 } 2112 2113 static int ram_state_init(RAMState **rsp) 2114 { 2115 *rsp = g_try_new0(RAMState, 1); 2116 2117 if (!*rsp) { 2118 error_report("%s: Init ramstate fail", __func__); 2119 return -1; 2120 } 2121 2122 qemu_mutex_init(&(*rsp)->bitmap_mutex); 2123 qemu_mutex_init(&(*rsp)->src_page_req_mutex); 2124 QSIMPLEQ_INIT(&(*rsp)->src_page_requests); 2125 2126 /* 2127 * Count the total number of pages used by ram blocks not including any 2128 * gaps due to alignment or unplugs. 2129 */ 2130 (*rsp)->migration_dirty_pages = ram_bytes_total() >> TARGET_PAGE_BITS; 2131 2132 ram_state_reset(*rsp); 2133 2134 return 0; 2135 } 2136 2137 static void ram_list_init_bitmaps(void) 2138 { 2139 RAMBlock *block; 2140 unsigned long pages; 2141 2142 /* Skip setting bitmap if there is no RAM */ 2143 if (ram_bytes_total()) { 2144 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { 2145 pages = block->max_length >> TARGET_PAGE_BITS; 2146 block->bmap = bitmap_new(pages); 2147 bitmap_set(block->bmap, 0, pages); 2148 if (migrate_postcopy_ram()) { 2149 block->unsentmap = bitmap_new(pages); 2150 bitmap_set(block->unsentmap, 0, pages); 2151 } 2152 } 2153 } 2154 } 2155 2156 static void ram_init_bitmaps(RAMState *rs) 2157 { 2158 /* For memory_global_dirty_log_start below. */ 2159 qemu_mutex_lock_iothread(); 2160 qemu_mutex_lock_ramlist(); 2161 rcu_read_lock(); 2162 2163 ram_list_init_bitmaps(); 2164 memory_global_dirty_log_start(); 2165 migration_bitmap_sync(rs); 2166 2167 rcu_read_unlock(); 2168 qemu_mutex_unlock_ramlist(); 2169 qemu_mutex_unlock_iothread(); 2170 } 2171 2172 static int ram_init_all(RAMState **rsp) 2173 { 2174 if (ram_state_init(rsp)) { 2175 return -1; 2176 } 2177 2178 if (xbzrle_init()) { 2179 ram_state_cleanup(rsp); 2180 return -1; 2181 } 2182 2183 ram_init_bitmaps(*rsp); 2184 2185 return 0; 2186 } 2187 2188 /* 2189 * Each of ram_save_setup, ram_save_iterate and ram_save_complete has 2190 * long-running RCU critical section. When rcu-reclaims in the code 2191 * start to become numerous it will be necessary to reduce the 2192 * granularity of these critical sections. 2193 */ 2194 2195 /** 2196 * ram_save_setup: Setup RAM for migration 2197 * 2198 * Returns zero to indicate success and negative for error 2199 * 2200 * @f: QEMUFile where to send the data 2201 * @opaque: RAMState pointer 2202 */ 2203 static int ram_save_setup(QEMUFile *f, void *opaque) 2204 { 2205 RAMState **rsp = opaque; 2206 RAMBlock *block; 2207 2208 /* migration has already setup the bitmap, reuse it. */ 2209 if (!migration_in_colo_state()) { 2210 if (ram_init_all(rsp) != 0) { 2211 return -1; 2212 } 2213 } 2214 (*rsp)->f = f; 2215 2216 rcu_read_lock(); 2217 2218 qemu_put_be64(f, ram_bytes_total() | RAM_SAVE_FLAG_MEM_SIZE); 2219 2220 RAMBLOCK_FOREACH(block) { 2221 qemu_put_byte(f, strlen(block->idstr)); 2222 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr)); 2223 qemu_put_be64(f, block->used_length); 2224 if (migrate_postcopy_ram() && block->page_size != qemu_host_page_size) { 2225 qemu_put_be64(f, block->page_size); 2226 } 2227 } 2228 2229 rcu_read_unlock(); 2230 compress_threads_save_setup(); 2231 2232 ram_control_before_iterate(f, RAM_CONTROL_SETUP); 2233 ram_control_after_iterate(f, RAM_CONTROL_SETUP); 2234 2235 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 2236 2237 return 0; 2238 } 2239 2240 /** 2241 * ram_save_iterate: iterative stage for migration 2242 * 2243 * Returns zero to indicate success and negative for error 2244 * 2245 * @f: QEMUFile where to send the data 2246 * @opaque: RAMState pointer 2247 */ 2248 static int ram_save_iterate(QEMUFile *f, void *opaque) 2249 { 2250 RAMState **temp = opaque; 2251 RAMState *rs = *temp; 2252 int ret; 2253 int i; 2254 int64_t t0; 2255 int done = 0; 2256 2257 rcu_read_lock(); 2258 if (ram_list.version != rs->last_version) { 2259 ram_state_reset(rs); 2260 } 2261 2262 /* Read version before ram_list.blocks */ 2263 smp_rmb(); 2264 2265 ram_control_before_iterate(f, RAM_CONTROL_ROUND); 2266 2267 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 2268 i = 0; 2269 while ((ret = qemu_file_rate_limit(f)) == 0) { 2270 int pages; 2271 2272 pages = ram_find_and_save_block(rs, false); 2273 /* no more pages to sent */ 2274 if (pages == 0) { 2275 done = 1; 2276 break; 2277 } 2278 rs->iterations++; 2279 2280 /* we want to check in the 1st loop, just in case it was the 1st time 2281 and we had to sync the dirty bitmap. 2282 qemu_get_clock_ns() is a bit expensive, so we only check each some 2283 iterations 2284 */ 2285 if ((i & 63) == 0) { 2286 uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) / 1000000; 2287 if (t1 > MAX_WAIT) { 2288 trace_ram_save_iterate_big_wait(t1, i); 2289 break; 2290 } 2291 } 2292 i++; 2293 } 2294 flush_compressed_data(rs); 2295 rcu_read_unlock(); 2296 2297 /* 2298 * Must occur before EOS (or any QEMUFile operation) 2299 * because of RDMA protocol. 2300 */ 2301 ram_control_after_iterate(f, RAM_CONTROL_ROUND); 2302 2303 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 2304 ram_counters.transferred += 8; 2305 2306 ret = qemu_file_get_error(f); 2307 if (ret < 0) { 2308 return ret; 2309 } 2310 2311 return done; 2312 } 2313 2314 /** 2315 * ram_save_complete: function called to send the remaining amount of ram 2316 * 2317 * Returns zero to indicate success 2318 * 2319 * Called with iothread lock 2320 * 2321 * @f: QEMUFile where to send the data 2322 * @opaque: RAMState pointer 2323 */ 2324 static int ram_save_complete(QEMUFile *f, void *opaque) 2325 { 2326 RAMState **temp = opaque; 2327 RAMState *rs = *temp; 2328 2329 rcu_read_lock(); 2330 2331 if (!migration_in_postcopy()) { 2332 migration_bitmap_sync(rs); 2333 } 2334 2335 ram_control_before_iterate(f, RAM_CONTROL_FINISH); 2336 2337 /* try transferring iterative blocks of memory */ 2338 2339 /* flush all remaining blocks regardless of rate limiting */ 2340 while (true) { 2341 int pages; 2342 2343 pages = ram_find_and_save_block(rs, !migration_in_colo_state()); 2344 /* no more blocks to sent */ 2345 if (pages == 0) { 2346 break; 2347 } 2348 } 2349 2350 flush_compressed_data(rs); 2351 ram_control_after_iterate(f, RAM_CONTROL_FINISH); 2352 2353 rcu_read_unlock(); 2354 2355 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 2356 2357 return 0; 2358 } 2359 2360 static void ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size, 2361 uint64_t *non_postcopiable_pending, 2362 uint64_t *postcopiable_pending) 2363 { 2364 RAMState **temp = opaque; 2365 RAMState *rs = *temp; 2366 uint64_t remaining_size; 2367 2368 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE; 2369 2370 if (!migration_in_postcopy() && 2371 remaining_size < max_size) { 2372 qemu_mutex_lock_iothread(); 2373 rcu_read_lock(); 2374 migration_bitmap_sync(rs); 2375 rcu_read_unlock(); 2376 qemu_mutex_unlock_iothread(); 2377 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE; 2378 } 2379 2380 if (migrate_postcopy_ram()) { 2381 /* We can do postcopy, and all the data is postcopiable */ 2382 *postcopiable_pending += remaining_size; 2383 } else { 2384 *non_postcopiable_pending += remaining_size; 2385 } 2386 } 2387 2388 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host) 2389 { 2390 unsigned int xh_len; 2391 int xh_flags; 2392 uint8_t *loaded_data; 2393 2394 /* extract RLE header */ 2395 xh_flags = qemu_get_byte(f); 2396 xh_len = qemu_get_be16(f); 2397 2398 if (xh_flags != ENCODING_FLAG_XBZRLE) { 2399 error_report("Failed to load XBZRLE page - wrong compression!"); 2400 return -1; 2401 } 2402 2403 if (xh_len > TARGET_PAGE_SIZE) { 2404 error_report("Failed to load XBZRLE page - len overflow!"); 2405 return -1; 2406 } 2407 loaded_data = XBZRLE.decoded_buf; 2408 /* load data and decode */ 2409 /* it can change loaded_data to point to an internal buffer */ 2410 qemu_get_buffer_in_place(f, &loaded_data, xh_len); 2411 2412 /* decode RLE */ 2413 if (xbzrle_decode_buffer(loaded_data, xh_len, host, 2414 TARGET_PAGE_SIZE) == -1) { 2415 error_report("Failed to load XBZRLE page - decode error!"); 2416 return -1; 2417 } 2418 2419 return 0; 2420 } 2421 2422 /** 2423 * ram_block_from_stream: read a RAMBlock id from the migration stream 2424 * 2425 * Must be called from within a rcu critical section. 2426 * 2427 * Returns a pointer from within the RCU-protected ram_list. 2428 * 2429 * @f: QEMUFile where to read the data from 2430 * @flags: Page flags (mostly to see if it's a continuation of previous block) 2431 */ 2432 static inline RAMBlock *ram_block_from_stream(QEMUFile *f, int flags) 2433 { 2434 static RAMBlock *block = NULL; 2435 char id[256]; 2436 uint8_t len; 2437 2438 if (flags & RAM_SAVE_FLAG_CONTINUE) { 2439 if (!block) { 2440 error_report("Ack, bad migration stream!"); 2441 return NULL; 2442 } 2443 return block; 2444 } 2445 2446 len = qemu_get_byte(f); 2447 qemu_get_buffer(f, (uint8_t *)id, len); 2448 id[len] = 0; 2449 2450 block = qemu_ram_block_by_name(id); 2451 if (!block) { 2452 error_report("Can't find block %s", id); 2453 return NULL; 2454 } 2455 2456 return block; 2457 } 2458 2459 static inline void *host_from_ram_block_offset(RAMBlock *block, 2460 ram_addr_t offset) 2461 { 2462 if (!offset_in_ramblock(block, offset)) { 2463 return NULL; 2464 } 2465 2466 return block->host + offset; 2467 } 2468 2469 /** 2470 * ram_handle_compressed: handle the zero page case 2471 * 2472 * If a page (or a whole RDMA chunk) has been 2473 * determined to be zero, then zap it. 2474 * 2475 * @host: host address for the zero page 2476 * @ch: what the page is filled from. We only support zero 2477 * @size: size of the zero page 2478 */ 2479 void ram_handle_compressed(void *host, uint8_t ch, uint64_t size) 2480 { 2481 if (ch != 0 || !is_zero_range(host, size)) { 2482 memset(host, ch, size); 2483 } 2484 } 2485 2486 static void *do_data_decompress(void *opaque) 2487 { 2488 DecompressParam *param = opaque; 2489 unsigned long pagesize; 2490 uint8_t *des; 2491 int len; 2492 2493 qemu_mutex_lock(¶m->mutex); 2494 while (!param->quit) { 2495 if (param->des) { 2496 des = param->des; 2497 len = param->len; 2498 param->des = 0; 2499 qemu_mutex_unlock(¶m->mutex); 2500 2501 pagesize = TARGET_PAGE_SIZE; 2502 /* uncompress() will return failed in some case, especially 2503 * when the page is dirted when doing the compression, it's 2504 * not a problem because the dirty page will be retransferred 2505 * and uncompress() won't break the data in other pages. 2506 */ 2507 uncompress((Bytef *)des, &pagesize, 2508 (const Bytef *)param->compbuf, len); 2509 2510 qemu_mutex_lock(&decomp_done_lock); 2511 param->done = true; 2512 qemu_cond_signal(&decomp_done_cond); 2513 qemu_mutex_unlock(&decomp_done_lock); 2514 2515 qemu_mutex_lock(¶m->mutex); 2516 } else { 2517 qemu_cond_wait(¶m->cond, ¶m->mutex); 2518 } 2519 } 2520 qemu_mutex_unlock(¶m->mutex); 2521 2522 return NULL; 2523 } 2524 2525 static void wait_for_decompress_done(void) 2526 { 2527 int idx, thread_count; 2528 2529 if (!migrate_use_compression()) { 2530 return; 2531 } 2532 2533 thread_count = migrate_decompress_threads(); 2534 qemu_mutex_lock(&decomp_done_lock); 2535 for (idx = 0; idx < thread_count; idx++) { 2536 while (!decomp_param[idx].done) { 2537 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock); 2538 } 2539 } 2540 qemu_mutex_unlock(&decomp_done_lock); 2541 } 2542 2543 static void compress_threads_load_setup(void) 2544 { 2545 int i, thread_count; 2546 2547 if (!migrate_use_compression()) { 2548 return; 2549 } 2550 thread_count = migrate_decompress_threads(); 2551 decompress_threads = g_new0(QemuThread, thread_count); 2552 decomp_param = g_new0(DecompressParam, thread_count); 2553 qemu_mutex_init(&decomp_done_lock); 2554 qemu_cond_init(&decomp_done_cond); 2555 for (i = 0; i < thread_count; i++) { 2556 qemu_mutex_init(&decomp_param[i].mutex); 2557 qemu_cond_init(&decomp_param[i].cond); 2558 decomp_param[i].compbuf = g_malloc0(compressBound(TARGET_PAGE_SIZE)); 2559 decomp_param[i].done = true; 2560 decomp_param[i].quit = false; 2561 qemu_thread_create(decompress_threads + i, "decompress", 2562 do_data_decompress, decomp_param + i, 2563 QEMU_THREAD_JOINABLE); 2564 } 2565 } 2566 2567 static void compress_threads_load_cleanup(void) 2568 { 2569 int i, thread_count; 2570 2571 if (!migrate_use_compression()) { 2572 return; 2573 } 2574 thread_count = migrate_decompress_threads(); 2575 for (i = 0; i < thread_count; i++) { 2576 qemu_mutex_lock(&decomp_param[i].mutex); 2577 decomp_param[i].quit = true; 2578 qemu_cond_signal(&decomp_param[i].cond); 2579 qemu_mutex_unlock(&decomp_param[i].mutex); 2580 } 2581 for (i = 0; i < thread_count; i++) { 2582 qemu_thread_join(decompress_threads + i); 2583 qemu_mutex_destroy(&decomp_param[i].mutex); 2584 qemu_cond_destroy(&decomp_param[i].cond); 2585 g_free(decomp_param[i].compbuf); 2586 } 2587 g_free(decompress_threads); 2588 g_free(decomp_param); 2589 decompress_threads = NULL; 2590 decomp_param = NULL; 2591 } 2592 2593 static void decompress_data_with_multi_threads(QEMUFile *f, 2594 void *host, int len) 2595 { 2596 int idx, thread_count; 2597 2598 thread_count = migrate_decompress_threads(); 2599 qemu_mutex_lock(&decomp_done_lock); 2600 while (true) { 2601 for (idx = 0; idx < thread_count; idx++) { 2602 if (decomp_param[idx].done) { 2603 decomp_param[idx].done = false; 2604 qemu_mutex_lock(&decomp_param[idx].mutex); 2605 qemu_get_buffer(f, decomp_param[idx].compbuf, len); 2606 decomp_param[idx].des = host; 2607 decomp_param[idx].len = len; 2608 qemu_cond_signal(&decomp_param[idx].cond); 2609 qemu_mutex_unlock(&decomp_param[idx].mutex); 2610 break; 2611 } 2612 } 2613 if (idx < thread_count) { 2614 break; 2615 } else { 2616 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock); 2617 } 2618 } 2619 qemu_mutex_unlock(&decomp_done_lock); 2620 } 2621 2622 /** 2623 * ram_load_setup: Setup RAM for migration incoming side 2624 * 2625 * Returns zero to indicate success and negative for error 2626 * 2627 * @f: QEMUFile where to receive the data 2628 * @opaque: RAMState pointer 2629 */ 2630 static int ram_load_setup(QEMUFile *f, void *opaque) 2631 { 2632 xbzrle_load_setup(); 2633 compress_threads_load_setup(); 2634 ramblock_recv_map_init(); 2635 return 0; 2636 } 2637 2638 static int ram_load_cleanup(void *opaque) 2639 { 2640 RAMBlock *rb; 2641 xbzrle_load_cleanup(); 2642 compress_threads_load_cleanup(); 2643 2644 RAMBLOCK_FOREACH(rb) { 2645 g_free(rb->receivedmap); 2646 rb->receivedmap = NULL; 2647 } 2648 return 0; 2649 } 2650 2651 /** 2652 * ram_postcopy_incoming_init: allocate postcopy data structures 2653 * 2654 * Returns 0 for success and negative if there was one error 2655 * 2656 * @mis: current migration incoming state 2657 * 2658 * Allocate data structures etc needed by incoming migration with 2659 * postcopy-ram. postcopy-ram's similarly names 2660 * postcopy_ram_incoming_init does the work. 2661 */ 2662 int ram_postcopy_incoming_init(MigrationIncomingState *mis) 2663 { 2664 unsigned long ram_pages = last_ram_page(); 2665 2666 return postcopy_ram_incoming_init(mis, ram_pages); 2667 } 2668 2669 /** 2670 * ram_load_postcopy: load a page in postcopy case 2671 * 2672 * Returns 0 for success or -errno in case of error 2673 * 2674 * Called in postcopy mode by ram_load(). 2675 * rcu_read_lock is taken prior to this being called. 2676 * 2677 * @f: QEMUFile where to send the data 2678 */ 2679 static int ram_load_postcopy(QEMUFile *f) 2680 { 2681 int flags = 0, ret = 0; 2682 bool place_needed = false; 2683 bool matching_page_sizes = false; 2684 MigrationIncomingState *mis = migration_incoming_get_current(); 2685 /* Temporary page that is later 'placed' */ 2686 void *postcopy_host_page = postcopy_get_tmp_page(mis); 2687 void *last_host = NULL; 2688 bool all_zero = false; 2689 2690 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) { 2691 ram_addr_t addr; 2692 void *host = NULL; 2693 void *page_buffer = NULL; 2694 void *place_source = NULL; 2695 RAMBlock *block = NULL; 2696 uint8_t ch; 2697 2698 addr = qemu_get_be64(f); 2699 flags = addr & ~TARGET_PAGE_MASK; 2700 addr &= TARGET_PAGE_MASK; 2701 2702 trace_ram_load_postcopy_loop((uint64_t)addr, flags); 2703 place_needed = false; 2704 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE)) { 2705 block = ram_block_from_stream(f, flags); 2706 2707 host = host_from_ram_block_offset(block, addr); 2708 if (!host) { 2709 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr); 2710 ret = -EINVAL; 2711 break; 2712 } 2713 matching_page_sizes = block->page_size == TARGET_PAGE_SIZE; 2714 /* 2715 * Postcopy requires that we place whole host pages atomically; 2716 * these may be huge pages for RAMBlocks that are backed by 2717 * hugetlbfs. 2718 * To make it atomic, the data is read into a temporary page 2719 * that's moved into place later. 2720 * The migration protocol uses, possibly smaller, target-pages 2721 * however the source ensures it always sends all the components 2722 * of a host page in order. 2723 */ 2724 page_buffer = postcopy_host_page + 2725 ((uintptr_t)host & (block->page_size - 1)); 2726 /* If all TP are zero then we can optimise the place */ 2727 if (!((uintptr_t)host & (block->page_size - 1))) { 2728 all_zero = true; 2729 } else { 2730 /* not the 1st TP within the HP */ 2731 if (host != (last_host + TARGET_PAGE_SIZE)) { 2732 error_report("Non-sequential target page %p/%p", 2733 host, last_host); 2734 ret = -EINVAL; 2735 break; 2736 } 2737 } 2738 2739 2740 /* 2741 * If it's the last part of a host page then we place the host 2742 * page 2743 */ 2744 place_needed = (((uintptr_t)host + TARGET_PAGE_SIZE) & 2745 (block->page_size - 1)) == 0; 2746 place_source = postcopy_host_page; 2747 } 2748 last_host = host; 2749 2750 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) { 2751 case RAM_SAVE_FLAG_ZERO: 2752 ch = qemu_get_byte(f); 2753 memset(page_buffer, ch, TARGET_PAGE_SIZE); 2754 if (ch) { 2755 all_zero = false; 2756 } 2757 break; 2758 2759 case RAM_SAVE_FLAG_PAGE: 2760 all_zero = false; 2761 if (!place_needed || !matching_page_sizes) { 2762 qemu_get_buffer(f, page_buffer, TARGET_PAGE_SIZE); 2763 } else { 2764 /* Avoids the qemu_file copy during postcopy, which is 2765 * going to do a copy later; can only do it when we 2766 * do this read in one go (matching page sizes) 2767 */ 2768 qemu_get_buffer_in_place(f, (uint8_t **)&place_source, 2769 TARGET_PAGE_SIZE); 2770 } 2771 break; 2772 case RAM_SAVE_FLAG_EOS: 2773 /* normal exit */ 2774 break; 2775 default: 2776 error_report("Unknown combination of migration flags: %#x" 2777 " (postcopy mode)", flags); 2778 ret = -EINVAL; 2779 } 2780 2781 if (place_needed) { 2782 /* This gets called at the last target page in the host page */ 2783 void *place_dest = host + TARGET_PAGE_SIZE - block->page_size; 2784 2785 if (all_zero) { 2786 ret = postcopy_place_page_zero(mis, place_dest, 2787 block); 2788 } else { 2789 ret = postcopy_place_page(mis, place_dest, 2790 place_source, block); 2791 } 2792 } 2793 if (!ret) { 2794 ret = qemu_file_get_error(f); 2795 } 2796 } 2797 2798 return ret; 2799 } 2800 2801 static bool postcopy_is_advised(void) 2802 { 2803 PostcopyState ps = postcopy_state_get(); 2804 return ps >= POSTCOPY_INCOMING_ADVISE && ps < POSTCOPY_INCOMING_END; 2805 } 2806 2807 static bool postcopy_is_running(void) 2808 { 2809 PostcopyState ps = postcopy_state_get(); 2810 return ps >= POSTCOPY_INCOMING_LISTENING && ps < POSTCOPY_INCOMING_END; 2811 } 2812 2813 static int ram_load(QEMUFile *f, void *opaque, int version_id) 2814 { 2815 int flags = 0, ret = 0, invalid_flags = 0; 2816 static uint64_t seq_iter; 2817 int len = 0; 2818 /* 2819 * If system is running in postcopy mode, page inserts to host memory must 2820 * be atomic 2821 */ 2822 bool postcopy_running = postcopy_is_running(); 2823 /* ADVISE is earlier, it shows the source has the postcopy capability on */ 2824 bool postcopy_advised = postcopy_is_advised(); 2825 2826 seq_iter++; 2827 2828 if (version_id != 4) { 2829 ret = -EINVAL; 2830 } 2831 2832 if (!migrate_use_compression()) { 2833 invalid_flags |= RAM_SAVE_FLAG_COMPRESS_PAGE; 2834 } 2835 /* This RCU critical section can be very long running. 2836 * When RCU reclaims in the code start to become numerous, 2837 * it will be necessary to reduce the granularity of this 2838 * critical section. 2839 */ 2840 rcu_read_lock(); 2841 2842 if (postcopy_running) { 2843 ret = ram_load_postcopy(f); 2844 } 2845 2846 while (!postcopy_running && !ret && !(flags & RAM_SAVE_FLAG_EOS)) { 2847 ram_addr_t addr, total_ram_bytes; 2848 void *host = NULL; 2849 uint8_t ch; 2850 2851 addr = qemu_get_be64(f); 2852 flags = addr & ~TARGET_PAGE_MASK; 2853 addr &= TARGET_PAGE_MASK; 2854 2855 if (flags & invalid_flags) { 2856 if (flags & invalid_flags & RAM_SAVE_FLAG_COMPRESS_PAGE) { 2857 error_report("Received an unexpected compressed page"); 2858 } 2859 2860 ret = -EINVAL; 2861 break; 2862 } 2863 2864 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE | 2865 RAM_SAVE_FLAG_COMPRESS_PAGE | RAM_SAVE_FLAG_XBZRLE)) { 2866 RAMBlock *block = ram_block_from_stream(f, flags); 2867 2868 host = host_from_ram_block_offset(block, addr); 2869 if (!host) { 2870 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr); 2871 ret = -EINVAL; 2872 break; 2873 } 2874 ramblock_recv_bitmap_set(block, host); 2875 trace_ram_load_loop(block->idstr, (uint64_t)addr, flags, host); 2876 } 2877 2878 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) { 2879 case RAM_SAVE_FLAG_MEM_SIZE: 2880 /* Synchronize RAM block list */ 2881 total_ram_bytes = addr; 2882 while (!ret && total_ram_bytes) { 2883 RAMBlock *block; 2884 char id[256]; 2885 ram_addr_t length; 2886 2887 len = qemu_get_byte(f); 2888 qemu_get_buffer(f, (uint8_t *)id, len); 2889 id[len] = 0; 2890 length = qemu_get_be64(f); 2891 2892 block = qemu_ram_block_by_name(id); 2893 if (block) { 2894 if (length != block->used_length) { 2895 Error *local_err = NULL; 2896 2897 ret = qemu_ram_resize(block, length, 2898 &local_err); 2899 if (local_err) { 2900 error_report_err(local_err); 2901 } 2902 } 2903 /* For postcopy we need to check hugepage sizes match */ 2904 if (postcopy_advised && 2905 block->page_size != qemu_host_page_size) { 2906 uint64_t remote_page_size = qemu_get_be64(f); 2907 if (remote_page_size != block->page_size) { 2908 error_report("Mismatched RAM page size %s " 2909 "(local) %zd != %" PRId64, 2910 id, block->page_size, 2911 remote_page_size); 2912 ret = -EINVAL; 2913 } 2914 } 2915 ram_control_load_hook(f, RAM_CONTROL_BLOCK_REG, 2916 block->idstr); 2917 } else { 2918 error_report("Unknown ramblock \"%s\", cannot " 2919 "accept migration", id); 2920 ret = -EINVAL; 2921 } 2922 2923 total_ram_bytes -= length; 2924 } 2925 break; 2926 2927 case RAM_SAVE_FLAG_ZERO: 2928 ch = qemu_get_byte(f); 2929 ram_handle_compressed(host, ch, TARGET_PAGE_SIZE); 2930 break; 2931 2932 case RAM_SAVE_FLAG_PAGE: 2933 qemu_get_buffer(f, host, TARGET_PAGE_SIZE); 2934 break; 2935 2936 case RAM_SAVE_FLAG_COMPRESS_PAGE: 2937 len = qemu_get_be32(f); 2938 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) { 2939 error_report("Invalid compressed data length: %d", len); 2940 ret = -EINVAL; 2941 break; 2942 } 2943 decompress_data_with_multi_threads(f, host, len); 2944 break; 2945 2946 case RAM_SAVE_FLAG_XBZRLE: 2947 if (load_xbzrle(f, addr, host) < 0) { 2948 error_report("Failed to decompress XBZRLE page at " 2949 RAM_ADDR_FMT, addr); 2950 ret = -EINVAL; 2951 break; 2952 } 2953 break; 2954 case RAM_SAVE_FLAG_EOS: 2955 /* normal exit */ 2956 break; 2957 default: 2958 if (flags & RAM_SAVE_FLAG_HOOK) { 2959 ram_control_load_hook(f, RAM_CONTROL_HOOK, NULL); 2960 } else { 2961 error_report("Unknown combination of migration flags: %#x", 2962 flags); 2963 ret = -EINVAL; 2964 } 2965 } 2966 if (!ret) { 2967 ret = qemu_file_get_error(f); 2968 } 2969 } 2970 2971 wait_for_decompress_done(); 2972 rcu_read_unlock(); 2973 trace_ram_load_complete(ret, seq_iter); 2974 return ret; 2975 } 2976 2977 static bool ram_has_postcopy(void *opaque) 2978 { 2979 return migrate_postcopy_ram(); 2980 } 2981 2982 static SaveVMHandlers savevm_ram_handlers = { 2983 .save_setup = ram_save_setup, 2984 .save_live_iterate = ram_save_iterate, 2985 .save_live_complete_postcopy = ram_save_complete, 2986 .save_live_complete_precopy = ram_save_complete, 2987 .has_postcopy = ram_has_postcopy, 2988 .save_live_pending = ram_save_pending, 2989 .load_state = ram_load, 2990 .save_cleanup = ram_save_cleanup, 2991 .load_setup = ram_load_setup, 2992 .load_cleanup = ram_load_cleanup, 2993 }; 2994 2995 void ram_mig_init(void) 2996 { 2997 qemu_mutex_init(&XBZRLE.lock); 2998 register_savevm_live(NULL, "ram", 0, 4, &savevm_ram_handlers, &ram_state); 2999 } 3000