1 /* 2 * QEMU System Emulator 3 * 4 * Copyright (c) 2003-2008 Fabrice Bellard 5 * Copyright (c) 2011-2015 Red Hat Inc 6 * 7 * Authors: 8 * Juan Quintela <quintela@redhat.com> 9 * 10 * Permission is hereby granted, free of charge, to any person obtaining a copy 11 * of this software and associated documentation files (the "Software"), to deal 12 * in the Software without restriction, including without limitation the rights 13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 14 * copies of the Software, and to permit persons to whom the Software is 15 * furnished to do so, subject to the following conditions: 16 * 17 * The above copyright notice and this permission notice shall be included in 18 * all copies or substantial portions of the Software. 19 * 20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 26 * THE SOFTWARE. 27 */ 28 #include "qemu/osdep.h" 29 #include "qemu-common.h" 30 #include "cpu.h" 31 #include <zlib.h> 32 #include "qapi-event.h" 33 #include "qemu/cutils.h" 34 #include "qemu/bitops.h" 35 #include "qemu/bitmap.h" 36 #include "qemu/timer.h" 37 #include "qemu/main-loop.h" 38 #include "migration/migration.h" 39 #include "migration/postcopy-ram.h" 40 #include "exec/address-spaces.h" 41 #include "migration/page_cache.h" 42 #include "qemu/error-report.h" 43 #include "trace.h" 44 #include "exec/ram_addr.h" 45 #include "qemu/rcu_queue.h" 46 47 #ifdef DEBUG_MIGRATION_RAM 48 #define DPRINTF(fmt, ...) \ 49 do { fprintf(stdout, "migration_ram: " fmt, ## __VA_ARGS__); } while (0) 50 #else 51 #define DPRINTF(fmt, ...) \ 52 do { } while (0) 53 #endif 54 55 static int dirty_rate_high_cnt; 56 57 static uint64_t bitmap_sync_count; 58 59 /***********************************************************/ 60 /* ram save/restore */ 61 62 #define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */ 63 #define RAM_SAVE_FLAG_COMPRESS 0x02 64 #define RAM_SAVE_FLAG_MEM_SIZE 0x04 65 #define RAM_SAVE_FLAG_PAGE 0x08 66 #define RAM_SAVE_FLAG_EOS 0x10 67 #define RAM_SAVE_FLAG_CONTINUE 0x20 68 #define RAM_SAVE_FLAG_XBZRLE 0x40 69 /* 0x80 is reserved in migration.h start with 0x100 next */ 70 #define RAM_SAVE_FLAG_COMPRESS_PAGE 0x100 71 72 static const uint8_t ZERO_TARGET_PAGE[TARGET_PAGE_SIZE]; 73 74 static inline bool is_zero_range(uint8_t *p, uint64_t size) 75 { 76 return buffer_is_zero(p, size); 77 } 78 79 /* struct contains XBZRLE cache and a static page 80 used by the compression */ 81 static struct { 82 /* buffer used for XBZRLE encoding */ 83 uint8_t *encoded_buf; 84 /* buffer for storing page content */ 85 uint8_t *current_buf; 86 /* Cache for XBZRLE, Protected by lock. */ 87 PageCache *cache; 88 QemuMutex lock; 89 } XBZRLE; 90 91 /* buffer used for XBZRLE decoding */ 92 static uint8_t *xbzrle_decoded_buf; 93 94 static void XBZRLE_cache_lock(void) 95 { 96 if (migrate_use_xbzrle()) 97 qemu_mutex_lock(&XBZRLE.lock); 98 } 99 100 static void XBZRLE_cache_unlock(void) 101 { 102 if (migrate_use_xbzrle()) 103 qemu_mutex_unlock(&XBZRLE.lock); 104 } 105 106 /* 107 * called from qmp_migrate_set_cache_size in main thread, possibly while 108 * a migration is in progress. 109 * A running migration maybe using the cache and might finish during this 110 * call, hence changes to the cache are protected by XBZRLE.lock(). 111 */ 112 int64_t xbzrle_cache_resize(int64_t new_size) 113 { 114 PageCache *new_cache; 115 int64_t ret; 116 117 if (new_size < TARGET_PAGE_SIZE) { 118 return -1; 119 } 120 121 XBZRLE_cache_lock(); 122 123 if (XBZRLE.cache != NULL) { 124 if (pow2floor(new_size) == migrate_xbzrle_cache_size()) { 125 goto out_new_size; 126 } 127 new_cache = cache_init(new_size / TARGET_PAGE_SIZE, 128 TARGET_PAGE_SIZE); 129 if (!new_cache) { 130 error_report("Error creating cache"); 131 ret = -1; 132 goto out; 133 } 134 135 cache_fini(XBZRLE.cache); 136 XBZRLE.cache = new_cache; 137 } 138 139 out_new_size: 140 ret = pow2floor(new_size); 141 out: 142 XBZRLE_cache_unlock(); 143 return ret; 144 } 145 146 /* accounting for migration statistics */ 147 typedef struct AccountingInfo { 148 uint64_t dup_pages; 149 uint64_t skipped_pages; 150 uint64_t norm_pages; 151 uint64_t iterations; 152 uint64_t xbzrle_bytes; 153 uint64_t xbzrle_pages; 154 uint64_t xbzrle_cache_miss; 155 double xbzrle_cache_miss_rate; 156 uint64_t xbzrle_overflows; 157 } AccountingInfo; 158 159 static AccountingInfo acct_info; 160 161 static void acct_clear(void) 162 { 163 memset(&acct_info, 0, sizeof(acct_info)); 164 } 165 166 uint64_t dup_mig_bytes_transferred(void) 167 { 168 return acct_info.dup_pages * TARGET_PAGE_SIZE; 169 } 170 171 uint64_t dup_mig_pages_transferred(void) 172 { 173 return acct_info.dup_pages; 174 } 175 176 uint64_t skipped_mig_bytes_transferred(void) 177 { 178 return acct_info.skipped_pages * TARGET_PAGE_SIZE; 179 } 180 181 uint64_t skipped_mig_pages_transferred(void) 182 { 183 return acct_info.skipped_pages; 184 } 185 186 uint64_t norm_mig_bytes_transferred(void) 187 { 188 return acct_info.norm_pages * TARGET_PAGE_SIZE; 189 } 190 191 uint64_t norm_mig_pages_transferred(void) 192 { 193 return acct_info.norm_pages; 194 } 195 196 uint64_t xbzrle_mig_bytes_transferred(void) 197 { 198 return acct_info.xbzrle_bytes; 199 } 200 201 uint64_t xbzrle_mig_pages_transferred(void) 202 { 203 return acct_info.xbzrle_pages; 204 } 205 206 uint64_t xbzrle_mig_pages_cache_miss(void) 207 { 208 return acct_info.xbzrle_cache_miss; 209 } 210 211 double xbzrle_mig_cache_miss_rate(void) 212 { 213 return acct_info.xbzrle_cache_miss_rate; 214 } 215 216 uint64_t xbzrle_mig_pages_overflow(void) 217 { 218 return acct_info.xbzrle_overflows; 219 } 220 221 /* This is the last block that we have visited serching for dirty pages 222 */ 223 static RAMBlock *last_seen_block; 224 /* This is the last block from where we have sent data */ 225 static RAMBlock *last_sent_block; 226 static ram_addr_t last_offset; 227 static QemuMutex migration_bitmap_mutex; 228 static uint64_t migration_dirty_pages; 229 static uint32_t last_version; 230 static bool ram_bulk_stage; 231 232 /* used by the search for pages to send */ 233 struct PageSearchStatus { 234 /* Current block being searched */ 235 RAMBlock *block; 236 /* Current offset to search from */ 237 ram_addr_t offset; 238 /* Set once we wrap around */ 239 bool complete_round; 240 }; 241 typedef struct PageSearchStatus PageSearchStatus; 242 243 static struct BitmapRcu { 244 struct rcu_head rcu; 245 /* Main migration bitmap */ 246 unsigned long *bmap; 247 /* bitmap of pages that haven't been sent even once 248 * only maintained and used in postcopy at the moment 249 * where it's used to send the dirtymap at the start 250 * of the postcopy phase 251 */ 252 unsigned long *unsentmap; 253 } *migration_bitmap_rcu; 254 255 struct CompressParam { 256 bool done; 257 bool quit; 258 QEMUFile *file; 259 QemuMutex mutex; 260 QemuCond cond; 261 RAMBlock *block; 262 ram_addr_t offset; 263 }; 264 typedef struct CompressParam CompressParam; 265 266 struct DecompressParam { 267 bool done; 268 bool quit; 269 QemuMutex mutex; 270 QemuCond cond; 271 void *des; 272 uint8_t *compbuf; 273 int len; 274 }; 275 typedef struct DecompressParam DecompressParam; 276 277 static CompressParam *comp_param; 278 static QemuThread *compress_threads; 279 /* comp_done_cond is used to wake up the migration thread when 280 * one of the compression threads has finished the compression. 281 * comp_done_lock is used to co-work with comp_done_cond. 282 */ 283 static QemuMutex comp_done_lock; 284 static QemuCond comp_done_cond; 285 /* The empty QEMUFileOps will be used by file in CompressParam */ 286 static const QEMUFileOps empty_ops = { }; 287 288 static bool compression_switch; 289 static DecompressParam *decomp_param; 290 static QemuThread *decompress_threads; 291 static QemuMutex decomp_done_lock; 292 static QemuCond decomp_done_cond; 293 294 static int do_compress_ram_page(QEMUFile *f, RAMBlock *block, 295 ram_addr_t offset); 296 297 static void *do_data_compress(void *opaque) 298 { 299 CompressParam *param = opaque; 300 RAMBlock *block; 301 ram_addr_t offset; 302 303 qemu_mutex_lock(¶m->mutex); 304 while (!param->quit) { 305 if (param->block) { 306 block = param->block; 307 offset = param->offset; 308 param->block = NULL; 309 qemu_mutex_unlock(¶m->mutex); 310 311 do_compress_ram_page(param->file, block, offset); 312 313 qemu_mutex_lock(&comp_done_lock); 314 param->done = true; 315 qemu_cond_signal(&comp_done_cond); 316 qemu_mutex_unlock(&comp_done_lock); 317 318 qemu_mutex_lock(¶m->mutex); 319 } else { 320 qemu_cond_wait(¶m->cond, ¶m->mutex); 321 } 322 } 323 qemu_mutex_unlock(¶m->mutex); 324 325 return NULL; 326 } 327 328 static inline void terminate_compression_threads(void) 329 { 330 int idx, thread_count; 331 332 thread_count = migrate_compress_threads(); 333 for (idx = 0; idx < thread_count; idx++) { 334 qemu_mutex_lock(&comp_param[idx].mutex); 335 comp_param[idx].quit = true; 336 qemu_cond_signal(&comp_param[idx].cond); 337 qemu_mutex_unlock(&comp_param[idx].mutex); 338 } 339 } 340 341 void migrate_compress_threads_join(void) 342 { 343 int i, thread_count; 344 345 if (!migrate_use_compression()) { 346 return; 347 } 348 terminate_compression_threads(); 349 thread_count = migrate_compress_threads(); 350 for (i = 0; i < thread_count; i++) { 351 qemu_thread_join(compress_threads + i); 352 qemu_fclose(comp_param[i].file); 353 qemu_mutex_destroy(&comp_param[i].mutex); 354 qemu_cond_destroy(&comp_param[i].cond); 355 } 356 qemu_mutex_destroy(&comp_done_lock); 357 qemu_cond_destroy(&comp_done_cond); 358 g_free(compress_threads); 359 g_free(comp_param); 360 compress_threads = NULL; 361 comp_param = NULL; 362 } 363 364 void migrate_compress_threads_create(void) 365 { 366 int i, thread_count; 367 368 if (!migrate_use_compression()) { 369 return; 370 } 371 compression_switch = true; 372 thread_count = migrate_compress_threads(); 373 compress_threads = g_new0(QemuThread, thread_count); 374 comp_param = g_new0(CompressParam, thread_count); 375 qemu_cond_init(&comp_done_cond); 376 qemu_mutex_init(&comp_done_lock); 377 for (i = 0; i < thread_count; i++) { 378 /* comp_param[i].file is just used as a dummy buffer to save data, 379 * set its ops to empty. 380 */ 381 comp_param[i].file = qemu_fopen_ops(NULL, &empty_ops); 382 comp_param[i].done = true; 383 comp_param[i].quit = false; 384 qemu_mutex_init(&comp_param[i].mutex); 385 qemu_cond_init(&comp_param[i].cond); 386 qemu_thread_create(compress_threads + i, "compress", 387 do_data_compress, comp_param + i, 388 QEMU_THREAD_JOINABLE); 389 } 390 } 391 392 /** 393 * save_page_header: Write page header to wire 394 * 395 * If this is the 1st block, it also writes the block identification 396 * 397 * Returns: Number of bytes written 398 * 399 * @f: QEMUFile where to send the data 400 * @block: block that contains the page we want to send 401 * @offset: offset inside the block for the page 402 * in the lower bits, it contains flags 403 */ 404 static size_t save_page_header(QEMUFile *f, RAMBlock *block, ram_addr_t offset) 405 { 406 size_t size, len; 407 408 qemu_put_be64(f, offset); 409 size = 8; 410 411 if (!(offset & RAM_SAVE_FLAG_CONTINUE)) { 412 len = strlen(block->idstr); 413 qemu_put_byte(f, len); 414 qemu_put_buffer(f, (uint8_t *)block->idstr, len); 415 size += 1 + len; 416 } 417 return size; 418 } 419 420 /* Reduce amount of guest cpu execution to hopefully slow down memory writes. 421 * If guest dirty memory rate is reduced below the rate at which we can 422 * transfer pages to the destination then we should be able to complete 423 * migration. Some workloads dirty memory way too fast and will not effectively 424 * converge, even with auto-converge. 425 */ 426 static void mig_throttle_guest_down(void) 427 { 428 MigrationState *s = migrate_get_current(); 429 uint64_t pct_initial = s->parameters.cpu_throttle_initial; 430 uint64_t pct_icrement = s->parameters.cpu_throttle_increment; 431 432 /* We have not started throttling yet. Let's start it. */ 433 if (!cpu_throttle_active()) { 434 cpu_throttle_set(pct_initial); 435 } else { 436 /* Throttling already on, just increase the rate */ 437 cpu_throttle_set(cpu_throttle_get_percentage() + pct_icrement); 438 } 439 } 440 441 /* Update the xbzrle cache to reflect a page that's been sent as all 0. 442 * The important thing is that a stale (not-yet-0'd) page be replaced 443 * by the new data. 444 * As a bonus, if the page wasn't in the cache it gets added so that 445 * when a small write is made into the 0'd page it gets XBZRLE sent 446 */ 447 static void xbzrle_cache_zero_page(ram_addr_t current_addr) 448 { 449 if (ram_bulk_stage || !migrate_use_xbzrle()) { 450 return; 451 } 452 453 /* We don't care if this fails to allocate a new cache page 454 * as long as it updated an old one */ 455 cache_insert(XBZRLE.cache, current_addr, ZERO_TARGET_PAGE, 456 bitmap_sync_count); 457 } 458 459 #define ENCODING_FLAG_XBZRLE 0x1 460 461 /** 462 * save_xbzrle_page: compress and send current page 463 * 464 * Returns: 1 means that we wrote the page 465 * 0 means that page is identical to the one already sent 466 * -1 means that xbzrle would be longer than normal 467 * 468 * @f: QEMUFile where to send the data 469 * @current_data: 470 * @current_addr: 471 * @block: block that contains the page we want to send 472 * @offset: offset inside the block for the page 473 * @last_stage: if we are at the completion stage 474 * @bytes_transferred: increase it with the number of transferred bytes 475 */ 476 static int save_xbzrle_page(QEMUFile *f, uint8_t **current_data, 477 ram_addr_t current_addr, RAMBlock *block, 478 ram_addr_t offset, bool last_stage, 479 uint64_t *bytes_transferred) 480 { 481 int encoded_len = 0, bytes_xbzrle; 482 uint8_t *prev_cached_page; 483 484 if (!cache_is_cached(XBZRLE.cache, current_addr, bitmap_sync_count)) { 485 acct_info.xbzrle_cache_miss++; 486 if (!last_stage) { 487 if (cache_insert(XBZRLE.cache, current_addr, *current_data, 488 bitmap_sync_count) == -1) { 489 return -1; 490 } else { 491 /* update *current_data when the page has been 492 inserted into cache */ 493 *current_data = get_cached_data(XBZRLE.cache, current_addr); 494 } 495 } 496 return -1; 497 } 498 499 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr); 500 501 /* save current buffer into memory */ 502 memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE); 503 504 /* XBZRLE encoding (if there is no overflow) */ 505 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf, 506 TARGET_PAGE_SIZE, XBZRLE.encoded_buf, 507 TARGET_PAGE_SIZE); 508 if (encoded_len == 0) { 509 DPRINTF("Skipping unmodified page\n"); 510 return 0; 511 } else if (encoded_len == -1) { 512 DPRINTF("Overflow\n"); 513 acct_info.xbzrle_overflows++; 514 /* update data in the cache */ 515 if (!last_stage) { 516 memcpy(prev_cached_page, *current_data, TARGET_PAGE_SIZE); 517 *current_data = prev_cached_page; 518 } 519 return -1; 520 } 521 522 /* we need to update the data in the cache, in order to get the same data */ 523 if (!last_stage) { 524 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE); 525 } 526 527 /* Send XBZRLE based compressed page */ 528 bytes_xbzrle = save_page_header(f, block, offset | RAM_SAVE_FLAG_XBZRLE); 529 qemu_put_byte(f, ENCODING_FLAG_XBZRLE); 530 qemu_put_be16(f, encoded_len); 531 qemu_put_buffer(f, XBZRLE.encoded_buf, encoded_len); 532 bytes_xbzrle += encoded_len + 1 + 2; 533 acct_info.xbzrle_pages++; 534 acct_info.xbzrle_bytes += bytes_xbzrle; 535 *bytes_transferred += bytes_xbzrle; 536 537 return 1; 538 } 539 540 /* Called with rcu_read_lock() to protect migration_bitmap 541 * rb: The RAMBlock to search for dirty pages in 542 * start: Start address (typically so we can continue from previous page) 543 * ram_addr_abs: Pointer into which to store the address of the dirty page 544 * within the global ram_addr space 545 * 546 * Returns: byte offset within memory region of the start of a dirty page 547 */ 548 static inline 549 ram_addr_t migration_bitmap_find_dirty(RAMBlock *rb, 550 ram_addr_t start, 551 ram_addr_t *ram_addr_abs) 552 { 553 unsigned long base = rb->offset >> TARGET_PAGE_BITS; 554 unsigned long nr = base + (start >> TARGET_PAGE_BITS); 555 uint64_t rb_size = rb->used_length; 556 unsigned long size = base + (rb_size >> TARGET_PAGE_BITS); 557 unsigned long *bitmap; 558 559 unsigned long next; 560 561 bitmap = atomic_rcu_read(&migration_bitmap_rcu)->bmap; 562 if (ram_bulk_stage && nr > base) { 563 next = nr + 1; 564 } else { 565 next = find_next_bit(bitmap, size, nr); 566 } 567 568 *ram_addr_abs = next << TARGET_PAGE_BITS; 569 return (next - base) << TARGET_PAGE_BITS; 570 } 571 572 static inline bool migration_bitmap_clear_dirty(ram_addr_t addr) 573 { 574 bool ret; 575 int nr = addr >> TARGET_PAGE_BITS; 576 unsigned long *bitmap = atomic_rcu_read(&migration_bitmap_rcu)->bmap; 577 578 ret = test_and_clear_bit(nr, bitmap); 579 580 if (ret) { 581 migration_dirty_pages--; 582 } 583 return ret; 584 } 585 586 static void migration_bitmap_sync_range(ram_addr_t start, ram_addr_t length) 587 { 588 unsigned long *bitmap; 589 bitmap = atomic_rcu_read(&migration_bitmap_rcu)->bmap; 590 migration_dirty_pages += 591 cpu_physical_memory_sync_dirty_bitmap(bitmap, start, length); 592 } 593 594 /* Fix me: there are too many global variables used in migration process. */ 595 static int64_t start_time; 596 static int64_t bytes_xfer_prev; 597 static int64_t num_dirty_pages_period; 598 static uint64_t xbzrle_cache_miss_prev; 599 static uint64_t iterations_prev; 600 601 static void migration_bitmap_sync_init(void) 602 { 603 start_time = 0; 604 bytes_xfer_prev = 0; 605 num_dirty_pages_period = 0; 606 xbzrle_cache_miss_prev = 0; 607 iterations_prev = 0; 608 } 609 610 static void migration_bitmap_sync(void) 611 { 612 RAMBlock *block; 613 uint64_t num_dirty_pages_init = migration_dirty_pages; 614 MigrationState *s = migrate_get_current(); 615 int64_t end_time; 616 int64_t bytes_xfer_now; 617 618 bitmap_sync_count++; 619 620 if (!bytes_xfer_prev) { 621 bytes_xfer_prev = ram_bytes_transferred(); 622 } 623 624 if (!start_time) { 625 start_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); 626 } 627 628 trace_migration_bitmap_sync_start(); 629 memory_global_dirty_log_sync(); 630 631 qemu_mutex_lock(&migration_bitmap_mutex); 632 rcu_read_lock(); 633 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { 634 migration_bitmap_sync_range(block->offset, block->used_length); 635 } 636 rcu_read_unlock(); 637 qemu_mutex_unlock(&migration_bitmap_mutex); 638 639 trace_migration_bitmap_sync_end(migration_dirty_pages 640 - num_dirty_pages_init); 641 num_dirty_pages_period += migration_dirty_pages - num_dirty_pages_init; 642 end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); 643 644 /* more than 1 second = 1000 millisecons */ 645 if (end_time > start_time + 1000) { 646 if (migrate_auto_converge()) { 647 /* The following detection logic can be refined later. For now: 648 Check to see if the dirtied bytes is 50% more than the approx. 649 amount of bytes that just got transferred since the last time we 650 were in this routine. If that happens twice, start or increase 651 throttling */ 652 bytes_xfer_now = ram_bytes_transferred(); 653 654 if (s->dirty_pages_rate && 655 (num_dirty_pages_period * TARGET_PAGE_SIZE > 656 (bytes_xfer_now - bytes_xfer_prev)/2) && 657 (dirty_rate_high_cnt++ >= 2)) { 658 trace_migration_throttle(); 659 dirty_rate_high_cnt = 0; 660 mig_throttle_guest_down(); 661 } 662 bytes_xfer_prev = bytes_xfer_now; 663 } 664 665 if (migrate_use_xbzrle()) { 666 if (iterations_prev != acct_info.iterations) { 667 acct_info.xbzrle_cache_miss_rate = 668 (double)(acct_info.xbzrle_cache_miss - 669 xbzrle_cache_miss_prev) / 670 (acct_info.iterations - iterations_prev); 671 } 672 iterations_prev = acct_info.iterations; 673 xbzrle_cache_miss_prev = acct_info.xbzrle_cache_miss; 674 } 675 s->dirty_pages_rate = num_dirty_pages_period * 1000 676 / (end_time - start_time); 677 s->dirty_bytes_rate = s->dirty_pages_rate * TARGET_PAGE_SIZE; 678 start_time = end_time; 679 num_dirty_pages_period = 0; 680 } 681 s->dirty_sync_count = bitmap_sync_count; 682 if (migrate_use_events()) { 683 qapi_event_send_migration_pass(bitmap_sync_count, NULL); 684 } 685 } 686 687 /** 688 * save_zero_page: Send the zero page to the stream 689 * 690 * Returns: Number of pages written. 691 * 692 * @f: QEMUFile where to send the data 693 * @block: block that contains the page we want to send 694 * @offset: offset inside the block for the page 695 * @p: pointer to the page 696 * @bytes_transferred: increase it with the number of transferred bytes 697 */ 698 static int save_zero_page(QEMUFile *f, RAMBlock *block, ram_addr_t offset, 699 uint8_t *p, uint64_t *bytes_transferred) 700 { 701 int pages = -1; 702 703 if (is_zero_range(p, TARGET_PAGE_SIZE)) { 704 acct_info.dup_pages++; 705 *bytes_transferred += save_page_header(f, block, 706 offset | RAM_SAVE_FLAG_COMPRESS); 707 qemu_put_byte(f, 0); 708 *bytes_transferred += 1; 709 pages = 1; 710 } 711 712 return pages; 713 } 714 715 /** 716 * ram_save_page: Send the given page to the stream 717 * 718 * Returns: Number of pages written. 719 * < 0 - error 720 * >=0 - Number of pages written - this might legally be 0 721 * if xbzrle noticed the page was the same. 722 * 723 * @f: QEMUFile where to send the data 724 * @block: block that contains the page we want to send 725 * @offset: offset inside the block for the page 726 * @last_stage: if we are at the completion stage 727 * @bytes_transferred: increase it with the number of transferred bytes 728 */ 729 static int ram_save_page(QEMUFile *f, PageSearchStatus *pss, 730 bool last_stage, uint64_t *bytes_transferred) 731 { 732 int pages = -1; 733 uint64_t bytes_xmit; 734 ram_addr_t current_addr; 735 uint8_t *p; 736 int ret; 737 bool send_async = true; 738 RAMBlock *block = pss->block; 739 ram_addr_t offset = pss->offset; 740 741 p = block->host + offset; 742 743 /* In doubt sent page as normal */ 744 bytes_xmit = 0; 745 ret = ram_control_save_page(f, block->offset, 746 offset, TARGET_PAGE_SIZE, &bytes_xmit); 747 if (bytes_xmit) { 748 *bytes_transferred += bytes_xmit; 749 pages = 1; 750 } 751 752 XBZRLE_cache_lock(); 753 754 current_addr = block->offset + offset; 755 756 if (block == last_sent_block) { 757 offset |= RAM_SAVE_FLAG_CONTINUE; 758 } 759 if (ret != RAM_SAVE_CONTROL_NOT_SUPP) { 760 if (ret != RAM_SAVE_CONTROL_DELAYED) { 761 if (bytes_xmit > 0) { 762 acct_info.norm_pages++; 763 } else if (bytes_xmit == 0) { 764 acct_info.dup_pages++; 765 } 766 } 767 } else { 768 pages = save_zero_page(f, block, offset, p, bytes_transferred); 769 if (pages > 0) { 770 /* Must let xbzrle know, otherwise a previous (now 0'd) cached 771 * page would be stale 772 */ 773 xbzrle_cache_zero_page(current_addr); 774 } else if (!ram_bulk_stage && 775 !migration_in_postcopy(migrate_get_current()) && 776 migrate_use_xbzrle()) { 777 pages = save_xbzrle_page(f, &p, current_addr, block, 778 offset, last_stage, bytes_transferred); 779 if (!last_stage) { 780 /* Can't send this cached data async, since the cache page 781 * might get updated before it gets to the wire 782 */ 783 send_async = false; 784 } 785 } 786 } 787 788 /* XBZRLE overflow or normal page */ 789 if (pages == -1) { 790 *bytes_transferred += save_page_header(f, block, 791 offset | RAM_SAVE_FLAG_PAGE); 792 if (send_async) { 793 qemu_put_buffer_async(f, p, TARGET_PAGE_SIZE); 794 } else { 795 qemu_put_buffer(f, p, TARGET_PAGE_SIZE); 796 } 797 *bytes_transferred += TARGET_PAGE_SIZE; 798 pages = 1; 799 acct_info.norm_pages++; 800 } 801 802 XBZRLE_cache_unlock(); 803 804 return pages; 805 } 806 807 static int do_compress_ram_page(QEMUFile *f, RAMBlock *block, 808 ram_addr_t offset) 809 { 810 int bytes_sent, blen; 811 uint8_t *p = block->host + (offset & TARGET_PAGE_MASK); 812 813 bytes_sent = save_page_header(f, block, offset | 814 RAM_SAVE_FLAG_COMPRESS_PAGE); 815 blen = qemu_put_compression_data(f, p, TARGET_PAGE_SIZE, 816 migrate_compress_level()); 817 if (blen < 0) { 818 bytes_sent = 0; 819 qemu_file_set_error(migrate_get_current()->to_dst_file, blen); 820 error_report("compressed data failed!"); 821 } else { 822 bytes_sent += blen; 823 } 824 825 return bytes_sent; 826 } 827 828 static uint64_t bytes_transferred; 829 830 static void flush_compressed_data(QEMUFile *f) 831 { 832 int idx, len, thread_count; 833 834 if (!migrate_use_compression()) { 835 return; 836 } 837 thread_count = migrate_compress_threads(); 838 839 qemu_mutex_lock(&comp_done_lock); 840 for (idx = 0; idx < thread_count; idx++) { 841 while (!comp_param[idx].done) { 842 qemu_cond_wait(&comp_done_cond, &comp_done_lock); 843 } 844 } 845 qemu_mutex_unlock(&comp_done_lock); 846 847 for (idx = 0; idx < thread_count; idx++) { 848 qemu_mutex_lock(&comp_param[idx].mutex); 849 if (!comp_param[idx].quit) { 850 len = qemu_put_qemu_file(f, comp_param[idx].file); 851 bytes_transferred += len; 852 } 853 qemu_mutex_unlock(&comp_param[idx].mutex); 854 } 855 } 856 857 static inline void set_compress_params(CompressParam *param, RAMBlock *block, 858 ram_addr_t offset) 859 { 860 param->block = block; 861 param->offset = offset; 862 } 863 864 static int compress_page_with_multi_thread(QEMUFile *f, RAMBlock *block, 865 ram_addr_t offset, 866 uint64_t *bytes_transferred) 867 { 868 int idx, thread_count, bytes_xmit = -1, pages = -1; 869 870 thread_count = migrate_compress_threads(); 871 qemu_mutex_lock(&comp_done_lock); 872 while (true) { 873 for (idx = 0; idx < thread_count; idx++) { 874 if (comp_param[idx].done) { 875 comp_param[idx].done = false; 876 bytes_xmit = qemu_put_qemu_file(f, comp_param[idx].file); 877 qemu_mutex_lock(&comp_param[idx].mutex); 878 set_compress_params(&comp_param[idx], block, offset); 879 qemu_cond_signal(&comp_param[idx].cond); 880 qemu_mutex_unlock(&comp_param[idx].mutex); 881 pages = 1; 882 acct_info.norm_pages++; 883 *bytes_transferred += bytes_xmit; 884 break; 885 } 886 } 887 if (pages > 0) { 888 break; 889 } else { 890 qemu_cond_wait(&comp_done_cond, &comp_done_lock); 891 } 892 } 893 qemu_mutex_unlock(&comp_done_lock); 894 895 return pages; 896 } 897 898 /** 899 * ram_save_compressed_page: compress the given page and send it to the stream 900 * 901 * Returns: Number of pages written. 902 * 903 * @f: QEMUFile where to send the data 904 * @block: block that contains the page we want to send 905 * @offset: offset inside the block for the page 906 * @last_stage: if we are at the completion stage 907 * @bytes_transferred: increase it with the number of transferred bytes 908 */ 909 static int ram_save_compressed_page(QEMUFile *f, PageSearchStatus *pss, 910 bool last_stage, 911 uint64_t *bytes_transferred) 912 { 913 int pages = -1; 914 uint64_t bytes_xmit = 0; 915 uint8_t *p; 916 int ret, blen; 917 RAMBlock *block = pss->block; 918 ram_addr_t offset = pss->offset; 919 920 p = block->host + offset; 921 922 ret = ram_control_save_page(f, block->offset, 923 offset, TARGET_PAGE_SIZE, &bytes_xmit); 924 if (bytes_xmit) { 925 *bytes_transferred += bytes_xmit; 926 pages = 1; 927 } 928 if (ret != RAM_SAVE_CONTROL_NOT_SUPP) { 929 if (ret != RAM_SAVE_CONTROL_DELAYED) { 930 if (bytes_xmit > 0) { 931 acct_info.norm_pages++; 932 } else if (bytes_xmit == 0) { 933 acct_info.dup_pages++; 934 } 935 } 936 } else { 937 /* When starting the process of a new block, the first page of 938 * the block should be sent out before other pages in the same 939 * block, and all the pages in last block should have been sent 940 * out, keeping this order is important, because the 'cont' flag 941 * is used to avoid resending the block name. 942 */ 943 if (block != last_sent_block) { 944 flush_compressed_data(f); 945 pages = save_zero_page(f, block, offset, p, bytes_transferred); 946 if (pages == -1) { 947 /* Make sure the first page is sent out before other pages */ 948 bytes_xmit = save_page_header(f, block, offset | 949 RAM_SAVE_FLAG_COMPRESS_PAGE); 950 blen = qemu_put_compression_data(f, p, TARGET_PAGE_SIZE, 951 migrate_compress_level()); 952 if (blen > 0) { 953 *bytes_transferred += bytes_xmit + blen; 954 acct_info.norm_pages++; 955 pages = 1; 956 } else { 957 qemu_file_set_error(f, blen); 958 error_report("compressed data failed!"); 959 } 960 } 961 } else { 962 offset |= RAM_SAVE_FLAG_CONTINUE; 963 pages = save_zero_page(f, block, offset, p, bytes_transferred); 964 if (pages == -1) { 965 pages = compress_page_with_multi_thread(f, block, offset, 966 bytes_transferred); 967 } 968 } 969 } 970 971 return pages; 972 } 973 974 /* 975 * Find the next dirty page and update any state associated with 976 * the search process. 977 * 978 * Returns: True if a page is found 979 * 980 * @f: Current migration stream. 981 * @pss: Data about the state of the current dirty page scan. 982 * @*again: Set to false if the search has scanned the whole of RAM 983 * *ram_addr_abs: Pointer into which to store the address of the dirty page 984 * within the global ram_addr space 985 */ 986 static bool find_dirty_block(QEMUFile *f, PageSearchStatus *pss, 987 bool *again, ram_addr_t *ram_addr_abs) 988 { 989 pss->offset = migration_bitmap_find_dirty(pss->block, pss->offset, 990 ram_addr_abs); 991 if (pss->complete_round && pss->block == last_seen_block && 992 pss->offset >= last_offset) { 993 /* 994 * We've been once around the RAM and haven't found anything. 995 * Give up. 996 */ 997 *again = false; 998 return false; 999 } 1000 if (pss->offset >= pss->block->used_length) { 1001 /* Didn't find anything in this RAM Block */ 1002 pss->offset = 0; 1003 pss->block = QLIST_NEXT_RCU(pss->block, next); 1004 if (!pss->block) { 1005 /* Hit the end of the list */ 1006 pss->block = QLIST_FIRST_RCU(&ram_list.blocks); 1007 /* Flag that we've looped */ 1008 pss->complete_round = true; 1009 ram_bulk_stage = false; 1010 if (migrate_use_xbzrle()) { 1011 /* If xbzrle is on, stop using the data compression at this 1012 * point. In theory, xbzrle can do better than compression. 1013 */ 1014 flush_compressed_data(f); 1015 compression_switch = false; 1016 } 1017 } 1018 /* Didn't find anything this time, but try again on the new block */ 1019 *again = true; 1020 return false; 1021 } else { 1022 /* Can go around again, but... */ 1023 *again = true; 1024 /* We've found something so probably don't need to */ 1025 return true; 1026 } 1027 } 1028 1029 /* 1030 * Helper for 'get_queued_page' - gets a page off the queue 1031 * ms: MigrationState in 1032 * *offset: Used to return the offset within the RAMBlock 1033 * ram_addr_abs: global offset in the dirty/sent bitmaps 1034 * 1035 * Returns: block (or NULL if none available) 1036 */ 1037 static RAMBlock *unqueue_page(MigrationState *ms, ram_addr_t *offset, 1038 ram_addr_t *ram_addr_abs) 1039 { 1040 RAMBlock *block = NULL; 1041 1042 qemu_mutex_lock(&ms->src_page_req_mutex); 1043 if (!QSIMPLEQ_EMPTY(&ms->src_page_requests)) { 1044 struct MigrationSrcPageRequest *entry = 1045 QSIMPLEQ_FIRST(&ms->src_page_requests); 1046 block = entry->rb; 1047 *offset = entry->offset; 1048 *ram_addr_abs = (entry->offset + entry->rb->offset) & 1049 TARGET_PAGE_MASK; 1050 1051 if (entry->len > TARGET_PAGE_SIZE) { 1052 entry->len -= TARGET_PAGE_SIZE; 1053 entry->offset += TARGET_PAGE_SIZE; 1054 } else { 1055 memory_region_unref(block->mr); 1056 QSIMPLEQ_REMOVE_HEAD(&ms->src_page_requests, next_req); 1057 g_free(entry); 1058 } 1059 } 1060 qemu_mutex_unlock(&ms->src_page_req_mutex); 1061 1062 return block; 1063 } 1064 1065 /* 1066 * Unqueue a page from the queue fed by postcopy page requests; skips pages 1067 * that are already sent (!dirty) 1068 * 1069 * ms: MigrationState in 1070 * pss: PageSearchStatus structure updated with found block/offset 1071 * ram_addr_abs: global offset in the dirty/sent bitmaps 1072 * 1073 * Returns: true if a queued page is found 1074 */ 1075 static bool get_queued_page(MigrationState *ms, PageSearchStatus *pss, 1076 ram_addr_t *ram_addr_abs) 1077 { 1078 RAMBlock *block; 1079 ram_addr_t offset; 1080 bool dirty; 1081 1082 do { 1083 block = unqueue_page(ms, &offset, ram_addr_abs); 1084 /* 1085 * We're sending this page, and since it's postcopy nothing else 1086 * will dirty it, and we must make sure it doesn't get sent again 1087 * even if this queue request was received after the background 1088 * search already sent it. 1089 */ 1090 if (block) { 1091 unsigned long *bitmap; 1092 bitmap = atomic_rcu_read(&migration_bitmap_rcu)->bmap; 1093 dirty = test_bit(*ram_addr_abs >> TARGET_PAGE_BITS, bitmap); 1094 if (!dirty) { 1095 trace_get_queued_page_not_dirty( 1096 block->idstr, (uint64_t)offset, 1097 (uint64_t)*ram_addr_abs, 1098 test_bit(*ram_addr_abs >> TARGET_PAGE_BITS, 1099 atomic_rcu_read(&migration_bitmap_rcu)->unsentmap)); 1100 } else { 1101 trace_get_queued_page(block->idstr, 1102 (uint64_t)offset, 1103 (uint64_t)*ram_addr_abs); 1104 } 1105 } 1106 1107 } while (block && !dirty); 1108 1109 if (block) { 1110 /* 1111 * As soon as we start servicing pages out of order, then we have 1112 * to kill the bulk stage, since the bulk stage assumes 1113 * in (migration_bitmap_find_and_reset_dirty) that every page is 1114 * dirty, that's no longer true. 1115 */ 1116 ram_bulk_stage = false; 1117 1118 /* 1119 * We want the background search to continue from the queued page 1120 * since the guest is likely to want other pages near to the page 1121 * it just requested. 1122 */ 1123 pss->block = block; 1124 pss->offset = offset; 1125 } 1126 1127 return !!block; 1128 } 1129 1130 /** 1131 * flush_page_queue: Flush any remaining pages in the ram request queue 1132 * it should be empty at the end anyway, but in error cases there may be 1133 * some left. 1134 * 1135 * ms: MigrationState 1136 */ 1137 void flush_page_queue(MigrationState *ms) 1138 { 1139 struct MigrationSrcPageRequest *mspr, *next_mspr; 1140 /* This queue generally should be empty - but in the case of a failed 1141 * migration might have some droppings in. 1142 */ 1143 rcu_read_lock(); 1144 QSIMPLEQ_FOREACH_SAFE(mspr, &ms->src_page_requests, next_req, next_mspr) { 1145 memory_region_unref(mspr->rb->mr); 1146 QSIMPLEQ_REMOVE_HEAD(&ms->src_page_requests, next_req); 1147 g_free(mspr); 1148 } 1149 rcu_read_unlock(); 1150 } 1151 1152 /** 1153 * Queue the pages for transmission, e.g. a request from postcopy destination 1154 * ms: MigrationStatus in which the queue is held 1155 * rbname: The RAMBlock the request is for - may be NULL (to mean reuse last) 1156 * start: Offset from the start of the RAMBlock 1157 * len: Length (in bytes) to send 1158 * Return: 0 on success 1159 */ 1160 int ram_save_queue_pages(MigrationState *ms, const char *rbname, 1161 ram_addr_t start, ram_addr_t len) 1162 { 1163 RAMBlock *ramblock; 1164 1165 ms->postcopy_requests++; 1166 rcu_read_lock(); 1167 if (!rbname) { 1168 /* Reuse last RAMBlock */ 1169 ramblock = ms->last_req_rb; 1170 1171 if (!ramblock) { 1172 /* 1173 * Shouldn't happen, we can't reuse the last RAMBlock if 1174 * it's the 1st request. 1175 */ 1176 error_report("ram_save_queue_pages no previous block"); 1177 goto err; 1178 } 1179 } else { 1180 ramblock = qemu_ram_block_by_name(rbname); 1181 1182 if (!ramblock) { 1183 /* We shouldn't be asked for a non-existent RAMBlock */ 1184 error_report("ram_save_queue_pages no block '%s'", rbname); 1185 goto err; 1186 } 1187 ms->last_req_rb = ramblock; 1188 } 1189 trace_ram_save_queue_pages(ramblock->idstr, start, len); 1190 if (start+len > ramblock->used_length) { 1191 error_report("%s request overrun start=" RAM_ADDR_FMT " len=" 1192 RAM_ADDR_FMT " blocklen=" RAM_ADDR_FMT, 1193 __func__, start, len, ramblock->used_length); 1194 goto err; 1195 } 1196 1197 struct MigrationSrcPageRequest *new_entry = 1198 g_malloc0(sizeof(struct MigrationSrcPageRequest)); 1199 new_entry->rb = ramblock; 1200 new_entry->offset = start; 1201 new_entry->len = len; 1202 1203 memory_region_ref(ramblock->mr); 1204 qemu_mutex_lock(&ms->src_page_req_mutex); 1205 QSIMPLEQ_INSERT_TAIL(&ms->src_page_requests, new_entry, next_req); 1206 qemu_mutex_unlock(&ms->src_page_req_mutex); 1207 rcu_read_unlock(); 1208 1209 return 0; 1210 1211 err: 1212 rcu_read_unlock(); 1213 return -1; 1214 } 1215 1216 /** 1217 * ram_save_target_page: Save one target page 1218 * 1219 * 1220 * @f: QEMUFile where to send the data 1221 * @block: pointer to block that contains the page we want to send 1222 * @offset: offset inside the block for the page; 1223 * @last_stage: if we are at the completion stage 1224 * @bytes_transferred: increase it with the number of transferred bytes 1225 * @dirty_ram_abs: Address of the start of the dirty page in ram_addr_t space 1226 * 1227 * Returns: Number of pages written. 1228 */ 1229 static int ram_save_target_page(MigrationState *ms, QEMUFile *f, 1230 PageSearchStatus *pss, 1231 bool last_stage, 1232 uint64_t *bytes_transferred, 1233 ram_addr_t dirty_ram_abs) 1234 { 1235 int res = 0; 1236 1237 /* Check the pages is dirty and if it is send it */ 1238 if (migration_bitmap_clear_dirty(dirty_ram_abs)) { 1239 unsigned long *unsentmap; 1240 if (compression_switch && migrate_use_compression()) { 1241 res = ram_save_compressed_page(f, pss, 1242 last_stage, 1243 bytes_transferred); 1244 } else { 1245 res = ram_save_page(f, pss, last_stage, 1246 bytes_transferred); 1247 } 1248 1249 if (res < 0) { 1250 return res; 1251 } 1252 unsentmap = atomic_rcu_read(&migration_bitmap_rcu)->unsentmap; 1253 if (unsentmap) { 1254 clear_bit(dirty_ram_abs >> TARGET_PAGE_BITS, unsentmap); 1255 } 1256 /* Only update last_sent_block if a block was actually sent; xbzrle 1257 * might have decided the page was identical so didn't bother writing 1258 * to the stream. 1259 */ 1260 if (res > 0) { 1261 last_sent_block = pss->block; 1262 } 1263 } 1264 1265 return res; 1266 } 1267 1268 /** 1269 * ram_save_host_page: Starting at *offset send pages up to the end 1270 * of the current host page. It's valid for the initial 1271 * offset to point into the middle of a host page 1272 * in which case the remainder of the hostpage is sent. 1273 * Only dirty target pages are sent. 1274 * 1275 * Returns: Number of pages written. 1276 * 1277 * @f: QEMUFile where to send the data 1278 * @block: pointer to block that contains the page we want to send 1279 * @offset: offset inside the block for the page; updated to last target page 1280 * sent 1281 * @last_stage: if we are at the completion stage 1282 * @bytes_transferred: increase it with the number of transferred bytes 1283 * @dirty_ram_abs: Address of the start of the dirty page in ram_addr_t space 1284 */ 1285 static int ram_save_host_page(MigrationState *ms, QEMUFile *f, 1286 PageSearchStatus *pss, 1287 bool last_stage, 1288 uint64_t *bytes_transferred, 1289 ram_addr_t dirty_ram_abs) 1290 { 1291 int tmppages, pages = 0; 1292 do { 1293 tmppages = ram_save_target_page(ms, f, pss, last_stage, 1294 bytes_transferred, dirty_ram_abs); 1295 if (tmppages < 0) { 1296 return tmppages; 1297 } 1298 1299 pages += tmppages; 1300 pss->offset += TARGET_PAGE_SIZE; 1301 dirty_ram_abs += TARGET_PAGE_SIZE; 1302 } while (pss->offset & (qemu_host_page_size - 1)); 1303 1304 /* The offset we leave with is the last one we looked at */ 1305 pss->offset -= TARGET_PAGE_SIZE; 1306 return pages; 1307 } 1308 1309 /** 1310 * ram_find_and_save_block: Finds a dirty page and sends it to f 1311 * 1312 * Called within an RCU critical section. 1313 * 1314 * Returns: The number of pages written 1315 * 0 means no dirty pages 1316 * 1317 * @f: QEMUFile where to send the data 1318 * @last_stage: if we are at the completion stage 1319 * @bytes_transferred: increase it with the number of transferred bytes 1320 * 1321 * On systems where host-page-size > target-page-size it will send all the 1322 * pages in a host page that are dirty. 1323 */ 1324 1325 static int ram_find_and_save_block(QEMUFile *f, bool last_stage, 1326 uint64_t *bytes_transferred) 1327 { 1328 PageSearchStatus pss; 1329 MigrationState *ms = migrate_get_current(); 1330 int pages = 0; 1331 bool again, found; 1332 ram_addr_t dirty_ram_abs; /* Address of the start of the dirty page in 1333 ram_addr_t space */ 1334 1335 pss.block = last_seen_block; 1336 pss.offset = last_offset; 1337 pss.complete_round = false; 1338 1339 if (!pss.block) { 1340 pss.block = QLIST_FIRST_RCU(&ram_list.blocks); 1341 } 1342 1343 do { 1344 again = true; 1345 found = get_queued_page(ms, &pss, &dirty_ram_abs); 1346 1347 if (!found) { 1348 /* priority queue empty, so just search for something dirty */ 1349 found = find_dirty_block(f, &pss, &again, &dirty_ram_abs); 1350 } 1351 1352 if (found) { 1353 pages = ram_save_host_page(ms, f, &pss, 1354 last_stage, bytes_transferred, 1355 dirty_ram_abs); 1356 } 1357 } while (!pages && again); 1358 1359 last_seen_block = pss.block; 1360 last_offset = pss.offset; 1361 1362 return pages; 1363 } 1364 1365 void acct_update_position(QEMUFile *f, size_t size, bool zero) 1366 { 1367 uint64_t pages = size / TARGET_PAGE_SIZE; 1368 if (zero) { 1369 acct_info.dup_pages += pages; 1370 } else { 1371 acct_info.norm_pages += pages; 1372 bytes_transferred += size; 1373 qemu_update_position(f, size); 1374 } 1375 } 1376 1377 static ram_addr_t ram_save_remaining(void) 1378 { 1379 return migration_dirty_pages; 1380 } 1381 1382 uint64_t ram_bytes_remaining(void) 1383 { 1384 return ram_save_remaining() * TARGET_PAGE_SIZE; 1385 } 1386 1387 uint64_t ram_bytes_transferred(void) 1388 { 1389 return bytes_transferred; 1390 } 1391 1392 uint64_t ram_bytes_total(void) 1393 { 1394 RAMBlock *block; 1395 uint64_t total = 0; 1396 1397 rcu_read_lock(); 1398 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) 1399 total += block->used_length; 1400 rcu_read_unlock(); 1401 return total; 1402 } 1403 1404 void free_xbzrle_decoded_buf(void) 1405 { 1406 g_free(xbzrle_decoded_buf); 1407 xbzrle_decoded_buf = NULL; 1408 } 1409 1410 static void migration_bitmap_free(struct BitmapRcu *bmap) 1411 { 1412 g_free(bmap->bmap); 1413 g_free(bmap->unsentmap); 1414 g_free(bmap); 1415 } 1416 1417 static void ram_migration_cleanup(void *opaque) 1418 { 1419 /* caller have hold iothread lock or is in a bh, so there is 1420 * no writing race against this migration_bitmap 1421 */ 1422 struct BitmapRcu *bitmap = migration_bitmap_rcu; 1423 atomic_rcu_set(&migration_bitmap_rcu, NULL); 1424 if (bitmap) { 1425 memory_global_dirty_log_stop(); 1426 call_rcu(bitmap, migration_bitmap_free, rcu); 1427 } 1428 1429 XBZRLE_cache_lock(); 1430 if (XBZRLE.cache) { 1431 cache_fini(XBZRLE.cache); 1432 g_free(XBZRLE.encoded_buf); 1433 g_free(XBZRLE.current_buf); 1434 XBZRLE.cache = NULL; 1435 XBZRLE.encoded_buf = NULL; 1436 XBZRLE.current_buf = NULL; 1437 } 1438 XBZRLE_cache_unlock(); 1439 } 1440 1441 static void reset_ram_globals(void) 1442 { 1443 last_seen_block = NULL; 1444 last_sent_block = NULL; 1445 last_offset = 0; 1446 last_version = ram_list.version; 1447 ram_bulk_stage = true; 1448 } 1449 1450 #define MAX_WAIT 50 /* ms, half buffered_file limit */ 1451 1452 void migration_bitmap_extend(ram_addr_t old, ram_addr_t new) 1453 { 1454 /* called in qemu main thread, so there is 1455 * no writing race against this migration_bitmap 1456 */ 1457 if (migration_bitmap_rcu) { 1458 struct BitmapRcu *old_bitmap = migration_bitmap_rcu, *bitmap; 1459 bitmap = g_new(struct BitmapRcu, 1); 1460 bitmap->bmap = bitmap_new(new); 1461 1462 /* prevent migration_bitmap content from being set bit 1463 * by migration_bitmap_sync_range() at the same time. 1464 * it is safe to migration if migration_bitmap is cleared bit 1465 * at the same time. 1466 */ 1467 qemu_mutex_lock(&migration_bitmap_mutex); 1468 bitmap_copy(bitmap->bmap, old_bitmap->bmap, old); 1469 bitmap_set(bitmap->bmap, old, new - old); 1470 1471 /* We don't have a way to safely extend the sentmap 1472 * with RCU; so mark it as missing, entry to postcopy 1473 * will fail. 1474 */ 1475 bitmap->unsentmap = NULL; 1476 1477 atomic_rcu_set(&migration_bitmap_rcu, bitmap); 1478 qemu_mutex_unlock(&migration_bitmap_mutex); 1479 migration_dirty_pages += new - old; 1480 call_rcu(old_bitmap, migration_bitmap_free, rcu); 1481 } 1482 } 1483 1484 /* 1485 * 'expected' is the value you expect the bitmap mostly to be full 1486 * of; it won't bother printing lines that are all this value. 1487 * If 'todump' is null the migration bitmap is dumped. 1488 */ 1489 void ram_debug_dump_bitmap(unsigned long *todump, bool expected) 1490 { 1491 int64_t ram_pages = last_ram_offset() >> TARGET_PAGE_BITS; 1492 1493 int64_t cur; 1494 int64_t linelen = 128; 1495 char linebuf[129]; 1496 1497 if (!todump) { 1498 todump = atomic_rcu_read(&migration_bitmap_rcu)->bmap; 1499 } 1500 1501 for (cur = 0; cur < ram_pages; cur += linelen) { 1502 int64_t curb; 1503 bool found = false; 1504 /* 1505 * Last line; catch the case where the line length 1506 * is longer than remaining ram 1507 */ 1508 if (cur + linelen > ram_pages) { 1509 linelen = ram_pages - cur; 1510 } 1511 for (curb = 0; curb < linelen; curb++) { 1512 bool thisbit = test_bit(cur + curb, todump); 1513 linebuf[curb] = thisbit ? '1' : '.'; 1514 found = found || (thisbit != expected); 1515 } 1516 if (found) { 1517 linebuf[curb] = '\0'; 1518 fprintf(stderr, "0x%08" PRIx64 " : %s\n", cur, linebuf); 1519 } 1520 } 1521 } 1522 1523 /* **** functions for postcopy ***** */ 1524 1525 /* 1526 * Callback from postcopy_each_ram_send_discard for each RAMBlock 1527 * Note: At this point the 'unsentmap' is the processed bitmap combined 1528 * with the dirtymap; so a '1' means it's either dirty or unsent. 1529 * start,length: Indexes into the bitmap for the first bit 1530 * representing the named block and length in target-pages 1531 */ 1532 static int postcopy_send_discard_bm_ram(MigrationState *ms, 1533 PostcopyDiscardState *pds, 1534 unsigned long start, 1535 unsigned long length) 1536 { 1537 unsigned long end = start + length; /* one after the end */ 1538 unsigned long current; 1539 unsigned long *unsentmap; 1540 1541 unsentmap = atomic_rcu_read(&migration_bitmap_rcu)->unsentmap; 1542 for (current = start; current < end; ) { 1543 unsigned long one = find_next_bit(unsentmap, end, current); 1544 1545 if (one <= end) { 1546 unsigned long zero = find_next_zero_bit(unsentmap, end, one + 1); 1547 unsigned long discard_length; 1548 1549 if (zero >= end) { 1550 discard_length = end - one; 1551 } else { 1552 discard_length = zero - one; 1553 } 1554 if (discard_length) { 1555 postcopy_discard_send_range(ms, pds, one, discard_length); 1556 } 1557 current = one + discard_length; 1558 } else { 1559 current = one; 1560 } 1561 } 1562 1563 return 0; 1564 } 1565 1566 /* 1567 * Utility for the outgoing postcopy code. 1568 * Calls postcopy_send_discard_bm_ram for each RAMBlock 1569 * passing it bitmap indexes and name. 1570 * Returns: 0 on success 1571 * (qemu_ram_foreach_block ends up passing unscaled lengths 1572 * which would mean postcopy code would have to deal with target page) 1573 */ 1574 static int postcopy_each_ram_send_discard(MigrationState *ms) 1575 { 1576 struct RAMBlock *block; 1577 int ret; 1578 1579 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { 1580 unsigned long first = block->offset >> TARGET_PAGE_BITS; 1581 PostcopyDiscardState *pds = postcopy_discard_send_init(ms, 1582 first, 1583 block->idstr); 1584 1585 /* 1586 * Postcopy sends chunks of bitmap over the wire, but it 1587 * just needs indexes at this point, avoids it having 1588 * target page specific code. 1589 */ 1590 ret = postcopy_send_discard_bm_ram(ms, pds, first, 1591 block->used_length >> TARGET_PAGE_BITS); 1592 postcopy_discard_send_finish(ms, pds); 1593 if (ret) { 1594 return ret; 1595 } 1596 } 1597 1598 return 0; 1599 } 1600 1601 /* 1602 * Helper for postcopy_chunk_hostpages; it's called twice to cleanup 1603 * the two bitmaps, that are similar, but one is inverted. 1604 * 1605 * We search for runs of target-pages that don't start or end on a 1606 * host page boundary; 1607 * unsent_pass=true: Cleans up partially unsent host pages by searching 1608 * the unsentmap 1609 * unsent_pass=false: Cleans up partially dirty host pages by searching 1610 * the main migration bitmap 1611 * 1612 */ 1613 static void postcopy_chunk_hostpages_pass(MigrationState *ms, bool unsent_pass, 1614 RAMBlock *block, 1615 PostcopyDiscardState *pds) 1616 { 1617 unsigned long *bitmap; 1618 unsigned long *unsentmap; 1619 unsigned int host_ratio = qemu_host_page_size / TARGET_PAGE_SIZE; 1620 unsigned long first = block->offset >> TARGET_PAGE_BITS; 1621 unsigned long len = block->used_length >> TARGET_PAGE_BITS; 1622 unsigned long last = first + (len - 1); 1623 unsigned long run_start; 1624 1625 bitmap = atomic_rcu_read(&migration_bitmap_rcu)->bmap; 1626 unsentmap = atomic_rcu_read(&migration_bitmap_rcu)->unsentmap; 1627 1628 if (unsent_pass) { 1629 /* Find a sent page */ 1630 run_start = find_next_zero_bit(unsentmap, last + 1, first); 1631 } else { 1632 /* Find a dirty page */ 1633 run_start = find_next_bit(bitmap, last + 1, first); 1634 } 1635 1636 while (run_start <= last) { 1637 bool do_fixup = false; 1638 unsigned long fixup_start_addr; 1639 unsigned long host_offset; 1640 1641 /* 1642 * If the start of this run of pages is in the middle of a host 1643 * page, then we need to fixup this host page. 1644 */ 1645 host_offset = run_start % host_ratio; 1646 if (host_offset) { 1647 do_fixup = true; 1648 run_start -= host_offset; 1649 fixup_start_addr = run_start; 1650 /* For the next pass */ 1651 run_start = run_start + host_ratio; 1652 } else { 1653 /* Find the end of this run */ 1654 unsigned long run_end; 1655 if (unsent_pass) { 1656 run_end = find_next_bit(unsentmap, last + 1, run_start + 1); 1657 } else { 1658 run_end = find_next_zero_bit(bitmap, last + 1, run_start + 1); 1659 } 1660 /* 1661 * If the end isn't at the start of a host page, then the 1662 * run doesn't finish at the end of a host page 1663 * and we need to discard. 1664 */ 1665 host_offset = run_end % host_ratio; 1666 if (host_offset) { 1667 do_fixup = true; 1668 fixup_start_addr = run_end - host_offset; 1669 /* 1670 * This host page has gone, the next loop iteration starts 1671 * from after the fixup 1672 */ 1673 run_start = fixup_start_addr + host_ratio; 1674 } else { 1675 /* 1676 * No discards on this iteration, next loop starts from 1677 * next sent/dirty page 1678 */ 1679 run_start = run_end + 1; 1680 } 1681 } 1682 1683 if (do_fixup) { 1684 unsigned long page; 1685 1686 /* Tell the destination to discard this page */ 1687 if (unsent_pass || !test_bit(fixup_start_addr, unsentmap)) { 1688 /* For the unsent_pass we: 1689 * discard partially sent pages 1690 * For the !unsent_pass (dirty) we: 1691 * discard partially dirty pages that were sent 1692 * (any partially sent pages were already discarded 1693 * by the previous unsent_pass) 1694 */ 1695 postcopy_discard_send_range(ms, pds, fixup_start_addr, 1696 host_ratio); 1697 } 1698 1699 /* Clean up the bitmap */ 1700 for (page = fixup_start_addr; 1701 page < fixup_start_addr + host_ratio; page++) { 1702 /* All pages in this host page are now not sent */ 1703 set_bit(page, unsentmap); 1704 1705 /* 1706 * Remark them as dirty, updating the count for any pages 1707 * that weren't previously dirty. 1708 */ 1709 migration_dirty_pages += !test_and_set_bit(page, bitmap); 1710 } 1711 } 1712 1713 if (unsent_pass) { 1714 /* Find the next sent page for the next iteration */ 1715 run_start = find_next_zero_bit(unsentmap, last + 1, 1716 run_start); 1717 } else { 1718 /* Find the next dirty page for the next iteration */ 1719 run_start = find_next_bit(bitmap, last + 1, run_start); 1720 } 1721 } 1722 } 1723 1724 /* 1725 * Utility for the outgoing postcopy code. 1726 * 1727 * Discard any partially sent host-page size chunks, mark any partially 1728 * dirty host-page size chunks as all dirty. 1729 * 1730 * Returns: 0 on success 1731 */ 1732 static int postcopy_chunk_hostpages(MigrationState *ms) 1733 { 1734 struct RAMBlock *block; 1735 1736 if (qemu_host_page_size == TARGET_PAGE_SIZE) { 1737 /* Easy case - TPS==HPS - nothing to be done */ 1738 return 0; 1739 } 1740 1741 /* Easiest way to make sure we don't resume in the middle of a host-page */ 1742 last_seen_block = NULL; 1743 last_sent_block = NULL; 1744 last_offset = 0; 1745 1746 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { 1747 unsigned long first = block->offset >> TARGET_PAGE_BITS; 1748 1749 PostcopyDiscardState *pds = 1750 postcopy_discard_send_init(ms, first, block->idstr); 1751 1752 /* First pass: Discard all partially sent host pages */ 1753 postcopy_chunk_hostpages_pass(ms, true, block, pds); 1754 /* 1755 * Second pass: Ensure that all partially dirty host pages are made 1756 * fully dirty. 1757 */ 1758 postcopy_chunk_hostpages_pass(ms, false, block, pds); 1759 1760 postcopy_discard_send_finish(ms, pds); 1761 } /* ram_list loop */ 1762 1763 return 0; 1764 } 1765 1766 /* 1767 * Transmit the set of pages to be discarded after precopy to the target 1768 * these are pages that: 1769 * a) Have been previously transmitted but are now dirty again 1770 * b) Pages that have never been transmitted, this ensures that 1771 * any pages on the destination that have been mapped by background 1772 * tasks get discarded (transparent huge pages is the specific concern) 1773 * Hopefully this is pretty sparse 1774 */ 1775 int ram_postcopy_send_discard_bitmap(MigrationState *ms) 1776 { 1777 int ret; 1778 unsigned long *bitmap, *unsentmap; 1779 1780 rcu_read_lock(); 1781 1782 /* This should be our last sync, the src is now paused */ 1783 migration_bitmap_sync(); 1784 1785 unsentmap = atomic_rcu_read(&migration_bitmap_rcu)->unsentmap; 1786 if (!unsentmap) { 1787 /* We don't have a safe way to resize the sentmap, so 1788 * if the bitmap was resized it will be NULL at this 1789 * point. 1790 */ 1791 error_report("migration ram resized during precopy phase"); 1792 rcu_read_unlock(); 1793 return -EINVAL; 1794 } 1795 1796 /* Deal with TPS != HPS */ 1797 ret = postcopy_chunk_hostpages(ms); 1798 if (ret) { 1799 rcu_read_unlock(); 1800 return ret; 1801 } 1802 1803 /* 1804 * Update the unsentmap to be unsentmap = unsentmap | dirty 1805 */ 1806 bitmap = atomic_rcu_read(&migration_bitmap_rcu)->bmap; 1807 bitmap_or(unsentmap, unsentmap, bitmap, 1808 last_ram_offset() >> TARGET_PAGE_BITS); 1809 1810 1811 trace_ram_postcopy_send_discard_bitmap(); 1812 #ifdef DEBUG_POSTCOPY 1813 ram_debug_dump_bitmap(unsentmap, true); 1814 #endif 1815 1816 ret = postcopy_each_ram_send_discard(ms); 1817 rcu_read_unlock(); 1818 1819 return ret; 1820 } 1821 1822 /* 1823 * At the start of the postcopy phase of migration, any now-dirty 1824 * precopied pages are discarded. 1825 * 1826 * start, length describe a byte address range within the RAMBlock 1827 * 1828 * Returns 0 on success. 1829 */ 1830 int ram_discard_range(MigrationIncomingState *mis, 1831 const char *block_name, 1832 uint64_t start, size_t length) 1833 { 1834 int ret = -1; 1835 1836 rcu_read_lock(); 1837 RAMBlock *rb = qemu_ram_block_by_name(block_name); 1838 1839 if (!rb) { 1840 error_report("ram_discard_range: Failed to find block '%s'", 1841 block_name); 1842 goto err; 1843 } 1844 1845 uint8_t *host_startaddr = rb->host + start; 1846 1847 if ((uintptr_t)host_startaddr & (qemu_host_page_size - 1)) { 1848 error_report("ram_discard_range: Unaligned start address: %p", 1849 host_startaddr); 1850 goto err; 1851 } 1852 1853 if ((start + length) <= rb->used_length) { 1854 uint8_t *host_endaddr = host_startaddr + length; 1855 if ((uintptr_t)host_endaddr & (qemu_host_page_size - 1)) { 1856 error_report("ram_discard_range: Unaligned end address: %p", 1857 host_endaddr); 1858 goto err; 1859 } 1860 ret = postcopy_ram_discard_range(mis, host_startaddr, length); 1861 } else { 1862 error_report("ram_discard_range: Overrun block '%s' (%" PRIu64 1863 "/%zx/" RAM_ADDR_FMT")", 1864 block_name, start, length, rb->used_length); 1865 } 1866 1867 err: 1868 rcu_read_unlock(); 1869 1870 return ret; 1871 } 1872 1873 1874 /* Each of ram_save_setup, ram_save_iterate and ram_save_complete has 1875 * long-running RCU critical section. When rcu-reclaims in the code 1876 * start to become numerous it will be necessary to reduce the 1877 * granularity of these critical sections. 1878 */ 1879 1880 static int ram_save_setup(QEMUFile *f, void *opaque) 1881 { 1882 RAMBlock *block; 1883 int64_t ram_bitmap_pages; /* Size of bitmap in pages, including gaps */ 1884 1885 dirty_rate_high_cnt = 0; 1886 bitmap_sync_count = 0; 1887 migration_bitmap_sync_init(); 1888 qemu_mutex_init(&migration_bitmap_mutex); 1889 1890 if (migrate_use_xbzrle()) { 1891 XBZRLE_cache_lock(); 1892 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size() / 1893 TARGET_PAGE_SIZE, 1894 TARGET_PAGE_SIZE); 1895 if (!XBZRLE.cache) { 1896 XBZRLE_cache_unlock(); 1897 error_report("Error creating cache"); 1898 return -1; 1899 } 1900 XBZRLE_cache_unlock(); 1901 1902 /* We prefer not to abort if there is no memory */ 1903 XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE); 1904 if (!XBZRLE.encoded_buf) { 1905 error_report("Error allocating encoded_buf"); 1906 return -1; 1907 } 1908 1909 XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE); 1910 if (!XBZRLE.current_buf) { 1911 error_report("Error allocating current_buf"); 1912 g_free(XBZRLE.encoded_buf); 1913 XBZRLE.encoded_buf = NULL; 1914 return -1; 1915 } 1916 1917 acct_clear(); 1918 } 1919 1920 /* For memory_global_dirty_log_start below. */ 1921 qemu_mutex_lock_iothread(); 1922 1923 qemu_mutex_lock_ramlist(); 1924 rcu_read_lock(); 1925 bytes_transferred = 0; 1926 reset_ram_globals(); 1927 1928 ram_bitmap_pages = last_ram_offset() >> TARGET_PAGE_BITS; 1929 migration_bitmap_rcu = g_new0(struct BitmapRcu, 1); 1930 migration_bitmap_rcu->bmap = bitmap_new(ram_bitmap_pages); 1931 bitmap_set(migration_bitmap_rcu->bmap, 0, ram_bitmap_pages); 1932 1933 if (migrate_postcopy_ram()) { 1934 migration_bitmap_rcu->unsentmap = bitmap_new(ram_bitmap_pages); 1935 bitmap_set(migration_bitmap_rcu->unsentmap, 0, ram_bitmap_pages); 1936 } 1937 1938 /* 1939 * Count the total number of pages used by ram blocks not including any 1940 * gaps due to alignment or unplugs. 1941 */ 1942 migration_dirty_pages = ram_bytes_total() >> TARGET_PAGE_BITS; 1943 1944 memory_global_dirty_log_start(); 1945 migration_bitmap_sync(); 1946 qemu_mutex_unlock_ramlist(); 1947 qemu_mutex_unlock_iothread(); 1948 1949 qemu_put_be64(f, ram_bytes_total() | RAM_SAVE_FLAG_MEM_SIZE); 1950 1951 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { 1952 qemu_put_byte(f, strlen(block->idstr)); 1953 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr)); 1954 qemu_put_be64(f, block->used_length); 1955 } 1956 1957 rcu_read_unlock(); 1958 1959 ram_control_before_iterate(f, RAM_CONTROL_SETUP); 1960 ram_control_after_iterate(f, RAM_CONTROL_SETUP); 1961 1962 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 1963 1964 return 0; 1965 } 1966 1967 static int ram_save_iterate(QEMUFile *f, void *opaque) 1968 { 1969 int ret; 1970 int i; 1971 int64_t t0; 1972 int pages_sent = 0; 1973 1974 rcu_read_lock(); 1975 if (ram_list.version != last_version) { 1976 reset_ram_globals(); 1977 } 1978 1979 /* Read version before ram_list.blocks */ 1980 smp_rmb(); 1981 1982 ram_control_before_iterate(f, RAM_CONTROL_ROUND); 1983 1984 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 1985 i = 0; 1986 while ((ret = qemu_file_rate_limit(f)) == 0) { 1987 int pages; 1988 1989 pages = ram_find_and_save_block(f, false, &bytes_transferred); 1990 /* no more pages to sent */ 1991 if (pages == 0) { 1992 break; 1993 } 1994 pages_sent += pages; 1995 acct_info.iterations++; 1996 1997 /* we want to check in the 1st loop, just in case it was the 1st time 1998 and we had to sync the dirty bitmap. 1999 qemu_get_clock_ns() is a bit expensive, so we only check each some 2000 iterations 2001 */ 2002 if ((i & 63) == 0) { 2003 uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) / 1000000; 2004 if (t1 > MAX_WAIT) { 2005 DPRINTF("big wait: %" PRIu64 " milliseconds, %d iterations\n", 2006 t1, i); 2007 break; 2008 } 2009 } 2010 i++; 2011 } 2012 flush_compressed_data(f); 2013 rcu_read_unlock(); 2014 2015 /* 2016 * Must occur before EOS (or any QEMUFile operation) 2017 * because of RDMA protocol. 2018 */ 2019 ram_control_after_iterate(f, RAM_CONTROL_ROUND); 2020 2021 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 2022 bytes_transferred += 8; 2023 2024 ret = qemu_file_get_error(f); 2025 if (ret < 0) { 2026 return ret; 2027 } 2028 2029 return pages_sent; 2030 } 2031 2032 /* Called with iothread lock */ 2033 static int ram_save_complete(QEMUFile *f, void *opaque) 2034 { 2035 rcu_read_lock(); 2036 2037 if (!migration_in_postcopy(migrate_get_current())) { 2038 migration_bitmap_sync(); 2039 } 2040 2041 ram_control_before_iterate(f, RAM_CONTROL_FINISH); 2042 2043 /* try transferring iterative blocks of memory */ 2044 2045 /* flush all remaining blocks regardless of rate limiting */ 2046 while (true) { 2047 int pages; 2048 2049 pages = ram_find_and_save_block(f, true, &bytes_transferred); 2050 /* no more blocks to sent */ 2051 if (pages == 0) { 2052 break; 2053 } 2054 } 2055 2056 flush_compressed_data(f); 2057 ram_control_after_iterate(f, RAM_CONTROL_FINISH); 2058 2059 rcu_read_unlock(); 2060 2061 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 2062 2063 return 0; 2064 } 2065 2066 static void ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size, 2067 uint64_t *non_postcopiable_pending, 2068 uint64_t *postcopiable_pending) 2069 { 2070 uint64_t remaining_size; 2071 2072 remaining_size = ram_save_remaining() * TARGET_PAGE_SIZE; 2073 2074 if (!migration_in_postcopy(migrate_get_current()) && 2075 remaining_size < max_size) { 2076 qemu_mutex_lock_iothread(); 2077 rcu_read_lock(); 2078 migration_bitmap_sync(); 2079 rcu_read_unlock(); 2080 qemu_mutex_unlock_iothread(); 2081 remaining_size = ram_save_remaining() * TARGET_PAGE_SIZE; 2082 } 2083 2084 /* We can do postcopy, and all the data is postcopiable */ 2085 *postcopiable_pending += remaining_size; 2086 } 2087 2088 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host) 2089 { 2090 unsigned int xh_len; 2091 int xh_flags; 2092 uint8_t *loaded_data; 2093 2094 if (!xbzrle_decoded_buf) { 2095 xbzrle_decoded_buf = g_malloc(TARGET_PAGE_SIZE); 2096 } 2097 loaded_data = xbzrle_decoded_buf; 2098 2099 /* extract RLE header */ 2100 xh_flags = qemu_get_byte(f); 2101 xh_len = qemu_get_be16(f); 2102 2103 if (xh_flags != ENCODING_FLAG_XBZRLE) { 2104 error_report("Failed to load XBZRLE page - wrong compression!"); 2105 return -1; 2106 } 2107 2108 if (xh_len > TARGET_PAGE_SIZE) { 2109 error_report("Failed to load XBZRLE page - len overflow!"); 2110 return -1; 2111 } 2112 /* load data and decode */ 2113 qemu_get_buffer_in_place(f, &loaded_data, xh_len); 2114 2115 /* decode RLE */ 2116 if (xbzrle_decode_buffer(loaded_data, xh_len, host, 2117 TARGET_PAGE_SIZE) == -1) { 2118 error_report("Failed to load XBZRLE page - decode error!"); 2119 return -1; 2120 } 2121 2122 return 0; 2123 } 2124 2125 /* Must be called from within a rcu critical section. 2126 * Returns a pointer from within the RCU-protected ram_list. 2127 */ 2128 /* 2129 * Read a RAMBlock ID from the stream f. 2130 * 2131 * f: Stream to read from 2132 * flags: Page flags (mostly to see if it's a continuation of previous block) 2133 */ 2134 static inline RAMBlock *ram_block_from_stream(QEMUFile *f, 2135 int flags) 2136 { 2137 static RAMBlock *block = NULL; 2138 char id[256]; 2139 uint8_t len; 2140 2141 if (flags & RAM_SAVE_FLAG_CONTINUE) { 2142 if (!block) { 2143 error_report("Ack, bad migration stream!"); 2144 return NULL; 2145 } 2146 return block; 2147 } 2148 2149 len = qemu_get_byte(f); 2150 qemu_get_buffer(f, (uint8_t *)id, len); 2151 id[len] = 0; 2152 2153 block = qemu_ram_block_by_name(id); 2154 if (!block) { 2155 error_report("Can't find block %s", id); 2156 return NULL; 2157 } 2158 2159 return block; 2160 } 2161 2162 static inline void *host_from_ram_block_offset(RAMBlock *block, 2163 ram_addr_t offset) 2164 { 2165 if (!offset_in_ramblock(block, offset)) { 2166 return NULL; 2167 } 2168 2169 return block->host + offset; 2170 } 2171 2172 /* 2173 * If a page (or a whole RDMA chunk) has been 2174 * determined to be zero, then zap it. 2175 */ 2176 void ram_handle_compressed(void *host, uint8_t ch, uint64_t size) 2177 { 2178 if (ch != 0 || !is_zero_range(host, size)) { 2179 memset(host, ch, size); 2180 } 2181 } 2182 2183 static void *do_data_decompress(void *opaque) 2184 { 2185 DecompressParam *param = opaque; 2186 unsigned long pagesize; 2187 uint8_t *des; 2188 int len; 2189 2190 qemu_mutex_lock(¶m->mutex); 2191 while (!param->quit) { 2192 if (param->des) { 2193 des = param->des; 2194 len = param->len; 2195 param->des = 0; 2196 qemu_mutex_unlock(¶m->mutex); 2197 2198 pagesize = TARGET_PAGE_SIZE; 2199 /* uncompress() will return failed in some case, especially 2200 * when the page is dirted when doing the compression, it's 2201 * not a problem because the dirty page will be retransferred 2202 * and uncompress() won't break the data in other pages. 2203 */ 2204 uncompress((Bytef *)des, &pagesize, 2205 (const Bytef *)param->compbuf, len); 2206 2207 qemu_mutex_lock(&decomp_done_lock); 2208 param->done = true; 2209 qemu_cond_signal(&decomp_done_cond); 2210 qemu_mutex_unlock(&decomp_done_lock); 2211 2212 qemu_mutex_lock(¶m->mutex); 2213 } else { 2214 qemu_cond_wait(¶m->cond, ¶m->mutex); 2215 } 2216 } 2217 qemu_mutex_unlock(¶m->mutex); 2218 2219 return NULL; 2220 } 2221 2222 static void wait_for_decompress_done(void) 2223 { 2224 int idx, thread_count; 2225 2226 if (!migrate_use_compression()) { 2227 return; 2228 } 2229 2230 thread_count = migrate_decompress_threads(); 2231 qemu_mutex_lock(&decomp_done_lock); 2232 for (idx = 0; idx < thread_count; idx++) { 2233 while (!decomp_param[idx].done) { 2234 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock); 2235 } 2236 } 2237 qemu_mutex_unlock(&decomp_done_lock); 2238 } 2239 2240 void migrate_decompress_threads_create(void) 2241 { 2242 int i, thread_count; 2243 2244 thread_count = migrate_decompress_threads(); 2245 decompress_threads = g_new0(QemuThread, thread_count); 2246 decomp_param = g_new0(DecompressParam, thread_count); 2247 qemu_mutex_init(&decomp_done_lock); 2248 qemu_cond_init(&decomp_done_cond); 2249 for (i = 0; i < thread_count; i++) { 2250 qemu_mutex_init(&decomp_param[i].mutex); 2251 qemu_cond_init(&decomp_param[i].cond); 2252 decomp_param[i].compbuf = g_malloc0(compressBound(TARGET_PAGE_SIZE)); 2253 decomp_param[i].done = true; 2254 decomp_param[i].quit = false; 2255 qemu_thread_create(decompress_threads + i, "decompress", 2256 do_data_decompress, decomp_param + i, 2257 QEMU_THREAD_JOINABLE); 2258 } 2259 } 2260 2261 void migrate_decompress_threads_join(void) 2262 { 2263 int i, thread_count; 2264 2265 thread_count = migrate_decompress_threads(); 2266 for (i = 0; i < thread_count; i++) { 2267 qemu_mutex_lock(&decomp_param[i].mutex); 2268 decomp_param[i].quit = true; 2269 qemu_cond_signal(&decomp_param[i].cond); 2270 qemu_mutex_unlock(&decomp_param[i].mutex); 2271 } 2272 for (i = 0; i < thread_count; i++) { 2273 qemu_thread_join(decompress_threads + i); 2274 qemu_mutex_destroy(&decomp_param[i].mutex); 2275 qemu_cond_destroy(&decomp_param[i].cond); 2276 g_free(decomp_param[i].compbuf); 2277 } 2278 g_free(decompress_threads); 2279 g_free(decomp_param); 2280 decompress_threads = NULL; 2281 decomp_param = NULL; 2282 } 2283 2284 static void decompress_data_with_multi_threads(QEMUFile *f, 2285 void *host, int len) 2286 { 2287 int idx, thread_count; 2288 2289 thread_count = migrate_decompress_threads(); 2290 qemu_mutex_lock(&decomp_done_lock); 2291 while (true) { 2292 for (idx = 0; idx < thread_count; idx++) { 2293 if (decomp_param[idx].done) { 2294 decomp_param[idx].done = false; 2295 qemu_mutex_lock(&decomp_param[idx].mutex); 2296 qemu_get_buffer(f, decomp_param[idx].compbuf, len); 2297 decomp_param[idx].des = host; 2298 decomp_param[idx].len = len; 2299 qemu_cond_signal(&decomp_param[idx].cond); 2300 qemu_mutex_unlock(&decomp_param[idx].mutex); 2301 break; 2302 } 2303 } 2304 if (idx < thread_count) { 2305 break; 2306 } else { 2307 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock); 2308 } 2309 } 2310 qemu_mutex_unlock(&decomp_done_lock); 2311 } 2312 2313 /* 2314 * Allocate data structures etc needed by incoming migration with postcopy-ram 2315 * postcopy-ram's similarly names postcopy_ram_incoming_init does the work 2316 */ 2317 int ram_postcopy_incoming_init(MigrationIncomingState *mis) 2318 { 2319 size_t ram_pages = last_ram_offset() >> TARGET_PAGE_BITS; 2320 2321 return postcopy_ram_incoming_init(mis, ram_pages); 2322 } 2323 2324 /* 2325 * Called in postcopy mode by ram_load(). 2326 * rcu_read_lock is taken prior to this being called. 2327 */ 2328 static int ram_load_postcopy(QEMUFile *f) 2329 { 2330 int flags = 0, ret = 0; 2331 bool place_needed = false; 2332 bool matching_page_sizes = qemu_host_page_size == TARGET_PAGE_SIZE; 2333 MigrationIncomingState *mis = migration_incoming_get_current(); 2334 /* Temporary page that is later 'placed' */ 2335 void *postcopy_host_page = postcopy_get_tmp_page(mis); 2336 void *last_host = NULL; 2337 bool all_zero = false; 2338 2339 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) { 2340 ram_addr_t addr; 2341 void *host = NULL; 2342 void *page_buffer = NULL; 2343 void *place_source = NULL; 2344 uint8_t ch; 2345 2346 addr = qemu_get_be64(f); 2347 flags = addr & ~TARGET_PAGE_MASK; 2348 addr &= TARGET_PAGE_MASK; 2349 2350 trace_ram_load_postcopy_loop((uint64_t)addr, flags); 2351 place_needed = false; 2352 if (flags & (RAM_SAVE_FLAG_COMPRESS | RAM_SAVE_FLAG_PAGE)) { 2353 RAMBlock *block = ram_block_from_stream(f, flags); 2354 2355 host = host_from_ram_block_offset(block, addr); 2356 if (!host) { 2357 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr); 2358 ret = -EINVAL; 2359 break; 2360 } 2361 /* 2362 * Postcopy requires that we place whole host pages atomically. 2363 * To make it atomic, the data is read into a temporary page 2364 * that's moved into place later. 2365 * The migration protocol uses, possibly smaller, target-pages 2366 * however the source ensures it always sends all the components 2367 * of a host page in order. 2368 */ 2369 page_buffer = postcopy_host_page + 2370 ((uintptr_t)host & ~qemu_host_page_mask); 2371 /* If all TP are zero then we can optimise the place */ 2372 if (!((uintptr_t)host & ~qemu_host_page_mask)) { 2373 all_zero = true; 2374 } else { 2375 /* not the 1st TP within the HP */ 2376 if (host != (last_host + TARGET_PAGE_SIZE)) { 2377 error_report("Non-sequential target page %p/%p", 2378 host, last_host); 2379 ret = -EINVAL; 2380 break; 2381 } 2382 } 2383 2384 2385 /* 2386 * If it's the last part of a host page then we place the host 2387 * page 2388 */ 2389 place_needed = (((uintptr_t)host + TARGET_PAGE_SIZE) & 2390 ~qemu_host_page_mask) == 0; 2391 place_source = postcopy_host_page; 2392 } 2393 last_host = host; 2394 2395 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) { 2396 case RAM_SAVE_FLAG_COMPRESS: 2397 ch = qemu_get_byte(f); 2398 memset(page_buffer, ch, TARGET_PAGE_SIZE); 2399 if (ch) { 2400 all_zero = false; 2401 } 2402 break; 2403 2404 case RAM_SAVE_FLAG_PAGE: 2405 all_zero = false; 2406 if (!place_needed || !matching_page_sizes) { 2407 qemu_get_buffer(f, page_buffer, TARGET_PAGE_SIZE); 2408 } else { 2409 /* Avoids the qemu_file copy during postcopy, which is 2410 * going to do a copy later; can only do it when we 2411 * do this read in one go (matching page sizes) 2412 */ 2413 qemu_get_buffer_in_place(f, (uint8_t **)&place_source, 2414 TARGET_PAGE_SIZE); 2415 } 2416 break; 2417 case RAM_SAVE_FLAG_EOS: 2418 /* normal exit */ 2419 break; 2420 default: 2421 error_report("Unknown combination of migration flags: %#x" 2422 " (postcopy mode)", flags); 2423 ret = -EINVAL; 2424 } 2425 2426 if (place_needed) { 2427 /* This gets called at the last target page in the host page */ 2428 if (all_zero) { 2429 ret = postcopy_place_page_zero(mis, 2430 host + TARGET_PAGE_SIZE - 2431 qemu_host_page_size); 2432 } else { 2433 ret = postcopy_place_page(mis, host + TARGET_PAGE_SIZE - 2434 qemu_host_page_size, 2435 place_source); 2436 } 2437 } 2438 if (!ret) { 2439 ret = qemu_file_get_error(f); 2440 } 2441 } 2442 2443 return ret; 2444 } 2445 2446 static int ram_load(QEMUFile *f, void *opaque, int version_id) 2447 { 2448 int flags = 0, ret = 0; 2449 static uint64_t seq_iter; 2450 int len = 0; 2451 /* 2452 * If system is running in postcopy mode, page inserts to host memory must 2453 * be atomic 2454 */ 2455 bool postcopy_running = postcopy_state_get() >= POSTCOPY_INCOMING_LISTENING; 2456 2457 seq_iter++; 2458 2459 if (version_id != 4) { 2460 ret = -EINVAL; 2461 } 2462 2463 /* This RCU critical section can be very long running. 2464 * When RCU reclaims in the code start to become numerous, 2465 * it will be necessary to reduce the granularity of this 2466 * critical section. 2467 */ 2468 rcu_read_lock(); 2469 2470 if (postcopy_running) { 2471 ret = ram_load_postcopy(f); 2472 } 2473 2474 while (!postcopy_running && !ret && !(flags & RAM_SAVE_FLAG_EOS)) { 2475 ram_addr_t addr, total_ram_bytes; 2476 void *host = NULL; 2477 uint8_t ch; 2478 2479 addr = qemu_get_be64(f); 2480 flags = addr & ~TARGET_PAGE_MASK; 2481 addr &= TARGET_PAGE_MASK; 2482 2483 if (flags & (RAM_SAVE_FLAG_COMPRESS | RAM_SAVE_FLAG_PAGE | 2484 RAM_SAVE_FLAG_COMPRESS_PAGE | RAM_SAVE_FLAG_XBZRLE)) { 2485 RAMBlock *block = ram_block_from_stream(f, flags); 2486 2487 host = host_from_ram_block_offset(block, addr); 2488 if (!host) { 2489 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr); 2490 ret = -EINVAL; 2491 break; 2492 } 2493 } 2494 2495 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) { 2496 case RAM_SAVE_FLAG_MEM_SIZE: 2497 /* Synchronize RAM block list */ 2498 total_ram_bytes = addr; 2499 while (!ret && total_ram_bytes) { 2500 RAMBlock *block; 2501 char id[256]; 2502 ram_addr_t length; 2503 2504 len = qemu_get_byte(f); 2505 qemu_get_buffer(f, (uint8_t *)id, len); 2506 id[len] = 0; 2507 length = qemu_get_be64(f); 2508 2509 block = qemu_ram_block_by_name(id); 2510 if (block) { 2511 if (length != block->used_length) { 2512 Error *local_err = NULL; 2513 2514 ret = qemu_ram_resize(block, length, 2515 &local_err); 2516 if (local_err) { 2517 error_report_err(local_err); 2518 } 2519 } 2520 ram_control_load_hook(f, RAM_CONTROL_BLOCK_REG, 2521 block->idstr); 2522 } else { 2523 error_report("Unknown ramblock \"%s\", cannot " 2524 "accept migration", id); 2525 ret = -EINVAL; 2526 } 2527 2528 total_ram_bytes -= length; 2529 } 2530 break; 2531 2532 case RAM_SAVE_FLAG_COMPRESS: 2533 ch = qemu_get_byte(f); 2534 ram_handle_compressed(host, ch, TARGET_PAGE_SIZE); 2535 break; 2536 2537 case RAM_SAVE_FLAG_PAGE: 2538 qemu_get_buffer(f, host, TARGET_PAGE_SIZE); 2539 break; 2540 2541 case RAM_SAVE_FLAG_COMPRESS_PAGE: 2542 len = qemu_get_be32(f); 2543 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) { 2544 error_report("Invalid compressed data length: %d", len); 2545 ret = -EINVAL; 2546 break; 2547 } 2548 decompress_data_with_multi_threads(f, host, len); 2549 break; 2550 2551 case RAM_SAVE_FLAG_XBZRLE: 2552 if (load_xbzrle(f, addr, host) < 0) { 2553 error_report("Failed to decompress XBZRLE page at " 2554 RAM_ADDR_FMT, addr); 2555 ret = -EINVAL; 2556 break; 2557 } 2558 break; 2559 case RAM_SAVE_FLAG_EOS: 2560 /* normal exit */ 2561 break; 2562 default: 2563 if (flags & RAM_SAVE_FLAG_HOOK) { 2564 ram_control_load_hook(f, RAM_CONTROL_HOOK, NULL); 2565 } else { 2566 error_report("Unknown combination of migration flags: %#x", 2567 flags); 2568 ret = -EINVAL; 2569 } 2570 } 2571 if (!ret) { 2572 ret = qemu_file_get_error(f); 2573 } 2574 } 2575 2576 wait_for_decompress_done(); 2577 rcu_read_unlock(); 2578 DPRINTF("Completed load of VM with exit code %d seq iteration " 2579 "%" PRIu64 "\n", ret, seq_iter); 2580 return ret; 2581 } 2582 2583 static SaveVMHandlers savevm_ram_handlers = { 2584 .save_live_setup = ram_save_setup, 2585 .save_live_iterate = ram_save_iterate, 2586 .save_live_complete_postcopy = ram_save_complete, 2587 .save_live_complete_precopy = ram_save_complete, 2588 .save_live_pending = ram_save_pending, 2589 .load_state = ram_load, 2590 .cleanup = ram_migration_cleanup, 2591 }; 2592 2593 void ram_mig_init(void) 2594 { 2595 qemu_mutex_init(&XBZRLE.lock); 2596 register_savevm_live(NULL, "ram", 0, 4, &savevm_ram_handlers, NULL); 2597 } 2598