1 /* 2 * QEMU System Emulator 3 * 4 * Copyright (c) 2003-2008 Fabrice Bellard 5 * Copyright (c) 2011-2015 Red Hat Inc 6 * 7 * Authors: 8 * Juan Quintela <quintela@redhat.com> 9 * 10 * Permission is hereby granted, free of charge, to any person obtaining a copy 11 * of this software and associated documentation files (the "Software"), to deal 12 * in the Software without restriction, including without limitation the rights 13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 14 * copies of the Software, and to permit persons to whom the Software is 15 * furnished to do so, subject to the following conditions: 16 * 17 * The above copyright notice and this permission notice shall be included in 18 * all copies or substantial portions of the Software. 19 * 20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 26 * THE SOFTWARE. 27 */ 28 29 #include "qemu/osdep.h" 30 #include "cpu.h" 31 #include <zlib.h> 32 #include "qemu/cutils.h" 33 #include "qemu/bitops.h" 34 #include "qemu/bitmap.h" 35 #include "qemu/main-loop.h" 36 #include "qemu/pmem.h" 37 #include "xbzrle.h" 38 #include "ram.h" 39 #include "migration.h" 40 #include "socket.h" 41 #include "migration/register.h" 42 #include "migration/misc.h" 43 #include "qemu-file.h" 44 #include "postcopy-ram.h" 45 #include "page_cache.h" 46 #include "qemu/error-report.h" 47 #include "qapi/error.h" 48 #include "qapi/qapi-events-migration.h" 49 #include "qapi/qmp/qerror.h" 50 #include "trace.h" 51 #include "exec/ram_addr.h" 52 #include "exec/target_page.h" 53 #include "qemu/rcu_queue.h" 54 #include "migration/colo.h" 55 #include "block.h" 56 #include "sysemu/sysemu.h" 57 #include "qemu/uuid.h" 58 #include "savevm.h" 59 #include "qemu/iov.h" 60 61 /***********************************************************/ 62 /* ram save/restore */ 63 64 /* RAM_SAVE_FLAG_ZERO used to be named RAM_SAVE_FLAG_COMPRESS, it 65 * worked for pages that where filled with the same char. We switched 66 * it to only search for the zero value. And to avoid confusion with 67 * RAM_SSAVE_FLAG_COMPRESS_PAGE just rename it. 68 */ 69 70 #define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */ 71 #define RAM_SAVE_FLAG_ZERO 0x02 72 #define RAM_SAVE_FLAG_MEM_SIZE 0x04 73 #define RAM_SAVE_FLAG_PAGE 0x08 74 #define RAM_SAVE_FLAG_EOS 0x10 75 #define RAM_SAVE_FLAG_CONTINUE 0x20 76 #define RAM_SAVE_FLAG_XBZRLE 0x40 77 /* 0x80 is reserved in migration.h start with 0x100 next */ 78 #define RAM_SAVE_FLAG_COMPRESS_PAGE 0x100 79 80 static inline bool is_zero_range(uint8_t *p, uint64_t size) 81 { 82 return buffer_is_zero(p, size); 83 } 84 85 XBZRLECacheStats xbzrle_counters; 86 87 /* struct contains XBZRLE cache and a static page 88 used by the compression */ 89 static struct { 90 /* buffer used for XBZRLE encoding */ 91 uint8_t *encoded_buf; 92 /* buffer for storing page content */ 93 uint8_t *current_buf; 94 /* Cache for XBZRLE, Protected by lock. */ 95 PageCache *cache; 96 QemuMutex lock; 97 /* it will store a page full of zeros */ 98 uint8_t *zero_target_page; 99 /* buffer used for XBZRLE decoding */ 100 uint8_t *decoded_buf; 101 } XBZRLE; 102 103 static void XBZRLE_cache_lock(void) 104 { 105 if (migrate_use_xbzrle()) 106 qemu_mutex_lock(&XBZRLE.lock); 107 } 108 109 static void XBZRLE_cache_unlock(void) 110 { 111 if (migrate_use_xbzrle()) 112 qemu_mutex_unlock(&XBZRLE.lock); 113 } 114 115 /** 116 * xbzrle_cache_resize: resize the xbzrle cache 117 * 118 * This function is called from qmp_migrate_set_cache_size in main 119 * thread, possibly while a migration is in progress. A running 120 * migration may be using the cache and might finish during this call, 121 * hence changes to the cache are protected by XBZRLE.lock(). 122 * 123 * Returns 0 for success or -1 for error 124 * 125 * @new_size: new cache size 126 * @errp: set *errp if the check failed, with reason 127 */ 128 int xbzrle_cache_resize(int64_t new_size, Error **errp) 129 { 130 PageCache *new_cache; 131 int64_t ret = 0; 132 133 /* Check for truncation */ 134 if (new_size != (size_t)new_size) { 135 error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cache size", 136 "exceeding address space"); 137 return -1; 138 } 139 140 if (new_size == migrate_xbzrle_cache_size()) { 141 /* nothing to do */ 142 return 0; 143 } 144 145 XBZRLE_cache_lock(); 146 147 if (XBZRLE.cache != NULL) { 148 new_cache = cache_init(new_size, TARGET_PAGE_SIZE, errp); 149 if (!new_cache) { 150 ret = -1; 151 goto out; 152 } 153 154 cache_fini(XBZRLE.cache); 155 XBZRLE.cache = new_cache; 156 } 157 out: 158 XBZRLE_cache_unlock(); 159 return ret; 160 } 161 162 /* Should be holding either ram_list.mutex, or the RCU lock. */ 163 #define RAMBLOCK_FOREACH_MIGRATABLE(block) \ 164 INTERNAL_RAMBLOCK_FOREACH(block) \ 165 if (!qemu_ram_is_migratable(block)) {} else 166 167 #undef RAMBLOCK_FOREACH 168 169 static void ramblock_recv_map_init(void) 170 { 171 RAMBlock *rb; 172 173 RAMBLOCK_FOREACH_MIGRATABLE(rb) { 174 assert(!rb->receivedmap); 175 rb->receivedmap = bitmap_new(rb->max_length >> qemu_target_page_bits()); 176 } 177 } 178 179 int ramblock_recv_bitmap_test(RAMBlock *rb, void *host_addr) 180 { 181 return test_bit(ramblock_recv_bitmap_offset(host_addr, rb), 182 rb->receivedmap); 183 } 184 185 bool ramblock_recv_bitmap_test_byte_offset(RAMBlock *rb, uint64_t byte_offset) 186 { 187 return test_bit(byte_offset >> TARGET_PAGE_BITS, rb->receivedmap); 188 } 189 190 void ramblock_recv_bitmap_set(RAMBlock *rb, void *host_addr) 191 { 192 set_bit_atomic(ramblock_recv_bitmap_offset(host_addr, rb), rb->receivedmap); 193 } 194 195 void ramblock_recv_bitmap_set_range(RAMBlock *rb, void *host_addr, 196 size_t nr) 197 { 198 bitmap_set_atomic(rb->receivedmap, 199 ramblock_recv_bitmap_offset(host_addr, rb), 200 nr); 201 } 202 203 #define RAMBLOCK_RECV_BITMAP_ENDING (0x0123456789abcdefULL) 204 205 /* 206 * Format: bitmap_size (8 bytes) + whole_bitmap (N bytes). 207 * 208 * Returns >0 if success with sent bytes, or <0 if error. 209 */ 210 int64_t ramblock_recv_bitmap_send(QEMUFile *file, 211 const char *block_name) 212 { 213 RAMBlock *block = qemu_ram_block_by_name(block_name); 214 unsigned long *le_bitmap, nbits; 215 uint64_t size; 216 217 if (!block) { 218 error_report("%s: invalid block name: %s", __func__, block_name); 219 return -1; 220 } 221 222 nbits = block->used_length >> TARGET_PAGE_BITS; 223 224 /* 225 * Make sure the tmp bitmap buffer is big enough, e.g., on 32bit 226 * machines we may need 4 more bytes for padding (see below 227 * comment). So extend it a bit before hand. 228 */ 229 le_bitmap = bitmap_new(nbits + BITS_PER_LONG); 230 231 /* 232 * Always use little endian when sending the bitmap. This is 233 * required that when source and destination VMs are not using the 234 * same endianess. (Note: big endian won't work.) 235 */ 236 bitmap_to_le(le_bitmap, block->receivedmap, nbits); 237 238 /* Size of the bitmap, in bytes */ 239 size = DIV_ROUND_UP(nbits, 8); 240 241 /* 242 * size is always aligned to 8 bytes for 64bit machines, but it 243 * may not be true for 32bit machines. We need this padding to 244 * make sure the migration can survive even between 32bit and 245 * 64bit machines. 246 */ 247 size = ROUND_UP(size, 8); 248 249 qemu_put_be64(file, size); 250 qemu_put_buffer(file, (const uint8_t *)le_bitmap, size); 251 /* 252 * Mark as an end, in case the middle part is screwed up due to 253 * some "misterious" reason. 254 */ 255 qemu_put_be64(file, RAMBLOCK_RECV_BITMAP_ENDING); 256 qemu_fflush(file); 257 258 g_free(le_bitmap); 259 260 if (qemu_file_get_error(file)) { 261 return qemu_file_get_error(file); 262 } 263 264 return size + sizeof(size); 265 } 266 267 /* 268 * An outstanding page request, on the source, having been received 269 * and queued 270 */ 271 struct RAMSrcPageRequest { 272 RAMBlock *rb; 273 hwaddr offset; 274 hwaddr len; 275 276 QSIMPLEQ_ENTRY(RAMSrcPageRequest) next_req; 277 }; 278 279 /* State of RAM for migration */ 280 struct RAMState { 281 /* QEMUFile used for this migration */ 282 QEMUFile *f; 283 /* Last block that we have visited searching for dirty pages */ 284 RAMBlock *last_seen_block; 285 /* Last block from where we have sent data */ 286 RAMBlock *last_sent_block; 287 /* Last dirty target page we have sent */ 288 ram_addr_t last_page; 289 /* last ram version we have seen */ 290 uint32_t last_version; 291 /* We are in the first round */ 292 bool ram_bulk_stage; 293 /* How many times we have dirty too many pages */ 294 int dirty_rate_high_cnt; 295 /* these variables are used for bitmap sync */ 296 /* last time we did a full bitmap_sync */ 297 int64_t time_last_bitmap_sync; 298 /* bytes transferred at start_time */ 299 uint64_t bytes_xfer_prev; 300 /* number of dirty pages since start_time */ 301 uint64_t num_dirty_pages_period; 302 /* xbzrle misses since the beginning of the period */ 303 uint64_t xbzrle_cache_miss_prev; 304 305 /* compression statistics since the beginning of the period */ 306 /* amount of count that no free thread to compress data */ 307 uint64_t compress_thread_busy_prev; 308 /* amount bytes after compression */ 309 uint64_t compressed_size_prev; 310 /* amount of compressed pages */ 311 uint64_t compress_pages_prev; 312 313 /* total handled target pages at the beginning of period */ 314 uint64_t target_page_count_prev; 315 /* total handled target pages since start */ 316 uint64_t target_page_count; 317 /* number of dirty bits in the bitmap */ 318 uint64_t migration_dirty_pages; 319 /* protects modification of the bitmap */ 320 QemuMutex bitmap_mutex; 321 /* The RAMBlock used in the last src_page_requests */ 322 RAMBlock *last_req_rb; 323 /* Queue of outstanding page requests from the destination */ 324 QemuMutex src_page_req_mutex; 325 QSIMPLEQ_HEAD(, RAMSrcPageRequest) src_page_requests; 326 }; 327 typedef struct RAMState RAMState; 328 329 static RAMState *ram_state; 330 331 uint64_t ram_bytes_remaining(void) 332 { 333 return ram_state ? (ram_state->migration_dirty_pages * TARGET_PAGE_SIZE) : 334 0; 335 } 336 337 MigrationStats ram_counters; 338 339 /* used by the search for pages to send */ 340 struct PageSearchStatus { 341 /* Current block being searched */ 342 RAMBlock *block; 343 /* Current page to search from */ 344 unsigned long page; 345 /* Set once we wrap around */ 346 bool complete_round; 347 }; 348 typedef struct PageSearchStatus PageSearchStatus; 349 350 CompressionStats compression_counters; 351 352 struct CompressParam { 353 bool done; 354 bool quit; 355 bool zero_page; 356 QEMUFile *file; 357 QemuMutex mutex; 358 QemuCond cond; 359 RAMBlock *block; 360 ram_addr_t offset; 361 362 /* internally used fields */ 363 z_stream stream; 364 uint8_t *originbuf; 365 }; 366 typedef struct CompressParam CompressParam; 367 368 struct DecompressParam { 369 bool done; 370 bool quit; 371 QemuMutex mutex; 372 QemuCond cond; 373 void *des; 374 uint8_t *compbuf; 375 int len; 376 z_stream stream; 377 }; 378 typedef struct DecompressParam DecompressParam; 379 380 static CompressParam *comp_param; 381 static QemuThread *compress_threads; 382 /* comp_done_cond is used to wake up the migration thread when 383 * one of the compression threads has finished the compression. 384 * comp_done_lock is used to co-work with comp_done_cond. 385 */ 386 static QemuMutex comp_done_lock; 387 static QemuCond comp_done_cond; 388 /* The empty QEMUFileOps will be used by file in CompressParam */ 389 static const QEMUFileOps empty_ops = { }; 390 391 static QEMUFile *decomp_file; 392 static DecompressParam *decomp_param; 393 static QemuThread *decompress_threads; 394 static QemuMutex decomp_done_lock; 395 static QemuCond decomp_done_cond; 396 397 static bool do_compress_ram_page(QEMUFile *f, z_stream *stream, RAMBlock *block, 398 ram_addr_t offset, uint8_t *source_buf); 399 400 static void *do_data_compress(void *opaque) 401 { 402 CompressParam *param = opaque; 403 RAMBlock *block; 404 ram_addr_t offset; 405 bool zero_page; 406 407 qemu_mutex_lock(¶m->mutex); 408 while (!param->quit) { 409 if (param->block) { 410 block = param->block; 411 offset = param->offset; 412 param->block = NULL; 413 qemu_mutex_unlock(¶m->mutex); 414 415 zero_page = do_compress_ram_page(param->file, ¶m->stream, 416 block, offset, param->originbuf); 417 418 qemu_mutex_lock(&comp_done_lock); 419 param->done = true; 420 param->zero_page = zero_page; 421 qemu_cond_signal(&comp_done_cond); 422 qemu_mutex_unlock(&comp_done_lock); 423 424 qemu_mutex_lock(¶m->mutex); 425 } else { 426 qemu_cond_wait(¶m->cond, ¶m->mutex); 427 } 428 } 429 qemu_mutex_unlock(¶m->mutex); 430 431 return NULL; 432 } 433 434 static void compress_threads_save_cleanup(void) 435 { 436 int i, thread_count; 437 438 if (!migrate_use_compression() || !comp_param) { 439 return; 440 } 441 442 thread_count = migrate_compress_threads(); 443 for (i = 0; i < thread_count; i++) { 444 /* 445 * we use it as a indicator which shows if the thread is 446 * properly init'd or not 447 */ 448 if (!comp_param[i].file) { 449 break; 450 } 451 452 qemu_mutex_lock(&comp_param[i].mutex); 453 comp_param[i].quit = true; 454 qemu_cond_signal(&comp_param[i].cond); 455 qemu_mutex_unlock(&comp_param[i].mutex); 456 457 qemu_thread_join(compress_threads + i); 458 qemu_mutex_destroy(&comp_param[i].mutex); 459 qemu_cond_destroy(&comp_param[i].cond); 460 deflateEnd(&comp_param[i].stream); 461 g_free(comp_param[i].originbuf); 462 qemu_fclose(comp_param[i].file); 463 comp_param[i].file = NULL; 464 } 465 qemu_mutex_destroy(&comp_done_lock); 466 qemu_cond_destroy(&comp_done_cond); 467 g_free(compress_threads); 468 g_free(comp_param); 469 compress_threads = NULL; 470 comp_param = NULL; 471 } 472 473 static int compress_threads_save_setup(void) 474 { 475 int i, thread_count; 476 477 if (!migrate_use_compression()) { 478 return 0; 479 } 480 thread_count = migrate_compress_threads(); 481 compress_threads = g_new0(QemuThread, thread_count); 482 comp_param = g_new0(CompressParam, thread_count); 483 qemu_cond_init(&comp_done_cond); 484 qemu_mutex_init(&comp_done_lock); 485 for (i = 0; i < thread_count; i++) { 486 comp_param[i].originbuf = g_try_malloc(TARGET_PAGE_SIZE); 487 if (!comp_param[i].originbuf) { 488 goto exit; 489 } 490 491 if (deflateInit(&comp_param[i].stream, 492 migrate_compress_level()) != Z_OK) { 493 g_free(comp_param[i].originbuf); 494 goto exit; 495 } 496 497 /* comp_param[i].file is just used as a dummy buffer to save data, 498 * set its ops to empty. 499 */ 500 comp_param[i].file = qemu_fopen_ops(NULL, &empty_ops); 501 comp_param[i].done = true; 502 comp_param[i].quit = false; 503 qemu_mutex_init(&comp_param[i].mutex); 504 qemu_cond_init(&comp_param[i].cond); 505 qemu_thread_create(compress_threads + i, "compress", 506 do_data_compress, comp_param + i, 507 QEMU_THREAD_JOINABLE); 508 } 509 return 0; 510 511 exit: 512 compress_threads_save_cleanup(); 513 return -1; 514 } 515 516 /* Multiple fd's */ 517 518 #define MULTIFD_MAGIC 0x11223344U 519 #define MULTIFD_VERSION 1 520 521 #define MULTIFD_FLAG_SYNC (1 << 0) 522 523 typedef struct { 524 uint32_t magic; 525 uint32_t version; 526 unsigned char uuid[16]; /* QemuUUID */ 527 uint8_t id; 528 } __attribute__((packed)) MultiFDInit_t; 529 530 typedef struct { 531 uint32_t magic; 532 uint32_t version; 533 uint32_t flags; 534 uint32_t size; 535 uint32_t used; 536 uint64_t packet_num; 537 char ramblock[256]; 538 uint64_t offset[]; 539 } __attribute__((packed)) MultiFDPacket_t; 540 541 typedef struct { 542 /* number of used pages */ 543 uint32_t used; 544 /* number of allocated pages */ 545 uint32_t allocated; 546 /* global number of generated multifd packets */ 547 uint64_t packet_num; 548 /* offset of each page */ 549 ram_addr_t *offset; 550 /* pointer to each page */ 551 struct iovec *iov; 552 RAMBlock *block; 553 } MultiFDPages_t; 554 555 typedef struct { 556 /* this fields are not changed once the thread is created */ 557 /* channel number */ 558 uint8_t id; 559 /* channel thread name */ 560 char *name; 561 /* channel thread id */ 562 QemuThread thread; 563 /* communication channel */ 564 QIOChannel *c; 565 /* sem where to wait for more work */ 566 QemuSemaphore sem; 567 /* this mutex protects the following parameters */ 568 QemuMutex mutex; 569 /* is this channel thread running */ 570 bool running; 571 /* should this thread finish */ 572 bool quit; 573 /* thread has work to do */ 574 int pending_job; 575 /* array of pages to sent */ 576 MultiFDPages_t *pages; 577 /* packet allocated len */ 578 uint32_t packet_len; 579 /* pointer to the packet */ 580 MultiFDPacket_t *packet; 581 /* multifd flags for each packet */ 582 uint32_t flags; 583 /* global number of generated multifd packets */ 584 uint64_t packet_num; 585 /* thread local variables */ 586 /* packets sent through this channel */ 587 uint64_t num_packets; 588 /* pages sent through this channel */ 589 uint64_t num_pages; 590 /* syncs main thread and channels */ 591 QemuSemaphore sem_sync; 592 } MultiFDSendParams; 593 594 typedef struct { 595 /* this fields are not changed once the thread is created */ 596 /* channel number */ 597 uint8_t id; 598 /* channel thread name */ 599 char *name; 600 /* channel thread id */ 601 QemuThread thread; 602 /* communication channel */ 603 QIOChannel *c; 604 /* this mutex protects the following parameters */ 605 QemuMutex mutex; 606 /* is this channel thread running */ 607 bool running; 608 /* array of pages to receive */ 609 MultiFDPages_t *pages; 610 /* packet allocated len */ 611 uint32_t packet_len; 612 /* pointer to the packet */ 613 MultiFDPacket_t *packet; 614 /* multifd flags for each packet */ 615 uint32_t flags; 616 /* global number of generated multifd packets */ 617 uint64_t packet_num; 618 /* thread local variables */ 619 /* packets sent through this channel */ 620 uint64_t num_packets; 621 /* pages sent through this channel */ 622 uint64_t num_pages; 623 /* syncs main thread and channels */ 624 QemuSemaphore sem_sync; 625 } MultiFDRecvParams; 626 627 static int multifd_send_initial_packet(MultiFDSendParams *p, Error **errp) 628 { 629 MultiFDInit_t msg; 630 int ret; 631 632 msg.magic = cpu_to_be32(MULTIFD_MAGIC); 633 msg.version = cpu_to_be32(MULTIFD_VERSION); 634 msg.id = p->id; 635 memcpy(msg.uuid, &qemu_uuid.data, sizeof(msg.uuid)); 636 637 ret = qio_channel_write_all(p->c, (char *)&msg, sizeof(msg), errp); 638 if (ret != 0) { 639 return -1; 640 } 641 return 0; 642 } 643 644 static int multifd_recv_initial_packet(QIOChannel *c, Error **errp) 645 { 646 MultiFDInit_t msg; 647 int ret; 648 649 ret = qio_channel_read_all(c, (char *)&msg, sizeof(msg), errp); 650 if (ret != 0) { 651 return -1; 652 } 653 654 msg.magic = be32_to_cpu(msg.magic); 655 msg.version = be32_to_cpu(msg.version); 656 657 if (msg.magic != MULTIFD_MAGIC) { 658 error_setg(errp, "multifd: received packet magic %x " 659 "expected %x", msg.magic, MULTIFD_MAGIC); 660 return -1; 661 } 662 663 if (msg.version != MULTIFD_VERSION) { 664 error_setg(errp, "multifd: received packet version %d " 665 "expected %d", msg.version, MULTIFD_VERSION); 666 return -1; 667 } 668 669 if (memcmp(msg.uuid, &qemu_uuid, sizeof(qemu_uuid))) { 670 char *uuid = qemu_uuid_unparse_strdup(&qemu_uuid); 671 char *msg_uuid = qemu_uuid_unparse_strdup((const QemuUUID *)msg.uuid); 672 673 error_setg(errp, "multifd: received uuid '%s' and expected " 674 "uuid '%s' for channel %hhd", msg_uuid, uuid, msg.id); 675 g_free(uuid); 676 g_free(msg_uuid); 677 return -1; 678 } 679 680 if (msg.id > migrate_multifd_channels()) { 681 error_setg(errp, "multifd: received channel version %d " 682 "expected %d", msg.version, MULTIFD_VERSION); 683 return -1; 684 } 685 686 return msg.id; 687 } 688 689 static MultiFDPages_t *multifd_pages_init(size_t size) 690 { 691 MultiFDPages_t *pages = g_new0(MultiFDPages_t, 1); 692 693 pages->allocated = size; 694 pages->iov = g_new0(struct iovec, size); 695 pages->offset = g_new0(ram_addr_t, size); 696 697 return pages; 698 } 699 700 static void multifd_pages_clear(MultiFDPages_t *pages) 701 { 702 pages->used = 0; 703 pages->allocated = 0; 704 pages->packet_num = 0; 705 pages->block = NULL; 706 g_free(pages->iov); 707 pages->iov = NULL; 708 g_free(pages->offset); 709 pages->offset = NULL; 710 g_free(pages); 711 } 712 713 static void multifd_send_fill_packet(MultiFDSendParams *p) 714 { 715 MultiFDPacket_t *packet = p->packet; 716 int i; 717 718 packet->magic = cpu_to_be32(MULTIFD_MAGIC); 719 packet->version = cpu_to_be32(MULTIFD_VERSION); 720 packet->flags = cpu_to_be32(p->flags); 721 packet->size = cpu_to_be32(migrate_multifd_page_count()); 722 packet->used = cpu_to_be32(p->pages->used); 723 packet->packet_num = cpu_to_be64(p->packet_num); 724 725 if (p->pages->block) { 726 strncpy(packet->ramblock, p->pages->block->idstr, 256); 727 } 728 729 for (i = 0; i < p->pages->used; i++) { 730 packet->offset[i] = cpu_to_be64(p->pages->offset[i]); 731 } 732 } 733 734 static int multifd_recv_unfill_packet(MultiFDRecvParams *p, Error **errp) 735 { 736 MultiFDPacket_t *packet = p->packet; 737 RAMBlock *block; 738 int i; 739 740 packet->magic = be32_to_cpu(packet->magic); 741 if (packet->magic != MULTIFD_MAGIC) { 742 error_setg(errp, "multifd: received packet " 743 "magic %x and expected magic %x", 744 packet->magic, MULTIFD_MAGIC); 745 return -1; 746 } 747 748 packet->version = be32_to_cpu(packet->version); 749 if (packet->version != MULTIFD_VERSION) { 750 error_setg(errp, "multifd: received packet " 751 "version %d and expected version %d", 752 packet->version, MULTIFD_VERSION); 753 return -1; 754 } 755 756 p->flags = be32_to_cpu(packet->flags); 757 758 packet->size = be32_to_cpu(packet->size); 759 if (packet->size > migrate_multifd_page_count()) { 760 error_setg(errp, "multifd: received packet " 761 "with size %d and expected maximum size %d", 762 packet->size, migrate_multifd_page_count()) ; 763 return -1; 764 } 765 766 p->pages->used = be32_to_cpu(packet->used); 767 if (p->pages->used > packet->size) { 768 error_setg(errp, "multifd: received packet " 769 "with size %d and expected maximum size %d", 770 p->pages->used, packet->size) ; 771 return -1; 772 } 773 774 p->packet_num = be64_to_cpu(packet->packet_num); 775 776 if (p->pages->used) { 777 /* make sure that ramblock is 0 terminated */ 778 packet->ramblock[255] = 0; 779 block = qemu_ram_block_by_name(packet->ramblock); 780 if (!block) { 781 error_setg(errp, "multifd: unknown ram block %s", 782 packet->ramblock); 783 return -1; 784 } 785 } 786 787 for (i = 0; i < p->pages->used; i++) { 788 ram_addr_t offset = be64_to_cpu(packet->offset[i]); 789 790 if (offset > (block->used_length - TARGET_PAGE_SIZE)) { 791 error_setg(errp, "multifd: offset too long " RAM_ADDR_FMT 792 " (max " RAM_ADDR_FMT ")", 793 offset, block->max_length); 794 return -1; 795 } 796 p->pages->iov[i].iov_base = block->host + offset; 797 p->pages->iov[i].iov_len = TARGET_PAGE_SIZE; 798 } 799 800 return 0; 801 } 802 803 struct { 804 MultiFDSendParams *params; 805 /* number of created threads */ 806 int count; 807 /* array of pages to sent */ 808 MultiFDPages_t *pages; 809 /* syncs main thread and channels */ 810 QemuSemaphore sem_sync; 811 /* global number of generated multifd packets */ 812 uint64_t packet_num; 813 /* send channels ready */ 814 QemuSemaphore channels_ready; 815 } *multifd_send_state; 816 817 /* 818 * How we use multifd_send_state->pages and channel->pages? 819 * 820 * We create a pages for each channel, and a main one. Each time that 821 * we need to send a batch of pages we interchange the ones between 822 * multifd_send_state and the channel that is sending it. There are 823 * two reasons for that: 824 * - to not have to do so many mallocs during migration 825 * - to make easier to know what to free at the end of migration 826 * 827 * This way we always know who is the owner of each "pages" struct, 828 * and we don't need any loocking. It belongs to the migration thread 829 * or to the channel thread. Switching is safe because the migration 830 * thread is using the channel mutex when changing it, and the channel 831 * have to had finish with its own, otherwise pending_job can't be 832 * false. 833 */ 834 835 static void multifd_send_pages(void) 836 { 837 int i; 838 static int next_channel; 839 MultiFDSendParams *p = NULL; /* make happy gcc */ 840 MultiFDPages_t *pages = multifd_send_state->pages; 841 uint64_t transferred; 842 843 qemu_sem_wait(&multifd_send_state->channels_ready); 844 for (i = next_channel;; i = (i + 1) % migrate_multifd_channels()) { 845 p = &multifd_send_state->params[i]; 846 847 qemu_mutex_lock(&p->mutex); 848 if (!p->pending_job) { 849 p->pending_job++; 850 next_channel = (i + 1) % migrate_multifd_channels(); 851 break; 852 } 853 qemu_mutex_unlock(&p->mutex); 854 } 855 p->pages->used = 0; 856 857 p->packet_num = multifd_send_state->packet_num++; 858 p->pages->block = NULL; 859 multifd_send_state->pages = p->pages; 860 p->pages = pages; 861 transferred = ((uint64_t) pages->used) * TARGET_PAGE_SIZE + p->packet_len; 862 ram_counters.multifd_bytes += transferred; 863 ram_counters.transferred += transferred;; 864 qemu_mutex_unlock(&p->mutex); 865 qemu_sem_post(&p->sem); 866 } 867 868 static void multifd_queue_page(RAMBlock *block, ram_addr_t offset) 869 { 870 MultiFDPages_t *pages = multifd_send_state->pages; 871 872 if (!pages->block) { 873 pages->block = block; 874 } 875 876 if (pages->block == block) { 877 pages->offset[pages->used] = offset; 878 pages->iov[pages->used].iov_base = block->host + offset; 879 pages->iov[pages->used].iov_len = TARGET_PAGE_SIZE; 880 pages->used++; 881 882 if (pages->used < pages->allocated) { 883 return; 884 } 885 } 886 887 multifd_send_pages(); 888 889 if (pages->block != block) { 890 multifd_queue_page(block, offset); 891 } 892 } 893 894 static void multifd_send_terminate_threads(Error *err) 895 { 896 int i; 897 898 if (err) { 899 MigrationState *s = migrate_get_current(); 900 migrate_set_error(s, err); 901 if (s->state == MIGRATION_STATUS_SETUP || 902 s->state == MIGRATION_STATUS_PRE_SWITCHOVER || 903 s->state == MIGRATION_STATUS_DEVICE || 904 s->state == MIGRATION_STATUS_ACTIVE) { 905 migrate_set_state(&s->state, s->state, 906 MIGRATION_STATUS_FAILED); 907 } 908 } 909 910 for (i = 0; i < migrate_multifd_channels(); i++) { 911 MultiFDSendParams *p = &multifd_send_state->params[i]; 912 913 qemu_mutex_lock(&p->mutex); 914 p->quit = true; 915 qemu_sem_post(&p->sem); 916 qemu_mutex_unlock(&p->mutex); 917 } 918 } 919 920 void multifd_save_cleanup(void) 921 { 922 int i; 923 924 if (!migrate_use_multifd()) { 925 return; 926 } 927 multifd_send_terminate_threads(NULL); 928 for (i = 0; i < migrate_multifd_channels(); i++) { 929 MultiFDSendParams *p = &multifd_send_state->params[i]; 930 931 if (p->running) { 932 qemu_thread_join(&p->thread); 933 } 934 socket_send_channel_destroy(p->c); 935 p->c = NULL; 936 qemu_mutex_destroy(&p->mutex); 937 qemu_sem_destroy(&p->sem); 938 qemu_sem_destroy(&p->sem_sync); 939 g_free(p->name); 940 p->name = NULL; 941 multifd_pages_clear(p->pages); 942 p->pages = NULL; 943 p->packet_len = 0; 944 g_free(p->packet); 945 p->packet = NULL; 946 } 947 qemu_sem_destroy(&multifd_send_state->channels_ready); 948 qemu_sem_destroy(&multifd_send_state->sem_sync); 949 g_free(multifd_send_state->params); 950 multifd_send_state->params = NULL; 951 multifd_pages_clear(multifd_send_state->pages); 952 multifd_send_state->pages = NULL; 953 g_free(multifd_send_state); 954 multifd_send_state = NULL; 955 } 956 957 static void multifd_send_sync_main(void) 958 { 959 int i; 960 961 if (!migrate_use_multifd()) { 962 return; 963 } 964 if (multifd_send_state->pages->used) { 965 multifd_send_pages(); 966 } 967 for (i = 0; i < migrate_multifd_channels(); i++) { 968 MultiFDSendParams *p = &multifd_send_state->params[i]; 969 970 trace_multifd_send_sync_main_signal(p->id); 971 972 qemu_mutex_lock(&p->mutex); 973 974 p->packet_num = multifd_send_state->packet_num++; 975 p->flags |= MULTIFD_FLAG_SYNC; 976 p->pending_job++; 977 qemu_mutex_unlock(&p->mutex); 978 qemu_sem_post(&p->sem); 979 } 980 for (i = 0; i < migrate_multifd_channels(); i++) { 981 MultiFDSendParams *p = &multifd_send_state->params[i]; 982 983 trace_multifd_send_sync_main_wait(p->id); 984 qemu_sem_wait(&multifd_send_state->sem_sync); 985 } 986 trace_multifd_send_sync_main(multifd_send_state->packet_num); 987 } 988 989 static void *multifd_send_thread(void *opaque) 990 { 991 MultiFDSendParams *p = opaque; 992 Error *local_err = NULL; 993 int ret; 994 995 trace_multifd_send_thread_start(p->id); 996 rcu_register_thread(); 997 998 if (multifd_send_initial_packet(p, &local_err) < 0) { 999 goto out; 1000 } 1001 /* initial packet */ 1002 p->num_packets = 1; 1003 1004 while (true) { 1005 qemu_sem_wait(&p->sem); 1006 qemu_mutex_lock(&p->mutex); 1007 1008 if (p->pending_job) { 1009 uint32_t used = p->pages->used; 1010 uint64_t packet_num = p->packet_num; 1011 uint32_t flags = p->flags; 1012 1013 multifd_send_fill_packet(p); 1014 p->flags = 0; 1015 p->num_packets++; 1016 p->num_pages += used; 1017 p->pages->used = 0; 1018 qemu_mutex_unlock(&p->mutex); 1019 1020 trace_multifd_send(p->id, packet_num, used, flags); 1021 1022 ret = qio_channel_write_all(p->c, (void *)p->packet, 1023 p->packet_len, &local_err); 1024 if (ret != 0) { 1025 break; 1026 } 1027 1028 ret = qio_channel_writev_all(p->c, p->pages->iov, used, &local_err); 1029 if (ret != 0) { 1030 break; 1031 } 1032 1033 qemu_mutex_lock(&p->mutex); 1034 p->pending_job--; 1035 qemu_mutex_unlock(&p->mutex); 1036 1037 if (flags & MULTIFD_FLAG_SYNC) { 1038 qemu_sem_post(&multifd_send_state->sem_sync); 1039 } 1040 qemu_sem_post(&multifd_send_state->channels_ready); 1041 } else if (p->quit) { 1042 qemu_mutex_unlock(&p->mutex); 1043 break; 1044 } else { 1045 qemu_mutex_unlock(&p->mutex); 1046 /* sometimes there are spurious wakeups */ 1047 } 1048 } 1049 1050 out: 1051 if (local_err) { 1052 multifd_send_terminate_threads(local_err); 1053 } 1054 1055 qemu_mutex_lock(&p->mutex); 1056 p->running = false; 1057 qemu_mutex_unlock(&p->mutex); 1058 1059 rcu_unregister_thread(); 1060 trace_multifd_send_thread_end(p->id, p->num_packets, p->num_pages); 1061 1062 return NULL; 1063 } 1064 1065 static void multifd_new_send_channel_async(QIOTask *task, gpointer opaque) 1066 { 1067 MultiFDSendParams *p = opaque; 1068 QIOChannel *sioc = QIO_CHANNEL(qio_task_get_source(task)); 1069 Error *local_err = NULL; 1070 1071 if (qio_task_propagate_error(task, &local_err)) { 1072 migrate_set_error(migrate_get_current(), local_err); 1073 multifd_save_cleanup(); 1074 } else { 1075 p->c = QIO_CHANNEL(sioc); 1076 qio_channel_set_delay(p->c, false); 1077 p->running = true; 1078 qemu_thread_create(&p->thread, p->name, multifd_send_thread, p, 1079 QEMU_THREAD_JOINABLE); 1080 1081 atomic_inc(&multifd_send_state->count); 1082 } 1083 } 1084 1085 int multifd_save_setup(void) 1086 { 1087 int thread_count; 1088 uint32_t page_count = migrate_multifd_page_count(); 1089 uint8_t i; 1090 1091 if (!migrate_use_multifd()) { 1092 return 0; 1093 } 1094 thread_count = migrate_multifd_channels(); 1095 multifd_send_state = g_malloc0(sizeof(*multifd_send_state)); 1096 multifd_send_state->params = g_new0(MultiFDSendParams, thread_count); 1097 atomic_set(&multifd_send_state->count, 0); 1098 multifd_send_state->pages = multifd_pages_init(page_count); 1099 qemu_sem_init(&multifd_send_state->sem_sync, 0); 1100 qemu_sem_init(&multifd_send_state->channels_ready, 0); 1101 1102 for (i = 0; i < thread_count; i++) { 1103 MultiFDSendParams *p = &multifd_send_state->params[i]; 1104 1105 qemu_mutex_init(&p->mutex); 1106 qemu_sem_init(&p->sem, 0); 1107 qemu_sem_init(&p->sem_sync, 0); 1108 p->quit = false; 1109 p->pending_job = 0; 1110 p->id = i; 1111 p->pages = multifd_pages_init(page_count); 1112 p->packet_len = sizeof(MultiFDPacket_t) 1113 + sizeof(ram_addr_t) * page_count; 1114 p->packet = g_malloc0(p->packet_len); 1115 p->name = g_strdup_printf("multifdsend_%d", i); 1116 socket_send_channel_create(multifd_new_send_channel_async, p); 1117 } 1118 return 0; 1119 } 1120 1121 struct { 1122 MultiFDRecvParams *params; 1123 /* number of created threads */ 1124 int count; 1125 /* syncs main thread and channels */ 1126 QemuSemaphore sem_sync; 1127 /* global number of generated multifd packets */ 1128 uint64_t packet_num; 1129 } *multifd_recv_state; 1130 1131 static void multifd_recv_terminate_threads(Error *err) 1132 { 1133 int i; 1134 1135 if (err) { 1136 MigrationState *s = migrate_get_current(); 1137 migrate_set_error(s, err); 1138 if (s->state == MIGRATION_STATUS_SETUP || 1139 s->state == MIGRATION_STATUS_ACTIVE) { 1140 migrate_set_state(&s->state, s->state, 1141 MIGRATION_STATUS_FAILED); 1142 } 1143 } 1144 1145 for (i = 0; i < migrate_multifd_channels(); i++) { 1146 MultiFDRecvParams *p = &multifd_recv_state->params[i]; 1147 1148 qemu_mutex_lock(&p->mutex); 1149 /* We could arrive here for two reasons: 1150 - normal quit, i.e. everything went fine, just finished 1151 - error quit: We close the channels so the channel threads 1152 finish the qio_channel_read_all_eof() */ 1153 qio_channel_shutdown(p->c, QIO_CHANNEL_SHUTDOWN_BOTH, NULL); 1154 qemu_mutex_unlock(&p->mutex); 1155 } 1156 } 1157 1158 int multifd_load_cleanup(Error **errp) 1159 { 1160 int i; 1161 int ret = 0; 1162 1163 if (!migrate_use_multifd()) { 1164 return 0; 1165 } 1166 multifd_recv_terminate_threads(NULL); 1167 for (i = 0; i < migrate_multifd_channels(); i++) { 1168 MultiFDRecvParams *p = &multifd_recv_state->params[i]; 1169 1170 if (p->running) { 1171 qemu_thread_join(&p->thread); 1172 } 1173 object_unref(OBJECT(p->c)); 1174 p->c = NULL; 1175 qemu_mutex_destroy(&p->mutex); 1176 qemu_sem_destroy(&p->sem_sync); 1177 g_free(p->name); 1178 p->name = NULL; 1179 multifd_pages_clear(p->pages); 1180 p->pages = NULL; 1181 p->packet_len = 0; 1182 g_free(p->packet); 1183 p->packet = NULL; 1184 } 1185 qemu_sem_destroy(&multifd_recv_state->sem_sync); 1186 g_free(multifd_recv_state->params); 1187 multifd_recv_state->params = NULL; 1188 g_free(multifd_recv_state); 1189 multifd_recv_state = NULL; 1190 1191 return ret; 1192 } 1193 1194 static void multifd_recv_sync_main(void) 1195 { 1196 int i; 1197 1198 if (!migrate_use_multifd()) { 1199 return; 1200 } 1201 for (i = 0; i < migrate_multifd_channels(); i++) { 1202 MultiFDRecvParams *p = &multifd_recv_state->params[i]; 1203 1204 trace_multifd_recv_sync_main_wait(p->id); 1205 qemu_sem_wait(&multifd_recv_state->sem_sync); 1206 qemu_mutex_lock(&p->mutex); 1207 if (multifd_recv_state->packet_num < p->packet_num) { 1208 multifd_recv_state->packet_num = p->packet_num; 1209 } 1210 qemu_mutex_unlock(&p->mutex); 1211 } 1212 for (i = 0; i < migrate_multifd_channels(); i++) { 1213 MultiFDRecvParams *p = &multifd_recv_state->params[i]; 1214 1215 trace_multifd_recv_sync_main_signal(p->id); 1216 qemu_sem_post(&p->sem_sync); 1217 } 1218 trace_multifd_recv_sync_main(multifd_recv_state->packet_num); 1219 } 1220 1221 static void *multifd_recv_thread(void *opaque) 1222 { 1223 MultiFDRecvParams *p = opaque; 1224 Error *local_err = NULL; 1225 int ret; 1226 1227 trace_multifd_recv_thread_start(p->id); 1228 rcu_register_thread(); 1229 1230 while (true) { 1231 uint32_t used; 1232 uint32_t flags; 1233 1234 ret = qio_channel_read_all_eof(p->c, (void *)p->packet, 1235 p->packet_len, &local_err); 1236 if (ret == 0) { /* EOF */ 1237 break; 1238 } 1239 if (ret == -1) { /* Error */ 1240 break; 1241 } 1242 1243 qemu_mutex_lock(&p->mutex); 1244 ret = multifd_recv_unfill_packet(p, &local_err); 1245 if (ret) { 1246 qemu_mutex_unlock(&p->mutex); 1247 break; 1248 } 1249 1250 used = p->pages->used; 1251 flags = p->flags; 1252 trace_multifd_recv(p->id, p->packet_num, used, flags); 1253 p->num_packets++; 1254 p->num_pages += used; 1255 qemu_mutex_unlock(&p->mutex); 1256 1257 ret = qio_channel_readv_all(p->c, p->pages->iov, used, &local_err); 1258 if (ret != 0) { 1259 break; 1260 } 1261 1262 if (flags & MULTIFD_FLAG_SYNC) { 1263 qemu_sem_post(&multifd_recv_state->sem_sync); 1264 qemu_sem_wait(&p->sem_sync); 1265 } 1266 } 1267 1268 if (local_err) { 1269 multifd_recv_terminate_threads(local_err); 1270 } 1271 qemu_mutex_lock(&p->mutex); 1272 p->running = false; 1273 qemu_mutex_unlock(&p->mutex); 1274 1275 rcu_unregister_thread(); 1276 trace_multifd_recv_thread_end(p->id, p->num_packets, p->num_pages); 1277 1278 return NULL; 1279 } 1280 1281 int multifd_load_setup(void) 1282 { 1283 int thread_count; 1284 uint32_t page_count = migrate_multifd_page_count(); 1285 uint8_t i; 1286 1287 if (!migrate_use_multifd()) { 1288 return 0; 1289 } 1290 thread_count = migrate_multifd_channels(); 1291 multifd_recv_state = g_malloc0(sizeof(*multifd_recv_state)); 1292 multifd_recv_state->params = g_new0(MultiFDRecvParams, thread_count); 1293 atomic_set(&multifd_recv_state->count, 0); 1294 qemu_sem_init(&multifd_recv_state->sem_sync, 0); 1295 1296 for (i = 0; i < thread_count; i++) { 1297 MultiFDRecvParams *p = &multifd_recv_state->params[i]; 1298 1299 qemu_mutex_init(&p->mutex); 1300 qemu_sem_init(&p->sem_sync, 0); 1301 p->id = i; 1302 p->pages = multifd_pages_init(page_count); 1303 p->packet_len = sizeof(MultiFDPacket_t) 1304 + sizeof(ram_addr_t) * page_count; 1305 p->packet = g_malloc0(p->packet_len); 1306 p->name = g_strdup_printf("multifdrecv_%d", i); 1307 } 1308 return 0; 1309 } 1310 1311 bool multifd_recv_all_channels_created(void) 1312 { 1313 int thread_count = migrate_multifd_channels(); 1314 1315 if (!migrate_use_multifd()) { 1316 return true; 1317 } 1318 1319 return thread_count == atomic_read(&multifd_recv_state->count); 1320 } 1321 1322 /* 1323 * Try to receive all multifd channels to get ready for the migration. 1324 * - Return true and do not set @errp when correctly receving all channels; 1325 * - Return false and do not set @errp when correctly receiving the current one; 1326 * - Return false and set @errp when failing to receive the current channel. 1327 */ 1328 bool multifd_recv_new_channel(QIOChannel *ioc, Error **errp) 1329 { 1330 MultiFDRecvParams *p; 1331 Error *local_err = NULL; 1332 int id; 1333 1334 id = multifd_recv_initial_packet(ioc, &local_err); 1335 if (id < 0) { 1336 multifd_recv_terminate_threads(local_err); 1337 error_propagate_prepend(errp, local_err, 1338 "failed to receive packet" 1339 " via multifd channel %d: ", 1340 atomic_read(&multifd_recv_state->count)); 1341 return false; 1342 } 1343 1344 p = &multifd_recv_state->params[id]; 1345 if (p->c != NULL) { 1346 error_setg(&local_err, "multifd: received id '%d' already setup'", 1347 id); 1348 multifd_recv_terminate_threads(local_err); 1349 error_propagate(errp, local_err); 1350 return false; 1351 } 1352 p->c = ioc; 1353 object_ref(OBJECT(ioc)); 1354 /* initial packet */ 1355 p->num_packets = 1; 1356 1357 p->running = true; 1358 qemu_thread_create(&p->thread, p->name, multifd_recv_thread, p, 1359 QEMU_THREAD_JOINABLE); 1360 atomic_inc(&multifd_recv_state->count); 1361 return atomic_read(&multifd_recv_state->count) == 1362 migrate_multifd_channels(); 1363 } 1364 1365 /** 1366 * save_page_header: write page header to wire 1367 * 1368 * If this is the 1st block, it also writes the block identification 1369 * 1370 * Returns the number of bytes written 1371 * 1372 * @f: QEMUFile where to send the data 1373 * @block: block that contains the page we want to send 1374 * @offset: offset inside the block for the page 1375 * in the lower bits, it contains flags 1376 */ 1377 static size_t save_page_header(RAMState *rs, QEMUFile *f, RAMBlock *block, 1378 ram_addr_t offset) 1379 { 1380 size_t size, len; 1381 1382 if (block == rs->last_sent_block) { 1383 offset |= RAM_SAVE_FLAG_CONTINUE; 1384 } 1385 qemu_put_be64(f, offset); 1386 size = 8; 1387 1388 if (!(offset & RAM_SAVE_FLAG_CONTINUE)) { 1389 len = strlen(block->idstr); 1390 qemu_put_byte(f, len); 1391 qemu_put_buffer(f, (uint8_t *)block->idstr, len); 1392 size += 1 + len; 1393 rs->last_sent_block = block; 1394 } 1395 return size; 1396 } 1397 1398 /** 1399 * mig_throttle_guest_down: throotle down the guest 1400 * 1401 * Reduce amount of guest cpu execution to hopefully slow down memory 1402 * writes. If guest dirty memory rate is reduced below the rate at 1403 * which we can transfer pages to the destination then we should be 1404 * able to complete migration. Some workloads dirty memory way too 1405 * fast and will not effectively converge, even with auto-converge. 1406 */ 1407 static void mig_throttle_guest_down(void) 1408 { 1409 MigrationState *s = migrate_get_current(); 1410 uint64_t pct_initial = s->parameters.cpu_throttle_initial; 1411 uint64_t pct_icrement = s->parameters.cpu_throttle_increment; 1412 int pct_max = s->parameters.max_cpu_throttle; 1413 1414 /* We have not started throttling yet. Let's start it. */ 1415 if (!cpu_throttle_active()) { 1416 cpu_throttle_set(pct_initial); 1417 } else { 1418 /* Throttling already on, just increase the rate */ 1419 cpu_throttle_set(MIN(cpu_throttle_get_percentage() + pct_icrement, 1420 pct_max)); 1421 } 1422 } 1423 1424 /** 1425 * xbzrle_cache_zero_page: insert a zero page in the XBZRLE cache 1426 * 1427 * @rs: current RAM state 1428 * @current_addr: address for the zero page 1429 * 1430 * Update the xbzrle cache to reflect a page that's been sent as all 0. 1431 * The important thing is that a stale (not-yet-0'd) page be replaced 1432 * by the new data. 1433 * As a bonus, if the page wasn't in the cache it gets added so that 1434 * when a small write is made into the 0'd page it gets XBZRLE sent. 1435 */ 1436 static void xbzrle_cache_zero_page(RAMState *rs, ram_addr_t current_addr) 1437 { 1438 if (rs->ram_bulk_stage || !migrate_use_xbzrle()) { 1439 return; 1440 } 1441 1442 /* We don't care if this fails to allocate a new cache page 1443 * as long as it updated an old one */ 1444 cache_insert(XBZRLE.cache, current_addr, XBZRLE.zero_target_page, 1445 ram_counters.dirty_sync_count); 1446 } 1447 1448 #define ENCODING_FLAG_XBZRLE 0x1 1449 1450 /** 1451 * save_xbzrle_page: compress and send current page 1452 * 1453 * Returns: 1 means that we wrote the page 1454 * 0 means that page is identical to the one already sent 1455 * -1 means that xbzrle would be longer than normal 1456 * 1457 * @rs: current RAM state 1458 * @current_data: pointer to the address of the page contents 1459 * @current_addr: addr of the page 1460 * @block: block that contains the page we want to send 1461 * @offset: offset inside the block for the page 1462 * @last_stage: if we are at the completion stage 1463 */ 1464 static int save_xbzrle_page(RAMState *rs, uint8_t **current_data, 1465 ram_addr_t current_addr, RAMBlock *block, 1466 ram_addr_t offset, bool last_stage) 1467 { 1468 int encoded_len = 0, bytes_xbzrle; 1469 uint8_t *prev_cached_page; 1470 1471 if (!cache_is_cached(XBZRLE.cache, current_addr, 1472 ram_counters.dirty_sync_count)) { 1473 xbzrle_counters.cache_miss++; 1474 if (!last_stage) { 1475 if (cache_insert(XBZRLE.cache, current_addr, *current_data, 1476 ram_counters.dirty_sync_count) == -1) { 1477 return -1; 1478 } else { 1479 /* update *current_data when the page has been 1480 inserted into cache */ 1481 *current_data = get_cached_data(XBZRLE.cache, current_addr); 1482 } 1483 } 1484 return -1; 1485 } 1486 1487 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr); 1488 1489 /* save current buffer into memory */ 1490 memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE); 1491 1492 /* XBZRLE encoding (if there is no overflow) */ 1493 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf, 1494 TARGET_PAGE_SIZE, XBZRLE.encoded_buf, 1495 TARGET_PAGE_SIZE); 1496 if (encoded_len == 0) { 1497 trace_save_xbzrle_page_skipping(); 1498 return 0; 1499 } else if (encoded_len == -1) { 1500 trace_save_xbzrle_page_overflow(); 1501 xbzrle_counters.overflow++; 1502 /* update data in the cache */ 1503 if (!last_stage) { 1504 memcpy(prev_cached_page, *current_data, TARGET_PAGE_SIZE); 1505 *current_data = prev_cached_page; 1506 } 1507 return -1; 1508 } 1509 1510 /* we need to update the data in the cache, in order to get the same data */ 1511 if (!last_stage) { 1512 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE); 1513 } 1514 1515 /* Send XBZRLE based compressed page */ 1516 bytes_xbzrle = save_page_header(rs, rs->f, block, 1517 offset | RAM_SAVE_FLAG_XBZRLE); 1518 qemu_put_byte(rs->f, ENCODING_FLAG_XBZRLE); 1519 qemu_put_be16(rs->f, encoded_len); 1520 qemu_put_buffer(rs->f, XBZRLE.encoded_buf, encoded_len); 1521 bytes_xbzrle += encoded_len + 1 + 2; 1522 xbzrle_counters.pages++; 1523 xbzrle_counters.bytes += bytes_xbzrle; 1524 ram_counters.transferred += bytes_xbzrle; 1525 1526 return 1; 1527 } 1528 1529 /** 1530 * migration_bitmap_find_dirty: find the next dirty page from start 1531 * 1532 * Called with rcu_read_lock() to protect migration_bitmap 1533 * 1534 * Returns the byte offset within memory region of the start of a dirty page 1535 * 1536 * @rs: current RAM state 1537 * @rb: RAMBlock where to search for dirty pages 1538 * @start: page where we start the search 1539 */ 1540 static inline 1541 unsigned long migration_bitmap_find_dirty(RAMState *rs, RAMBlock *rb, 1542 unsigned long start) 1543 { 1544 unsigned long size = rb->used_length >> TARGET_PAGE_BITS; 1545 unsigned long *bitmap = rb->bmap; 1546 unsigned long next; 1547 1548 if (!qemu_ram_is_migratable(rb)) { 1549 return size; 1550 } 1551 1552 if (rs->ram_bulk_stage && start > 0) { 1553 next = start + 1; 1554 } else { 1555 next = find_next_bit(bitmap, size, start); 1556 } 1557 1558 return next; 1559 } 1560 1561 static inline bool migration_bitmap_clear_dirty(RAMState *rs, 1562 RAMBlock *rb, 1563 unsigned long page) 1564 { 1565 bool ret; 1566 1567 ret = test_and_clear_bit(page, rb->bmap); 1568 1569 if (ret) { 1570 rs->migration_dirty_pages--; 1571 } 1572 return ret; 1573 } 1574 1575 static void migration_bitmap_sync_range(RAMState *rs, RAMBlock *rb, 1576 ram_addr_t start, ram_addr_t length) 1577 { 1578 rs->migration_dirty_pages += 1579 cpu_physical_memory_sync_dirty_bitmap(rb, start, length, 1580 &rs->num_dirty_pages_period); 1581 } 1582 1583 /** 1584 * ram_pagesize_summary: calculate all the pagesizes of a VM 1585 * 1586 * Returns a summary bitmap of the page sizes of all RAMBlocks 1587 * 1588 * For VMs with just normal pages this is equivalent to the host page 1589 * size. If it's got some huge pages then it's the OR of all the 1590 * different page sizes. 1591 */ 1592 uint64_t ram_pagesize_summary(void) 1593 { 1594 RAMBlock *block; 1595 uint64_t summary = 0; 1596 1597 RAMBLOCK_FOREACH_MIGRATABLE(block) { 1598 summary |= block->page_size; 1599 } 1600 1601 return summary; 1602 } 1603 1604 uint64_t ram_get_total_transferred_pages(void) 1605 { 1606 return ram_counters.normal + ram_counters.duplicate + 1607 compression_counters.pages + xbzrle_counters.pages; 1608 } 1609 1610 static void migration_update_rates(RAMState *rs, int64_t end_time) 1611 { 1612 uint64_t page_count = rs->target_page_count - rs->target_page_count_prev; 1613 double compressed_size; 1614 1615 /* calculate period counters */ 1616 ram_counters.dirty_pages_rate = rs->num_dirty_pages_period * 1000 1617 / (end_time - rs->time_last_bitmap_sync); 1618 1619 if (!page_count) { 1620 return; 1621 } 1622 1623 if (migrate_use_xbzrle()) { 1624 xbzrle_counters.cache_miss_rate = (double)(xbzrle_counters.cache_miss - 1625 rs->xbzrle_cache_miss_prev) / page_count; 1626 rs->xbzrle_cache_miss_prev = xbzrle_counters.cache_miss; 1627 } 1628 1629 if (migrate_use_compression()) { 1630 compression_counters.busy_rate = (double)(compression_counters.busy - 1631 rs->compress_thread_busy_prev) / page_count; 1632 rs->compress_thread_busy_prev = compression_counters.busy; 1633 1634 compressed_size = compression_counters.compressed_size - 1635 rs->compressed_size_prev; 1636 if (compressed_size) { 1637 double uncompressed_size = (compression_counters.pages - 1638 rs->compress_pages_prev) * TARGET_PAGE_SIZE; 1639 1640 /* Compression-Ratio = Uncompressed-size / Compressed-size */ 1641 compression_counters.compression_rate = 1642 uncompressed_size / compressed_size; 1643 1644 rs->compress_pages_prev = compression_counters.pages; 1645 rs->compressed_size_prev = compression_counters.compressed_size; 1646 } 1647 } 1648 } 1649 1650 static void migration_bitmap_sync(RAMState *rs) 1651 { 1652 RAMBlock *block; 1653 int64_t end_time; 1654 uint64_t bytes_xfer_now; 1655 1656 ram_counters.dirty_sync_count++; 1657 1658 if (!rs->time_last_bitmap_sync) { 1659 rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); 1660 } 1661 1662 trace_migration_bitmap_sync_start(); 1663 memory_global_dirty_log_sync(); 1664 1665 qemu_mutex_lock(&rs->bitmap_mutex); 1666 rcu_read_lock(); 1667 RAMBLOCK_FOREACH_MIGRATABLE(block) { 1668 migration_bitmap_sync_range(rs, block, 0, block->used_length); 1669 } 1670 ram_counters.remaining = ram_bytes_remaining(); 1671 rcu_read_unlock(); 1672 qemu_mutex_unlock(&rs->bitmap_mutex); 1673 1674 trace_migration_bitmap_sync_end(rs->num_dirty_pages_period); 1675 1676 end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); 1677 1678 /* more than 1 second = 1000 millisecons */ 1679 if (end_time > rs->time_last_bitmap_sync + 1000) { 1680 bytes_xfer_now = ram_counters.transferred; 1681 1682 /* During block migration the auto-converge logic incorrectly detects 1683 * that ram migration makes no progress. Avoid this by disabling the 1684 * throttling logic during the bulk phase of block migration. */ 1685 if (migrate_auto_converge() && !blk_mig_bulk_active()) { 1686 /* The following detection logic can be refined later. For now: 1687 Check to see if the dirtied bytes is 50% more than the approx. 1688 amount of bytes that just got transferred since the last time we 1689 were in this routine. If that happens twice, start or increase 1690 throttling */ 1691 1692 if ((rs->num_dirty_pages_period * TARGET_PAGE_SIZE > 1693 (bytes_xfer_now - rs->bytes_xfer_prev) / 2) && 1694 (++rs->dirty_rate_high_cnt >= 2)) { 1695 trace_migration_throttle(); 1696 rs->dirty_rate_high_cnt = 0; 1697 mig_throttle_guest_down(); 1698 } 1699 } 1700 1701 migration_update_rates(rs, end_time); 1702 1703 rs->target_page_count_prev = rs->target_page_count; 1704 1705 /* reset period counters */ 1706 rs->time_last_bitmap_sync = end_time; 1707 rs->num_dirty_pages_period = 0; 1708 rs->bytes_xfer_prev = bytes_xfer_now; 1709 } 1710 if (migrate_use_events()) { 1711 qapi_event_send_migration_pass(ram_counters.dirty_sync_count); 1712 } 1713 } 1714 1715 /** 1716 * save_zero_page_to_file: send the zero page to the file 1717 * 1718 * Returns the size of data written to the file, 0 means the page is not 1719 * a zero page 1720 * 1721 * @rs: current RAM state 1722 * @file: the file where the data is saved 1723 * @block: block that contains the page we want to send 1724 * @offset: offset inside the block for the page 1725 */ 1726 static int save_zero_page_to_file(RAMState *rs, QEMUFile *file, 1727 RAMBlock *block, ram_addr_t offset) 1728 { 1729 uint8_t *p = block->host + offset; 1730 int len = 0; 1731 1732 if (is_zero_range(p, TARGET_PAGE_SIZE)) { 1733 len += save_page_header(rs, file, block, offset | RAM_SAVE_FLAG_ZERO); 1734 qemu_put_byte(file, 0); 1735 len += 1; 1736 } 1737 return len; 1738 } 1739 1740 /** 1741 * save_zero_page: send the zero page to the stream 1742 * 1743 * Returns the number of pages written. 1744 * 1745 * @rs: current RAM state 1746 * @block: block that contains the page we want to send 1747 * @offset: offset inside the block for the page 1748 */ 1749 static int save_zero_page(RAMState *rs, RAMBlock *block, ram_addr_t offset) 1750 { 1751 int len = save_zero_page_to_file(rs, rs->f, block, offset); 1752 1753 if (len) { 1754 ram_counters.duplicate++; 1755 ram_counters.transferred += len; 1756 return 1; 1757 } 1758 return -1; 1759 } 1760 1761 static void ram_release_pages(const char *rbname, uint64_t offset, int pages) 1762 { 1763 if (!migrate_release_ram() || !migration_in_postcopy()) { 1764 return; 1765 } 1766 1767 ram_discard_range(rbname, offset, pages << TARGET_PAGE_BITS); 1768 } 1769 1770 /* 1771 * @pages: the number of pages written by the control path, 1772 * < 0 - error 1773 * > 0 - number of pages written 1774 * 1775 * Return true if the pages has been saved, otherwise false is returned. 1776 */ 1777 static bool control_save_page(RAMState *rs, RAMBlock *block, ram_addr_t offset, 1778 int *pages) 1779 { 1780 uint64_t bytes_xmit = 0; 1781 int ret; 1782 1783 *pages = -1; 1784 ret = ram_control_save_page(rs->f, block->offset, offset, TARGET_PAGE_SIZE, 1785 &bytes_xmit); 1786 if (ret == RAM_SAVE_CONTROL_NOT_SUPP) { 1787 return false; 1788 } 1789 1790 if (bytes_xmit) { 1791 ram_counters.transferred += bytes_xmit; 1792 *pages = 1; 1793 } 1794 1795 if (ret == RAM_SAVE_CONTROL_DELAYED) { 1796 return true; 1797 } 1798 1799 if (bytes_xmit > 0) { 1800 ram_counters.normal++; 1801 } else if (bytes_xmit == 0) { 1802 ram_counters.duplicate++; 1803 } 1804 1805 return true; 1806 } 1807 1808 /* 1809 * directly send the page to the stream 1810 * 1811 * Returns the number of pages written. 1812 * 1813 * @rs: current RAM state 1814 * @block: block that contains the page we want to send 1815 * @offset: offset inside the block for the page 1816 * @buf: the page to be sent 1817 * @async: send to page asyncly 1818 */ 1819 static int save_normal_page(RAMState *rs, RAMBlock *block, ram_addr_t offset, 1820 uint8_t *buf, bool async) 1821 { 1822 ram_counters.transferred += save_page_header(rs, rs->f, block, 1823 offset | RAM_SAVE_FLAG_PAGE); 1824 if (async) { 1825 qemu_put_buffer_async(rs->f, buf, TARGET_PAGE_SIZE, 1826 migrate_release_ram() & 1827 migration_in_postcopy()); 1828 } else { 1829 qemu_put_buffer(rs->f, buf, TARGET_PAGE_SIZE); 1830 } 1831 ram_counters.transferred += TARGET_PAGE_SIZE; 1832 ram_counters.normal++; 1833 return 1; 1834 } 1835 1836 /** 1837 * ram_save_page: send the given page to the stream 1838 * 1839 * Returns the number of pages written. 1840 * < 0 - error 1841 * >=0 - Number of pages written - this might legally be 0 1842 * if xbzrle noticed the page was the same. 1843 * 1844 * @rs: current RAM state 1845 * @block: block that contains the page we want to send 1846 * @offset: offset inside the block for the page 1847 * @last_stage: if we are at the completion stage 1848 */ 1849 static int ram_save_page(RAMState *rs, PageSearchStatus *pss, bool last_stage) 1850 { 1851 int pages = -1; 1852 uint8_t *p; 1853 bool send_async = true; 1854 RAMBlock *block = pss->block; 1855 ram_addr_t offset = pss->page << TARGET_PAGE_BITS; 1856 ram_addr_t current_addr = block->offset + offset; 1857 1858 p = block->host + offset; 1859 trace_ram_save_page(block->idstr, (uint64_t)offset, p); 1860 1861 XBZRLE_cache_lock(); 1862 if (!rs->ram_bulk_stage && !migration_in_postcopy() && 1863 migrate_use_xbzrle()) { 1864 pages = save_xbzrle_page(rs, &p, current_addr, block, 1865 offset, last_stage); 1866 if (!last_stage) { 1867 /* Can't send this cached data async, since the cache page 1868 * might get updated before it gets to the wire 1869 */ 1870 send_async = false; 1871 } 1872 } 1873 1874 /* XBZRLE overflow or normal page */ 1875 if (pages == -1) { 1876 pages = save_normal_page(rs, block, offset, p, send_async); 1877 } 1878 1879 XBZRLE_cache_unlock(); 1880 1881 return pages; 1882 } 1883 1884 static int ram_save_multifd_page(RAMState *rs, RAMBlock *block, 1885 ram_addr_t offset) 1886 { 1887 multifd_queue_page(block, offset); 1888 ram_counters.normal++; 1889 1890 return 1; 1891 } 1892 1893 static bool do_compress_ram_page(QEMUFile *f, z_stream *stream, RAMBlock *block, 1894 ram_addr_t offset, uint8_t *source_buf) 1895 { 1896 RAMState *rs = ram_state; 1897 uint8_t *p = block->host + (offset & TARGET_PAGE_MASK); 1898 bool zero_page = false; 1899 int ret; 1900 1901 if (save_zero_page_to_file(rs, f, block, offset)) { 1902 zero_page = true; 1903 goto exit; 1904 } 1905 1906 save_page_header(rs, f, block, offset | RAM_SAVE_FLAG_COMPRESS_PAGE); 1907 1908 /* 1909 * copy it to a internal buffer to avoid it being modified by VM 1910 * so that we can catch up the error during compression and 1911 * decompression 1912 */ 1913 memcpy(source_buf, p, TARGET_PAGE_SIZE); 1914 ret = qemu_put_compression_data(f, stream, source_buf, TARGET_PAGE_SIZE); 1915 if (ret < 0) { 1916 qemu_file_set_error(migrate_get_current()->to_dst_file, ret); 1917 error_report("compressed data failed!"); 1918 return false; 1919 } 1920 1921 exit: 1922 ram_release_pages(block->idstr, offset & TARGET_PAGE_MASK, 1); 1923 return zero_page; 1924 } 1925 1926 static void 1927 update_compress_thread_counts(const CompressParam *param, int bytes_xmit) 1928 { 1929 ram_counters.transferred += bytes_xmit; 1930 1931 if (param->zero_page) { 1932 ram_counters.duplicate++; 1933 return; 1934 } 1935 1936 /* 8 means a header with RAM_SAVE_FLAG_CONTINUE. */ 1937 compression_counters.compressed_size += bytes_xmit - 8; 1938 compression_counters.pages++; 1939 } 1940 1941 static bool save_page_use_compression(RAMState *rs); 1942 1943 static void flush_compressed_data(RAMState *rs) 1944 { 1945 int idx, len, thread_count; 1946 1947 if (!save_page_use_compression(rs)) { 1948 return; 1949 } 1950 thread_count = migrate_compress_threads(); 1951 1952 qemu_mutex_lock(&comp_done_lock); 1953 for (idx = 0; idx < thread_count; idx++) { 1954 while (!comp_param[idx].done) { 1955 qemu_cond_wait(&comp_done_cond, &comp_done_lock); 1956 } 1957 } 1958 qemu_mutex_unlock(&comp_done_lock); 1959 1960 for (idx = 0; idx < thread_count; idx++) { 1961 qemu_mutex_lock(&comp_param[idx].mutex); 1962 if (!comp_param[idx].quit) { 1963 len = qemu_put_qemu_file(rs->f, comp_param[idx].file); 1964 /* 1965 * it's safe to fetch zero_page without holding comp_done_lock 1966 * as there is no further request submitted to the thread, 1967 * i.e, the thread should be waiting for a request at this point. 1968 */ 1969 update_compress_thread_counts(&comp_param[idx], len); 1970 } 1971 qemu_mutex_unlock(&comp_param[idx].mutex); 1972 } 1973 } 1974 1975 static inline void set_compress_params(CompressParam *param, RAMBlock *block, 1976 ram_addr_t offset) 1977 { 1978 param->block = block; 1979 param->offset = offset; 1980 } 1981 1982 static int compress_page_with_multi_thread(RAMState *rs, RAMBlock *block, 1983 ram_addr_t offset) 1984 { 1985 int idx, thread_count, bytes_xmit = -1, pages = -1; 1986 bool wait = migrate_compress_wait_thread(); 1987 1988 thread_count = migrate_compress_threads(); 1989 qemu_mutex_lock(&comp_done_lock); 1990 retry: 1991 for (idx = 0; idx < thread_count; idx++) { 1992 if (comp_param[idx].done) { 1993 comp_param[idx].done = false; 1994 bytes_xmit = qemu_put_qemu_file(rs->f, comp_param[idx].file); 1995 qemu_mutex_lock(&comp_param[idx].mutex); 1996 set_compress_params(&comp_param[idx], block, offset); 1997 qemu_cond_signal(&comp_param[idx].cond); 1998 qemu_mutex_unlock(&comp_param[idx].mutex); 1999 pages = 1; 2000 update_compress_thread_counts(&comp_param[idx], bytes_xmit); 2001 break; 2002 } 2003 } 2004 2005 /* 2006 * wait for the free thread if the user specifies 'compress-wait-thread', 2007 * otherwise we will post the page out in the main thread as normal page. 2008 */ 2009 if (pages < 0 && wait) { 2010 qemu_cond_wait(&comp_done_cond, &comp_done_lock); 2011 goto retry; 2012 } 2013 qemu_mutex_unlock(&comp_done_lock); 2014 2015 return pages; 2016 } 2017 2018 /** 2019 * find_dirty_block: find the next dirty page and update any state 2020 * associated with the search process. 2021 * 2022 * Returns if a page is found 2023 * 2024 * @rs: current RAM state 2025 * @pss: data about the state of the current dirty page scan 2026 * @again: set to false if the search has scanned the whole of RAM 2027 */ 2028 static bool find_dirty_block(RAMState *rs, PageSearchStatus *pss, bool *again) 2029 { 2030 pss->page = migration_bitmap_find_dirty(rs, pss->block, pss->page); 2031 if (pss->complete_round && pss->block == rs->last_seen_block && 2032 pss->page >= rs->last_page) { 2033 /* 2034 * We've been once around the RAM and haven't found anything. 2035 * Give up. 2036 */ 2037 *again = false; 2038 return false; 2039 } 2040 if ((pss->page << TARGET_PAGE_BITS) >= pss->block->used_length) { 2041 /* Didn't find anything in this RAM Block */ 2042 pss->page = 0; 2043 pss->block = QLIST_NEXT_RCU(pss->block, next); 2044 if (!pss->block) { 2045 /* 2046 * If memory migration starts over, we will meet a dirtied page 2047 * which may still exists in compression threads's ring, so we 2048 * should flush the compressed data to make sure the new page 2049 * is not overwritten by the old one in the destination. 2050 * 2051 * Also If xbzrle is on, stop using the data compression at this 2052 * point. In theory, xbzrle can do better than compression. 2053 */ 2054 flush_compressed_data(rs); 2055 2056 /* Hit the end of the list */ 2057 pss->block = QLIST_FIRST_RCU(&ram_list.blocks); 2058 /* Flag that we've looped */ 2059 pss->complete_round = true; 2060 rs->ram_bulk_stage = false; 2061 } 2062 /* Didn't find anything this time, but try again on the new block */ 2063 *again = true; 2064 return false; 2065 } else { 2066 /* Can go around again, but... */ 2067 *again = true; 2068 /* We've found something so probably don't need to */ 2069 return true; 2070 } 2071 } 2072 2073 /** 2074 * unqueue_page: gets a page of the queue 2075 * 2076 * Helper for 'get_queued_page' - gets a page off the queue 2077 * 2078 * Returns the block of the page (or NULL if none available) 2079 * 2080 * @rs: current RAM state 2081 * @offset: used to return the offset within the RAMBlock 2082 */ 2083 static RAMBlock *unqueue_page(RAMState *rs, ram_addr_t *offset) 2084 { 2085 RAMBlock *block = NULL; 2086 2087 if (QSIMPLEQ_EMPTY_ATOMIC(&rs->src_page_requests)) { 2088 return NULL; 2089 } 2090 2091 qemu_mutex_lock(&rs->src_page_req_mutex); 2092 if (!QSIMPLEQ_EMPTY(&rs->src_page_requests)) { 2093 struct RAMSrcPageRequest *entry = 2094 QSIMPLEQ_FIRST(&rs->src_page_requests); 2095 block = entry->rb; 2096 *offset = entry->offset; 2097 2098 if (entry->len > TARGET_PAGE_SIZE) { 2099 entry->len -= TARGET_PAGE_SIZE; 2100 entry->offset += TARGET_PAGE_SIZE; 2101 } else { 2102 memory_region_unref(block->mr); 2103 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req); 2104 g_free(entry); 2105 migration_consume_urgent_request(); 2106 } 2107 } 2108 qemu_mutex_unlock(&rs->src_page_req_mutex); 2109 2110 return block; 2111 } 2112 2113 /** 2114 * get_queued_page: unqueue a page from the postocpy requests 2115 * 2116 * Skips pages that are already sent (!dirty) 2117 * 2118 * Returns if a queued page is found 2119 * 2120 * @rs: current RAM state 2121 * @pss: data about the state of the current dirty page scan 2122 */ 2123 static bool get_queued_page(RAMState *rs, PageSearchStatus *pss) 2124 { 2125 RAMBlock *block; 2126 ram_addr_t offset; 2127 bool dirty; 2128 2129 do { 2130 block = unqueue_page(rs, &offset); 2131 /* 2132 * We're sending this page, and since it's postcopy nothing else 2133 * will dirty it, and we must make sure it doesn't get sent again 2134 * even if this queue request was received after the background 2135 * search already sent it. 2136 */ 2137 if (block) { 2138 unsigned long page; 2139 2140 page = offset >> TARGET_PAGE_BITS; 2141 dirty = test_bit(page, block->bmap); 2142 if (!dirty) { 2143 trace_get_queued_page_not_dirty(block->idstr, (uint64_t)offset, 2144 page, test_bit(page, block->unsentmap)); 2145 } else { 2146 trace_get_queued_page(block->idstr, (uint64_t)offset, page); 2147 } 2148 } 2149 2150 } while (block && !dirty); 2151 2152 if (block) { 2153 /* 2154 * As soon as we start servicing pages out of order, then we have 2155 * to kill the bulk stage, since the bulk stage assumes 2156 * in (migration_bitmap_find_and_reset_dirty) that every page is 2157 * dirty, that's no longer true. 2158 */ 2159 rs->ram_bulk_stage = false; 2160 2161 /* 2162 * We want the background search to continue from the queued page 2163 * since the guest is likely to want other pages near to the page 2164 * it just requested. 2165 */ 2166 pss->block = block; 2167 pss->page = offset >> TARGET_PAGE_BITS; 2168 } 2169 2170 return !!block; 2171 } 2172 2173 /** 2174 * migration_page_queue_free: drop any remaining pages in the ram 2175 * request queue 2176 * 2177 * It should be empty at the end anyway, but in error cases there may 2178 * be some left. in case that there is any page left, we drop it. 2179 * 2180 */ 2181 static void migration_page_queue_free(RAMState *rs) 2182 { 2183 struct RAMSrcPageRequest *mspr, *next_mspr; 2184 /* This queue generally should be empty - but in the case of a failed 2185 * migration might have some droppings in. 2186 */ 2187 rcu_read_lock(); 2188 QSIMPLEQ_FOREACH_SAFE(mspr, &rs->src_page_requests, next_req, next_mspr) { 2189 memory_region_unref(mspr->rb->mr); 2190 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req); 2191 g_free(mspr); 2192 } 2193 rcu_read_unlock(); 2194 } 2195 2196 /** 2197 * ram_save_queue_pages: queue the page for transmission 2198 * 2199 * A request from postcopy destination for example. 2200 * 2201 * Returns zero on success or negative on error 2202 * 2203 * @rbname: Name of the RAMBLock of the request. NULL means the 2204 * same that last one. 2205 * @start: starting address from the start of the RAMBlock 2206 * @len: length (in bytes) to send 2207 */ 2208 int ram_save_queue_pages(const char *rbname, ram_addr_t start, ram_addr_t len) 2209 { 2210 RAMBlock *ramblock; 2211 RAMState *rs = ram_state; 2212 2213 ram_counters.postcopy_requests++; 2214 rcu_read_lock(); 2215 if (!rbname) { 2216 /* Reuse last RAMBlock */ 2217 ramblock = rs->last_req_rb; 2218 2219 if (!ramblock) { 2220 /* 2221 * Shouldn't happen, we can't reuse the last RAMBlock if 2222 * it's the 1st request. 2223 */ 2224 error_report("ram_save_queue_pages no previous block"); 2225 goto err; 2226 } 2227 } else { 2228 ramblock = qemu_ram_block_by_name(rbname); 2229 2230 if (!ramblock) { 2231 /* We shouldn't be asked for a non-existent RAMBlock */ 2232 error_report("ram_save_queue_pages no block '%s'", rbname); 2233 goto err; 2234 } 2235 rs->last_req_rb = ramblock; 2236 } 2237 trace_ram_save_queue_pages(ramblock->idstr, start, len); 2238 if (start+len > ramblock->used_length) { 2239 error_report("%s request overrun start=" RAM_ADDR_FMT " len=" 2240 RAM_ADDR_FMT " blocklen=" RAM_ADDR_FMT, 2241 __func__, start, len, ramblock->used_length); 2242 goto err; 2243 } 2244 2245 struct RAMSrcPageRequest *new_entry = 2246 g_malloc0(sizeof(struct RAMSrcPageRequest)); 2247 new_entry->rb = ramblock; 2248 new_entry->offset = start; 2249 new_entry->len = len; 2250 2251 memory_region_ref(ramblock->mr); 2252 qemu_mutex_lock(&rs->src_page_req_mutex); 2253 QSIMPLEQ_INSERT_TAIL(&rs->src_page_requests, new_entry, next_req); 2254 migration_make_urgent_request(); 2255 qemu_mutex_unlock(&rs->src_page_req_mutex); 2256 rcu_read_unlock(); 2257 2258 return 0; 2259 2260 err: 2261 rcu_read_unlock(); 2262 return -1; 2263 } 2264 2265 static bool save_page_use_compression(RAMState *rs) 2266 { 2267 if (!migrate_use_compression()) { 2268 return false; 2269 } 2270 2271 /* 2272 * If xbzrle is on, stop using the data compression after first 2273 * round of migration even if compression is enabled. In theory, 2274 * xbzrle can do better than compression. 2275 */ 2276 if (rs->ram_bulk_stage || !migrate_use_xbzrle()) { 2277 return true; 2278 } 2279 2280 return false; 2281 } 2282 2283 /* 2284 * try to compress the page before posting it out, return true if the page 2285 * has been properly handled by compression, otherwise needs other 2286 * paths to handle it 2287 */ 2288 static bool save_compress_page(RAMState *rs, RAMBlock *block, ram_addr_t offset) 2289 { 2290 if (!save_page_use_compression(rs)) { 2291 return false; 2292 } 2293 2294 /* 2295 * When starting the process of a new block, the first page of 2296 * the block should be sent out before other pages in the same 2297 * block, and all the pages in last block should have been sent 2298 * out, keeping this order is important, because the 'cont' flag 2299 * is used to avoid resending the block name. 2300 * 2301 * We post the fist page as normal page as compression will take 2302 * much CPU resource. 2303 */ 2304 if (block != rs->last_sent_block) { 2305 flush_compressed_data(rs); 2306 return false; 2307 } 2308 2309 if (compress_page_with_multi_thread(rs, block, offset) > 0) { 2310 return true; 2311 } 2312 2313 compression_counters.busy++; 2314 return false; 2315 } 2316 2317 /** 2318 * ram_save_target_page: save one target page 2319 * 2320 * Returns the number of pages written 2321 * 2322 * @rs: current RAM state 2323 * @pss: data about the page we want to send 2324 * @last_stage: if we are at the completion stage 2325 */ 2326 static int ram_save_target_page(RAMState *rs, PageSearchStatus *pss, 2327 bool last_stage) 2328 { 2329 RAMBlock *block = pss->block; 2330 ram_addr_t offset = pss->page << TARGET_PAGE_BITS; 2331 int res; 2332 2333 if (control_save_page(rs, block, offset, &res)) { 2334 return res; 2335 } 2336 2337 if (save_compress_page(rs, block, offset)) { 2338 return 1; 2339 } 2340 2341 res = save_zero_page(rs, block, offset); 2342 if (res > 0) { 2343 /* Must let xbzrle know, otherwise a previous (now 0'd) cached 2344 * page would be stale 2345 */ 2346 if (!save_page_use_compression(rs)) { 2347 XBZRLE_cache_lock(); 2348 xbzrle_cache_zero_page(rs, block->offset + offset); 2349 XBZRLE_cache_unlock(); 2350 } 2351 ram_release_pages(block->idstr, offset, res); 2352 return res; 2353 } 2354 2355 /* 2356 * do not use multifd for compression as the first page in the new 2357 * block should be posted out before sending the compressed page 2358 */ 2359 if (!save_page_use_compression(rs) && migrate_use_multifd()) { 2360 return ram_save_multifd_page(rs, block, offset); 2361 } 2362 2363 return ram_save_page(rs, pss, last_stage); 2364 } 2365 2366 /** 2367 * ram_save_host_page: save a whole host page 2368 * 2369 * Starting at *offset send pages up to the end of the current host 2370 * page. It's valid for the initial offset to point into the middle of 2371 * a host page in which case the remainder of the hostpage is sent. 2372 * Only dirty target pages are sent. Note that the host page size may 2373 * be a huge page for this block. 2374 * The saving stops at the boundary of the used_length of the block 2375 * if the RAMBlock isn't a multiple of the host page size. 2376 * 2377 * Returns the number of pages written or negative on error 2378 * 2379 * @rs: current RAM state 2380 * @ms: current migration state 2381 * @pss: data about the page we want to send 2382 * @last_stage: if we are at the completion stage 2383 */ 2384 static int ram_save_host_page(RAMState *rs, PageSearchStatus *pss, 2385 bool last_stage) 2386 { 2387 int tmppages, pages = 0; 2388 size_t pagesize_bits = 2389 qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS; 2390 2391 if (!qemu_ram_is_migratable(pss->block)) { 2392 error_report("block %s should not be migrated !", pss->block->idstr); 2393 return 0; 2394 } 2395 2396 do { 2397 /* Check the pages is dirty and if it is send it */ 2398 if (!migration_bitmap_clear_dirty(rs, pss->block, pss->page)) { 2399 pss->page++; 2400 continue; 2401 } 2402 2403 tmppages = ram_save_target_page(rs, pss, last_stage); 2404 if (tmppages < 0) { 2405 return tmppages; 2406 } 2407 2408 pages += tmppages; 2409 if (pss->block->unsentmap) { 2410 clear_bit(pss->page, pss->block->unsentmap); 2411 } 2412 2413 pss->page++; 2414 } while ((pss->page & (pagesize_bits - 1)) && 2415 offset_in_ramblock(pss->block, pss->page << TARGET_PAGE_BITS)); 2416 2417 /* The offset we leave with is the last one we looked at */ 2418 pss->page--; 2419 return pages; 2420 } 2421 2422 /** 2423 * ram_find_and_save_block: finds a dirty page and sends it to f 2424 * 2425 * Called within an RCU critical section. 2426 * 2427 * Returns the number of pages written where zero means no dirty pages, 2428 * or negative on error 2429 * 2430 * @rs: current RAM state 2431 * @last_stage: if we are at the completion stage 2432 * 2433 * On systems where host-page-size > target-page-size it will send all the 2434 * pages in a host page that are dirty. 2435 */ 2436 2437 static int ram_find_and_save_block(RAMState *rs, bool last_stage) 2438 { 2439 PageSearchStatus pss; 2440 int pages = 0; 2441 bool again, found; 2442 2443 /* No dirty page as there is zero RAM */ 2444 if (!ram_bytes_total()) { 2445 return pages; 2446 } 2447 2448 pss.block = rs->last_seen_block; 2449 pss.page = rs->last_page; 2450 pss.complete_round = false; 2451 2452 if (!pss.block) { 2453 pss.block = QLIST_FIRST_RCU(&ram_list.blocks); 2454 } 2455 2456 do { 2457 again = true; 2458 found = get_queued_page(rs, &pss); 2459 2460 if (!found) { 2461 /* priority queue empty, so just search for something dirty */ 2462 found = find_dirty_block(rs, &pss, &again); 2463 } 2464 2465 if (found) { 2466 pages = ram_save_host_page(rs, &pss, last_stage); 2467 } 2468 } while (!pages && again); 2469 2470 rs->last_seen_block = pss.block; 2471 rs->last_page = pss.page; 2472 2473 return pages; 2474 } 2475 2476 void acct_update_position(QEMUFile *f, size_t size, bool zero) 2477 { 2478 uint64_t pages = size / TARGET_PAGE_SIZE; 2479 2480 if (zero) { 2481 ram_counters.duplicate += pages; 2482 } else { 2483 ram_counters.normal += pages; 2484 ram_counters.transferred += size; 2485 qemu_update_position(f, size); 2486 } 2487 } 2488 2489 uint64_t ram_bytes_total(void) 2490 { 2491 RAMBlock *block; 2492 uint64_t total = 0; 2493 2494 rcu_read_lock(); 2495 RAMBLOCK_FOREACH_MIGRATABLE(block) { 2496 total += block->used_length; 2497 } 2498 rcu_read_unlock(); 2499 return total; 2500 } 2501 2502 static void xbzrle_load_setup(void) 2503 { 2504 XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE); 2505 } 2506 2507 static void xbzrle_load_cleanup(void) 2508 { 2509 g_free(XBZRLE.decoded_buf); 2510 XBZRLE.decoded_buf = NULL; 2511 } 2512 2513 static void ram_state_cleanup(RAMState **rsp) 2514 { 2515 if (*rsp) { 2516 migration_page_queue_free(*rsp); 2517 qemu_mutex_destroy(&(*rsp)->bitmap_mutex); 2518 qemu_mutex_destroy(&(*rsp)->src_page_req_mutex); 2519 g_free(*rsp); 2520 *rsp = NULL; 2521 } 2522 } 2523 2524 static void xbzrle_cleanup(void) 2525 { 2526 XBZRLE_cache_lock(); 2527 if (XBZRLE.cache) { 2528 cache_fini(XBZRLE.cache); 2529 g_free(XBZRLE.encoded_buf); 2530 g_free(XBZRLE.current_buf); 2531 g_free(XBZRLE.zero_target_page); 2532 XBZRLE.cache = NULL; 2533 XBZRLE.encoded_buf = NULL; 2534 XBZRLE.current_buf = NULL; 2535 XBZRLE.zero_target_page = NULL; 2536 } 2537 XBZRLE_cache_unlock(); 2538 } 2539 2540 static void ram_save_cleanup(void *opaque) 2541 { 2542 RAMState **rsp = opaque; 2543 RAMBlock *block; 2544 2545 /* caller have hold iothread lock or is in a bh, so there is 2546 * no writing race against this migration_bitmap 2547 */ 2548 memory_global_dirty_log_stop(); 2549 2550 RAMBLOCK_FOREACH_MIGRATABLE(block) { 2551 g_free(block->bmap); 2552 block->bmap = NULL; 2553 g_free(block->unsentmap); 2554 block->unsentmap = NULL; 2555 } 2556 2557 xbzrle_cleanup(); 2558 compress_threads_save_cleanup(); 2559 ram_state_cleanup(rsp); 2560 } 2561 2562 static void ram_state_reset(RAMState *rs) 2563 { 2564 rs->last_seen_block = NULL; 2565 rs->last_sent_block = NULL; 2566 rs->last_page = 0; 2567 rs->last_version = ram_list.version; 2568 rs->ram_bulk_stage = true; 2569 } 2570 2571 #define MAX_WAIT 50 /* ms, half buffered_file limit */ 2572 2573 /* 2574 * 'expected' is the value you expect the bitmap mostly to be full 2575 * of; it won't bother printing lines that are all this value. 2576 * If 'todump' is null the migration bitmap is dumped. 2577 */ 2578 void ram_debug_dump_bitmap(unsigned long *todump, bool expected, 2579 unsigned long pages) 2580 { 2581 int64_t cur; 2582 int64_t linelen = 128; 2583 char linebuf[129]; 2584 2585 for (cur = 0; cur < pages; cur += linelen) { 2586 int64_t curb; 2587 bool found = false; 2588 /* 2589 * Last line; catch the case where the line length 2590 * is longer than remaining ram 2591 */ 2592 if (cur + linelen > pages) { 2593 linelen = pages - cur; 2594 } 2595 for (curb = 0; curb < linelen; curb++) { 2596 bool thisbit = test_bit(cur + curb, todump); 2597 linebuf[curb] = thisbit ? '1' : '.'; 2598 found = found || (thisbit != expected); 2599 } 2600 if (found) { 2601 linebuf[curb] = '\0'; 2602 fprintf(stderr, "0x%08" PRIx64 " : %s\n", cur, linebuf); 2603 } 2604 } 2605 } 2606 2607 /* **** functions for postcopy ***** */ 2608 2609 void ram_postcopy_migrated_memory_release(MigrationState *ms) 2610 { 2611 struct RAMBlock *block; 2612 2613 RAMBLOCK_FOREACH_MIGRATABLE(block) { 2614 unsigned long *bitmap = block->bmap; 2615 unsigned long range = block->used_length >> TARGET_PAGE_BITS; 2616 unsigned long run_start = find_next_zero_bit(bitmap, range, 0); 2617 2618 while (run_start < range) { 2619 unsigned long run_end = find_next_bit(bitmap, range, run_start + 1); 2620 ram_discard_range(block->idstr, run_start << TARGET_PAGE_BITS, 2621 (run_end - run_start) << TARGET_PAGE_BITS); 2622 run_start = find_next_zero_bit(bitmap, range, run_end + 1); 2623 } 2624 } 2625 } 2626 2627 /** 2628 * postcopy_send_discard_bm_ram: discard a RAMBlock 2629 * 2630 * Returns zero on success 2631 * 2632 * Callback from postcopy_each_ram_send_discard for each RAMBlock 2633 * Note: At this point the 'unsentmap' is the processed bitmap combined 2634 * with the dirtymap; so a '1' means it's either dirty or unsent. 2635 * 2636 * @ms: current migration state 2637 * @pds: state for postcopy 2638 * @start: RAMBlock starting page 2639 * @length: RAMBlock size 2640 */ 2641 static int postcopy_send_discard_bm_ram(MigrationState *ms, 2642 PostcopyDiscardState *pds, 2643 RAMBlock *block) 2644 { 2645 unsigned long end = block->used_length >> TARGET_PAGE_BITS; 2646 unsigned long current; 2647 unsigned long *unsentmap = block->unsentmap; 2648 2649 for (current = 0; current < end; ) { 2650 unsigned long one = find_next_bit(unsentmap, end, current); 2651 2652 if (one <= end) { 2653 unsigned long zero = find_next_zero_bit(unsentmap, end, one + 1); 2654 unsigned long discard_length; 2655 2656 if (zero >= end) { 2657 discard_length = end - one; 2658 } else { 2659 discard_length = zero - one; 2660 } 2661 if (discard_length) { 2662 postcopy_discard_send_range(ms, pds, one, discard_length); 2663 } 2664 current = one + discard_length; 2665 } else { 2666 current = one; 2667 } 2668 } 2669 2670 return 0; 2671 } 2672 2673 /** 2674 * postcopy_each_ram_send_discard: discard all RAMBlocks 2675 * 2676 * Returns 0 for success or negative for error 2677 * 2678 * Utility for the outgoing postcopy code. 2679 * Calls postcopy_send_discard_bm_ram for each RAMBlock 2680 * passing it bitmap indexes and name. 2681 * (qemu_ram_foreach_block ends up passing unscaled lengths 2682 * which would mean postcopy code would have to deal with target page) 2683 * 2684 * @ms: current migration state 2685 */ 2686 static int postcopy_each_ram_send_discard(MigrationState *ms) 2687 { 2688 struct RAMBlock *block; 2689 int ret; 2690 2691 RAMBLOCK_FOREACH_MIGRATABLE(block) { 2692 PostcopyDiscardState *pds = 2693 postcopy_discard_send_init(ms, block->idstr); 2694 2695 /* 2696 * Postcopy sends chunks of bitmap over the wire, but it 2697 * just needs indexes at this point, avoids it having 2698 * target page specific code. 2699 */ 2700 ret = postcopy_send_discard_bm_ram(ms, pds, block); 2701 postcopy_discard_send_finish(ms, pds); 2702 if (ret) { 2703 return ret; 2704 } 2705 } 2706 2707 return 0; 2708 } 2709 2710 /** 2711 * postcopy_chunk_hostpages_pass: canocalize bitmap in hostpages 2712 * 2713 * Helper for postcopy_chunk_hostpages; it's called twice to 2714 * canonicalize the two bitmaps, that are similar, but one is 2715 * inverted. 2716 * 2717 * Postcopy requires that all target pages in a hostpage are dirty or 2718 * clean, not a mix. This function canonicalizes the bitmaps. 2719 * 2720 * @ms: current migration state 2721 * @unsent_pass: if true we need to canonicalize partially unsent host pages 2722 * otherwise we need to canonicalize partially dirty host pages 2723 * @block: block that contains the page we want to canonicalize 2724 * @pds: state for postcopy 2725 */ 2726 static void postcopy_chunk_hostpages_pass(MigrationState *ms, bool unsent_pass, 2727 RAMBlock *block, 2728 PostcopyDiscardState *pds) 2729 { 2730 RAMState *rs = ram_state; 2731 unsigned long *bitmap = block->bmap; 2732 unsigned long *unsentmap = block->unsentmap; 2733 unsigned int host_ratio = block->page_size / TARGET_PAGE_SIZE; 2734 unsigned long pages = block->used_length >> TARGET_PAGE_BITS; 2735 unsigned long run_start; 2736 2737 if (block->page_size == TARGET_PAGE_SIZE) { 2738 /* Easy case - TPS==HPS for a non-huge page RAMBlock */ 2739 return; 2740 } 2741 2742 if (unsent_pass) { 2743 /* Find a sent page */ 2744 run_start = find_next_zero_bit(unsentmap, pages, 0); 2745 } else { 2746 /* Find a dirty page */ 2747 run_start = find_next_bit(bitmap, pages, 0); 2748 } 2749 2750 while (run_start < pages) { 2751 bool do_fixup = false; 2752 unsigned long fixup_start_addr; 2753 unsigned long host_offset; 2754 2755 /* 2756 * If the start of this run of pages is in the middle of a host 2757 * page, then we need to fixup this host page. 2758 */ 2759 host_offset = run_start % host_ratio; 2760 if (host_offset) { 2761 do_fixup = true; 2762 run_start -= host_offset; 2763 fixup_start_addr = run_start; 2764 /* For the next pass */ 2765 run_start = run_start + host_ratio; 2766 } else { 2767 /* Find the end of this run */ 2768 unsigned long run_end; 2769 if (unsent_pass) { 2770 run_end = find_next_bit(unsentmap, pages, run_start + 1); 2771 } else { 2772 run_end = find_next_zero_bit(bitmap, pages, run_start + 1); 2773 } 2774 /* 2775 * If the end isn't at the start of a host page, then the 2776 * run doesn't finish at the end of a host page 2777 * and we need to discard. 2778 */ 2779 host_offset = run_end % host_ratio; 2780 if (host_offset) { 2781 do_fixup = true; 2782 fixup_start_addr = run_end - host_offset; 2783 /* 2784 * This host page has gone, the next loop iteration starts 2785 * from after the fixup 2786 */ 2787 run_start = fixup_start_addr + host_ratio; 2788 } else { 2789 /* 2790 * No discards on this iteration, next loop starts from 2791 * next sent/dirty page 2792 */ 2793 run_start = run_end + 1; 2794 } 2795 } 2796 2797 if (do_fixup) { 2798 unsigned long page; 2799 2800 /* Tell the destination to discard this page */ 2801 if (unsent_pass || !test_bit(fixup_start_addr, unsentmap)) { 2802 /* For the unsent_pass we: 2803 * discard partially sent pages 2804 * For the !unsent_pass (dirty) we: 2805 * discard partially dirty pages that were sent 2806 * (any partially sent pages were already discarded 2807 * by the previous unsent_pass) 2808 */ 2809 postcopy_discard_send_range(ms, pds, fixup_start_addr, 2810 host_ratio); 2811 } 2812 2813 /* Clean up the bitmap */ 2814 for (page = fixup_start_addr; 2815 page < fixup_start_addr + host_ratio; page++) { 2816 /* All pages in this host page are now not sent */ 2817 set_bit(page, unsentmap); 2818 2819 /* 2820 * Remark them as dirty, updating the count for any pages 2821 * that weren't previously dirty. 2822 */ 2823 rs->migration_dirty_pages += !test_and_set_bit(page, bitmap); 2824 } 2825 } 2826 2827 if (unsent_pass) { 2828 /* Find the next sent page for the next iteration */ 2829 run_start = find_next_zero_bit(unsentmap, pages, run_start); 2830 } else { 2831 /* Find the next dirty page for the next iteration */ 2832 run_start = find_next_bit(bitmap, pages, run_start); 2833 } 2834 } 2835 } 2836 2837 /** 2838 * postcopy_chuck_hostpages: discrad any partially sent host page 2839 * 2840 * Utility for the outgoing postcopy code. 2841 * 2842 * Discard any partially sent host-page size chunks, mark any partially 2843 * dirty host-page size chunks as all dirty. In this case the host-page 2844 * is the host-page for the particular RAMBlock, i.e. it might be a huge page 2845 * 2846 * Returns zero on success 2847 * 2848 * @ms: current migration state 2849 * @block: block we want to work with 2850 */ 2851 static int postcopy_chunk_hostpages(MigrationState *ms, RAMBlock *block) 2852 { 2853 PostcopyDiscardState *pds = 2854 postcopy_discard_send_init(ms, block->idstr); 2855 2856 /* First pass: Discard all partially sent host pages */ 2857 postcopy_chunk_hostpages_pass(ms, true, block, pds); 2858 /* 2859 * Second pass: Ensure that all partially dirty host pages are made 2860 * fully dirty. 2861 */ 2862 postcopy_chunk_hostpages_pass(ms, false, block, pds); 2863 2864 postcopy_discard_send_finish(ms, pds); 2865 return 0; 2866 } 2867 2868 /** 2869 * ram_postcopy_send_discard_bitmap: transmit the discard bitmap 2870 * 2871 * Returns zero on success 2872 * 2873 * Transmit the set of pages to be discarded after precopy to the target 2874 * these are pages that: 2875 * a) Have been previously transmitted but are now dirty again 2876 * b) Pages that have never been transmitted, this ensures that 2877 * any pages on the destination that have been mapped by background 2878 * tasks get discarded (transparent huge pages is the specific concern) 2879 * Hopefully this is pretty sparse 2880 * 2881 * @ms: current migration state 2882 */ 2883 int ram_postcopy_send_discard_bitmap(MigrationState *ms) 2884 { 2885 RAMState *rs = ram_state; 2886 RAMBlock *block; 2887 int ret; 2888 2889 rcu_read_lock(); 2890 2891 /* This should be our last sync, the src is now paused */ 2892 migration_bitmap_sync(rs); 2893 2894 /* Easiest way to make sure we don't resume in the middle of a host-page */ 2895 rs->last_seen_block = NULL; 2896 rs->last_sent_block = NULL; 2897 rs->last_page = 0; 2898 2899 RAMBLOCK_FOREACH_MIGRATABLE(block) { 2900 unsigned long pages = block->used_length >> TARGET_PAGE_BITS; 2901 unsigned long *bitmap = block->bmap; 2902 unsigned long *unsentmap = block->unsentmap; 2903 2904 if (!unsentmap) { 2905 /* We don't have a safe way to resize the sentmap, so 2906 * if the bitmap was resized it will be NULL at this 2907 * point. 2908 */ 2909 error_report("migration ram resized during precopy phase"); 2910 rcu_read_unlock(); 2911 return -EINVAL; 2912 } 2913 /* Deal with TPS != HPS and huge pages */ 2914 ret = postcopy_chunk_hostpages(ms, block); 2915 if (ret) { 2916 rcu_read_unlock(); 2917 return ret; 2918 } 2919 2920 /* 2921 * Update the unsentmap to be unsentmap = unsentmap | dirty 2922 */ 2923 bitmap_or(unsentmap, unsentmap, bitmap, pages); 2924 #ifdef DEBUG_POSTCOPY 2925 ram_debug_dump_bitmap(unsentmap, true, pages); 2926 #endif 2927 } 2928 trace_ram_postcopy_send_discard_bitmap(); 2929 2930 ret = postcopy_each_ram_send_discard(ms); 2931 rcu_read_unlock(); 2932 2933 return ret; 2934 } 2935 2936 /** 2937 * ram_discard_range: discard dirtied pages at the beginning of postcopy 2938 * 2939 * Returns zero on success 2940 * 2941 * @rbname: name of the RAMBlock of the request. NULL means the 2942 * same that last one. 2943 * @start: RAMBlock starting page 2944 * @length: RAMBlock size 2945 */ 2946 int ram_discard_range(const char *rbname, uint64_t start, size_t length) 2947 { 2948 int ret = -1; 2949 2950 trace_ram_discard_range(rbname, start, length); 2951 2952 rcu_read_lock(); 2953 RAMBlock *rb = qemu_ram_block_by_name(rbname); 2954 2955 if (!rb) { 2956 error_report("ram_discard_range: Failed to find block '%s'", rbname); 2957 goto err; 2958 } 2959 2960 /* 2961 * On source VM, we don't need to update the received bitmap since 2962 * we don't even have one. 2963 */ 2964 if (rb->receivedmap) { 2965 bitmap_clear(rb->receivedmap, start >> qemu_target_page_bits(), 2966 length >> qemu_target_page_bits()); 2967 } 2968 2969 ret = ram_block_discard_range(rb, start, length); 2970 2971 err: 2972 rcu_read_unlock(); 2973 2974 return ret; 2975 } 2976 2977 /* 2978 * For every allocation, we will try not to crash the VM if the 2979 * allocation failed. 2980 */ 2981 static int xbzrle_init(void) 2982 { 2983 Error *local_err = NULL; 2984 2985 if (!migrate_use_xbzrle()) { 2986 return 0; 2987 } 2988 2989 XBZRLE_cache_lock(); 2990 2991 XBZRLE.zero_target_page = g_try_malloc0(TARGET_PAGE_SIZE); 2992 if (!XBZRLE.zero_target_page) { 2993 error_report("%s: Error allocating zero page", __func__); 2994 goto err_out; 2995 } 2996 2997 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size(), 2998 TARGET_PAGE_SIZE, &local_err); 2999 if (!XBZRLE.cache) { 3000 error_report_err(local_err); 3001 goto free_zero_page; 3002 } 3003 3004 XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE); 3005 if (!XBZRLE.encoded_buf) { 3006 error_report("%s: Error allocating encoded_buf", __func__); 3007 goto free_cache; 3008 } 3009 3010 XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE); 3011 if (!XBZRLE.current_buf) { 3012 error_report("%s: Error allocating current_buf", __func__); 3013 goto free_encoded_buf; 3014 } 3015 3016 /* We are all good */ 3017 XBZRLE_cache_unlock(); 3018 return 0; 3019 3020 free_encoded_buf: 3021 g_free(XBZRLE.encoded_buf); 3022 XBZRLE.encoded_buf = NULL; 3023 free_cache: 3024 cache_fini(XBZRLE.cache); 3025 XBZRLE.cache = NULL; 3026 free_zero_page: 3027 g_free(XBZRLE.zero_target_page); 3028 XBZRLE.zero_target_page = NULL; 3029 err_out: 3030 XBZRLE_cache_unlock(); 3031 return -ENOMEM; 3032 } 3033 3034 static int ram_state_init(RAMState **rsp) 3035 { 3036 *rsp = g_try_new0(RAMState, 1); 3037 3038 if (!*rsp) { 3039 error_report("%s: Init ramstate fail", __func__); 3040 return -1; 3041 } 3042 3043 qemu_mutex_init(&(*rsp)->bitmap_mutex); 3044 qemu_mutex_init(&(*rsp)->src_page_req_mutex); 3045 QSIMPLEQ_INIT(&(*rsp)->src_page_requests); 3046 3047 /* 3048 * Count the total number of pages used by ram blocks not including any 3049 * gaps due to alignment or unplugs. 3050 */ 3051 (*rsp)->migration_dirty_pages = ram_bytes_total() >> TARGET_PAGE_BITS; 3052 3053 ram_state_reset(*rsp); 3054 3055 return 0; 3056 } 3057 3058 static void ram_list_init_bitmaps(void) 3059 { 3060 RAMBlock *block; 3061 unsigned long pages; 3062 3063 /* Skip setting bitmap if there is no RAM */ 3064 if (ram_bytes_total()) { 3065 RAMBLOCK_FOREACH_MIGRATABLE(block) { 3066 pages = block->max_length >> TARGET_PAGE_BITS; 3067 block->bmap = bitmap_new(pages); 3068 bitmap_set(block->bmap, 0, pages); 3069 if (migrate_postcopy_ram()) { 3070 block->unsentmap = bitmap_new(pages); 3071 bitmap_set(block->unsentmap, 0, pages); 3072 } 3073 } 3074 } 3075 } 3076 3077 static void ram_init_bitmaps(RAMState *rs) 3078 { 3079 /* For memory_global_dirty_log_start below. */ 3080 qemu_mutex_lock_iothread(); 3081 qemu_mutex_lock_ramlist(); 3082 rcu_read_lock(); 3083 3084 ram_list_init_bitmaps(); 3085 memory_global_dirty_log_start(); 3086 migration_bitmap_sync(rs); 3087 3088 rcu_read_unlock(); 3089 qemu_mutex_unlock_ramlist(); 3090 qemu_mutex_unlock_iothread(); 3091 } 3092 3093 static int ram_init_all(RAMState **rsp) 3094 { 3095 if (ram_state_init(rsp)) { 3096 return -1; 3097 } 3098 3099 if (xbzrle_init()) { 3100 ram_state_cleanup(rsp); 3101 return -1; 3102 } 3103 3104 ram_init_bitmaps(*rsp); 3105 3106 return 0; 3107 } 3108 3109 static void ram_state_resume_prepare(RAMState *rs, QEMUFile *out) 3110 { 3111 RAMBlock *block; 3112 uint64_t pages = 0; 3113 3114 /* 3115 * Postcopy is not using xbzrle/compression, so no need for that. 3116 * Also, since source are already halted, we don't need to care 3117 * about dirty page logging as well. 3118 */ 3119 3120 RAMBLOCK_FOREACH_MIGRATABLE(block) { 3121 pages += bitmap_count_one(block->bmap, 3122 block->used_length >> TARGET_PAGE_BITS); 3123 } 3124 3125 /* This may not be aligned with current bitmaps. Recalculate. */ 3126 rs->migration_dirty_pages = pages; 3127 3128 rs->last_seen_block = NULL; 3129 rs->last_sent_block = NULL; 3130 rs->last_page = 0; 3131 rs->last_version = ram_list.version; 3132 /* 3133 * Disable the bulk stage, otherwise we'll resend the whole RAM no 3134 * matter what we have sent. 3135 */ 3136 rs->ram_bulk_stage = false; 3137 3138 /* Update RAMState cache of output QEMUFile */ 3139 rs->f = out; 3140 3141 trace_ram_state_resume_prepare(pages); 3142 } 3143 3144 /* 3145 * Each of ram_save_setup, ram_save_iterate and ram_save_complete has 3146 * long-running RCU critical section. When rcu-reclaims in the code 3147 * start to become numerous it will be necessary to reduce the 3148 * granularity of these critical sections. 3149 */ 3150 3151 /** 3152 * ram_save_setup: Setup RAM for migration 3153 * 3154 * Returns zero to indicate success and negative for error 3155 * 3156 * @f: QEMUFile where to send the data 3157 * @opaque: RAMState pointer 3158 */ 3159 static int ram_save_setup(QEMUFile *f, void *opaque) 3160 { 3161 RAMState **rsp = opaque; 3162 RAMBlock *block; 3163 3164 if (compress_threads_save_setup()) { 3165 return -1; 3166 } 3167 3168 /* migration has already setup the bitmap, reuse it. */ 3169 if (!migration_in_colo_state()) { 3170 if (ram_init_all(rsp) != 0) { 3171 compress_threads_save_cleanup(); 3172 return -1; 3173 } 3174 } 3175 (*rsp)->f = f; 3176 3177 rcu_read_lock(); 3178 3179 qemu_put_be64(f, ram_bytes_total() | RAM_SAVE_FLAG_MEM_SIZE); 3180 3181 RAMBLOCK_FOREACH_MIGRATABLE(block) { 3182 qemu_put_byte(f, strlen(block->idstr)); 3183 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr)); 3184 qemu_put_be64(f, block->used_length); 3185 if (migrate_postcopy_ram() && block->page_size != qemu_host_page_size) { 3186 qemu_put_be64(f, block->page_size); 3187 } 3188 } 3189 3190 rcu_read_unlock(); 3191 3192 ram_control_before_iterate(f, RAM_CONTROL_SETUP); 3193 ram_control_after_iterate(f, RAM_CONTROL_SETUP); 3194 3195 multifd_send_sync_main(); 3196 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 3197 qemu_fflush(f); 3198 3199 return 0; 3200 } 3201 3202 /** 3203 * ram_save_iterate: iterative stage for migration 3204 * 3205 * Returns zero to indicate success and negative for error 3206 * 3207 * @f: QEMUFile where to send the data 3208 * @opaque: RAMState pointer 3209 */ 3210 static int ram_save_iterate(QEMUFile *f, void *opaque) 3211 { 3212 RAMState **temp = opaque; 3213 RAMState *rs = *temp; 3214 int ret; 3215 int i; 3216 int64_t t0; 3217 int done = 0; 3218 3219 if (blk_mig_bulk_active()) { 3220 /* Avoid transferring ram during bulk phase of block migration as 3221 * the bulk phase will usually take a long time and transferring 3222 * ram updates during that time is pointless. */ 3223 goto out; 3224 } 3225 3226 rcu_read_lock(); 3227 if (ram_list.version != rs->last_version) { 3228 ram_state_reset(rs); 3229 } 3230 3231 /* Read version before ram_list.blocks */ 3232 smp_rmb(); 3233 3234 ram_control_before_iterate(f, RAM_CONTROL_ROUND); 3235 3236 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 3237 i = 0; 3238 while ((ret = qemu_file_rate_limit(f)) == 0 || 3239 !QSIMPLEQ_EMPTY(&rs->src_page_requests)) { 3240 int pages; 3241 3242 if (qemu_file_get_error(f)) { 3243 break; 3244 } 3245 3246 pages = ram_find_and_save_block(rs, false); 3247 /* no more pages to sent */ 3248 if (pages == 0) { 3249 done = 1; 3250 break; 3251 } 3252 3253 if (pages < 0) { 3254 qemu_file_set_error(f, pages); 3255 break; 3256 } 3257 3258 rs->target_page_count += pages; 3259 3260 /* we want to check in the 1st loop, just in case it was the 1st time 3261 and we had to sync the dirty bitmap. 3262 qemu_get_clock_ns() is a bit expensive, so we only check each some 3263 iterations 3264 */ 3265 if ((i & 63) == 0) { 3266 uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) / 1000000; 3267 if (t1 > MAX_WAIT) { 3268 trace_ram_save_iterate_big_wait(t1, i); 3269 break; 3270 } 3271 } 3272 i++; 3273 } 3274 rcu_read_unlock(); 3275 3276 /* 3277 * Must occur before EOS (or any QEMUFile operation) 3278 * because of RDMA protocol. 3279 */ 3280 ram_control_after_iterate(f, RAM_CONTROL_ROUND); 3281 3282 multifd_send_sync_main(); 3283 out: 3284 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 3285 qemu_fflush(f); 3286 ram_counters.transferred += 8; 3287 3288 ret = qemu_file_get_error(f); 3289 if (ret < 0) { 3290 return ret; 3291 } 3292 3293 return done; 3294 } 3295 3296 /** 3297 * ram_save_complete: function called to send the remaining amount of ram 3298 * 3299 * Returns zero to indicate success or negative on error 3300 * 3301 * Called with iothread lock 3302 * 3303 * @f: QEMUFile where to send the data 3304 * @opaque: RAMState pointer 3305 */ 3306 static int ram_save_complete(QEMUFile *f, void *opaque) 3307 { 3308 RAMState **temp = opaque; 3309 RAMState *rs = *temp; 3310 int ret = 0; 3311 3312 rcu_read_lock(); 3313 3314 if (!migration_in_postcopy()) { 3315 migration_bitmap_sync(rs); 3316 } 3317 3318 ram_control_before_iterate(f, RAM_CONTROL_FINISH); 3319 3320 /* try transferring iterative blocks of memory */ 3321 3322 /* flush all remaining blocks regardless of rate limiting */ 3323 while (true) { 3324 int pages; 3325 3326 pages = ram_find_and_save_block(rs, !migration_in_colo_state()); 3327 /* no more blocks to sent */ 3328 if (pages == 0) { 3329 break; 3330 } 3331 if (pages < 0) { 3332 ret = pages; 3333 break; 3334 } 3335 } 3336 3337 flush_compressed_data(rs); 3338 ram_control_after_iterate(f, RAM_CONTROL_FINISH); 3339 3340 rcu_read_unlock(); 3341 3342 multifd_send_sync_main(); 3343 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 3344 qemu_fflush(f); 3345 3346 return ret; 3347 } 3348 3349 static void ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size, 3350 uint64_t *res_precopy_only, 3351 uint64_t *res_compatible, 3352 uint64_t *res_postcopy_only) 3353 { 3354 RAMState **temp = opaque; 3355 RAMState *rs = *temp; 3356 uint64_t remaining_size; 3357 3358 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE; 3359 3360 if (!migration_in_postcopy() && 3361 remaining_size < max_size) { 3362 qemu_mutex_lock_iothread(); 3363 rcu_read_lock(); 3364 migration_bitmap_sync(rs); 3365 rcu_read_unlock(); 3366 qemu_mutex_unlock_iothread(); 3367 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE; 3368 } 3369 3370 if (migrate_postcopy_ram()) { 3371 /* We can do postcopy, and all the data is postcopiable */ 3372 *res_compatible += remaining_size; 3373 } else { 3374 *res_precopy_only += remaining_size; 3375 } 3376 } 3377 3378 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host) 3379 { 3380 unsigned int xh_len; 3381 int xh_flags; 3382 uint8_t *loaded_data; 3383 3384 /* extract RLE header */ 3385 xh_flags = qemu_get_byte(f); 3386 xh_len = qemu_get_be16(f); 3387 3388 if (xh_flags != ENCODING_FLAG_XBZRLE) { 3389 error_report("Failed to load XBZRLE page - wrong compression!"); 3390 return -1; 3391 } 3392 3393 if (xh_len > TARGET_PAGE_SIZE) { 3394 error_report("Failed to load XBZRLE page - len overflow!"); 3395 return -1; 3396 } 3397 loaded_data = XBZRLE.decoded_buf; 3398 /* load data and decode */ 3399 /* it can change loaded_data to point to an internal buffer */ 3400 qemu_get_buffer_in_place(f, &loaded_data, xh_len); 3401 3402 /* decode RLE */ 3403 if (xbzrle_decode_buffer(loaded_data, xh_len, host, 3404 TARGET_PAGE_SIZE) == -1) { 3405 error_report("Failed to load XBZRLE page - decode error!"); 3406 return -1; 3407 } 3408 3409 return 0; 3410 } 3411 3412 /** 3413 * ram_block_from_stream: read a RAMBlock id from the migration stream 3414 * 3415 * Must be called from within a rcu critical section. 3416 * 3417 * Returns a pointer from within the RCU-protected ram_list. 3418 * 3419 * @f: QEMUFile where to read the data from 3420 * @flags: Page flags (mostly to see if it's a continuation of previous block) 3421 */ 3422 static inline RAMBlock *ram_block_from_stream(QEMUFile *f, int flags) 3423 { 3424 static RAMBlock *block = NULL; 3425 char id[256]; 3426 uint8_t len; 3427 3428 if (flags & RAM_SAVE_FLAG_CONTINUE) { 3429 if (!block) { 3430 error_report("Ack, bad migration stream!"); 3431 return NULL; 3432 } 3433 return block; 3434 } 3435 3436 len = qemu_get_byte(f); 3437 qemu_get_buffer(f, (uint8_t *)id, len); 3438 id[len] = 0; 3439 3440 block = qemu_ram_block_by_name(id); 3441 if (!block) { 3442 error_report("Can't find block %s", id); 3443 return NULL; 3444 } 3445 3446 if (!qemu_ram_is_migratable(block)) { 3447 error_report("block %s should not be migrated !", id); 3448 return NULL; 3449 } 3450 3451 return block; 3452 } 3453 3454 static inline void *host_from_ram_block_offset(RAMBlock *block, 3455 ram_addr_t offset) 3456 { 3457 if (!offset_in_ramblock(block, offset)) { 3458 return NULL; 3459 } 3460 3461 return block->host + offset; 3462 } 3463 3464 static inline void *colo_cache_from_block_offset(RAMBlock *block, 3465 ram_addr_t offset) 3466 { 3467 if (!offset_in_ramblock(block, offset)) { 3468 return NULL; 3469 } 3470 if (!block->colo_cache) { 3471 error_report("%s: colo_cache is NULL in block :%s", 3472 __func__, block->idstr); 3473 return NULL; 3474 } 3475 3476 /* 3477 * During colo checkpoint, we need bitmap of these migrated pages. 3478 * It help us to decide which pages in ram cache should be flushed 3479 * into VM's RAM later. 3480 */ 3481 if (!test_and_set_bit(offset >> TARGET_PAGE_BITS, block->bmap)) { 3482 ram_state->migration_dirty_pages++; 3483 } 3484 return block->colo_cache + offset; 3485 } 3486 3487 /** 3488 * ram_handle_compressed: handle the zero page case 3489 * 3490 * If a page (or a whole RDMA chunk) has been 3491 * determined to be zero, then zap it. 3492 * 3493 * @host: host address for the zero page 3494 * @ch: what the page is filled from. We only support zero 3495 * @size: size of the zero page 3496 */ 3497 void ram_handle_compressed(void *host, uint8_t ch, uint64_t size) 3498 { 3499 if (ch != 0 || !is_zero_range(host, size)) { 3500 memset(host, ch, size); 3501 } 3502 } 3503 3504 /* return the size after decompression, or negative value on error */ 3505 static int 3506 qemu_uncompress_data(z_stream *stream, uint8_t *dest, size_t dest_len, 3507 const uint8_t *source, size_t source_len) 3508 { 3509 int err; 3510 3511 err = inflateReset(stream); 3512 if (err != Z_OK) { 3513 return -1; 3514 } 3515 3516 stream->avail_in = source_len; 3517 stream->next_in = (uint8_t *)source; 3518 stream->avail_out = dest_len; 3519 stream->next_out = dest; 3520 3521 err = inflate(stream, Z_NO_FLUSH); 3522 if (err != Z_STREAM_END) { 3523 return -1; 3524 } 3525 3526 return stream->total_out; 3527 } 3528 3529 static void *do_data_decompress(void *opaque) 3530 { 3531 DecompressParam *param = opaque; 3532 unsigned long pagesize; 3533 uint8_t *des; 3534 int len, ret; 3535 3536 qemu_mutex_lock(¶m->mutex); 3537 while (!param->quit) { 3538 if (param->des) { 3539 des = param->des; 3540 len = param->len; 3541 param->des = 0; 3542 qemu_mutex_unlock(¶m->mutex); 3543 3544 pagesize = TARGET_PAGE_SIZE; 3545 3546 ret = qemu_uncompress_data(¶m->stream, des, pagesize, 3547 param->compbuf, len); 3548 if (ret < 0 && migrate_get_current()->decompress_error_check) { 3549 error_report("decompress data failed"); 3550 qemu_file_set_error(decomp_file, ret); 3551 } 3552 3553 qemu_mutex_lock(&decomp_done_lock); 3554 param->done = true; 3555 qemu_cond_signal(&decomp_done_cond); 3556 qemu_mutex_unlock(&decomp_done_lock); 3557 3558 qemu_mutex_lock(¶m->mutex); 3559 } else { 3560 qemu_cond_wait(¶m->cond, ¶m->mutex); 3561 } 3562 } 3563 qemu_mutex_unlock(¶m->mutex); 3564 3565 return NULL; 3566 } 3567 3568 static int wait_for_decompress_done(void) 3569 { 3570 int idx, thread_count; 3571 3572 if (!migrate_use_compression()) { 3573 return 0; 3574 } 3575 3576 thread_count = migrate_decompress_threads(); 3577 qemu_mutex_lock(&decomp_done_lock); 3578 for (idx = 0; idx < thread_count; idx++) { 3579 while (!decomp_param[idx].done) { 3580 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock); 3581 } 3582 } 3583 qemu_mutex_unlock(&decomp_done_lock); 3584 return qemu_file_get_error(decomp_file); 3585 } 3586 3587 static void compress_threads_load_cleanup(void) 3588 { 3589 int i, thread_count; 3590 3591 if (!migrate_use_compression()) { 3592 return; 3593 } 3594 thread_count = migrate_decompress_threads(); 3595 for (i = 0; i < thread_count; i++) { 3596 /* 3597 * we use it as a indicator which shows if the thread is 3598 * properly init'd or not 3599 */ 3600 if (!decomp_param[i].compbuf) { 3601 break; 3602 } 3603 3604 qemu_mutex_lock(&decomp_param[i].mutex); 3605 decomp_param[i].quit = true; 3606 qemu_cond_signal(&decomp_param[i].cond); 3607 qemu_mutex_unlock(&decomp_param[i].mutex); 3608 } 3609 for (i = 0; i < thread_count; i++) { 3610 if (!decomp_param[i].compbuf) { 3611 break; 3612 } 3613 3614 qemu_thread_join(decompress_threads + i); 3615 qemu_mutex_destroy(&decomp_param[i].mutex); 3616 qemu_cond_destroy(&decomp_param[i].cond); 3617 inflateEnd(&decomp_param[i].stream); 3618 g_free(decomp_param[i].compbuf); 3619 decomp_param[i].compbuf = NULL; 3620 } 3621 g_free(decompress_threads); 3622 g_free(decomp_param); 3623 decompress_threads = NULL; 3624 decomp_param = NULL; 3625 decomp_file = NULL; 3626 } 3627 3628 static int compress_threads_load_setup(QEMUFile *f) 3629 { 3630 int i, thread_count; 3631 3632 if (!migrate_use_compression()) { 3633 return 0; 3634 } 3635 3636 thread_count = migrate_decompress_threads(); 3637 decompress_threads = g_new0(QemuThread, thread_count); 3638 decomp_param = g_new0(DecompressParam, thread_count); 3639 qemu_mutex_init(&decomp_done_lock); 3640 qemu_cond_init(&decomp_done_cond); 3641 decomp_file = f; 3642 for (i = 0; i < thread_count; i++) { 3643 if (inflateInit(&decomp_param[i].stream) != Z_OK) { 3644 goto exit; 3645 } 3646 3647 decomp_param[i].compbuf = g_malloc0(compressBound(TARGET_PAGE_SIZE)); 3648 qemu_mutex_init(&decomp_param[i].mutex); 3649 qemu_cond_init(&decomp_param[i].cond); 3650 decomp_param[i].done = true; 3651 decomp_param[i].quit = false; 3652 qemu_thread_create(decompress_threads + i, "decompress", 3653 do_data_decompress, decomp_param + i, 3654 QEMU_THREAD_JOINABLE); 3655 } 3656 return 0; 3657 exit: 3658 compress_threads_load_cleanup(); 3659 return -1; 3660 } 3661 3662 static void decompress_data_with_multi_threads(QEMUFile *f, 3663 void *host, int len) 3664 { 3665 int idx, thread_count; 3666 3667 thread_count = migrate_decompress_threads(); 3668 qemu_mutex_lock(&decomp_done_lock); 3669 while (true) { 3670 for (idx = 0; idx < thread_count; idx++) { 3671 if (decomp_param[idx].done) { 3672 decomp_param[idx].done = false; 3673 qemu_mutex_lock(&decomp_param[idx].mutex); 3674 qemu_get_buffer(f, decomp_param[idx].compbuf, len); 3675 decomp_param[idx].des = host; 3676 decomp_param[idx].len = len; 3677 qemu_cond_signal(&decomp_param[idx].cond); 3678 qemu_mutex_unlock(&decomp_param[idx].mutex); 3679 break; 3680 } 3681 } 3682 if (idx < thread_count) { 3683 break; 3684 } else { 3685 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock); 3686 } 3687 } 3688 qemu_mutex_unlock(&decomp_done_lock); 3689 } 3690 3691 /* 3692 * colo cache: this is for secondary VM, we cache the whole 3693 * memory of the secondary VM, it is need to hold the global lock 3694 * to call this helper. 3695 */ 3696 int colo_init_ram_cache(void) 3697 { 3698 RAMBlock *block; 3699 3700 rcu_read_lock(); 3701 RAMBLOCK_FOREACH_MIGRATABLE(block) { 3702 block->colo_cache = qemu_anon_ram_alloc(block->used_length, 3703 NULL, 3704 false); 3705 if (!block->colo_cache) { 3706 error_report("%s: Can't alloc memory for COLO cache of block %s," 3707 "size 0x" RAM_ADDR_FMT, __func__, block->idstr, 3708 block->used_length); 3709 goto out_locked; 3710 } 3711 memcpy(block->colo_cache, block->host, block->used_length); 3712 } 3713 rcu_read_unlock(); 3714 /* 3715 * Record the dirty pages that sent by PVM, we use this dirty bitmap together 3716 * with to decide which page in cache should be flushed into SVM's RAM. Here 3717 * we use the same name 'ram_bitmap' as for migration. 3718 */ 3719 if (ram_bytes_total()) { 3720 RAMBlock *block; 3721 3722 RAMBLOCK_FOREACH_MIGRATABLE(block) { 3723 unsigned long pages = block->max_length >> TARGET_PAGE_BITS; 3724 3725 block->bmap = bitmap_new(pages); 3726 bitmap_set(block->bmap, 0, pages); 3727 } 3728 } 3729 ram_state = g_new0(RAMState, 1); 3730 ram_state->migration_dirty_pages = 0; 3731 memory_global_dirty_log_start(); 3732 3733 return 0; 3734 3735 out_locked: 3736 3737 RAMBLOCK_FOREACH_MIGRATABLE(block) { 3738 if (block->colo_cache) { 3739 qemu_anon_ram_free(block->colo_cache, block->used_length); 3740 block->colo_cache = NULL; 3741 } 3742 } 3743 3744 rcu_read_unlock(); 3745 return -errno; 3746 } 3747 3748 /* It is need to hold the global lock to call this helper */ 3749 void colo_release_ram_cache(void) 3750 { 3751 RAMBlock *block; 3752 3753 memory_global_dirty_log_stop(); 3754 RAMBLOCK_FOREACH_MIGRATABLE(block) { 3755 g_free(block->bmap); 3756 block->bmap = NULL; 3757 } 3758 3759 rcu_read_lock(); 3760 3761 RAMBLOCK_FOREACH_MIGRATABLE(block) { 3762 if (block->colo_cache) { 3763 qemu_anon_ram_free(block->colo_cache, block->used_length); 3764 block->colo_cache = NULL; 3765 } 3766 } 3767 3768 rcu_read_unlock(); 3769 g_free(ram_state); 3770 ram_state = NULL; 3771 } 3772 3773 /** 3774 * ram_load_setup: Setup RAM for migration incoming side 3775 * 3776 * Returns zero to indicate success and negative for error 3777 * 3778 * @f: QEMUFile where to receive the data 3779 * @opaque: RAMState pointer 3780 */ 3781 static int ram_load_setup(QEMUFile *f, void *opaque) 3782 { 3783 if (compress_threads_load_setup(f)) { 3784 return -1; 3785 } 3786 3787 xbzrle_load_setup(); 3788 ramblock_recv_map_init(); 3789 3790 return 0; 3791 } 3792 3793 static int ram_load_cleanup(void *opaque) 3794 { 3795 RAMBlock *rb; 3796 3797 RAMBLOCK_FOREACH_MIGRATABLE(rb) { 3798 if (ramblock_is_pmem(rb)) { 3799 pmem_persist(rb->host, rb->used_length); 3800 } 3801 } 3802 3803 xbzrle_load_cleanup(); 3804 compress_threads_load_cleanup(); 3805 3806 RAMBLOCK_FOREACH_MIGRATABLE(rb) { 3807 g_free(rb->receivedmap); 3808 rb->receivedmap = NULL; 3809 } 3810 3811 return 0; 3812 } 3813 3814 /** 3815 * ram_postcopy_incoming_init: allocate postcopy data structures 3816 * 3817 * Returns 0 for success and negative if there was one error 3818 * 3819 * @mis: current migration incoming state 3820 * 3821 * Allocate data structures etc needed by incoming migration with 3822 * postcopy-ram. postcopy-ram's similarly names 3823 * postcopy_ram_incoming_init does the work. 3824 */ 3825 int ram_postcopy_incoming_init(MigrationIncomingState *mis) 3826 { 3827 return postcopy_ram_incoming_init(mis); 3828 } 3829 3830 /** 3831 * ram_load_postcopy: load a page in postcopy case 3832 * 3833 * Returns 0 for success or -errno in case of error 3834 * 3835 * Called in postcopy mode by ram_load(). 3836 * rcu_read_lock is taken prior to this being called. 3837 * 3838 * @f: QEMUFile where to send the data 3839 */ 3840 static int ram_load_postcopy(QEMUFile *f) 3841 { 3842 int flags = 0, ret = 0; 3843 bool place_needed = false; 3844 bool matches_target_page_size = false; 3845 MigrationIncomingState *mis = migration_incoming_get_current(); 3846 /* Temporary page that is later 'placed' */ 3847 void *postcopy_host_page = postcopy_get_tmp_page(mis); 3848 void *last_host = NULL; 3849 bool all_zero = false; 3850 3851 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) { 3852 ram_addr_t addr; 3853 void *host = NULL; 3854 void *page_buffer = NULL; 3855 void *place_source = NULL; 3856 RAMBlock *block = NULL; 3857 uint8_t ch; 3858 3859 addr = qemu_get_be64(f); 3860 3861 /* 3862 * If qemu file error, we should stop here, and then "addr" 3863 * may be invalid 3864 */ 3865 ret = qemu_file_get_error(f); 3866 if (ret) { 3867 break; 3868 } 3869 3870 flags = addr & ~TARGET_PAGE_MASK; 3871 addr &= TARGET_PAGE_MASK; 3872 3873 trace_ram_load_postcopy_loop((uint64_t)addr, flags); 3874 place_needed = false; 3875 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE)) { 3876 block = ram_block_from_stream(f, flags); 3877 3878 host = host_from_ram_block_offset(block, addr); 3879 if (!host) { 3880 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr); 3881 ret = -EINVAL; 3882 break; 3883 } 3884 matches_target_page_size = block->page_size == TARGET_PAGE_SIZE; 3885 /* 3886 * Postcopy requires that we place whole host pages atomically; 3887 * these may be huge pages for RAMBlocks that are backed by 3888 * hugetlbfs. 3889 * To make it atomic, the data is read into a temporary page 3890 * that's moved into place later. 3891 * The migration protocol uses, possibly smaller, target-pages 3892 * however the source ensures it always sends all the components 3893 * of a host page in order. 3894 */ 3895 page_buffer = postcopy_host_page + 3896 ((uintptr_t)host & (block->page_size - 1)); 3897 /* If all TP are zero then we can optimise the place */ 3898 if (!((uintptr_t)host & (block->page_size - 1))) { 3899 all_zero = true; 3900 } else { 3901 /* not the 1st TP within the HP */ 3902 if (host != (last_host + TARGET_PAGE_SIZE)) { 3903 error_report("Non-sequential target page %p/%p", 3904 host, last_host); 3905 ret = -EINVAL; 3906 break; 3907 } 3908 } 3909 3910 3911 /* 3912 * If it's the last part of a host page then we place the host 3913 * page 3914 */ 3915 place_needed = (((uintptr_t)host + TARGET_PAGE_SIZE) & 3916 (block->page_size - 1)) == 0; 3917 place_source = postcopy_host_page; 3918 } 3919 last_host = host; 3920 3921 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) { 3922 case RAM_SAVE_FLAG_ZERO: 3923 ch = qemu_get_byte(f); 3924 memset(page_buffer, ch, TARGET_PAGE_SIZE); 3925 if (ch) { 3926 all_zero = false; 3927 } 3928 break; 3929 3930 case RAM_SAVE_FLAG_PAGE: 3931 all_zero = false; 3932 if (!matches_target_page_size) { 3933 /* For huge pages, we always use temporary buffer */ 3934 qemu_get_buffer(f, page_buffer, TARGET_PAGE_SIZE); 3935 } else { 3936 /* 3937 * For small pages that matches target page size, we 3938 * avoid the qemu_file copy. Instead we directly use 3939 * the buffer of QEMUFile to place the page. Note: we 3940 * cannot do any QEMUFile operation before using that 3941 * buffer to make sure the buffer is valid when 3942 * placing the page. 3943 */ 3944 qemu_get_buffer_in_place(f, (uint8_t **)&place_source, 3945 TARGET_PAGE_SIZE); 3946 } 3947 break; 3948 case RAM_SAVE_FLAG_EOS: 3949 /* normal exit */ 3950 multifd_recv_sync_main(); 3951 break; 3952 default: 3953 error_report("Unknown combination of migration flags: %#x" 3954 " (postcopy mode)", flags); 3955 ret = -EINVAL; 3956 break; 3957 } 3958 3959 /* Detect for any possible file errors */ 3960 if (!ret && qemu_file_get_error(f)) { 3961 ret = qemu_file_get_error(f); 3962 } 3963 3964 if (!ret && place_needed) { 3965 /* This gets called at the last target page in the host page */ 3966 void *place_dest = host + TARGET_PAGE_SIZE - block->page_size; 3967 3968 if (all_zero) { 3969 ret = postcopy_place_page_zero(mis, place_dest, 3970 block); 3971 } else { 3972 ret = postcopy_place_page(mis, place_dest, 3973 place_source, block); 3974 } 3975 } 3976 } 3977 3978 return ret; 3979 } 3980 3981 static bool postcopy_is_advised(void) 3982 { 3983 PostcopyState ps = postcopy_state_get(); 3984 return ps >= POSTCOPY_INCOMING_ADVISE && ps < POSTCOPY_INCOMING_END; 3985 } 3986 3987 static bool postcopy_is_running(void) 3988 { 3989 PostcopyState ps = postcopy_state_get(); 3990 return ps >= POSTCOPY_INCOMING_LISTENING && ps < POSTCOPY_INCOMING_END; 3991 } 3992 3993 /* 3994 * Flush content of RAM cache into SVM's memory. 3995 * Only flush the pages that be dirtied by PVM or SVM or both. 3996 */ 3997 static void colo_flush_ram_cache(void) 3998 { 3999 RAMBlock *block = NULL; 4000 void *dst_host; 4001 void *src_host; 4002 unsigned long offset = 0; 4003 4004 memory_global_dirty_log_sync(); 4005 rcu_read_lock(); 4006 RAMBLOCK_FOREACH_MIGRATABLE(block) { 4007 migration_bitmap_sync_range(ram_state, block, 0, block->used_length); 4008 } 4009 rcu_read_unlock(); 4010 4011 trace_colo_flush_ram_cache_begin(ram_state->migration_dirty_pages); 4012 rcu_read_lock(); 4013 block = QLIST_FIRST_RCU(&ram_list.blocks); 4014 4015 while (block) { 4016 offset = migration_bitmap_find_dirty(ram_state, block, offset); 4017 4018 if (offset << TARGET_PAGE_BITS >= block->used_length) { 4019 offset = 0; 4020 block = QLIST_NEXT_RCU(block, next); 4021 } else { 4022 migration_bitmap_clear_dirty(ram_state, block, offset); 4023 dst_host = block->host + (offset << TARGET_PAGE_BITS); 4024 src_host = block->colo_cache + (offset << TARGET_PAGE_BITS); 4025 memcpy(dst_host, src_host, TARGET_PAGE_SIZE); 4026 } 4027 } 4028 4029 rcu_read_unlock(); 4030 trace_colo_flush_ram_cache_end(); 4031 } 4032 4033 static int ram_load(QEMUFile *f, void *opaque, int version_id) 4034 { 4035 int flags = 0, ret = 0, invalid_flags = 0; 4036 static uint64_t seq_iter; 4037 int len = 0; 4038 /* 4039 * If system is running in postcopy mode, page inserts to host memory must 4040 * be atomic 4041 */ 4042 bool postcopy_running = postcopy_is_running(); 4043 /* ADVISE is earlier, it shows the source has the postcopy capability on */ 4044 bool postcopy_advised = postcopy_is_advised(); 4045 4046 seq_iter++; 4047 4048 if (version_id != 4) { 4049 ret = -EINVAL; 4050 } 4051 4052 if (!migrate_use_compression()) { 4053 invalid_flags |= RAM_SAVE_FLAG_COMPRESS_PAGE; 4054 } 4055 /* This RCU critical section can be very long running. 4056 * When RCU reclaims in the code start to become numerous, 4057 * it will be necessary to reduce the granularity of this 4058 * critical section. 4059 */ 4060 rcu_read_lock(); 4061 4062 if (postcopy_running) { 4063 ret = ram_load_postcopy(f); 4064 } 4065 4066 while (!postcopy_running && !ret && !(flags & RAM_SAVE_FLAG_EOS)) { 4067 ram_addr_t addr, total_ram_bytes; 4068 void *host = NULL; 4069 uint8_t ch; 4070 4071 addr = qemu_get_be64(f); 4072 flags = addr & ~TARGET_PAGE_MASK; 4073 addr &= TARGET_PAGE_MASK; 4074 4075 if (flags & invalid_flags) { 4076 if (flags & invalid_flags & RAM_SAVE_FLAG_COMPRESS_PAGE) { 4077 error_report("Received an unexpected compressed page"); 4078 } 4079 4080 ret = -EINVAL; 4081 break; 4082 } 4083 4084 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE | 4085 RAM_SAVE_FLAG_COMPRESS_PAGE | RAM_SAVE_FLAG_XBZRLE)) { 4086 RAMBlock *block = ram_block_from_stream(f, flags); 4087 4088 /* 4089 * After going into COLO, we should load the Page into colo_cache. 4090 */ 4091 if (migration_incoming_in_colo_state()) { 4092 host = colo_cache_from_block_offset(block, addr); 4093 } else { 4094 host = host_from_ram_block_offset(block, addr); 4095 } 4096 if (!host) { 4097 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr); 4098 ret = -EINVAL; 4099 break; 4100 } 4101 4102 if (!migration_incoming_in_colo_state()) { 4103 ramblock_recv_bitmap_set(block, host); 4104 } 4105 4106 trace_ram_load_loop(block->idstr, (uint64_t)addr, flags, host); 4107 } 4108 4109 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) { 4110 case RAM_SAVE_FLAG_MEM_SIZE: 4111 /* Synchronize RAM block list */ 4112 total_ram_bytes = addr; 4113 while (!ret && total_ram_bytes) { 4114 RAMBlock *block; 4115 char id[256]; 4116 ram_addr_t length; 4117 4118 len = qemu_get_byte(f); 4119 qemu_get_buffer(f, (uint8_t *)id, len); 4120 id[len] = 0; 4121 length = qemu_get_be64(f); 4122 4123 block = qemu_ram_block_by_name(id); 4124 if (block && !qemu_ram_is_migratable(block)) { 4125 error_report("block %s should not be migrated !", id); 4126 ret = -EINVAL; 4127 } else if (block) { 4128 if (length != block->used_length) { 4129 Error *local_err = NULL; 4130 4131 ret = qemu_ram_resize(block, length, 4132 &local_err); 4133 if (local_err) { 4134 error_report_err(local_err); 4135 } 4136 } 4137 /* For postcopy we need to check hugepage sizes match */ 4138 if (postcopy_advised && 4139 block->page_size != qemu_host_page_size) { 4140 uint64_t remote_page_size = qemu_get_be64(f); 4141 if (remote_page_size != block->page_size) { 4142 error_report("Mismatched RAM page size %s " 4143 "(local) %zd != %" PRId64, 4144 id, block->page_size, 4145 remote_page_size); 4146 ret = -EINVAL; 4147 } 4148 } 4149 ram_control_load_hook(f, RAM_CONTROL_BLOCK_REG, 4150 block->idstr); 4151 } else { 4152 error_report("Unknown ramblock \"%s\", cannot " 4153 "accept migration", id); 4154 ret = -EINVAL; 4155 } 4156 4157 total_ram_bytes -= length; 4158 } 4159 break; 4160 4161 case RAM_SAVE_FLAG_ZERO: 4162 ch = qemu_get_byte(f); 4163 ram_handle_compressed(host, ch, TARGET_PAGE_SIZE); 4164 break; 4165 4166 case RAM_SAVE_FLAG_PAGE: 4167 qemu_get_buffer(f, host, TARGET_PAGE_SIZE); 4168 break; 4169 4170 case RAM_SAVE_FLAG_COMPRESS_PAGE: 4171 len = qemu_get_be32(f); 4172 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) { 4173 error_report("Invalid compressed data length: %d", len); 4174 ret = -EINVAL; 4175 break; 4176 } 4177 decompress_data_with_multi_threads(f, host, len); 4178 break; 4179 4180 case RAM_SAVE_FLAG_XBZRLE: 4181 if (load_xbzrle(f, addr, host) < 0) { 4182 error_report("Failed to decompress XBZRLE page at " 4183 RAM_ADDR_FMT, addr); 4184 ret = -EINVAL; 4185 break; 4186 } 4187 break; 4188 case RAM_SAVE_FLAG_EOS: 4189 /* normal exit */ 4190 multifd_recv_sync_main(); 4191 break; 4192 default: 4193 if (flags & RAM_SAVE_FLAG_HOOK) { 4194 ram_control_load_hook(f, RAM_CONTROL_HOOK, NULL); 4195 } else { 4196 error_report("Unknown combination of migration flags: %#x", 4197 flags); 4198 ret = -EINVAL; 4199 } 4200 } 4201 if (!ret) { 4202 ret = qemu_file_get_error(f); 4203 } 4204 } 4205 4206 ret |= wait_for_decompress_done(); 4207 rcu_read_unlock(); 4208 trace_ram_load_complete(ret, seq_iter); 4209 4210 if (!ret && migration_incoming_in_colo_state()) { 4211 colo_flush_ram_cache(); 4212 } 4213 return ret; 4214 } 4215 4216 static bool ram_has_postcopy(void *opaque) 4217 { 4218 RAMBlock *rb; 4219 RAMBLOCK_FOREACH_MIGRATABLE(rb) { 4220 if (ramblock_is_pmem(rb)) { 4221 info_report("Block: %s, host: %p is a nvdimm memory, postcopy" 4222 "is not supported now!", rb->idstr, rb->host); 4223 return false; 4224 } 4225 } 4226 4227 return migrate_postcopy_ram(); 4228 } 4229 4230 /* Sync all the dirty bitmap with destination VM. */ 4231 static int ram_dirty_bitmap_sync_all(MigrationState *s, RAMState *rs) 4232 { 4233 RAMBlock *block; 4234 QEMUFile *file = s->to_dst_file; 4235 int ramblock_count = 0; 4236 4237 trace_ram_dirty_bitmap_sync_start(); 4238 4239 RAMBLOCK_FOREACH_MIGRATABLE(block) { 4240 qemu_savevm_send_recv_bitmap(file, block->idstr); 4241 trace_ram_dirty_bitmap_request(block->idstr); 4242 ramblock_count++; 4243 } 4244 4245 trace_ram_dirty_bitmap_sync_wait(); 4246 4247 /* Wait until all the ramblocks' dirty bitmap synced */ 4248 while (ramblock_count--) { 4249 qemu_sem_wait(&s->rp_state.rp_sem); 4250 } 4251 4252 trace_ram_dirty_bitmap_sync_complete(); 4253 4254 return 0; 4255 } 4256 4257 static void ram_dirty_bitmap_reload_notify(MigrationState *s) 4258 { 4259 qemu_sem_post(&s->rp_state.rp_sem); 4260 } 4261 4262 /* 4263 * Read the received bitmap, revert it as the initial dirty bitmap. 4264 * This is only used when the postcopy migration is paused but wants 4265 * to resume from a middle point. 4266 */ 4267 int ram_dirty_bitmap_reload(MigrationState *s, RAMBlock *block) 4268 { 4269 int ret = -EINVAL; 4270 QEMUFile *file = s->rp_state.from_dst_file; 4271 unsigned long *le_bitmap, nbits = block->used_length >> TARGET_PAGE_BITS; 4272 uint64_t local_size = DIV_ROUND_UP(nbits, 8); 4273 uint64_t size, end_mark; 4274 4275 trace_ram_dirty_bitmap_reload_begin(block->idstr); 4276 4277 if (s->state != MIGRATION_STATUS_POSTCOPY_RECOVER) { 4278 error_report("%s: incorrect state %s", __func__, 4279 MigrationStatus_str(s->state)); 4280 return -EINVAL; 4281 } 4282 4283 /* 4284 * Note: see comments in ramblock_recv_bitmap_send() on why we 4285 * need the endianess convertion, and the paddings. 4286 */ 4287 local_size = ROUND_UP(local_size, 8); 4288 4289 /* Add paddings */ 4290 le_bitmap = bitmap_new(nbits + BITS_PER_LONG); 4291 4292 size = qemu_get_be64(file); 4293 4294 /* The size of the bitmap should match with our ramblock */ 4295 if (size != local_size) { 4296 error_report("%s: ramblock '%s' bitmap size mismatch " 4297 "(0x%"PRIx64" != 0x%"PRIx64")", __func__, 4298 block->idstr, size, local_size); 4299 ret = -EINVAL; 4300 goto out; 4301 } 4302 4303 size = qemu_get_buffer(file, (uint8_t *)le_bitmap, local_size); 4304 end_mark = qemu_get_be64(file); 4305 4306 ret = qemu_file_get_error(file); 4307 if (ret || size != local_size) { 4308 error_report("%s: read bitmap failed for ramblock '%s': %d" 4309 " (size 0x%"PRIx64", got: 0x%"PRIx64")", 4310 __func__, block->idstr, ret, local_size, size); 4311 ret = -EIO; 4312 goto out; 4313 } 4314 4315 if (end_mark != RAMBLOCK_RECV_BITMAP_ENDING) { 4316 error_report("%s: ramblock '%s' end mark incorrect: 0x%"PRIu64, 4317 __func__, block->idstr, end_mark); 4318 ret = -EINVAL; 4319 goto out; 4320 } 4321 4322 /* 4323 * Endianess convertion. We are during postcopy (though paused). 4324 * The dirty bitmap won't change. We can directly modify it. 4325 */ 4326 bitmap_from_le(block->bmap, le_bitmap, nbits); 4327 4328 /* 4329 * What we received is "received bitmap". Revert it as the initial 4330 * dirty bitmap for this ramblock. 4331 */ 4332 bitmap_complement(block->bmap, block->bmap, nbits); 4333 4334 trace_ram_dirty_bitmap_reload_complete(block->idstr); 4335 4336 /* 4337 * We succeeded to sync bitmap for current ramblock. If this is 4338 * the last one to sync, we need to notify the main send thread. 4339 */ 4340 ram_dirty_bitmap_reload_notify(s); 4341 4342 ret = 0; 4343 out: 4344 g_free(le_bitmap); 4345 return ret; 4346 } 4347 4348 static int ram_resume_prepare(MigrationState *s, void *opaque) 4349 { 4350 RAMState *rs = *(RAMState **)opaque; 4351 int ret; 4352 4353 ret = ram_dirty_bitmap_sync_all(s, rs); 4354 if (ret) { 4355 return ret; 4356 } 4357 4358 ram_state_resume_prepare(rs, s->to_dst_file); 4359 4360 return 0; 4361 } 4362 4363 static SaveVMHandlers savevm_ram_handlers = { 4364 .save_setup = ram_save_setup, 4365 .save_live_iterate = ram_save_iterate, 4366 .save_live_complete_postcopy = ram_save_complete, 4367 .save_live_complete_precopy = ram_save_complete, 4368 .has_postcopy = ram_has_postcopy, 4369 .save_live_pending = ram_save_pending, 4370 .load_state = ram_load, 4371 .save_cleanup = ram_save_cleanup, 4372 .load_setup = ram_load_setup, 4373 .load_cleanup = ram_load_cleanup, 4374 .resume_prepare = ram_resume_prepare, 4375 }; 4376 4377 void ram_mig_init(void) 4378 { 4379 qemu_mutex_init(&XBZRLE.lock); 4380 register_savevm_live(NULL, "ram", 0, 4, &savevm_ram_handlers, &ram_state); 4381 } 4382