1 /* 2 * QEMU System Emulator 3 * 4 * Copyright (c) 2003-2008 Fabrice Bellard 5 * Copyright (c) 2011-2015 Red Hat Inc 6 * 7 * Authors: 8 * Juan Quintela <quintela@redhat.com> 9 * 10 * Permission is hereby granted, free of charge, to any person obtaining a copy 11 * of this software and associated documentation files (the "Software"), to deal 12 * in the Software without restriction, including without limitation the rights 13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 14 * copies of the Software, and to permit persons to whom the Software is 15 * furnished to do so, subject to the following conditions: 16 * 17 * The above copyright notice and this permission notice shall be included in 18 * all copies or substantial portions of the Software. 19 * 20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 26 * THE SOFTWARE. 27 */ 28 29 #include "qemu/osdep.h" 30 #include "cpu.h" 31 #include "qemu/cutils.h" 32 #include "qemu/bitops.h" 33 #include "qemu/bitmap.h" 34 #include "qemu/main-loop.h" 35 #include "xbzrle.h" 36 #include "ram.h" 37 #include "migration.h" 38 #include "migration/register.h" 39 #include "migration/misc.h" 40 #include "qemu-file.h" 41 #include "postcopy-ram.h" 42 #include "page_cache.h" 43 #include "qemu/error-report.h" 44 #include "qapi/error.h" 45 #include "qapi/qapi-types-migration.h" 46 #include "qapi/qapi-events-migration.h" 47 #include "qapi/qmp/qerror.h" 48 #include "trace.h" 49 #include "exec/ram_addr.h" 50 #include "exec/target_page.h" 51 #include "qemu/rcu_queue.h" 52 #include "migration/colo.h" 53 #include "block.h" 54 #include "sysemu/sysemu.h" 55 #include "savevm.h" 56 #include "qemu/iov.h" 57 #include "multifd.h" 58 59 /***********************************************************/ 60 /* ram save/restore */ 61 62 /* RAM_SAVE_FLAG_ZERO used to be named RAM_SAVE_FLAG_COMPRESS, it 63 * worked for pages that where filled with the same char. We switched 64 * it to only search for the zero value. And to avoid confusion with 65 * RAM_SSAVE_FLAG_COMPRESS_PAGE just rename it. 66 */ 67 68 #define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */ 69 #define RAM_SAVE_FLAG_ZERO 0x02 70 #define RAM_SAVE_FLAG_MEM_SIZE 0x04 71 #define RAM_SAVE_FLAG_PAGE 0x08 72 #define RAM_SAVE_FLAG_EOS 0x10 73 #define RAM_SAVE_FLAG_CONTINUE 0x20 74 #define RAM_SAVE_FLAG_XBZRLE 0x40 75 /* 0x80 is reserved in migration.h start with 0x100 next */ 76 #define RAM_SAVE_FLAG_COMPRESS_PAGE 0x100 77 78 static inline bool is_zero_range(uint8_t *p, uint64_t size) 79 { 80 return buffer_is_zero(p, size); 81 } 82 83 XBZRLECacheStats xbzrle_counters; 84 85 /* struct contains XBZRLE cache and a static page 86 used by the compression */ 87 static struct { 88 /* buffer used for XBZRLE encoding */ 89 uint8_t *encoded_buf; 90 /* buffer for storing page content */ 91 uint8_t *current_buf; 92 /* Cache for XBZRLE, Protected by lock. */ 93 PageCache *cache; 94 QemuMutex lock; 95 /* it will store a page full of zeros */ 96 uint8_t *zero_target_page; 97 /* buffer used for XBZRLE decoding */ 98 uint8_t *decoded_buf; 99 } XBZRLE; 100 101 static void XBZRLE_cache_lock(void) 102 { 103 if (migrate_use_xbzrle()) 104 qemu_mutex_lock(&XBZRLE.lock); 105 } 106 107 static void XBZRLE_cache_unlock(void) 108 { 109 if (migrate_use_xbzrle()) 110 qemu_mutex_unlock(&XBZRLE.lock); 111 } 112 113 /** 114 * xbzrle_cache_resize: resize the xbzrle cache 115 * 116 * This function is called from qmp_migrate_set_cache_size in main 117 * thread, possibly while a migration is in progress. A running 118 * migration may be using the cache and might finish during this call, 119 * hence changes to the cache are protected by XBZRLE.lock(). 120 * 121 * Returns 0 for success or -1 for error 122 * 123 * @new_size: new cache size 124 * @errp: set *errp if the check failed, with reason 125 */ 126 int xbzrle_cache_resize(int64_t new_size, Error **errp) 127 { 128 PageCache *new_cache; 129 int64_t ret = 0; 130 131 /* Check for truncation */ 132 if (new_size != (size_t)new_size) { 133 error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cache size", 134 "exceeding address space"); 135 return -1; 136 } 137 138 if (new_size == migrate_xbzrle_cache_size()) { 139 /* nothing to do */ 140 return 0; 141 } 142 143 XBZRLE_cache_lock(); 144 145 if (XBZRLE.cache != NULL) { 146 new_cache = cache_init(new_size, TARGET_PAGE_SIZE, errp); 147 if (!new_cache) { 148 ret = -1; 149 goto out; 150 } 151 152 cache_fini(XBZRLE.cache); 153 XBZRLE.cache = new_cache; 154 } 155 out: 156 XBZRLE_cache_unlock(); 157 return ret; 158 } 159 160 static bool ramblock_is_ignored(RAMBlock *block) 161 { 162 return !qemu_ram_is_migratable(block) || 163 (migrate_ignore_shared() && qemu_ram_is_shared(block)); 164 } 165 166 /* Should be holding either ram_list.mutex, or the RCU lock. */ 167 #define RAMBLOCK_FOREACH_NOT_IGNORED(block) \ 168 INTERNAL_RAMBLOCK_FOREACH(block) \ 169 if (ramblock_is_ignored(block)) {} else 170 171 #define RAMBLOCK_FOREACH_MIGRATABLE(block) \ 172 INTERNAL_RAMBLOCK_FOREACH(block) \ 173 if (!qemu_ram_is_migratable(block)) {} else 174 175 #undef RAMBLOCK_FOREACH 176 177 int foreach_not_ignored_block(RAMBlockIterFunc func, void *opaque) 178 { 179 RAMBlock *block; 180 int ret = 0; 181 182 RCU_READ_LOCK_GUARD(); 183 184 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 185 ret = func(block, opaque); 186 if (ret) { 187 break; 188 } 189 } 190 return ret; 191 } 192 193 static void ramblock_recv_map_init(void) 194 { 195 RAMBlock *rb; 196 197 RAMBLOCK_FOREACH_NOT_IGNORED(rb) { 198 assert(!rb->receivedmap); 199 rb->receivedmap = bitmap_new(rb->max_length >> qemu_target_page_bits()); 200 } 201 } 202 203 int ramblock_recv_bitmap_test(RAMBlock *rb, void *host_addr) 204 { 205 return test_bit(ramblock_recv_bitmap_offset(host_addr, rb), 206 rb->receivedmap); 207 } 208 209 bool ramblock_recv_bitmap_test_byte_offset(RAMBlock *rb, uint64_t byte_offset) 210 { 211 return test_bit(byte_offset >> TARGET_PAGE_BITS, rb->receivedmap); 212 } 213 214 void ramblock_recv_bitmap_set(RAMBlock *rb, void *host_addr) 215 { 216 set_bit_atomic(ramblock_recv_bitmap_offset(host_addr, rb), rb->receivedmap); 217 } 218 219 void ramblock_recv_bitmap_set_range(RAMBlock *rb, void *host_addr, 220 size_t nr) 221 { 222 bitmap_set_atomic(rb->receivedmap, 223 ramblock_recv_bitmap_offset(host_addr, rb), 224 nr); 225 } 226 227 #define RAMBLOCK_RECV_BITMAP_ENDING (0x0123456789abcdefULL) 228 229 /* 230 * Format: bitmap_size (8 bytes) + whole_bitmap (N bytes). 231 * 232 * Returns >0 if success with sent bytes, or <0 if error. 233 */ 234 int64_t ramblock_recv_bitmap_send(QEMUFile *file, 235 const char *block_name) 236 { 237 RAMBlock *block = qemu_ram_block_by_name(block_name); 238 unsigned long *le_bitmap, nbits; 239 uint64_t size; 240 241 if (!block) { 242 error_report("%s: invalid block name: %s", __func__, block_name); 243 return -1; 244 } 245 246 nbits = block->used_length >> TARGET_PAGE_BITS; 247 248 /* 249 * Make sure the tmp bitmap buffer is big enough, e.g., on 32bit 250 * machines we may need 4 more bytes for padding (see below 251 * comment). So extend it a bit before hand. 252 */ 253 le_bitmap = bitmap_new(nbits + BITS_PER_LONG); 254 255 /* 256 * Always use little endian when sending the bitmap. This is 257 * required that when source and destination VMs are not using the 258 * same endianess. (Note: big endian won't work.) 259 */ 260 bitmap_to_le(le_bitmap, block->receivedmap, nbits); 261 262 /* Size of the bitmap, in bytes */ 263 size = DIV_ROUND_UP(nbits, 8); 264 265 /* 266 * size is always aligned to 8 bytes for 64bit machines, but it 267 * may not be true for 32bit machines. We need this padding to 268 * make sure the migration can survive even between 32bit and 269 * 64bit machines. 270 */ 271 size = ROUND_UP(size, 8); 272 273 qemu_put_be64(file, size); 274 qemu_put_buffer(file, (const uint8_t *)le_bitmap, size); 275 /* 276 * Mark as an end, in case the middle part is screwed up due to 277 * some "misterious" reason. 278 */ 279 qemu_put_be64(file, RAMBLOCK_RECV_BITMAP_ENDING); 280 qemu_fflush(file); 281 282 g_free(le_bitmap); 283 284 if (qemu_file_get_error(file)) { 285 return qemu_file_get_error(file); 286 } 287 288 return size + sizeof(size); 289 } 290 291 /* 292 * An outstanding page request, on the source, having been received 293 * and queued 294 */ 295 struct RAMSrcPageRequest { 296 RAMBlock *rb; 297 hwaddr offset; 298 hwaddr len; 299 300 QSIMPLEQ_ENTRY(RAMSrcPageRequest) next_req; 301 }; 302 303 /* State of RAM for migration */ 304 struct RAMState { 305 /* QEMUFile used for this migration */ 306 QEMUFile *f; 307 /* Last block that we have visited searching for dirty pages */ 308 RAMBlock *last_seen_block; 309 /* Last block from where we have sent data */ 310 RAMBlock *last_sent_block; 311 /* Last dirty target page we have sent */ 312 ram_addr_t last_page; 313 /* last ram version we have seen */ 314 uint32_t last_version; 315 /* We are in the first round */ 316 bool ram_bulk_stage; 317 /* The free page optimization is enabled */ 318 bool fpo_enabled; 319 /* How many times we have dirty too many pages */ 320 int dirty_rate_high_cnt; 321 /* these variables are used for bitmap sync */ 322 /* last time we did a full bitmap_sync */ 323 int64_t time_last_bitmap_sync; 324 /* bytes transferred at start_time */ 325 uint64_t bytes_xfer_prev; 326 /* number of dirty pages since start_time */ 327 uint64_t num_dirty_pages_period; 328 /* xbzrle misses since the beginning of the period */ 329 uint64_t xbzrle_cache_miss_prev; 330 /* Amount of xbzrle pages since the beginning of the period */ 331 uint64_t xbzrle_pages_prev; 332 /* Amount of xbzrle encoded bytes since the beginning of the period */ 333 uint64_t xbzrle_bytes_prev; 334 335 /* compression statistics since the beginning of the period */ 336 /* amount of count that no free thread to compress data */ 337 uint64_t compress_thread_busy_prev; 338 /* amount bytes after compression */ 339 uint64_t compressed_size_prev; 340 /* amount of compressed pages */ 341 uint64_t compress_pages_prev; 342 343 /* total handled target pages at the beginning of period */ 344 uint64_t target_page_count_prev; 345 /* total handled target pages since start */ 346 uint64_t target_page_count; 347 /* number of dirty bits in the bitmap */ 348 uint64_t migration_dirty_pages; 349 /* Protects modification of the bitmap and migration dirty pages */ 350 QemuMutex bitmap_mutex; 351 /* The RAMBlock used in the last src_page_requests */ 352 RAMBlock *last_req_rb; 353 /* Queue of outstanding page requests from the destination */ 354 QemuMutex src_page_req_mutex; 355 QSIMPLEQ_HEAD(, RAMSrcPageRequest) src_page_requests; 356 }; 357 typedef struct RAMState RAMState; 358 359 static RAMState *ram_state; 360 361 static NotifierWithReturnList precopy_notifier_list; 362 363 void precopy_infrastructure_init(void) 364 { 365 notifier_with_return_list_init(&precopy_notifier_list); 366 } 367 368 void precopy_add_notifier(NotifierWithReturn *n) 369 { 370 notifier_with_return_list_add(&precopy_notifier_list, n); 371 } 372 373 void precopy_remove_notifier(NotifierWithReturn *n) 374 { 375 notifier_with_return_remove(n); 376 } 377 378 int precopy_notify(PrecopyNotifyReason reason, Error **errp) 379 { 380 PrecopyNotifyData pnd; 381 pnd.reason = reason; 382 pnd.errp = errp; 383 384 return notifier_with_return_list_notify(&precopy_notifier_list, &pnd); 385 } 386 387 void precopy_enable_free_page_optimization(void) 388 { 389 if (!ram_state) { 390 return; 391 } 392 393 ram_state->fpo_enabled = true; 394 } 395 396 uint64_t ram_bytes_remaining(void) 397 { 398 return ram_state ? (ram_state->migration_dirty_pages * TARGET_PAGE_SIZE) : 399 0; 400 } 401 402 MigrationStats ram_counters; 403 404 /* used by the search for pages to send */ 405 struct PageSearchStatus { 406 /* Current block being searched */ 407 RAMBlock *block; 408 /* Current page to search from */ 409 unsigned long page; 410 /* Set once we wrap around */ 411 bool complete_round; 412 }; 413 typedef struct PageSearchStatus PageSearchStatus; 414 415 CompressionStats compression_counters; 416 417 struct CompressParam { 418 bool done; 419 bool quit; 420 bool zero_page; 421 QEMUFile *file; 422 QemuMutex mutex; 423 QemuCond cond; 424 RAMBlock *block; 425 ram_addr_t offset; 426 427 /* internally used fields */ 428 z_stream stream; 429 uint8_t *originbuf; 430 }; 431 typedef struct CompressParam CompressParam; 432 433 struct DecompressParam { 434 bool done; 435 bool quit; 436 QemuMutex mutex; 437 QemuCond cond; 438 void *des; 439 uint8_t *compbuf; 440 int len; 441 z_stream stream; 442 }; 443 typedef struct DecompressParam DecompressParam; 444 445 static CompressParam *comp_param; 446 static QemuThread *compress_threads; 447 /* comp_done_cond is used to wake up the migration thread when 448 * one of the compression threads has finished the compression. 449 * comp_done_lock is used to co-work with comp_done_cond. 450 */ 451 static QemuMutex comp_done_lock; 452 static QemuCond comp_done_cond; 453 /* The empty QEMUFileOps will be used by file in CompressParam */ 454 static const QEMUFileOps empty_ops = { }; 455 456 static QEMUFile *decomp_file; 457 static DecompressParam *decomp_param; 458 static QemuThread *decompress_threads; 459 static QemuMutex decomp_done_lock; 460 static QemuCond decomp_done_cond; 461 462 static bool do_compress_ram_page(QEMUFile *f, z_stream *stream, RAMBlock *block, 463 ram_addr_t offset, uint8_t *source_buf); 464 465 static void *do_data_compress(void *opaque) 466 { 467 CompressParam *param = opaque; 468 RAMBlock *block; 469 ram_addr_t offset; 470 bool zero_page; 471 472 qemu_mutex_lock(¶m->mutex); 473 while (!param->quit) { 474 if (param->block) { 475 block = param->block; 476 offset = param->offset; 477 param->block = NULL; 478 qemu_mutex_unlock(¶m->mutex); 479 480 zero_page = do_compress_ram_page(param->file, ¶m->stream, 481 block, offset, param->originbuf); 482 483 qemu_mutex_lock(&comp_done_lock); 484 param->done = true; 485 param->zero_page = zero_page; 486 qemu_cond_signal(&comp_done_cond); 487 qemu_mutex_unlock(&comp_done_lock); 488 489 qemu_mutex_lock(¶m->mutex); 490 } else { 491 qemu_cond_wait(¶m->cond, ¶m->mutex); 492 } 493 } 494 qemu_mutex_unlock(¶m->mutex); 495 496 return NULL; 497 } 498 499 static void compress_threads_save_cleanup(void) 500 { 501 int i, thread_count; 502 503 if (!migrate_use_compression() || !comp_param) { 504 return; 505 } 506 507 thread_count = migrate_compress_threads(); 508 for (i = 0; i < thread_count; i++) { 509 /* 510 * we use it as a indicator which shows if the thread is 511 * properly init'd or not 512 */ 513 if (!comp_param[i].file) { 514 break; 515 } 516 517 qemu_mutex_lock(&comp_param[i].mutex); 518 comp_param[i].quit = true; 519 qemu_cond_signal(&comp_param[i].cond); 520 qemu_mutex_unlock(&comp_param[i].mutex); 521 522 qemu_thread_join(compress_threads + i); 523 qemu_mutex_destroy(&comp_param[i].mutex); 524 qemu_cond_destroy(&comp_param[i].cond); 525 deflateEnd(&comp_param[i].stream); 526 g_free(comp_param[i].originbuf); 527 qemu_fclose(comp_param[i].file); 528 comp_param[i].file = NULL; 529 } 530 qemu_mutex_destroy(&comp_done_lock); 531 qemu_cond_destroy(&comp_done_cond); 532 g_free(compress_threads); 533 g_free(comp_param); 534 compress_threads = NULL; 535 comp_param = NULL; 536 } 537 538 static int compress_threads_save_setup(void) 539 { 540 int i, thread_count; 541 542 if (!migrate_use_compression()) { 543 return 0; 544 } 545 thread_count = migrate_compress_threads(); 546 compress_threads = g_new0(QemuThread, thread_count); 547 comp_param = g_new0(CompressParam, thread_count); 548 qemu_cond_init(&comp_done_cond); 549 qemu_mutex_init(&comp_done_lock); 550 for (i = 0; i < thread_count; i++) { 551 comp_param[i].originbuf = g_try_malloc(TARGET_PAGE_SIZE); 552 if (!comp_param[i].originbuf) { 553 goto exit; 554 } 555 556 if (deflateInit(&comp_param[i].stream, 557 migrate_compress_level()) != Z_OK) { 558 g_free(comp_param[i].originbuf); 559 goto exit; 560 } 561 562 /* comp_param[i].file is just used as a dummy buffer to save data, 563 * set its ops to empty. 564 */ 565 comp_param[i].file = qemu_fopen_ops(NULL, &empty_ops); 566 comp_param[i].done = true; 567 comp_param[i].quit = false; 568 qemu_mutex_init(&comp_param[i].mutex); 569 qemu_cond_init(&comp_param[i].cond); 570 qemu_thread_create(compress_threads + i, "compress", 571 do_data_compress, comp_param + i, 572 QEMU_THREAD_JOINABLE); 573 } 574 return 0; 575 576 exit: 577 compress_threads_save_cleanup(); 578 return -1; 579 } 580 581 /** 582 * save_page_header: write page header to wire 583 * 584 * If this is the 1st block, it also writes the block identification 585 * 586 * Returns the number of bytes written 587 * 588 * @f: QEMUFile where to send the data 589 * @block: block that contains the page we want to send 590 * @offset: offset inside the block for the page 591 * in the lower bits, it contains flags 592 */ 593 static size_t save_page_header(RAMState *rs, QEMUFile *f, RAMBlock *block, 594 ram_addr_t offset) 595 { 596 size_t size, len; 597 598 if (block == rs->last_sent_block) { 599 offset |= RAM_SAVE_FLAG_CONTINUE; 600 } 601 qemu_put_be64(f, offset); 602 size = 8; 603 604 if (!(offset & RAM_SAVE_FLAG_CONTINUE)) { 605 len = strlen(block->idstr); 606 qemu_put_byte(f, len); 607 qemu_put_buffer(f, (uint8_t *)block->idstr, len); 608 size += 1 + len; 609 rs->last_sent_block = block; 610 } 611 return size; 612 } 613 614 /** 615 * mig_throttle_guest_down: throotle down the guest 616 * 617 * Reduce amount of guest cpu execution to hopefully slow down memory 618 * writes. If guest dirty memory rate is reduced below the rate at 619 * which we can transfer pages to the destination then we should be 620 * able to complete migration. Some workloads dirty memory way too 621 * fast and will not effectively converge, even with auto-converge. 622 */ 623 static void mig_throttle_guest_down(uint64_t bytes_dirty_period, 624 uint64_t bytes_dirty_threshold) 625 { 626 MigrationState *s = migrate_get_current(); 627 uint64_t pct_initial = s->parameters.cpu_throttle_initial; 628 uint64_t pct_increment = s->parameters.cpu_throttle_increment; 629 bool pct_tailslow = s->parameters.cpu_throttle_tailslow; 630 int pct_max = s->parameters.max_cpu_throttle; 631 632 uint64_t throttle_now = cpu_throttle_get_percentage(); 633 uint64_t cpu_now, cpu_ideal, throttle_inc; 634 635 /* We have not started throttling yet. Let's start it. */ 636 if (!cpu_throttle_active()) { 637 cpu_throttle_set(pct_initial); 638 } else { 639 /* Throttling already on, just increase the rate */ 640 if (!pct_tailslow) { 641 throttle_inc = pct_increment; 642 } else { 643 /* Compute the ideal CPU percentage used by Guest, which may 644 * make the dirty rate match the dirty rate threshold. */ 645 cpu_now = 100 - throttle_now; 646 cpu_ideal = cpu_now * (bytes_dirty_threshold * 1.0 / 647 bytes_dirty_period); 648 throttle_inc = MIN(cpu_now - cpu_ideal, pct_increment); 649 } 650 cpu_throttle_set(MIN(throttle_now + throttle_inc, pct_max)); 651 } 652 } 653 654 /** 655 * xbzrle_cache_zero_page: insert a zero page in the XBZRLE cache 656 * 657 * @rs: current RAM state 658 * @current_addr: address for the zero page 659 * 660 * Update the xbzrle cache to reflect a page that's been sent as all 0. 661 * The important thing is that a stale (not-yet-0'd) page be replaced 662 * by the new data. 663 * As a bonus, if the page wasn't in the cache it gets added so that 664 * when a small write is made into the 0'd page it gets XBZRLE sent. 665 */ 666 static void xbzrle_cache_zero_page(RAMState *rs, ram_addr_t current_addr) 667 { 668 if (rs->ram_bulk_stage || !migrate_use_xbzrle()) { 669 return; 670 } 671 672 /* We don't care if this fails to allocate a new cache page 673 * as long as it updated an old one */ 674 cache_insert(XBZRLE.cache, current_addr, XBZRLE.zero_target_page, 675 ram_counters.dirty_sync_count); 676 } 677 678 #define ENCODING_FLAG_XBZRLE 0x1 679 680 /** 681 * save_xbzrle_page: compress and send current page 682 * 683 * Returns: 1 means that we wrote the page 684 * 0 means that page is identical to the one already sent 685 * -1 means that xbzrle would be longer than normal 686 * 687 * @rs: current RAM state 688 * @current_data: pointer to the address of the page contents 689 * @current_addr: addr of the page 690 * @block: block that contains the page we want to send 691 * @offset: offset inside the block for the page 692 * @last_stage: if we are at the completion stage 693 */ 694 static int save_xbzrle_page(RAMState *rs, uint8_t **current_data, 695 ram_addr_t current_addr, RAMBlock *block, 696 ram_addr_t offset, bool last_stage) 697 { 698 int encoded_len = 0, bytes_xbzrle; 699 uint8_t *prev_cached_page; 700 701 if (!cache_is_cached(XBZRLE.cache, current_addr, 702 ram_counters.dirty_sync_count)) { 703 xbzrle_counters.cache_miss++; 704 if (!last_stage) { 705 if (cache_insert(XBZRLE.cache, current_addr, *current_data, 706 ram_counters.dirty_sync_count) == -1) { 707 return -1; 708 } else { 709 /* update *current_data when the page has been 710 inserted into cache */ 711 *current_data = get_cached_data(XBZRLE.cache, current_addr); 712 } 713 } 714 return -1; 715 } 716 717 /* 718 * Reaching here means the page has hit the xbzrle cache, no matter what 719 * encoding result it is (normal encoding, overflow or skipping the page), 720 * count the page as encoded. This is used to caculate the encoding rate. 721 * 722 * Example: 2 pages (8KB) being encoded, first page encoding generates 2KB, 723 * 2nd page turns out to be skipped (i.e. no new bytes written to the 724 * page), the overall encoding rate will be 8KB / 2KB = 4, which has the 725 * skipped page included. In this way, the encoding rate can tell if the 726 * guest page is good for xbzrle encoding. 727 */ 728 xbzrle_counters.pages++; 729 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr); 730 731 /* save current buffer into memory */ 732 memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE); 733 734 /* XBZRLE encoding (if there is no overflow) */ 735 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf, 736 TARGET_PAGE_SIZE, XBZRLE.encoded_buf, 737 TARGET_PAGE_SIZE); 738 739 /* 740 * Update the cache contents, so that it corresponds to the data 741 * sent, in all cases except where we skip the page. 742 */ 743 if (!last_stage && encoded_len != 0) { 744 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE); 745 /* 746 * In the case where we couldn't compress, ensure that the caller 747 * sends the data from the cache, since the guest might have 748 * changed the RAM since we copied it. 749 */ 750 *current_data = prev_cached_page; 751 } 752 753 if (encoded_len == 0) { 754 trace_save_xbzrle_page_skipping(); 755 return 0; 756 } else if (encoded_len == -1) { 757 trace_save_xbzrle_page_overflow(); 758 xbzrle_counters.overflow++; 759 xbzrle_counters.bytes += TARGET_PAGE_SIZE; 760 return -1; 761 } 762 763 /* Send XBZRLE based compressed page */ 764 bytes_xbzrle = save_page_header(rs, rs->f, block, 765 offset | RAM_SAVE_FLAG_XBZRLE); 766 qemu_put_byte(rs->f, ENCODING_FLAG_XBZRLE); 767 qemu_put_be16(rs->f, encoded_len); 768 qemu_put_buffer(rs->f, XBZRLE.encoded_buf, encoded_len); 769 bytes_xbzrle += encoded_len + 1 + 2; 770 /* 771 * Like compressed_size (please see update_compress_thread_counts), 772 * the xbzrle encoded bytes don't count the 8 byte header with 773 * RAM_SAVE_FLAG_CONTINUE. 774 */ 775 xbzrle_counters.bytes += bytes_xbzrle - 8; 776 ram_counters.transferred += bytes_xbzrle; 777 778 return 1; 779 } 780 781 /** 782 * migration_bitmap_find_dirty: find the next dirty page from start 783 * 784 * Returns the page offset within memory region of the start of a dirty page 785 * 786 * @rs: current RAM state 787 * @rb: RAMBlock where to search for dirty pages 788 * @start: page where we start the search 789 */ 790 static inline 791 unsigned long migration_bitmap_find_dirty(RAMState *rs, RAMBlock *rb, 792 unsigned long start) 793 { 794 unsigned long size = rb->used_length >> TARGET_PAGE_BITS; 795 unsigned long *bitmap = rb->bmap; 796 unsigned long next; 797 798 if (ramblock_is_ignored(rb)) { 799 return size; 800 } 801 802 /* 803 * When the free page optimization is enabled, we need to check the bitmap 804 * to send the non-free pages rather than all the pages in the bulk stage. 805 */ 806 if (!rs->fpo_enabled && rs->ram_bulk_stage && start > 0) { 807 next = start + 1; 808 } else { 809 next = find_next_bit(bitmap, size, start); 810 } 811 812 return next; 813 } 814 815 static inline bool migration_bitmap_clear_dirty(RAMState *rs, 816 RAMBlock *rb, 817 unsigned long page) 818 { 819 bool ret; 820 821 qemu_mutex_lock(&rs->bitmap_mutex); 822 823 /* 824 * Clear dirty bitmap if needed. This _must_ be called before we 825 * send any of the page in the chunk because we need to make sure 826 * we can capture further page content changes when we sync dirty 827 * log the next time. So as long as we are going to send any of 828 * the page in the chunk we clear the remote dirty bitmap for all. 829 * Clearing it earlier won't be a problem, but too late will. 830 */ 831 if (rb->clear_bmap && clear_bmap_test_and_clear(rb, page)) { 832 uint8_t shift = rb->clear_bmap_shift; 833 hwaddr size = 1ULL << (TARGET_PAGE_BITS + shift); 834 hwaddr start = (((ram_addr_t)page) << TARGET_PAGE_BITS) & (-size); 835 836 /* 837 * CLEAR_BITMAP_SHIFT_MIN should always guarantee this... this 838 * can make things easier sometimes since then start address 839 * of the small chunk will always be 64 pages aligned so the 840 * bitmap will always be aligned to unsigned long. We should 841 * even be able to remove this restriction but I'm simply 842 * keeping it. 843 */ 844 assert(shift >= 6); 845 trace_migration_bitmap_clear_dirty(rb->idstr, start, size, page); 846 memory_region_clear_dirty_bitmap(rb->mr, start, size); 847 } 848 849 ret = test_and_clear_bit(page, rb->bmap); 850 851 if (ret) { 852 rs->migration_dirty_pages--; 853 } 854 qemu_mutex_unlock(&rs->bitmap_mutex); 855 856 return ret; 857 } 858 859 /* Called with RCU critical section */ 860 static void ramblock_sync_dirty_bitmap(RAMState *rs, RAMBlock *rb) 861 { 862 uint64_t new_dirty_pages = 863 cpu_physical_memory_sync_dirty_bitmap(rb, 0, rb->used_length); 864 865 rs->migration_dirty_pages += new_dirty_pages; 866 rs->num_dirty_pages_period += new_dirty_pages; 867 } 868 869 /** 870 * ram_pagesize_summary: calculate all the pagesizes of a VM 871 * 872 * Returns a summary bitmap of the page sizes of all RAMBlocks 873 * 874 * For VMs with just normal pages this is equivalent to the host page 875 * size. If it's got some huge pages then it's the OR of all the 876 * different page sizes. 877 */ 878 uint64_t ram_pagesize_summary(void) 879 { 880 RAMBlock *block; 881 uint64_t summary = 0; 882 883 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 884 summary |= block->page_size; 885 } 886 887 return summary; 888 } 889 890 uint64_t ram_get_total_transferred_pages(void) 891 { 892 return ram_counters.normal + ram_counters.duplicate + 893 compression_counters.pages + xbzrle_counters.pages; 894 } 895 896 static void migration_update_rates(RAMState *rs, int64_t end_time) 897 { 898 uint64_t page_count = rs->target_page_count - rs->target_page_count_prev; 899 double compressed_size; 900 901 /* calculate period counters */ 902 ram_counters.dirty_pages_rate = rs->num_dirty_pages_period * 1000 903 / (end_time - rs->time_last_bitmap_sync); 904 905 if (!page_count) { 906 return; 907 } 908 909 if (migrate_use_xbzrle()) { 910 double encoded_size, unencoded_size; 911 912 xbzrle_counters.cache_miss_rate = (double)(xbzrle_counters.cache_miss - 913 rs->xbzrle_cache_miss_prev) / page_count; 914 rs->xbzrle_cache_miss_prev = xbzrle_counters.cache_miss; 915 unencoded_size = (xbzrle_counters.pages - rs->xbzrle_pages_prev) * 916 TARGET_PAGE_SIZE; 917 encoded_size = xbzrle_counters.bytes - rs->xbzrle_bytes_prev; 918 if (xbzrle_counters.pages == rs->xbzrle_pages_prev || !encoded_size) { 919 xbzrle_counters.encoding_rate = 0; 920 } else { 921 xbzrle_counters.encoding_rate = unencoded_size / encoded_size; 922 } 923 rs->xbzrle_pages_prev = xbzrle_counters.pages; 924 rs->xbzrle_bytes_prev = xbzrle_counters.bytes; 925 } 926 927 if (migrate_use_compression()) { 928 compression_counters.busy_rate = (double)(compression_counters.busy - 929 rs->compress_thread_busy_prev) / page_count; 930 rs->compress_thread_busy_prev = compression_counters.busy; 931 932 compressed_size = compression_counters.compressed_size - 933 rs->compressed_size_prev; 934 if (compressed_size) { 935 double uncompressed_size = (compression_counters.pages - 936 rs->compress_pages_prev) * TARGET_PAGE_SIZE; 937 938 /* Compression-Ratio = Uncompressed-size / Compressed-size */ 939 compression_counters.compression_rate = 940 uncompressed_size / compressed_size; 941 942 rs->compress_pages_prev = compression_counters.pages; 943 rs->compressed_size_prev = compression_counters.compressed_size; 944 } 945 } 946 } 947 948 static void migration_trigger_throttle(RAMState *rs) 949 { 950 MigrationState *s = migrate_get_current(); 951 uint64_t threshold = s->parameters.throttle_trigger_threshold; 952 953 uint64_t bytes_xfer_period = ram_counters.transferred - rs->bytes_xfer_prev; 954 uint64_t bytes_dirty_period = rs->num_dirty_pages_period * TARGET_PAGE_SIZE; 955 uint64_t bytes_dirty_threshold = bytes_xfer_period * threshold / 100; 956 957 /* During block migration the auto-converge logic incorrectly detects 958 * that ram migration makes no progress. Avoid this by disabling the 959 * throttling logic during the bulk phase of block migration. */ 960 if (migrate_auto_converge() && !blk_mig_bulk_active()) { 961 /* The following detection logic can be refined later. For now: 962 Check to see if the ratio between dirtied bytes and the approx. 963 amount of bytes that just got transferred since the last time 964 we were in this routine reaches the threshold. If that happens 965 twice, start or increase throttling. */ 966 967 if ((bytes_dirty_period > bytes_dirty_threshold) && 968 (++rs->dirty_rate_high_cnt >= 2)) { 969 trace_migration_throttle(); 970 rs->dirty_rate_high_cnt = 0; 971 mig_throttle_guest_down(bytes_dirty_period, 972 bytes_dirty_threshold); 973 } 974 } 975 } 976 977 static void migration_bitmap_sync(RAMState *rs) 978 { 979 RAMBlock *block; 980 int64_t end_time; 981 982 ram_counters.dirty_sync_count++; 983 984 if (!rs->time_last_bitmap_sync) { 985 rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); 986 } 987 988 trace_migration_bitmap_sync_start(); 989 memory_global_dirty_log_sync(); 990 991 qemu_mutex_lock(&rs->bitmap_mutex); 992 WITH_RCU_READ_LOCK_GUARD() { 993 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 994 ramblock_sync_dirty_bitmap(rs, block); 995 } 996 ram_counters.remaining = ram_bytes_remaining(); 997 } 998 qemu_mutex_unlock(&rs->bitmap_mutex); 999 1000 memory_global_after_dirty_log_sync(); 1001 trace_migration_bitmap_sync_end(rs->num_dirty_pages_period); 1002 1003 end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); 1004 1005 /* more than 1 second = 1000 millisecons */ 1006 if (end_time > rs->time_last_bitmap_sync + 1000) { 1007 migration_trigger_throttle(rs); 1008 1009 migration_update_rates(rs, end_time); 1010 1011 rs->target_page_count_prev = rs->target_page_count; 1012 1013 /* reset period counters */ 1014 rs->time_last_bitmap_sync = end_time; 1015 rs->num_dirty_pages_period = 0; 1016 rs->bytes_xfer_prev = ram_counters.transferred; 1017 } 1018 if (migrate_use_events()) { 1019 qapi_event_send_migration_pass(ram_counters.dirty_sync_count); 1020 } 1021 } 1022 1023 static void migration_bitmap_sync_precopy(RAMState *rs) 1024 { 1025 Error *local_err = NULL; 1026 1027 /* 1028 * The current notifier usage is just an optimization to migration, so we 1029 * don't stop the normal migration process in the error case. 1030 */ 1031 if (precopy_notify(PRECOPY_NOTIFY_BEFORE_BITMAP_SYNC, &local_err)) { 1032 error_report_err(local_err); 1033 local_err = NULL; 1034 } 1035 1036 migration_bitmap_sync(rs); 1037 1038 if (precopy_notify(PRECOPY_NOTIFY_AFTER_BITMAP_SYNC, &local_err)) { 1039 error_report_err(local_err); 1040 } 1041 } 1042 1043 /** 1044 * save_zero_page_to_file: send the zero page to the file 1045 * 1046 * Returns the size of data written to the file, 0 means the page is not 1047 * a zero page 1048 * 1049 * @rs: current RAM state 1050 * @file: the file where the data is saved 1051 * @block: block that contains the page we want to send 1052 * @offset: offset inside the block for the page 1053 */ 1054 static int save_zero_page_to_file(RAMState *rs, QEMUFile *file, 1055 RAMBlock *block, ram_addr_t offset) 1056 { 1057 uint8_t *p = block->host + offset; 1058 int len = 0; 1059 1060 if (is_zero_range(p, TARGET_PAGE_SIZE)) { 1061 len += save_page_header(rs, file, block, offset | RAM_SAVE_FLAG_ZERO); 1062 qemu_put_byte(file, 0); 1063 len += 1; 1064 } 1065 return len; 1066 } 1067 1068 /** 1069 * save_zero_page: send the zero page to the stream 1070 * 1071 * Returns the number of pages written. 1072 * 1073 * @rs: current RAM state 1074 * @block: block that contains the page we want to send 1075 * @offset: offset inside the block for the page 1076 */ 1077 static int save_zero_page(RAMState *rs, RAMBlock *block, ram_addr_t offset) 1078 { 1079 int len = save_zero_page_to_file(rs, rs->f, block, offset); 1080 1081 if (len) { 1082 ram_counters.duplicate++; 1083 ram_counters.transferred += len; 1084 return 1; 1085 } 1086 return -1; 1087 } 1088 1089 static void ram_release_pages(const char *rbname, uint64_t offset, int pages) 1090 { 1091 if (!migrate_release_ram() || !migration_in_postcopy()) { 1092 return; 1093 } 1094 1095 ram_discard_range(rbname, offset, ((ram_addr_t)pages) << TARGET_PAGE_BITS); 1096 } 1097 1098 /* 1099 * @pages: the number of pages written by the control path, 1100 * < 0 - error 1101 * > 0 - number of pages written 1102 * 1103 * Return true if the pages has been saved, otherwise false is returned. 1104 */ 1105 static bool control_save_page(RAMState *rs, RAMBlock *block, ram_addr_t offset, 1106 int *pages) 1107 { 1108 uint64_t bytes_xmit = 0; 1109 int ret; 1110 1111 *pages = -1; 1112 ret = ram_control_save_page(rs->f, block->offset, offset, TARGET_PAGE_SIZE, 1113 &bytes_xmit); 1114 if (ret == RAM_SAVE_CONTROL_NOT_SUPP) { 1115 return false; 1116 } 1117 1118 if (bytes_xmit) { 1119 ram_counters.transferred += bytes_xmit; 1120 *pages = 1; 1121 } 1122 1123 if (ret == RAM_SAVE_CONTROL_DELAYED) { 1124 return true; 1125 } 1126 1127 if (bytes_xmit > 0) { 1128 ram_counters.normal++; 1129 } else if (bytes_xmit == 0) { 1130 ram_counters.duplicate++; 1131 } 1132 1133 return true; 1134 } 1135 1136 /* 1137 * directly send the page to the stream 1138 * 1139 * Returns the number of pages written. 1140 * 1141 * @rs: current RAM state 1142 * @block: block that contains the page we want to send 1143 * @offset: offset inside the block for the page 1144 * @buf: the page to be sent 1145 * @async: send to page asyncly 1146 */ 1147 static int save_normal_page(RAMState *rs, RAMBlock *block, ram_addr_t offset, 1148 uint8_t *buf, bool async) 1149 { 1150 ram_counters.transferred += save_page_header(rs, rs->f, block, 1151 offset | RAM_SAVE_FLAG_PAGE); 1152 if (async) { 1153 qemu_put_buffer_async(rs->f, buf, TARGET_PAGE_SIZE, 1154 migrate_release_ram() & 1155 migration_in_postcopy()); 1156 } else { 1157 qemu_put_buffer(rs->f, buf, TARGET_PAGE_SIZE); 1158 } 1159 ram_counters.transferred += TARGET_PAGE_SIZE; 1160 ram_counters.normal++; 1161 return 1; 1162 } 1163 1164 /** 1165 * ram_save_page: send the given page to the stream 1166 * 1167 * Returns the number of pages written. 1168 * < 0 - error 1169 * >=0 - Number of pages written - this might legally be 0 1170 * if xbzrle noticed the page was the same. 1171 * 1172 * @rs: current RAM state 1173 * @block: block that contains the page we want to send 1174 * @offset: offset inside the block for the page 1175 * @last_stage: if we are at the completion stage 1176 */ 1177 static int ram_save_page(RAMState *rs, PageSearchStatus *pss, bool last_stage) 1178 { 1179 int pages = -1; 1180 uint8_t *p; 1181 bool send_async = true; 1182 RAMBlock *block = pss->block; 1183 ram_addr_t offset = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS; 1184 ram_addr_t current_addr = block->offset + offset; 1185 1186 p = block->host + offset; 1187 trace_ram_save_page(block->idstr, (uint64_t)offset, p); 1188 1189 XBZRLE_cache_lock(); 1190 if (!rs->ram_bulk_stage && !migration_in_postcopy() && 1191 migrate_use_xbzrle()) { 1192 pages = save_xbzrle_page(rs, &p, current_addr, block, 1193 offset, last_stage); 1194 if (!last_stage) { 1195 /* Can't send this cached data async, since the cache page 1196 * might get updated before it gets to the wire 1197 */ 1198 send_async = false; 1199 } 1200 } 1201 1202 /* XBZRLE overflow or normal page */ 1203 if (pages == -1) { 1204 pages = save_normal_page(rs, block, offset, p, send_async); 1205 } 1206 1207 XBZRLE_cache_unlock(); 1208 1209 return pages; 1210 } 1211 1212 static int ram_save_multifd_page(RAMState *rs, RAMBlock *block, 1213 ram_addr_t offset) 1214 { 1215 if (multifd_queue_page(rs->f, block, offset) < 0) { 1216 return -1; 1217 } 1218 ram_counters.normal++; 1219 1220 return 1; 1221 } 1222 1223 static bool do_compress_ram_page(QEMUFile *f, z_stream *stream, RAMBlock *block, 1224 ram_addr_t offset, uint8_t *source_buf) 1225 { 1226 RAMState *rs = ram_state; 1227 uint8_t *p = block->host + (offset & TARGET_PAGE_MASK); 1228 bool zero_page = false; 1229 int ret; 1230 1231 if (save_zero_page_to_file(rs, f, block, offset)) { 1232 zero_page = true; 1233 goto exit; 1234 } 1235 1236 save_page_header(rs, f, block, offset | RAM_SAVE_FLAG_COMPRESS_PAGE); 1237 1238 /* 1239 * copy it to a internal buffer to avoid it being modified by VM 1240 * so that we can catch up the error during compression and 1241 * decompression 1242 */ 1243 memcpy(source_buf, p, TARGET_PAGE_SIZE); 1244 ret = qemu_put_compression_data(f, stream, source_buf, TARGET_PAGE_SIZE); 1245 if (ret < 0) { 1246 qemu_file_set_error(migrate_get_current()->to_dst_file, ret); 1247 error_report("compressed data failed!"); 1248 return false; 1249 } 1250 1251 exit: 1252 ram_release_pages(block->idstr, offset & TARGET_PAGE_MASK, 1); 1253 return zero_page; 1254 } 1255 1256 static void 1257 update_compress_thread_counts(const CompressParam *param, int bytes_xmit) 1258 { 1259 ram_counters.transferred += bytes_xmit; 1260 1261 if (param->zero_page) { 1262 ram_counters.duplicate++; 1263 return; 1264 } 1265 1266 /* 8 means a header with RAM_SAVE_FLAG_CONTINUE. */ 1267 compression_counters.compressed_size += bytes_xmit - 8; 1268 compression_counters.pages++; 1269 } 1270 1271 static bool save_page_use_compression(RAMState *rs); 1272 1273 static void flush_compressed_data(RAMState *rs) 1274 { 1275 int idx, len, thread_count; 1276 1277 if (!save_page_use_compression(rs)) { 1278 return; 1279 } 1280 thread_count = migrate_compress_threads(); 1281 1282 qemu_mutex_lock(&comp_done_lock); 1283 for (idx = 0; idx < thread_count; idx++) { 1284 while (!comp_param[idx].done) { 1285 qemu_cond_wait(&comp_done_cond, &comp_done_lock); 1286 } 1287 } 1288 qemu_mutex_unlock(&comp_done_lock); 1289 1290 for (idx = 0; idx < thread_count; idx++) { 1291 qemu_mutex_lock(&comp_param[idx].mutex); 1292 if (!comp_param[idx].quit) { 1293 len = qemu_put_qemu_file(rs->f, comp_param[idx].file); 1294 /* 1295 * it's safe to fetch zero_page without holding comp_done_lock 1296 * as there is no further request submitted to the thread, 1297 * i.e, the thread should be waiting for a request at this point. 1298 */ 1299 update_compress_thread_counts(&comp_param[idx], len); 1300 } 1301 qemu_mutex_unlock(&comp_param[idx].mutex); 1302 } 1303 } 1304 1305 static inline void set_compress_params(CompressParam *param, RAMBlock *block, 1306 ram_addr_t offset) 1307 { 1308 param->block = block; 1309 param->offset = offset; 1310 } 1311 1312 static int compress_page_with_multi_thread(RAMState *rs, RAMBlock *block, 1313 ram_addr_t offset) 1314 { 1315 int idx, thread_count, bytes_xmit = -1, pages = -1; 1316 bool wait = migrate_compress_wait_thread(); 1317 1318 thread_count = migrate_compress_threads(); 1319 qemu_mutex_lock(&comp_done_lock); 1320 retry: 1321 for (idx = 0; idx < thread_count; idx++) { 1322 if (comp_param[idx].done) { 1323 comp_param[idx].done = false; 1324 bytes_xmit = qemu_put_qemu_file(rs->f, comp_param[idx].file); 1325 qemu_mutex_lock(&comp_param[idx].mutex); 1326 set_compress_params(&comp_param[idx], block, offset); 1327 qemu_cond_signal(&comp_param[idx].cond); 1328 qemu_mutex_unlock(&comp_param[idx].mutex); 1329 pages = 1; 1330 update_compress_thread_counts(&comp_param[idx], bytes_xmit); 1331 break; 1332 } 1333 } 1334 1335 /* 1336 * wait for the free thread if the user specifies 'compress-wait-thread', 1337 * otherwise we will post the page out in the main thread as normal page. 1338 */ 1339 if (pages < 0 && wait) { 1340 qemu_cond_wait(&comp_done_cond, &comp_done_lock); 1341 goto retry; 1342 } 1343 qemu_mutex_unlock(&comp_done_lock); 1344 1345 return pages; 1346 } 1347 1348 /** 1349 * find_dirty_block: find the next dirty page and update any state 1350 * associated with the search process. 1351 * 1352 * Returns true if a page is found 1353 * 1354 * @rs: current RAM state 1355 * @pss: data about the state of the current dirty page scan 1356 * @again: set to false if the search has scanned the whole of RAM 1357 */ 1358 static bool find_dirty_block(RAMState *rs, PageSearchStatus *pss, bool *again) 1359 { 1360 pss->page = migration_bitmap_find_dirty(rs, pss->block, pss->page); 1361 if (pss->complete_round && pss->block == rs->last_seen_block && 1362 pss->page >= rs->last_page) { 1363 /* 1364 * We've been once around the RAM and haven't found anything. 1365 * Give up. 1366 */ 1367 *again = false; 1368 return false; 1369 } 1370 if ((((ram_addr_t)pss->page) << TARGET_PAGE_BITS) 1371 >= pss->block->used_length) { 1372 /* Didn't find anything in this RAM Block */ 1373 pss->page = 0; 1374 pss->block = QLIST_NEXT_RCU(pss->block, next); 1375 if (!pss->block) { 1376 /* 1377 * If memory migration starts over, we will meet a dirtied page 1378 * which may still exists in compression threads's ring, so we 1379 * should flush the compressed data to make sure the new page 1380 * is not overwritten by the old one in the destination. 1381 * 1382 * Also If xbzrle is on, stop using the data compression at this 1383 * point. In theory, xbzrle can do better than compression. 1384 */ 1385 flush_compressed_data(rs); 1386 1387 /* Hit the end of the list */ 1388 pss->block = QLIST_FIRST_RCU(&ram_list.blocks); 1389 /* Flag that we've looped */ 1390 pss->complete_round = true; 1391 rs->ram_bulk_stage = false; 1392 } 1393 /* Didn't find anything this time, but try again on the new block */ 1394 *again = true; 1395 return false; 1396 } else { 1397 /* Can go around again, but... */ 1398 *again = true; 1399 /* We've found something so probably don't need to */ 1400 return true; 1401 } 1402 } 1403 1404 /** 1405 * unqueue_page: gets a page of the queue 1406 * 1407 * Helper for 'get_queued_page' - gets a page off the queue 1408 * 1409 * Returns the block of the page (or NULL if none available) 1410 * 1411 * @rs: current RAM state 1412 * @offset: used to return the offset within the RAMBlock 1413 */ 1414 static RAMBlock *unqueue_page(RAMState *rs, ram_addr_t *offset) 1415 { 1416 RAMBlock *block = NULL; 1417 1418 if (QSIMPLEQ_EMPTY_ATOMIC(&rs->src_page_requests)) { 1419 return NULL; 1420 } 1421 1422 QEMU_LOCK_GUARD(&rs->src_page_req_mutex); 1423 if (!QSIMPLEQ_EMPTY(&rs->src_page_requests)) { 1424 struct RAMSrcPageRequest *entry = 1425 QSIMPLEQ_FIRST(&rs->src_page_requests); 1426 block = entry->rb; 1427 *offset = entry->offset; 1428 1429 if (entry->len > TARGET_PAGE_SIZE) { 1430 entry->len -= TARGET_PAGE_SIZE; 1431 entry->offset += TARGET_PAGE_SIZE; 1432 } else { 1433 memory_region_unref(block->mr); 1434 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req); 1435 g_free(entry); 1436 migration_consume_urgent_request(); 1437 } 1438 } 1439 1440 return block; 1441 } 1442 1443 /** 1444 * get_queued_page: unqueue a page from the postcopy requests 1445 * 1446 * Skips pages that are already sent (!dirty) 1447 * 1448 * Returns true if a queued page is found 1449 * 1450 * @rs: current RAM state 1451 * @pss: data about the state of the current dirty page scan 1452 */ 1453 static bool get_queued_page(RAMState *rs, PageSearchStatus *pss) 1454 { 1455 RAMBlock *block; 1456 ram_addr_t offset; 1457 bool dirty; 1458 1459 do { 1460 block = unqueue_page(rs, &offset); 1461 /* 1462 * We're sending this page, and since it's postcopy nothing else 1463 * will dirty it, and we must make sure it doesn't get sent again 1464 * even if this queue request was received after the background 1465 * search already sent it. 1466 */ 1467 if (block) { 1468 unsigned long page; 1469 1470 page = offset >> TARGET_PAGE_BITS; 1471 dirty = test_bit(page, block->bmap); 1472 if (!dirty) { 1473 trace_get_queued_page_not_dirty(block->idstr, (uint64_t)offset, 1474 page); 1475 } else { 1476 trace_get_queued_page(block->idstr, (uint64_t)offset, page); 1477 } 1478 } 1479 1480 } while (block && !dirty); 1481 1482 if (block) { 1483 /* 1484 * As soon as we start servicing pages out of order, then we have 1485 * to kill the bulk stage, since the bulk stage assumes 1486 * in (migration_bitmap_find_and_reset_dirty) that every page is 1487 * dirty, that's no longer true. 1488 */ 1489 rs->ram_bulk_stage = false; 1490 1491 /* 1492 * We want the background search to continue from the queued page 1493 * since the guest is likely to want other pages near to the page 1494 * it just requested. 1495 */ 1496 pss->block = block; 1497 pss->page = offset >> TARGET_PAGE_BITS; 1498 1499 /* 1500 * This unqueued page would break the "one round" check, even is 1501 * really rare. 1502 */ 1503 pss->complete_round = false; 1504 } 1505 1506 return !!block; 1507 } 1508 1509 /** 1510 * migration_page_queue_free: drop any remaining pages in the ram 1511 * request queue 1512 * 1513 * It should be empty at the end anyway, but in error cases there may 1514 * be some left. in case that there is any page left, we drop it. 1515 * 1516 */ 1517 static void migration_page_queue_free(RAMState *rs) 1518 { 1519 struct RAMSrcPageRequest *mspr, *next_mspr; 1520 /* This queue generally should be empty - but in the case of a failed 1521 * migration might have some droppings in. 1522 */ 1523 RCU_READ_LOCK_GUARD(); 1524 QSIMPLEQ_FOREACH_SAFE(mspr, &rs->src_page_requests, next_req, next_mspr) { 1525 memory_region_unref(mspr->rb->mr); 1526 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req); 1527 g_free(mspr); 1528 } 1529 } 1530 1531 /** 1532 * ram_save_queue_pages: queue the page for transmission 1533 * 1534 * A request from postcopy destination for example. 1535 * 1536 * Returns zero on success or negative on error 1537 * 1538 * @rbname: Name of the RAMBLock of the request. NULL means the 1539 * same that last one. 1540 * @start: starting address from the start of the RAMBlock 1541 * @len: length (in bytes) to send 1542 */ 1543 int ram_save_queue_pages(const char *rbname, ram_addr_t start, ram_addr_t len) 1544 { 1545 RAMBlock *ramblock; 1546 RAMState *rs = ram_state; 1547 1548 ram_counters.postcopy_requests++; 1549 RCU_READ_LOCK_GUARD(); 1550 1551 if (!rbname) { 1552 /* Reuse last RAMBlock */ 1553 ramblock = rs->last_req_rb; 1554 1555 if (!ramblock) { 1556 /* 1557 * Shouldn't happen, we can't reuse the last RAMBlock if 1558 * it's the 1st request. 1559 */ 1560 error_report("ram_save_queue_pages no previous block"); 1561 return -1; 1562 } 1563 } else { 1564 ramblock = qemu_ram_block_by_name(rbname); 1565 1566 if (!ramblock) { 1567 /* We shouldn't be asked for a non-existent RAMBlock */ 1568 error_report("ram_save_queue_pages no block '%s'", rbname); 1569 return -1; 1570 } 1571 rs->last_req_rb = ramblock; 1572 } 1573 trace_ram_save_queue_pages(ramblock->idstr, start, len); 1574 if (start+len > ramblock->used_length) { 1575 error_report("%s request overrun start=" RAM_ADDR_FMT " len=" 1576 RAM_ADDR_FMT " blocklen=" RAM_ADDR_FMT, 1577 __func__, start, len, ramblock->used_length); 1578 return -1; 1579 } 1580 1581 struct RAMSrcPageRequest *new_entry = 1582 g_malloc0(sizeof(struct RAMSrcPageRequest)); 1583 new_entry->rb = ramblock; 1584 new_entry->offset = start; 1585 new_entry->len = len; 1586 1587 memory_region_ref(ramblock->mr); 1588 qemu_mutex_lock(&rs->src_page_req_mutex); 1589 QSIMPLEQ_INSERT_TAIL(&rs->src_page_requests, new_entry, next_req); 1590 migration_make_urgent_request(); 1591 qemu_mutex_unlock(&rs->src_page_req_mutex); 1592 1593 return 0; 1594 } 1595 1596 static bool save_page_use_compression(RAMState *rs) 1597 { 1598 if (!migrate_use_compression()) { 1599 return false; 1600 } 1601 1602 /* 1603 * If xbzrle is on, stop using the data compression after first 1604 * round of migration even if compression is enabled. In theory, 1605 * xbzrle can do better than compression. 1606 */ 1607 if (rs->ram_bulk_stage || !migrate_use_xbzrle()) { 1608 return true; 1609 } 1610 1611 return false; 1612 } 1613 1614 /* 1615 * try to compress the page before posting it out, return true if the page 1616 * has been properly handled by compression, otherwise needs other 1617 * paths to handle it 1618 */ 1619 static bool save_compress_page(RAMState *rs, RAMBlock *block, ram_addr_t offset) 1620 { 1621 if (!save_page_use_compression(rs)) { 1622 return false; 1623 } 1624 1625 /* 1626 * When starting the process of a new block, the first page of 1627 * the block should be sent out before other pages in the same 1628 * block, and all the pages in last block should have been sent 1629 * out, keeping this order is important, because the 'cont' flag 1630 * is used to avoid resending the block name. 1631 * 1632 * We post the fist page as normal page as compression will take 1633 * much CPU resource. 1634 */ 1635 if (block != rs->last_sent_block) { 1636 flush_compressed_data(rs); 1637 return false; 1638 } 1639 1640 if (compress_page_with_multi_thread(rs, block, offset) > 0) { 1641 return true; 1642 } 1643 1644 compression_counters.busy++; 1645 return false; 1646 } 1647 1648 /** 1649 * ram_save_target_page: save one target page 1650 * 1651 * Returns the number of pages written 1652 * 1653 * @rs: current RAM state 1654 * @pss: data about the page we want to send 1655 * @last_stage: if we are at the completion stage 1656 */ 1657 static int ram_save_target_page(RAMState *rs, PageSearchStatus *pss, 1658 bool last_stage) 1659 { 1660 RAMBlock *block = pss->block; 1661 ram_addr_t offset = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS; 1662 int res; 1663 1664 if (control_save_page(rs, block, offset, &res)) { 1665 return res; 1666 } 1667 1668 if (save_compress_page(rs, block, offset)) { 1669 return 1; 1670 } 1671 1672 res = save_zero_page(rs, block, offset); 1673 if (res > 0) { 1674 /* Must let xbzrle know, otherwise a previous (now 0'd) cached 1675 * page would be stale 1676 */ 1677 if (!save_page_use_compression(rs)) { 1678 XBZRLE_cache_lock(); 1679 xbzrle_cache_zero_page(rs, block->offset + offset); 1680 XBZRLE_cache_unlock(); 1681 } 1682 ram_release_pages(block->idstr, offset, res); 1683 return res; 1684 } 1685 1686 /* 1687 * Do not use multifd for: 1688 * 1. Compression as the first page in the new block should be posted out 1689 * before sending the compressed page 1690 * 2. In postcopy as one whole host page should be placed 1691 */ 1692 if (!save_page_use_compression(rs) && migrate_use_multifd() 1693 && !migration_in_postcopy()) { 1694 return ram_save_multifd_page(rs, block, offset); 1695 } 1696 1697 return ram_save_page(rs, pss, last_stage); 1698 } 1699 1700 /** 1701 * ram_save_host_page: save a whole host page 1702 * 1703 * Starting at *offset send pages up to the end of the current host 1704 * page. It's valid for the initial offset to point into the middle of 1705 * a host page in which case the remainder of the hostpage is sent. 1706 * Only dirty target pages are sent. Note that the host page size may 1707 * be a huge page for this block. 1708 * The saving stops at the boundary of the used_length of the block 1709 * if the RAMBlock isn't a multiple of the host page size. 1710 * 1711 * Returns the number of pages written or negative on error 1712 * 1713 * @rs: current RAM state 1714 * @ms: current migration state 1715 * @pss: data about the page we want to send 1716 * @last_stage: if we are at the completion stage 1717 */ 1718 static int ram_save_host_page(RAMState *rs, PageSearchStatus *pss, 1719 bool last_stage) 1720 { 1721 int tmppages, pages = 0; 1722 size_t pagesize_bits = 1723 qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS; 1724 1725 if (ramblock_is_ignored(pss->block)) { 1726 error_report("block %s should not be migrated !", pss->block->idstr); 1727 return 0; 1728 } 1729 1730 do { 1731 /* Check the pages is dirty and if it is send it */ 1732 if (!migration_bitmap_clear_dirty(rs, pss->block, pss->page)) { 1733 pss->page++; 1734 continue; 1735 } 1736 1737 tmppages = ram_save_target_page(rs, pss, last_stage); 1738 if (tmppages < 0) { 1739 return tmppages; 1740 } 1741 1742 pages += tmppages; 1743 pss->page++; 1744 /* Allow rate limiting to happen in the middle of huge pages */ 1745 migration_rate_limit(); 1746 } while ((pss->page & (pagesize_bits - 1)) && 1747 offset_in_ramblock(pss->block, 1748 ((ram_addr_t)pss->page) << TARGET_PAGE_BITS)); 1749 1750 /* The offset we leave with is the last one we looked at */ 1751 pss->page--; 1752 return pages; 1753 } 1754 1755 /** 1756 * ram_find_and_save_block: finds a dirty page and sends it to f 1757 * 1758 * Called within an RCU critical section. 1759 * 1760 * Returns the number of pages written where zero means no dirty pages, 1761 * or negative on error 1762 * 1763 * @rs: current RAM state 1764 * @last_stage: if we are at the completion stage 1765 * 1766 * On systems where host-page-size > target-page-size it will send all the 1767 * pages in a host page that are dirty. 1768 */ 1769 1770 static int ram_find_and_save_block(RAMState *rs, bool last_stage) 1771 { 1772 PageSearchStatus pss; 1773 int pages = 0; 1774 bool again, found; 1775 1776 /* No dirty page as there is zero RAM */ 1777 if (!ram_bytes_total()) { 1778 return pages; 1779 } 1780 1781 pss.block = rs->last_seen_block; 1782 pss.page = rs->last_page; 1783 pss.complete_round = false; 1784 1785 if (!pss.block) { 1786 pss.block = QLIST_FIRST_RCU(&ram_list.blocks); 1787 } 1788 1789 do { 1790 again = true; 1791 found = get_queued_page(rs, &pss); 1792 1793 if (!found) { 1794 /* priority queue empty, so just search for something dirty */ 1795 found = find_dirty_block(rs, &pss, &again); 1796 } 1797 1798 if (found) { 1799 pages = ram_save_host_page(rs, &pss, last_stage); 1800 } 1801 } while (!pages && again); 1802 1803 rs->last_seen_block = pss.block; 1804 rs->last_page = pss.page; 1805 1806 return pages; 1807 } 1808 1809 void acct_update_position(QEMUFile *f, size_t size, bool zero) 1810 { 1811 uint64_t pages = size / TARGET_PAGE_SIZE; 1812 1813 if (zero) { 1814 ram_counters.duplicate += pages; 1815 } else { 1816 ram_counters.normal += pages; 1817 ram_counters.transferred += size; 1818 qemu_update_position(f, size); 1819 } 1820 } 1821 1822 static uint64_t ram_bytes_total_common(bool count_ignored) 1823 { 1824 RAMBlock *block; 1825 uint64_t total = 0; 1826 1827 RCU_READ_LOCK_GUARD(); 1828 1829 if (count_ignored) { 1830 RAMBLOCK_FOREACH_MIGRATABLE(block) { 1831 total += block->used_length; 1832 } 1833 } else { 1834 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 1835 total += block->used_length; 1836 } 1837 } 1838 return total; 1839 } 1840 1841 uint64_t ram_bytes_total(void) 1842 { 1843 return ram_bytes_total_common(false); 1844 } 1845 1846 static void xbzrle_load_setup(void) 1847 { 1848 XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE); 1849 } 1850 1851 static void xbzrle_load_cleanup(void) 1852 { 1853 g_free(XBZRLE.decoded_buf); 1854 XBZRLE.decoded_buf = NULL; 1855 } 1856 1857 static void ram_state_cleanup(RAMState **rsp) 1858 { 1859 if (*rsp) { 1860 migration_page_queue_free(*rsp); 1861 qemu_mutex_destroy(&(*rsp)->bitmap_mutex); 1862 qemu_mutex_destroy(&(*rsp)->src_page_req_mutex); 1863 g_free(*rsp); 1864 *rsp = NULL; 1865 } 1866 } 1867 1868 static void xbzrle_cleanup(void) 1869 { 1870 XBZRLE_cache_lock(); 1871 if (XBZRLE.cache) { 1872 cache_fini(XBZRLE.cache); 1873 g_free(XBZRLE.encoded_buf); 1874 g_free(XBZRLE.current_buf); 1875 g_free(XBZRLE.zero_target_page); 1876 XBZRLE.cache = NULL; 1877 XBZRLE.encoded_buf = NULL; 1878 XBZRLE.current_buf = NULL; 1879 XBZRLE.zero_target_page = NULL; 1880 } 1881 XBZRLE_cache_unlock(); 1882 } 1883 1884 static void ram_save_cleanup(void *opaque) 1885 { 1886 RAMState **rsp = opaque; 1887 RAMBlock *block; 1888 1889 /* caller have hold iothread lock or is in a bh, so there is 1890 * no writing race against the migration bitmap 1891 */ 1892 memory_global_dirty_log_stop(); 1893 1894 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 1895 g_free(block->clear_bmap); 1896 block->clear_bmap = NULL; 1897 g_free(block->bmap); 1898 block->bmap = NULL; 1899 } 1900 1901 xbzrle_cleanup(); 1902 compress_threads_save_cleanup(); 1903 ram_state_cleanup(rsp); 1904 } 1905 1906 static void ram_state_reset(RAMState *rs) 1907 { 1908 rs->last_seen_block = NULL; 1909 rs->last_sent_block = NULL; 1910 rs->last_page = 0; 1911 rs->last_version = ram_list.version; 1912 rs->ram_bulk_stage = true; 1913 rs->fpo_enabled = false; 1914 } 1915 1916 #define MAX_WAIT 50 /* ms, half buffered_file limit */ 1917 1918 /* 1919 * 'expected' is the value you expect the bitmap mostly to be full 1920 * of; it won't bother printing lines that are all this value. 1921 * If 'todump' is null the migration bitmap is dumped. 1922 */ 1923 void ram_debug_dump_bitmap(unsigned long *todump, bool expected, 1924 unsigned long pages) 1925 { 1926 int64_t cur; 1927 int64_t linelen = 128; 1928 char linebuf[129]; 1929 1930 for (cur = 0; cur < pages; cur += linelen) { 1931 int64_t curb; 1932 bool found = false; 1933 /* 1934 * Last line; catch the case where the line length 1935 * is longer than remaining ram 1936 */ 1937 if (cur + linelen > pages) { 1938 linelen = pages - cur; 1939 } 1940 for (curb = 0; curb < linelen; curb++) { 1941 bool thisbit = test_bit(cur + curb, todump); 1942 linebuf[curb] = thisbit ? '1' : '.'; 1943 found = found || (thisbit != expected); 1944 } 1945 if (found) { 1946 linebuf[curb] = '\0'; 1947 fprintf(stderr, "0x%08" PRIx64 " : %s\n", cur, linebuf); 1948 } 1949 } 1950 } 1951 1952 /* **** functions for postcopy ***** */ 1953 1954 void ram_postcopy_migrated_memory_release(MigrationState *ms) 1955 { 1956 struct RAMBlock *block; 1957 1958 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 1959 unsigned long *bitmap = block->bmap; 1960 unsigned long range = block->used_length >> TARGET_PAGE_BITS; 1961 unsigned long run_start = find_next_zero_bit(bitmap, range, 0); 1962 1963 while (run_start < range) { 1964 unsigned long run_end = find_next_bit(bitmap, range, run_start + 1); 1965 ram_discard_range(block->idstr, 1966 ((ram_addr_t)run_start) << TARGET_PAGE_BITS, 1967 ((ram_addr_t)(run_end - run_start)) 1968 << TARGET_PAGE_BITS); 1969 run_start = find_next_zero_bit(bitmap, range, run_end + 1); 1970 } 1971 } 1972 } 1973 1974 /** 1975 * postcopy_send_discard_bm_ram: discard a RAMBlock 1976 * 1977 * Returns zero on success 1978 * 1979 * Callback from postcopy_each_ram_send_discard for each RAMBlock 1980 * 1981 * @ms: current migration state 1982 * @block: RAMBlock to discard 1983 */ 1984 static int postcopy_send_discard_bm_ram(MigrationState *ms, RAMBlock *block) 1985 { 1986 unsigned long end = block->used_length >> TARGET_PAGE_BITS; 1987 unsigned long current; 1988 unsigned long *bitmap = block->bmap; 1989 1990 for (current = 0; current < end; ) { 1991 unsigned long one = find_next_bit(bitmap, end, current); 1992 unsigned long zero, discard_length; 1993 1994 if (one >= end) { 1995 break; 1996 } 1997 1998 zero = find_next_zero_bit(bitmap, end, one + 1); 1999 2000 if (zero >= end) { 2001 discard_length = end - one; 2002 } else { 2003 discard_length = zero - one; 2004 } 2005 postcopy_discard_send_range(ms, one, discard_length); 2006 current = one + discard_length; 2007 } 2008 2009 return 0; 2010 } 2011 2012 /** 2013 * postcopy_each_ram_send_discard: discard all RAMBlocks 2014 * 2015 * Returns 0 for success or negative for error 2016 * 2017 * Utility for the outgoing postcopy code. 2018 * Calls postcopy_send_discard_bm_ram for each RAMBlock 2019 * passing it bitmap indexes and name. 2020 * (qemu_ram_foreach_block ends up passing unscaled lengths 2021 * which would mean postcopy code would have to deal with target page) 2022 * 2023 * @ms: current migration state 2024 */ 2025 static int postcopy_each_ram_send_discard(MigrationState *ms) 2026 { 2027 struct RAMBlock *block; 2028 int ret; 2029 2030 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 2031 postcopy_discard_send_init(ms, block->idstr); 2032 2033 /* 2034 * Postcopy sends chunks of bitmap over the wire, but it 2035 * just needs indexes at this point, avoids it having 2036 * target page specific code. 2037 */ 2038 ret = postcopy_send_discard_bm_ram(ms, block); 2039 postcopy_discard_send_finish(ms); 2040 if (ret) { 2041 return ret; 2042 } 2043 } 2044 2045 return 0; 2046 } 2047 2048 /** 2049 * postcopy_chunk_hostpages_pass: canonicalize bitmap in hostpages 2050 * 2051 * Helper for postcopy_chunk_hostpages; it's called twice to 2052 * canonicalize the two bitmaps, that are similar, but one is 2053 * inverted. 2054 * 2055 * Postcopy requires that all target pages in a hostpage are dirty or 2056 * clean, not a mix. This function canonicalizes the bitmaps. 2057 * 2058 * @ms: current migration state 2059 * @block: block that contains the page we want to canonicalize 2060 */ 2061 static void postcopy_chunk_hostpages_pass(MigrationState *ms, RAMBlock *block) 2062 { 2063 RAMState *rs = ram_state; 2064 unsigned long *bitmap = block->bmap; 2065 unsigned int host_ratio = block->page_size / TARGET_PAGE_SIZE; 2066 unsigned long pages = block->used_length >> TARGET_PAGE_BITS; 2067 unsigned long run_start; 2068 2069 if (block->page_size == TARGET_PAGE_SIZE) { 2070 /* Easy case - TPS==HPS for a non-huge page RAMBlock */ 2071 return; 2072 } 2073 2074 /* Find a dirty page */ 2075 run_start = find_next_bit(bitmap, pages, 0); 2076 2077 while (run_start < pages) { 2078 2079 /* 2080 * If the start of this run of pages is in the middle of a host 2081 * page, then we need to fixup this host page. 2082 */ 2083 if (QEMU_IS_ALIGNED(run_start, host_ratio)) { 2084 /* Find the end of this run */ 2085 run_start = find_next_zero_bit(bitmap, pages, run_start + 1); 2086 /* 2087 * If the end isn't at the start of a host page, then the 2088 * run doesn't finish at the end of a host page 2089 * and we need to discard. 2090 */ 2091 } 2092 2093 if (!QEMU_IS_ALIGNED(run_start, host_ratio)) { 2094 unsigned long page; 2095 unsigned long fixup_start_addr = QEMU_ALIGN_DOWN(run_start, 2096 host_ratio); 2097 run_start = QEMU_ALIGN_UP(run_start, host_ratio); 2098 2099 /* Clean up the bitmap */ 2100 for (page = fixup_start_addr; 2101 page < fixup_start_addr + host_ratio; page++) { 2102 /* 2103 * Remark them as dirty, updating the count for any pages 2104 * that weren't previously dirty. 2105 */ 2106 rs->migration_dirty_pages += !test_and_set_bit(page, bitmap); 2107 } 2108 } 2109 2110 /* Find the next dirty page for the next iteration */ 2111 run_start = find_next_bit(bitmap, pages, run_start); 2112 } 2113 } 2114 2115 /** 2116 * postcopy_chunk_hostpages: discard any partially sent host page 2117 * 2118 * Utility for the outgoing postcopy code. 2119 * 2120 * Discard any partially sent host-page size chunks, mark any partially 2121 * dirty host-page size chunks as all dirty. In this case the host-page 2122 * is the host-page for the particular RAMBlock, i.e. it might be a huge page 2123 * 2124 * Returns zero on success 2125 * 2126 * @ms: current migration state 2127 * @block: block we want to work with 2128 */ 2129 static int postcopy_chunk_hostpages(MigrationState *ms, RAMBlock *block) 2130 { 2131 postcopy_discard_send_init(ms, block->idstr); 2132 2133 /* 2134 * Ensure that all partially dirty host pages are made fully dirty. 2135 */ 2136 postcopy_chunk_hostpages_pass(ms, block); 2137 2138 postcopy_discard_send_finish(ms); 2139 return 0; 2140 } 2141 2142 /** 2143 * ram_postcopy_send_discard_bitmap: transmit the discard bitmap 2144 * 2145 * Returns zero on success 2146 * 2147 * Transmit the set of pages to be discarded after precopy to the target 2148 * these are pages that: 2149 * a) Have been previously transmitted but are now dirty again 2150 * b) Pages that have never been transmitted, this ensures that 2151 * any pages on the destination that have been mapped by background 2152 * tasks get discarded (transparent huge pages is the specific concern) 2153 * Hopefully this is pretty sparse 2154 * 2155 * @ms: current migration state 2156 */ 2157 int ram_postcopy_send_discard_bitmap(MigrationState *ms) 2158 { 2159 RAMState *rs = ram_state; 2160 RAMBlock *block; 2161 int ret; 2162 2163 RCU_READ_LOCK_GUARD(); 2164 2165 /* This should be our last sync, the src is now paused */ 2166 migration_bitmap_sync(rs); 2167 2168 /* Easiest way to make sure we don't resume in the middle of a host-page */ 2169 rs->last_seen_block = NULL; 2170 rs->last_sent_block = NULL; 2171 rs->last_page = 0; 2172 2173 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 2174 /* Deal with TPS != HPS and huge pages */ 2175 ret = postcopy_chunk_hostpages(ms, block); 2176 if (ret) { 2177 return ret; 2178 } 2179 2180 #ifdef DEBUG_POSTCOPY 2181 ram_debug_dump_bitmap(block->bmap, true, 2182 block->used_length >> TARGET_PAGE_BITS); 2183 #endif 2184 } 2185 trace_ram_postcopy_send_discard_bitmap(); 2186 2187 return postcopy_each_ram_send_discard(ms); 2188 } 2189 2190 /** 2191 * ram_discard_range: discard dirtied pages at the beginning of postcopy 2192 * 2193 * Returns zero on success 2194 * 2195 * @rbname: name of the RAMBlock of the request. NULL means the 2196 * same that last one. 2197 * @start: RAMBlock starting page 2198 * @length: RAMBlock size 2199 */ 2200 int ram_discard_range(const char *rbname, uint64_t start, size_t length) 2201 { 2202 trace_ram_discard_range(rbname, start, length); 2203 2204 RCU_READ_LOCK_GUARD(); 2205 RAMBlock *rb = qemu_ram_block_by_name(rbname); 2206 2207 if (!rb) { 2208 error_report("ram_discard_range: Failed to find block '%s'", rbname); 2209 return -1; 2210 } 2211 2212 /* 2213 * On source VM, we don't need to update the received bitmap since 2214 * we don't even have one. 2215 */ 2216 if (rb->receivedmap) { 2217 bitmap_clear(rb->receivedmap, start >> qemu_target_page_bits(), 2218 length >> qemu_target_page_bits()); 2219 } 2220 2221 return ram_block_discard_range(rb, start, length); 2222 } 2223 2224 /* 2225 * For every allocation, we will try not to crash the VM if the 2226 * allocation failed. 2227 */ 2228 static int xbzrle_init(void) 2229 { 2230 Error *local_err = NULL; 2231 2232 if (!migrate_use_xbzrle()) { 2233 return 0; 2234 } 2235 2236 XBZRLE_cache_lock(); 2237 2238 XBZRLE.zero_target_page = g_try_malloc0(TARGET_PAGE_SIZE); 2239 if (!XBZRLE.zero_target_page) { 2240 error_report("%s: Error allocating zero page", __func__); 2241 goto err_out; 2242 } 2243 2244 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size(), 2245 TARGET_PAGE_SIZE, &local_err); 2246 if (!XBZRLE.cache) { 2247 error_report_err(local_err); 2248 goto free_zero_page; 2249 } 2250 2251 XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE); 2252 if (!XBZRLE.encoded_buf) { 2253 error_report("%s: Error allocating encoded_buf", __func__); 2254 goto free_cache; 2255 } 2256 2257 XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE); 2258 if (!XBZRLE.current_buf) { 2259 error_report("%s: Error allocating current_buf", __func__); 2260 goto free_encoded_buf; 2261 } 2262 2263 /* We are all good */ 2264 XBZRLE_cache_unlock(); 2265 return 0; 2266 2267 free_encoded_buf: 2268 g_free(XBZRLE.encoded_buf); 2269 XBZRLE.encoded_buf = NULL; 2270 free_cache: 2271 cache_fini(XBZRLE.cache); 2272 XBZRLE.cache = NULL; 2273 free_zero_page: 2274 g_free(XBZRLE.zero_target_page); 2275 XBZRLE.zero_target_page = NULL; 2276 err_out: 2277 XBZRLE_cache_unlock(); 2278 return -ENOMEM; 2279 } 2280 2281 static int ram_state_init(RAMState **rsp) 2282 { 2283 *rsp = g_try_new0(RAMState, 1); 2284 2285 if (!*rsp) { 2286 error_report("%s: Init ramstate fail", __func__); 2287 return -1; 2288 } 2289 2290 qemu_mutex_init(&(*rsp)->bitmap_mutex); 2291 qemu_mutex_init(&(*rsp)->src_page_req_mutex); 2292 QSIMPLEQ_INIT(&(*rsp)->src_page_requests); 2293 2294 /* 2295 * Count the total number of pages used by ram blocks not including any 2296 * gaps due to alignment or unplugs. 2297 * This must match with the initial values of dirty bitmap. 2298 */ 2299 (*rsp)->migration_dirty_pages = ram_bytes_total() >> TARGET_PAGE_BITS; 2300 ram_state_reset(*rsp); 2301 2302 return 0; 2303 } 2304 2305 static void ram_list_init_bitmaps(void) 2306 { 2307 MigrationState *ms = migrate_get_current(); 2308 RAMBlock *block; 2309 unsigned long pages; 2310 uint8_t shift; 2311 2312 /* Skip setting bitmap if there is no RAM */ 2313 if (ram_bytes_total()) { 2314 shift = ms->clear_bitmap_shift; 2315 if (shift > CLEAR_BITMAP_SHIFT_MAX) { 2316 error_report("clear_bitmap_shift (%u) too big, using " 2317 "max value (%u)", shift, CLEAR_BITMAP_SHIFT_MAX); 2318 shift = CLEAR_BITMAP_SHIFT_MAX; 2319 } else if (shift < CLEAR_BITMAP_SHIFT_MIN) { 2320 error_report("clear_bitmap_shift (%u) too small, using " 2321 "min value (%u)", shift, CLEAR_BITMAP_SHIFT_MIN); 2322 shift = CLEAR_BITMAP_SHIFT_MIN; 2323 } 2324 2325 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 2326 pages = block->max_length >> TARGET_PAGE_BITS; 2327 /* 2328 * The initial dirty bitmap for migration must be set with all 2329 * ones to make sure we'll migrate every guest RAM page to 2330 * destination. 2331 * Here we set RAMBlock.bmap all to 1 because when rebegin a 2332 * new migration after a failed migration, ram_list. 2333 * dirty_memory[DIRTY_MEMORY_MIGRATION] don't include the whole 2334 * guest memory. 2335 */ 2336 block->bmap = bitmap_new(pages); 2337 bitmap_set(block->bmap, 0, pages); 2338 block->clear_bmap_shift = shift; 2339 block->clear_bmap = bitmap_new(clear_bmap_size(pages, shift)); 2340 } 2341 } 2342 } 2343 2344 static void ram_init_bitmaps(RAMState *rs) 2345 { 2346 /* For memory_global_dirty_log_start below. */ 2347 qemu_mutex_lock_iothread(); 2348 qemu_mutex_lock_ramlist(); 2349 2350 WITH_RCU_READ_LOCK_GUARD() { 2351 ram_list_init_bitmaps(); 2352 memory_global_dirty_log_start(); 2353 migration_bitmap_sync_precopy(rs); 2354 } 2355 qemu_mutex_unlock_ramlist(); 2356 qemu_mutex_unlock_iothread(); 2357 } 2358 2359 static int ram_init_all(RAMState **rsp) 2360 { 2361 if (ram_state_init(rsp)) { 2362 return -1; 2363 } 2364 2365 if (xbzrle_init()) { 2366 ram_state_cleanup(rsp); 2367 return -1; 2368 } 2369 2370 ram_init_bitmaps(*rsp); 2371 2372 return 0; 2373 } 2374 2375 static void ram_state_resume_prepare(RAMState *rs, QEMUFile *out) 2376 { 2377 RAMBlock *block; 2378 uint64_t pages = 0; 2379 2380 /* 2381 * Postcopy is not using xbzrle/compression, so no need for that. 2382 * Also, since source are already halted, we don't need to care 2383 * about dirty page logging as well. 2384 */ 2385 2386 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 2387 pages += bitmap_count_one(block->bmap, 2388 block->used_length >> TARGET_PAGE_BITS); 2389 } 2390 2391 /* This may not be aligned with current bitmaps. Recalculate. */ 2392 rs->migration_dirty_pages = pages; 2393 2394 rs->last_seen_block = NULL; 2395 rs->last_sent_block = NULL; 2396 rs->last_page = 0; 2397 rs->last_version = ram_list.version; 2398 /* 2399 * Disable the bulk stage, otherwise we'll resend the whole RAM no 2400 * matter what we have sent. 2401 */ 2402 rs->ram_bulk_stage = false; 2403 2404 /* Update RAMState cache of output QEMUFile */ 2405 rs->f = out; 2406 2407 trace_ram_state_resume_prepare(pages); 2408 } 2409 2410 /* 2411 * This function clears bits of the free pages reported by the caller from the 2412 * migration dirty bitmap. @addr is the host address corresponding to the 2413 * start of the continuous guest free pages, and @len is the total bytes of 2414 * those pages. 2415 */ 2416 void qemu_guest_free_page_hint(void *addr, size_t len) 2417 { 2418 RAMBlock *block; 2419 ram_addr_t offset; 2420 size_t used_len, start, npages; 2421 MigrationState *s = migrate_get_current(); 2422 2423 /* This function is currently expected to be used during live migration */ 2424 if (!migration_is_setup_or_active(s->state)) { 2425 return; 2426 } 2427 2428 for (; len > 0; len -= used_len, addr += used_len) { 2429 block = qemu_ram_block_from_host(addr, false, &offset); 2430 if (unlikely(!block || offset >= block->used_length)) { 2431 /* 2432 * The implementation might not support RAMBlock resize during 2433 * live migration, but it could happen in theory with future 2434 * updates. So we add a check here to capture that case. 2435 */ 2436 error_report_once("%s unexpected error", __func__); 2437 return; 2438 } 2439 2440 if (len <= block->used_length - offset) { 2441 used_len = len; 2442 } else { 2443 used_len = block->used_length - offset; 2444 } 2445 2446 start = offset >> TARGET_PAGE_BITS; 2447 npages = used_len >> TARGET_PAGE_BITS; 2448 2449 qemu_mutex_lock(&ram_state->bitmap_mutex); 2450 ram_state->migration_dirty_pages -= 2451 bitmap_count_one_with_offset(block->bmap, start, npages); 2452 bitmap_clear(block->bmap, start, npages); 2453 qemu_mutex_unlock(&ram_state->bitmap_mutex); 2454 } 2455 } 2456 2457 /* 2458 * Each of ram_save_setup, ram_save_iterate and ram_save_complete has 2459 * long-running RCU critical section. When rcu-reclaims in the code 2460 * start to become numerous it will be necessary to reduce the 2461 * granularity of these critical sections. 2462 */ 2463 2464 /** 2465 * ram_save_setup: Setup RAM for migration 2466 * 2467 * Returns zero to indicate success and negative for error 2468 * 2469 * @f: QEMUFile where to send the data 2470 * @opaque: RAMState pointer 2471 */ 2472 static int ram_save_setup(QEMUFile *f, void *opaque) 2473 { 2474 RAMState **rsp = opaque; 2475 RAMBlock *block; 2476 2477 if (compress_threads_save_setup()) { 2478 return -1; 2479 } 2480 2481 /* migration has already setup the bitmap, reuse it. */ 2482 if (!migration_in_colo_state()) { 2483 if (ram_init_all(rsp) != 0) { 2484 compress_threads_save_cleanup(); 2485 return -1; 2486 } 2487 } 2488 (*rsp)->f = f; 2489 2490 WITH_RCU_READ_LOCK_GUARD() { 2491 qemu_put_be64(f, ram_bytes_total_common(true) | RAM_SAVE_FLAG_MEM_SIZE); 2492 2493 RAMBLOCK_FOREACH_MIGRATABLE(block) { 2494 qemu_put_byte(f, strlen(block->idstr)); 2495 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr)); 2496 qemu_put_be64(f, block->used_length); 2497 if (migrate_postcopy_ram() && block->page_size != 2498 qemu_host_page_size) { 2499 qemu_put_be64(f, block->page_size); 2500 } 2501 if (migrate_ignore_shared()) { 2502 qemu_put_be64(f, block->mr->addr); 2503 } 2504 } 2505 } 2506 2507 ram_control_before_iterate(f, RAM_CONTROL_SETUP); 2508 ram_control_after_iterate(f, RAM_CONTROL_SETUP); 2509 2510 multifd_send_sync_main(f); 2511 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 2512 qemu_fflush(f); 2513 2514 return 0; 2515 } 2516 2517 /** 2518 * ram_save_iterate: iterative stage for migration 2519 * 2520 * Returns zero to indicate success and negative for error 2521 * 2522 * @f: QEMUFile where to send the data 2523 * @opaque: RAMState pointer 2524 */ 2525 static int ram_save_iterate(QEMUFile *f, void *opaque) 2526 { 2527 RAMState **temp = opaque; 2528 RAMState *rs = *temp; 2529 int ret = 0; 2530 int i; 2531 int64_t t0; 2532 int done = 0; 2533 2534 if (blk_mig_bulk_active()) { 2535 /* Avoid transferring ram during bulk phase of block migration as 2536 * the bulk phase will usually take a long time and transferring 2537 * ram updates during that time is pointless. */ 2538 goto out; 2539 } 2540 2541 WITH_RCU_READ_LOCK_GUARD() { 2542 if (ram_list.version != rs->last_version) { 2543 ram_state_reset(rs); 2544 } 2545 2546 /* Read version before ram_list.blocks */ 2547 smp_rmb(); 2548 2549 ram_control_before_iterate(f, RAM_CONTROL_ROUND); 2550 2551 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 2552 i = 0; 2553 while ((ret = qemu_file_rate_limit(f)) == 0 || 2554 !QSIMPLEQ_EMPTY(&rs->src_page_requests)) { 2555 int pages; 2556 2557 if (qemu_file_get_error(f)) { 2558 break; 2559 } 2560 2561 pages = ram_find_and_save_block(rs, false); 2562 /* no more pages to sent */ 2563 if (pages == 0) { 2564 done = 1; 2565 break; 2566 } 2567 2568 if (pages < 0) { 2569 qemu_file_set_error(f, pages); 2570 break; 2571 } 2572 2573 rs->target_page_count += pages; 2574 2575 /* 2576 * During postcopy, it is necessary to make sure one whole host 2577 * page is sent in one chunk. 2578 */ 2579 if (migrate_postcopy_ram()) { 2580 flush_compressed_data(rs); 2581 } 2582 2583 /* 2584 * we want to check in the 1st loop, just in case it was the 1st 2585 * time and we had to sync the dirty bitmap. 2586 * qemu_clock_get_ns() is a bit expensive, so we only check each 2587 * some iterations 2588 */ 2589 if ((i & 63) == 0) { 2590 uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) / 2591 1000000; 2592 if (t1 > MAX_WAIT) { 2593 trace_ram_save_iterate_big_wait(t1, i); 2594 break; 2595 } 2596 } 2597 i++; 2598 } 2599 } 2600 2601 /* 2602 * Must occur before EOS (or any QEMUFile operation) 2603 * because of RDMA protocol. 2604 */ 2605 ram_control_after_iterate(f, RAM_CONTROL_ROUND); 2606 2607 out: 2608 if (ret >= 0 2609 && migration_is_setup_or_active(migrate_get_current()->state)) { 2610 multifd_send_sync_main(rs->f); 2611 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 2612 qemu_fflush(f); 2613 ram_counters.transferred += 8; 2614 2615 ret = qemu_file_get_error(f); 2616 } 2617 if (ret < 0) { 2618 return ret; 2619 } 2620 2621 return done; 2622 } 2623 2624 /** 2625 * ram_save_complete: function called to send the remaining amount of ram 2626 * 2627 * Returns zero to indicate success or negative on error 2628 * 2629 * Called with iothread lock 2630 * 2631 * @f: QEMUFile where to send the data 2632 * @opaque: RAMState pointer 2633 */ 2634 static int ram_save_complete(QEMUFile *f, void *opaque) 2635 { 2636 RAMState **temp = opaque; 2637 RAMState *rs = *temp; 2638 int ret = 0; 2639 2640 WITH_RCU_READ_LOCK_GUARD() { 2641 if (!migration_in_postcopy()) { 2642 migration_bitmap_sync_precopy(rs); 2643 } 2644 2645 ram_control_before_iterate(f, RAM_CONTROL_FINISH); 2646 2647 /* try transferring iterative blocks of memory */ 2648 2649 /* flush all remaining blocks regardless of rate limiting */ 2650 while (true) { 2651 int pages; 2652 2653 pages = ram_find_and_save_block(rs, !migration_in_colo_state()); 2654 /* no more blocks to sent */ 2655 if (pages == 0) { 2656 break; 2657 } 2658 if (pages < 0) { 2659 ret = pages; 2660 break; 2661 } 2662 } 2663 2664 flush_compressed_data(rs); 2665 ram_control_after_iterate(f, RAM_CONTROL_FINISH); 2666 } 2667 2668 if (ret >= 0) { 2669 multifd_send_sync_main(rs->f); 2670 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 2671 qemu_fflush(f); 2672 } 2673 2674 return ret; 2675 } 2676 2677 static void ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size, 2678 uint64_t *res_precopy_only, 2679 uint64_t *res_compatible, 2680 uint64_t *res_postcopy_only) 2681 { 2682 RAMState **temp = opaque; 2683 RAMState *rs = *temp; 2684 uint64_t remaining_size; 2685 2686 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE; 2687 2688 if (!migration_in_postcopy() && 2689 remaining_size < max_size) { 2690 qemu_mutex_lock_iothread(); 2691 WITH_RCU_READ_LOCK_GUARD() { 2692 migration_bitmap_sync_precopy(rs); 2693 } 2694 qemu_mutex_unlock_iothread(); 2695 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE; 2696 } 2697 2698 if (migrate_postcopy_ram()) { 2699 /* We can do postcopy, and all the data is postcopiable */ 2700 *res_compatible += remaining_size; 2701 } else { 2702 *res_precopy_only += remaining_size; 2703 } 2704 } 2705 2706 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host) 2707 { 2708 unsigned int xh_len; 2709 int xh_flags; 2710 uint8_t *loaded_data; 2711 2712 /* extract RLE header */ 2713 xh_flags = qemu_get_byte(f); 2714 xh_len = qemu_get_be16(f); 2715 2716 if (xh_flags != ENCODING_FLAG_XBZRLE) { 2717 error_report("Failed to load XBZRLE page - wrong compression!"); 2718 return -1; 2719 } 2720 2721 if (xh_len > TARGET_PAGE_SIZE) { 2722 error_report("Failed to load XBZRLE page - len overflow!"); 2723 return -1; 2724 } 2725 loaded_data = XBZRLE.decoded_buf; 2726 /* load data and decode */ 2727 /* it can change loaded_data to point to an internal buffer */ 2728 qemu_get_buffer_in_place(f, &loaded_data, xh_len); 2729 2730 /* decode RLE */ 2731 if (xbzrle_decode_buffer(loaded_data, xh_len, host, 2732 TARGET_PAGE_SIZE) == -1) { 2733 error_report("Failed to load XBZRLE page - decode error!"); 2734 return -1; 2735 } 2736 2737 return 0; 2738 } 2739 2740 /** 2741 * ram_block_from_stream: read a RAMBlock id from the migration stream 2742 * 2743 * Must be called from within a rcu critical section. 2744 * 2745 * Returns a pointer from within the RCU-protected ram_list. 2746 * 2747 * @f: QEMUFile where to read the data from 2748 * @flags: Page flags (mostly to see if it's a continuation of previous block) 2749 */ 2750 static inline RAMBlock *ram_block_from_stream(QEMUFile *f, int flags) 2751 { 2752 static RAMBlock *block = NULL; 2753 char id[256]; 2754 uint8_t len; 2755 2756 if (flags & RAM_SAVE_FLAG_CONTINUE) { 2757 if (!block) { 2758 error_report("Ack, bad migration stream!"); 2759 return NULL; 2760 } 2761 return block; 2762 } 2763 2764 len = qemu_get_byte(f); 2765 qemu_get_buffer(f, (uint8_t *)id, len); 2766 id[len] = 0; 2767 2768 block = qemu_ram_block_by_name(id); 2769 if (!block) { 2770 error_report("Can't find block %s", id); 2771 return NULL; 2772 } 2773 2774 if (ramblock_is_ignored(block)) { 2775 error_report("block %s should not be migrated !", id); 2776 return NULL; 2777 } 2778 2779 return block; 2780 } 2781 2782 static inline void *host_from_ram_block_offset(RAMBlock *block, 2783 ram_addr_t offset) 2784 { 2785 if (!offset_in_ramblock(block, offset)) { 2786 return NULL; 2787 } 2788 2789 return block->host + offset; 2790 } 2791 2792 static inline void *colo_cache_from_block_offset(RAMBlock *block, 2793 ram_addr_t offset, bool record_bitmap) 2794 { 2795 if (!offset_in_ramblock(block, offset)) { 2796 return NULL; 2797 } 2798 if (!block->colo_cache) { 2799 error_report("%s: colo_cache is NULL in block :%s", 2800 __func__, block->idstr); 2801 return NULL; 2802 } 2803 2804 /* 2805 * During colo checkpoint, we need bitmap of these migrated pages. 2806 * It help us to decide which pages in ram cache should be flushed 2807 * into VM's RAM later. 2808 */ 2809 if (record_bitmap && 2810 !test_and_set_bit(offset >> TARGET_PAGE_BITS, block->bmap)) { 2811 ram_state->migration_dirty_pages++; 2812 } 2813 return block->colo_cache + offset; 2814 } 2815 2816 /** 2817 * ram_handle_compressed: handle the zero page case 2818 * 2819 * If a page (or a whole RDMA chunk) has been 2820 * determined to be zero, then zap it. 2821 * 2822 * @host: host address for the zero page 2823 * @ch: what the page is filled from. We only support zero 2824 * @size: size of the zero page 2825 */ 2826 void ram_handle_compressed(void *host, uint8_t ch, uint64_t size) 2827 { 2828 if (ch != 0 || !is_zero_range(host, size)) { 2829 memset(host, ch, size); 2830 } 2831 } 2832 2833 /* return the size after decompression, or negative value on error */ 2834 static int 2835 qemu_uncompress_data(z_stream *stream, uint8_t *dest, size_t dest_len, 2836 const uint8_t *source, size_t source_len) 2837 { 2838 int err; 2839 2840 err = inflateReset(stream); 2841 if (err != Z_OK) { 2842 return -1; 2843 } 2844 2845 stream->avail_in = source_len; 2846 stream->next_in = (uint8_t *)source; 2847 stream->avail_out = dest_len; 2848 stream->next_out = dest; 2849 2850 err = inflate(stream, Z_NO_FLUSH); 2851 if (err != Z_STREAM_END) { 2852 return -1; 2853 } 2854 2855 return stream->total_out; 2856 } 2857 2858 static void *do_data_decompress(void *opaque) 2859 { 2860 DecompressParam *param = opaque; 2861 unsigned long pagesize; 2862 uint8_t *des; 2863 int len, ret; 2864 2865 qemu_mutex_lock(¶m->mutex); 2866 while (!param->quit) { 2867 if (param->des) { 2868 des = param->des; 2869 len = param->len; 2870 param->des = 0; 2871 qemu_mutex_unlock(¶m->mutex); 2872 2873 pagesize = TARGET_PAGE_SIZE; 2874 2875 ret = qemu_uncompress_data(¶m->stream, des, pagesize, 2876 param->compbuf, len); 2877 if (ret < 0 && migrate_get_current()->decompress_error_check) { 2878 error_report("decompress data failed"); 2879 qemu_file_set_error(decomp_file, ret); 2880 } 2881 2882 qemu_mutex_lock(&decomp_done_lock); 2883 param->done = true; 2884 qemu_cond_signal(&decomp_done_cond); 2885 qemu_mutex_unlock(&decomp_done_lock); 2886 2887 qemu_mutex_lock(¶m->mutex); 2888 } else { 2889 qemu_cond_wait(¶m->cond, ¶m->mutex); 2890 } 2891 } 2892 qemu_mutex_unlock(¶m->mutex); 2893 2894 return NULL; 2895 } 2896 2897 static int wait_for_decompress_done(void) 2898 { 2899 int idx, thread_count; 2900 2901 if (!migrate_use_compression()) { 2902 return 0; 2903 } 2904 2905 thread_count = migrate_decompress_threads(); 2906 qemu_mutex_lock(&decomp_done_lock); 2907 for (idx = 0; idx < thread_count; idx++) { 2908 while (!decomp_param[idx].done) { 2909 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock); 2910 } 2911 } 2912 qemu_mutex_unlock(&decomp_done_lock); 2913 return qemu_file_get_error(decomp_file); 2914 } 2915 2916 static void compress_threads_load_cleanup(void) 2917 { 2918 int i, thread_count; 2919 2920 if (!migrate_use_compression()) { 2921 return; 2922 } 2923 thread_count = migrate_decompress_threads(); 2924 for (i = 0; i < thread_count; i++) { 2925 /* 2926 * we use it as a indicator which shows if the thread is 2927 * properly init'd or not 2928 */ 2929 if (!decomp_param[i].compbuf) { 2930 break; 2931 } 2932 2933 qemu_mutex_lock(&decomp_param[i].mutex); 2934 decomp_param[i].quit = true; 2935 qemu_cond_signal(&decomp_param[i].cond); 2936 qemu_mutex_unlock(&decomp_param[i].mutex); 2937 } 2938 for (i = 0; i < thread_count; i++) { 2939 if (!decomp_param[i].compbuf) { 2940 break; 2941 } 2942 2943 qemu_thread_join(decompress_threads + i); 2944 qemu_mutex_destroy(&decomp_param[i].mutex); 2945 qemu_cond_destroy(&decomp_param[i].cond); 2946 inflateEnd(&decomp_param[i].stream); 2947 g_free(decomp_param[i].compbuf); 2948 decomp_param[i].compbuf = NULL; 2949 } 2950 g_free(decompress_threads); 2951 g_free(decomp_param); 2952 decompress_threads = NULL; 2953 decomp_param = NULL; 2954 decomp_file = NULL; 2955 } 2956 2957 static int compress_threads_load_setup(QEMUFile *f) 2958 { 2959 int i, thread_count; 2960 2961 if (!migrate_use_compression()) { 2962 return 0; 2963 } 2964 2965 thread_count = migrate_decompress_threads(); 2966 decompress_threads = g_new0(QemuThread, thread_count); 2967 decomp_param = g_new0(DecompressParam, thread_count); 2968 qemu_mutex_init(&decomp_done_lock); 2969 qemu_cond_init(&decomp_done_cond); 2970 decomp_file = f; 2971 for (i = 0; i < thread_count; i++) { 2972 if (inflateInit(&decomp_param[i].stream) != Z_OK) { 2973 goto exit; 2974 } 2975 2976 decomp_param[i].compbuf = g_malloc0(compressBound(TARGET_PAGE_SIZE)); 2977 qemu_mutex_init(&decomp_param[i].mutex); 2978 qemu_cond_init(&decomp_param[i].cond); 2979 decomp_param[i].done = true; 2980 decomp_param[i].quit = false; 2981 qemu_thread_create(decompress_threads + i, "decompress", 2982 do_data_decompress, decomp_param + i, 2983 QEMU_THREAD_JOINABLE); 2984 } 2985 return 0; 2986 exit: 2987 compress_threads_load_cleanup(); 2988 return -1; 2989 } 2990 2991 static void decompress_data_with_multi_threads(QEMUFile *f, 2992 void *host, int len) 2993 { 2994 int idx, thread_count; 2995 2996 thread_count = migrate_decompress_threads(); 2997 qemu_mutex_lock(&decomp_done_lock); 2998 while (true) { 2999 for (idx = 0; idx < thread_count; idx++) { 3000 if (decomp_param[idx].done) { 3001 decomp_param[idx].done = false; 3002 qemu_mutex_lock(&decomp_param[idx].mutex); 3003 qemu_get_buffer(f, decomp_param[idx].compbuf, len); 3004 decomp_param[idx].des = host; 3005 decomp_param[idx].len = len; 3006 qemu_cond_signal(&decomp_param[idx].cond); 3007 qemu_mutex_unlock(&decomp_param[idx].mutex); 3008 break; 3009 } 3010 } 3011 if (idx < thread_count) { 3012 break; 3013 } else { 3014 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock); 3015 } 3016 } 3017 qemu_mutex_unlock(&decomp_done_lock); 3018 } 3019 3020 /* 3021 * colo cache: this is for secondary VM, we cache the whole 3022 * memory of the secondary VM, it is need to hold the global lock 3023 * to call this helper. 3024 */ 3025 int colo_init_ram_cache(void) 3026 { 3027 RAMBlock *block; 3028 3029 WITH_RCU_READ_LOCK_GUARD() { 3030 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3031 block->colo_cache = qemu_anon_ram_alloc(block->used_length, 3032 NULL, 3033 false); 3034 if (!block->colo_cache) { 3035 error_report("%s: Can't alloc memory for COLO cache of block %s," 3036 "size 0x" RAM_ADDR_FMT, __func__, block->idstr, 3037 block->used_length); 3038 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3039 if (block->colo_cache) { 3040 qemu_anon_ram_free(block->colo_cache, block->used_length); 3041 block->colo_cache = NULL; 3042 } 3043 } 3044 return -errno; 3045 } 3046 } 3047 } 3048 3049 /* 3050 * Record the dirty pages that sent by PVM, we use this dirty bitmap together 3051 * with to decide which page in cache should be flushed into SVM's RAM. Here 3052 * we use the same name 'ram_bitmap' as for migration. 3053 */ 3054 if (ram_bytes_total()) { 3055 RAMBlock *block; 3056 3057 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3058 unsigned long pages = block->max_length >> TARGET_PAGE_BITS; 3059 block->bmap = bitmap_new(pages); 3060 } 3061 } 3062 3063 ram_state_init(&ram_state); 3064 return 0; 3065 } 3066 3067 /* TODO: duplicated with ram_init_bitmaps */ 3068 void colo_incoming_start_dirty_log(void) 3069 { 3070 RAMBlock *block = NULL; 3071 /* For memory_global_dirty_log_start below. */ 3072 qemu_mutex_lock_iothread(); 3073 qemu_mutex_lock_ramlist(); 3074 3075 memory_global_dirty_log_sync(); 3076 WITH_RCU_READ_LOCK_GUARD() { 3077 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3078 ramblock_sync_dirty_bitmap(ram_state, block); 3079 /* Discard this dirty bitmap record */ 3080 bitmap_zero(block->bmap, block->max_length >> TARGET_PAGE_BITS); 3081 } 3082 memory_global_dirty_log_start(); 3083 } 3084 ram_state->migration_dirty_pages = 0; 3085 qemu_mutex_unlock_ramlist(); 3086 qemu_mutex_unlock_iothread(); 3087 } 3088 3089 /* It is need to hold the global lock to call this helper */ 3090 void colo_release_ram_cache(void) 3091 { 3092 RAMBlock *block; 3093 3094 memory_global_dirty_log_stop(); 3095 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3096 g_free(block->bmap); 3097 block->bmap = NULL; 3098 } 3099 3100 WITH_RCU_READ_LOCK_GUARD() { 3101 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3102 if (block->colo_cache) { 3103 qemu_anon_ram_free(block->colo_cache, block->used_length); 3104 block->colo_cache = NULL; 3105 } 3106 } 3107 } 3108 ram_state_cleanup(&ram_state); 3109 } 3110 3111 /** 3112 * ram_load_setup: Setup RAM for migration incoming side 3113 * 3114 * Returns zero to indicate success and negative for error 3115 * 3116 * @f: QEMUFile where to receive the data 3117 * @opaque: RAMState pointer 3118 */ 3119 static int ram_load_setup(QEMUFile *f, void *opaque) 3120 { 3121 if (compress_threads_load_setup(f)) { 3122 return -1; 3123 } 3124 3125 xbzrle_load_setup(); 3126 ramblock_recv_map_init(); 3127 3128 return 0; 3129 } 3130 3131 static int ram_load_cleanup(void *opaque) 3132 { 3133 RAMBlock *rb; 3134 3135 RAMBLOCK_FOREACH_NOT_IGNORED(rb) { 3136 qemu_ram_block_writeback(rb); 3137 } 3138 3139 xbzrle_load_cleanup(); 3140 compress_threads_load_cleanup(); 3141 3142 RAMBLOCK_FOREACH_NOT_IGNORED(rb) { 3143 g_free(rb->receivedmap); 3144 rb->receivedmap = NULL; 3145 } 3146 3147 return 0; 3148 } 3149 3150 /** 3151 * ram_postcopy_incoming_init: allocate postcopy data structures 3152 * 3153 * Returns 0 for success and negative if there was one error 3154 * 3155 * @mis: current migration incoming state 3156 * 3157 * Allocate data structures etc needed by incoming migration with 3158 * postcopy-ram. postcopy-ram's similarly names 3159 * postcopy_ram_incoming_init does the work. 3160 */ 3161 int ram_postcopy_incoming_init(MigrationIncomingState *mis) 3162 { 3163 return postcopy_ram_incoming_init(mis); 3164 } 3165 3166 /** 3167 * ram_load_postcopy: load a page in postcopy case 3168 * 3169 * Returns 0 for success or -errno in case of error 3170 * 3171 * Called in postcopy mode by ram_load(). 3172 * rcu_read_lock is taken prior to this being called. 3173 * 3174 * @f: QEMUFile where to send the data 3175 */ 3176 static int ram_load_postcopy(QEMUFile *f) 3177 { 3178 int flags = 0, ret = 0; 3179 bool place_needed = false; 3180 bool matches_target_page_size = false; 3181 MigrationIncomingState *mis = migration_incoming_get_current(); 3182 /* Temporary page that is later 'placed' */ 3183 void *postcopy_host_page = mis->postcopy_tmp_page; 3184 void *this_host = NULL; 3185 bool all_zero = true; 3186 int target_pages = 0; 3187 3188 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) { 3189 ram_addr_t addr; 3190 void *host = NULL; 3191 void *page_buffer = NULL; 3192 void *place_source = NULL; 3193 RAMBlock *block = NULL; 3194 uint8_t ch; 3195 int len; 3196 3197 addr = qemu_get_be64(f); 3198 3199 /* 3200 * If qemu file error, we should stop here, and then "addr" 3201 * may be invalid 3202 */ 3203 ret = qemu_file_get_error(f); 3204 if (ret) { 3205 break; 3206 } 3207 3208 flags = addr & ~TARGET_PAGE_MASK; 3209 addr &= TARGET_PAGE_MASK; 3210 3211 trace_ram_load_postcopy_loop((uint64_t)addr, flags); 3212 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE | 3213 RAM_SAVE_FLAG_COMPRESS_PAGE)) { 3214 block = ram_block_from_stream(f, flags); 3215 3216 host = host_from_ram_block_offset(block, addr); 3217 if (!host) { 3218 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr); 3219 ret = -EINVAL; 3220 break; 3221 } 3222 target_pages++; 3223 matches_target_page_size = block->page_size == TARGET_PAGE_SIZE; 3224 /* 3225 * Postcopy requires that we place whole host pages atomically; 3226 * these may be huge pages for RAMBlocks that are backed by 3227 * hugetlbfs. 3228 * To make it atomic, the data is read into a temporary page 3229 * that's moved into place later. 3230 * The migration protocol uses, possibly smaller, target-pages 3231 * however the source ensures it always sends all the components 3232 * of a host page in one chunk. 3233 */ 3234 page_buffer = postcopy_host_page + 3235 ((uintptr_t)host & (block->page_size - 1)); 3236 if (target_pages == 1) { 3237 this_host = (void *)QEMU_ALIGN_DOWN((uintptr_t)host, 3238 block->page_size); 3239 } else { 3240 /* not the 1st TP within the HP */ 3241 if (QEMU_ALIGN_DOWN((uintptr_t)host, block->page_size) != 3242 (uintptr_t)this_host) { 3243 error_report("Non-same host page %p/%p", 3244 host, this_host); 3245 ret = -EINVAL; 3246 break; 3247 } 3248 } 3249 3250 /* 3251 * If it's the last part of a host page then we place the host 3252 * page 3253 */ 3254 if (target_pages == (block->page_size / TARGET_PAGE_SIZE)) { 3255 place_needed = true; 3256 } 3257 place_source = postcopy_host_page; 3258 } 3259 3260 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) { 3261 case RAM_SAVE_FLAG_ZERO: 3262 ch = qemu_get_byte(f); 3263 /* 3264 * Can skip to set page_buffer when 3265 * this is a zero page and (block->page_size == TARGET_PAGE_SIZE). 3266 */ 3267 if (ch || !matches_target_page_size) { 3268 memset(page_buffer, ch, TARGET_PAGE_SIZE); 3269 } 3270 if (ch) { 3271 all_zero = false; 3272 } 3273 break; 3274 3275 case RAM_SAVE_FLAG_PAGE: 3276 all_zero = false; 3277 if (!matches_target_page_size) { 3278 /* For huge pages, we always use temporary buffer */ 3279 qemu_get_buffer(f, page_buffer, TARGET_PAGE_SIZE); 3280 } else { 3281 /* 3282 * For small pages that matches target page size, we 3283 * avoid the qemu_file copy. Instead we directly use 3284 * the buffer of QEMUFile to place the page. Note: we 3285 * cannot do any QEMUFile operation before using that 3286 * buffer to make sure the buffer is valid when 3287 * placing the page. 3288 */ 3289 qemu_get_buffer_in_place(f, (uint8_t **)&place_source, 3290 TARGET_PAGE_SIZE); 3291 } 3292 break; 3293 case RAM_SAVE_FLAG_COMPRESS_PAGE: 3294 all_zero = false; 3295 len = qemu_get_be32(f); 3296 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) { 3297 error_report("Invalid compressed data length: %d", len); 3298 ret = -EINVAL; 3299 break; 3300 } 3301 decompress_data_with_multi_threads(f, page_buffer, len); 3302 break; 3303 3304 case RAM_SAVE_FLAG_EOS: 3305 /* normal exit */ 3306 multifd_recv_sync_main(); 3307 break; 3308 default: 3309 error_report("Unknown combination of migration flags: %#x" 3310 " (postcopy mode)", flags); 3311 ret = -EINVAL; 3312 break; 3313 } 3314 3315 /* Got the whole host page, wait for decompress before placing. */ 3316 if (place_needed) { 3317 ret |= wait_for_decompress_done(); 3318 } 3319 3320 /* Detect for any possible file errors */ 3321 if (!ret && qemu_file_get_error(f)) { 3322 ret = qemu_file_get_error(f); 3323 } 3324 3325 if (!ret && place_needed) { 3326 /* This gets called at the last target page in the host page */ 3327 void *place_dest = (void *)QEMU_ALIGN_DOWN((uintptr_t)host, 3328 block->page_size); 3329 3330 if (all_zero) { 3331 ret = postcopy_place_page_zero(mis, place_dest, 3332 block); 3333 } else { 3334 ret = postcopy_place_page(mis, place_dest, 3335 place_source, block); 3336 } 3337 place_needed = false; 3338 target_pages = 0; 3339 /* Assume we have a zero page until we detect something different */ 3340 all_zero = true; 3341 } 3342 } 3343 3344 return ret; 3345 } 3346 3347 static bool postcopy_is_advised(void) 3348 { 3349 PostcopyState ps = postcopy_state_get(); 3350 return ps >= POSTCOPY_INCOMING_ADVISE && ps < POSTCOPY_INCOMING_END; 3351 } 3352 3353 static bool postcopy_is_running(void) 3354 { 3355 PostcopyState ps = postcopy_state_get(); 3356 return ps >= POSTCOPY_INCOMING_LISTENING && ps < POSTCOPY_INCOMING_END; 3357 } 3358 3359 /* 3360 * Flush content of RAM cache into SVM's memory. 3361 * Only flush the pages that be dirtied by PVM or SVM or both. 3362 */ 3363 void colo_flush_ram_cache(void) 3364 { 3365 RAMBlock *block = NULL; 3366 void *dst_host; 3367 void *src_host; 3368 unsigned long offset = 0; 3369 3370 memory_global_dirty_log_sync(); 3371 WITH_RCU_READ_LOCK_GUARD() { 3372 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3373 ramblock_sync_dirty_bitmap(ram_state, block); 3374 } 3375 } 3376 3377 trace_colo_flush_ram_cache_begin(ram_state->migration_dirty_pages); 3378 WITH_RCU_READ_LOCK_GUARD() { 3379 block = QLIST_FIRST_RCU(&ram_list.blocks); 3380 3381 while (block) { 3382 offset = migration_bitmap_find_dirty(ram_state, block, offset); 3383 3384 if (((ram_addr_t)offset) << TARGET_PAGE_BITS 3385 >= block->used_length) { 3386 offset = 0; 3387 block = QLIST_NEXT_RCU(block, next); 3388 } else { 3389 migration_bitmap_clear_dirty(ram_state, block, offset); 3390 dst_host = block->host 3391 + (((ram_addr_t)offset) << TARGET_PAGE_BITS); 3392 src_host = block->colo_cache 3393 + (((ram_addr_t)offset) << TARGET_PAGE_BITS); 3394 memcpy(dst_host, src_host, TARGET_PAGE_SIZE); 3395 } 3396 } 3397 } 3398 trace_colo_flush_ram_cache_end(); 3399 } 3400 3401 /** 3402 * ram_load_precopy: load pages in precopy case 3403 * 3404 * Returns 0 for success or -errno in case of error 3405 * 3406 * Called in precopy mode by ram_load(). 3407 * rcu_read_lock is taken prior to this being called. 3408 * 3409 * @f: QEMUFile where to send the data 3410 */ 3411 static int ram_load_precopy(QEMUFile *f) 3412 { 3413 int flags = 0, ret = 0, invalid_flags = 0, len = 0, i = 0; 3414 /* ADVISE is earlier, it shows the source has the postcopy capability on */ 3415 bool postcopy_advised = postcopy_is_advised(); 3416 if (!migrate_use_compression()) { 3417 invalid_flags |= RAM_SAVE_FLAG_COMPRESS_PAGE; 3418 } 3419 3420 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) { 3421 ram_addr_t addr, total_ram_bytes; 3422 void *host = NULL, *host_bak = NULL; 3423 uint8_t ch; 3424 3425 /* 3426 * Yield periodically to let main loop run, but an iteration of 3427 * the main loop is expensive, so do it each some iterations 3428 */ 3429 if ((i & 32767) == 0 && qemu_in_coroutine()) { 3430 aio_co_schedule(qemu_get_current_aio_context(), 3431 qemu_coroutine_self()); 3432 qemu_coroutine_yield(); 3433 } 3434 i++; 3435 3436 addr = qemu_get_be64(f); 3437 flags = addr & ~TARGET_PAGE_MASK; 3438 addr &= TARGET_PAGE_MASK; 3439 3440 if (flags & invalid_flags) { 3441 if (flags & invalid_flags & RAM_SAVE_FLAG_COMPRESS_PAGE) { 3442 error_report("Received an unexpected compressed page"); 3443 } 3444 3445 ret = -EINVAL; 3446 break; 3447 } 3448 3449 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE | 3450 RAM_SAVE_FLAG_COMPRESS_PAGE | RAM_SAVE_FLAG_XBZRLE)) { 3451 RAMBlock *block = ram_block_from_stream(f, flags); 3452 3453 host = host_from_ram_block_offset(block, addr); 3454 /* 3455 * After going into COLO stage, we should not load the page 3456 * into SVM's memory directly, we put them into colo_cache firstly. 3457 * NOTE: We need to keep a copy of SVM's ram in colo_cache. 3458 * Previously, we copied all these memory in preparing stage of COLO 3459 * while we need to stop VM, which is a time-consuming process. 3460 * Here we optimize it by a trick, back-up every page while in 3461 * migration process while COLO is enabled, though it affects the 3462 * speed of the migration, but it obviously reduce the downtime of 3463 * back-up all SVM'S memory in COLO preparing stage. 3464 */ 3465 if (migration_incoming_colo_enabled()) { 3466 if (migration_incoming_in_colo_state()) { 3467 /* In COLO stage, put all pages into cache temporarily */ 3468 host = colo_cache_from_block_offset(block, addr, true); 3469 } else { 3470 /* 3471 * In migration stage but before COLO stage, 3472 * Put all pages into both cache and SVM's memory. 3473 */ 3474 host_bak = colo_cache_from_block_offset(block, addr, false); 3475 } 3476 } 3477 if (!host) { 3478 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr); 3479 ret = -EINVAL; 3480 break; 3481 } 3482 if (!migration_incoming_in_colo_state()) { 3483 ramblock_recv_bitmap_set(block, host); 3484 } 3485 3486 trace_ram_load_loop(block->idstr, (uint64_t)addr, flags, host); 3487 } 3488 3489 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) { 3490 case RAM_SAVE_FLAG_MEM_SIZE: 3491 /* Synchronize RAM block list */ 3492 total_ram_bytes = addr; 3493 while (!ret && total_ram_bytes) { 3494 RAMBlock *block; 3495 char id[256]; 3496 ram_addr_t length; 3497 3498 len = qemu_get_byte(f); 3499 qemu_get_buffer(f, (uint8_t *)id, len); 3500 id[len] = 0; 3501 length = qemu_get_be64(f); 3502 3503 block = qemu_ram_block_by_name(id); 3504 if (block && !qemu_ram_is_migratable(block)) { 3505 error_report("block %s should not be migrated !", id); 3506 ret = -EINVAL; 3507 } else if (block) { 3508 if (length != block->used_length) { 3509 Error *local_err = NULL; 3510 3511 ret = qemu_ram_resize(block, length, 3512 &local_err); 3513 if (local_err) { 3514 error_report_err(local_err); 3515 } 3516 } 3517 /* For postcopy we need to check hugepage sizes match */ 3518 if (postcopy_advised && 3519 block->page_size != qemu_host_page_size) { 3520 uint64_t remote_page_size = qemu_get_be64(f); 3521 if (remote_page_size != block->page_size) { 3522 error_report("Mismatched RAM page size %s " 3523 "(local) %zd != %" PRId64, 3524 id, block->page_size, 3525 remote_page_size); 3526 ret = -EINVAL; 3527 } 3528 } 3529 if (migrate_ignore_shared()) { 3530 hwaddr addr = qemu_get_be64(f); 3531 if (ramblock_is_ignored(block) && 3532 block->mr->addr != addr) { 3533 error_report("Mismatched GPAs for block %s " 3534 "%" PRId64 "!= %" PRId64, 3535 id, (uint64_t)addr, 3536 (uint64_t)block->mr->addr); 3537 ret = -EINVAL; 3538 } 3539 } 3540 ram_control_load_hook(f, RAM_CONTROL_BLOCK_REG, 3541 block->idstr); 3542 } else { 3543 error_report("Unknown ramblock \"%s\", cannot " 3544 "accept migration", id); 3545 ret = -EINVAL; 3546 } 3547 3548 total_ram_bytes -= length; 3549 } 3550 break; 3551 3552 case RAM_SAVE_FLAG_ZERO: 3553 ch = qemu_get_byte(f); 3554 ram_handle_compressed(host, ch, TARGET_PAGE_SIZE); 3555 break; 3556 3557 case RAM_SAVE_FLAG_PAGE: 3558 qemu_get_buffer(f, host, TARGET_PAGE_SIZE); 3559 break; 3560 3561 case RAM_SAVE_FLAG_COMPRESS_PAGE: 3562 len = qemu_get_be32(f); 3563 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) { 3564 error_report("Invalid compressed data length: %d", len); 3565 ret = -EINVAL; 3566 break; 3567 } 3568 decompress_data_with_multi_threads(f, host, len); 3569 break; 3570 3571 case RAM_SAVE_FLAG_XBZRLE: 3572 if (load_xbzrle(f, addr, host) < 0) { 3573 error_report("Failed to decompress XBZRLE page at " 3574 RAM_ADDR_FMT, addr); 3575 ret = -EINVAL; 3576 break; 3577 } 3578 break; 3579 case RAM_SAVE_FLAG_EOS: 3580 /* normal exit */ 3581 multifd_recv_sync_main(); 3582 break; 3583 default: 3584 if (flags & RAM_SAVE_FLAG_HOOK) { 3585 ram_control_load_hook(f, RAM_CONTROL_HOOK, NULL); 3586 } else { 3587 error_report("Unknown combination of migration flags: %#x", 3588 flags); 3589 ret = -EINVAL; 3590 } 3591 } 3592 if (!ret) { 3593 ret = qemu_file_get_error(f); 3594 } 3595 if (!ret && host_bak) { 3596 memcpy(host_bak, host, TARGET_PAGE_SIZE); 3597 } 3598 } 3599 3600 ret |= wait_for_decompress_done(); 3601 return ret; 3602 } 3603 3604 static int ram_load(QEMUFile *f, void *opaque, int version_id) 3605 { 3606 int ret = 0; 3607 static uint64_t seq_iter; 3608 /* 3609 * If system is running in postcopy mode, page inserts to host memory must 3610 * be atomic 3611 */ 3612 bool postcopy_running = postcopy_is_running(); 3613 3614 seq_iter++; 3615 3616 if (version_id != 4) { 3617 return -EINVAL; 3618 } 3619 3620 /* 3621 * This RCU critical section can be very long running. 3622 * When RCU reclaims in the code start to become numerous, 3623 * it will be necessary to reduce the granularity of this 3624 * critical section. 3625 */ 3626 WITH_RCU_READ_LOCK_GUARD() { 3627 if (postcopy_running) { 3628 ret = ram_load_postcopy(f); 3629 } else { 3630 ret = ram_load_precopy(f); 3631 } 3632 } 3633 trace_ram_load_complete(ret, seq_iter); 3634 3635 return ret; 3636 } 3637 3638 static bool ram_has_postcopy(void *opaque) 3639 { 3640 RAMBlock *rb; 3641 RAMBLOCK_FOREACH_NOT_IGNORED(rb) { 3642 if (ramblock_is_pmem(rb)) { 3643 info_report("Block: %s, host: %p is a nvdimm memory, postcopy" 3644 "is not supported now!", rb->idstr, rb->host); 3645 return false; 3646 } 3647 } 3648 3649 return migrate_postcopy_ram(); 3650 } 3651 3652 /* Sync all the dirty bitmap with destination VM. */ 3653 static int ram_dirty_bitmap_sync_all(MigrationState *s, RAMState *rs) 3654 { 3655 RAMBlock *block; 3656 QEMUFile *file = s->to_dst_file; 3657 int ramblock_count = 0; 3658 3659 trace_ram_dirty_bitmap_sync_start(); 3660 3661 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3662 qemu_savevm_send_recv_bitmap(file, block->idstr); 3663 trace_ram_dirty_bitmap_request(block->idstr); 3664 ramblock_count++; 3665 } 3666 3667 trace_ram_dirty_bitmap_sync_wait(); 3668 3669 /* Wait until all the ramblocks' dirty bitmap synced */ 3670 while (ramblock_count--) { 3671 qemu_sem_wait(&s->rp_state.rp_sem); 3672 } 3673 3674 trace_ram_dirty_bitmap_sync_complete(); 3675 3676 return 0; 3677 } 3678 3679 static void ram_dirty_bitmap_reload_notify(MigrationState *s) 3680 { 3681 qemu_sem_post(&s->rp_state.rp_sem); 3682 } 3683 3684 /* 3685 * Read the received bitmap, revert it as the initial dirty bitmap. 3686 * This is only used when the postcopy migration is paused but wants 3687 * to resume from a middle point. 3688 */ 3689 int ram_dirty_bitmap_reload(MigrationState *s, RAMBlock *block) 3690 { 3691 int ret = -EINVAL; 3692 QEMUFile *file = s->rp_state.from_dst_file; 3693 unsigned long *le_bitmap, nbits = block->used_length >> TARGET_PAGE_BITS; 3694 uint64_t local_size = DIV_ROUND_UP(nbits, 8); 3695 uint64_t size, end_mark; 3696 3697 trace_ram_dirty_bitmap_reload_begin(block->idstr); 3698 3699 if (s->state != MIGRATION_STATUS_POSTCOPY_RECOVER) { 3700 error_report("%s: incorrect state %s", __func__, 3701 MigrationStatus_str(s->state)); 3702 return -EINVAL; 3703 } 3704 3705 /* 3706 * Note: see comments in ramblock_recv_bitmap_send() on why we 3707 * need the endianess convertion, and the paddings. 3708 */ 3709 local_size = ROUND_UP(local_size, 8); 3710 3711 /* Add paddings */ 3712 le_bitmap = bitmap_new(nbits + BITS_PER_LONG); 3713 3714 size = qemu_get_be64(file); 3715 3716 /* The size of the bitmap should match with our ramblock */ 3717 if (size != local_size) { 3718 error_report("%s: ramblock '%s' bitmap size mismatch " 3719 "(0x%"PRIx64" != 0x%"PRIx64")", __func__, 3720 block->idstr, size, local_size); 3721 ret = -EINVAL; 3722 goto out; 3723 } 3724 3725 size = qemu_get_buffer(file, (uint8_t *)le_bitmap, local_size); 3726 end_mark = qemu_get_be64(file); 3727 3728 ret = qemu_file_get_error(file); 3729 if (ret || size != local_size) { 3730 error_report("%s: read bitmap failed for ramblock '%s': %d" 3731 " (size 0x%"PRIx64", got: 0x%"PRIx64")", 3732 __func__, block->idstr, ret, local_size, size); 3733 ret = -EIO; 3734 goto out; 3735 } 3736 3737 if (end_mark != RAMBLOCK_RECV_BITMAP_ENDING) { 3738 error_report("%s: ramblock '%s' end mark incorrect: 0x%"PRIu64, 3739 __func__, block->idstr, end_mark); 3740 ret = -EINVAL; 3741 goto out; 3742 } 3743 3744 /* 3745 * Endianess convertion. We are during postcopy (though paused). 3746 * The dirty bitmap won't change. We can directly modify it. 3747 */ 3748 bitmap_from_le(block->bmap, le_bitmap, nbits); 3749 3750 /* 3751 * What we received is "received bitmap". Revert it as the initial 3752 * dirty bitmap for this ramblock. 3753 */ 3754 bitmap_complement(block->bmap, block->bmap, nbits); 3755 3756 trace_ram_dirty_bitmap_reload_complete(block->idstr); 3757 3758 /* 3759 * We succeeded to sync bitmap for current ramblock. If this is 3760 * the last one to sync, we need to notify the main send thread. 3761 */ 3762 ram_dirty_bitmap_reload_notify(s); 3763 3764 ret = 0; 3765 out: 3766 g_free(le_bitmap); 3767 return ret; 3768 } 3769 3770 static int ram_resume_prepare(MigrationState *s, void *opaque) 3771 { 3772 RAMState *rs = *(RAMState **)opaque; 3773 int ret; 3774 3775 ret = ram_dirty_bitmap_sync_all(s, rs); 3776 if (ret) { 3777 return ret; 3778 } 3779 3780 ram_state_resume_prepare(rs, s->to_dst_file); 3781 3782 return 0; 3783 } 3784 3785 static SaveVMHandlers savevm_ram_handlers = { 3786 .save_setup = ram_save_setup, 3787 .save_live_iterate = ram_save_iterate, 3788 .save_live_complete_postcopy = ram_save_complete, 3789 .save_live_complete_precopy = ram_save_complete, 3790 .has_postcopy = ram_has_postcopy, 3791 .save_live_pending = ram_save_pending, 3792 .load_state = ram_load, 3793 .save_cleanup = ram_save_cleanup, 3794 .load_setup = ram_load_setup, 3795 .load_cleanup = ram_load_cleanup, 3796 .resume_prepare = ram_resume_prepare, 3797 }; 3798 3799 void ram_mig_init(void) 3800 { 3801 qemu_mutex_init(&XBZRLE.lock); 3802 register_savevm_live("ram", 0, 4, &savevm_ram_handlers, &ram_state); 3803 } 3804