1 /* 2 * QEMU System Emulator 3 * 4 * Copyright (c) 2003-2008 Fabrice Bellard 5 * Copyright (c) 2011-2015 Red Hat Inc 6 * 7 * Authors: 8 * Juan Quintela <quintela@redhat.com> 9 * 10 * Permission is hereby granted, free of charge, to any person obtaining a copy 11 * of this software and associated documentation files (the "Software"), to deal 12 * in the Software without restriction, including without limitation the rights 13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 14 * copies of the Software, and to permit persons to whom the Software is 15 * furnished to do so, subject to the following conditions: 16 * 17 * The above copyright notice and this permission notice shall be included in 18 * all copies or substantial portions of the Software. 19 * 20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 26 * THE SOFTWARE. 27 */ 28 29 #include "qemu/osdep.h" 30 #include "cpu.h" 31 #include "qemu/cutils.h" 32 #include "qemu/bitops.h" 33 #include "qemu/bitmap.h" 34 #include "qemu/main-loop.h" 35 #include "xbzrle.h" 36 #include "ram.h" 37 #include "migration.h" 38 #include "migration/register.h" 39 #include "migration/misc.h" 40 #include "qemu-file.h" 41 #include "postcopy-ram.h" 42 #include "page_cache.h" 43 #include "qemu/error-report.h" 44 #include "qapi/error.h" 45 #include "qapi/qapi-types-migration.h" 46 #include "qapi/qapi-events-migration.h" 47 #include "qapi/qmp/qerror.h" 48 #include "trace.h" 49 #include "exec/ram_addr.h" 50 #include "exec/target_page.h" 51 #include "qemu/rcu_queue.h" 52 #include "migration/colo.h" 53 #include "block.h" 54 #include "sysemu/sysemu.h" 55 #include "savevm.h" 56 #include "qemu/iov.h" 57 #include "multifd.h" 58 59 /***********************************************************/ 60 /* ram save/restore */ 61 62 /* RAM_SAVE_FLAG_ZERO used to be named RAM_SAVE_FLAG_COMPRESS, it 63 * worked for pages that where filled with the same char. We switched 64 * it to only search for the zero value. And to avoid confusion with 65 * RAM_SSAVE_FLAG_COMPRESS_PAGE just rename it. 66 */ 67 68 #define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */ 69 #define RAM_SAVE_FLAG_ZERO 0x02 70 #define RAM_SAVE_FLAG_MEM_SIZE 0x04 71 #define RAM_SAVE_FLAG_PAGE 0x08 72 #define RAM_SAVE_FLAG_EOS 0x10 73 #define RAM_SAVE_FLAG_CONTINUE 0x20 74 #define RAM_SAVE_FLAG_XBZRLE 0x40 75 /* 0x80 is reserved in migration.h start with 0x100 next */ 76 #define RAM_SAVE_FLAG_COMPRESS_PAGE 0x100 77 78 static inline bool is_zero_range(uint8_t *p, uint64_t size) 79 { 80 return buffer_is_zero(p, size); 81 } 82 83 XBZRLECacheStats xbzrle_counters; 84 85 /* struct contains XBZRLE cache and a static page 86 used by the compression */ 87 static struct { 88 /* buffer used for XBZRLE encoding */ 89 uint8_t *encoded_buf; 90 /* buffer for storing page content */ 91 uint8_t *current_buf; 92 /* Cache for XBZRLE, Protected by lock. */ 93 PageCache *cache; 94 QemuMutex lock; 95 /* it will store a page full of zeros */ 96 uint8_t *zero_target_page; 97 /* buffer used for XBZRLE decoding */ 98 uint8_t *decoded_buf; 99 } XBZRLE; 100 101 static void XBZRLE_cache_lock(void) 102 { 103 if (migrate_use_xbzrle()) 104 qemu_mutex_lock(&XBZRLE.lock); 105 } 106 107 static void XBZRLE_cache_unlock(void) 108 { 109 if (migrate_use_xbzrle()) 110 qemu_mutex_unlock(&XBZRLE.lock); 111 } 112 113 /** 114 * xbzrle_cache_resize: resize the xbzrle cache 115 * 116 * This function is called from qmp_migrate_set_cache_size in main 117 * thread, possibly while a migration is in progress. A running 118 * migration may be using the cache and might finish during this call, 119 * hence changes to the cache are protected by XBZRLE.lock(). 120 * 121 * Returns 0 for success or -1 for error 122 * 123 * @new_size: new cache size 124 * @errp: set *errp if the check failed, with reason 125 */ 126 int xbzrle_cache_resize(int64_t new_size, Error **errp) 127 { 128 PageCache *new_cache; 129 int64_t ret = 0; 130 131 /* Check for truncation */ 132 if (new_size != (size_t)new_size) { 133 error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cache size", 134 "exceeding address space"); 135 return -1; 136 } 137 138 if (new_size == migrate_xbzrle_cache_size()) { 139 /* nothing to do */ 140 return 0; 141 } 142 143 XBZRLE_cache_lock(); 144 145 if (XBZRLE.cache != NULL) { 146 new_cache = cache_init(new_size, TARGET_PAGE_SIZE, errp); 147 if (!new_cache) { 148 ret = -1; 149 goto out; 150 } 151 152 cache_fini(XBZRLE.cache); 153 XBZRLE.cache = new_cache; 154 } 155 out: 156 XBZRLE_cache_unlock(); 157 return ret; 158 } 159 160 static bool ramblock_is_ignored(RAMBlock *block) 161 { 162 return !qemu_ram_is_migratable(block) || 163 (migrate_ignore_shared() && qemu_ram_is_shared(block)); 164 } 165 166 /* Should be holding either ram_list.mutex, or the RCU lock. */ 167 #define RAMBLOCK_FOREACH_NOT_IGNORED(block) \ 168 INTERNAL_RAMBLOCK_FOREACH(block) \ 169 if (ramblock_is_ignored(block)) {} else 170 171 #define RAMBLOCK_FOREACH_MIGRATABLE(block) \ 172 INTERNAL_RAMBLOCK_FOREACH(block) \ 173 if (!qemu_ram_is_migratable(block)) {} else 174 175 #undef RAMBLOCK_FOREACH 176 177 int foreach_not_ignored_block(RAMBlockIterFunc func, void *opaque) 178 { 179 RAMBlock *block; 180 int ret = 0; 181 182 RCU_READ_LOCK_GUARD(); 183 184 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 185 ret = func(block, opaque); 186 if (ret) { 187 break; 188 } 189 } 190 return ret; 191 } 192 193 static void ramblock_recv_map_init(void) 194 { 195 RAMBlock *rb; 196 197 RAMBLOCK_FOREACH_NOT_IGNORED(rb) { 198 assert(!rb->receivedmap); 199 rb->receivedmap = bitmap_new(rb->max_length >> qemu_target_page_bits()); 200 } 201 } 202 203 int ramblock_recv_bitmap_test(RAMBlock *rb, void *host_addr) 204 { 205 return test_bit(ramblock_recv_bitmap_offset(host_addr, rb), 206 rb->receivedmap); 207 } 208 209 bool ramblock_recv_bitmap_test_byte_offset(RAMBlock *rb, uint64_t byte_offset) 210 { 211 return test_bit(byte_offset >> TARGET_PAGE_BITS, rb->receivedmap); 212 } 213 214 void ramblock_recv_bitmap_set(RAMBlock *rb, void *host_addr) 215 { 216 set_bit_atomic(ramblock_recv_bitmap_offset(host_addr, rb), rb->receivedmap); 217 } 218 219 void ramblock_recv_bitmap_set_range(RAMBlock *rb, void *host_addr, 220 size_t nr) 221 { 222 bitmap_set_atomic(rb->receivedmap, 223 ramblock_recv_bitmap_offset(host_addr, rb), 224 nr); 225 } 226 227 #define RAMBLOCK_RECV_BITMAP_ENDING (0x0123456789abcdefULL) 228 229 /* 230 * Format: bitmap_size (8 bytes) + whole_bitmap (N bytes). 231 * 232 * Returns >0 if success with sent bytes, or <0 if error. 233 */ 234 int64_t ramblock_recv_bitmap_send(QEMUFile *file, 235 const char *block_name) 236 { 237 RAMBlock *block = qemu_ram_block_by_name(block_name); 238 unsigned long *le_bitmap, nbits; 239 uint64_t size; 240 241 if (!block) { 242 error_report("%s: invalid block name: %s", __func__, block_name); 243 return -1; 244 } 245 246 nbits = block->used_length >> TARGET_PAGE_BITS; 247 248 /* 249 * Make sure the tmp bitmap buffer is big enough, e.g., on 32bit 250 * machines we may need 4 more bytes for padding (see below 251 * comment). So extend it a bit before hand. 252 */ 253 le_bitmap = bitmap_new(nbits + BITS_PER_LONG); 254 255 /* 256 * Always use little endian when sending the bitmap. This is 257 * required that when source and destination VMs are not using the 258 * same endianess. (Note: big endian won't work.) 259 */ 260 bitmap_to_le(le_bitmap, block->receivedmap, nbits); 261 262 /* Size of the bitmap, in bytes */ 263 size = DIV_ROUND_UP(nbits, 8); 264 265 /* 266 * size is always aligned to 8 bytes for 64bit machines, but it 267 * may not be true for 32bit machines. We need this padding to 268 * make sure the migration can survive even between 32bit and 269 * 64bit machines. 270 */ 271 size = ROUND_UP(size, 8); 272 273 qemu_put_be64(file, size); 274 qemu_put_buffer(file, (const uint8_t *)le_bitmap, size); 275 /* 276 * Mark as an end, in case the middle part is screwed up due to 277 * some "misterious" reason. 278 */ 279 qemu_put_be64(file, RAMBLOCK_RECV_BITMAP_ENDING); 280 qemu_fflush(file); 281 282 g_free(le_bitmap); 283 284 if (qemu_file_get_error(file)) { 285 return qemu_file_get_error(file); 286 } 287 288 return size + sizeof(size); 289 } 290 291 /* 292 * An outstanding page request, on the source, having been received 293 * and queued 294 */ 295 struct RAMSrcPageRequest { 296 RAMBlock *rb; 297 hwaddr offset; 298 hwaddr len; 299 300 QSIMPLEQ_ENTRY(RAMSrcPageRequest) next_req; 301 }; 302 303 /* State of RAM for migration */ 304 struct RAMState { 305 /* QEMUFile used for this migration */ 306 QEMUFile *f; 307 /* Last block that we have visited searching for dirty pages */ 308 RAMBlock *last_seen_block; 309 /* Last block from where we have sent data */ 310 RAMBlock *last_sent_block; 311 /* Last dirty target page we have sent */ 312 ram_addr_t last_page; 313 /* last ram version we have seen */ 314 uint32_t last_version; 315 /* We are in the first round */ 316 bool ram_bulk_stage; 317 /* The free page optimization is enabled */ 318 bool fpo_enabled; 319 /* How many times we have dirty too many pages */ 320 int dirty_rate_high_cnt; 321 /* these variables are used for bitmap sync */ 322 /* last time we did a full bitmap_sync */ 323 int64_t time_last_bitmap_sync; 324 /* bytes transferred at start_time */ 325 uint64_t bytes_xfer_prev; 326 /* number of dirty pages since start_time */ 327 uint64_t num_dirty_pages_period; 328 /* xbzrle misses since the beginning of the period */ 329 uint64_t xbzrle_cache_miss_prev; 330 331 /* compression statistics since the beginning of the period */ 332 /* amount of count that no free thread to compress data */ 333 uint64_t compress_thread_busy_prev; 334 /* amount bytes after compression */ 335 uint64_t compressed_size_prev; 336 /* amount of compressed pages */ 337 uint64_t compress_pages_prev; 338 339 /* total handled target pages at the beginning of period */ 340 uint64_t target_page_count_prev; 341 /* total handled target pages since start */ 342 uint64_t target_page_count; 343 /* number of dirty bits in the bitmap */ 344 uint64_t migration_dirty_pages; 345 /* Protects modification of the bitmap and migration dirty pages */ 346 QemuMutex bitmap_mutex; 347 /* The RAMBlock used in the last src_page_requests */ 348 RAMBlock *last_req_rb; 349 /* Queue of outstanding page requests from the destination */ 350 QemuMutex src_page_req_mutex; 351 QSIMPLEQ_HEAD(, RAMSrcPageRequest) src_page_requests; 352 }; 353 typedef struct RAMState RAMState; 354 355 static RAMState *ram_state; 356 357 static NotifierWithReturnList precopy_notifier_list; 358 359 void precopy_infrastructure_init(void) 360 { 361 notifier_with_return_list_init(&precopy_notifier_list); 362 } 363 364 void precopy_add_notifier(NotifierWithReturn *n) 365 { 366 notifier_with_return_list_add(&precopy_notifier_list, n); 367 } 368 369 void precopy_remove_notifier(NotifierWithReturn *n) 370 { 371 notifier_with_return_remove(n); 372 } 373 374 int precopy_notify(PrecopyNotifyReason reason, Error **errp) 375 { 376 PrecopyNotifyData pnd; 377 pnd.reason = reason; 378 pnd.errp = errp; 379 380 return notifier_with_return_list_notify(&precopy_notifier_list, &pnd); 381 } 382 383 void precopy_enable_free_page_optimization(void) 384 { 385 if (!ram_state) { 386 return; 387 } 388 389 ram_state->fpo_enabled = true; 390 } 391 392 uint64_t ram_bytes_remaining(void) 393 { 394 return ram_state ? (ram_state->migration_dirty_pages * TARGET_PAGE_SIZE) : 395 0; 396 } 397 398 MigrationStats ram_counters; 399 400 /* used by the search for pages to send */ 401 struct PageSearchStatus { 402 /* Current block being searched */ 403 RAMBlock *block; 404 /* Current page to search from */ 405 unsigned long page; 406 /* Set once we wrap around */ 407 bool complete_round; 408 }; 409 typedef struct PageSearchStatus PageSearchStatus; 410 411 CompressionStats compression_counters; 412 413 struct CompressParam { 414 bool done; 415 bool quit; 416 bool zero_page; 417 QEMUFile *file; 418 QemuMutex mutex; 419 QemuCond cond; 420 RAMBlock *block; 421 ram_addr_t offset; 422 423 /* internally used fields */ 424 z_stream stream; 425 uint8_t *originbuf; 426 }; 427 typedef struct CompressParam CompressParam; 428 429 struct DecompressParam { 430 bool done; 431 bool quit; 432 QemuMutex mutex; 433 QemuCond cond; 434 void *des; 435 uint8_t *compbuf; 436 int len; 437 z_stream stream; 438 }; 439 typedef struct DecompressParam DecompressParam; 440 441 static CompressParam *comp_param; 442 static QemuThread *compress_threads; 443 /* comp_done_cond is used to wake up the migration thread when 444 * one of the compression threads has finished the compression. 445 * comp_done_lock is used to co-work with comp_done_cond. 446 */ 447 static QemuMutex comp_done_lock; 448 static QemuCond comp_done_cond; 449 /* The empty QEMUFileOps will be used by file in CompressParam */ 450 static const QEMUFileOps empty_ops = { }; 451 452 static QEMUFile *decomp_file; 453 static DecompressParam *decomp_param; 454 static QemuThread *decompress_threads; 455 static QemuMutex decomp_done_lock; 456 static QemuCond decomp_done_cond; 457 458 static bool do_compress_ram_page(QEMUFile *f, z_stream *stream, RAMBlock *block, 459 ram_addr_t offset, uint8_t *source_buf); 460 461 static void *do_data_compress(void *opaque) 462 { 463 CompressParam *param = opaque; 464 RAMBlock *block; 465 ram_addr_t offset; 466 bool zero_page; 467 468 qemu_mutex_lock(¶m->mutex); 469 while (!param->quit) { 470 if (param->block) { 471 block = param->block; 472 offset = param->offset; 473 param->block = NULL; 474 qemu_mutex_unlock(¶m->mutex); 475 476 zero_page = do_compress_ram_page(param->file, ¶m->stream, 477 block, offset, param->originbuf); 478 479 qemu_mutex_lock(&comp_done_lock); 480 param->done = true; 481 param->zero_page = zero_page; 482 qemu_cond_signal(&comp_done_cond); 483 qemu_mutex_unlock(&comp_done_lock); 484 485 qemu_mutex_lock(¶m->mutex); 486 } else { 487 qemu_cond_wait(¶m->cond, ¶m->mutex); 488 } 489 } 490 qemu_mutex_unlock(¶m->mutex); 491 492 return NULL; 493 } 494 495 static void compress_threads_save_cleanup(void) 496 { 497 int i, thread_count; 498 499 if (!migrate_use_compression() || !comp_param) { 500 return; 501 } 502 503 thread_count = migrate_compress_threads(); 504 for (i = 0; i < thread_count; i++) { 505 /* 506 * we use it as a indicator which shows if the thread is 507 * properly init'd or not 508 */ 509 if (!comp_param[i].file) { 510 break; 511 } 512 513 qemu_mutex_lock(&comp_param[i].mutex); 514 comp_param[i].quit = true; 515 qemu_cond_signal(&comp_param[i].cond); 516 qemu_mutex_unlock(&comp_param[i].mutex); 517 518 qemu_thread_join(compress_threads + i); 519 qemu_mutex_destroy(&comp_param[i].mutex); 520 qemu_cond_destroy(&comp_param[i].cond); 521 deflateEnd(&comp_param[i].stream); 522 g_free(comp_param[i].originbuf); 523 qemu_fclose(comp_param[i].file); 524 comp_param[i].file = NULL; 525 } 526 qemu_mutex_destroy(&comp_done_lock); 527 qemu_cond_destroy(&comp_done_cond); 528 g_free(compress_threads); 529 g_free(comp_param); 530 compress_threads = NULL; 531 comp_param = NULL; 532 } 533 534 static int compress_threads_save_setup(void) 535 { 536 int i, thread_count; 537 538 if (!migrate_use_compression()) { 539 return 0; 540 } 541 thread_count = migrate_compress_threads(); 542 compress_threads = g_new0(QemuThread, thread_count); 543 comp_param = g_new0(CompressParam, thread_count); 544 qemu_cond_init(&comp_done_cond); 545 qemu_mutex_init(&comp_done_lock); 546 for (i = 0; i < thread_count; i++) { 547 comp_param[i].originbuf = g_try_malloc(TARGET_PAGE_SIZE); 548 if (!comp_param[i].originbuf) { 549 goto exit; 550 } 551 552 if (deflateInit(&comp_param[i].stream, 553 migrate_compress_level()) != Z_OK) { 554 g_free(comp_param[i].originbuf); 555 goto exit; 556 } 557 558 /* comp_param[i].file is just used as a dummy buffer to save data, 559 * set its ops to empty. 560 */ 561 comp_param[i].file = qemu_fopen_ops(NULL, &empty_ops); 562 comp_param[i].done = true; 563 comp_param[i].quit = false; 564 qemu_mutex_init(&comp_param[i].mutex); 565 qemu_cond_init(&comp_param[i].cond); 566 qemu_thread_create(compress_threads + i, "compress", 567 do_data_compress, comp_param + i, 568 QEMU_THREAD_JOINABLE); 569 } 570 return 0; 571 572 exit: 573 compress_threads_save_cleanup(); 574 return -1; 575 } 576 577 /** 578 * save_page_header: write page header to wire 579 * 580 * If this is the 1st block, it also writes the block identification 581 * 582 * Returns the number of bytes written 583 * 584 * @f: QEMUFile where to send the data 585 * @block: block that contains the page we want to send 586 * @offset: offset inside the block for the page 587 * in the lower bits, it contains flags 588 */ 589 static size_t save_page_header(RAMState *rs, QEMUFile *f, RAMBlock *block, 590 ram_addr_t offset) 591 { 592 size_t size, len; 593 594 if (block == rs->last_sent_block) { 595 offset |= RAM_SAVE_FLAG_CONTINUE; 596 } 597 qemu_put_be64(f, offset); 598 size = 8; 599 600 if (!(offset & RAM_SAVE_FLAG_CONTINUE)) { 601 len = strlen(block->idstr); 602 qemu_put_byte(f, len); 603 qemu_put_buffer(f, (uint8_t *)block->idstr, len); 604 size += 1 + len; 605 rs->last_sent_block = block; 606 } 607 return size; 608 } 609 610 /** 611 * mig_throttle_guest_down: throotle down the guest 612 * 613 * Reduce amount of guest cpu execution to hopefully slow down memory 614 * writes. If guest dirty memory rate is reduced below the rate at 615 * which we can transfer pages to the destination then we should be 616 * able to complete migration. Some workloads dirty memory way too 617 * fast and will not effectively converge, even with auto-converge. 618 */ 619 static void mig_throttle_guest_down(uint64_t bytes_dirty_period, 620 uint64_t bytes_dirty_threshold) 621 { 622 MigrationState *s = migrate_get_current(); 623 uint64_t pct_initial = s->parameters.cpu_throttle_initial; 624 uint64_t pct_increment = s->parameters.cpu_throttle_increment; 625 bool pct_tailslow = s->parameters.cpu_throttle_tailslow; 626 int pct_max = s->parameters.max_cpu_throttle; 627 628 uint64_t throttle_now = cpu_throttle_get_percentage(); 629 uint64_t cpu_now, cpu_ideal, throttle_inc; 630 631 /* We have not started throttling yet. Let's start it. */ 632 if (!cpu_throttle_active()) { 633 cpu_throttle_set(pct_initial); 634 } else { 635 /* Throttling already on, just increase the rate */ 636 if (!pct_tailslow) { 637 throttle_inc = pct_increment; 638 } else { 639 /* Compute the ideal CPU percentage used by Guest, which may 640 * make the dirty rate match the dirty rate threshold. */ 641 cpu_now = 100 - throttle_now; 642 cpu_ideal = cpu_now * (bytes_dirty_threshold * 1.0 / 643 bytes_dirty_period); 644 throttle_inc = MIN(cpu_now - cpu_ideal, pct_increment); 645 } 646 cpu_throttle_set(MIN(throttle_now + throttle_inc, pct_max)); 647 } 648 } 649 650 /** 651 * xbzrle_cache_zero_page: insert a zero page in the XBZRLE cache 652 * 653 * @rs: current RAM state 654 * @current_addr: address for the zero page 655 * 656 * Update the xbzrle cache to reflect a page that's been sent as all 0. 657 * The important thing is that a stale (not-yet-0'd) page be replaced 658 * by the new data. 659 * As a bonus, if the page wasn't in the cache it gets added so that 660 * when a small write is made into the 0'd page it gets XBZRLE sent. 661 */ 662 static void xbzrle_cache_zero_page(RAMState *rs, ram_addr_t current_addr) 663 { 664 if (rs->ram_bulk_stage || !migrate_use_xbzrle()) { 665 return; 666 } 667 668 /* We don't care if this fails to allocate a new cache page 669 * as long as it updated an old one */ 670 cache_insert(XBZRLE.cache, current_addr, XBZRLE.zero_target_page, 671 ram_counters.dirty_sync_count); 672 } 673 674 #define ENCODING_FLAG_XBZRLE 0x1 675 676 /** 677 * save_xbzrle_page: compress and send current page 678 * 679 * Returns: 1 means that we wrote the page 680 * 0 means that page is identical to the one already sent 681 * -1 means that xbzrle would be longer than normal 682 * 683 * @rs: current RAM state 684 * @current_data: pointer to the address of the page contents 685 * @current_addr: addr of the page 686 * @block: block that contains the page we want to send 687 * @offset: offset inside the block for the page 688 * @last_stage: if we are at the completion stage 689 */ 690 static int save_xbzrle_page(RAMState *rs, uint8_t **current_data, 691 ram_addr_t current_addr, RAMBlock *block, 692 ram_addr_t offset, bool last_stage) 693 { 694 int encoded_len = 0, bytes_xbzrle; 695 uint8_t *prev_cached_page; 696 697 if (!cache_is_cached(XBZRLE.cache, current_addr, 698 ram_counters.dirty_sync_count)) { 699 xbzrle_counters.cache_miss++; 700 if (!last_stage) { 701 if (cache_insert(XBZRLE.cache, current_addr, *current_data, 702 ram_counters.dirty_sync_count) == -1) { 703 return -1; 704 } else { 705 /* update *current_data when the page has been 706 inserted into cache */ 707 *current_data = get_cached_data(XBZRLE.cache, current_addr); 708 } 709 } 710 return -1; 711 } 712 713 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr); 714 715 /* save current buffer into memory */ 716 memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE); 717 718 /* XBZRLE encoding (if there is no overflow) */ 719 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf, 720 TARGET_PAGE_SIZE, XBZRLE.encoded_buf, 721 TARGET_PAGE_SIZE); 722 723 /* 724 * Update the cache contents, so that it corresponds to the data 725 * sent, in all cases except where we skip the page. 726 */ 727 if (!last_stage && encoded_len != 0) { 728 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE); 729 /* 730 * In the case where we couldn't compress, ensure that the caller 731 * sends the data from the cache, since the guest might have 732 * changed the RAM since we copied it. 733 */ 734 *current_data = prev_cached_page; 735 } 736 737 if (encoded_len == 0) { 738 trace_save_xbzrle_page_skipping(); 739 return 0; 740 } else if (encoded_len == -1) { 741 trace_save_xbzrle_page_overflow(); 742 xbzrle_counters.overflow++; 743 return -1; 744 } 745 746 /* Send XBZRLE based compressed page */ 747 bytes_xbzrle = save_page_header(rs, rs->f, block, 748 offset | RAM_SAVE_FLAG_XBZRLE); 749 qemu_put_byte(rs->f, ENCODING_FLAG_XBZRLE); 750 qemu_put_be16(rs->f, encoded_len); 751 qemu_put_buffer(rs->f, XBZRLE.encoded_buf, encoded_len); 752 bytes_xbzrle += encoded_len + 1 + 2; 753 xbzrle_counters.pages++; 754 xbzrle_counters.bytes += bytes_xbzrle; 755 ram_counters.transferred += bytes_xbzrle; 756 757 return 1; 758 } 759 760 /** 761 * migration_bitmap_find_dirty: find the next dirty page from start 762 * 763 * Returns the page offset within memory region of the start of a dirty page 764 * 765 * @rs: current RAM state 766 * @rb: RAMBlock where to search for dirty pages 767 * @start: page where we start the search 768 */ 769 static inline 770 unsigned long migration_bitmap_find_dirty(RAMState *rs, RAMBlock *rb, 771 unsigned long start) 772 { 773 unsigned long size = rb->used_length >> TARGET_PAGE_BITS; 774 unsigned long *bitmap = rb->bmap; 775 unsigned long next; 776 777 if (ramblock_is_ignored(rb)) { 778 return size; 779 } 780 781 /* 782 * When the free page optimization is enabled, we need to check the bitmap 783 * to send the non-free pages rather than all the pages in the bulk stage. 784 */ 785 if (!rs->fpo_enabled && rs->ram_bulk_stage && start > 0) { 786 next = start + 1; 787 } else { 788 next = find_next_bit(bitmap, size, start); 789 } 790 791 return next; 792 } 793 794 static inline bool migration_bitmap_clear_dirty(RAMState *rs, 795 RAMBlock *rb, 796 unsigned long page) 797 { 798 bool ret; 799 800 qemu_mutex_lock(&rs->bitmap_mutex); 801 802 /* 803 * Clear dirty bitmap if needed. This _must_ be called before we 804 * send any of the page in the chunk because we need to make sure 805 * we can capture further page content changes when we sync dirty 806 * log the next time. So as long as we are going to send any of 807 * the page in the chunk we clear the remote dirty bitmap for all. 808 * Clearing it earlier won't be a problem, but too late will. 809 */ 810 if (rb->clear_bmap && clear_bmap_test_and_clear(rb, page)) { 811 uint8_t shift = rb->clear_bmap_shift; 812 hwaddr size = 1ULL << (TARGET_PAGE_BITS + shift); 813 hwaddr start = (((ram_addr_t)page) << TARGET_PAGE_BITS) & (-size); 814 815 /* 816 * CLEAR_BITMAP_SHIFT_MIN should always guarantee this... this 817 * can make things easier sometimes since then start address 818 * of the small chunk will always be 64 pages aligned so the 819 * bitmap will always be aligned to unsigned long. We should 820 * even be able to remove this restriction but I'm simply 821 * keeping it. 822 */ 823 assert(shift >= 6); 824 trace_migration_bitmap_clear_dirty(rb->idstr, start, size, page); 825 memory_region_clear_dirty_bitmap(rb->mr, start, size); 826 } 827 828 ret = test_and_clear_bit(page, rb->bmap); 829 830 if (ret) { 831 rs->migration_dirty_pages--; 832 } 833 qemu_mutex_unlock(&rs->bitmap_mutex); 834 835 return ret; 836 } 837 838 /* Called with RCU critical section */ 839 static void ramblock_sync_dirty_bitmap(RAMState *rs, RAMBlock *rb) 840 { 841 rs->migration_dirty_pages += 842 cpu_physical_memory_sync_dirty_bitmap(rb, 0, rb->used_length, 843 &rs->num_dirty_pages_period); 844 } 845 846 /** 847 * ram_pagesize_summary: calculate all the pagesizes of a VM 848 * 849 * Returns a summary bitmap of the page sizes of all RAMBlocks 850 * 851 * For VMs with just normal pages this is equivalent to the host page 852 * size. If it's got some huge pages then it's the OR of all the 853 * different page sizes. 854 */ 855 uint64_t ram_pagesize_summary(void) 856 { 857 RAMBlock *block; 858 uint64_t summary = 0; 859 860 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 861 summary |= block->page_size; 862 } 863 864 return summary; 865 } 866 867 uint64_t ram_get_total_transferred_pages(void) 868 { 869 return ram_counters.normal + ram_counters.duplicate + 870 compression_counters.pages + xbzrle_counters.pages; 871 } 872 873 static void migration_update_rates(RAMState *rs, int64_t end_time) 874 { 875 uint64_t page_count = rs->target_page_count - rs->target_page_count_prev; 876 double compressed_size; 877 878 /* calculate period counters */ 879 ram_counters.dirty_pages_rate = rs->num_dirty_pages_period * 1000 880 / (end_time - rs->time_last_bitmap_sync); 881 882 if (!page_count) { 883 return; 884 } 885 886 if (migrate_use_xbzrle()) { 887 xbzrle_counters.cache_miss_rate = (double)(xbzrle_counters.cache_miss - 888 rs->xbzrle_cache_miss_prev) / page_count; 889 rs->xbzrle_cache_miss_prev = xbzrle_counters.cache_miss; 890 } 891 892 if (migrate_use_compression()) { 893 compression_counters.busy_rate = (double)(compression_counters.busy - 894 rs->compress_thread_busy_prev) / page_count; 895 rs->compress_thread_busy_prev = compression_counters.busy; 896 897 compressed_size = compression_counters.compressed_size - 898 rs->compressed_size_prev; 899 if (compressed_size) { 900 double uncompressed_size = (compression_counters.pages - 901 rs->compress_pages_prev) * TARGET_PAGE_SIZE; 902 903 /* Compression-Ratio = Uncompressed-size / Compressed-size */ 904 compression_counters.compression_rate = 905 uncompressed_size / compressed_size; 906 907 rs->compress_pages_prev = compression_counters.pages; 908 rs->compressed_size_prev = compression_counters.compressed_size; 909 } 910 } 911 } 912 913 static void migration_trigger_throttle(RAMState *rs) 914 { 915 MigrationState *s = migrate_get_current(); 916 uint64_t threshold = s->parameters.throttle_trigger_threshold; 917 918 uint64_t bytes_xfer_period = ram_counters.transferred - rs->bytes_xfer_prev; 919 uint64_t bytes_dirty_period = rs->num_dirty_pages_period * TARGET_PAGE_SIZE; 920 uint64_t bytes_dirty_threshold = bytes_xfer_period * threshold / 100; 921 922 /* During block migration the auto-converge logic incorrectly detects 923 * that ram migration makes no progress. Avoid this by disabling the 924 * throttling logic during the bulk phase of block migration. */ 925 if (migrate_auto_converge() && !blk_mig_bulk_active()) { 926 /* The following detection logic can be refined later. For now: 927 Check to see if the ratio between dirtied bytes and the approx. 928 amount of bytes that just got transferred since the last time 929 we were in this routine reaches the threshold. If that happens 930 twice, start or increase throttling. */ 931 932 if ((bytes_dirty_period > bytes_dirty_threshold) && 933 (++rs->dirty_rate_high_cnt >= 2)) { 934 trace_migration_throttle(); 935 rs->dirty_rate_high_cnt = 0; 936 mig_throttle_guest_down(bytes_dirty_period, 937 bytes_dirty_threshold); 938 } 939 } 940 } 941 942 static void migration_bitmap_sync(RAMState *rs) 943 { 944 RAMBlock *block; 945 int64_t end_time; 946 947 ram_counters.dirty_sync_count++; 948 949 if (!rs->time_last_bitmap_sync) { 950 rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); 951 } 952 953 trace_migration_bitmap_sync_start(); 954 memory_global_dirty_log_sync(); 955 956 qemu_mutex_lock(&rs->bitmap_mutex); 957 WITH_RCU_READ_LOCK_GUARD() { 958 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 959 ramblock_sync_dirty_bitmap(rs, block); 960 } 961 ram_counters.remaining = ram_bytes_remaining(); 962 } 963 qemu_mutex_unlock(&rs->bitmap_mutex); 964 965 memory_global_after_dirty_log_sync(); 966 trace_migration_bitmap_sync_end(rs->num_dirty_pages_period); 967 968 end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); 969 970 /* more than 1 second = 1000 millisecons */ 971 if (end_time > rs->time_last_bitmap_sync + 1000) { 972 migration_trigger_throttle(rs); 973 974 migration_update_rates(rs, end_time); 975 976 rs->target_page_count_prev = rs->target_page_count; 977 978 /* reset period counters */ 979 rs->time_last_bitmap_sync = end_time; 980 rs->num_dirty_pages_period = 0; 981 rs->bytes_xfer_prev = ram_counters.transferred; 982 } 983 if (migrate_use_events()) { 984 qapi_event_send_migration_pass(ram_counters.dirty_sync_count); 985 } 986 } 987 988 static void migration_bitmap_sync_precopy(RAMState *rs) 989 { 990 Error *local_err = NULL; 991 992 /* 993 * The current notifier usage is just an optimization to migration, so we 994 * don't stop the normal migration process in the error case. 995 */ 996 if (precopy_notify(PRECOPY_NOTIFY_BEFORE_BITMAP_SYNC, &local_err)) { 997 error_report_err(local_err); 998 local_err = NULL; 999 } 1000 1001 migration_bitmap_sync(rs); 1002 1003 if (precopy_notify(PRECOPY_NOTIFY_AFTER_BITMAP_SYNC, &local_err)) { 1004 error_report_err(local_err); 1005 } 1006 } 1007 1008 /** 1009 * save_zero_page_to_file: send the zero page to the file 1010 * 1011 * Returns the size of data written to the file, 0 means the page is not 1012 * a zero page 1013 * 1014 * @rs: current RAM state 1015 * @file: the file where the data is saved 1016 * @block: block that contains the page we want to send 1017 * @offset: offset inside the block for the page 1018 */ 1019 static int save_zero_page_to_file(RAMState *rs, QEMUFile *file, 1020 RAMBlock *block, ram_addr_t offset) 1021 { 1022 uint8_t *p = block->host + offset; 1023 int len = 0; 1024 1025 if (is_zero_range(p, TARGET_PAGE_SIZE)) { 1026 len += save_page_header(rs, file, block, offset | RAM_SAVE_FLAG_ZERO); 1027 qemu_put_byte(file, 0); 1028 len += 1; 1029 } 1030 return len; 1031 } 1032 1033 /** 1034 * save_zero_page: send the zero page to the stream 1035 * 1036 * Returns the number of pages written. 1037 * 1038 * @rs: current RAM state 1039 * @block: block that contains the page we want to send 1040 * @offset: offset inside the block for the page 1041 */ 1042 static int save_zero_page(RAMState *rs, RAMBlock *block, ram_addr_t offset) 1043 { 1044 int len = save_zero_page_to_file(rs, rs->f, block, offset); 1045 1046 if (len) { 1047 ram_counters.duplicate++; 1048 ram_counters.transferred += len; 1049 return 1; 1050 } 1051 return -1; 1052 } 1053 1054 static void ram_release_pages(const char *rbname, uint64_t offset, int pages) 1055 { 1056 if (!migrate_release_ram() || !migration_in_postcopy()) { 1057 return; 1058 } 1059 1060 ram_discard_range(rbname, offset, ((ram_addr_t)pages) << TARGET_PAGE_BITS); 1061 } 1062 1063 /* 1064 * @pages: the number of pages written by the control path, 1065 * < 0 - error 1066 * > 0 - number of pages written 1067 * 1068 * Return true if the pages has been saved, otherwise false is returned. 1069 */ 1070 static bool control_save_page(RAMState *rs, RAMBlock *block, ram_addr_t offset, 1071 int *pages) 1072 { 1073 uint64_t bytes_xmit = 0; 1074 int ret; 1075 1076 *pages = -1; 1077 ret = ram_control_save_page(rs->f, block->offset, offset, TARGET_PAGE_SIZE, 1078 &bytes_xmit); 1079 if (ret == RAM_SAVE_CONTROL_NOT_SUPP) { 1080 return false; 1081 } 1082 1083 if (bytes_xmit) { 1084 ram_counters.transferred += bytes_xmit; 1085 *pages = 1; 1086 } 1087 1088 if (ret == RAM_SAVE_CONTROL_DELAYED) { 1089 return true; 1090 } 1091 1092 if (bytes_xmit > 0) { 1093 ram_counters.normal++; 1094 } else if (bytes_xmit == 0) { 1095 ram_counters.duplicate++; 1096 } 1097 1098 return true; 1099 } 1100 1101 /* 1102 * directly send the page to the stream 1103 * 1104 * Returns the number of pages written. 1105 * 1106 * @rs: current RAM state 1107 * @block: block that contains the page we want to send 1108 * @offset: offset inside the block for the page 1109 * @buf: the page to be sent 1110 * @async: send to page asyncly 1111 */ 1112 static int save_normal_page(RAMState *rs, RAMBlock *block, ram_addr_t offset, 1113 uint8_t *buf, bool async) 1114 { 1115 ram_counters.transferred += save_page_header(rs, rs->f, block, 1116 offset | RAM_SAVE_FLAG_PAGE); 1117 if (async) { 1118 qemu_put_buffer_async(rs->f, buf, TARGET_PAGE_SIZE, 1119 migrate_release_ram() & 1120 migration_in_postcopy()); 1121 } else { 1122 qemu_put_buffer(rs->f, buf, TARGET_PAGE_SIZE); 1123 } 1124 ram_counters.transferred += TARGET_PAGE_SIZE; 1125 ram_counters.normal++; 1126 return 1; 1127 } 1128 1129 /** 1130 * ram_save_page: send the given page to the stream 1131 * 1132 * Returns the number of pages written. 1133 * < 0 - error 1134 * >=0 - Number of pages written - this might legally be 0 1135 * if xbzrle noticed the page was the same. 1136 * 1137 * @rs: current RAM state 1138 * @block: block that contains the page we want to send 1139 * @offset: offset inside the block for the page 1140 * @last_stage: if we are at the completion stage 1141 */ 1142 static int ram_save_page(RAMState *rs, PageSearchStatus *pss, bool last_stage) 1143 { 1144 int pages = -1; 1145 uint8_t *p; 1146 bool send_async = true; 1147 RAMBlock *block = pss->block; 1148 ram_addr_t offset = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS; 1149 ram_addr_t current_addr = block->offset + offset; 1150 1151 p = block->host + offset; 1152 trace_ram_save_page(block->idstr, (uint64_t)offset, p); 1153 1154 XBZRLE_cache_lock(); 1155 if (!rs->ram_bulk_stage && !migration_in_postcopy() && 1156 migrate_use_xbzrle()) { 1157 pages = save_xbzrle_page(rs, &p, current_addr, block, 1158 offset, last_stage); 1159 if (!last_stage) { 1160 /* Can't send this cached data async, since the cache page 1161 * might get updated before it gets to the wire 1162 */ 1163 send_async = false; 1164 } 1165 } 1166 1167 /* XBZRLE overflow or normal page */ 1168 if (pages == -1) { 1169 pages = save_normal_page(rs, block, offset, p, send_async); 1170 } 1171 1172 XBZRLE_cache_unlock(); 1173 1174 return pages; 1175 } 1176 1177 static int ram_save_multifd_page(RAMState *rs, RAMBlock *block, 1178 ram_addr_t offset) 1179 { 1180 if (multifd_queue_page(rs->f, block, offset) < 0) { 1181 return -1; 1182 } 1183 ram_counters.normal++; 1184 1185 return 1; 1186 } 1187 1188 static bool do_compress_ram_page(QEMUFile *f, z_stream *stream, RAMBlock *block, 1189 ram_addr_t offset, uint8_t *source_buf) 1190 { 1191 RAMState *rs = ram_state; 1192 uint8_t *p = block->host + (offset & TARGET_PAGE_MASK); 1193 bool zero_page = false; 1194 int ret; 1195 1196 if (save_zero_page_to_file(rs, f, block, offset)) { 1197 zero_page = true; 1198 goto exit; 1199 } 1200 1201 save_page_header(rs, f, block, offset | RAM_SAVE_FLAG_COMPRESS_PAGE); 1202 1203 /* 1204 * copy it to a internal buffer to avoid it being modified by VM 1205 * so that we can catch up the error during compression and 1206 * decompression 1207 */ 1208 memcpy(source_buf, p, TARGET_PAGE_SIZE); 1209 ret = qemu_put_compression_data(f, stream, source_buf, TARGET_PAGE_SIZE); 1210 if (ret < 0) { 1211 qemu_file_set_error(migrate_get_current()->to_dst_file, ret); 1212 error_report("compressed data failed!"); 1213 return false; 1214 } 1215 1216 exit: 1217 ram_release_pages(block->idstr, offset & TARGET_PAGE_MASK, 1); 1218 return zero_page; 1219 } 1220 1221 static void 1222 update_compress_thread_counts(const CompressParam *param, int bytes_xmit) 1223 { 1224 ram_counters.transferred += bytes_xmit; 1225 1226 if (param->zero_page) { 1227 ram_counters.duplicate++; 1228 return; 1229 } 1230 1231 /* 8 means a header with RAM_SAVE_FLAG_CONTINUE. */ 1232 compression_counters.compressed_size += bytes_xmit - 8; 1233 compression_counters.pages++; 1234 } 1235 1236 static bool save_page_use_compression(RAMState *rs); 1237 1238 static void flush_compressed_data(RAMState *rs) 1239 { 1240 int idx, len, thread_count; 1241 1242 if (!save_page_use_compression(rs)) { 1243 return; 1244 } 1245 thread_count = migrate_compress_threads(); 1246 1247 qemu_mutex_lock(&comp_done_lock); 1248 for (idx = 0; idx < thread_count; idx++) { 1249 while (!comp_param[idx].done) { 1250 qemu_cond_wait(&comp_done_cond, &comp_done_lock); 1251 } 1252 } 1253 qemu_mutex_unlock(&comp_done_lock); 1254 1255 for (idx = 0; idx < thread_count; idx++) { 1256 qemu_mutex_lock(&comp_param[idx].mutex); 1257 if (!comp_param[idx].quit) { 1258 len = qemu_put_qemu_file(rs->f, comp_param[idx].file); 1259 /* 1260 * it's safe to fetch zero_page without holding comp_done_lock 1261 * as there is no further request submitted to the thread, 1262 * i.e, the thread should be waiting for a request at this point. 1263 */ 1264 update_compress_thread_counts(&comp_param[idx], len); 1265 } 1266 qemu_mutex_unlock(&comp_param[idx].mutex); 1267 } 1268 } 1269 1270 static inline void set_compress_params(CompressParam *param, RAMBlock *block, 1271 ram_addr_t offset) 1272 { 1273 param->block = block; 1274 param->offset = offset; 1275 } 1276 1277 static int compress_page_with_multi_thread(RAMState *rs, RAMBlock *block, 1278 ram_addr_t offset) 1279 { 1280 int idx, thread_count, bytes_xmit = -1, pages = -1; 1281 bool wait = migrate_compress_wait_thread(); 1282 1283 thread_count = migrate_compress_threads(); 1284 qemu_mutex_lock(&comp_done_lock); 1285 retry: 1286 for (idx = 0; idx < thread_count; idx++) { 1287 if (comp_param[idx].done) { 1288 comp_param[idx].done = false; 1289 bytes_xmit = qemu_put_qemu_file(rs->f, comp_param[idx].file); 1290 qemu_mutex_lock(&comp_param[idx].mutex); 1291 set_compress_params(&comp_param[idx], block, offset); 1292 qemu_cond_signal(&comp_param[idx].cond); 1293 qemu_mutex_unlock(&comp_param[idx].mutex); 1294 pages = 1; 1295 update_compress_thread_counts(&comp_param[idx], bytes_xmit); 1296 break; 1297 } 1298 } 1299 1300 /* 1301 * wait for the free thread if the user specifies 'compress-wait-thread', 1302 * otherwise we will post the page out in the main thread as normal page. 1303 */ 1304 if (pages < 0 && wait) { 1305 qemu_cond_wait(&comp_done_cond, &comp_done_lock); 1306 goto retry; 1307 } 1308 qemu_mutex_unlock(&comp_done_lock); 1309 1310 return pages; 1311 } 1312 1313 /** 1314 * find_dirty_block: find the next dirty page and update any state 1315 * associated with the search process. 1316 * 1317 * Returns true if a page is found 1318 * 1319 * @rs: current RAM state 1320 * @pss: data about the state of the current dirty page scan 1321 * @again: set to false if the search has scanned the whole of RAM 1322 */ 1323 static bool find_dirty_block(RAMState *rs, PageSearchStatus *pss, bool *again) 1324 { 1325 pss->page = migration_bitmap_find_dirty(rs, pss->block, pss->page); 1326 if (pss->complete_round && pss->block == rs->last_seen_block && 1327 pss->page >= rs->last_page) { 1328 /* 1329 * We've been once around the RAM and haven't found anything. 1330 * Give up. 1331 */ 1332 *again = false; 1333 return false; 1334 } 1335 if ((((ram_addr_t)pss->page) << TARGET_PAGE_BITS) 1336 >= pss->block->used_length) { 1337 /* Didn't find anything in this RAM Block */ 1338 pss->page = 0; 1339 pss->block = QLIST_NEXT_RCU(pss->block, next); 1340 if (!pss->block) { 1341 /* 1342 * If memory migration starts over, we will meet a dirtied page 1343 * which may still exists in compression threads's ring, so we 1344 * should flush the compressed data to make sure the new page 1345 * is not overwritten by the old one in the destination. 1346 * 1347 * Also If xbzrle is on, stop using the data compression at this 1348 * point. In theory, xbzrle can do better than compression. 1349 */ 1350 flush_compressed_data(rs); 1351 1352 /* Hit the end of the list */ 1353 pss->block = QLIST_FIRST_RCU(&ram_list.blocks); 1354 /* Flag that we've looped */ 1355 pss->complete_round = true; 1356 rs->ram_bulk_stage = false; 1357 } 1358 /* Didn't find anything this time, but try again on the new block */ 1359 *again = true; 1360 return false; 1361 } else { 1362 /* Can go around again, but... */ 1363 *again = true; 1364 /* We've found something so probably don't need to */ 1365 return true; 1366 } 1367 } 1368 1369 /** 1370 * unqueue_page: gets a page of the queue 1371 * 1372 * Helper for 'get_queued_page' - gets a page off the queue 1373 * 1374 * Returns the block of the page (or NULL if none available) 1375 * 1376 * @rs: current RAM state 1377 * @offset: used to return the offset within the RAMBlock 1378 */ 1379 static RAMBlock *unqueue_page(RAMState *rs, ram_addr_t *offset) 1380 { 1381 RAMBlock *block = NULL; 1382 1383 if (QSIMPLEQ_EMPTY_ATOMIC(&rs->src_page_requests)) { 1384 return NULL; 1385 } 1386 1387 QEMU_LOCK_GUARD(&rs->src_page_req_mutex); 1388 if (!QSIMPLEQ_EMPTY(&rs->src_page_requests)) { 1389 struct RAMSrcPageRequest *entry = 1390 QSIMPLEQ_FIRST(&rs->src_page_requests); 1391 block = entry->rb; 1392 *offset = entry->offset; 1393 1394 if (entry->len > TARGET_PAGE_SIZE) { 1395 entry->len -= TARGET_PAGE_SIZE; 1396 entry->offset += TARGET_PAGE_SIZE; 1397 } else { 1398 memory_region_unref(block->mr); 1399 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req); 1400 g_free(entry); 1401 migration_consume_urgent_request(); 1402 } 1403 } 1404 1405 return block; 1406 } 1407 1408 /** 1409 * get_queued_page: unqueue a page from the postcopy requests 1410 * 1411 * Skips pages that are already sent (!dirty) 1412 * 1413 * Returns true if a queued page is found 1414 * 1415 * @rs: current RAM state 1416 * @pss: data about the state of the current dirty page scan 1417 */ 1418 static bool get_queued_page(RAMState *rs, PageSearchStatus *pss) 1419 { 1420 RAMBlock *block; 1421 ram_addr_t offset; 1422 bool dirty; 1423 1424 do { 1425 block = unqueue_page(rs, &offset); 1426 /* 1427 * We're sending this page, and since it's postcopy nothing else 1428 * will dirty it, and we must make sure it doesn't get sent again 1429 * even if this queue request was received after the background 1430 * search already sent it. 1431 */ 1432 if (block) { 1433 unsigned long page; 1434 1435 page = offset >> TARGET_PAGE_BITS; 1436 dirty = test_bit(page, block->bmap); 1437 if (!dirty) { 1438 trace_get_queued_page_not_dirty(block->idstr, (uint64_t)offset, 1439 page); 1440 } else { 1441 trace_get_queued_page(block->idstr, (uint64_t)offset, page); 1442 } 1443 } 1444 1445 } while (block && !dirty); 1446 1447 if (block) { 1448 /* 1449 * As soon as we start servicing pages out of order, then we have 1450 * to kill the bulk stage, since the bulk stage assumes 1451 * in (migration_bitmap_find_and_reset_dirty) that every page is 1452 * dirty, that's no longer true. 1453 */ 1454 rs->ram_bulk_stage = false; 1455 1456 /* 1457 * We want the background search to continue from the queued page 1458 * since the guest is likely to want other pages near to the page 1459 * it just requested. 1460 */ 1461 pss->block = block; 1462 pss->page = offset >> TARGET_PAGE_BITS; 1463 1464 /* 1465 * This unqueued page would break the "one round" check, even is 1466 * really rare. 1467 */ 1468 pss->complete_round = false; 1469 } 1470 1471 return !!block; 1472 } 1473 1474 /** 1475 * migration_page_queue_free: drop any remaining pages in the ram 1476 * request queue 1477 * 1478 * It should be empty at the end anyway, but in error cases there may 1479 * be some left. in case that there is any page left, we drop it. 1480 * 1481 */ 1482 static void migration_page_queue_free(RAMState *rs) 1483 { 1484 struct RAMSrcPageRequest *mspr, *next_mspr; 1485 /* This queue generally should be empty - but in the case of a failed 1486 * migration might have some droppings in. 1487 */ 1488 RCU_READ_LOCK_GUARD(); 1489 QSIMPLEQ_FOREACH_SAFE(mspr, &rs->src_page_requests, next_req, next_mspr) { 1490 memory_region_unref(mspr->rb->mr); 1491 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req); 1492 g_free(mspr); 1493 } 1494 } 1495 1496 /** 1497 * ram_save_queue_pages: queue the page for transmission 1498 * 1499 * A request from postcopy destination for example. 1500 * 1501 * Returns zero on success or negative on error 1502 * 1503 * @rbname: Name of the RAMBLock of the request. NULL means the 1504 * same that last one. 1505 * @start: starting address from the start of the RAMBlock 1506 * @len: length (in bytes) to send 1507 */ 1508 int ram_save_queue_pages(const char *rbname, ram_addr_t start, ram_addr_t len) 1509 { 1510 RAMBlock *ramblock; 1511 RAMState *rs = ram_state; 1512 1513 ram_counters.postcopy_requests++; 1514 RCU_READ_LOCK_GUARD(); 1515 1516 if (!rbname) { 1517 /* Reuse last RAMBlock */ 1518 ramblock = rs->last_req_rb; 1519 1520 if (!ramblock) { 1521 /* 1522 * Shouldn't happen, we can't reuse the last RAMBlock if 1523 * it's the 1st request. 1524 */ 1525 error_report("ram_save_queue_pages no previous block"); 1526 return -1; 1527 } 1528 } else { 1529 ramblock = qemu_ram_block_by_name(rbname); 1530 1531 if (!ramblock) { 1532 /* We shouldn't be asked for a non-existent RAMBlock */ 1533 error_report("ram_save_queue_pages no block '%s'", rbname); 1534 return -1; 1535 } 1536 rs->last_req_rb = ramblock; 1537 } 1538 trace_ram_save_queue_pages(ramblock->idstr, start, len); 1539 if (start+len > ramblock->used_length) { 1540 error_report("%s request overrun start=" RAM_ADDR_FMT " len=" 1541 RAM_ADDR_FMT " blocklen=" RAM_ADDR_FMT, 1542 __func__, start, len, ramblock->used_length); 1543 return -1; 1544 } 1545 1546 struct RAMSrcPageRequest *new_entry = 1547 g_malloc0(sizeof(struct RAMSrcPageRequest)); 1548 new_entry->rb = ramblock; 1549 new_entry->offset = start; 1550 new_entry->len = len; 1551 1552 memory_region_ref(ramblock->mr); 1553 qemu_mutex_lock(&rs->src_page_req_mutex); 1554 QSIMPLEQ_INSERT_TAIL(&rs->src_page_requests, new_entry, next_req); 1555 migration_make_urgent_request(); 1556 qemu_mutex_unlock(&rs->src_page_req_mutex); 1557 1558 return 0; 1559 } 1560 1561 static bool save_page_use_compression(RAMState *rs) 1562 { 1563 if (!migrate_use_compression()) { 1564 return false; 1565 } 1566 1567 /* 1568 * If xbzrle is on, stop using the data compression after first 1569 * round of migration even if compression is enabled. In theory, 1570 * xbzrle can do better than compression. 1571 */ 1572 if (rs->ram_bulk_stage || !migrate_use_xbzrle()) { 1573 return true; 1574 } 1575 1576 return false; 1577 } 1578 1579 /* 1580 * try to compress the page before posting it out, return true if the page 1581 * has been properly handled by compression, otherwise needs other 1582 * paths to handle it 1583 */ 1584 static bool save_compress_page(RAMState *rs, RAMBlock *block, ram_addr_t offset) 1585 { 1586 if (!save_page_use_compression(rs)) { 1587 return false; 1588 } 1589 1590 /* 1591 * When starting the process of a new block, the first page of 1592 * the block should be sent out before other pages in the same 1593 * block, and all the pages in last block should have been sent 1594 * out, keeping this order is important, because the 'cont' flag 1595 * is used to avoid resending the block name. 1596 * 1597 * We post the fist page as normal page as compression will take 1598 * much CPU resource. 1599 */ 1600 if (block != rs->last_sent_block) { 1601 flush_compressed_data(rs); 1602 return false; 1603 } 1604 1605 if (compress_page_with_multi_thread(rs, block, offset) > 0) { 1606 return true; 1607 } 1608 1609 compression_counters.busy++; 1610 return false; 1611 } 1612 1613 /** 1614 * ram_save_target_page: save one target page 1615 * 1616 * Returns the number of pages written 1617 * 1618 * @rs: current RAM state 1619 * @pss: data about the page we want to send 1620 * @last_stage: if we are at the completion stage 1621 */ 1622 static int ram_save_target_page(RAMState *rs, PageSearchStatus *pss, 1623 bool last_stage) 1624 { 1625 RAMBlock *block = pss->block; 1626 ram_addr_t offset = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS; 1627 int res; 1628 1629 if (control_save_page(rs, block, offset, &res)) { 1630 return res; 1631 } 1632 1633 if (save_compress_page(rs, block, offset)) { 1634 return 1; 1635 } 1636 1637 res = save_zero_page(rs, block, offset); 1638 if (res > 0) { 1639 /* Must let xbzrle know, otherwise a previous (now 0'd) cached 1640 * page would be stale 1641 */ 1642 if (!save_page_use_compression(rs)) { 1643 XBZRLE_cache_lock(); 1644 xbzrle_cache_zero_page(rs, block->offset + offset); 1645 XBZRLE_cache_unlock(); 1646 } 1647 ram_release_pages(block->idstr, offset, res); 1648 return res; 1649 } 1650 1651 /* 1652 * Do not use multifd for: 1653 * 1. Compression as the first page in the new block should be posted out 1654 * before sending the compressed page 1655 * 2. In postcopy as one whole host page should be placed 1656 */ 1657 if (!save_page_use_compression(rs) && migrate_use_multifd() 1658 && !migration_in_postcopy()) { 1659 return ram_save_multifd_page(rs, block, offset); 1660 } 1661 1662 return ram_save_page(rs, pss, last_stage); 1663 } 1664 1665 /** 1666 * ram_save_host_page: save a whole host page 1667 * 1668 * Starting at *offset send pages up to the end of the current host 1669 * page. It's valid for the initial offset to point into the middle of 1670 * a host page in which case the remainder of the hostpage is sent. 1671 * Only dirty target pages are sent. Note that the host page size may 1672 * be a huge page for this block. 1673 * The saving stops at the boundary of the used_length of the block 1674 * if the RAMBlock isn't a multiple of the host page size. 1675 * 1676 * Returns the number of pages written or negative on error 1677 * 1678 * @rs: current RAM state 1679 * @ms: current migration state 1680 * @pss: data about the page we want to send 1681 * @last_stage: if we are at the completion stage 1682 */ 1683 static int ram_save_host_page(RAMState *rs, PageSearchStatus *pss, 1684 bool last_stage) 1685 { 1686 int tmppages, pages = 0; 1687 size_t pagesize_bits = 1688 qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS; 1689 1690 if (ramblock_is_ignored(pss->block)) { 1691 error_report("block %s should not be migrated !", pss->block->idstr); 1692 return 0; 1693 } 1694 1695 do { 1696 /* Check the pages is dirty and if it is send it */ 1697 if (!migration_bitmap_clear_dirty(rs, pss->block, pss->page)) { 1698 pss->page++; 1699 continue; 1700 } 1701 1702 tmppages = ram_save_target_page(rs, pss, last_stage); 1703 if (tmppages < 0) { 1704 return tmppages; 1705 } 1706 1707 pages += tmppages; 1708 pss->page++; 1709 /* Allow rate limiting to happen in the middle of huge pages */ 1710 migration_rate_limit(); 1711 } while ((pss->page & (pagesize_bits - 1)) && 1712 offset_in_ramblock(pss->block, 1713 ((ram_addr_t)pss->page) << TARGET_PAGE_BITS)); 1714 1715 /* The offset we leave with is the last one we looked at */ 1716 pss->page--; 1717 return pages; 1718 } 1719 1720 /** 1721 * ram_find_and_save_block: finds a dirty page and sends it to f 1722 * 1723 * Called within an RCU critical section. 1724 * 1725 * Returns the number of pages written where zero means no dirty pages, 1726 * or negative on error 1727 * 1728 * @rs: current RAM state 1729 * @last_stage: if we are at the completion stage 1730 * 1731 * On systems where host-page-size > target-page-size it will send all the 1732 * pages in a host page that are dirty. 1733 */ 1734 1735 static int ram_find_and_save_block(RAMState *rs, bool last_stage) 1736 { 1737 PageSearchStatus pss; 1738 int pages = 0; 1739 bool again, found; 1740 1741 /* No dirty page as there is zero RAM */ 1742 if (!ram_bytes_total()) { 1743 return pages; 1744 } 1745 1746 pss.block = rs->last_seen_block; 1747 pss.page = rs->last_page; 1748 pss.complete_round = false; 1749 1750 if (!pss.block) { 1751 pss.block = QLIST_FIRST_RCU(&ram_list.blocks); 1752 } 1753 1754 do { 1755 again = true; 1756 found = get_queued_page(rs, &pss); 1757 1758 if (!found) { 1759 /* priority queue empty, so just search for something dirty */ 1760 found = find_dirty_block(rs, &pss, &again); 1761 } 1762 1763 if (found) { 1764 pages = ram_save_host_page(rs, &pss, last_stage); 1765 } 1766 } while (!pages && again); 1767 1768 rs->last_seen_block = pss.block; 1769 rs->last_page = pss.page; 1770 1771 return pages; 1772 } 1773 1774 void acct_update_position(QEMUFile *f, size_t size, bool zero) 1775 { 1776 uint64_t pages = size / TARGET_PAGE_SIZE; 1777 1778 if (zero) { 1779 ram_counters.duplicate += pages; 1780 } else { 1781 ram_counters.normal += pages; 1782 ram_counters.transferred += size; 1783 qemu_update_position(f, size); 1784 } 1785 } 1786 1787 static uint64_t ram_bytes_total_common(bool count_ignored) 1788 { 1789 RAMBlock *block; 1790 uint64_t total = 0; 1791 1792 RCU_READ_LOCK_GUARD(); 1793 1794 if (count_ignored) { 1795 RAMBLOCK_FOREACH_MIGRATABLE(block) { 1796 total += block->used_length; 1797 } 1798 } else { 1799 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 1800 total += block->used_length; 1801 } 1802 } 1803 return total; 1804 } 1805 1806 uint64_t ram_bytes_total(void) 1807 { 1808 return ram_bytes_total_common(false); 1809 } 1810 1811 static void xbzrle_load_setup(void) 1812 { 1813 XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE); 1814 } 1815 1816 static void xbzrle_load_cleanup(void) 1817 { 1818 g_free(XBZRLE.decoded_buf); 1819 XBZRLE.decoded_buf = NULL; 1820 } 1821 1822 static void ram_state_cleanup(RAMState **rsp) 1823 { 1824 if (*rsp) { 1825 migration_page_queue_free(*rsp); 1826 qemu_mutex_destroy(&(*rsp)->bitmap_mutex); 1827 qemu_mutex_destroy(&(*rsp)->src_page_req_mutex); 1828 g_free(*rsp); 1829 *rsp = NULL; 1830 } 1831 } 1832 1833 static void xbzrle_cleanup(void) 1834 { 1835 XBZRLE_cache_lock(); 1836 if (XBZRLE.cache) { 1837 cache_fini(XBZRLE.cache); 1838 g_free(XBZRLE.encoded_buf); 1839 g_free(XBZRLE.current_buf); 1840 g_free(XBZRLE.zero_target_page); 1841 XBZRLE.cache = NULL; 1842 XBZRLE.encoded_buf = NULL; 1843 XBZRLE.current_buf = NULL; 1844 XBZRLE.zero_target_page = NULL; 1845 } 1846 XBZRLE_cache_unlock(); 1847 } 1848 1849 static void ram_save_cleanup(void *opaque) 1850 { 1851 RAMState **rsp = opaque; 1852 RAMBlock *block; 1853 1854 /* caller have hold iothread lock or is in a bh, so there is 1855 * no writing race against the migration bitmap 1856 */ 1857 memory_global_dirty_log_stop(); 1858 1859 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 1860 g_free(block->clear_bmap); 1861 block->clear_bmap = NULL; 1862 g_free(block->bmap); 1863 block->bmap = NULL; 1864 } 1865 1866 xbzrle_cleanup(); 1867 compress_threads_save_cleanup(); 1868 ram_state_cleanup(rsp); 1869 } 1870 1871 static void ram_state_reset(RAMState *rs) 1872 { 1873 rs->last_seen_block = NULL; 1874 rs->last_sent_block = NULL; 1875 rs->last_page = 0; 1876 rs->last_version = ram_list.version; 1877 rs->ram_bulk_stage = true; 1878 rs->fpo_enabled = false; 1879 } 1880 1881 #define MAX_WAIT 50 /* ms, half buffered_file limit */ 1882 1883 /* 1884 * 'expected' is the value you expect the bitmap mostly to be full 1885 * of; it won't bother printing lines that are all this value. 1886 * If 'todump' is null the migration bitmap is dumped. 1887 */ 1888 void ram_debug_dump_bitmap(unsigned long *todump, bool expected, 1889 unsigned long pages) 1890 { 1891 int64_t cur; 1892 int64_t linelen = 128; 1893 char linebuf[129]; 1894 1895 for (cur = 0; cur < pages; cur += linelen) { 1896 int64_t curb; 1897 bool found = false; 1898 /* 1899 * Last line; catch the case where the line length 1900 * is longer than remaining ram 1901 */ 1902 if (cur + linelen > pages) { 1903 linelen = pages - cur; 1904 } 1905 for (curb = 0; curb < linelen; curb++) { 1906 bool thisbit = test_bit(cur + curb, todump); 1907 linebuf[curb] = thisbit ? '1' : '.'; 1908 found = found || (thisbit != expected); 1909 } 1910 if (found) { 1911 linebuf[curb] = '\0'; 1912 fprintf(stderr, "0x%08" PRIx64 " : %s\n", cur, linebuf); 1913 } 1914 } 1915 } 1916 1917 /* **** functions for postcopy ***** */ 1918 1919 void ram_postcopy_migrated_memory_release(MigrationState *ms) 1920 { 1921 struct RAMBlock *block; 1922 1923 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 1924 unsigned long *bitmap = block->bmap; 1925 unsigned long range = block->used_length >> TARGET_PAGE_BITS; 1926 unsigned long run_start = find_next_zero_bit(bitmap, range, 0); 1927 1928 while (run_start < range) { 1929 unsigned long run_end = find_next_bit(bitmap, range, run_start + 1); 1930 ram_discard_range(block->idstr, 1931 ((ram_addr_t)run_start) << TARGET_PAGE_BITS, 1932 ((ram_addr_t)(run_end - run_start)) 1933 << TARGET_PAGE_BITS); 1934 run_start = find_next_zero_bit(bitmap, range, run_end + 1); 1935 } 1936 } 1937 } 1938 1939 /** 1940 * postcopy_send_discard_bm_ram: discard a RAMBlock 1941 * 1942 * Returns zero on success 1943 * 1944 * Callback from postcopy_each_ram_send_discard for each RAMBlock 1945 * 1946 * @ms: current migration state 1947 * @block: RAMBlock to discard 1948 */ 1949 static int postcopy_send_discard_bm_ram(MigrationState *ms, RAMBlock *block) 1950 { 1951 unsigned long end = block->used_length >> TARGET_PAGE_BITS; 1952 unsigned long current; 1953 unsigned long *bitmap = block->bmap; 1954 1955 for (current = 0; current < end; ) { 1956 unsigned long one = find_next_bit(bitmap, end, current); 1957 unsigned long zero, discard_length; 1958 1959 if (one >= end) { 1960 break; 1961 } 1962 1963 zero = find_next_zero_bit(bitmap, end, one + 1); 1964 1965 if (zero >= end) { 1966 discard_length = end - one; 1967 } else { 1968 discard_length = zero - one; 1969 } 1970 postcopy_discard_send_range(ms, one, discard_length); 1971 current = one + discard_length; 1972 } 1973 1974 return 0; 1975 } 1976 1977 /** 1978 * postcopy_each_ram_send_discard: discard all RAMBlocks 1979 * 1980 * Returns 0 for success or negative for error 1981 * 1982 * Utility for the outgoing postcopy code. 1983 * Calls postcopy_send_discard_bm_ram for each RAMBlock 1984 * passing it bitmap indexes and name. 1985 * (qemu_ram_foreach_block ends up passing unscaled lengths 1986 * which would mean postcopy code would have to deal with target page) 1987 * 1988 * @ms: current migration state 1989 */ 1990 static int postcopy_each_ram_send_discard(MigrationState *ms) 1991 { 1992 struct RAMBlock *block; 1993 int ret; 1994 1995 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 1996 postcopy_discard_send_init(ms, block->idstr); 1997 1998 /* 1999 * Postcopy sends chunks of bitmap over the wire, but it 2000 * just needs indexes at this point, avoids it having 2001 * target page specific code. 2002 */ 2003 ret = postcopy_send_discard_bm_ram(ms, block); 2004 postcopy_discard_send_finish(ms); 2005 if (ret) { 2006 return ret; 2007 } 2008 } 2009 2010 return 0; 2011 } 2012 2013 /** 2014 * postcopy_chunk_hostpages_pass: canonicalize bitmap in hostpages 2015 * 2016 * Helper for postcopy_chunk_hostpages; it's called twice to 2017 * canonicalize the two bitmaps, that are similar, but one is 2018 * inverted. 2019 * 2020 * Postcopy requires that all target pages in a hostpage are dirty or 2021 * clean, not a mix. This function canonicalizes the bitmaps. 2022 * 2023 * @ms: current migration state 2024 * @block: block that contains the page we want to canonicalize 2025 */ 2026 static void postcopy_chunk_hostpages_pass(MigrationState *ms, RAMBlock *block) 2027 { 2028 RAMState *rs = ram_state; 2029 unsigned long *bitmap = block->bmap; 2030 unsigned int host_ratio = block->page_size / TARGET_PAGE_SIZE; 2031 unsigned long pages = block->used_length >> TARGET_PAGE_BITS; 2032 unsigned long run_start; 2033 2034 if (block->page_size == TARGET_PAGE_SIZE) { 2035 /* Easy case - TPS==HPS for a non-huge page RAMBlock */ 2036 return; 2037 } 2038 2039 /* Find a dirty page */ 2040 run_start = find_next_bit(bitmap, pages, 0); 2041 2042 while (run_start < pages) { 2043 2044 /* 2045 * If the start of this run of pages is in the middle of a host 2046 * page, then we need to fixup this host page. 2047 */ 2048 if (QEMU_IS_ALIGNED(run_start, host_ratio)) { 2049 /* Find the end of this run */ 2050 run_start = find_next_zero_bit(bitmap, pages, run_start + 1); 2051 /* 2052 * If the end isn't at the start of a host page, then the 2053 * run doesn't finish at the end of a host page 2054 * and we need to discard. 2055 */ 2056 } 2057 2058 if (!QEMU_IS_ALIGNED(run_start, host_ratio)) { 2059 unsigned long page; 2060 unsigned long fixup_start_addr = QEMU_ALIGN_DOWN(run_start, 2061 host_ratio); 2062 run_start = QEMU_ALIGN_UP(run_start, host_ratio); 2063 2064 /* Clean up the bitmap */ 2065 for (page = fixup_start_addr; 2066 page < fixup_start_addr + host_ratio; page++) { 2067 /* 2068 * Remark them as dirty, updating the count for any pages 2069 * that weren't previously dirty. 2070 */ 2071 rs->migration_dirty_pages += !test_and_set_bit(page, bitmap); 2072 } 2073 } 2074 2075 /* Find the next dirty page for the next iteration */ 2076 run_start = find_next_bit(bitmap, pages, run_start); 2077 } 2078 } 2079 2080 /** 2081 * postcopy_chunk_hostpages: discard any partially sent host page 2082 * 2083 * Utility for the outgoing postcopy code. 2084 * 2085 * Discard any partially sent host-page size chunks, mark any partially 2086 * dirty host-page size chunks as all dirty. In this case the host-page 2087 * is the host-page for the particular RAMBlock, i.e. it might be a huge page 2088 * 2089 * Returns zero on success 2090 * 2091 * @ms: current migration state 2092 * @block: block we want to work with 2093 */ 2094 static int postcopy_chunk_hostpages(MigrationState *ms, RAMBlock *block) 2095 { 2096 postcopy_discard_send_init(ms, block->idstr); 2097 2098 /* 2099 * Ensure that all partially dirty host pages are made fully dirty. 2100 */ 2101 postcopy_chunk_hostpages_pass(ms, block); 2102 2103 postcopy_discard_send_finish(ms); 2104 return 0; 2105 } 2106 2107 /** 2108 * ram_postcopy_send_discard_bitmap: transmit the discard bitmap 2109 * 2110 * Returns zero on success 2111 * 2112 * Transmit the set of pages to be discarded after precopy to the target 2113 * these are pages that: 2114 * a) Have been previously transmitted but are now dirty again 2115 * b) Pages that have never been transmitted, this ensures that 2116 * any pages on the destination that have been mapped by background 2117 * tasks get discarded (transparent huge pages is the specific concern) 2118 * Hopefully this is pretty sparse 2119 * 2120 * @ms: current migration state 2121 */ 2122 int ram_postcopy_send_discard_bitmap(MigrationState *ms) 2123 { 2124 RAMState *rs = ram_state; 2125 RAMBlock *block; 2126 int ret; 2127 2128 RCU_READ_LOCK_GUARD(); 2129 2130 /* This should be our last sync, the src is now paused */ 2131 migration_bitmap_sync(rs); 2132 2133 /* Easiest way to make sure we don't resume in the middle of a host-page */ 2134 rs->last_seen_block = NULL; 2135 rs->last_sent_block = NULL; 2136 rs->last_page = 0; 2137 2138 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 2139 /* Deal with TPS != HPS and huge pages */ 2140 ret = postcopy_chunk_hostpages(ms, block); 2141 if (ret) { 2142 return ret; 2143 } 2144 2145 #ifdef DEBUG_POSTCOPY 2146 ram_debug_dump_bitmap(block->bmap, true, 2147 block->used_length >> TARGET_PAGE_BITS); 2148 #endif 2149 } 2150 trace_ram_postcopy_send_discard_bitmap(); 2151 2152 return postcopy_each_ram_send_discard(ms); 2153 } 2154 2155 /** 2156 * ram_discard_range: discard dirtied pages at the beginning of postcopy 2157 * 2158 * Returns zero on success 2159 * 2160 * @rbname: name of the RAMBlock of the request. NULL means the 2161 * same that last one. 2162 * @start: RAMBlock starting page 2163 * @length: RAMBlock size 2164 */ 2165 int ram_discard_range(const char *rbname, uint64_t start, size_t length) 2166 { 2167 trace_ram_discard_range(rbname, start, length); 2168 2169 RCU_READ_LOCK_GUARD(); 2170 RAMBlock *rb = qemu_ram_block_by_name(rbname); 2171 2172 if (!rb) { 2173 error_report("ram_discard_range: Failed to find block '%s'", rbname); 2174 return -1; 2175 } 2176 2177 /* 2178 * On source VM, we don't need to update the received bitmap since 2179 * we don't even have one. 2180 */ 2181 if (rb->receivedmap) { 2182 bitmap_clear(rb->receivedmap, start >> qemu_target_page_bits(), 2183 length >> qemu_target_page_bits()); 2184 } 2185 2186 return ram_block_discard_range(rb, start, length); 2187 } 2188 2189 /* 2190 * For every allocation, we will try not to crash the VM if the 2191 * allocation failed. 2192 */ 2193 static int xbzrle_init(void) 2194 { 2195 Error *local_err = NULL; 2196 2197 if (!migrate_use_xbzrle()) { 2198 return 0; 2199 } 2200 2201 XBZRLE_cache_lock(); 2202 2203 XBZRLE.zero_target_page = g_try_malloc0(TARGET_PAGE_SIZE); 2204 if (!XBZRLE.zero_target_page) { 2205 error_report("%s: Error allocating zero page", __func__); 2206 goto err_out; 2207 } 2208 2209 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size(), 2210 TARGET_PAGE_SIZE, &local_err); 2211 if (!XBZRLE.cache) { 2212 error_report_err(local_err); 2213 goto free_zero_page; 2214 } 2215 2216 XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE); 2217 if (!XBZRLE.encoded_buf) { 2218 error_report("%s: Error allocating encoded_buf", __func__); 2219 goto free_cache; 2220 } 2221 2222 XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE); 2223 if (!XBZRLE.current_buf) { 2224 error_report("%s: Error allocating current_buf", __func__); 2225 goto free_encoded_buf; 2226 } 2227 2228 /* We are all good */ 2229 XBZRLE_cache_unlock(); 2230 return 0; 2231 2232 free_encoded_buf: 2233 g_free(XBZRLE.encoded_buf); 2234 XBZRLE.encoded_buf = NULL; 2235 free_cache: 2236 cache_fini(XBZRLE.cache); 2237 XBZRLE.cache = NULL; 2238 free_zero_page: 2239 g_free(XBZRLE.zero_target_page); 2240 XBZRLE.zero_target_page = NULL; 2241 err_out: 2242 XBZRLE_cache_unlock(); 2243 return -ENOMEM; 2244 } 2245 2246 static int ram_state_init(RAMState **rsp) 2247 { 2248 *rsp = g_try_new0(RAMState, 1); 2249 2250 if (!*rsp) { 2251 error_report("%s: Init ramstate fail", __func__); 2252 return -1; 2253 } 2254 2255 qemu_mutex_init(&(*rsp)->bitmap_mutex); 2256 qemu_mutex_init(&(*rsp)->src_page_req_mutex); 2257 QSIMPLEQ_INIT(&(*rsp)->src_page_requests); 2258 2259 /* 2260 * Count the total number of pages used by ram blocks not including any 2261 * gaps due to alignment or unplugs. 2262 * This must match with the initial values of dirty bitmap. 2263 */ 2264 (*rsp)->migration_dirty_pages = ram_bytes_total() >> TARGET_PAGE_BITS; 2265 ram_state_reset(*rsp); 2266 2267 return 0; 2268 } 2269 2270 static void ram_list_init_bitmaps(void) 2271 { 2272 MigrationState *ms = migrate_get_current(); 2273 RAMBlock *block; 2274 unsigned long pages; 2275 uint8_t shift; 2276 2277 /* Skip setting bitmap if there is no RAM */ 2278 if (ram_bytes_total()) { 2279 shift = ms->clear_bitmap_shift; 2280 if (shift > CLEAR_BITMAP_SHIFT_MAX) { 2281 error_report("clear_bitmap_shift (%u) too big, using " 2282 "max value (%u)", shift, CLEAR_BITMAP_SHIFT_MAX); 2283 shift = CLEAR_BITMAP_SHIFT_MAX; 2284 } else if (shift < CLEAR_BITMAP_SHIFT_MIN) { 2285 error_report("clear_bitmap_shift (%u) too small, using " 2286 "min value (%u)", shift, CLEAR_BITMAP_SHIFT_MIN); 2287 shift = CLEAR_BITMAP_SHIFT_MIN; 2288 } 2289 2290 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 2291 pages = block->max_length >> TARGET_PAGE_BITS; 2292 /* 2293 * The initial dirty bitmap for migration must be set with all 2294 * ones to make sure we'll migrate every guest RAM page to 2295 * destination. 2296 * Here we set RAMBlock.bmap all to 1 because when rebegin a 2297 * new migration after a failed migration, ram_list. 2298 * dirty_memory[DIRTY_MEMORY_MIGRATION] don't include the whole 2299 * guest memory. 2300 */ 2301 block->bmap = bitmap_new(pages); 2302 bitmap_set(block->bmap, 0, pages); 2303 block->clear_bmap_shift = shift; 2304 block->clear_bmap = bitmap_new(clear_bmap_size(pages, shift)); 2305 } 2306 } 2307 } 2308 2309 static void ram_init_bitmaps(RAMState *rs) 2310 { 2311 /* For memory_global_dirty_log_start below. */ 2312 qemu_mutex_lock_iothread(); 2313 qemu_mutex_lock_ramlist(); 2314 2315 WITH_RCU_READ_LOCK_GUARD() { 2316 ram_list_init_bitmaps(); 2317 memory_global_dirty_log_start(); 2318 migration_bitmap_sync_precopy(rs); 2319 } 2320 qemu_mutex_unlock_ramlist(); 2321 qemu_mutex_unlock_iothread(); 2322 } 2323 2324 static int ram_init_all(RAMState **rsp) 2325 { 2326 if (ram_state_init(rsp)) { 2327 return -1; 2328 } 2329 2330 if (xbzrle_init()) { 2331 ram_state_cleanup(rsp); 2332 return -1; 2333 } 2334 2335 ram_init_bitmaps(*rsp); 2336 2337 return 0; 2338 } 2339 2340 static void ram_state_resume_prepare(RAMState *rs, QEMUFile *out) 2341 { 2342 RAMBlock *block; 2343 uint64_t pages = 0; 2344 2345 /* 2346 * Postcopy is not using xbzrle/compression, so no need for that. 2347 * Also, since source are already halted, we don't need to care 2348 * about dirty page logging as well. 2349 */ 2350 2351 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 2352 pages += bitmap_count_one(block->bmap, 2353 block->used_length >> TARGET_PAGE_BITS); 2354 } 2355 2356 /* This may not be aligned with current bitmaps. Recalculate. */ 2357 rs->migration_dirty_pages = pages; 2358 2359 rs->last_seen_block = NULL; 2360 rs->last_sent_block = NULL; 2361 rs->last_page = 0; 2362 rs->last_version = ram_list.version; 2363 /* 2364 * Disable the bulk stage, otherwise we'll resend the whole RAM no 2365 * matter what we have sent. 2366 */ 2367 rs->ram_bulk_stage = false; 2368 2369 /* Update RAMState cache of output QEMUFile */ 2370 rs->f = out; 2371 2372 trace_ram_state_resume_prepare(pages); 2373 } 2374 2375 /* 2376 * This function clears bits of the free pages reported by the caller from the 2377 * migration dirty bitmap. @addr is the host address corresponding to the 2378 * start of the continuous guest free pages, and @len is the total bytes of 2379 * those pages. 2380 */ 2381 void qemu_guest_free_page_hint(void *addr, size_t len) 2382 { 2383 RAMBlock *block; 2384 ram_addr_t offset; 2385 size_t used_len, start, npages; 2386 MigrationState *s = migrate_get_current(); 2387 2388 /* This function is currently expected to be used during live migration */ 2389 if (!migration_is_setup_or_active(s->state)) { 2390 return; 2391 } 2392 2393 for (; len > 0; len -= used_len, addr += used_len) { 2394 block = qemu_ram_block_from_host(addr, false, &offset); 2395 if (unlikely(!block || offset >= block->used_length)) { 2396 /* 2397 * The implementation might not support RAMBlock resize during 2398 * live migration, but it could happen in theory with future 2399 * updates. So we add a check here to capture that case. 2400 */ 2401 error_report_once("%s unexpected error", __func__); 2402 return; 2403 } 2404 2405 if (len <= block->used_length - offset) { 2406 used_len = len; 2407 } else { 2408 used_len = block->used_length - offset; 2409 } 2410 2411 start = offset >> TARGET_PAGE_BITS; 2412 npages = used_len >> TARGET_PAGE_BITS; 2413 2414 qemu_mutex_lock(&ram_state->bitmap_mutex); 2415 ram_state->migration_dirty_pages -= 2416 bitmap_count_one_with_offset(block->bmap, start, npages); 2417 bitmap_clear(block->bmap, start, npages); 2418 qemu_mutex_unlock(&ram_state->bitmap_mutex); 2419 } 2420 } 2421 2422 /* 2423 * Each of ram_save_setup, ram_save_iterate and ram_save_complete has 2424 * long-running RCU critical section. When rcu-reclaims in the code 2425 * start to become numerous it will be necessary to reduce the 2426 * granularity of these critical sections. 2427 */ 2428 2429 /** 2430 * ram_save_setup: Setup RAM for migration 2431 * 2432 * Returns zero to indicate success and negative for error 2433 * 2434 * @f: QEMUFile where to send the data 2435 * @opaque: RAMState pointer 2436 */ 2437 static int ram_save_setup(QEMUFile *f, void *opaque) 2438 { 2439 RAMState **rsp = opaque; 2440 RAMBlock *block; 2441 2442 if (compress_threads_save_setup()) { 2443 return -1; 2444 } 2445 2446 /* migration has already setup the bitmap, reuse it. */ 2447 if (!migration_in_colo_state()) { 2448 if (ram_init_all(rsp) != 0) { 2449 compress_threads_save_cleanup(); 2450 return -1; 2451 } 2452 } 2453 (*rsp)->f = f; 2454 2455 WITH_RCU_READ_LOCK_GUARD() { 2456 qemu_put_be64(f, ram_bytes_total_common(true) | RAM_SAVE_FLAG_MEM_SIZE); 2457 2458 RAMBLOCK_FOREACH_MIGRATABLE(block) { 2459 qemu_put_byte(f, strlen(block->idstr)); 2460 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr)); 2461 qemu_put_be64(f, block->used_length); 2462 if (migrate_postcopy_ram() && block->page_size != 2463 qemu_host_page_size) { 2464 qemu_put_be64(f, block->page_size); 2465 } 2466 if (migrate_ignore_shared()) { 2467 qemu_put_be64(f, block->mr->addr); 2468 } 2469 } 2470 } 2471 2472 ram_control_before_iterate(f, RAM_CONTROL_SETUP); 2473 ram_control_after_iterate(f, RAM_CONTROL_SETUP); 2474 2475 multifd_send_sync_main(f); 2476 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 2477 qemu_fflush(f); 2478 2479 return 0; 2480 } 2481 2482 /** 2483 * ram_save_iterate: iterative stage for migration 2484 * 2485 * Returns zero to indicate success and negative for error 2486 * 2487 * @f: QEMUFile where to send the data 2488 * @opaque: RAMState pointer 2489 */ 2490 static int ram_save_iterate(QEMUFile *f, void *opaque) 2491 { 2492 RAMState **temp = opaque; 2493 RAMState *rs = *temp; 2494 int ret = 0; 2495 int i; 2496 int64_t t0; 2497 int done = 0; 2498 2499 if (blk_mig_bulk_active()) { 2500 /* Avoid transferring ram during bulk phase of block migration as 2501 * the bulk phase will usually take a long time and transferring 2502 * ram updates during that time is pointless. */ 2503 goto out; 2504 } 2505 2506 WITH_RCU_READ_LOCK_GUARD() { 2507 if (ram_list.version != rs->last_version) { 2508 ram_state_reset(rs); 2509 } 2510 2511 /* Read version before ram_list.blocks */ 2512 smp_rmb(); 2513 2514 ram_control_before_iterate(f, RAM_CONTROL_ROUND); 2515 2516 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 2517 i = 0; 2518 while ((ret = qemu_file_rate_limit(f)) == 0 || 2519 !QSIMPLEQ_EMPTY(&rs->src_page_requests)) { 2520 int pages; 2521 2522 if (qemu_file_get_error(f)) { 2523 break; 2524 } 2525 2526 pages = ram_find_and_save_block(rs, false); 2527 /* no more pages to sent */ 2528 if (pages == 0) { 2529 done = 1; 2530 break; 2531 } 2532 2533 if (pages < 0) { 2534 qemu_file_set_error(f, pages); 2535 break; 2536 } 2537 2538 rs->target_page_count += pages; 2539 2540 /* 2541 * During postcopy, it is necessary to make sure one whole host 2542 * page is sent in one chunk. 2543 */ 2544 if (migrate_postcopy_ram()) { 2545 flush_compressed_data(rs); 2546 } 2547 2548 /* 2549 * we want to check in the 1st loop, just in case it was the 1st 2550 * time and we had to sync the dirty bitmap. 2551 * qemu_clock_get_ns() is a bit expensive, so we only check each 2552 * some iterations 2553 */ 2554 if ((i & 63) == 0) { 2555 uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) / 2556 1000000; 2557 if (t1 > MAX_WAIT) { 2558 trace_ram_save_iterate_big_wait(t1, i); 2559 break; 2560 } 2561 } 2562 i++; 2563 } 2564 } 2565 2566 /* 2567 * Must occur before EOS (or any QEMUFile operation) 2568 * because of RDMA protocol. 2569 */ 2570 ram_control_after_iterate(f, RAM_CONTROL_ROUND); 2571 2572 out: 2573 if (ret >= 0 2574 && migration_is_setup_or_active(migrate_get_current()->state)) { 2575 multifd_send_sync_main(rs->f); 2576 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 2577 qemu_fflush(f); 2578 ram_counters.transferred += 8; 2579 2580 ret = qemu_file_get_error(f); 2581 } 2582 if (ret < 0) { 2583 return ret; 2584 } 2585 2586 return done; 2587 } 2588 2589 /** 2590 * ram_save_complete: function called to send the remaining amount of ram 2591 * 2592 * Returns zero to indicate success or negative on error 2593 * 2594 * Called with iothread lock 2595 * 2596 * @f: QEMUFile where to send the data 2597 * @opaque: RAMState pointer 2598 */ 2599 static int ram_save_complete(QEMUFile *f, void *opaque) 2600 { 2601 RAMState **temp = opaque; 2602 RAMState *rs = *temp; 2603 int ret = 0; 2604 2605 WITH_RCU_READ_LOCK_GUARD() { 2606 if (!migration_in_postcopy()) { 2607 migration_bitmap_sync_precopy(rs); 2608 } 2609 2610 ram_control_before_iterate(f, RAM_CONTROL_FINISH); 2611 2612 /* try transferring iterative blocks of memory */ 2613 2614 /* flush all remaining blocks regardless of rate limiting */ 2615 while (true) { 2616 int pages; 2617 2618 pages = ram_find_and_save_block(rs, !migration_in_colo_state()); 2619 /* no more blocks to sent */ 2620 if (pages == 0) { 2621 break; 2622 } 2623 if (pages < 0) { 2624 ret = pages; 2625 break; 2626 } 2627 } 2628 2629 flush_compressed_data(rs); 2630 ram_control_after_iterate(f, RAM_CONTROL_FINISH); 2631 } 2632 2633 if (ret >= 0) { 2634 multifd_send_sync_main(rs->f); 2635 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 2636 qemu_fflush(f); 2637 } 2638 2639 return ret; 2640 } 2641 2642 static void ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size, 2643 uint64_t *res_precopy_only, 2644 uint64_t *res_compatible, 2645 uint64_t *res_postcopy_only) 2646 { 2647 RAMState **temp = opaque; 2648 RAMState *rs = *temp; 2649 uint64_t remaining_size; 2650 2651 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE; 2652 2653 if (!migration_in_postcopy() && 2654 remaining_size < max_size) { 2655 qemu_mutex_lock_iothread(); 2656 WITH_RCU_READ_LOCK_GUARD() { 2657 migration_bitmap_sync_precopy(rs); 2658 } 2659 qemu_mutex_unlock_iothread(); 2660 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE; 2661 } 2662 2663 if (migrate_postcopy_ram()) { 2664 /* We can do postcopy, and all the data is postcopiable */ 2665 *res_compatible += remaining_size; 2666 } else { 2667 *res_precopy_only += remaining_size; 2668 } 2669 } 2670 2671 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host) 2672 { 2673 unsigned int xh_len; 2674 int xh_flags; 2675 uint8_t *loaded_data; 2676 2677 /* extract RLE header */ 2678 xh_flags = qemu_get_byte(f); 2679 xh_len = qemu_get_be16(f); 2680 2681 if (xh_flags != ENCODING_FLAG_XBZRLE) { 2682 error_report("Failed to load XBZRLE page - wrong compression!"); 2683 return -1; 2684 } 2685 2686 if (xh_len > TARGET_PAGE_SIZE) { 2687 error_report("Failed to load XBZRLE page - len overflow!"); 2688 return -1; 2689 } 2690 loaded_data = XBZRLE.decoded_buf; 2691 /* load data and decode */ 2692 /* it can change loaded_data to point to an internal buffer */ 2693 qemu_get_buffer_in_place(f, &loaded_data, xh_len); 2694 2695 /* decode RLE */ 2696 if (xbzrle_decode_buffer(loaded_data, xh_len, host, 2697 TARGET_PAGE_SIZE) == -1) { 2698 error_report("Failed to load XBZRLE page - decode error!"); 2699 return -1; 2700 } 2701 2702 return 0; 2703 } 2704 2705 /** 2706 * ram_block_from_stream: read a RAMBlock id from the migration stream 2707 * 2708 * Must be called from within a rcu critical section. 2709 * 2710 * Returns a pointer from within the RCU-protected ram_list. 2711 * 2712 * @f: QEMUFile where to read the data from 2713 * @flags: Page flags (mostly to see if it's a continuation of previous block) 2714 */ 2715 static inline RAMBlock *ram_block_from_stream(QEMUFile *f, int flags) 2716 { 2717 static RAMBlock *block = NULL; 2718 char id[256]; 2719 uint8_t len; 2720 2721 if (flags & RAM_SAVE_FLAG_CONTINUE) { 2722 if (!block) { 2723 error_report("Ack, bad migration stream!"); 2724 return NULL; 2725 } 2726 return block; 2727 } 2728 2729 len = qemu_get_byte(f); 2730 qemu_get_buffer(f, (uint8_t *)id, len); 2731 id[len] = 0; 2732 2733 block = qemu_ram_block_by_name(id); 2734 if (!block) { 2735 error_report("Can't find block %s", id); 2736 return NULL; 2737 } 2738 2739 if (ramblock_is_ignored(block)) { 2740 error_report("block %s should not be migrated !", id); 2741 return NULL; 2742 } 2743 2744 return block; 2745 } 2746 2747 static inline void *host_from_ram_block_offset(RAMBlock *block, 2748 ram_addr_t offset) 2749 { 2750 if (!offset_in_ramblock(block, offset)) { 2751 return NULL; 2752 } 2753 2754 return block->host + offset; 2755 } 2756 2757 static inline void *colo_cache_from_block_offset(RAMBlock *block, 2758 ram_addr_t offset, bool record_bitmap) 2759 { 2760 if (!offset_in_ramblock(block, offset)) { 2761 return NULL; 2762 } 2763 if (!block->colo_cache) { 2764 error_report("%s: colo_cache is NULL in block :%s", 2765 __func__, block->idstr); 2766 return NULL; 2767 } 2768 2769 /* 2770 * During colo checkpoint, we need bitmap of these migrated pages. 2771 * It help us to decide which pages in ram cache should be flushed 2772 * into VM's RAM later. 2773 */ 2774 if (record_bitmap && 2775 !test_and_set_bit(offset >> TARGET_PAGE_BITS, block->bmap)) { 2776 ram_state->migration_dirty_pages++; 2777 } 2778 return block->colo_cache + offset; 2779 } 2780 2781 /** 2782 * ram_handle_compressed: handle the zero page case 2783 * 2784 * If a page (or a whole RDMA chunk) has been 2785 * determined to be zero, then zap it. 2786 * 2787 * @host: host address for the zero page 2788 * @ch: what the page is filled from. We only support zero 2789 * @size: size of the zero page 2790 */ 2791 void ram_handle_compressed(void *host, uint8_t ch, uint64_t size) 2792 { 2793 if (ch != 0 || !is_zero_range(host, size)) { 2794 memset(host, ch, size); 2795 } 2796 } 2797 2798 /* return the size after decompression, or negative value on error */ 2799 static int 2800 qemu_uncompress_data(z_stream *stream, uint8_t *dest, size_t dest_len, 2801 const uint8_t *source, size_t source_len) 2802 { 2803 int err; 2804 2805 err = inflateReset(stream); 2806 if (err != Z_OK) { 2807 return -1; 2808 } 2809 2810 stream->avail_in = source_len; 2811 stream->next_in = (uint8_t *)source; 2812 stream->avail_out = dest_len; 2813 stream->next_out = dest; 2814 2815 err = inflate(stream, Z_NO_FLUSH); 2816 if (err != Z_STREAM_END) { 2817 return -1; 2818 } 2819 2820 return stream->total_out; 2821 } 2822 2823 static void *do_data_decompress(void *opaque) 2824 { 2825 DecompressParam *param = opaque; 2826 unsigned long pagesize; 2827 uint8_t *des; 2828 int len, ret; 2829 2830 qemu_mutex_lock(¶m->mutex); 2831 while (!param->quit) { 2832 if (param->des) { 2833 des = param->des; 2834 len = param->len; 2835 param->des = 0; 2836 qemu_mutex_unlock(¶m->mutex); 2837 2838 pagesize = TARGET_PAGE_SIZE; 2839 2840 ret = qemu_uncompress_data(¶m->stream, des, pagesize, 2841 param->compbuf, len); 2842 if (ret < 0 && migrate_get_current()->decompress_error_check) { 2843 error_report("decompress data failed"); 2844 qemu_file_set_error(decomp_file, ret); 2845 } 2846 2847 qemu_mutex_lock(&decomp_done_lock); 2848 param->done = true; 2849 qemu_cond_signal(&decomp_done_cond); 2850 qemu_mutex_unlock(&decomp_done_lock); 2851 2852 qemu_mutex_lock(¶m->mutex); 2853 } else { 2854 qemu_cond_wait(¶m->cond, ¶m->mutex); 2855 } 2856 } 2857 qemu_mutex_unlock(¶m->mutex); 2858 2859 return NULL; 2860 } 2861 2862 static int wait_for_decompress_done(void) 2863 { 2864 int idx, thread_count; 2865 2866 if (!migrate_use_compression()) { 2867 return 0; 2868 } 2869 2870 thread_count = migrate_decompress_threads(); 2871 qemu_mutex_lock(&decomp_done_lock); 2872 for (idx = 0; idx < thread_count; idx++) { 2873 while (!decomp_param[idx].done) { 2874 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock); 2875 } 2876 } 2877 qemu_mutex_unlock(&decomp_done_lock); 2878 return qemu_file_get_error(decomp_file); 2879 } 2880 2881 static void compress_threads_load_cleanup(void) 2882 { 2883 int i, thread_count; 2884 2885 if (!migrate_use_compression()) { 2886 return; 2887 } 2888 thread_count = migrate_decompress_threads(); 2889 for (i = 0; i < thread_count; i++) { 2890 /* 2891 * we use it as a indicator which shows if the thread is 2892 * properly init'd or not 2893 */ 2894 if (!decomp_param[i].compbuf) { 2895 break; 2896 } 2897 2898 qemu_mutex_lock(&decomp_param[i].mutex); 2899 decomp_param[i].quit = true; 2900 qemu_cond_signal(&decomp_param[i].cond); 2901 qemu_mutex_unlock(&decomp_param[i].mutex); 2902 } 2903 for (i = 0; i < thread_count; i++) { 2904 if (!decomp_param[i].compbuf) { 2905 break; 2906 } 2907 2908 qemu_thread_join(decompress_threads + i); 2909 qemu_mutex_destroy(&decomp_param[i].mutex); 2910 qemu_cond_destroy(&decomp_param[i].cond); 2911 inflateEnd(&decomp_param[i].stream); 2912 g_free(decomp_param[i].compbuf); 2913 decomp_param[i].compbuf = NULL; 2914 } 2915 g_free(decompress_threads); 2916 g_free(decomp_param); 2917 decompress_threads = NULL; 2918 decomp_param = NULL; 2919 decomp_file = NULL; 2920 } 2921 2922 static int compress_threads_load_setup(QEMUFile *f) 2923 { 2924 int i, thread_count; 2925 2926 if (!migrate_use_compression()) { 2927 return 0; 2928 } 2929 2930 thread_count = migrate_decompress_threads(); 2931 decompress_threads = g_new0(QemuThread, thread_count); 2932 decomp_param = g_new0(DecompressParam, thread_count); 2933 qemu_mutex_init(&decomp_done_lock); 2934 qemu_cond_init(&decomp_done_cond); 2935 decomp_file = f; 2936 for (i = 0; i < thread_count; i++) { 2937 if (inflateInit(&decomp_param[i].stream) != Z_OK) { 2938 goto exit; 2939 } 2940 2941 decomp_param[i].compbuf = g_malloc0(compressBound(TARGET_PAGE_SIZE)); 2942 qemu_mutex_init(&decomp_param[i].mutex); 2943 qemu_cond_init(&decomp_param[i].cond); 2944 decomp_param[i].done = true; 2945 decomp_param[i].quit = false; 2946 qemu_thread_create(decompress_threads + i, "decompress", 2947 do_data_decompress, decomp_param + i, 2948 QEMU_THREAD_JOINABLE); 2949 } 2950 return 0; 2951 exit: 2952 compress_threads_load_cleanup(); 2953 return -1; 2954 } 2955 2956 static void decompress_data_with_multi_threads(QEMUFile *f, 2957 void *host, int len) 2958 { 2959 int idx, thread_count; 2960 2961 thread_count = migrate_decompress_threads(); 2962 qemu_mutex_lock(&decomp_done_lock); 2963 while (true) { 2964 for (idx = 0; idx < thread_count; idx++) { 2965 if (decomp_param[idx].done) { 2966 decomp_param[idx].done = false; 2967 qemu_mutex_lock(&decomp_param[idx].mutex); 2968 qemu_get_buffer(f, decomp_param[idx].compbuf, len); 2969 decomp_param[idx].des = host; 2970 decomp_param[idx].len = len; 2971 qemu_cond_signal(&decomp_param[idx].cond); 2972 qemu_mutex_unlock(&decomp_param[idx].mutex); 2973 break; 2974 } 2975 } 2976 if (idx < thread_count) { 2977 break; 2978 } else { 2979 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock); 2980 } 2981 } 2982 qemu_mutex_unlock(&decomp_done_lock); 2983 } 2984 2985 /* 2986 * colo cache: this is for secondary VM, we cache the whole 2987 * memory of the secondary VM, it is need to hold the global lock 2988 * to call this helper. 2989 */ 2990 int colo_init_ram_cache(void) 2991 { 2992 RAMBlock *block; 2993 2994 WITH_RCU_READ_LOCK_GUARD() { 2995 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 2996 block->colo_cache = qemu_anon_ram_alloc(block->used_length, 2997 NULL, 2998 false); 2999 if (!block->colo_cache) { 3000 error_report("%s: Can't alloc memory for COLO cache of block %s," 3001 "size 0x" RAM_ADDR_FMT, __func__, block->idstr, 3002 block->used_length); 3003 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3004 if (block->colo_cache) { 3005 qemu_anon_ram_free(block->colo_cache, block->used_length); 3006 block->colo_cache = NULL; 3007 } 3008 } 3009 return -errno; 3010 } 3011 } 3012 } 3013 3014 /* 3015 * Record the dirty pages that sent by PVM, we use this dirty bitmap together 3016 * with to decide which page in cache should be flushed into SVM's RAM. Here 3017 * we use the same name 'ram_bitmap' as for migration. 3018 */ 3019 if (ram_bytes_total()) { 3020 RAMBlock *block; 3021 3022 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3023 unsigned long pages = block->max_length >> TARGET_PAGE_BITS; 3024 block->bmap = bitmap_new(pages); 3025 } 3026 } 3027 3028 ram_state_init(&ram_state); 3029 return 0; 3030 } 3031 3032 /* TODO: duplicated with ram_init_bitmaps */ 3033 void colo_incoming_start_dirty_log(void) 3034 { 3035 RAMBlock *block = NULL; 3036 /* For memory_global_dirty_log_start below. */ 3037 qemu_mutex_lock_iothread(); 3038 qemu_mutex_lock_ramlist(); 3039 3040 memory_global_dirty_log_sync(); 3041 WITH_RCU_READ_LOCK_GUARD() { 3042 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3043 ramblock_sync_dirty_bitmap(ram_state, block); 3044 /* Discard this dirty bitmap record */ 3045 bitmap_zero(block->bmap, block->max_length >> TARGET_PAGE_BITS); 3046 } 3047 memory_global_dirty_log_start(); 3048 } 3049 ram_state->migration_dirty_pages = 0; 3050 qemu_mutex_unlock_ramlist(); 3051 qemu_mutex_unlock_iothread(); 3052 } 3053 3054 /* It is need to hold the global lock to call this helper */ 3055 void colo_release_ram_cache(void) 3056 { 3057 RAMBlock *block; 3058 3059 memory_global_dirty_log_stop(); 3060 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3061 g_free(block->bmap); 3062 block->bmap = NULL; 3063 } 3064 3065 WITH_RCU_READ_LOCK_GUARD() { 3066 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3067 if (block->colo_cache) { 3068 qemu_anon_ram_free(block->colo_cache, block->used_length); 3069 block->colo_cache = NULL; 3070 } 3071 } 3072 } 3073 ram_state_cleanup(&ram_state); 3074 } 3075 3076 /** 3077 * ram_load_setup: Setup RAM for migration incoming side 3078 * 3079 * Returns zero to indicate success and negative for error 3080 * 3081 * @f: QEMUFile where to receive the data 3082 * @opaque: RAMState pointer 3083 */ 3084 static int ram_load_setup(QEMUFile *f, void *opaque) 3085 { 3086 if (compress_threads_load_setup(f)) { 3087 return -1; 3088 } 3089 3090 xbzrle_load_setup(); 3091 ramblock_recv_map_init(); 3092 3093 return 0; 3094 } 3095 3096 static int ram_load_cleanup(void *opaque) 3097 { 3098 RAMBlock *rb; 3099 3100 RAMBLOCK_FOREACH_NOT_IGNORED(rb) { 3101 qemu_ram_block_writeback(rb); 3102 } 3103 3104 xbzrle_load_cleanup(); 3105 compress_threads_load_cleanup(); 3106 3107 RAMBLOCK_FOREACH_NOT_IGNORED(rb) { 3108 g_free(rb->receivedmap); 3109 rb->receivedmap = NULL; 3110 } 3111 3112 return 0; 3113 } 3114 3115 /** 3116 * ram_postcopy_incoming_init: allocate postcopy data structures 3117 * 3118 * Returns 0 for success and negative if there was one error 3119 * 3120 * @mis: current migration incoming state 3121 * 3122 * Allocate data structures etc needed by incoming migration with 3123 * postcopy-ram. postcopy-ram's similarly names 3124 * postcopy_ram_incoming_init does the work. 3125 */ 3126 int ram_postcopy_incoming_init(MigrationIncomingState *mis) 3127 { 3128 return postcopy_ram_incoming_init(mis); 3129 } 3130 3131 /** 3132 * ram_load_postcopy: load a page in postcopy case 3133 * 3134 * Returns 0 for success or -errno in case of error 3135 * 3136 * Called in postcopy mode by ram_load(). 3137 * rcu_read_lock is taken prior to this being called. 3138 * 3139 * @f: QEMUFile where to send the data 3140 */ 3141 static int ram_load_postcopy(QEMUFile *f) 3142 { 3143 int flags = 0, ret = 0; 3144 bool place_needed = false; 3145 bool matches_target_page_size = false; 3146 MigrationIncomingState *mis = migration_incoming_get_current(); 3147 /* Temporary page that is later 'placed' */ 3148 void *postcopy_host_page = mis->postcopy_tmp_page; 3149 void *this_host = NULL; 3150 bool all_zero = false; 3151 int target_pages = 0; 3152 3153 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) { 3154 ram_addr_t addr; 3155 void *host = NULL; 3156 void *page_buffer = NULL; 3157 void *place_source = NULL; 3158 RAMBlock *block = NULL; 3159 uint8_t ch; 3160 int len; 3161 3162 addr = qemu_get_be64(f); 3163 3164 /* 3165 * If qemu file error, we should stop here, and then "addr" 3166 * may be invalid 3167 */ 3168 ret = qemu_file_get_error(f); 3169 if (ret) { 3170 break; 3171 } 3172 3173 flags = addr & ~TARGET_PAGE_MASK; 3174 addr &= TARGET_PAGE_MASK; 3175 3176 trace_ram_load_postcopy_loop((uint64_t)addr, flags); 3177 place_needed = false; 3178 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE | 3179 RAM_SAVE_FLAG_COMPRESS_PAGE)) { 3180 block = ram_block_from_stream(f, flags); 3181 3182 host = host_from_ram_block_offset(block, addr); 3183 if (!host) { 3184 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr); 3185 ret = -EINVAL; 3186 break; 3187 } 3188 target_pages++; 3189 matches_target_page_size = block->page_size == TARGET_PAGE_SIZE; 3190 /* 3191 * Postcopy requires that we place whole host pages atomically; 3192 * these may be huge pages for RAMBlocks that are backed by 3193 * hugetlbfs. 3194 * To make it atomic, the data is read into a temporary page 3195 * that's moved into place later. 3196 * The migration protocol uses, possibly smaller, target-pages 3197 * however the source ensures it always sends all the components 3198 * of a host page in one chunk. 3199 */ 3200 page_buffer = postcopy_host_page + 3201 ((uintptr_t)host & (block->page_size - 1)); 3202 /* If all TP are zero then we can optimise the place */ 3203 if (target_pages == 1) { 3204 all_zero = true; 3205 this_host = (void *)QEMU_ALIGN_DOWN((uintptr_t)host, 3206 block->page_size); 3207 } else { 3208 /* not the 1st TP within the HP */ 3209 if (QEMU_ALIGN_DOWN((uintptr_t)host, block->page_size) != 3210 (uintptr_t)this_host) { 3211 error_report("Non-same host page %p/%p", 3212 host, this_host); 3213 ret = -EINVAL; 3214 break; 3215 } 3216 } 3217 3218 /* 3219 * If it's the last part of a host page then we place the host 3220 * page 3221 */ 3222 if (target_pages == (block->page_size / TARGET_PAGE_SIZE)) { 3223 place_needed = true; 3224 target_pages = 0; 3225 } 3226 place_source = postcopy_host_page; 3227 } 3228 3229 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) { 3230 case RAM_SAVE_FLAG_ZERO: 3231 ch = qemu_get_byte(f); 3232 /* 3233 * Can skip to set page_buffer when 3234 * this is a zero page and (block->page_size == TARGET_PAGE_SIZE). 3235 */ 3236 if (ch || !matches_target_page_size) { 3237 memset(page_buffer, ch, TARGET_PAGE_SIZE); 3238 } 3239 if (ch) { 3240 all_zero = false; 3241 } 3242 break; 3243 3244 case RAM_SAVE_FLAG_PAGE: 3245 all_zero = false; 3246 if (!matches_target_page_size) { 3247 /* For huge pages, we always use temporary buffer */ 3248 qemu_get_buffer(f, page_buffer, TARGET_PAGE_SIZE); 3249 } else { 3250 /* 3251 * For small pages that matches target page size, we 3252 * avoid the qemu_file copy. Instead we directly use 3253 * the buffer of QEMUFile to place the page. Note: we 3254 * cannot do any QEMUFile operation before using that 3255 * buffer to make sure the buffer is valid when 3256 * placing the page. 3257 */ 3258 qemu_get_buffer_in_place(f, (uint8_t **)&place_source, 3259 TARGET_PAGE_SIZE); 3260 } 3261 break; 3262 case RAM_SAVE_FLAG_COMPRESS_PAGE: 3263 all_zero = false; 3264 len = qemu_get_be32(f); 3265 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) { 3266 error_report("Invalid compressed data length: %d", len); 3267 ret = -EINVAL; 3268 break; 3269 } 3270 decompress_data_with_multi_threads(f, page_buffer, len); 3271 break; 3272 3273 case RAM_SAVE_FLAG_EOS: 3274 /* normal exit */ 3275 multifd_recv_sync_main(); 3276 break; 3277 default: 3278 error_report("Unknown combination of migration flags: %#x" 3279 " (postcopy mode)", flags); 3280 ret = -EINVAL; 3281 break; 3282 } 3283 3284 /* Got the whole host page, wait for decompress before placing. */ 3285 if (place_needed) { 3286 ret |= wait_for_decompress_done(); 3287 } 3288 3289 /* Detect for any possible file errors */ 3290 if (!ret && qemu_file_get_error(f)) { 3291 ret = qemu_file_get_error(f); 3292 } 3293 3294 if (!ret && place_needed) { 3295 /* This gets called at the last target page in the host page */ 3296 void *place_dest = (void *)QEMU_ALIGN_DOWN((uintptr_t)host, 3297 block->page_size); 3298 3299 if (all_zero) { 3300 ret = postcopy_place_page_zero(mis, place_dest, 3301 block); 3302 } else { 3303 ret = postcopy_place_page(mis, place_dest, 3304 place_source, block); 3305 } 3306 } 3307 } 3308 3309 return ret; 3310 } 3311 3312 static bool postcopy_is_advised(void) 3313 { 3314 PostcopyState ps = postcopy_state_get(); 3315 return ps >= POSTCOPY_INCOMING_ADVISE && ps < POSTCOPY_INCOMING_END; 3316 } 3317 3318 static bool postcopy_is_running(void) 3319 { 3320 PostcopyState ps = postcopy_state_get(); 3321 return ps >= POSTCOPY_INCOMING_LISTENING && ps < POSTCOPY_INCOMING_END; 3322 } 3323 3324 /* 3325 * Flush content of RAM cache into SVM's memory. 3326 * Only flush the pages that be dirtied by PVM or SVM or both. 3327 */ 3328 static void colo_flush_ram_cache(void) 3329 { 3330 RAMBlock *block = NULL; 3331 void *dst_host; 3332 void *src_host; 3333 unsigned long offset = 0; 3334 3335 memory_global_dirty_log_sync(); 3336 WITH_RCU_READ_LOCK_GUARD() { 3337 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3338 ramblock_sync_dirty_bitmap(ram_state, block); 3339 } 3340 } 3341 3342 trace_colo_flush_ram_cache_begin(ram_state->migration_dirty_pages); 3343 WITH_RCU_READ_LOCK_GUARD() { 3344 block = QLIST_FIRST_RCU(&ram_list.blocks); 3345 3346 while (block) { 3347 offset = migration_bitmap_find_dirty(ram_state, block, offset); 3348 3349 if (((ram_addr_t)offset) << TARGET_PAGE_BITS 3350 >= block->used_length) { 3351 offset = 0; 3352 block = QLIST_NEXT_RCU(block, next); 3353 } else { 3354 migration_bitmap_clear_dirty(ram_state, block, offset); 3355 dst_host = block->host 3356 + (((ram_addr_t)offset) << TARGET_PAGE_BITS); 3357 src_host = block->colo_cache 3358 + (((ram_addr_t)offset) << TARGET_PAGE_BITS); 3359 memcpy(dst_host, src_host, TARGET_PAGE_SIZE); 3360 } 3361 } 3362 } 3363 trace_colo_flush_ram_cache_end(); 3364 } 3365 3366 /** 3367 * ram_load_precopy: load pages in precopy case 3368 * 3369 * Returns 0 for success or -errno in case of error 3370 * 3371 * Called in precopy mode by ram_load(). 3372 * rcu_read_lock is taken prior to this being called. 3373 * 3374 * @f: QEMUFile where to send the data 3375 */ 3376 static int ram_load_precopy(QEMUFile *f) 3377 { 3378 int flags = 0, ret = 0, invalid_flags = 0, len = 0, i = 0; 3379 /* ADVISE is earlier, it shows the source has the postcopy capability on */ 3380 bool postcopy_advised = postcopy_is_advised(); 3381 if (!migrate_use_compression()) { 3382 invalid_flags |= RAM_SAVE_FLAG_COMPRESS_PAGE; 3383 } 3384 3385 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) { 3386 ram_addr_t addr, total_ram_bytes; 3387 void *host = NULL, *host_bak = NULL; 3388 uint8_t ch; 3389 3390 /* 3391 * Yield periodically to let main loop run, but an iteration of 3392 * the main loop is expensive, so do it each some iterations 3393 */ 3394 if ((i & 32767) == 0 && qemu_in_coroutine()) { 3395 aio_co_schedule(qemu_get_current_aio_context(), 3396 qemu_coroutine_self()); 3397 qemu_coroutine_yield(); 3398 } 3399 i++; 3400 3401 addr = qemu_get_be64(f); 3402 flags = addr & ~TARGET_PAGE_MASK; 3403 addr &= TARGET_PAGE_MASK; 3404 3405 if (flags & invalid_flags) { 3406 if (flags & invalid_flags & RAM_SAVE_FLAG_COMPRESS_PAGE) { 3407 error_report("Received an unexpected compressed page"); 3408 } 3409 3410 ret = -EINVAL; 3411 break; 3412 } 3413 3414 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE | 3415 RAM_SAVE_FLAG_COMPRESS_PAGE | RAM_SAVE_FLAG_XBZRLE)) { 3416 RAMBlock *block = ram_block_from_stream(f, flags); 3417 3418 host = host_from_ram_block_offset(block, addr); 3419 /* 3420 * After going into COLO stage, we should not load the page 3421 * into SVM's memory directly, we put them into colo_cache firstly. 3422 * NOTE: We need to keep a copy of SVM's ram in colo_cache. 3423 * Previously, we copied all these memory in preparing stage of COLO 3424 * while we need to stop VM, which is a time-consuming process. 3425 * Here we optimize it by a trick, back-up every page while in 3426 * migration process while COLO is enabled, though it affects the 3427 * speed of the migration, but it obviously reduce the downtime of 3428 * back-up all SVM'S memory in COLO preparing stage. 3429 */ 3430 if (migration_incoming_colo_enabled()) { 3431 if (migration_incoming_in_colo_state()) { 3432 /* In COLO stage, put all pages into cache temporarily */ 3433 host = colo_cache_from_block_offset(block, addr, true); 3434 } else { 3435 /* 3436 * In migration stage but before COLO stage, 3437 * Put all pages into both cache and SVM's memory. 3438 */ 3439 host_bak = colo_cache_from_block_offset(block, addr, false); 3440 } 3441 } 3442 if (!host) { 3443 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr); 3444 ret = -EINVAL; 3445 break; 3446 } 3447 if (!migration_incoming_in_colo_state()) { 3448 ramblock_recv_bitmap_set(block, host); 3449 } 3450 3451 trace_ram_load_loop(block->idstr, (uint64_t)addr, flags, host); 3452 } 3453 3454 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) { 3455 case RAM_SAVE_FLAG_MEM_SIZE: 3456 /* Synchronize RAM block list */ 3457 total_ram_bytes = addr; 3458 while (!ret && total_ram_bytes) { 3459 RAMBlock *block; 3460 char id[256]; 3461 ram_addr_t length; 3462 3463 len = qemu_get_byte(f); 3464 qemu_get_buffer(f, (uint8_t *)id, len); 3465 id[len] = 0; 3466 length = qemu_get_be64(f); 3467 3468 block = qemu_ram_block_by_name(id); 3469 if (block && !qemu_ram_is_migratable(block)) { 3470 error_report("block %s should not be migrated !", id); 3471 ret = -EINVAL; 3472 } else if (block) { 3473 if (length != block->used_length) { 3474 Error *local_err = NULL; 3475 3476 ret = qemu_ram_resize(block, length, 3477 &local_err); 3478 if (local_err) { 3479 error_report_err(local_err); 3480 } 3481 } 3482 /* For postcopy we need to check hugepage sizes match */ 3483 if (postcopy_advised && 3484 block->page_size != qemu_host_page_size) { 3485 uint64_t remote_page_size = qemu_get_be64(f); 3486 if (remote_page_size != block->page_size) { 3487 error_report("Mismatched RAM page size %s " 3488 "(local) %zd != %" PRId64, 3489 id, block->page_size, 3490 remote_page_size); 3491 ret = -EINVAL; 3492 } 3493 } 3494 if (migrate_ignore_shared()) { 3495 hwaddr addr = qemu_get_be64(f); 3496 if (ramblock_is_ignored(block) && 3497 block->mr->addr != addr) { 3498 error_report("Mismatched GPAs for block %s " 3499 "%" PRId64 "!= %" PRId64, 3500 id, (uint64_t)addr, 3501 (uint64_t)block->mr->addr); 3502 ret = -EINVAL; 3503 } 3504 } 3505 ram_control_load_hook(f, RAM_CONTROL_BLOCK_REG, 3506 block->idstr); 3507 } else { 3508 error_report("Unknown ramblock \"%s\", cannot " 3509 "accept migration", id); 3510 ret = -EINVAL; 3511 } 3512 3513 total_ram_bytes -= length; 3514 } 3515 break; 3516 3517 case RAM_SAVE_FLAG_ZERO: 3518 ch = qemu_get_byte(f); 3519 ram_handle_compressed(host, ch, TARGET_PAGE_SIZE); 3520 break; 3521 3522 case RAM_SAVE_FLAG_PAGE: 3523 qemu_get_buffer(f, host, TARGET_PAGE_SIZE); 3524 break; 3525 3526 case RAM_SAVE_FLAG_COMPRESS_PAGE: 3527 len = qemu_get_be32(f); 3528 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) { 3529 error_report("Invalid compressed data length: %d", len); 3530 ret = -EINVAL; 3531 break; 3532 } 3533 decompress_data_with_multi_threads(f, host, len); 3534 break; 3535 3536 case RAM_SAVE_FLAG_XBZRLE: 3537 if (load_xbzrle(f, addr, host) < 0) { 3538 error_report("Failed to decompress XBZRLE page at " 3539 RAM_ADDR_FMT, addr); 3540 ret = -EINVAL; 3541 break; 3542 } 3543 break; 3544 case RAM_SAVE_FLAG_EOS: 3545 /* normal exit */ 3546 multifd_recv_sync_main(); 3547 break; 3548 default: 3549 if (flags & RAM_SAVE_FLAG_HOOK) { 3550 ram_control_load_hook(f, RAM_CONTROL_HOOK, NULL); 3551 } else { 3552 error_report("Unknown combination of migration flags: %#x", 3553 flags); 3554 ret = -EINVAL; 3555 } 3556 } 3557 if (!ret) { 3558 ret = qemu_file_get_error(f); 3559 } 3560 if (!ret && host_bak) { 3561 memcpy(host_bak, host, TARGET_PAGE_SIZE); 3562 } 3563 } 3564 3565 ret |= wait_for_decompress_done(); 3566 return ret; 3567 } 3568 3569 static int ram_load(QEMUFile *f, void *opaque, int version_id) 3570 { 3571 int ret = 0; 3572 static uint64_t seq_iter; 3573 /* 3574 * If system is running in postcopy mode, page inserts to host memory must 3575 * be atomic 3576 */ 3577 bool postcopy_running = postcopy_is_running(); 3578 3579 seq_iter++; 3580 3581 if (version_id != 4) { 3582 return -EINVAL; 3583 } 3584 3585 /* 3586 * This RCU critical section can be very long running. 3587 * When RCU reclaims in the code start to become numerous, 3588 * it will be necessary to reduce the granularity of this 3589 * critical section. 3590 */ 3591 WITH_RCU_READ_LOCK_GUARD() { 3592 if (postcopy_running) { 3593 ret = ram_load_postcopy(f); 3594 } else { 3595 ret = ram_load_precopy(f); 3596 } 3597 } 3598 trace_ram_load_complete(ret, seq_iter); 3599 3600 if (!ret && migration_incoming_in_colo_state()) { 3601 colo_flush_ram_cache(); 3602 } 3603 return ret; 3604 } 3605 3606 static bool ram_has_postcopy(void *opaque) 3607 { 3608 RAMBlock *rb; 3609 RAMBLOCK_FOREACH_NOT_IGNORED(rb) { 3610 if (ramblock_is_pmem(rb)) { 3611 info_report("Block: %s, host: %p is a nvdimm memory, postcopy" 3612 "is not supported now!", rb->idstr, rb->host); 3613 return false; 3614 } 3615 } 3616 3617 return migrate_postcopy_ram(); 3618 } 3619 3620 /* Sync all the dirty bitmap with destination VM. */ 3621 static int ram_dirty_bitmap_sync_all(MigrationState *s, RAMState *rs) 3622 { 3623 RAMBlock *block; 3624 QEMUFile *file = s->to_dst_file; 3625 int ramblock_count = 0; 3626 3627 trace_ram_dirty_bitmap_sync_start(); 3628 3629 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3630 qemu_savevm_send_recv_bitmap(file, block->idstr); 3631 trace_ram_dirty_bitmap_request(block->idstr); 3632 ramblock_count++; 3633 } 3634 3635 trace_ram_dirty_bitmap_sync_wait(); 3636 3637 /* Wait until all the ramblocks' dirty bitmap synced */ 3638 while (ramblock_count--) { 3639 qemu_sem_wait(&s->rp_state.rp_sem); 3640 } 3641 3642 trace_ram_dirty_bitmap_sync_complete(); 3643 3644 return 0; 3645 } 3646 3647 static void ram_dirty_bitmap_reload_notify(MigrationState *s) 3648 { 3649 qemu_sem_post(&s->rp_state.rp_sem); 3650 } 3651 3652 /* 3653 * Read the received bitmap, revert it as the initial dirty bitmap. 3654 * This is only used when the postcopy migration is paused but wants 3655 * to resume from a middle point. 3656 */ 3657 int ram_dirty_bitmap_reload(MigrationState *s, RAMBlock *block) 3658 { 3659 int ret = -EINVAL; 3660 QEMUFile *file = s->rp_state.from_dst_file; 3661 unsigned long *le_bitmap, nbits = block->used_length >> TARGET_PAGE_BITS; 3662 uint64_t local_size = DIV_ROUND_UP(nbits, 8); 3663 uint64_t size, end_mark; 3664 3665 trace_ram_dirty_bitmap_reload_begin(block->idstr); 3666 3667 if (s->state != MIGRATION_STATUS_POSTCOPY_RECOVER) { 3668 error_report("%s: incorrect state %s", __func__, 3669 MigrationStatus_str(s->state)); 3670 return -EINVAL; 3671 } 3672 3673 /* 3674 * Note: see comments in ramblock_recv_bitmap_send() on why we 3675 * need the endianess convertion, and the paddings. 3676 */ 3677 local_size = ROUND_UP(local_size, 8); 3678 3679 /* Add paddings */ 3680 le_bitmap = bitmap_new(nbits + BITS_PER_LONG); 3681 3682 size = qemu_get_be64(file); 3683 3684 /* The size of the bitmap should match with our ramblock */ 3685 if (size != local_size) { 3686 error_report("%s: ramblock '%s' bitmap size mismatch " 3687 "(0x%"PRIx64" != 0x%"PRIx64")", __func__, 3688 block->idstr, size, local_size); 3689 ret = -EINVAL; 3690 goto out; 3691 } 3692 3693 size = qemu_get_buffer(file, (uint8_t *)le_bitmap, local_size); 3694 end_mark = qemu_get_be64(file); 3695 3696 ret = qemu_file_get_error(file); 3697 if (ret || size != local_size) { 3698 error_report("%s: read bitmap failed for ramblock '%s': %d" 3699 " (size 0x%"PRIx64", got: 0x%"PRIx64")", 3700 __func__, block->idstr, ret, local_size, size); 3701 ret = -EIO; 3702 goto out; 3703 } 3704 3705 if (end_mark != RAMBLOCK_RECV_BITMAP_ENDING) { 3706 error_report("%s: ramblock '%s' end mark incorrect: 0x%"PRIu64, 3707 __func__, block->idstr, end_mark); 3708 ret = -EINVAL; 3709 goto out; 3710 } 3711 3712 /* 3713 * Endianess convertion. We are during postcopy (though paused). 3714 * The dirty bitmap won't change. We can directly modify it. 3715 */ 3716 bitmap_from_le(block->bmap, le_bitmap, nbits); 3717 3718 /* 3719 * What we received is "received bitmap". Revert it as the initial 3720 * dirty bitmap for this ramblock. 3721 */ 3722 bitmap_complement(block->bmap, block->bmap, nbits); 3723 3724 trace_ram_dirty_bitmap_reload_complete(block->idstr); 3725 3726 /* 3727 * We succeeded to sync bitmap for current ramblock. If this is 3728 * the last one to sync, we need to notify the main send thread. 3729 */ 3730 ram_dirty_bitmap_reload_notify(s); 3731 3732 ret = 0; 3733 out: 3734 g_free(le_bitmap); 3735 return ret; 3736 } 3737 3738 static int ram_resume_prepare(MigrationState *s, void *opaque) 3739 { 3740 RAMState *rs = *(RAMState **)opaque; 3741 int ret; 3742 3743 ret = ram_dirty_bitmap_sync_all(s, rs); 3744 if (ret) { 3745 return ret; 3746 } 3747 3748 ram_state_resume_prepare(rs, s->to_dst_file); 3749 3750 return 0; 3751 } 3752 3753 static SaveVMHandlers savevm_ram_handlers = { 3754 .save_setup = ram_save_setup, 3755 .save_live_iterate = ram_save_iterate, 3756 .save_live_complete_postcopy = ram_save_complete, 3757 .save_live_complete_precopy = ram_save_complete, 3758 .has_postcopy = ram_has_postcopy, 3759 .save_live_pending = ram_save_pending, 3760 .load_state = ram_load, 3761 .save_cleanup = ram_save_cleanup, 3762 .load_setup = ram_load_setup, 3763 .load_cleanup = ram_load_cleanup, 3764 .resume_prepare = ram_resume_prepare, 3765 }; 3766 3767 void ram_mig_init(void) 3768 { 3769 qemu_mutex_init(&XBZRLE.lock); 3770 register_savevm_live("ram", 0, 4, &savevm_ram_handlers, &ram_state); 3771 } 3772