1 /* 2 * QEMU System Emulator 3 * 4 * Copyright (c) 2003-2008 Fabrice Bellard 5 * Copyright (c) 2011-2015 Red Hat Inc 6 * 7 * Authors: 8 * Juan Quintela <quintela@redhat.com> 9 * 10 * Permission is hereby granted, free of charge, to any person obtaining a copy 11 * of this software and associated documentation files (the "Software"), to deal 12 * in the Software without restriction, including without limitation the rights 13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 14 * copies of the Software, and to permit persons to whom the Software is 15 * furnished to do so, subject to the following conditions: 16 * 17 * The above copyright notice and this permission notice shall be included in 18 * all copies or substantial portions of the Software. 19 * 20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 26 * THE SOFTWARE. 27 */ 28 29 #include "qemu/osdep.h" 30 #include "qemu/cutils.h" 31 #include "qemu/bitops.h" 32 #include "qemu/bitmap.h" 33 #include "qemu/madvise.h" 34 #include "qemu/main-loop.h" 35 #include "xbzrle.h" 36 #include "ram-compress.h" 37 #include "ram.h" 38 #include "migration.h" 39 #include "migration-stats.h" 40 #include "migration/register.h" 41 #include "migration/misc.h" 42 #include "qemu-file.h" 43 #include "postcopy-ram.h" 44 #include "page_cache.h" 45 #include "qemu/error-report.h" 46 #include "qapi/error.h" 47 #include "qapi/qapi-types-migration.h" 48 #include "qapi/qapi-events-migration.h" 49 #include "qapi/qapi-commands-migration.h" 50 #include "qapi/qmp/qerror.h" 51 #include "trace.h" 52 #include "exec/ram_addr.h" 53 #include "exec/target_page.h" 54 #include "qemu/rcu_queue.h" 55 #include "migration/colo.h" 56 #include "block.h" 57 #include "sysemu/cpu-throttle.h" 58 #include "savevm.h" 59 #include "qemu/iov.h" 60 #include "multifd.h" 61 #include "sysemu/runstate.h" 62 #include "options.h" 63 #include "sysemu/dirtylimit.h" 64 #include "sysemu/kvm.h" 65 66 #include "hw/boards.h" /* for machine_dump_guest_core() */ 67 68 #if defined(__linux__) 69 #include "qemu/userfaultfd.h" 70 #endif /* defined(__linux__) */ 71 72 /***********************************************************/ 73 /* ram save/restore */ 74 75 /* 76 * RAM_SAVE_FLAG_ZERO used to be named RAM_SAVE_FLAG_COMPRESS, it 77 * worked for pages that were filled with the same char. We switched 78 * it to only search for the zero value. And to avoid confusion with 79 * RAM_SAVE_FLAG_COMPRESS_PAGE just rename it. 80 */ 81 /* 82 * RAM_SAVE_FLAG_FULL was obsoleted in 2009, it can be reused now 83 */ 84 #define RAM_SAVE_FLAG_FULL 0x01 85 #define RAM_SAVE_FLAG_ZERO 0x02 86 #define RAM_SAVE_FLAG_MEM_SIZE 0x04 87 #define RAM_SAVE_FLAG_PAGE 0x08 88 #define RAM_SAVE_FLAG_EOS 0x10 89 #define RAM_SAVE_FLAG_CONTINUE 0x20 90 #define RAM_SAVE_FLAG_XBZRLE 0x40 91 /* 0x80 is reserved in qemu-file.h for RAM_SAVE_FLAG_HOOK */ 92 #define RAM_SAVE_FLAG_COMPRESS_PAGE 0x100 93 #define RAM_SAVE_FLAG_MULTIFD_FLUSH 0x200 94 /* We can't use any flag that is bigger than 0x200 */ 95 96 XBZRLECacheStats xbzrle_counters; 97 98 /* used by the search for pages to send */ 99 struct PageSearchStatus { 100 /* The migration channel used for a specific host page */ 101 QEMUFile *pss_channel; 102 /* Last block from where we have sent data */ 103 RAMBlock *last_sent_block; 104 /* Current block being searched */ 105 RAMBlock *block; 106 /* Current page to search from */ 107 unsigned long page; 108 /* Set once we wrap around */ 109 bool complete_round; 110 /* Whether we're sending a host page */ 111 bool host_page_sending; 112 /* The start/end of current host page. Invalid if host_page_sending==false */ 113 unsigned long host_page_start; 114 unsigned long host_page_end; 115 }; 116 typedef struct PageSearchStatus PageSearchStatus; 117 118 /* struct contains XBZRLE cache and a static page 119 used by the compression */ 120 static struct { 121 /* buffer used for XBZRLE encoding */ 122 uint8_t *encoded_buf; 123 /* buffer for storing page content */ 124 uint8_t *current_buf; 125 /* Cache for XBZRLE, Protected by lock. */ 126 PageCache *cache; 127 QemuMutex lock; 128 /* it will store a page full of zeros */ 129 uint8_t *zero_target_page; 130 /* buffer used for XBZRLE decoding */ 131 uint8_t *decoded_buf; 132 } XBZRLE; 133 134 static void XBZRLE_cache_lock(void) 135 { 136 if (migrate_xbzrle()) { 137 qemu_mutex_lock(&XBZRLE.lock); 138 } 139 } 140 141 static void XBZRLE_cache_unlock(void) 142 { 143 if (migrate_xbzrle()) { 144 qemu_mutex_unlock(&XBZRLE.lock); 145 } 146 } 147 148 /** 149 * xbzrle_cache_resize: resize the xbzrle cache 150 * 151 * This function is called from migrate_params_apply in main 152 * thread, possibly while a migration is in progress. A running 153 * migration may be using the cache and might finish during this call, 154 * hence changes to the cache are protected by XBZRLE.lock(). 155 * 156 * Returns 0 for success or -1 for error 157 * 158 * @new_size: new cache size 159 * @errp: set *errp if the check failed, with reason 160 */ 161 int xbzrle_cache_resize(uint64_t new_size, Error **errp) 162 { 163 PageCache *new_cache; 164 int64_t ret = 0; 165 166 /* Check for truncation */ 167 if (new_size != (size_t)new_size) { 168 error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cache size", 169 "exceeding address space"); 170 return -1; 171 } 172 173 if (new_size == migrate_xbzrle_cache_size()) { 174 /* nothing to do */ 175 return 0; 176 } 177 178 XBZRLE_cache_lock(); 179 180 if (XBZRLE.cache != NULL) { 181 new_cache = cache_init(new_size, TARGET_PAGE_SIZE, errp); 182 if (!new_cache) { 183 ret = -1; 184 goto out; 185 } 186 187 cache_fini(XBZRLE.cache); 188 XBZRLE.cache = new_cache; 189 } 190 out: 191 XBZRLE_cache_unlock(); 192 return ret; 193 } 194 195 static bool postcopy_preempt_active(void) 196 { 197 return migrate_postcopy_preempt() && migration_in_postcopy(); 198 } 199 200 bool migrate_ram_is_ignored(RAMBlock *block) 201 { 202 return !qemu_ram_is_migratable(block) || 203 (migrate_ignore_shared() && qemu_ram_is_shared(block) 204 && qemu_ram_is_named_file(block)); 205 } 206 207 #undef RAMBLOCK_FOREACH 208 209 int foreach_not_ignored_block(RAMBlockIterFunc func, void *opaque) 210 { 211 RAMBlock *block; 212 int ret = 0; 213 214 RCU_READ_LOCK_GUARD(); 215 216 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 217 ret = func(block, opaque); 218 if (ret) { 219 break; 220 } 221 } 222 return ret; 223 } 224 225 static void ramblock_recv_map_init(void) 226 { 227 RAMBlock *rb; 228 229 RAMBLOCK_FOREACH_NOT_IGNORED(rb) { 230 assert(!rb->receivedmap); 231 rb->receivedmap = bitmap_new(rb->max_length >> qemu_target_page_bits()); 232 } 233 } 234 235 int ramblock_recv_bitmap_test(RAMBlock *rb, void *host_addr) 236 { 237 return test_bit(ramblock_recv_bitmap_offset(host_addr, rb), 238 rb->receivedmap); 239 } 240 241 bool ramblock_recv_bitmap_test_byte_offset(RAMBlock *rb, uint64_t byte_offset) 242 { 243 return test_bit(byte_offset >> TARGET_PAGE_BITS, rb->receivedmap); 244 } 245 246 void ramblock_recv_bitmap_set(RAMBlock *rb, void *host_addr) 247 { 248 set_bit_atomic(ramblock_recv_bitmap_offset(host_addr, rb), rb->receivedmap); 249 } 250 251 void ramblock_recv_bitmap_set_range(RAMBlock *rb, void *host_addr, 252 size_t nr) 253 { 254 bitmap_set_atomic(rb->receivedmap, 255 ramblock_recv_bitmap_offset(host_addr, rb), 256 nr); 257 } 258 259 #define RAMBLOCK_RECV_BITMAP_ENDING (0x0123456789abcdefULL) 260 261 /* 262 * Format: bitmap_size (8 bytes) + whole_bitmap (N bytes). 263 * 264 * Returns >0 if success with sent bytes, or <0 if error. 265 */ 266 int64_t ramblock_recv_bitmap_send(QEMUFile *file, 267 const char *block_name) 268 { 269 RAMBlock *block = qemu_ram_block_by_name(block_name); 270 unsigned long *le_bitmap, nbits; 271 uint64_t size; 272 273 if (!block) { 274 error_report("%s: invalid block name: %s", __func__, block_name); 275 return -1; 276 } 277 278 nbits = block->postcopy_length >> TARGET_PAGE_BITS; 279 280 /* 281 * Make sure the tmp bitmap buffer is big enough, e.g., on 32bit 282 * machines we may need 4 more bytes for padding (see below 283 * comment). So extend it a bit before hand. 284 */ 285 le_bitmap = bitmap_new(nbits + BITS_PER_LONG); 286 287 /* 288 * Always use little endian when sending the bitmap. This is 289 * required that when source and destination VMs are not using the 290 * same endianness. (Note: big endian won't work.) 291 */ 292 bitmap_to_le(le_bitmap, block->receivedmap, nbits); 293 294 /* Size of the bitmap, in bytes */ 295 size = DIV_ROUND_UP(nbits, 8); 296 297 /* 298 * size is always aligned to 8 bytes for 64bit machines, but it 299 * may not be true for 32bit machines. We need this padding to 300 * make sure the migration can survive even between 32bit and 301 * 64bit machines. 302 */ 303 size = ROUND_UP(size, 8); 304 305 qemu_put_be64(file, size); 306 qemu_put_buffer(file, (const uint8_t *)le_bitmap, size); 307 /* 308 * Mark as an end, in case the middle part is screwed up due to 309 * some "mysterious" reason. 310 */ 311 qemu_put_be64(file, RAMBLOCK_RECV_BITMAP_ENDING); 312 qemu_fflush(file); 313 314 g_free(le_bitmap); 315 316 if (qemu_file_get_error(file)) { 317 return qemu_file_get_error(file); 318 } 319 320 return size + sizeof(size); 321 } 322 323 /* 324 * An outstanding page request, on the source, having been received 325 * and queued 326 */ 327 struct RAMSrcPageRequest { 328 RAMBlock *rb; 329 hwaddr offset; 330 hwaddr len; 331 332 QSIMPLEQ_ENTRY(RAMSrcPageRequest) next_req; 333 }; 334 335 /* State of RAM for migration */ 336 struct RAMState { 337 /* 338 * PageSearchStatus structures for the channels when send pages. 339 * Protected by the bitmap_mutex. 340 */ 341 PageSearchStatus pss[RAM_CHANNEL_MAX]; 342 /* UFFD file descriptor, used in 'write-tracking' migration */ 343 int uffdio_fd; 344 /* total ram size in bytes */ 345 uint64_t ram_bytes_total; 346 /* Last block that we have visited searching for dirty pages */ 347 RAMBlock *last_seen_block; 348 /* Last dirty target page we have sent */ 349 ram_addr_t last_page; 350 /* last ram version we have seen */ 351 uint32_t last_version; 352 /* How many times we have dirty too many pages */ 353 int dirty_rate_high_cnt; 354 /* these variables are used for bitmap sync */ 355 /* last time we did a full bitmap_sync */ 356 int64_t time_last_bitmap_sync; 357 /* bytes transferred at start_time */ 358 uint64_t bytes_xfer_prev; 359 /* number of dirty pages since start_time */ 360 uint64_t num_dirty_pages_period; 361 /* xbzrle misses since the beginning of the period */ 362 uint64_t xbzrle_cache_miss_prev; 363 /* Amount of xbzrle pages since the beginning of the period */ 364 uint64_t xbzrle_pages_prev; 365 /* Amount of xbzrle encoded bytes since the beginning of the period */ 366 uint64_t xbzrle_bytes_prev; 367 /* Are we really using XBZRLE (e.g., after the first round). */ 368 bool xbzrle_started; 369 /* Are we on the last stage of migration */ 370 bool last_stage; 371 /* compression statistics since the beginning of the period */ 372 /* amount of count that no free thread to compress data */ 373 uint64_t compress_thread_busy_prev; 374 /* amount bytes after compression */ 375 uint64_t compressed_size_prev; 376 /* amount of compressed pages */ 377 uint64_t compress_pages_prev; 378 379 /* total handled target pages at the beginning of period */ 380 uint64_t target_page_count_prev; 381 /* total handled target pages since start */ 382 uint64_t target_page_count; 383 /* number of dirty bits in the bitmap */ 384 uint64_t migration_dirty_pages; 385 /* 386 * Protects: 387 * - dirty/clear bitmap 388 * - migration_dirty_pages 389 * - pss structures 390 */ 391 QemuMutex bitmap_mutex; 392 /* The RAMBlock used in the last src_page_requests */ 393 RAMBlock *last_req_rb; 394 /* Queue of outstanding page requests from the destination */ 395 QemuMutex src_page_req_mutex; 396 QSIMPLEQ_HEAD(, RAMSrcPageRequest) src_page_requests; 397 398 /* 399 * This is only used when postcopy is in recovery phase, to communicate 400 * between the migration thread and the return path thread on dirty 401 * bitmap synchronizations. This field is unused in other stages of 402 * RAM migration. 403 */ 404 unsigned int postcopy_bmap_sync_requested; 405 }; 406 typedef struct RAMState RAMState; 407 408 static RAMState *ram_state; 409 410 static NotifierWithReturnList precopy_notifier_list; 411 412 /* Whether postcopy has queued requests? */ 413 static bool postcopy_has_request(RAMState *rs) 414 { 415 return !QSIMPLEQ_EMPTY_ATOMIC(&rs->src_page_requests); 416 } 417 418 void precopy_infrastructure_init(void) 419 { 420 notifier_with_return_list_init(&precopy_notifier_list); 421 } 422 423 void precopy_add_notifier(NotifierWithReturn *n) 424 { 425 notifier_with_return_list_add(&precopy_notifier_list, n); 426 } 427 428 void precopy_remove_notifier(NotifierWithReturn *n) 429 { 430 notifier_with_return_remove(n); 431 } 432 433 int precopy_notify(PrecopyNotifyReason reason, Error **errp) 434 { 435 PrecopyNotifyData pnd; 436 pnd.reason = reason; 437 pnd.errp = errp; 438 439 return notifier_with_return_list_notify(&precopy_notifier_list, &pnd); 440 } 441 442 uint64_t ram_bytes_remaining(void) 443 { 444 return ram_state ? (ram_state->migration_dirty_pages * TARGET_PAGE_SIZE) : 445 0; 446 } 447 448 void ram_transferred_add(uint64_t bytes) 449 { 450 if (runstate_is_running()) { 451 stat64_add(&mig_stats.precopy_bytes, bytes); 452 } else if (migration_in_postcopy()) { 453 stat64_add(&mig_stats.postcopy_bytes, bytes); 454 } else { 455 stat64_add(&mig_stats.downtime_bytes, bytes); 456 } 457 stat64_add(&mig_stats.transferred, bytes); 458 } 459 460 struct MigrationOps { 461 int (*ram_save_target_page)(RAMState *rs, PageSearchStatus *pss); 462 }; 463 typedef struct MigrationOps MigrationOps; 464 465 MigrationOps *migration_ops; 466 467 static int ram_save_host_page_urgent(PageSearchStatus *pss); 468 469 /* NOTE: page is the PFN not real ram_addr_t. */ 470 static void pss_init(PageSearchStatus *pss, RAMBlock *rb, ram_addr_t page) 471 { 472 pss->block = rb; 473 pss->page = page; 474 pss->complete_round = false; 475 } 476 477 /* 478 * Check whether two PSSs are actively sending the same page. Return true 479 * if it is, false otherwise. 480 */ 481 static bool pss_overlap(PageSearchStatus *pss1, PageSearchStatus *pss2) 482 { 483 return pss1->host_page_sending && pss2->host_page_sending && 484 (pss1->host_page_start == pss2->host_page_start); 485 } 486 487 /** 488 * save_page_header: write page header to wire 489 * 490 * If this is the 1st block, it also writes the block identification 491 * 492 * Returns the number of bytes written 493 * 494 * @pss: current PSS channel status 495 * @block: block that contains the page we want to send 496 * @offset: offset inside the block for the page 497 * in the lower bits, it contains flags 498 */ 499 static size_t save_page_header(PageSearchStatus *pss, QEMUFile *f, 500 RAMBlock *block, ram_addr_t offset) 501 { 502 size_t size, len; 503 bool same_block = (block == pss->last_sent_block); 504 505 if (same_block) { 506 offset |= RAM_SAVE_FLAG_CONTINUE; 507 } 508 qemu_put_be64(f, offset); 509 size = 8; 510 511 if (!same_block) { 512 len = strlen(block->idstr); 513 qemu_put_byte(f, len); 514 qemu_put_buffer(f, (uint8_t *)block->idstr, len); 515 size += 1 + len; 516 pss->last_sent_block = block; 517 } 518 return size; 519 } 520 521 /** 522 * mig_throttle_guest_down: throttle down the guest 523 * 524 * Reduce amount of guest cpu execution to hopefully slow down memory 525 * writes. If guest dirty memory rate is reduced below the rate at 526 * which we can transfer pages to the destination then we should be 527 * able to complete migration. Some workloads dirty memory way too 528 * fast and will not effectively converge, even with auto-converge. 529 */ 530 static void mig_throttle_guest_down(uint64_t bytes_dirty_period, 531 uint64_t bytes_dirty_threshold) 532 { 533 uint64_t pct_initial = migrate_cpu_throttle_initial(); 534 uint64_t pct_increment = migrate_cpu_throttle_increment(); 535 bool pct_tailslow = migrate_cpu_throttle_tailslow(); 536 int pct_max = migrate_max_cpu_throttle(); 537 538 uint64_t throttle_now = cpu_throttle_get_percentage(); 539 uint64_t cpu_now, cpu_ideal, throttle_inc; 540 541 /* We have not started throttling yet. Let's start it. */ 542 if (!cpu_throttle_active()) { 543 cpu_throttle_set(pct_initial); 544 } else { 545 /* Throttling already on, just increase the rate */ 546 if (!pct_tailslow) { 547 throttle_inc = pct_increment; 548 } else { 549 /* Compute the ideal CPU percentage used by Guest, which may 550 * make the dirty rate match the dirty rate threshold. */ 551 cpu_now = 100 - throttle_now; 552 cpu_ideal = cpu_now * (bytes_dirty_threshold * 1.0 / 553 bytes_dirty_period); 554 throttle_inc = MIN(cpu_now - cpu_ideal, pct_increment); 555 } 556 cpu_throttle_set(MIN(throttle_now + throttle_inc, pct_max)); 557 } 558 } 559 560 void mig_throttle_counter_reset(void) 561 { 562 RAMState *rs = ram_state; 563 564 rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); 565 rs->num_dirty_pages_period = 0; 566 rs->bytes_xfer_prev = stat64_get(&mig_stats.transferred); 567 } 568 569 /** 570 * xbzrle_cache_zero_page: insert a zero page in the XBZRLE cache 571 * 572 * @rs: current RAM state 573 * @current_addr: address for the zero page 574 * 575 * Update the xbzrle cache to reflect a page that's been sent as all 0. 576 * The important thing is that a stale (not-yet-0'd) page be replaced 577 * by the new data. 578 * As a bonus, if the page wasn't in the cache it gets added so that 579 * when a small write is made into the 0'd page it gets XBZRLE sent. 580 */ 581 static void xbzrle_cache_zero_page(RAMState *rs, ram_addr_t current_addr) 582 { 583 /* We don't care if this fails to allocate a new cache page 584 * as long as it updated an old one */ 585 cache_insert(XBZRLE.cache, current_addr, XBZRLE.zero_target_page, 586 stat64_get(&mig_stats.dirty_sync_count)); 587 } 588 589 #define ENCODING_FLAG_XBZRLE 0x1 590 591 /** 592 * save_xbzrle_page: compress and send current page 593 * 594 * Returns: 1 means that we wrote the page 595 * 0 means that page is identical to the one already sent 596 * -1 means that xbzrle would be longer than normal 597 * 598 * @rs: current RAM state 599 * @pss: current PSS channel 600 * @current_data: pointer to the address of the page contents 601 * @current_addr: addr of the page 602 * @block: block that contains the page we want to send 603 * @offset: offset inside the block for the page 604 */ 605 static int save_xbzrle_page(RAMState *rs, PageSearchStatus *pss, 606 uint8_t **current_data, ram_addr_t current_addr, 607 RAMBlock *block, ram_addr_t offset) 608 { 609 int encoded_len = 0, bytes_xbzrle; 610 uint8_t *prev_cached_page; 611 QEMUFile *file = pss->pss_channel; 612 uint64_t generation = stat64_get(&mig_stats.dirty_sync_count); 613 614 if (!cache_is_cached(XBZRLE.cache, current_addr, generation)) { 615 xbzrle_counters.cache_miss++; 616 if (!rs->last_stage) { 617 if (cache_insert(XBZRLE.cache, current_addr, *current_data, 618 generation) == -1) { 619 return -1; 620 } else { 621 /* update *current_data when the page has been 622 inserted into cache */ 623 *current_data = get_cached_data(XBZRLE.cache, current_addr); 624 } 625 } 626 return -1; 627 } 628 629 /* 630 * Reaching here means the page has hit the xbzrle cache, no matter what 631 * encoding result it is (normal encoding, overflow or skipping the page), 632 * count the page as encoded. This is used to calculate the encoding rate. 633 * 634 * Example: 2 pages (8KB) being encoded, first page encoding generates 2KB, 635 * 2nd page turns out to be skipped (i.e. no new bytes written to the 636 * page), the overall encoding rate will be 8KB / 2KB = 4, which has the 637 * skipped page included. In this way, the encoding rate can tell if the 638 * guest page is good for xbzrle encoding. 639 */ 640 xbzrle_counters.pages++; 641 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr); 642 643 /* save current buffer into memory */ 644 memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE); 645 646 /* XBZRLE encoding (if there is no overflow) */ 647 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf, 648 TARGET_PAGE_SIZE, XBZRLE.encoded_buf, 649 TARGET_PAGE_SIZE); 650 651 /* 652 * Update the cache contents, so that it corresponds to the data 653 * sent, in all cases except where we skip the page. 654 */ 655 if (!rs->last_stage && encoded_len != 0) { 656 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE); 657 /* 658 * In the case where we couldn't compress, ensure that the caller 659 * sends the data from the cache, since the guest might have 660 * changed the RAM since we copied it. 661 */ 662 *current_data = prev_cached_page; 663 } 664 665 if (encoded_len == 0) { 666 trace_save_xbzrle_page_skipping(); 667 return 0; 668 } else if (encoded_len == -1) { 669 trace_save_xbzrle_page_overflow(); 670 xbzrle_counters.overflow++; 671 xbzrle_counters.bytes += TARGET_PAGE_SIZE; 672 return -1; 673 } 674 675 /* Send XBZRLE based compressed page */ 676 bytes_xbzrle = save_page_header(pss, pss->pss_channel, block, 677 offset | RAM_SAVE_FLAG_XBZRLE); 678 qemu_put_byte(file, ENCODING_FLAG_XBZRLE); 679 qemu_put_be16(file, encoded_len); 680 qemu_put_buffer(file, XBZRLE.encoded_buf, encoded_len); 681 bytes_xbzrle += encoded_len + 1 + 2; 682 /* 683 * Like compressed_size (please see update_compress_thread_counts), 684 * the xbzrle encoded bytes don't count the 8 byte header with 685 * RAM_SAVE_FLAG_CONTINUE. 686 */ 687 xbzrle_counters.bytes += bytes_xbzrle - 8; 688 ram_transferred_add(bytes_xbzrle); 689 690 return 1; 691 } 692 693 /** 694 * pss_find_next_dirty: find the next dirty page of current ramblock 695 * 696 * This function updates pss->page to point to the next dirty page index 697 * within the ramblock to migrate, or the end of ramblock when nothing 698 * found. Note that when pss->host_page_sending==true it means we're 699 * during sending a host page, so we won't look for dirty page that is 700 * outside the host page boundary. 701 * 702 * @pss: the current page search status 703 */ 704 static void pss_find_next_dirty(PageSearchStatus *pss) 705 { 706 RAMBlock *rb = pss->block; 707 unsigned long size = rb->used_length >> TARGET_PAGE_BITS; 708 unsigned long *bitmap = rb->bmap; 709 710 if (migrate_ram_is_ignored(rb)) { 711 /* Points directly to the end, so we know no dirty page */ 712 pss->page = size; 713 return; 714 } 715 716 /* 717 * If during sending a host page, only look for dirty pages within the 718 * current host page being send. 719 */ 720 if (pss->host_page_sending) { 721 assert(pss->host_page_end); 722 size = MIN(size, pss->host_page_end); 723 } 724 725 pss->page = find_next_bit(bitmap, size, pss->page); 726 } 727 728 static void migration_clear_memory_region_dirty_bitmap(RAMBlock *rb, 729 unsigned long page) 730 { 731 uint8_t shift; 732 hwaddr size, start; 733 734 if (!rb->clear_bmap || !clear_bmap_test_and_clear(rb, page)) { 735 return; 736 } 737 738 shift = rb->clear_bmap_shift; 739 /* 740 * CLEAR_BITMAP_SHIFT_MIN should always guarantee this... this 741 * can make things easier sometimes since then start address 742 * of the small chunk will always be 64 pages aligned so the 743 * bitmap will always be aligned to unsigned long. We should 744 * even be able to remove this restriction but I'm simply 745 * keeping it. 746 */ 747 assert(shift >= 6); 748 749 size = 1ULL << (TARGET_PAGE_BITS + shift); 750 start = QEMU_ALIGN_DOWN((ram_addr_t)page << TARGET_PAGE_BITS, size); 751 trace_migration_bitmap_clear_dirty(rb->idstr, start, size, page); 752 memory_region_clear_dirty_bitmap(rb->mr, start, size); 753 } 754 755 static void 756 migration_clear_memory_region_dirty_bitmap_range(RAMBlock *rb, 757 unsigned long start, 758 unsigned long npages) 759 { 760 unsigned long i, chunk_pages = 1UL << rb->clear_bmap_shift; 761 unsigned long chunk_start = QEMU_ALIGN_DOWN(start, chunk_pages); 762 unsigned long chunk_end = QEMU_ALIGN_UP(start + npages, chunk_pages); 763 764 /* 765 * Clear pages from start to start + npages - 1, so the end boundary is 766 * exclusive. 767 */ 768 for (i = chunk_start; i < chunk_end; i += chunk_pages) { 769 migration_clear_memory_region_dirty_bitmap(rb, i); 770 } 771 } 772 773 /* 774 * colo_bitmap_find_diry:find contiguous dirty pages from start 775 * 776 * Returns the page offset within memory region of the start of the contiguout 777 * dirty page 778 * 779 * @rs: current RAM state 780 * @rb: RAMBlock where to search for dirty pages 781 * @start: page where we start the search 782 * @num: the number of contiguous dirty pages 783 */ 784 static inline 785 unsigned long colo_bitmap_find_dirty(RAMState *rs, RAMBlock *rb, 786 unsigned long start, unsigned long *num) 787 { 788 unsigned long size = rb->used_length >> TARGET_PAGE_BITS; 789 unsigned long *bitmap = rb->bmap; 790 unsigned long first, next; 791 792 *num = 0; 793 794 if (migrate_ram_is_ignored(rb)) { 795 return size; 796 } 797 798 first = find_next_bit(bitmap, size, start); 799 if (first >= size) { 800 return first; 801 } 802 next = find_next_zero_bit(bitmap, size, first + 1); 803 assert(next >= first); 804 *num = next - first; 805 return first; 806 } 807 808 static inline bool migration_bitmap_clear_dirty(RAMState *rs, 809 RAMBlock *rb, 810 unsigned long page) 811 { 812 bool ret; 813 814 /* 815 * Clear dirty bitmap if needed. This _must_ be called before we 816 * send any of the page in the chunk because we need to make sure 817 * we can capture further page content changes when we sync dirty 818 * log the next time. So as long as we are going to send any of 819 * the page in the chunk we clear the remote dirty bitmap for all. 820 * Clearing it earlier won't be a problem, but too late will. 821 */ 822 migration_clear_memory_region_dirty_bitmap(rb, page); 823 824 ret = test_and_clear_bit(page, rb->bmap); 825 if (ret) { 826 rs->migration_dirty_pages--; 827 } 828 829 return ret; 830 } 831 832 static void dirty_bitmap_clear_section(MemoryRegionSection *section, 833 void *opaque) 834 { 835 const hwaddr offset = section->offset_within_region; 836 const hwaddr size = int128_get64(section->size); 837 const unsigned long start = offset >> TARGET_PAGE_BITS; 838 const unsigned long npages = size >> TARGET_PAGE_BITS; 839 RAMBlock *rb = section->mr->ram_block; 840 uint64_t *cleared_bits = opaque; 841 842 /* 843 * We don't grab ram_state->bitmap_mutex because we expect to run 844 * only when starting migration or during postcopy recovery where 845 * we don't have concurrent access. 846 */ 847 if (!migration_in_postcopy() && !migrate_background_snapshot()) { 848 migration_clear_memory_region_dirty_bitmap_range(rb, start, npages); 849 } 850 *cleared_bits += bitmap_count_one_with_offset(rb->bmap, start, npages); 851 bitmap_clear(rb->bmap, start, npages); 852 } 853 854 /* 855 * Exclude all dirty pages from migration that fall into a discarded range as 856 * managed by a RamDiscardManager responsible for the mapped memory region of 857 * the RAMBlock. Clear the corresponding bits in the dirty bitmaps. 858 * 859 * Discarded pages ("logically unplugged") have undefined content and must 860 * not get migrated, because even reading these pages for migration might 861 * result in undesired behavior. 862 * 863 * Returns the number of cleared bits in the RAMBlock dirty bitmap. 864 * 865 * Note: The result is only stable while migrating (precopy/postcopy). 866 */ 867 static uint64_t ramblock_dirty_bitmap_clear_discarded_pages(RAMBlock *rb) 868 { 869 uint64_t cleared_bits = 0; 870 871 if (rb->mr && rb->bmap && memory_region_has_ram_discard_manager(rb->mr)) { 872 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr); 873 MemoryRegionSection section = { 874 .mr = rb->mr, 875 .offset_within_region = 0, 876 .size = int128_make64(qemu_ram_get_used_length(rb)), 877 }; 878 879 ram_discard_manager_replay_discarded(rdm, §ion, 880 dirty_bitmap_clear_section, 881 &cleared_bits); 882 } 883 return cleared_bits; 884 } 885 886 /* 887 * Check if a host-page aligned page falls into a discarded range as managed by 888 * a RamDiscardManager responsible for the mapped memory region of the RAMBlock. 889 * 890 * Note: The result is only stable while migrating (precopy/postcopy). 891 */ 892 bool ramblock_page_is_discarded(RAMBlock *rb, ram_addr_t start) 893 { 894 if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) { 895 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr); 896 MemoryRegionSection section = { 897 .mr = rb->mr, 898 .offset_within_region = start, 899 .size = int128_make64(qemu_ram_pagesize(rb)), 900 }; 901 902 return !ram_discard_manager_is_populated(rdm, §ion); 903 } 904 return false; 905 } 906 907 /* Called with RCU critical section */ 908 static void ramblock_sync_dirty_bitmap(RAMState *rs, RAMBlock *rb) 909 { 910 uint64_t new_dirty_pages = 911 cpu_physical_memory_sync_dirty_bitmap(rb, 0, rb->used_length); 912 913 rs->migration_dirty_pages += new_dirty_pages; 914 rs->num_dirty_pages_period += new_dirty_pages; 915 } 916 917 /** 918 * ram_pagesize_summary: calculate all the pagesizes of a VM 919 * 920 * Returns a summary bitmap of the page sizes of all RAMBlocks 921 * 922 * For VMs with just normal pages this is equivalent to the host page 923 * size. If it's got some huge pages then it's the OR of all the 924 * different page sizes. 925 */ 926 uint64_t ram_pagesize_summary(void) 927 { 928 RAMBlock *block; 929 uint64_t summary = 0; 930 931 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 932 summary |= block->page_size; 933 } 934 935 return summary; 936 } 937 938 uint64_t ram_get_total_transferred_pages(void) 939 { 940 return stat64_get(&mig_stats.normal_pages) + 941 stat64_get(&mig_stats.zero_pages) + 942 compression_counters.pages + xbzrle_counters.pages; 943 } 944 945 static void migration_update_rates(RAMState *rs, int64_t end_time) 946 { 947 uint64_t page_count = rs->target_page_count - rs->target_page_count_prev; 948 double compressed_size; 949 950 /* calculate period counters */ 951 stat64_set(&mig_stats.dirty_pages_rate, 952 rs->num_dirty_pages_period * 1000 / 953 (end_time - rs->time_last_bitmap_sync)); 954 955 if (!page_count) { 956 return; 957 } 958 959 if (migrate_xbzrle()) { 960 double encoded_size, unencoded_size; 961 962 xbzrle_counters.cache_miss_rate = (double)(xbzrle_counters.cache_miss - 963 rs->xbzrle_cache_miss_prev) / page_count; 964 rs->xbzrle_cache_miss_prev = xbzrle_counters.cache_miss; 965 unencoded_size = (xbzrle_counters.pages - rs->xbzrle_pages_prev) * 966 TARGET_PAGE_SIZE; 967 encoded_size = xbzrle_counters.bytes - rs->xbzrle_bytes_prev; 968 if (xbzrle_counters.pages == rs->xbzrle_pages_prev || !encoded_size) { 969 xbzrle_counters.encoding_rate = 0; 970 } else { 971 xbzrle_counters.encoding_rate = unencoded_size / encoded_size; 972 } 973 rs->xbzrle_pages_prev = xbzrle_counters.pages; 974 rs->xbzrle_bytes_prev = xbzrle_counters.bytes; 975 } 976 977 if (migrate_compress()) { 978 compression_counters.busy_rate = (double)(compression_counters.busy - 979 rs->compress_thread_busy_prev) / page_count; 980 rs->compress_thread_busy_prev = compression_counters.busy; 981 982 compressed_size = compression_counters.compressed_size - 983 rs->compressed_size_prev; 984 if (compressed_size) { 985 double uncompressed_size = (compression_counters.pages - 986 rs->compress_pages_prev) * TARGET_PAGE_SIZE; 987 988 /* Compression-Ratio = Uncompressed-size / Compressed-size */ 989 compression_counters.compression_rate = 990 uncompressed_size / compressed_size; 991 992 rs->compress_pages_prev = compression_counters.pages; 993 rs->compressed_size_prev = compression_counters.compressed_size; 994 } 995 } 996 } 997 998 /* 999 * Enable dirty-limit to throttle down the guest 1000 */ 1001 static void migration_dirty_limit_guest(void) 1002 { 1003 /* 1004 * dirty page rate quota for all vCPUs fetched from 1005 * migration parameter 'vcpu_dirty_limit' 1006 */ 1007 static int64_t quota_dirtyrate; 1008 MigrationState *s = migrate_get_current(); 1009 1010 /* 1011 * If dirty limit already enabled and migration parameter 1012 * vcpu-dirty-limit untouched. 1013 */ 1014 if (dirtylimit_in_service() && 1015 quota_dirtyrate == s->parameters.vcpu_dirty_limit) { 1016 return; 1017 } 1018 1019 quota_dirtyrate = s->parameters.vcpu_dirty_limit; 1020 1021 /* 1022 * Set all vCPU a quota dirtyrate, note that the second 1023 * parameter will be ignored if setting all vCPU for the vm 1024 */ 1025 qmp_set_vcpu_dirty_limit(false, -1, quota_dirtyrate, NULL); 1026 trace_migration_dirty_limit_guest(quota_dirtyrate); 1027 } 1028 1029 static void migration_trigger_throttle(RAMState *rs) 1030 { 1031 uint64_t threshold = migrate_throttle_trigger_threshold(); 1032 uint64_t bytes_xfer_period = 1033 stat64_get(&mig_stats.transferred) - rs->bytes_xfer_prev; 1034 uint64_t bytes_dirty_period = rs->num_dirty_pages_period * TARGET_PAGE_SIZE; 1035 uint64_t bytes_dirty_threshold = bytes_xfer_period * threshold / 100; 1036 1037 /* During block migration the auto-converge logic incorrectly detects 1038 * that ram migration makes no progress. Avoid this by disabling the 1039 * throttling logic during the bulk phase of block migration. */ 1040 if (blk_mig_bulk_active()) { 1041 return; 1042 } 1043 1044 /* 1045 * The following detection logic can be refined later. For now: 1046 * Check to see if the ratio between dirtied bytes and the approx. 1047 * amount of bytes that just got transferred since the last time 1048 * we were in this routine reaches the threshold. If that happens 1049 * twice, start or increase throttling. 1050 */ 1051 if ((bytes_dirty_period > bytes_dirty_threshold) && 1052 (++rs->dirty_rate_high_cnt >= 2)) { 1053 rs->dirty_rate_high_cnt = 0; 1054 if (migrate_auto_converge()) { 1055 trace_migration_throttle(); 1056 mig_throttle_guest_down(bytes_dirty_period, 1057 bytes_dirty_threshold); 1058 } else if (migrate_dirty_limit()) { 1059 migration_dirty_limit_guest(); 1060 } 1061 } 1062 } 1063 1064 static void migration_bitmap_sync(RAMState *rs, bool last_stage) 1065 { 1066 RAMBlock *block; 1067 int64_t end_time; 1068 1069 stat64_add(&mig_stats.dirty_sync_count, 1); 1070 1071 if (!rs->time_last_bitmap_sync) { 1072 rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); 1073 } 1074 1075 trace_migration_bitmap_sync_start(); 1076 memory_global_dirty_log_sync(last_stage); 1077 1078 qemu_mutex_lock(&rs->bitmap_mutex); 1079 WITH_RCU_READ_LOCK_GUARD() { 1080 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 1081 ramblock_sync_dirty_bitmap(rs, block); 1082 } 1083 stat64_set(&mig_stats.dirty_bytes_last_sync, ram_bytes_remaining()); 1084 } 1085 qemu_mutex_unlock(&rs->bitmap_mutex); 1086 1087 memory_global_after_dirty_log_sync(); 1088 trace_migration_bitmap_sync_end(rs->num_dirty_pages_period); 1089 1090 end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); 1091 1092 /* more than 1 second = 1000 millisecons */ 1093 if (end_time > rs->time_last_bitmap_sync + 1000) { 1094 migration_trigger_throttle(rs); 1095 1096 migration_update_rates(rs, end_time); 1097 1098 rs->target_page_count_prev = rs->target_page_count; 1099 1100 /* reset period counters */ 1101 rs->time_last_bitmap_sync = end_time; 1102 rs->num_dirty_pages_period = 0; 1103 rs->bytes_xfer_prev = stat64_get(&mig_stats.transferred); 1104 } 1105 if (migrate_events()) { 1106 uint64_t generation = stat64_get(&mig_stats.dirty_sync_count); 1107 qapi_event_send_migration_pass(generation); 1108 } 1109 } 1110 1111 static void migration_bitmap_sync_precopy(RAMState *rs, bool last_stage) 1112 { 1113 Error *local_err = NULL; 1114 1115 /* 1116 * The current notifier usage is just an optimization to migration, so we 1117 * don't stop the normal migration process in the error case. 1118 */ 1119 if (precopy_notify(PRECOPY_NOTIFY_BEFORE_BITMAP_SYNC, &local_err)) { 1120 error_report_err(local_err); 1121 local_err = NULL; 1122 } 1123 1124 migration_bitmap_sync(rs, last_stage); 1125 1126 if (precopy_notify(PRECOPY_NOTIFY_AFTER_BITMAP_SYNC, &local_err)) { 1127 error_report_err(local_err); 1128 } 1129 } 1130 1131 void ram_release_page(const char *rbname, uint64_t offset) 1132 { 1133 if (!migrate_release_ram() || !migration_in_postcopy()) { 1134 return; 1135 } 1136 1137 ram_discard_range(rbname, offset, TARGET_PAGE_SIZE); 1138 } 1139 1140 /** 1141 * save_zero_page_to_file: send the zero page to the file 1142 * 1143 * Returns the size of data written to the file, 0 means the page is not 1144 * a zero page 1145 * 1146 * @pss: current PSS channel 1147 * @block: block that contains the page we want to send 1148 * @offset: offset inside the block for the page 1149 */ 1150 static int save_zero_page_to_file(PageSearchStatus *pss, QEMUFile *file, 1151 RAMBlock *block, ram_addr_t offset) 1152 { 1153 uint8_t *p = block->host + offset; 1154 int len = 0; 1155 1156 if (buffer_is_zero(p, TARGET_PAGE_SIZE)) { 1157 len += save_page_header(pss, file, block, offset | RAM_SAVE_FLAG_ZERO); 1158 qemu_put_byte(file, 0); 1159 len += 1; 1160 ram_release_page(block->idstr, offset); 1161 } 1162 return len; 1163 } 1164 1165 /** 1166 * save_zero_page: send the zero page to the stream 1167 * 1168 * Returns the number of pages written. 1169 * 1170 * @pss: current PSS channel 1171 * @block: block that contains the page we want to send 1172 * @offset: offset inside the block for the page 1173 */ 1174 static int save_zero_page(PageSearchStatus *pss, QEMUFile *f, RAMBlock *block, 1175 ram_addr_t offset) 1176 { 1177 int len = save_zero_page_to_file(pss, f, block, offset); 1178 1179 if (len) { 1180 stat64_add(&mig_stats.zero_pages, 1); 1181 ram_transferred_add(len); 1182 return 1; 1183 } 1184 return -1; 1185 } 1186 1187 /* 1188 * @pages: the number of pages written by the control path, 1189 * < 0 - error 1190 * > 0 - number of pages written 1191 * 1192 * Return true if the pages has been saved, otherwise false is returned. 1193 */ 1194 static bool control_save_page(PageSearchStatus *pss, RAMBlock *block, 1195 ram_addr_t offset, int *pages) 1196 { 1197 int ret; 1198 1199 ret = ram_control_save_page(pss->pss_channel, block->offset, offset, 1200 TARGET_PAGE_SIZE); 1201 if (ret == RAM_SAVE_CONTROL_NOT_SUPP) { 1202 return false; 1203 } 1204 1205 if (ret == RAM_SAVE_CONTROL_DELAYED) { 1206 *pages = 1; 1207 return true; 1208 } 1209 *pages = ret; 1210 return true; 1211 } 1212 1213 /* 1214 * directly send the page to the stream 1215 * 1216 * Returns the number of pages written. 1217 * 1218 * @pss: current PSS channel 1219 * @block: block that contains the page we want to send 1220 * @offset: offset inside the block for the page 1221 * @buf: the page to be sent 1222 * @async: send to page asyncly 1223 */ 1224 static int save_normal_page(PageSearchStatus *pss, RAMBlock *block, 1225 ram_addr_t offset, uint8_t *buf, bool async) 1226 { 1227 QEMUFile *file = pss->pss_channel; 1228 1229 ram_transferred_add(save_page_header(pss, pss->pss_channel, block, 1230 offset | RAM_SAVE_FLAG_PAGE)); 1231 if (async) { 1232 qemu_put_buffer_async(file, buf, TARGET_PAGE_SIZE, 1233 migrate_release_ram() && 1234 migration_in_postcopy()); 1235 } else { 1236 qemu_put_buffer(file, buf, TARGET_PAGE_SIZE); 1237 } 1238 ram_transferred_add(TARGET_PAGE_SIZE); 1239 stat64_add(&mig_stats.normal_pages, 1); 1240 return 1; 1241 } 1242 1243 /** 1244 * ram_save_page: send the given page to the stream 1245 * 1246 * Returns the number of pages written. 1247 * < 0 - error 1248 * >=0 - Number of pages written - this might legally be 0 1249 * if xbzrle noticed the page was the same. 1250 * 1251 * @rs: current RAM state 1252 * @block: block that contains the page we want to send 1253 * @offset: offset inside the block for the page 1254 */ 1255 static int ram_save_page(RAMState *rs, PageSearchStatus *pss) 1256 { 1257 int pages = -1; 1258 uint8_t *p; 1259 bool send_async = true; 1260 RAMBlock *block = pss->block; 1261 ram_addr_t offset = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS; 1262 ram_addr_t current_addr = block->offset + offset; 1263 1264 p = block->host + offset; 1265 trace_ram_save_page(block->idstr, (uint64_t)offset, p); 1266 1267 XBZRLE_cache_lock(); 1268 if (rs->xbzrle_started && !migration_in_postcopy()) { 1269 pages = save_xbzrle_page(rs, pss, &p, current_addr, 1270 block, offset); 1271 if (!rs->last_stage) { 1272 /* Can't send this cached data async, since the cache page 1273 * might get updated before it gets to the wire 1274 */ 1275 send_async = false; 1276 } 1277 } 1278 1279 /* XBZRLE overflow or normal page */ 1280 if (pages == -1) { 1281 pages = save_normal_page(pss, block, offset, p, send_async); 1282 } 1283 1284 XBZRLE_cache_unlock(); 1285 1286 return pages; 1287 } 1288 1289 static int ram_save_multifd_page(QEMUFile *file, RAMBlock *block, 1290 ram_addr_t offset) 1291 { 1292 if (multifd_queue_page(file, block, offset) < 0) { 1293 return -1; 1294 } 1295 stat64_add(&mig_stats.normal_pages, 1); 1296 1297 return 1; 1298 } 1299 1300 static void 1301 update_compress_thread_counts(const CompressParam *param, int bytes_xmit) 1302 { 1303 ram_transferred_add(bytes_xmit); 1304 1305 if (param->result == RES_ZEROPAGE) { 1306 stat64_add(&mig_stats.zero_pages, 1); 1307 return; 1308 } 1309 1310 /* 8 means a header with RAM_SAVE_FLAG_CONTINUE. */ 1311 compression_counters.compressed_size += bytes_xmit - 8; 1312 compression_counters.pages++; 1313 } 1314 1315 static bool save_page_use_compression(RAMState *rs); 1316 1317 static int send_queued_data(CompressParam *param) 1318 { 1319 PageSearchStatus *pss = &ram_state->pss[RAM_CHANNEL_PRECOPY]; 1320 MigrationState *ms = migrate_get_current(); 1321 QEMUFile *file = ms->to_dst_file; 1322 int len = 0; 1323 1324 RAMBlock *block = param->block; 1325 ram_addr_t offset = param->offset; 1326 1327 if (param->result == RES_NONE) { 1328 return 0; 1329 } 1330 1331 assert(block == pss->last_sent_block); 1332 1333 if (param->result == RES_ZEROPAGE) { 1334 assert(qemu_file_buffer_empty(param->file)); 1335 len += save_page_header(pss, file, block, offset | RAM_SAVE_FLAG_ZERO); 1336 qemu_put_byte(file, 0); 1337 len += 1; 1338 ram_release_page(block->idstr, offset); 1339 } else if (param->result == RES_COMPRESS) { 1340 assert(!qemu_file_buffer_empty(param->file)); 1341 len += save_page_header(pss, file, block, 1342 offset | RAM_SAVE_FLAG_COMPRESS_PAGE); 1343 len += qemu_put_qemu_file(file, param->file); 1344 } else { 1345 abort(); 1346 } 1347 1348 update_compress_thread_counts(param, len); 1349 1350 return len; 1351 } 1352 1353 static void ram_flush_compressed_data(RAMState *rs) 1354 { 1355 if (!save_page_use_compression(rs)) { 1356 return; 1357 } 1358 1359 flush_compressed_data(send_queued_data); 1360 } 1361 1362 #define PAGE_ALL_CLEAN 0 1363 #define PAGE_TRY_AGAIN 1 1364 #define PAGE_DIRTY_FOUND 2 1365 /** 1366 * find_dirty_block: find the next dirty page and update any state 1367 * associated with the search process. 1368 * 1369 * Returns: 1370 * <0: An error happened 1371 * PAGE_ALL_CLEAN: no dirty page found, give up 1372 * PAGE_TRY_AGAIN: no dirty page found, retry for next block 1373 * PAGE_DIRTY_FOUND: dirty page found 1374 * 1375 * @rs: current RAM state 1376 * @pss: data about the state of the current dirty page scan 1377 * @again: set to false if the search has scanned the whole of RAM 1378 */ 1379 static int find_dirty_block(RAMState *rs, PageSearchStatus *pss) 1380 { 1381 /* Update pss->page for the next dirty bit in ramblock */ 1382 pss_find_next_dirty(pss); 1383 1384 if (pss->complete_round && pss->block == rs->last_seen_block && 1385 pss->page >= rs->last_page) { 1386 /* 1387 * We've been once around the RAM and haven't found anything. 1388 * Give up. 1389 */ 1390 return PAGE_ALL_CLEAN; 1391 } 1392 if (!offset_in_ramblock(pss->block, 1393 ((ram_addr_t)pss->page) << TARGET_PAGE_BITS)) { 1394 /* Didn't find anything in this RAM Block */ 1395 pss->page = 0; 1396 pss->block = QLIST_NEXT_RCU(pss->block, next); 1397 if (!pss->block) { 1398 if (!migrate_multifd_flush_after_each_section()) { 1399 QEMUFile *f = rs->pss[RAM_CHANNEL_PRECOPY].pss_channel; 1400 int ret = multifd_send_sync_main(f); 1401 if (ret < 0) { 1402 return ret; 1403 } 1404 qemu_put_be64(f, RAM_SAVE_FLAG_MULTIFD_FLUSH); 1405 qemu_fflush(f); 1406 } 1407 /* 1408 * If memory migration starts over, we will meet a dirtied page 1409 * which may still exists in compression threads's ring, so we 1410 * should flush the compressed data to make sure the new page 1411 * is not overwritten by the old one in the destination. 1412 * 1413 * Also If xbzrle is on, stop using the data compression at this 1414 * point. In theory, xbzrle can do better than compression. 1415 */ 1416 ram_flush_compressed_data(rs); 1417 1418 /* Hit the end of the list */ 1419 pss->block = QLIST_FIRST_RCU(&ram_list.blocks); 1420 /* Flag that we've looped */ 1421 pss->complete_round = true; 1422 /* After the first round, enable XBZRLE. */ 1423 if (migrate_xbzrle()) { 1424 rs->xbzrle_started = true; 1425 } 1426 } 1427 /* Didn't find anything this time, but try again on the new block */ 1428 return PAGE_TRY_AGAIN; 1429 } else { 1430 /* We've found something */ 1431 return PAGE_DIRTY_FOUND; 1432 } 1433 } 1434 1435 /** 1436 * unqueue_page: gets a page of the queue 1437 * 1438 * Helper for 'get_queued_page' - gets a page off the queue 1439 * 1440 * Returns the block of the page (or NULL if none available) 1441 * 1442 * @rs: current RAM state 1443 * @offset: used to return the offset within the RAMBlock 1444 */ 1445 static RAMBlock *unqueue_page(RAMState *rs, ram_addr_t *offset) 1446 { 1447 struct RAMSrcPageRequest *entry; 1448 RAMBlock *block = NULL; 1449 1450 if (!postcopy_has_request(rs)) { 1451 return NULL; 1452 } 1453 1454 QEMU_LOCK_GUARD(&rs->src_page_req_mutex); 1455 1456 /* 1457 * This should _never_ change even after we take the lock, because no one 1458 * should be taking anything off the request list other than us. 1459 */ 1460 assert(postcopy_has_request(rs)); 1461 1462 entry = QSIMPLEQ_FIRST(&rs->src_page_requests); 1463 block = entry->rb; 1464 *offset = entry->offset; 1465 1466 if (entry->len > TARGET_PAGE_SIZE) { 1467 entry->len -= TARGET_PAGE_SIZE; 1468 entry->offset += TARGET_PAGE_SIZE; 1469 } else { 1470 memory_region_unref(block->mr); 1471 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req); 1472 g_free(entry); 1473 migration_consume_urgent_request(); 1474 } 1475 1476 return block; 1477 } 1478 1479 #if defined(__linux__) 1480 /** 1481 * poll_fault_page: try to get next UFFD write fault page and, if pending fault 1482 * is found, return RAM block pointer and page offset 1483 * 1484 * Returns pointer to the RAMBlock containing faulting page, 1485 * NULL if no write faults are pending 1486 * 1487 * @rs: current RAM state 1488 * @offset: page offset from the beginning of the block 1489 */ 1490 static RAMBlock *poll_fault_page(RAMState *rs, ram_addr_t *offset) 1491 { 1492 struct uffd_msg uffd_msg; 1493 void *page_address; 1494 RAMBlock *block; 1495 int res; 1496 1497 if (!migrate_background_snapshot()) { 1498 return NULL; 1499 } 1500 1501 res = uffd_read_events(rs->uffdio_fd, &uffd_msg, 1); 1502 if (res <= 0) { 1503 return NULL; 1504 } 1505 1506 page_address = (void *)(uintptr_t) uffd_msg.arg.pagefault.address; 1507 block = qemu_ram_block_from_host(page_address, false, offset); 1508 assert(block && (block->flags & RAM_UF_WRITEPROTECT) != 0); 1509 return block; 1510 } 1511 1512 /** 1513 * ram_save_release_protection: release UFFD write protection after 1514 * a range of pages has been saved 1515 * 1516 * @rs: current RAM state 1517 * @pss: page-search-status structure 1518 * @start_page: index of the first page in the range relative to pss->block 1519 * 1520 * Returns 0 on success, negative value in case of an error 1521 */ 1522 static int ram_save_release_protection(RAMState *rs, PageSearchStatus *pss, 1523 unsigned long start_page) 1524 { 1525 int res = 0; 1526 1527 /* Check if page is from UFFD-managed region. */ 1528 if (pss->block->flags & RAM_UF_WRITEPROTECT) { 1529 void *page_address = pss->block->host + (start_page << TARGET_PAGE_BITS); 1530 uint64_t run_length = (pss->page - start_page) << TARGET_PAGE_BITS; 1531 1532 /* Flush async buffers before un-protect. */ 1533 qemu_fflush(pss->pss_channel); 1534 /* Un-protect memory range. */ 1535 res = uffd_change_protection(rs->uffdio_fd, page_address, run_length, 1536 false, false); 1537 } 1538 1539 return res; 1540 } 1541 1542 /* ram_write_tracking_available: check if kernel supports required UFFD features 1543 * 1544 * Returns true if supports, false otherwise 1545 */ 1546 bool ram_write_tracking_available(void) 1547 { 1548 uint64_t uffd_features; 1549 int res; 1550 1551 res = uffd_query_features(&uffd_features); 1552 return (res == 0 && 1553 (uffd_features & UFFD_FEATURE_PAGEFAULT_FLAG_WP) != 0); 1554 } 1555 1556 /* ram_write_tracking_compatible: check if guest configuration is 1557 * compatible with 'write-tracking' 1558 * 1559 * Returns true if compatible, false otherwise 1560 */ 1561 bool ram_write_tracking_compatible(void) 1562 { 1563 const uint64_t uffd_ioctls_mask = BIT(_UFFDIO_WRITEPROTECT); 1564 int uffd_fd; 1565 RAMBlock *block; 1566 bool ret = false; 1567 1568 /* Open UFFD file descriptor */ 1569 uffd_fd = uffd_create_fd(UFFD_FEATURE_PAGEFAULT_FLAG_WP, false); 1570 if (uffd_fd < 0) { 1571 return false; 1572 } 1573 1574 RCU_READ_LOCK_GUARD(); 1575 1576 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 1577 uint64_t uffd_ioctls; 1578 1579 /* Nothing to do with read-only and MMIO-writable regions */ 1580 if (block->mr->readonly || block->mr->rom_device) { 1581 continue; 1582 } 1583 /* Try to register block memory via UFFD-IO to track writes */ 1584 if (uffd_register_memory(uffd_fd, block->host, block->max_length, 1585 UFFDIO_REGISTER_MODE_WP, &uffd_ioctls)) { 1586 goto out; 1587 } 1588 if ((uffd_ioctls & uffd_ioctls_mask) != uffd_ioctls_mask) { 1589 goto out; 1590 } 1591 } 1592 ret = true; 1593 1594 out: 1595 uffd_close_fd(uffd_fd); 1596 return ret; 1597 } 1598 1599 static inline void populate_read_range(RAMBlock *block, ram_addr_t offset, 1600 ram_addr_t size) 1601 { 1602 const ram_addr_t end = offset + size; 1603 1604 /* 1605 * We read one byte of each page; this will preallocate page tables if 1606 * required and populate the shared zeropage on MAP_PRIVATE anonymous memory 1607 * where no page was populated yet. This might require adaption when 1608 * supporting other mappings, like shmem. 1609 */ 1610 for (; offset < end; offset += block->page_size) { 1611 char tmp = *((char *)block->host + offset); 1612 1613 /* Don't optimize the read out */ 1614 asm volatile("" : "+r" (tmp)); 1615 } 1616 } 1617 1618 static inline int populate_read_section(MemoryRegionSection *section, 1619 void *opaque) 1620 { 1621 const hwaddr size = int128_get64(section->size); 1622 hwaddr offset = section->offset_within_region; 1623 RAMBlock *block = section->mr->ram_block; 1624 1625 populate_read_range(block, offset, size); 1626 return 0; 1627 } 1628 1629 /* 1630 * ram_block_populate_read: preallocate page tables and populate pages in the 1631 * RAM block by reading a byte of each page. 1632 * 1633 * Since it's solely used for userfault_fd WP feature, here we just 1634 * hardcode page size to qemu_real_host_page_size. 1635 * 1636 * @block: RAM block to populate 1637 */ 1638 static void ram_block_populate_read(RAMBlock *rb) 1639 { 1640 /* 1641 * Skip populating all pages that fall into a discarded range as managed by 1642 * a RamDiscardManager responsible for the mapped memory region of the 1643 * RAMBlock. Such discarded ("logically unplugged") parts of a RAMBlock 1644 * must not get populated automatically. We don't have to track 1645 * modifications via userfaultfd WP reliably, because these pages will 1646 * not be part of the migration stream either way -- see 1647 * ramblock_dirty_bitmap_exclude_discarded_pages(). 1648 * 1649 * Note: The result is only stable while migrating (precopy/postcopy). 1650 */ 1651 if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) { 1652 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr); 1653 MemoryRegionSection section = { 1654 .mr = rb->mr, 1655 .offset_within_region = 0, 1656 .size = rb->mr->size, 1657 }; 1658 1659 ram_discard_manager_replay_populated(rdm, §ion, 1660 populate_read_section, NULL); 1661 } else { 1662 populate_read_range(rb, 0, rb->used_length); 1663 } 1664 } 1665 1666 /* 1667 * ram_write_tracking_prepare: prepare for UFFD-WP memory tracking 1668 */ 1669 void ram_write_tracking_prepare(void) 1670 { 1671 RAMBlock *block; 1672 1673 RCU_READ_LOCK_GUARD(); 1674 1675 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 1676 /* Nothing to do with read-only and MMIO-writable regions */ 1677 if (block->mr->readonly || block->mr->rom_device) { 1678 continue; 1679 } 1680 1681 /* 1682 * Populate pages of the RAM block before enabling userfault_fd 1683 * write protection. 1684 * 1685 * This stage is required since ioctl(UFFDIO_WRITEPROTECT) with 1686 * UFFDIO_WRITEPROTECT_MODE_WP mode setting would silently skip 1687 * pages with pte_none() entries in page table. 1688 */ 1689 ram_block_populate_read(block); 1690 } 1691 } 1692 1693 static inline int uffd_protect_section(MemoryRegionSection *section, 1694 void *opaque) 1695 { 1696 const hwaddr size = int128_get64(section->size); 1697 const hwaddr offset = section->offset_within_region; 1698 RAMBlock *rb = section->mr->ram_block; 1699 int uffd_fd = (uintptr_t)opaque; 1700 1701 return uffd_change_protection(uffd_fd, rb->host + offset, size, true, 1702 false); 1703 } 1704 1705 static int ram_block_uffd_protect(RAMBlock *rb, int uffd_fd) 1706 { 1707 assert(rb->flags & RAM_UF_WRITEPROTECT); 1708 1709 /* See ram_block_populate_read() */ 1710 if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) { 1711 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr); 1712 MemoryRegionSection section = { 1713 .mr = rb->mr, 1714 .offset_within_region = 0, 1715 .size = rb->mr->size, 1716 }; 1717 1718 return ram_discard_manager_replay_populated(rdm, §ion, 1719 uffd_protect_section, 1720 (void *)(uintptr_t)uffd_fd); 1721 } 1722 return uffd_change_protection(uffd_fd, rb->host, 1723 rb->used_length, true, false); 1724 } 1725 1726 /* 1727 * ram_write_tracking_start: start UFFD-WP memory tracking 1728 * 1729 * Returns 0 for success or negative value in case of error 1730 */ 1731 int ram_write_tracking_start(void) 1732 { 1733 int uffd_fd; 1734 RAMState *rs = ram_state; 1735 RAMBlock *block; 1736 1737 /* Open UFFD file descriptor */ 1738 uffd_fd = uffd_create_fd(UFFD_FEATURE_PAGEFAULT_FLAG_WP, true); 1739 if (uffd_fd < 0) { 1740 return uffd_fd; 1741 } 1742 rs->uffdio_fd = uffd_fd; 1743 1744 RCU_READ_LOCK_GUARD(); 1745 1746 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 1747 /* Nothing to do with read-only and MMIO-writable regions */ 1748 if (block->mr->readonly || block->mr->rom_device) { 1749 continue; 1750 } 1751 1752 /* Register block memory with UFFD to track writes */ 1753 if (uffd_register_memory(rs->uffdio_fd, block->host, 1754 block->max_length, UFFDIO_REGISTER_MODE_WP, NULL)) { 1755 goto fail; 1756 } 1757 block->flags |= RAM_UF_WRITEPROTECT; 1758 memory_region_ref(block->mr); 1759 1760 /* Apply UFFD write protection to the block memory range */ 1761 if (ram_block_uffd_protect(block, uffd_fd)) { 1762 goto fail; 1763 } 1764 1765 trace_ram_write_tracking_ramblock_start(block->idstr, block->page_size, 1766 block->host, block->max_length); 1767 } 1768 1769 return 0; 1770 1771 fail: 1772 error_report("ram_write_tracking_start() failed: restoring initial memory state"); 1773 1774 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 1775 if ((block->flags & RAM_UF_WRITEPROTECT) == 0) { 1776 continue; 1777 } 1778 uffd_unregister_memory(rs->uffdio_fd, block->host, block->max_length); 1779 /* Cleanup flags and remove reference */ 1780 block->flags &= ~RAM_UF_WRITEPROTECT; 1781 memory_region_unref(block->mr); 1782 } 1783 1784 uffd_close_fd(uffd_fd); 1785 rs->uffdio_fd = -1; 1786 return -1; 1787 } 1788 1789 /** 1790 * ram_write_tracking_stop: stop UFFD-WP memory tracking and remove protection 1791 */ 1792 void ram_write_tracking_stop(void) 1793 { 1794 RAMState *rs = ram_state; 1795 RAMBlock *block; 1796 1797 RCU_READ_LOCK_GUARD(); 1798 1799 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 1800 if ((block->flags & RAM_UF_WRITEPROTECT) == 0) { 1801 continue; 1802 } 1803 uffd_unregister_memory(rs->uffdio_fd, block->host, block->max_length); 1804 1805 trace_ram_write_tracking_ramblock_stop(block->idstr, block->page_size, 1806 block->host, block->max_length); 1807 1808 /* Cleanup flags and remove reference */ 1809 block->flags &= ~RAM_UF_WRITEPROTECT; 1810 memory_region_unref(block->mr); 1811 } 1812 1813 /* Finally close UFFD file descriptor */ 1814 uffd_close_fd(rs->uffdio_fd); 1815 rs->uffdio_fd = -1; 1816 } 1817 1818 #else 1819 /* No target OS support, stubs just fail or ignore */ 1820 1821 static RAMBlock *poll_fault_page(RAMState *rs, ram_addr_t *offset) 1822 { 1823 (void) rs; 1824 (void) offset; 1825 1826 return NULL; 1827 } 1828 1829 static int ram_save_release_protection(RAMState *rs, PageSearchStatus *pss, 1830 unsigned long start_page) 1831 { 1832 (void) rs; 1833 (void) pss; 1834 (void) start_page; 1835 1836 return 0; 1837 } 1838 1839 bool ram_write_tracking_available(void) 1840 { 1841 return false; 1842 } 1843 1844 bool ram_write_tracking_compatible(void) 1845 { 1846 assert(0); 1847 return false; 1848 } 1849 1850 int ram_write_tracking_start(void) 1851 { 1852 assert(0); 1853 return -1; 1854 } 1855 1856 void ram_write_tracking_stop(void) 1857 { 1858 assert(0); 1859 } 1860 #endif /* defined(__linux__) */ 1861 1862 /** 1863 * get_queued_page: unqueue a page from the postcopy requests 1864 * 1865 * Skips pages that are already sent (!dirty) 1866 * 1867 * Returns true if a queued page is found 1868 * 1869 * @rs: current RAM state 1870 * @pss: data about the state of the current dirty page scan 1871 */ 1872 static bool get_queued_page(RAMState *rs, PageSearchStatus *pss) 1873 { 1874 RAMBlock *block; 1875 ram_addr_t offset; 1876 bool dirty; 1877 1878 do { 1879 block = unqueue_page(rs, &offset); 1880 /* 1881 * We're sending this page, and since it's postcopy nothing else 1882 * will dirty it, and we must make sure it doesn't get sent again 1883 * even if this queue request was received after the background 1884 * search already sent it. 1885 */ 1886 if (block) { 1887 unsigned long page; 1888 1889 page = offset >> TARGET_PAGE_BITS; 1890 dirty = test_bit(page, block->bmap); 1891 if (!dirty) { 1892 trace_get_queued_page_not_dirty(block->idstr, (uint64_t)offset, 1893 page); 1894 } else { 1895 trace_get_queued_page(block->idstr, (uint64_t)offset, page); 1896 } 1897 } 1898 1899 } while (block && !dirty); 1900 1901 if (!block) { 1902 /* 1903 * Poll write faults too if background snapshot is enabled; that's 1904 * when we have vcpus got blocked by the write protected pages. 1905 */ 1906 block = poll_fault_page(rs, &offset); 1907 } 1908 1909 if (block) { 1910 /* 1911 * We want the background search to continue from the queued page 1912 * since the guest is likely to want other pages near to the page 1913 * it just requested. 1914 */ 1915 pss->block = block; 1916 pss->page = offset >> TARGET_PAGE_BITS; 1917 1918 /* 1919 * This unqueued page would break the "one round" check, even is 1920 * really rare. 1921 */ 1922 pss->complete_round = false; 1923 } 1924 1925 return !!block; 1926 } 1927 1928 /** 1929 * migration_page_queue_free: drop any remaining pages in the ram 1930 * request queue 1931 * 1932 * It should be empty at the end anyway, but in error cases there may 1933 * be some left. in case that there is any page left, we drop it. 1934 * 1935 */ 1936 static void migration_page_queue_free(RAMState *rs) 1937 { 1938 struct RAMSrcPageRequest *mspr, *next_mspr; 1939 /* This queue generally should be empty - but in the case of a failed 1940 * migration might have some droppings in. 1941 */ 1942 RCU_READ_LOCK_GUARD(); 1943 QSIMPLEQ_FOREACH_SAFE(mspr, &rs->src_page_requests, next_req, next_mspr) { 1944 memory_region_unref(mspr->rb->mr); 1945 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req); 1946 g_free(mspr); 1947 } 1948 } 1949 1950 /** 1951 * ram_save_queue_pages: queue the page for transmission 1952 * 1953 * A request from postcopy destination for example. 1954 * 1955 * Returns zero on success or negative on error 1956 * 1957 * @rbname: Name of the RAMBLock of the request. NULL means the 1958 * same that last one. 1959 * @start: starting address from the start of the RAMBlock 1960 * @len: length (in bytes) to send 1961 */ 1962 int ram_save_queue_pages(const char *rbname, ram_addr_t start, ram_addr_t len) 1963 { 1964 RAMBlock *ramblock; 1965 RAMState *rs = ram_state; 1966 1967 stat64_add(&mig_stats.postcopy_requests, 1); 1968 RCU_READ_LOCK_GUARD(); 1969 1970 if (!rbname) { 1971 /* Reuse last RAMBlock */ 1972 ramblock = rs->last_req_rb; 1973 1974 if (!ramblock) { 1975 /* 1976 * Shouldn't happen, we can't reuse the last RAMBlock if 1977 * it's the 1st request. 1978 */ 1979 error_report("ram_save_queue_pages no previous block"); 1980 return -1; 1981 } 1982 } else { 1983 ramblock = qemu_ram_block_by_name(rbname); 1984 1985 if (!ramblock) { 1986 /* We shouldn't be asked for a non-existent RAMBlock */ 1987 error_report("ram_save_queue_pages no block '%s'", rbname); 1988 return -1; 1989 } 1990 rs->last_req_rb = ramblock; 1991 } 1992 trace_ram_save_queue_pages(ramblock->idstr, start, len); 1993 if (!offset_in_ramblock(ramblock, start + len - 1)) { 1994 error_report("%s request overrun start=" RAM_ADDR_FMT " len=" 1995 RAM_ADDR_FMT " blocklen=" RAM_ADDR_FMT, 1996 __func__, start, len, ramblock->used_length); 1997 return -1; 1998 } 1999 2000 /* 2001 * When with postcopy preempt, we send back the page directly in the 2002 * rp-return thread. 2003 */ 2004 if (postcopy_preempt_active()) { 2005 ram_addr_t page_start = start >> TARGET_PAGE_BITS; 2006 size_t page_size = qemu_ram_pagesize(ramblock); 2007 PageSearchStatus *pss = &ram_state->pss[RAM_CHANNEL_POSTCOPY]; 2008 int ret = 0; 2009 2010 qemu_mutex_lock(&rs->bitmap_mutex); 2011 2012 pss_init(pss, ramblock, page_start); 2013 /* 2014 * Always use the preempt channel, and make sure it's there. It's 2015 * safe to access without lock, because when rp-thread is running 2016 * we should be the only one who operates on the qemufile 2017 */ 2018 pss->pss_channel = migrate_get_current()->postcopy_qemufile_src; 2019 assert(pss->pss_channel); 2020 2021 /* 2022 * It must be either one or multiple of host page size. Just 2023 * assert; if something wrong we're mostly split brain anyway. 2024 */ 2025 assert(len % page_size == 0); 2026 while (len) { 2027 if (ram_save_host_page_urgent(pss)) { 2028 error_report("%s: ram_save_host_page_urgent() failed: " 2029 "ramblock=%s, start_addr=0x"RAM_ADDR_FMT, 2030 __func__, ramblock->idstr, start); 2031 ret = -1; 2032 break; 2033 } 2034 /* 2035 * NOTE: after ram_save_host_page_urgent() succeeded, pss->page 2036 * will automatically be moved and point to the next host page 2037 * we're going to send, so no need to update here. 2038 * 2039 * Normally QEMU never sends >1 host page in requests, so 2040 * logically we don't even need that as the loop should only 2041 * run once, but just to be consistent. 2042 */ 2043 len -= page_size; 2044 }; 2045 qemu_mutex_unlock(&rs->bitmap_mutex); 2046 2047 return ret; 2048 } 2049 2050 struct RAMSrcPageRequest *new_entry = 2051 g_new0(struct RAMSrcPageRequest, 1); 2052 new_entry->rb = ramblock; 2053 new_entry->offset = start; 2054 new_entry->len = len; 2055 2056 memory_region_ref(ramblock->mr); 2057 qemu_mutex_lock(&rs->src_page_req_mutex); 2058 QSIMPLEQ_INSERT_TAIL(&rs->src_page_requests, new_entry, next_req); 2059 migration_make_urgent_request(); 2060 qemu_mutex_unlock(&rs->src_page_req_mutex); 2061 2062 return 0; 2063 } 2064 2065 static bool save_page_use_compression(RAMState *rs) 2066 { 2067 if (!migrate_compress()) { 2068 return false; 2069 } 2070 2071 /* 2072 * If xbzrle is enabled (e.g., after first round of migration), stop 2073 * using the data compression. In theory, xbzrle can do better than 2074 * compression. 2075 */ 2076 if (rs->xbzrle_started) { 2077 return false; 2078 } 2079 2080 return true; 2081 } 2082 2083 /* 2084 * try to compress the page before posting it out, return true if the page 2085 * has been properly handled by compression, otherwise needs other 2086 * paths to handle it 2087 */ 2088 static bool save_compress_page(RAMState *rs, PageSearchStatus *pss, 2089 RAMBlock *block, ram_addr_t offset) 2090 { 2091 if (!save_page_use_compression(rs)) { 2092 return false; 2093 } 2094 2095 /* 2096 * When starting the process of a new block, the first page of 2097 * the block should be sent out before other pages in the same 2098 * block, and all the pages in last block should have been sent 2099 * out, keeping this order is important, because the 'cont' flag 2100 * is used to avoid resending the block name. 2101 * 2102 * We post the fist page as normal page as compression will take 2103 * much CPU resource. 2104 */ 2105 if (block != pss->last_sent_block) { 2106 ram_flush_compressed_data(rs); 2107 return false; 2108 } 2109 2110 if (compress_page_with_multi_thread(block, offset, send_queued_data) > 0) { 2111 return true; 2112 } 2113 2114 compression_counters.busy++; 2115 return false; 2116 } 2117 2118 /** 2119 * ram_save_target_page_legacy: save one target page 2120 * 2121 * Returns the number of pages written 2122 * 2123 * @rs: current RAM state 2124 * @pss: data about the page we want to send 2125 */ 2126 static int ram_save_target_page_legacy(RAMState *rs, PageSearchStatus *pss) 2127 { 2128 RAMBlock *block = pss->block; 2129 ram_addr_t offset = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS; 2130 int res; 2131 2132 if (control_save_page(pss, block, offset, &res)) { 2133 return res; 2134 } 2135 2136 if (save_compress_page(rs, pss, block, offset)) { 2137 return 1; 2138 } 2139 2140 res = save_zero_page(pss, pss->pss_channel, block, offset); 2141 if (res > 0) { 2142 /* Must let xbzrle know, otherwise a previous (now 0'd) cached 2143 * page would be stale 2144 */ 2145 if (rs->xbzrle_started) { 2146 XBZRLE_cache_lock(); 2147 xbzrle_cache_zero_page(rs, block->offset + offset); 2148 XBZRLE_cache_unlock(); 2149 } 2150 return res; 2151 } 2152 2153 /* 2154 * Do not use multifd in postcopy as one whole host page should be 2155 * placed. Meanwhile postcopy requires atomic update of pages, so even 2156 * if host page size == guest page size the dest guest during run may 2157 * still see partially copied pages which is data corruption. 2158 */ 2159 if (migrate_multifd() && !migration_in_postcopy()) { 2160 return ram_save_multifd_page(pss->pss_channel, block, offset); 2161 } 2162 2163 return ram_save_page(rs, pss); 2164 } 2165 2166 /* Should be called before sending a host page */ 2167 static void pss_host_page_prepare(PageSearchStatus *pss) 2168 { 2169 /* How many guest pages are there in one host page? */ 2170 size_t guest_pfns = qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS; 2171 2172 pss->host_page_sending = true; 2173 if (guest_pfns <= 1) { 2174 /* 2175 * This covers both when guest psize == host psize, or when guest 2176 * has larger psize than the host (guest_pfns==0). 2177 * 2178 * For the latter, we always send one whole guest page per 2179 * iteration of the host page (example: an Alpha VM on x86 host 2180 * will have guest psize 8K while host psize 4K). 2181 */ 2182 pss->host_page_start = pss->page; 2183 pss->host_page_end = pss->page + 1; 2184 } else { 2185 /* 2186 * The host page spans over multiple guest pages, we send them 2187 * within the same host page iteration. 2188 */ 2189 pss->host_page_start = ROUND_DOWN(pss->page, guest_pfns); 2190 pss->host_page_end = ROUND_UP(pss->page + 1, guest_pfns); 2191 } 2192 } 2193 2194 /* 2195 * Whether the page pointed by PSS is within the host page being sent. 2196 * Must be called after a previous pss_host_page_prepare(). 2197 */ 2198 static bool pss_within_range(PageSearchStatus *pss) 2199 { 2200 ram_addr_t ram_addr; 2201 2202 assert(pss->host_page_sending); 2203 2204 /* Over host-page boundary? */ 2205 if (pss->page >= pss->host_page_end) { 2206 return false; 2207 } 2208 2209 ram_addr = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS; 2210 2211 return offset_in_ramblock(pss->block, ram_addr); 2212 } 2213 2214 static void pss_host_page_finish(PageSearchStatus *pss) 2215 { 2216 pss->host_page_sending = false; 2217 /* This is not needed, but just to reset it */ 2218 pss->host_page_start = pss->host_page_end = 0; 2219 } 2220 2221 /* 2222 * Send an urgent host page specified by `pss'. Need to be called with 2223 * bitmap_mutex held. 2224 * 2225 * Returns 0 if save host page succeeded, false otherwise. 2226 */ 2227 static int ram_save_host_page_urgent(PageSearchStatus *pss) 2228 { 2229 bool page_dirty, sent = false; 2230 RAMState *rs = ram_state; 2231 int ret = 0; 2232 2233 trace_postcopy_preempt_send_host_page(pss->block->idstr, pss->page); 2234 pss_host_page_prepare(pss); 2235 2236 /* 2237 * If precopy is sending the same page, let it be done in precopy, or 2238 * we could send the same page in two channels and none of them will 2239 * receive the whole page. 2240 */ 2241 if (pss_overlap(pss, &ram_state->pss[RAM_CHANNEL_PRECOPY])) { 2242 trace_postcopy_preempt_hit(pss->block->idstr, 2243 pss->page << TARGET_PAGE_BITS); 2244 return 0; 2245 } 2246 2247 do { 2248 page_dirty = migration_bitmap_clear_dirty(rs, pss->block, pss->page); 2249 2250 if (page_dirty) { 2251 /* Be strict to return code; it must be 1, or what else? */ 2252 if (migration_ops->ram_save_target_page(rs, pss) != 1) { 2253 error_report_once("%s: ram_save_target_page failed", __func__); 2254 ret = -1; 2255 goto out; 2256 } 2257 sent = true; 2258 } 2259 pss_find_next_dirty(pss); 2260 } while (pss_within_range(pss)); 2261 out: 2262 pss_host_page_finish(pss); 2263 /* For urgent requests, flush immediately if sent */ 2264 if (sent) { 2265 qemu_fflush(pss->pss_channel); 2266 } 2267 return ret; 2268 } 2269 2270 /** 2271 * ram_save_host_page: save a whole host page 2272 * 2273 * Starting at *offset send pages up to the end of the current host 2274 * page. It's valid for the initial offset to point into the middle of 2275 * a host page in which case the remainder of the hostpage is sent. 2276 * Only dirty target pages are sent. Note that the host page size may 2277 * be a huge page for this block. 2278 * 2279 * The saving stops at the boundary of the used_length of the block 2280 * if the RAMBlock isn't a multiple of the host page size. 2281 * 2282 * The caller must be with ram_state.bitmap_mutex held to call this 2283 * function. Note that this function can temporarily release the lock, but 2284 * when the function is returned it'll make sure the lock is still held. 2285 * 2286 * Returns the number of pages written or negative on error 2287 * 2288 * @rs: current RAM state 2289 * @pss: data about the page we want to send 2290 */ 2291 static int ram_save_host_page(RAMState *rs, PageSearchStatus *pss) 2292 { 2293 bool page_dirty, preempt_active = postcopy_preempt_active(); 2294 int tmppages, pages = 0; 2295 size_t pagesize_bits = 2296 qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS; 2297 unsigned long start_page = pss->page; 2298 int res; 2299 2300 if (migrate_ram_is_ignored(pss->block)) { 2301 error_report("block %s should not be migrated !", pss->block->idstr); 2302 return 0; 2303 } 2304 2305 /* Update host page boundary information */ 2306 pss_host_page_prepare(pss); 2307 2308 do { 2309 page_dirty = migration_bitmap_clear_dirty(rs, pss->block, pss->page); 2310 2311 /* Check the pages is dirty and if it is send it */ 2312 if (page_dirty) { 2313 /* 2314 * Properly yield the lock only in postcopy preempt mode 2315 * because both migration thread and rp-return thread can 2316 * operate on the bitmaps. 2317 */ 2318 if (preempt_active) { 2319 qemu_mutex_unlock(&rs->bitmap_mutex); 2320 } 2321 tmppages = migration_ops->ram_save_target_page(rs, pss); 2322 if (tmppages >= 0) { 2323 pages += tmppages; 2324 /* 2325 * Allow rate limiting to happen in the middle of huge pages if 2326 * something is sent in the current iteration. 2327 */ 2328 if (pagesize_bits > 1 && tmppages > 0) { 2329 migration_rate_limit(); 2330 } 2331 } 2332 if (preempt_active) { 2333 qemu_mutex_lock(&rs->bitmap_mutex); 2334 } 2335 } else { 2336 tmppages = 0; 2337 } 2338 2339 if (tmppages < 0) { 2340 pss_host_page_finish(pss); 2341 return tmppages; 2342 } 2343 2344 pss_find_next_dirty(pss); 2345 } while (pss_within_range(pss)); 2346 2347 pss_host_page_finish(pss); 2348 2349 res = ram_save_release_protection(rs, pss, start_page); 2350 return (res < 0 ? res : pages); 2351 } 2352 2353 /** 2354 * ram_find_and_save_block: finds a dirty page and sends it to f 2355 * 2356 * Called within an RCU critical section. 2357 * 2358 * Returns the number of pages written where zero means no dirty pages, 2359 * or negative on error 2360 * 2361 * @rs: current RAM state 2362 * 2363 * On systems where host-page-size > target-page-size it will send all the 2364 * pages in a host page that are dirty. 2365 */ 2366 static int ram_find_and_save_block(RAMState *rs) 2367 { 2368 PageSearchStatus *pss = &rs->pss[RAM_CHANNEL_PRECOPY]; 2369 int pages = 0; 2370 2371 /* No dirty page as there is zero RAM */ 2372 if (!rs->ram_bytes_total) { 2373 return pages; 2374 } 2375 2376 /* 2377 * Always keep last_seen_block/last_page valid during this procedure, 2378 * because find_dirty_block() relies on these values (e.g., we compare 2379 * last_seen_block with pss.block to see whether we searched all the 2380 * ramblocks) to detect the completion of migration. Having NULL value 2381 * of last_seen_block can conditionally cause below loop to run forever. 2382 */ 2383 if (!rs->last_seen_block) { 2384 rs->last_seen_block = QLIST_FIRST_RCU(&ram_list.blocks); 2385 rs->last_page = 0; 2386 } 2387 2388 pss_init(pss, rs->last_seen_block, rs->last_page); 2389 2390 while (true){ 2391 if (!get_queued_page(rs, pss)) { 2392 /* priority queue empty, so just search for something dirty */ 2393 int res = find_dirty_block(rs, pss); 2394 if (res != PAGE_DIRTY_FOUND) { 2395 if (res == PAGE_ALL_CLEAN) { 2396 break; 2397 } else if (res == PAGE_TRY_AGAIN) { 2398 continue; 2399 } else if (res < 0) { 2400 pages = res; 2401 break; 2402 } 2403 } 2404 } 2405 pages = ram_save_host_page(rs, pss); 2406 if (pages) { 2407 break; 2408 } 2409 } 2410 2411 rs->last_seen_block = pss->block; 2412 rs->last_page = pss->page; 2413 2414 return pages; 2415 } 2416 2417 static uint64_t ram_bytes_total_with_ignored(void) 2418 { 2419 RAMBlock *block; 2420 uint64_t total = 0; 2421 2422 RCU_READ_LOCK_GUARD(); 2423 2424 RAMBLOCK_FOREACH_MIGRATABLE(block) { 2425 total += block->used_length; 2426 } 2427 return total; 2428 } 2429 2430 uint64_t ram_bytes_total(void) 2431 { 2432 RAMBlock *block; 2433 uint64_t total = 0; 2434 2435 RCU_READ_LOCK_GUARD(); 2436 2437 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 2438 total += block->used_length; 2439 } 2440 return total; 2441 } 2442 2443 static void xbzrle_load_setup(void) 2444 { 2445 XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE); 2446 } 2447 2448 static void xbzrle_load_cleanup(void) 2449 { 2450 g_free(XBZRLE.decoded_buf); 2451 XBZRLE.decoded_buf = NULL; 2452 } 2453 2454 static void ram_state_cleanup(RAMState **rsp) 2455 { 2456 if (*rsp) { 2457 migration_page_queue_free(*rsp); 2458 qemu_mutex_destroy(&(*rsp)->bitmap_mutex); 2459 qemu_mutex_destroy(&(*rsp)->src_page_req_mutex); 2460 g_free(*rsp); 2461 *rsp = NULL; 2462 } 2463 } 2464 2465 static void xbzrle_cleanup(void) 2466 { 2467 XBZRLE_cache_lock(); 2468 if (XBZRLE.cache) { 2469 cache_fini(XBZRLE.cache); 2470 g_free(XBZRLE.encoded_buf); 2471 g_free(XBZRLE.current_buf); 2472 g_free(XBZRLE.zero_target_page); 2473 XBZRLE.cache = NULL; 2474 XBZRLE.encoded_buf = NULL; 2475 XBZRLE.current_buf = NULL; 2476 XBZRLE.zero_target_page = NULL; 2477 } 2478 XBZRLE_cache_unlock(); 2479 } 2480 2481 static void ram_save_cleanup(void *opaque) 2482 { 2483 RAMState **rsp = opaque; 2484 RAMBlock *block; 2485 2486 /* We don't use dirty log with background snapshots */ 2487 if (!migrate_background_snapshot()) { 2488 /* caller have hold iothread lock or is in a bh, so there is 2489 * no writing race against the migration bitmap 2490 */ 2491 if (global_dirty_tracking & GLOBAL_DIRTY_MIGRATION) { 2492 /* 2493 * do not stop dirty log without starting it, since 2494 * memory_global_dirty_log_stop will assert that 2495 * memory_global_dirty_log_start/stop used in pairs 2496 */ 2497 memory_global_dirty_log_stop(GLOBAL_DIRTY_MIGRATION); 2498 } 2499 } 2500 2501 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 2502 g_free(block->clear_bmap); 2503 block->clear_bmap = NULL; 2504 g_free(block->bmap); 2505 block->bmap = NULL; 2506 } 2507 2508 xbzrle_cleanup(); 2509 compress_threads_save_cleanup(); 2510 ram_state_cleanup(rsp); 2511 g_free(migration_ops); 2512 migration_ops = NULL; 2513 } 2514 2515 static void ram_state_reset(RAMState *rs) 2516 { 2517 int i; 2518 2519 for (i = 0; i < RAM_CHANNEL_MAX; i++) { 2520 rs->pss[i].last_sent_block = NULL; 2521 } 2522 2523 rs->last_seen_block = NULL; 2524 rs->last_page = 0; 2525 rs->last_version = ram_list.version; 2526 rs->xbzrle_started = false; 2527 } 2528 2529 #define MAX_WAIT 50 /* ms, half buffered_file limit */ 2530 2531 /* **** functions for postcopy ***** */ 2532 2533 void ram_postcopy_migrated_memory_release(MigrationState *ms) 2534 { 2535 struct RAMBlock *block; 2536 2537 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 2538 unsigned long *bitmap = block->bmap; 2539 unsigned long range = block->used_length >> TARGET_PAGE_BITS; 2540 unsigned long run_start = find_next_zero_bit(bitmap, range, 0); 2541 2542 while (run_start < range) { 2543 unsigned long run_end = find_next_bit(bitmap, range, run_start + 1); 2544 ram_discard_range(block->idstr, 2545 ((ram_addr_t)run_start) << TARGET_PAGE_BITS, 2546 ((ram_addr_t)(run_end - run_start)) 2547 << TARGET_PAGE_BITS); 2548 run_start = find_next_zero_bit(bitmap, range, run_end + 1); 2549 } 2550 } 2551 } 2552 2553 /** 2554 * postcopy_send_discard_bm_ram: discard a RAMBlock 2555 * 2556 * Callback from postcopy_each_ram_send_discard for each RAMBlock 2557 * 2558 * @ms: current migration state 2559 * @block: RAMBlock to discard 2560 */ 2561 static void postcopy_send_discard_bm_ram(MigrationState *ms, RAMBlock *block) 2562 { 2563 unsigned long end = block->used_length >> TARGET_PAGE_BITS; 2564 unsigned long current; 2565 unsigned long *bitmap = block->bmap; 2566 2567 for (current = 0; current < end; ) { 2568 unsigned long one = find_next_bit(bitmap, end, current); 2569 unsigned long zero, discard_length; 2570 2571 if (one >= end) { 2572 break; 2573 } 2574 2575 zero = find_next_zero_bit(bitmap, end, one + 1); 2576 2577 if (zero >= end) { 2578 discard_length = end - one; 2579 } else { 2580 discard_length = zero - one; 2581 } 2582 postcopy_discard_send_range(ms, one, discard_length); 2583 current = one + discard_length; 2584 } 2585 } 2586 2587 static void postcopy_chunk_hostpages_pass(MigrationState *ms, RAMBlock *block); 2588 2589 /** 2590 * postcopy_each_ram_send_discard: discard all RAMBlocks 2591 * 2592 * Utility for the outgoing postcopy code. 2593 * Calls postcopy_send_discard_bm_ram for each RAMBlock 2594 * passing it bitmap indexes and name. 2595 * (qemu_ram_foreach_block ends up passing unscaled lengths 2596 * which would mean postcopy code would have to deal with target page) 2597 * 2598 * @ms: current migration state 2599 */ 2600 static void postcopy_each_ram_send_discard(MigrationState *ms) 2601 { 2602 struct RAMBlock *block; 2603 2604 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 2605 postcopy_discard_send_init(ms, block->idstr); 2606 2607 /* 2608 * Deal with TPS != HPS and huge pages. It discard any partially sent 2609 * host-page size chunks, mark any partially dirty host-page size 2610 * chunks as all dirty. In this case the host-page is the host-page 2611 * for the particular RAMBlock, i.e. it might be a huge page. 2612 */ 2613 postcopy_chunk_hostpages_pass(ms, block); 2614 2615 /* 2616 * Postcopy sends chunks of bitmap over the wire, but it 2617 * just needs indexes at this point, avoids it having 2618 * target page specific code. 2619 */ 2620 postcopy_send_discard_bm_ram(ms, block); 2621 postcopy_discard_send_finish(ms); 2622 } 2623 } 2624 2625 /** 2626 * postcopy_chunk_hostpages_pass: canonicalize bitmap in hostpages 2627 * 2628 * Helper for postcopy_chunk_hostpages; it's called twice to 2629 * canonicalize the two bitmaps, that are similar, but one is 2630 * inverted. 2631 * 2632 * Postcopy requires that all target pages in a hostpage are dirty or 2633 * clean, not a mix. This function canonicalizes the bitmaps. 2634 * 2635 * @ms: current migration state 2636 * @block: block that contains the page we want to canonicalize 2637 */ 2638 static void postcopy_chunk_hostpages_pass(MigrationState *ms, RAMBlock *block) 2639 { 2640 RAMState *rs = ram_state; 2641 unsigned long *bitmap = block->bmap; 2642 unsigned int host_ratio = block->page_size / TARGET_PAGE_SIZE; 2643 unsigned long pages = block->used_length >> TARGET_PAGE_BITS; 2644 unsigned long run_start; 2645 2646 if (block->page_size == TARGET_PAGE_SIZE) { 2647 /* Easy case - TPS==HPS for a non-huge page RAMBlock */ 2648 return; 2649 } 2650 2651 /* Find a dirty page */ 2652 run_start = find_next_bit(bitmap, pages, 0); 2653 2654 while (run_start < pages) { 2655 2656 /* 2657 * If the start of this run of pages is in the middle of a host 2658 * page, then we need to fixup this host page. 2659 */ 2660 if (QEMU_IS_ALIGNED(run_start, host_ratio)) { 2661 /* Find the end of this run */ 2662 run_start = find_next_zero_bit(bitmap, pages, run_start + 1); 2663 /* 2664 * If the end isn't at the start of a host page, then the 2665 * run doesn't finish at the end of a host page 2666 * and we need to discard. 2667 */ 2668 } 2669 2670 if (!QEMU_IS_ALIGNED(run_start, host_ratio)) { 2671 unsigned long page; 2672 unsigned long fixup_start_addr = QEMU_ALIGN_DOWN(run_start, 2673 host_ratio); 2674 run_start = QEMU_ALIGN_UP(run_start, host_ratio); 2675 2676 /* Clean up the bitmap */ 2677 for (page = fixup_start_addr; 2678 page < fixup_start_addr + host_ratio; page++) { 2679 /* 2680 * Remark them as dirty, updating the count for any pages 2681 * that weren't previously dirty. 2682 */ 2683 rs->migration_dirty_pages += !test_and_set_bit(page, bitmap); 2684 } 2685 } 2686 2687 /* Find the next dirty page for the next iteration */ 2688 run_start = find_next_bit(bitmap, pages, run_start); 2689 } 2690 } 2691 2692 /** 2693 * ram_postcopy_send_discard_bitmap: transmit the discard bitmap 2694 * 2695 * Transmit the set of pages to be discarded after precopy to the target 2696 * these are pages that: 2697 * a) Have been previously transmitted but are now dirty again 2698 * b) Pages that have never been transmitted, this ensures that 2699 * any pages on the destination that have been mapped by background 2700 * tasks get discarded (transparent huge pages is the specific concern) 2701 * Hopefully this is pretty sparse 2702 * 2703 * @ms: current migration state 2704 */ 2705 void ram_postcopy_send_discard_bitmap(MigrationState *ms) 2706 { 2707 RAMState *rs = ram_state; 2708 2709 RCU_READ_LOCK_GUARD(); 2710 2711 /* This should be our last sync, the src is now paused */ 2712 migration_bitmap_sync(rs, false); 2713 2714 /* Easiest way to make sure we don't resume in the middle of a host-page */ 2715 rs->pss[RAM_CHANNEL_PRECOPY].last_sent_block = NULL; 2716 rs->last_seen_block = NULL; 2717 rs->last_page = 0; 2718 2719 postcopy_each_ram_send_discard(ms); 2720 2721 trace_ram_postcopy_send_discard_bitmap(); 2722 } 2723 2724 /** 2725 * ram_discard_range: discard dirtied pages at the beginning of postcopy 2726 * 2727 * Returns zero on success 2728 * 2729 * @rbname: name of the RAMBlock of the request. NULL means the 2730 * same that last one. 2731 * @start: RAMBlock starting page 2732 * @length: RAMBlock size 2733 */ 2734 int ram_discard_range(const char *rbname, uint64_t start, size_t length) 2735 { 2736 trace_ram_discard_range(rbname, start, length); 2737 2738 RCU_READ_LOCK_GUARD(); 2739 RAMBlock *rb = qemu_ram_block_by_name(rbname); 2740 2741 if (!rb) { 2742 error_report("ram_discard_range: Failed to find block '%s'", rbname); 2743 return -1; 2744 } 2745 2746 /* 2747 * On source VM, we don't need to update the received bitmap since 2748 * we don't even have one. 2749 */ 2750 if (rb->receivedmap) { 2751 bitmap_clear(rb->receivedmap, start >> qemu_target_page_bits(), 2752 length >> qemu_target_page_bits()); 2753 } 2754 2755 return ram_block_discard_range(rb, start, length); 2756 } 2757 2758 /* 2759 * For every allocation, we will try not to crash the VM if the 2760 * allocation failed. 2761 */ 2762 static int xbzrle_init(void) 2763 { 2764 Error *local_err = NULL; 2765 2766 if (!migrate_xbzrle()) { 2767 return 0; 2768 } 2769 2770 XBZRLE_cache_lock(); 2771 2772 XBZRLE.zero_target_page = g_try_malloc0(TARGET_PAGE_SIZE); 2773 if (!XBZRLE.zero_target_page) { 2774 error_report("%s: Error allocating zero page", __func__); 2775 goto err_out; 2776 } 2777 2778 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size(), 2779 TARGET_PAGE_SIZE, &local_err); 2780 if (!XBZRLE.cache) { 2781 error_report_err(local_err); 2782 goto free_zero_page; 2783 } 2784 2785 XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE); 2786 if (!XBZRLE.encoded_buf) { 2787 error_report("%s: Error allocating encoded_buf", __func__); 2788 goto free_cache; 2789 } 2790 2791 XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE); 2792 if (!XBZRLE.current_buf) { 2793 error_report("%s: Error allocating current_buf", __func__); 2794 goto free_encoded_buf; 2795 } 2796 2797 /* We are all good */ 2798 XBZRLE_cache_unlock(); 2799 return 0; 2800 2801 free_encoded_buf: 2802 g_free(XBZRLE.encoded_buf); 2803 XBZRLE.encoded_buf = NULL; 2804 free_cache: 2805 cache_fini(XBZRLE.cache); 2806 XBZRLE.cache = NULL; 2807 free_zero_page: 2808 g_free(XBZRLE.zero_target_page); 2809 XBZRLE.zero_target_page = NULL; 2810 err_out: 2811 XBZRLE_cache_unlock(); 2812 return -ENOMEM; 2813 } 2814 2815 static int ram_state_init(RAMState **rsp) 2816 { 2817 *rsp = g_try_new0(RAMState, 1); 2818 2819 if (!*rsp) { 2820 error_report("%s: Init ramstate fail", __func__); 2821 return -1; 2822 } 2823 2824 qemu_mutex_init(&(*rsp)->bitmap_mutex); 2825 qemu_mutex_init(&(*rsp)->src_page_req_mutex); 2826 QSIMPLEQ_INIT(&(*rsp)->src_page_requests); 2827 (*rsp)->ram_bytes_total = ram_bytes_total(); 2828 2829 /* 2830 * Count the total number of pages used by ram blocks not including any 2831 * gaps due to alignment or unplugs. 2832 * This must match with the initial values of dirty bitmap. 2833 */ 2834 (*rsp)->migration_dirty_pages = (*rsp)->ram_bytes_total >> TARGET_PAGE_BITS; 2835 ram_state_reset(*rsp); 2836 2837 return 0; 2838 } 2839 2840 static void ram_list_init_bitmaps(void) 2841 { 2842 MigrationState *ms = migrate_get_current(); 2843 RAMBlock *block; 2844 unsigned long pages; 2845 uint8_t shift; 2846 2847 /* Skip setting bitmap if there is no RAM */ 2848 if (ram_bytes_total()) { 2849 shift = ms->clear_bitmap_shift; 2850 if (shift > CLEAR_BITMAP_SHIFT_MAX) { 2851 error_report("clear_bitmap_shift (%u) too big, using " 2852 "max value (%u)", shift, CLEAR_BITMAP_SHIFT_MAX); 2853 shift = CLEAR_BITMAP_SHIFT_MAX; 2854 } else if (shift < CLEAR_BITMAP_SHIFT_MIN) { 2855 error_report("clear_bitmap_shift (%u) too small, using " 2856 "min value (%u)", shift, CLEAR_BITMAP_SHIFT_MIN); 2857 shift = CLEAR_BITMAP_SHIFT_MIN; 2858 } 2859 2860 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 2861 pages = block->max_length >> TARGET_PAGE_BITS; 2862 /* 2863 * The initial dirty bitmap for migration must be set with all 2864 * ones to make sure we'll migrate every guest RAM page to 2865 * destination. 2866 * Here we set RAMBlock.bmap all to 1 because when rebegin a 2867 * new migration after a failed migration, ram_list. 2868 * dirty_memory[DIRTY_MEMORY_MIGRATION] don't include the whole 2869 * guest memory. 2870 */ 2871 block->bmap = bitmap_new(pages); 2872 bitmap_set(block->bmap, 0, pages); 2873 block->clear_bmap_shift = shift; 2874 block->clear_bmap = bitmap_new(clear_bmap_size(pages, shift)); 2875 } 2876 } 2877 } 2878 2879 static void migration_bitmap_clear_discarded_pages(RAMState *rs) 2880 { 2881 unsigned long pages; 2882 RAMBlock *rb; 2883 2884 RCU_READ_LOCK_GUARD(); 2885 2886 RAMBLOCK_FOREACH_NOT_IGNORED(rb) { 2887 pages = ramblock_dirty_bitmap_clear_discarded_pages(rb); 2888 rs->migration_dirty_pages -= pages; 2889 } 2890 } 2891 2892 static void ram_init_bitmaps(RAMState *rs) 2893 { 2894 /* For memory_global_dirty_log_start below. */ 2895 qemu_mutex_lock_iothread(); 2896 qemu_mutex_lock_ramlist(); 2897 2898 WITH_RCU_READ_LOCK_GUARD() { 2899 ram_list_init_bitmaps(); 2900 /* We don't use dirty log with background snapshots */ 2901 if (!migrate_background_snapshot()) { 2902 memory_global_dirty_log_start(GLOBAL_DIRTY_MIGRATION); 2903 migration_bitmap_sync_precopy(rs, false); 2904 } 2905 } 2906 qemu_mutex_unlock_ramlist(); 2907 qemu_mutex_unlock_iothread(); 2908 2909 /* 2910 * After an eventual first bitmap sync, fixup the initial bitmap 2911 * containing all 1s to exclude any discarded pages from migration. 2912 */ 2913 migration_bitmap_clear_discarded_pages(rs); 2914 } 2915 2916 static int ram_init_all(RAMState **rsp) 2917 { 2918 if (ram_state_init(rsp)) { 2919 return -1; 2920 } 2921 2922 if (xbzrle_init()) { 2923 ram_state_cleanup(rsp); 2924 return -1; 2925 } 2926 2927 ram_init_bitmaps(*rsp); 2928 2929 return 0; 2930 } 2931 2932 static void ram_state_resume_prepare(RAMState *rs, QEMUFile *out) 2933 { 2934 RAMBlock *block; 2935 uint64_t pages = 0; 2936 2937 /* 2938 * Postcopy is not using xbzrle/compression, so no need for that. 2939 * Also, since source are already halted, we don't need to care 2940 * about dirty page logging as well. 2941 */ 2942 2943 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 2944 pages += bitmap_count_one(block->bmap, 2945 block->used_length >> TARGET_PAGE_BITS); 2946 } 2947 2948 /* This may not be aligned with current bitmaps. Recalculate. */ 2949 rs->migration_dirty_pages = pages; 2950 2951 ram_state_reset(rs); 2952 2953 /* Update RAMState cache of output QEMUFile */ 2954 rs->pss[RAM_CHANNEL_PRECOPY].pss_channel = out; 2955 2956 trace_ram_state_resume_prepare(pages); 2957 } 2958 2959 /* 2960 * This function clears bits of the free pages reported by the caller from the 2961 * migration dirty bitmap. @addr is the host address corresponding to the 2962 * start of the continuous guest free pages, and @len is the total bytes of 2963 * those pages. 2964 */ 2965 void qemu_guest_free_page_hint(void *addr, size_t len) 2966 { 2967 RAMBlock *block; 2968 ram_addr_t offset; 2969 size_t used_len, start, npages; 2970 MigrationState *s = migrate_get_current(); 2971 2972 /* This function is currently expected to be used during live migration */ 2973 if (!migration_is_setup_or_active(s->state)) { 2974 return; 2975 } 2976 2977 for (; len > 0; len -= used_len, addr += used_len) { 2978 block = qemu_ram_block_from_host(addr, false, &offset); 2979 if (unlikely(!block || offset >= block->used_length)) { 2980 /* 2981 * The implementation might not support RAMBlock resize during 2982 * live migration, but it could happen in theory with future 2983 * updates. So we add a check here to capture that case. 2984 */ 2985 error_report_once("%s unexpected error", __func__); 2986 return; 2987 } 2988 2989 if (len <= block->used_length - offset) { 2990 used_len = len; 2991 } else { 2992 used_len = block->used_length - offset; 2993 } 2994 2995 start = offset >> TARGET_PAGE_BITS; 2996 npages = used_len >> TARGET_PAGE_BITS; 2997 2998 qemu_mutex_lock(&ram_state->bitmap_mutex); 2999 /* 3000 * The skipped free pages are equavalent to be sent from clear_bmap's 3001 * perspective, so clear the bits from the memory region bitmap which 3002 * are initially set. Otherwise those skipped pages will be sent in 3003 * the next round after syncing from the memory region bitmap. 3004 */ 3005 migration_clear_memory_region_dirty_bitmap_range(block, start, npages); 3006 ram_state->migration_dirty_pages -= 3007 bitmap_count_one_with_offset(block->bmap, start, npages); 3008 bitmap_clear(block->bmap, start, npages); 3009 qemu_mutex_unlock(&ram_state->bitmap_mutex); 3010 } 3011 } 3012 3013 /* 3014 * Each of ram_save_setup, ram_save_iterate and ram_save_complete has 3015 * long-running RCU critical section. When rcu-reclaims in the code 3016 * start to become numerous it will be necessary to reduce the 3017 * granularity of these critical sections. 3018 */ 3019 3020 /** 3021 * ram_save_setup: Setup RAM for migration 3022 * 3023 * Returns zero to indicate success and negative for error 3024 * 3025 * @f: QEMUFile where to send the data 3026 * @opaque: RAMState pointer 3027 */ 3028 static int ram_save_setup(QEMUFile *f, void *opaque) 3029 { 3030 RAMState **rsp = opaque; 3031 RAMBlock *block; 3032 int ret; 3033 3034 if (compress_threads_save_setup()) { 3035 return -1; 3036 } 3037 3038 /* migration has already setup the bitmap, reuse it. */ 3039 if (!migration_in_colo_state()) { 3040 if (ram_init_all(rsp) != 0) { 3041 compress_threads_save_cleanup(); 3042 return -1; 3043 } 3044 } 3045 (*rsp)->pss[RAM_CHANNEL_PRECOPY].pss_channel = f; 3046 3047 WITH_RCU_READ_LOCK_GUARD() { 3048 qemu_put_be64(f, ram_bytes_total_with_ignored() 3049 | RAM_SAVE_FLAG_MEM_SIZE); 3050 3051 RAMBLOCK_FOREACH_MIGRATABLE(block) { 3052 qemu_put_byte(f, strlen(block->idstr)); 3053 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr)); 3054 qemu_put_be64(f, block->used_length); 3055 if (migrate_postcopy_ram() && block->page_size != 3056 qemu_host_page_size) { 3057 qemu_put_be64(f, block->page_size); 3058 } 3059 if (migrate_ignore_shared()) { 3060 qemu_put_be64(f, block->mr->addr); 3061 } 3062 } 3063 } 3064 3065 ram_control_before_iterate(f, RAM_CONTROL_SETUP); 3066 ram_control_after_iterate(f, RAM_CONTROL_SETUP); 3067 3068 migration_ops = g_malloc0(sizeof(MigrationOps)); 3069 migration_ops->ram_save_target_page = ram_save_target_page_legacy; 3070 ret = multifd_send_sync_main(f); 3071 if (ret < 0) { 3072 return ret; 3073 } 3074 3075 if (!migrate_multifd_flush_after_each_section()) { 3076 qemu_put_be64(f, RAM_SAVE_FLAG_MULTIFD_FLUSH); 3077 } 3078 3079 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 3080 qemu_fflush(f); 3081 3082 return 0; 3083 } 3084 3085 /** 3086 * ram_save_iterate: iterative stage for migration 3087 * 3088 * Returns zero to indicate success and negative for error 3089 * 3090 * @f: QEMUFile where to send the data 3091 * @opaque: RAMState pointer 3092 */ 3093 static int ram_save_iterate(QEMUFile *f, void *opaque) 3094 { 3095 RAMState **temp = opaque; 3096 RAMState *rs = *temp; 3097 int ret = 0; 3098 int i; 3099 int64_t t0; 3100 int done = 0; 3101 3102 if (blk_mig_bulk_active()) { 3103 /* Avoid transferring ram during bulk phase of block migration as 3104 * the bulk phase will usually take a long time and transferring 3105 * ram updates during that time is pointless. */ 3106 goto out; 3107 } 3108 3109 /* 3110 * We'll take this lock a little bit long, but it's okay for two reasons. 3111 * Firstly, the only possible other thread to take it is who calls 3112 * qemu_guest_free_page_hint(), which should be rare; secondly, see 3113 * MAX_WAIT (if curious, further see commit 4508bd9ed8053ce) below, which 3114 * guarantees that we'll at least released it in a regular basis. 3115 */ 3116 qemu_mutex_lock(&rs->bitmap_mutex); 3117 WITH_RCU_READ_LOCK_GUARD() { 3118 if (ram_list.version != rs->last_version) { 3119 ram_state_reset(rs); 3120 } 3121 3122 /* Read version before ram_list.blocks */ 3123 smp_rmb(); 3124 3125 ram_control_before_iterate(f, RAM_CONTROL_ROUND); 3126 3127 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 3128 i = 0; 3129 while ((ret = migration_rate_exceeded(f)) == 0 || 3130 postcopy_has_request(rs)) { 3131 int pages; 3132 3133 if (qemu_file_get_error(f)) { 3134 break; 3135 } 3136 3137 pages = ram_find_and_save_block(rs); 3138 /* no more pages to sent */ 3139 if (pages == 0) { 3140 done = 1; 3141 break; 3142 } 3143 3144 if (pages < 0) { 3145 qemu_file_set_error(f, pages); 3146 break; 3147 } 3148 3149 rs->target_page_count += pages; 3150 3151 /* 3152 * During postcopy, it is necessary to make sure one whole host 3153 * page is sent in one chunk. 3154 */ 3155 if (migrate_postcopy_ram()) { 3156 ram_flush_compressed_data(rs); 3157 } 3158 3159 /* 3160 * we want to check in the 1st loop, just in case it was the 1st 3161 * time and we had to sync the dirty bitmap. 3162 * qemu_clock_get_ns() is a bit expensive, so we only check each 3163 * some iterations 3164 */ 3165 if ((i & 63) == 0) { 3166 uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) / 3167 1000000; 3168 if (t1 > MAX_WAIT) { 3169 trace_ram_save_iterate_big_wait(t1, i); 3170 break; 3171 } 3172 } 3173 i++; 3174 } 3175 } 3176 qemu_mutex_unlock(&rs->bitmap_mutex); 3177 3178 /* 3179 * Must occur before EOS (or any QEMUFile operation) 3180 * because of RDMA protocol. 3181 */ 3182 ram_control_after_iterate(f, RAM_CONTROL_ROUND); 3183 3184 out: 3185 if (ret >= 0 3186 && migration_is_setup_or_active(migrate_get_current()->state)) { 3187 if (migrate_multifd_flush_after_each_section()) { 3188 ret = multifd_send_sync_main(rs->pss[RAM_CHANNEL_PRECOPY].pss_channel); 3189 if (ret < 0) { 3190 return ret; 3191 } 3192 } 3193 3194 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 3195 qemu_fflush(f); 3196 ram_transferred_add(8); 3197 3198 ret = qemu_file_get_error(f); 3199 } 3200 if (ret < 0) { 3201 return ret; 3202 } 3203 3204 return done; 3205 } 3206 3207 /** 3208 * ram_save_complete: function called to send the remaining amount of ram 3209 * 3210 * Returns zero to indicate success or negative on error 3211 * 3212 * Called with iothread lock 3213 * 3214 * @f: QEMUFile where to send the data 3215 * @opaque: RAMState pointer 3216 */ 3217 static int ram_save_complete(QEMUFile *f, void *opaque) 3218 { 3219 RAMState **temp = opaque; 3220 RAMState *rs = *temp; 3221 int ret = 0; 3222 3223 rs->last_stage = !migration_in_colo_state(); 3224 3225 WITH_RCU_READ_LOCK_GUARD() { 3226 if (!migration_in_postcopy()) { 3227 migration_bitmap_sync_precopy(rs, true); 3228 } 3229 3230 ram_control_before_iterate(f, RAM_CONTROL_FINISH); 3231 3232 /* try transferring iterative blocks of memory */ 3233 3234 /* flush all remaining blocks regardless of rate limiting */ 3235 qemu_mutex_lock(&rs->bitmap_mutex); 3236 while (true) { 3237 int pages; 3238 3239 pages = ram_find_and_save_block(rs); 3240 /* no more blocks to sent */ 3241 if (pages == 0) { 3242 break; 3243 } 3244 if (pages < 0) { 3245 ret = pages; 3246 break; 3247 } 3248 } 3249 qemu_mutex_unlock(&rs->bitmap_mutex); 3250 3251 ram_flush_compressed_data(rs); 3252 ram_control_after_iterate(f, RAM_CONTROL_FINISH); 3253 } 3254 3255 if (ret < 0) { 3256 return ret; 3257 } 3258 3259 ret = multifd_send_sync_main(rs->pss[RAM_CHANNEL_PRECOPY].pss_channel); 3260 if (ret < 0) { 3261 return ret; 3262 } 3263 3264 if (!migrate_multifd_flush_after_each_section()) { 3265 qemu_put_be64(f, RAM_SAVE_FLAG_MULTIFD_FLUSH); 3266 } 3267 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 3268 qemu_fflush(f); 3269 3270 return 0; 3271 } 3272 3273 static void ram_state_pending_estimate(void *opaque, uint64_t *must_precopy, 3274 uint64_t *can_postcopy) 3275 { 3276 RAMState **temp = opaque; 3277 RAMState *rs = *temp; 3278 3279 uint64_t remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE; 3280 3281 if (migrate_postcopy_ram()) { 3282 /* We can do postcopy, and all the data is postcopiable */ 3283 *can_postcopy += remaining_size; 3284 } else { 3285 *must_precopy += remaining_size; 3286 } 3287 } 3288 3289 static void ram_state_pending_exact(void *opaque, uint64_t *must_precopy, 3290 uint64_t *can_postcopy) 3291 { 3292 MigrationState *s = migrate_get_current(); 3293 RAMState **temp = opaque; 3294 RAMState *rs = *temp; 3295 3296 uint64_t remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE; 3297 3298 if (!migration_in_postcopy() && remaining_size < s->threshold_size) { 3299 qemu_mutex_lock_iothread(); 3300 WITH_RCU_READ_LOCK_GUARD() { 3301 migration_bitmap_sync_precopy(rs, false); 3302 } 3303 qemu_mutex_unlock_iothread(); 3304 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE; 3305 } 3306 3307 if (migrate_postcopy_ram()) { 3308 /* We can do postcopy, and all the data is postcopiable */ 3309 *can_postcopy += remaining_size; 3310 } else { 3311 *must_precopy += remaining_size; 3312 } 3313 } 3314 3315 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host) 3316 { 3317 unsigned int xh_len; 3318 int xh_flags; 3319 uint8_t *loaded_data; 3320 3321 /* extract RLE header */ 3322 xh_flags = qemu_get_byte(f); 3323 xh_len = qemu_get_be16(f); 3324 3325 if (xh_flags != ENCODING_FLAG_XBZRLE) { 3326 error_report("Failed to load XBZRLE page - wrong compression!"); 3327 return -1; 3328 } 3329 3330 if (xh_len > TARGET_PAGE_SIZE) { 3331 error_report("Failed to load XBZRLE page - len overflow!"); 3332 return -1; 3333 } 3334 loaded_data = XBZRLE.decoded_buf; 3335 /* load data and decode */ 3336 /* it can change loaded_data to point to an internal buffer */ 3337 qemu_get_buffer_in_place(f, &loaded_data, xh_len); 3338 3339 /* decode RLE */ 3340 if (xbzrle_decode_buffer(loaded_data, xh_len, host, 3341 TARGET_PAGE_SIZE) == -1) { 3342 error_report("Failed to load XBZRLE page - decode error!"); 3343 return -1; 3344 } 3345 3346 return 0; 3347 } 3348 3349 /** 3350 * ram_block_from_stream: read a RAMBlock id from the migration stream 3351 * 3352 * Must be called from within a rcu critical section. 3353 * 3354 * Returns a pointer from within the RCU-protected ram_list. 3355 * 3356 * @mis: the migration incoming state pointer 3357 * @f: QEMUFile where to read the data from 3358 * @flags: Page flags (mostly to see if it's a continuation of previous block) 3359 * @channel: the channel we're using 3360 */ 3361 static inline RAMBlock *ram_block_from_stream(MigrationIncomingState *mis, 3362 QEMUFile *f, int flags, 3363 int channel) 3364 { 3365 RAMBlock *block = mis->last_recv_block[channel]; 3366 char id[256]; 3367 uint8_t len; 3368 3369 if (flags & RAM_SAVE_FLAG_CONTINUE) { 3370 if (!block) { 3371 error_report("Ack, bad migration stream!"); 3372 return NULL; 3373 } 3374 return block; 3375 } 3376 3377 len = qemu_get_byte(f); 3378 qemu_get_buffer(f, (uint8_t *)id, len); 3379 id[len] = 0; 3380 3381 block = qemu_ram_block_by_name(id); 3382 if (!block) { 3383 error_report("Can't find block %s", id); 3384 return NULL; 3385 } 3386 3387 if (migrate_ram_is_ignored(block)) { 3388 error_report("block %s should not be migrated !", id); 3389 return NULL; 3390 } 3391 3392 mis->last_recv_block[channel] = block; 3393 3394 return block; 3395 } 3396 3397 static inline void *host_from_ram_block_offset(RAMBlock *block, 3398 ram_addr_t offset) 3399 { 3400 if (!offset_in_ramblock(block, offset)) { 3401 return NULL; 3402 } 3403 3404 return block->host + offset; 3405 } 3406 3407 static void *host_page_from_ram_block_offset(RAMBlock *block, 3408 ram_addr_t offset) 3409 { 3410 /* Note: Explicitly no check against offset_in_ramblock(). */ 3411 return (void *)QEMU_ALIGN_DOWN((uintptr_t)(block->host + offset), 3412 block->page_size); 3413 } 3414 3415 static ram_addr_t host_page_offset_from_ram_block_offset(RAMBlock *block, 3416 ram_addr_t offset) 3417 { 3418 return ((uintptr_t)block->host + offset) & (block->page_size - 1); 3419 } 3420 3421 void colo_record_bitmap(RAMBlock *block, ram_addr_t *normal, uint32_t pages) 3422 { 3423 qemu_mutex_lock(&ram_state->bitmap_mutex); 3424 for (int i = 0; i < pages; i++) { 3425 ram_addr_t offset = normal[i]; 3426 ram_state->migration_dirty_pages += !test_and_set_bit( 3427 offset >> TARGET_PAGE_BITS, 3428 block->bmap); 3429 } 3430 qemu_mutex_unlock(&ram_state->bitmap_mutex); 3431 } 3432 3433 static inline void *colo_cache_from_block_offset(RAMBlock *block, 3434 ram_addr_t offset, bool record_bitmap) 3435 { 3436 if (!offset_in_ramblock(block, offset)) { 3437 return NULL; 3438 } 3439 if (!block->colo_cache) { 3440 error_report("%s: colo_cache is NULL in block :%s", 3441 __func__, block->idstr); 3442 return NULL; 3443 } 3444 3445 /* 3446 * During colo checkpoint, we need bitmap of these migrated pages. 3447 * It help us to decide which pages in ram cache should be flushed 3448 * into VM's RAM later. 3449 */ 3450 if (record_bitmap) { 3451 colo_record_bitmap(block, &offset, 1); 3452 } 3453 return block->colo_cache + offset; 3454 } 3455 3456 /** 3457 * ram_handle_compressed: handle the zero page case 3458 * 3459 * If a page (or a whole RDMA chunk) has been 3460 * determined to be zero, then zap it. 3461 * 3462 * @host: host address for the zero page 3463 * @ch: what the page is filled from. We only support zero 3464 * @size: size of the zero page 3465 */ 3466 void ram_handle_compressed(void *host, uint8_t ch, uint64_t size) 3467 { 3468 if (ch != 0 || !buffer_is_zero(host, size)) { 3469 memset(host, ch, size); 3470 } 3471 } 3472 3473 static void colo_init_ram_state(void) 3474 { 3475 ram_state_init(&ram_state); 3476 } 3477 3478 /* 3479 * colo cache: this is for secondary VM, we cache the whole 3480 * memory of the secondary VM, it is need to hold the global lock 3481 * to call this helper. 3482 */ 3483 int colo_init_ram_cache(void) 3484 { 3485 RAMBlock *block; 3486 3487 WITH_RCU_READ_LOCK_GUARD() { 3488 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3489 block->colo_cache = qemu_anon_ram_alloc(block->used_length, 3490 NULL, false, false); 3491 if (!block->colo_cache) { 3492 error_report("%s: Can't alloc memory for COLO cache of block %s," 3493 "size 0x" RAM_ADDR_FMT, __func__, block->idstr, 3494 block->used_length); 3495 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3496 if (block->colo_cache) { 3497 qemu_anon_ram_free(block->colo_cache, block->used_length); 3498 block->colo_cache = NULL; 3499 } 3500 } 3501 return -errno; 3502 } 3503 if (!machine_dump_guest_core(current_machine)) { 3504 qemu_madvise(block->colo_cache, block->used_length, 3505 QEMU_MADV_DONTDUMP); 3506 } 3507 } 3508 } 3509 3510 /* 3511 * Record the dirty pages that sent by PVM, we use this dirty bitmap together 3512 * with to decide which page in cache should be flushed into SVM's RAM. Here 3513 * we use the same name 'ram_bitmap' as for migration. 3514 */ 3515 if (ram_bytes_total()) { 3516 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3517 unsigned long pages = block->max_length >> TARGET_PAGE_BITS; 3518 block->bmap = bitmap_new(pages); 3519 } 3520 } 3521 3522 colo_init_ram_state(); 3523 return 0; 3524 } 3525 3526 /* TODO: duplicated with ram_init_bitmaps */ 3527 void colo_incoming_start_dirty_log(void) 3528 { 3529 RAMBlock *block = NULL; 3530 /* For memory_global_dirty_log_start below. */ 3531 qemu_mutex_lock_iothread(); 3532 qemu_mutex_lock_ramlist(); 3533 3534 memory_global_dirty_log_sync(false); 3535 WITH_RCU_READ_LOCK_GUARD() { 3536 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3537 ramblock_sync_dirty_bitmap(ram_state, block); 3538 /* Discard this dirty bitmap record */ 3539 bitmap_zero(block->bmap, block->max_length >> TARGET_PAGE_BITS); 3540 } 3541 memory_global_dirty_log_start(GLOBAL_DIRTY_MIGRATION); 3542 } 3543 ram_state->migration_dirty_pages = 0; 3544 qemu_mutex_unlock_ramlist(); 3545 qemu_mutex_unlock_iothread(); 3546 } 3547 3548 /* It is need to hold the global lock to call this helper */ 3549 void colo_release_ram_cache(void) 3550 { 3551 RAMBlock *block; 3552 3553 memory_global_dirty_log_stop(GLOBAL_DIRTY_MIGRATION); 3554 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3555 g_free(block->bmap); 3556 block->bmap = NULL; 3557 } 3558 3559 WITH_RCU_READ_LOCK_GUARD() { 3560 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3561 if (block->colo_cache) { 3562 qemu_anon_ram_free(block->colo_cache, block->used_length); 3563 block->colo_cache = NULL; 3564 } 3565 } 3566 } 3567 ram_state_cleanup(&ram_state); 3568 } 3569 3570 /** 3571 * ram_load_setup: Setup RAM for migration incoming side 3572 * 3573 * Returns zero to indicate success and negative for error 3574 * 3575 * @f: QEMUFile where to receive the data 3576 * @opaque: RAMState pointer 3577 */ 3578 static int ram_load_setup(QEMUFile *f, void *opaque) 3579 { 3580 xbzrle_load_setup(); 3581 ramblock_recv_map_init(); 3582 3583 return 0; 3584 } 3585 3586 static int ram_load_cleanup(void *opaque) 3587 { 3588 RAMBlock *rb; 3589 3590 RAMBLOCK_FOREACH_NOT_IGNORED(rb) { 3591 qemu_ram_block_writeback(rb); 3592 } 3593 3594 xbzrle_load_cleanup(); 3595 3596 RAMBLOCK_FOREACH_NOT_IGNORED(rb) { 3597 g_free(rb->receivedmap); 3598 rb->receivedmap = NULL; 3599 } 3600 3601 return 0; 3602 } 3603 3604 /** 3605 * ram_postcopy_incoming_init: allocate postcopy data structures 3606 * 3607 * Returns 0 for success and negative if there was one error 3608 * 3609 * @mis: current migration incoming state 3610 * 3611 * Allocate data structures etc needed by incoming migration with 3612 * postcopy-ram. postcopy-ram's similarly names 3613 * postcopy_ram_incoming_init does the work. 3614 */ 3615 int ram_postcopy_incoming_init(MigrationIncomingState *mis) 3616 { 3617 return postcopy_ram_incoming_init(mis); 3618 } 3619 3620 /** 3621 * ram_load_postcopy: load a page in postcopy case 3622 * 3623 * Returns 0 for success or -errno in case of error 3624 * 3625 * Called in postcopy mode by ram_load(). 3626 * rcu_read_lock is taken prior to this being called. 3627 * 3628 * @f: QEMUFile where to send the data 3629 * @channel: the channel to use for loading 3630 */ 3631 int ram_load_postcopy(QEMUFile *f, int channel) 3632 { 3633 int flags = 0, ret = 0; 3634 bool place_needed = false; 3635 bool matches_target_page_size = false; 3636 MigrationIncomingState *mis = migration_incoming_get_current(); 3637 PostcopyTmpPage *tmp_page = &mis->postcopy_tmp_pages[channel]; 3638 3639 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) { 3640 ram_addr_t addr; 3641 void *page_buffer = NULL; 3642 void *place_source = NULL; 3643 RAMBlock *block = NULL; 3644 uint8_t ch; 3645 int len; 3646 3647 addr = qemu_get_be64(f); 3648 3649 /* 3650 * If qemu file error, we should stop here, and then "addr" 3651 * may be invalid 3652 */ 3653 ret = qemu_file_get_error(f); 3654 if (ret) { 3655 break; 3656 } 3657 3658 flags = addr & ~TARGET_PAGE_MASK; 3659 addr &= TARGET_PAGE_MASK; 3660 3661 trace_ram_load_postcopy_loop(channel, (uint64_t)addr, flags); 3662 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE | 3663 RAM_SAVE_FLAG_COMPRESS_PAGE)) { 3664 block = ram_block_from_stream(mis, f, flags, channel); 3665 if (!block) { 3666 ret = -EINVAL; 3667 break; 3668 } 3669 3670 /* 3671 * Relying on used_length is racy and can result in false positives. 3672 * We might place pages beyond used_length in case RAM was shrunk 3673 * while in postcopy, which is fine - trying to place via 3674 * UFFDIO_COPY/UFFDIO_ZEROPAGE will never segfault. 3675 */ 3676 if (!block->host || addr >= block->postcopy_length) { 3677 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr); 3678 ret = -EINVAL; 3679 break; 3680 } 3681 tmp_page->target_pages++; 3682 matches_target_page_size = block->page_size == TARGET_PAGE_SIZE; 3683 /* 3684 * Postcopy requires that we place whole host pages atomically; 3685 * these may be huge pages for RAMBlocks that are backed by 3686 * hugetlbfs. 3687 * To make it atomic, the data is read into a temporary page 3688 * that's moved into place later. 3689 * The migration protocol uses, possibly smaller, target-pages 3690 * however the source ensures it always sends all the components 3691 * of a host page in one chunk. 3692 */ 3693 page_buffer = tmp_page->tmp_huge_page + 3694 host_page_offset_from_ram_block_offset(block, addr); 3695 /* If all TP are zero then we can optimise the place */ 3696 if (tmp_page->target_pages == 1) { 3697 tmp_page->host_addr = 3698 host_page_from_ram_block_offset(block, addr); 3699 } else if (tmp_page->host_addr != 3700 host_page_from_ram_block_offset(block, addr)) { 3701 /* not the 1st TP within the HP */ 3702 error_report("Non-same host page detected on channel %d: " 3703 "Target host page %p, received host page %p " 3704 "(rb %s offset 0x"RAM_ADDR_FMT" target_pages %d)", 3705 channel, tmp_page->host_addr, 3706 host_page_from_ram_block_offset(block, addr), 3707 block->idstr, addr, tmp_page->target_pages); 3708 ret = -EINVAL; 3709 break; 3710 } 3711 3712 /* 3713 * If it's the last part of a host page then we place the host 3714 * page 3715 */ 3716 if (tmp_page->target_pages == 3717 (block->page_size / TARGET_PAGE_SIZE)) { 3718 place_needed = true; 3719 } 3720 place_source = tmp_page->tmp_huge_page; 3721 } 3722 3723 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) { 3724 case RAM_SAVE_FLAG_ZERO: 3725 ch = qemu_get_byte(f); 3726 /* 3727 * Can skip to set page_buffer when 3728 * this is a zero page and (block->page_size == TARGET_PAGE_SIZE). 3729 */ 3730 if (ch || !matches_target_page_size) { 3731 memset(page_buffer, ch, TARGET_PAGE_SIZE); 3732 } 3733 if (ch) { 3734 tmp_page->all_zero = false; 3735 } 3736 break; 3737 3738 case RAM_SAVE_FLAG_PAGE: 3739 tmp_page->all_zero = false; 3740 if (!matches_target_page_size) { 3741 /* For huge pages, we always use temporary buffer */ 3742 qemu_get_buffer(f, page_buffer, TARGET_PAGE_SIZE); 3743 } else { 3744 /* 3745 * For small pages that matches target page size, we 3746 * avoid the qemu_file copy. Instead we directly use 3747 * the buffer of QEMUFile to place the page. Note: we 3748 * cannot do any QEMUFile operation before using that 3749 * buffer to make sure the buffer is valid when 3750 * placing the page. 3751 */ 3752 qemu_get_buffer_in_place(f, (uint8_t **)&place_source, 3753 TARGET_PAGE_SIZE); 3754 } 3755 break; 3756 case RAM_SAVE_FLAG_COMPRESS_PAGE: 3757 tmp_page->all_zero = false; 3758 len = qemu_get_be32(f); 3759 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) { 3760 error_report("Invalid compressed data length: %d", len); 3761 ret = -EINVAL; 3762 break; 3763 } 3764 decompress_data_with_multi_threads(f, page_buffer, len); 3765 break; 3766 case RAM_SAVE_FLAG_MULTIFD_FLUSH: 3767 multifd_recv_sync_main(); 3768 break; 3769 case RAM_SAVE_FLAG_EOS: 3770 /* normal exit */ 3771 if (migrate_multifd_flush_after_each_section()) { 3772 multifd_recv_sync_main(); 3773 } 3774 break; 3775 default: 3776 error_report("Unknown combination of migration flags: 0x%x" 3777 " (postcopy mode)", flags); 3778 ret = -EINVAL; 3779 break; 3780 } 3781 3782 /* Got the whole host page, wait for decompress before placing. */ 3783 if (place_needed) { 3784 ret |= wait_for_decompress_done(); 3785 } 3786 3787 /* Detect for any possible file errors */ 3788 if (!ret && qemu_file_get_error(f)) { 3789 ret = qemu_file_get_error(f); 3790 } 3791 3792 if (!ret && place_needed) { 3793 if (tmp_page->all_zero) { 3794 ret = postcopy_place_page_zero(mis, tmp_page->host_addr, block); 3795 } else { 3796 ret = postcopy_place_page(mis, tmp_page->host_addr, 3797 place_source, block); 3798 } 3799 place_needed = false; 3800 postcopy_temp_page_reset(tmp_page); 3801 } 3802 } 3803 3804 return ret; 3805 } 3806 3807 static bool postcopy_is_running(void) 3808 { 3809 PostcopyState ps = postcopy_state_get(); 3810 return ps >= POSTCOPY_INCOMING_LISTENING && ps < POSTCOPY_INCOMING_END; 3811 } 3812 3813 /* 3814 * Flush content of RAM cache into SVM's memory. 3815 * Only flush the pages that be dirtied by PVM or SVM or both. 3816 */ 3817 void colo_flush_ram_cache(void) 3818 { 3819 RAMBlock *block = NULL; 3820 void *dst_host; 3821 void *src_host; 3822 unsigned long offset = 0; 3823 3824 memory_global_dirty_log_sync(false); 3825 qemu_mutex_lock(&ram_state->bitmap_mutex); 3826 WITH_RCU_READ_LOCK_GUARD() { 3827 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3828 ramblock_sync_dirty_bitmap(ram_state, block); 3829 } 3830 } 3831 3832 trace_colo_flush_ram_cache_begin(ram_state->migration_dirty_pages); 3833 WITH_RCU_READ_LOCK_GUARD() { 3834 block = QLIST_FIRST_RCU(&ram_list.blocks); 3835 3836 while (block) { 3837 unsigned long num = 0; 3838 3839 offset = colo_bitmap_find_dirty(ram_state, block, offset, &num); 3840 if (!offset_in_ramblock(block, 3841 ((ram_addr_t)offset) << TARGET_PAGE_BITS)) { 3842 offset = 0; 3843 num = 0; 3844 block = QLIST_NEXT_RCU(block, next); 3845 } else { 3846 unsigned long i = 0; 3847 3848 for (i = 0; i < num; i++) { 3849 migration_bitmap_clear_dirty(ram_state, block, offset + i); 3850 } 3851 dst_host = block->host 3852 + (((ram_addr_t)offset) << TARGET_PAGE_BITS); 3853 src_host = block->colo_cache 3854 + (((ram_addr_t)offset) << TARGET_PAGE_BITS); 3855 memcpy(dst_host, src_host, TARGET_PAGE_SIZE * num); 3856 offset += num; 3857 } 3858 } 3859 } 3860 qemu_mutex_unlock(&ram_state->bitmap_mutex); 3861 trace_colo_flush_ram_cache_end(); 3862 } 3863 3864 /** 3865 * ram_load_precopy: load pages in precopy case 3866 * 3867 * Returns 0 for success or -errno in case of error 3868 * 3869 * Called in precopy mode by ram_load(). 3870 * rcu_read_lock is taken prior to this being called. 3871 * 3872 * @f: QEMUFile where to send the data 3873 */ 3874 static int ram_load_precopy(QEMUFile *f) 3875 { 3876 MigrationIncomingState *mis = migration_incoming_get_current(); 3877 int flags = 0, ret = 0, invalid_flags = 0, len = 0, i = 0; 3878 /* ADVISE is earlier, it shows the source has the postcopy capability on */ 3879 bool postcopy_advised = migration_incoming_postcopy_advised(); 3880 if (!migrate_compress()) { 3881 invalid_flags |= RAM_SAVE_FLAG_COMPRESS_PAGE; 3882 } 3883 3884 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) { 3885 ram_addr_t addr, total_ram_bytes; 3886 void *host = NULL, *host_bak = NULL; 3887 uint8_t ch; 3888 3889 /* 3890 * Yield periodically to let main loop run, but an iteration of 3891 * the main loop is expensive, so do it each some iterations 3892 */ 3893 if ((i & 32767) == 0 && qemu_in_coroutine()) { 3894 aio_co_schedule(qemu_get_current_aio_context(), 3895 qemu_coroutine_self()); 3896 qemu_coroutine_yield(); 3897 } 3898 i++; 3899 3900 addr = qemu_get_be64(f); 3901 flags = addr & ~TARGET_PAGE_MASK; 3902 addr &= TARGET_PAGE_MASK; 3903 3904 if (flags & invalid_flags) { 3905 if (flags & invalid_flags & RAM_SAVE_FLAG_COMPRESS_PAGE) { 3906 error_report("Received an unexpected compressed page"); 3907 } 3908 3909 ret = -EINVAL; 3910 break; 3911 } 3912 3913 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE | 3914 RAM_SAVE_FLAG_COMPRESS_PAGE | RAM_SAVE_FLAG_XBZRLE)) { 3915 RAMBlock *block = ram_block_from_stream(mis, f, flags, 3916 RAM_CHANNEL_PRECOPY); 3917 3918 host = host_from_ram_block_offset(block, addr); 3919 /* 3920 * After going into COLO stage, we should not load the page 3921 * into SVM's memory directly, we put them into colo_cache firstly. 3922 * NOTE: We need to keep a copy of SVM's ram in colo_cache. 3923 * Previously, we copied all these memory in preparing stage of COLO 3924 * while we need to stop VM, which is a time-consuming process. 3925 * Here we optimize it by a trick, back-up every page while in 3926 * migration process while COLO is enabled, though it affects the 3927 * speed of the migration, but it obviously reduce the downtime of 3928 * back-up all SVM'S memory in COLO preparing stage. 3929 */ 3930 if (migration_incoming_colo_enabled()) { 3931 if (migration_incoming_in_colo_state()) { 3932 /* In COLO stage, put all pages into cache temporarily */ 3933 host = colo_cache_from_block_offset(block, addr, true); 3934 } else { 3935 /* 3936 * In migration stage but before COLO stage, 3937 * Put all pages into both cache and SVM's memory. 3938 */ 3939 host_bak = colo_cache_from_block_offset(block, addr, false); 3940 } 3941 } 3942 if (!host) { 3943 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr); 3944 ret = -EINVAL; 3945 break; 3946 } 3947 if (!migration_incoming_in_colo_state()) { 3948 ramblock_recv_bitmap_set(block, host); 3949 } 3950 3951 trace_ram_load_loop(block->idstr, (uint64_t)addr, flags, host); 3952 } 3953 3954 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) { 3955 case RAM_SAVE_FLAG_MEM_SIZE: 3956 /* Synchronize RAM block list */ 3957 total_ram_bytes = addr; 3958 while (!ret && total_ram_bytes) { 3959 RAMBlock *block; 3960 char id[256]; 3961 ram_addr_t length; 3962 3963 len = qemu_get_byte(f); 3964 qemu_get_buffer(f, (uint8_t *)id, len); 3965 id[len] = 0; 3966 length = qemu_get_be64(f); 3967 3968 block = qemu_ram_block_by_name(id); 3969 if (block && !qemu_ram_is_migratable(block)) { 3970 error_report("block %s should not be migrated !", id); 3971 ret = -EINVAL; 3972 } else if (block) { 3973 if (length != block->used_length) { 3974 Error *local_err = NULL; 3975 3976 ret = qemu_ram_resize(block, length, 3977 &local_err); 3978 if (local_err) { 3979 error_report_err(local_err); 3980 } 3981 } 3982 /* For postcopy we need to check hugepage sizes match */ 3983 if (postcopy_advised && migrate_postcopy_ram() && 3984 block->page_size != qemu_host_page_size) { 3985 uint64_t remote_page_size = qemu_get_be64(f); 3986 if (remote_page_size != block->page_size) { 3987 error_report("Mismatched RAM page size %s " 3988 "(local) %zd != %" PRId64, 3989 id, block->page_size, 3990 remote_page_size); 3991 ret = -EINVAL; 3992 } 3993 } 3994 if (migrate_ignore_shared()) { 3995 hwaddr addr2 = qemu_get_be64(f); 3996 if (migrate_ram_is_ignored(block) && 3997 block->mr->addr != addr2) { 3998 error_report("Mismatched GPAs for block %s " 3999 "%" PRId64 "!= %" PRId64, 4000 id, (uint64_t)addr2, 4001 (uint64_t)block->mr->addr); 4002 ret = -EINVAL; 4003 } 4004 } 4005 ram_control_load_hook(f, RAM_CONTROL_BLOCK_REG, 4006 block->idstr); 4007 } else { 4008 error_report("Unknown ramblock \"%s\", cannot " 4009 "accept migration", id); 4010 ret = -EINVAL; 4011 } 4012 4013 total_ram_bytes -= length; 4014 } 4015 break; 4016 4017 case RAM_SAVE_FLAG_ZERO: 4018 ch = qemu_get_byte(f); 4019 ram_handle_compressed(host, ch, TARGET_PAGE_SIZE); 4020 break; 4021 4022 case RAM_SAVE_FLAG_PAGE: 4023 qemu_get_buffer(f, host, TARGET_PAGE_SIZE); 4024 break; 4025 4026 case RAM_SAVE_FLAG_COMPRESS_PAGE: 4027 len = qemu_get_be32(f); 4028 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) { 4029 error_report("Invalid compressed data length: %d", len); 4030 ret = -EINVAL; 4031 break; 4032 } 4033 decompress_data_with_multi_threads(f, host, len); 4034 break; 4035 4036 case RAM_SAVE_FLAG_XBZRLE: 4037 if (load_xbzrle(f, addr, host) < 0) { 4038 error_report("Failed to decompress XBZRLE page at " 4039 RAM_ADDR_FMT, addr); 4040 ret = -EINVAL; 4041 break; 4042 } 4043 break; 4044 case RAM_SAVE_FLAG_MULTIFD_FLUSH: 4045 multifd_recv_sync_main(); 4046 break; 4047 case RAM_SAVE_FLAG_EOS: 4048 /* normal exit */ 4049 if (migrate_multifd_flush_after_each_section()) { 4050 multifd_recv_sync_main(); 4051 } 4052 break; 4053 case RAM_SAVE_FLAG_HOOK: 4054 ram_control_load_hook(f, RAM_CONTROL_HOOK, NULL); 4055 break; 4056 default: 4057 error_report("Unknown combination of migration flags: 0x%x", flags); 4058 ret = -EINVAL; 4059 } 4060 if (!ret) { 4061 ret = qemu_file_get_error(f); 4062 } 4063 if (!ret && host_bak) { 4064 memcpy(host_bak, host, TARGET_PAGE_SIZE); 4065 } 4066 } 4067 4068 ret |= wait_for_decompress_done(); 4069 return ret; 4070 } 4071 4072 static int ram_load(QEMUFile *f, void *opaque, int version_id) 4073 { 4074 int ret = 0; 4075 static uint64_t seq_iter; 4076 /* 4077 * If system is running in postcopy mode, page inserts to host memory must 4078 * be atomic 4079 */ 4080 bool postcopy_running = postcopy_is_running(); 4081 4082 seq_iter++; 4083 4084 if (version_id != 4) { 4085 return -EINVAL; 4086 } 4087 4088 /* 4089 * This RCU critical section can be very long running. 4090 * When RCU reclaims in the code start to become numerous, 4091 * it will be necessary to reduce the granularity of this 4092 * critical section. 4093 */ 4094 WITH_RCU_READ_LOCK_GUARD() { 4095 if (postcopy_running) { 4096 /* 4097 * Note! Here RAM_CHANNEL_PRECOPY is the precopy channel of 4098 * postcopy migration, we have another RAM_CHANNEL_POSTCOPY to 4099 * service fast page faults. 4100 */ 4101 ret = ram_load_postcopy(f, RAM_CHANNEL_PRECOPY); 4102 } else { 4103 ret = ram_load_precopy(f); 4104 } 4105 } 4106 trace_ram_load_complete(ret, seq_iter); 4107 4108 return ret; 4109 } 4110 4111 static bool ram_has_postcopy(void *opaque) 4112 { 4113 RAMBlock *rb; 4114 RAMBLOCK_FOREACH_NOT_IGNORED(rb) { 4115 if (ramblock_is_pmem(rb)) { 4116 info_report("Block: %s, host: %p is a nvdimm memory, postcopy" 4117 "is not supported now!", rb->idstr, rb->host); 4118 return false; 4119 } 4120 } 4121 4122 return migrate_postcopy_ram(); 4123 } 4124 4125 /* Sync all the dirty bitmap with destination VM. */ 4126 static int ram_dirty_bitmap_sync_all(MigrationState *s, RAMState *rs) 4127 { 4128 RAMBlock *block; 4129 QEMUFile *file = s->to_dst_file; 4130 4131 trace_ram_dirty_bitmap_sync_start(); 4132 4133 qatomic_set(&rs->postcopy_bmap_sync_requested, 0); 4134 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 4135 qemu_savevm_send_recv_bitmap(file, block->idstr); 4136 trace_ram_dirty_bitmap_request(block->idstr); 4137 qatomic_inc(&rs->postcopy_bmap_sync_requested); 4138 } 4139 4140 trace_ram_dirty_bitmap_sync_wait(); 4141 4142 /* Wait until all the ramblocks' dirty bitmap synced */ 4143 while (qatomic_read(&rs->postcopy_bmap_sync_requested)) { 4144 migration_rp_wait(s); 4145 } 4146 4147 trace_ram_dirty_bitmap_sync_complete(); 4148 4149 return 0; 4150 } 4151 4152 /* 4153 * Read the received bitmap, revert it as the initial dirty bitmap. 4154 * This is only used when the postcopy migration is paused but wants 4155 * to resume from a middle point. 4156 */ 4157 int ram_dirty_bitmap_reload(MigrationState *s, RAMBlock *block) 4158 { 4159 int ret = -EINVAL; 4160 /* from_dst_file is always valid because we're within rp_thread */ 4161 QEMUFile *file = s->rp_state.from_dst_file; 4162 unsigned long *le_bitmap, nbits = block->used_length >> TARGET_PAGE_BITS; 4163 uint64_t local_size = DIV_ROUND_UP(nbits, 8); 4164 uint64_t size, end_mark; 4165 RAMState *rs = ram_state; 4166 4167 trace_ram_dirty_bitmap_reload_begin(block->idstr); 4168 4169 if (s->state != MIGRATION_STATUS_POSTCOPY_RECOVER) { 4170 error_report("%s: incorrect state %s", __func__, 4171 MigrationStatus_str(s->state)); 4172 return -EINVAL; 4173 } 4174 4175 /* 4176 * Note: see comments in ramblock_recv_bitmap_send() on why we 4177 * need the endianness conversion, and the paddings. 4178 */ 4179 local_size = ROUND_UP(local_size, 8); 4180 4181 /* Add paddings */ 4182 le_bitmap = bitmap_new(nbits + BITS_PER_LONG); 4183 4184 size = qemu_get_be64(file); 4185 4186 /* The size of the bitmap should match with our ramblock */ 4187 if (size != local_size) { 4188 error_report("%s: ramblock '%s' bitmap size mismatch " 4189 "(0x%"PRIx64" != 0x%"PRIx64")", __func__, 4190 block->idstr, size, local_size); 4191 ret = -EINVAL; 4192 goto out; 4193 } 4194 4195 size = qemu_get_buffer(file, (uint8_t *)le_bitmap, local_size); 4196 end_mark = qemu_get_be64(file); 4197 4198 ret = qemu_file_get_error(file); 4199 if (ret || size != local_size) { 4200 error_report("%s: read bitmap failed for ramblock '%s': %d" 4201 " (size 0x%"PRIx64", got: 0x%"PRIx64")", 4202 __func__, block->idstr, ret, local_size, size); 4203 ret = -EIO; 4204 goto out; 4205 } 4206 4207 if (end_mark != RAMBLOCK_RECV_BITMAP_ENDING) { 4208 error_report("%s: ramblock '%s' end mark incorrect: 0x%"PRIx64, 4209 __func__, block->idstr, end_mark); 4210 ret = -EINVAL; 4211 goto out; 4212 } 4213 4214 /* 4215 * Endianness conversion. We are during postcopy (though paused). 4216 * The dirty bitmap won't change. We can directly modify it. 4217 */ 4218 bitmap_from_le(block->bmap, le_bitmap, nbits); 4219 4220 /* 4221 * What we received is "received bitmap". Revert it as the initial 4222 * dirty bitmap for this ramblock. 4223 */ 4224 bitmap_complement(block->bmap, block->bmap, nbits); 4225 4226 /* Clear dirty bits of discarded ranges that we don't want to migrate. */ 4227 ramblock_dirty_bitmap_clear_discarded_pages(block); 4228 4229 /* We'll recalculate migration_dirty_pages in ram_state_resume_prepare(). */ 4230 trace_ram_dirty_bitmap_reload_complete(block->idstr); 4231 4232 qatomic_dec(&rs->postcopy_bmap_sync_requested); 4233 4234 /* 4235 * We succeeded to sync bitmap for current ramblock. Always kick the 4236 * migration thread to check whether all requested bitmaps are 4237 * reloaded. NOTE: it's racy to only kick when requested==0, because 4238 * we don't know whether the migration thread may still be increasing 4239 * it. 4240 */ 4241 migration_rp_kick(s); 4242 4243 ret = 0; 4244 out: 4245 g_free(le_bitmap); 4246 return ret; 4247 } 4248 4249 static int ram_resume_prepare(MigrationState *s, void *opaque) 4250 { 4251 RAMState *rs = *(RAMState **)opaque; 4252 int ret; 4253 4254 ret = ram_dirty_bitmap_sync_all(s, rs); 4255 if (ret) { 4256 return ret; 4257 } 4258 4259 ram_state_resume_prepare(rs, s->to_dst_file); 4260 4261 return 0; 4262 } 4263 4264 void postcopy_preempt_shutdown_file(MigrationState *s) 4265 { 4266 qemu_put_be64(s->postcopy_qemufile_src, RAM_SAVE_FLAG_EOS); 4267 qemu_fflush(s->postcopy_qemufile_src); 4268 } 4269 4270 static SaveVMHandlers savevm_ram_handlers = { 4271 .save_setup = ram_save_setup, 4272 .save_live_iterate = ram_save_iterate, 4273 .save_live_complete_postcopy = ram_save_complete, 4274 .save_live_complete_precopy = ram_save_complete, 4275 .has_postcopy = ram_has_postcopy, 4276 .state_pending_exact = ram_state_pending_exact, 4277 .state_pending_estimate = ram_state_pending_estimate, 4278 .load_state = ram_load, 4279 .save_cleanup = ram_save_cleanup, 4280 .load_setup = ram_load_setup, 4281 .load_cleanup = ram_load_cleanup, 4282 .resume_prepare = ram_resume_prepare, 4283 }; 4284 4285 static void ram_mig_ram_block_resized(RAMBlockNotifier *n, void *host, 4286 size_t old_size, size_t new_size) 4287 { 4288 PostcopyState ps = postcopy_state_get(); 4289 ram_addr_t offset; 4290 RAMBlock *rb = qemu_ram_block_from_host(host, false, &offset); 4291 Error *err = NULL; 4292 4293 if (migrate_ram_is_ignored(rb)) { 4294 return; 4295 } 4296 4297 if (!migration_is_idle()) { 4298 /* 4299 * Precopy code on the source cannot deal with the size of RAM blocks 4300 * changing at random points in time - especially after sending the 4301 * RAM block sizes in the migration stream, they must no longer change. 4302 * Abort and indicate a proper reason. 4303 */ 4304 error_setg(&err, "RAM block '%s' resized during precopy.", rb->idstr); 4305 migration_cancel(err); 4306 error_free(err); 4307 } 4308 4309 switch (ps) { 4310 case POSTCOPY_INCOMING_ADVISE: 4311 /* 4312 * Update what ram_postcopy_incoming_init()->init_range() does at the 4313 * time postcopy was advised. Syncing RAM blocks with the source will 4314 * result in RAM resizes. 4315 */ 4316 if (old_size < new_size) { 4317 if (ram_discard_range(rb->idstr, old_size, new_size - old_size)) { 4318 error_report("RAM block '%s' discard of resized RAM failed", 4319 rb->idstr); 4320 } 4321 } 4322 rb->postcopy_length = new_size; 4323 break; 4324 case POSTCOPY_INCOMING_NONE: 4325 case POSTCOPY_INCOMING_RUNNING: 4326 case POSTCOPY_INCOMING_END: 4327 /* 4328 * Once our guest is running, postcopy does no longer care about 4329 * resizes. When growing, the new memory was not available on the 4330 * source, no handler needed. 4331 */ 4332 break; 4333 default: 4334 error_report("RAM block '%s' resized during postcopy state: %d", 4335 rb->idstr, ps); 4336 exit(-1); 4337 } 4338 } 4339 4340 static RAMBlockNotifier ram_mig_ram_notifier = { 4341 .ram_block_resized = ram_mig_ram_block_resized, 4342 }; 4343 4344 void ram_mig_init(void) 4345 { 4346 qemu_mutex_init(&XBZRLE.lock); 4347 register_savevm_live("ram", 0, 4, &savevm_ram_handlers, &ram_state); 4348 ram_block_notifier_add(&ram_mig_ram_notifier); 4349 } 4350