1 /* 2 * QEMU System Emulator 3 * 4 * Copyright (c) 2003-2008 Fabrice Bellard 5 * Copyright (c) 2011-2015 Red Hat Inc 6 * 7 * Authors: 8 * Juan Quintela <quintela@redhat.com> 9 * 10 * Permission is hereby granted, free of charge, to any person obtaining a copy 11 * of this software and associated documentation files (the "Software"), to deal 12 * in the Software without restriction, including without limitation the rights 13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 14 * copies of the Software, and to permit persons to whom the Software is 15 * furnished to do so, subject to the following conditions: 16 * 17 * The above copyright notice and this permission notice shall be included in 18 * all copies or substantial portions of the Software. 19 * 20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 26 * THE SOFTWARE. 27 */ 28 29 #include "qemu/osdep.h" 30 #include "qemu/cutils.h" 31 #include "qemu/bitops.h" 32 #include "qemu/bitmap.h" 33 #include "qemu/madvise.h" 34 #include "qemu/main-loop.h" 35 #include "xbzrle.h" 36 #include "ram-compress.h" 37 #include "ram.h" 38 #include "migration.h" 39 #include "migration-stats.h" 40 #include "migration/register.h" 41 #include "migration/misc.h" 42 #include "qemu-file.h" 43 #include "postcopy-ram.h" 44 #include "page_cache.h" 45 #include "qemu/error-report.h" 46 #include "qapi/error.h" 47 #include "qapi/qapi-types-migration.h" 48 #include "qapi/qapi-events-migration.h" 49 #include "qapi/qapi-commands-migration.h" 50 #include "qapi/qmp/qerror.h" 51 #include "trace.h" 52 #include "exec/ram_addr.h" 53 #include "exec/target_page.h" 54 #include "qemu/rcu_queue.h" 55 #include "migration/colo.h" 56 #include "block.h" 57 #include "sysemu/cpu-throttle.h" 58 #include "savevm.h" 59 #include "qemu/iov.h" 60 #include "multifd.h" 61 #include "sysemu/runstate.h" 62 #include "rdma.h" 63 #include "options.h" 64 #include "sysemu/dirtylimit.h" 65 #include "sysemu/kvm.h" 66 67 #include "hw/boards.h" /* for machine_dump_guest_core() */ 68 69 #if defined(__linux__) 70 #include "qemu/userfaultfd.h" 71 #endif /* defined(__linux__) */ 72 73 /***********************************************************/ 74 /* ram save/restore */ 75 76 /* 77 * RAM_SAVE_FLAG_ZERO used to be named RAM_SAVE_FLAG_COMPRESS, it 78 * worked for pages that were filled with the same char. We switched 79 * it to only search for the zero value. And to avoid confusion with 80 * RAM_SAVE_FLAG_COMPRESS_PAGE just rename it. 81 */ 82 /* 83 * RAM_SAVE_FLAG_FULL was obsoleted in 2009, it can be reused now 84 */ 85 #define RAM_SAVE_FLAG_FULL 0x01 86 #define RAM_SAVE_FLAG_ZERO 0x02 87 #define RAM_SAVE_FLAG_MEM_SIZE 0x04 88 #define RAM_SAVE_FLAG_PAGE 0x08 89 #define RAM_SAVE_FLAG_EOS 0x10 90 #define RAM_SAVE_FLAG_CONTINUE 0x20 91 #define RAM_SAVE_FLAG_XBZRLE 0x40 92 /* 0x80 is reserved in rdma.h for RAM_SAVE_FLAG_HOOK */ 93 #define RAM_SAVE_FLAG_COMPRESS_PAGE 0x100 94 #define RAM_SAVE_FLAG_MULTIFD_FLUSH 0x200 95 /* We can't use any flag that is bigger than 0x200 */ 96 97 XBZRLECacheStats xbzrle_counters; 98 99 /* used by the search for pages to send */ 100 struct PageSearchStatus { 101 /* The migration channel used for a specific host page */ 102 QEMUFile *pss_channel; 103 /* Last block from where we have sent data */ 104 RAMBlock *last_sent_block; 105 /* Current block being searched */ 106 RAMBlock *block; 107 /* Current page to search from */ 108 unsigned long page; 109 /* Set once we wrap around */ 110 bool complete_round; 111 /* Whether we're sending a host page */ 112 bool host_page_sending; 113 /* The start/end of current host page. Invalid if host_page_sending==false */ 114 unsigned long host_page_start; 115 unsigned long host_page_end; 116 }; 117 typedef struct PageSearchStatus PageSearchStatus; 118 119 /* struct contains XBZRLE cache and a static page 120 used by the compression */ 121 static struct { 122 /* buffer used for XBZRLE encoding */ 123 uint8_t *encoded_buf; 124 /* buffer for storing page content */ 125 uint8_t *current_buf; 126 /* Cache for XBZRLE, Protected by lock. */ 127 PageCache *cache; 128 QemuMutex lock; 129 /* it will store a page full of zeros */ 130 uint8_t *zero_target_page; 131 /* buffer used for XBZRLE decoding */ 132 uint8_t *decoded_buf; 133 } XBZRLE; 134 135 static void XBZRLE_cache_lock(void) 136 { 137 if (migrate_xbzrle()) { 138 qemu_mutex_lock(&XBZRLE.lock); 139 } 140 } 141 142 static void XBZRLE_cache_unlock(void) 143 { 144 if (migrate_xbzrle()) { 145 qemu_mutex_unlock(&XBZRLE.lock); 146 } 147 } 148 149 /** 150 * xbzrle_cache_resize: resize the xbzrle cache 151 * 152 * This function is called from migrate_params_apply in main 153 * thread, possibly while a migration is in progress. A running 154 * migration may be using the cache and might finish during this call, 155 * hence changes to the cache are protected by XBZRLE.lock(). 156 * 157 * Returns 0 for success or -1 for error 158 * 159 * @new_size: new cache size 160 * @errp: set *errp if the check failed, with reason 161 */ 162 int xbzrle_cache_resize(uint64_t new_size, Error **errp) 163 { 164 PageCache *new_cache; 165 int64_t ret = 0; 166 167 /* Check for truncation */ 168 if (new_size != (size_t)new_size) { 169 error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cache size", 170 "exceeding address space"); 171 return -1; 172 } 173 174 if (new_size == migrate_xbzrle_cache_size()) { 175 /* nothing to do */ 176 return 0; 177 } 178 179 XBZRLE_cache_lock(); 180 181 if (XBZRLE.cache != NULL) { 182 new_cache = cache_init(new_size, TARGET_PAGE_SIZE, errp); 183 if (!new_cache) { 184 ret = -1; 185 goto out; 186 } 187 188 cache_fini(XBZRLE.cache); 189 XBZRLE.cache = new_cache; 190 } 191 out: 192 XBZRLE_cache_unlock(); 193 return ret; 194 } 195 196 static bool postcopy_preempt_active(void) 197 { 198 return migrate_postcopy_preempt() && migration_in_postcopy(); 199 } 200 201 bool migrate_ram_is_ignored(RAMBlock *block) 202 { 203 return !qemu_ram_is_migratable(block) || 204 (migrate_ignore_shared() && qemu_ram_is_shared(block) 205 && qemu_ram_is_named_file(block)); 206 } 207 208 #undef RAMBLOCK_FOREACH 209 210 int foreach_not_ignored_block(RAMBlockIterFunc func, void *opaque) 211 { 212 RAMBlock *block; 213 int ret = 0; 214 215 RCU_READ_LOCK_GUARD(); 216 217 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 218 ret = func(block, opaque); 219 if (ret) { 220 break; 221 } 222 } 223 return ret; 224 } 225 226 static void ramblock_recv_map_init(void) 227 { 228 RAMBlock *rb; 229 230 RAMBLOCK_FOREACH_NOT_IGNORED(rb) { 231 assert(!rb->receivedmap); 232 rb->receivedmap = bitmap_new(rb->max_length >> qemu_target_page_bits()); 233 } 234 } 235 236 int ramblock_recv_bitmap_test(RAMBlock *rb, void *host_addr) 237 { 238 return test_bit(ramblock_recv_bitmap_offset(host_addr, rb), 239 rb->receivedmap); 240 } 241 242 bool ramblock_recv_bitmap_test_byte_offset(RAMBlock *rb, uint64_t byte_offset) 243 { 244 return test_bit(byte_offset >> TARGET_PAGE_BITS, rb->receivedmap); 245 } 246 247 void ramblock_recv_bitmap_set(RAMBlock *rb, void *host_addr) 248 { 249 set_bit_atomic(ramblock_recv_bitmap_offset(host_addr, rb), rb->receivedmap); 250 } 251 252 void ramblock_recv_bitmap_set_range(RAMBlock *rb, void *host_addr, 253 size_t nr) 254 { 255 bitmap_set_atomic(rb->receivedmap, 256 ramblock_recv_bitmap_offset(host_addr, rb), 257 nr); 258 } 259 260 #define RAMBLOCK_RECV_BITMAP_ENDING (0x0123456789abcdefULL) 261 262 /* 263 * Format: bitmap_size (8 bytes) + whole_bitmap (N bytes). 264 * 265 * Returns >0 if success with sent bytes, or <0 if error. 266 */ 267 int64_t ramblock_recv_bitmap_send(QEMUFile *file, 268 const char *block_name) 269 { 270 RAMBlock *block = qemu_ram_block_by_name(block_name); 271 unsigned long *le_bitmap, nbits; 272 uint64_t size; 273 274 if (!block) { 275 error_report("%s: invalid block name: %s", __func__, block_name); 276 return -1; 277 } 278 279 nbits = block->postcopy_length >> TARGET_PAGE_BITS; 280 281 /* 282 * Make sure the tmp bitmap buffer is big enough, e.g., on 32bit 283 * machines we may need 4 more bytes for padding (see below 284 * comment). So extend it a bit before hand. 285 */ 286 le_bitmap = bitmap_new(nbits + BITS_PER_LONG); 287 288 /* 289 * Always use little endian when sending the bitmap. This is 290 * required that when source and destination VMs are not using the 291 * same endianness. (Note: big endian won't work.) 292 */ 293 bitmap_to_le(le_bitmap, block->receivedmap, nbits); 294 295 /* Size of the bitmap, in bytes */ 296 size = DIV_ROUND_UP(nbits, 8); 297 298 /* 299 * size is always aligned to 8 bytes for 64bit machines, but it 300 * may not be true for 32bit machines. We need this padding to 301 * make sure the migration can survive even between 32bit and 302 * 64bit machines. 303 */ 304 size = ROUND_UP(size, 8); 305 306 qemu_put_be64(file, size); 307 qemu_put_buffer(file, (const uint8_t *)le_bitmap, size); 308 /* 309 * Mark as an end, in case the middle part is screwed up due to 310 * some "mysterious" reason. 311 */ 312 qemu_put_be64(file, RAMBLOCK_RECV_BITMAP_ENDING); 313 qemu_fflush(file); 314 315 g_free(le_bitmap); 316 317 if (qemu_file_get_error(file)) { 318 return qemu_file_get_error(file); 319 } 320 321 return size + sizeof(size); 322 } 323 324 /* 325 * An outstanding page request, on the source, having been received 326 * and queued 327 */ 328 struct RAMSrcPageRequest { 329 RAMBlock *rb; 330 hwaddr offset; 331 hwaddr len; 332 333 QSIMPLEQ_ENTRY(RAMSrcPageRequest) next_req; 334 }; 335 336 /* State of RAM for migration */ 337 struct RAMState { 338 /* 339 * PageSearchStatus structures for the channels when send pages. 340 * Protected by the bitmap_mutex. 341 */ 342 PageSearchStatus pss[RAM_CHANNEL_MAX]; 343 /* UFFD file descriptor, used in 'write-tracking' migration */ 344 int uffdio_fd; 345 /* total ram size in bytes */ 346 uint64_t ram_bytes_total; 347 /* Last block that we have visited searching for dirty pages */ 348 RAMBlock *last_seen_block; 349 /* Last dirty target page we have sent */ 350 ram_addr_t last_page; 351 /* last ram version we have seen */ 352 uint32_t last_version; 353 /* How many times we have dirty too many pages */ 354 int dirty_rate_high_cnt; 355 /* these variables are used for bitmap sync */ 356 /* last time we did a full bitmap_sync */ 357 int64_t time_last_bitmap_sync; 358 /* bytes transferred at start_time */ 359 uint64_t bytes_xfer_prev; 360 /* number of dirty pages since start_time */ 361 uint64_t num_dirty_pages_period; 362 /* xbzrle misses since the beginning of the period */ 363 uint64_t xbzrle_cache_miss_prev; 364 /* Amount of xbzrle pages since the beginning of the period */ 365 uint64_t xbzrle_pages_prev; 366 /* Amount of xbzrle encoded bytes since the beginning of the period */ 367 uint64_t xbzrle_bytes_prev; 368 /* Are we really using XBZRLE (e.g., after the first round). */ 369 bool xbzrle_started; 370 /* Are we on the last stage of migration */ 371 bool last_stage; 372 /* compression statistics since the beginning of the period */ 373 /* amount of count that no free thread to compress data */ 374 uint64_t compress_thread_busy_prev; 375 /* amount bytes after compression */ 376 uint64_t compressed_size_prev; 377 /* amount of compressed pages */ 378 uint64_t compress_pages_prev; 379 380 /* total handled target pages at the beginning of period */ 381 uint64_t target_page_count_prev; 382 /* total handled target pages since start */ 383 uint64_t target_page_count; 384 /* number of dirty bits in the bitmap */ 385 uint64_t migration_dirty_pages; 386 /* 387 * Protects: 388 * - dirty/clear bitmap 389 * - migration_dirty_pages 390 * - pss structures 391 */ 392 QemuMutex bitmap_mutex; 393 /* The RAMBlock used in the last src_page_requests */ 394 RAMBlock *last_req_rb; 395 /* Queue of outstanding page requests from the destination */ 396 QemuMutex src_page_req_mutex; 397 QSIMPLEQ_HEAD(, RAMSrcPageRequest) src_page_requests; 398 399 /* 400 * This is only used when postcopy is in recovery phase, to communicate 401 * between the migration thread and the return path thread on dirty 402 * bitmap synchronizations. This field is unused in other stages of 403 * RAM migration. 404 */ 405 unsigned int postcopy_bmap_sync_requested; 406 }; 407 typedef struct RAMState RAMState; 408 409 static RAMState *ram_state; 410 411 static NotifierWithReturnList precopy_notifier_list; 412 413 /* Whether postcopy has queued requests? */ 414 static bool postcopy_has_request(RAMState *rs) 415 { 416 return !QSIMPLEQ_EMPTY_ATOMIC(&rs->src_page_requests); 417 } 418 419 void precopy_infrastructure_init(void) 420 { 421 notifier_with_return_list_init(&precopy_notifier_list); 422 } 423 424 void precopy_add_notifier(NotifierWithReturn *n) 425 { 426 notifier_with_return_list_add(&precopy_notifier_list, n); 427 } 428 429 void precopy_remove_notifier(NotifierWithReturn *n) 430 { 431 notifier_with_return_remove(n); 432 } 433 434 int precopy_notify(PrecopyNotifyReason reason, Error **errp) 435 { 436 PrecopyNotifyData pnd; 437 pnd.reason = reason; 438 pnd.errp = errp; 439 440 return notifier_with_return_list_notify(&precopy_notifier_list, &pnd); 441 } 442 443 uint64_t ram_bytes_remaining(void) 444 { 445 return ram_state ? (ram_state->migration_dirty_pages * TARGET_PAGE_SIZE) : 446 0; 447 } 448 449 void ram_transferred_add(uint64_t bytes) 450 { 451 if (runstate_is_running()) { 452 stat64_add(&mig_stats.precopy_bytes, bytes); 453 } else if (migration_in_postcopy()) { 454 stat64_add(&mig_stats.postcopy_bytes, bytes); 455 } else { 456 stat64_add(&mig_stats.downtime_bytes, bytes); 457 } 458 stat64_add(&mig_stats.transferred, bytes); 459 } 460 461 struct MigrationOps { 462 int (*ram_save_target_page)(RAMState *rs, PageSearchStatus *pss); 463 }; 464 typedef struct MigrationOps MigrationOps; 465 466 MigrationOps *migration_ops; 467 468 static int ram_save_host_page_urgent(PageSearchStatus *pss); 469 470 /* NOTE: page is the PFN not real ram_addr_t. */ 471 static void pss_init(PageSearchStatus *pss, RAMBlock *rb, ram_addr_t page) 472 { 473 pss->block = rb; 474 pss->page = page; 475 pss->complete_round = false; 476 } 477 478 /* 479 * Check whether two PSSs are actively sending the same page. Return true 480 * if it is, false otherwise. 481 */ 482 static bool pss_overlap(PageSearchStatus *pss1, PageSearchStatus *pss2) 483 { 484 return pss1->host_page_sending && pss2->host_page_sending && 485 (pss1->host_page_start == pss2->host_page_start); 486 } 487 488 /** 489 * save_page_header: write page header to wire 490 * 491 * If this is the 1st block, it also writes the block identification 492 * 493 * Returns the number of bytes written 494 * 495 * @pss: current PSS channel status 496 * @block: block that contains the page we want to send 497 * @offset: offset inside the block for the page 498 * in the lower bits, it contains flags 499 */ 500 static size_t save_page_header(PageSearchStatus *pss, QEMUFile *f, 501 RAMBlock *block, ram_addr_t offset) 502 { 503 size_t size, len; 504 bool same_block = (block == pss->last_sent_block); 505 506 if (same_block) { 507 offset |= RAM_SAVE_FLAG_CONTINUE; 508 } 509 qemu_put_be64(f, offset); 510 size = 8; 511 512 if (!same_block) { 513 len = strlen(block->idstr); 514 qemu_put_byte(f, len); 515 qemu_put_buffer(f, (uint8_t *)block->idstr, len); 516 size += 1 + len; 517 pss->last_sent_block = block; 518 } 519 return size; 520 } 521 522 /** 523 * mig_throttle_guest_down: throttle down the guest 524 * 525 * Reduce amount of guest cpu execution to hopefully slow down memory 526 * writes. If guest dirty memory rate is reduced below the rate at 527 * which we can transfer pages to the destination then we should be 528 * able to complete migration. Some workloads dirty memory way too 529 * fast and will not effectively converge, even with auto-converge. 530 */ 531 static void mig_throttle_guest_down(uint64_t bytes_dirty_period, 532 uint64_t bytes_dirty_threshold) 533 { 534 uint64_t pct_initial = migrate_cpu_throttle_initial(); 535 uint64_t pct_increment = migrate_cpu_throttle_increment(); 536 bool pct_tailslow = migrate_cpu_throttle_tailslow(); 537 int pct_max = migrate_max_cpu_throttle(); 538 539 uint64_t throttle_now = cpu_throttle_get_percentage(); 540 uint64_t cpu_now, cpu_ideal, throttle_inc; 541 542 /* We have not started throttling yet. Let's start it. */ 543 if (!cpu_throttle_active()) { 544 cpu_throttle_set(pct_initial); 545 } else { 546 /* Throttling already on, just increase the rate */ 547 if (!pct_tailslow) { 548 throttle_inc = pct_increment; 549 } else { 550 /* Compute the ideal CPU percentage used by Guest, which may 551 * make the dirty rate match the dirty rate threshold. */ 552 cpu_now = 100 - throttle_now; 553 cpu_ideal = cpu_now * (bytes_dirty_threshold * 1.0 / 554 bytes_dirty_period); 555 throttle_inc = MIN(cpu_now - cpu_ideal, pct_increment); 556 } 557 cpu_throttle_set(MIN(throttle_now + throttle_inc, pct_max)); 558 } 559 } 560 561 void mig_throttle_counter_reset(void) 562 { 563 RAMState *rs = ram_state; 564 565 rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); 566 rs->num_dirty_pages_period = 0; 567 rs->bytes_xfer_prev = stat64_get(&mig_stats.transferred); 568 } 569 570 /** 571 * xbzrle_cache_zero_page: insert a zero page in the XBZRLE cache 572 * 573 * @current_addr: address for the zero page 574 * 575 * Update the xbzrle cache to reflect a page that's been sent as all 0. 576 * The important thing is that a stale (not-yet-0'd) page be replaced 577 * by the new data. 578 * As a bonus, if the page wasn't in the cache it gets added so that 579 * when a small write is made into the 0'd page it gets XBZRLE sent. 580 */ 581 static void xbzrle_cache_zero_page(ram_addr_t current_addr) 582 { 583 /* We don't care if this fails to allocate a new cache page 584 * as long as it updated an old one */ 585 cache_insert(XBZRLE.cache, current_addr, XBZRLE.zero_target_page, 586 stat64_get(&mig_stats.dirty_sync_count)); 587 } 588 589 #define ENCODING_FLAG_XBZRLE 0x1 590 591 /** 592 * save_xbzrle_page: compress and send current page 593 * 594 * Returns: 1 means that we wrote the page 595 * 0 means that page is identical to the one already sent 596 * -1 means that xbzrle would be longer than normal 597 * 598 * @rs: current RAM state 599 * @pss: current PSS channel 600 * @current_data: pointer to the address of the page contents 601 * @current_addr: addr of the page 602 * @block: block that contains the page we want to send 603 * @offset: offset inside the block for the page 604 */ 605 static int save_xbzrle_page(RAMState *rs, PageSearchStatus *pss, 606 uint8_t **current_data, ram_addr_t current_addr, 607 RAMBlock *block, ram_addr_t offset) 608 { 609 int encoded_len = 0, bytes_xbzrle; 610 uint8_t *prev_cached_page; 611 QEMUFile *file = pss->pss_channel; 612 uint64_t generation = stat64_get(&mig_stats.dirty_sync_count); 613 614 if (!cache_is_cached(XBZRLE.cache, current_addr, generation)) { 615 xbzrle_counters.cache_miss++; 616 if (!rs->last_stage) { 617 if (cache_insert(XBZRLE.cache, current_addr, *current_data, 618 generation) == -1) { 619 return -1; 620 } else { 621 /* update *current_data when the page has been 622 inserted into cache */ 623 *current_data = get_cached_data(XBZRLE.cache, current_addr); 624 } 625 } 626 return -1; 627 } 628 629 /* 630 * Reaching here means the page has hit the xbzrle cache, no matter what 631 * encoding result it is (normal encoding, overflow or skipping the page), 632 * count the page as encoded. This is used to calculate the encoding rate. 633 * 634 * Example: 2 pages (8KB) being encoded, first page encoding generates 2KB, 635 * 2nd page turns out to be skipped (i.e. no new bytes written to the 636 * page), the overall encoding rate will be 8KB / 2KB = 4, which has the 637 * skipped page included. In this way, the encoding rate can tell if the 638 * guest page is good for xbzrle encoding. 639 */ 640 xbzrle_counters.pages++; 641 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr); 642 643 /* save current buffer into memory */ 644 memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE); 645 646 /* XBZRLE encoding (if there is no overflow) */ 647 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf, 648 TARGET_PAGE_SIZE, XBZRLE.encoded_buf, 649 TARGET_PAGE_SIZE); 650 651 /* 652 * Update the cache contents, so that it corresponds to the data 653 * sent, in all cases except where we skip the page. 654 */ 655 if (!rs->last_stage && encoded_len != 0) { 656 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE); 657 /* 658 * In the case where we couldn't compress, ensure that the caller 659 * sends the data from the cache, since the guest might have 660 * changed the RAM since we copied it. 661 */ 662 *current_data = prev_cached_page; 663 } 664 665 if (encoded_len == 0) { 666 trace_save_xbzrle_page_skipping(); 667 return 0; 668 } else if (encoded_len == -1) { 669 trace_save_xbzrle_page_overflow(); 670 xbzrle_counters.overflow++; 671 xbzrle_counters.bytes += TARGET_PAGE_SIZE; 672 return -1; 673 } 674 675 /* Send XBZRLE based compressed page */ 676 bytes_xbzrle = save_page_header(pss, pss->pss_channel, block, 677 offset | RAM_SAVE_FLAG_XBZRLE); 678 qemu_put_byte(file, ENCODING_FLAG_XBZRLE); 679 qemu_put_be16(file, encoded_len); 680 qemu_put_buffer(file, XBZRLE.encoded_buf, encoded_len); 681 bytes_xbzrle += encoded_len + 1 + 2; 682 /* 683 * Like compressed_size (please see update_compress_thread_counts), 684 * the xbzrle encoded bytes don't count the 8 byte header with 685 * RAM_SAVE_FLAG_CONTINUE. 686 */ 687 xbzrle_counters.bytes += bytes_xbzrle - 8; 688 ram_transferred_add(bytes_xbzrle); 689 690 return 1; 691 } 692 693 /** 694 * pss_find_next_dirty: find the next dirty page of current ramblock 695 * 696 * This function updates pss->page to point to the next dirty page index 697 * within the ramblock to migrate, or the end of ramblock when nothing 698 * found. Note that when pss->host_page_sending==true it means we're 699 * during sending a host page, so we won't look for dirty page that is 700 * outside the host page boundary. 701 * 702 * @pss: the current page search status 703 */ 704 static void pss_find_next_dirty(PageSearchStatus *pss) 705 { 706 RAMBlock *rb = pss->block; 707 unsigned long size = rb->used_length >> TARGET_PAGE_BITS; 708 unsigned long *bitmap = rb->bmap; 709 710 if (migrate_ram_is_ignored(rb)) { 711 /* Points directly to the end, so we know no dirty page */ 712 pss->page = size; 713 return; 714 } 715 716 /* 717 * If during sending a host page, only look for dirty pages within the 718 * current host page being send. 719 */ 720 if (pss->host_page_sending) { 721 assert(pss->host_page_end); 722 size = MIN(size, pss->host_page_end); 723 } 724 725 pss->page = find_next_bit(bitmap, size, pss->page); 726 } 727 728 static void migration_clear_memory_region_dirty_bitmap(RAMBlock *rb, 729 unsigned long page) 730 { 731 uint8_t shift; 732 hwaddr size, start; 733 734 if (!rb->clear_bmap || !clear_bmap_test_and_clear(rb, page)) { 735 return; 736 } 737 738 shift = rb->clear_bmap_shift; 739 /* 740 * CLEAR_BITMAP_SHIFT_MIN should always guarantee this... this 741 * can make things easier sometimes since then start address 742 * of the small chunk will always be 64 pages aligned so the 743 * bitmap will always be aligned to unsigned long. We should 744 * even be able to remove this restriction but I'm simply 745 * keeping it. 746 */ 747 assert(shift >= 6); 748 749 size = 1ULL << (TARGET_PAGE_BITS + shift); 750 start = QEMU_ALIGN_DOWN((ram_addr_t)page << TARGET_PAGE_BITS, size); 751 trace_migration_bitmap_clear_dirty(rb->idstr, start, size, page); 752 memory_region_clear_dirty_bitmap(rb->mr, start, size); 753 } 754 755 static void 756 migration_clear_memory_region_dirty_bitmap_range(RAMBlock *rb, 757 unsigned long start, 758 unsigned long npages) 759 { 760 unsigned long i, chunk_pages = 1UL << rb->clear_bmap_shift; 761 unsigned long chunk_start = QEMU_ALIGN_DOWN(start, chunk_pages); 762 unsigned long chunk_end = QEMU_ALIGN_UP(start + npages, chunk_pages); 763 764 /* 765 * Clear pages from start to start + npages - 1, so the end boundary is 766 * exclusive. 767 */ 768 for (i = chunk_start; i < chunk_end; i += chunk_pages) { 769 migration_clear_memory_region_dirty_bitmap(rb, i); 770 } 771 } 772 773 /* 774 * colo_bitmap_find_diry:find contiguous dirty pages from start 775 * 776 * Returns the page offset within memory region of the start of the contiguout 777 * dirty page 778 * 779 * @rs: current RAM state 780 * @rb: RAMBlock where to search for dirty pages 781 * @start: page where we start the search 782 * @num: the number of contiguous dirty pages 783 */ 784 static inline 785 unsigned long colo_bitmap_find_dirty(RAMState *rs, RAMBlock *rb, 786 unsigned long start, unsigned long *num) 787 { 788 unsigned long size = rb->used_length >> TARGET_PAGE_BITS; 789 unsigned long *bitmap = rb->bmap; 790 unsigned long first, next; 791 792 *num = 0; 793 794 if (migrate_ram_is_ignored(rb)) { 795 return size; 796 } 797 798 first = find_next_bit(bitmap, size, start); 799 if (first >= size) { 800 return first; 801 } 802 next = find_next_zero_bit(bitmap, size, first + 1); 803 assert(next >= first); 804 *num = next - first; 805 return first; 806 } 807 808 static inline bool migration_bitmap_clear_dirty(RAMState *rs, 809 RAMBlock *rb, 810 unsigned long page) 811 { 812 bool ret; 813 814 /* 815 * Clear dirty bitmap if needed. This _must_ be called before we 816 * send any of the page in the chunk because we need to make sure 817 * we can capture further page content changes when we sync dirty 818 * log the next time. So as long as we are going to send any of 819 * the page in the chunk we clear the remote dirty bitmap for all. 820 * Clearing it earlier won't be a problem, but too late will. 821 */ 822 migration_clear_memory_region_dirty_bitmap(rb, page); 823 824 ret = test_and_clear_bit(page, rb->bmap); 825 if (ret) { 826 rs->migration_dirty_pages--; 827 } 828 829 return ret; 830 } 831 832 static void dirty_bitmap_clear_section(MemoryRegionSection *section, 833 void *opaque) 834 { 835 const hwaddr offset = section->offset_within_region; 836 const hwaddr size = int128_get64(section->size); 837 const unsigned long start = offset >> TARGET_PAGE_BITS; 838 const unsigned long npages = size >> TARGET_PAGE_BITS; 839 RAMBlock *rb = section->mr->ram_block; 840 uint64_t *cleared_bits = opaque; 841 842 /* 843 * We don't grab ram_state->bitmap_mutex because we expect to run 844 * only when starting migration or during postcopy recovery where 845 * we don't have concurrent access. 846 */ 847 if (!migration_in_postcopy() && !migrate_background_snapshot()) { 848 migration_clear_memory_region_dirty_bitmap_range(rb, start, npages); 849 } 850 *cleared_bits += bitmap_count_one_with_offset(rb->bmap, start, npages); 851 bitmap_clear(rb->bmap, start, npages); 852 } 853 854 /* 855 * Exclude all dirty pages from migration that fall into a discarded range as 856 * managed by a RamDiscardManager responsible for the mapped memory region of 857 * the RAMBlock. Clear the corresponding bits in the dirty bitmaps. 858 * 859 * Discarded pages ("logically unplugged") have undefined content and must 860 * not get migrated, because even reading these pages for migration might 861 * result in undesired behavior. 862 * 863 * Returns the number of cleared bits in the RAMBlock dirty bitmap. 864 * 865 * Note: The result is only stable while migrating (precopy/postcopy). 866 */ 867 static uint64_t ramblock_dirty_bitmap_clear_discarded_pages(RAMBlock *rb) 868 { 869 uint64_t cleared_bits = 0; 870 871 if (rb->mr && rb->bmap && memory_region_has_ram_discard_manager(rb->mr)) { 872 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr); 873 MemoryRegionSection section = { 874 .mr = rb->mr, 875 .offset_within_region = 0, 876 .size = int128_make64(qemu_ram_get_used_length(rb)), 877 }; 878 879 ram_discard_manager_replay_discarded(rdm, §ion, 880 dirty_bitmap_clear_section, 881 &cleared_bits); 882 } 883 return cleared_bits; 884 } 885 886 /* 887 * Check if a host-page aligned page falls into a discarded range as managed by 888 * a RamDiscardManager responsible for the mapped memory region of the RAMBlock. 889 * 890 * Note: The result is only stable while migrating (precopy/postcopy). 891 */ 892 bool ramblock_page_is_discarded(RAMBlock *rb, ram_addr_t start) 893 { 894 if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) { 895 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr); 896 MemoryRegionSection section = { 897 .mr = rb->mr, 898 .offset_within_region = start, 899 .size = int128_make64(qemu_ram_pagesize(rb)), 900 }; 901 902 return !ram_discard_manager_is_populated(rdm, §ion); 903 } 904 return false; 905 } 906 907 /* Called with RCU critical section */ 908 static void ramblock_sync_dirty_bitmap(RAMState *rs, RAMBlock *rb) 909 { 910 uint64_t new_dirty_pages = 911 cpu_physical_memory_sync_dirty_bitmap(rb, 0, rb->used_length); 912 913 rs->migration_dirty_pages += new_dirty_pages; 914 rs->num_dirty_pages_period += new_dirty_pages; 915 } 916 917 /** 918 * ram_pagesize_summary: calculate all the pagesizes of a VM 919 * 920 * Returns a summary bitmap of the page sizes of all RAMBlocks 921 * 922 * For VMs with just normal pages this is equivalent to the host page 923 * size. If it's got some huge pages then it's the OR of all the 924 * different page sizes. 925 */ 926 uint64_t ram_pagesize_summary(void) 927 { 928 RAMBlock *block; 929 uint64_t summary = 0; 930 931 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 932 summary |= block->page_size; 933 } 934 935 return summary; 936 } 937 938 uint64_t ram_get_total_transferred_pages(void) 939 { 940 return stat64_get(&mig_stats.normal_pages) + 941 stat64_get(&mig_stats.zero_pages) + 942 ram_compressed_pages() + xbzrle_counters.pages; 943 } 944 945 static void migration_update_rates(RAMState *rs, int64_t end_time) 946 { 947 uint64_t page_count = rs->target_page_count - rs->target_page_count_prev; 948 double compressed_size; 949 950 /* calculate period counters */ 951 stat64_set(&mig_stats.dirty_pages_rate, 952 rs->num_dirty_pages_period * 1000 / 953 (end_time - rs->time_last_bitmap_sync)); 954 955 if (!page_count) { 956 return; 957 } 958 959 if (migrate_xbzrle()) { 960 double encoded_size, unencoded_size; 961 962 xbzrle_counters.cache_miss_rate = (double)(xbzrle_counters.cache_miss - 963 rs->xbzrle_cache_miss_prev) / page_count; 964 rs->xbzrle_cache_miss_prev = xbzrle_counters.cache_miss; 965 unencoded_size = (xbzrle_counters.pages - rs->xbzrle_pages_prev) * 966 TARGET_PAGE_SIZE; 967 encoded_size = xbzrle_counters.bytes - rs->xbzrle_bytes_prev; 968 if (xbzrle_counters.pages == rs->xbzrle_pages_prev || !encoded_size) { 969 xbzrle_counters.encoding_rate = 0; 970 } else { 971 xbzrle_counters.encoding_rate = unencoded_size / encoded_size; 972 } 973 rs->xbzrle_pages_prev = xbzrle_counters.pages; 974 rs->xbzrle_bytes_prev = xbzrle_counters.bytes; 975 } 976 977 if (migrate_compress()) { 978 compression_counters.busy_rate = (double)(compression_counters.busy - 979 rs->compress_thread_busy_prev) / page_count; 980 rs->compress_thread_busy_prev = compression_counters.busy; 981 982 compressed_size = compression_counters.compressed_size - 983 rs->compressed_size_prev; 984 if (compressed_size) { 985 double uncompressed_size = (compression_counters.pages - 986 rs->compress_pages_prev) * TARGET_PAGE_SIZE; 987 988 /* Compression-Ratio = Uncompressed-size / Compressed-size */ 989 compression_counters.compression_rate = 990 uncompressed_size / compressed_size; 991 992 rs->compress_pages_prev = compression_counters.pages; 993 rs->compressed_size_prev = compression_counters.compressed_size; 994 } 995 } 996 } 997 998 /* 999 * Enable dirty-limit to throttle down the guest 1000 */ 1001 static void migration_dirty_limit_guest(void) 1002 { 1003 /* 1004 * dirty page rate quota for all vCPUs fetched from 1005 * migration parameter 'vcpu_dirty_limit' 1006 */ 1007 static int64_t quota_dirtyrate; 1008 MigrationState *s = migrate_get_current(); 1009 1010 /* 1011 * If dirty limit already enabled and migration parameter 1012 * vcpu-dirty-limit untouched. 1013 */ 1014 if (dirtylimit_in_service() && 1015 quota_dirtyrate == s->parameters.vcpu_dirty_limit) { 1016 return; 1017 } 1018 1019 quota_dirtyrate = s->parameters.vcpu_dirty_limit; 1020 1021 /* 1022 * Set all vCPU a quota dirtyrate, note that the second 1023 * parameter will be ignored if setting all vCPU for the vm 1024 */ 1025 qmp_set_vcpu_dirty_limit(false, -1, quota_dirtyrate, NULL); 1026 trace_migration_dirty_limit_guest(quota_dirtyrate); 1027 } 1028 1029 static void migration_trigger_throttle(RAMState *rs) 1030 { 1031 uint64_t threshold = migrate_throttle_trigger_threshold(); 1032 uint64_t bytes_xfer_period = 1033 stat64_get(&mig_stats.transferred) - rs->bytes_xfer_prev; 1034 uint64_t bytes_dirty_period = rs->num_dirty_pages_period * TARGET_PAGE_SIZE; 1035 uint64_t bytes_dirty_threshold = bytes_xfer_period * threshold / 100; 1036 1037 /* During block migration the auto-converge logic incorrectly detects 1038 * that ram migration makes no progress. Avoid this by disabling the 1039 * throttling logic during the bulk phase of block migration. */ 1040 if (blk_mig_bulk_active()) { 1041 return; 1042 } 1043 1044 /* 1045 * The following detection logic can be refined later. For now: 1046 * Check to see if the ratio between dirtied bytes and the approx. 1047 * amount of bytes that just got transferred since the last time 1048 * we were in this routine reaches the threshold. If that happens 1049 * twice, start or increase throttling. 1050 */ 1051 if ((bytes_dirty_period > bytes_dirty_threshold) && 1052 (++rs->dirty_rate_high_cnt >= 2)) { 1053 rs->dirty_rate_high_cnt = 0; 1054 if (migrate_auto_converge()) { 1055 trace_migration_throttle(); 1056 mig_throttle_guest_down(bytes_dirty_period, 1057 bytes_dirty_threshold); 1058 } else if (migrate_dirty_limit()) { 1059 migration_dirty_limit_guest(); 1060 } 1061 } 1062 } 1063 1064 static void migration_bitmap_sync(RAMState *rs, bool last_stage) 1065 { 1066 RAMBlock *block; 1067 int64_t end_time; 1068 1069 stat64_add(&mig_stats.dirty_sync_count, 1); 1070 1071 if (!rs->time_last_bitmap_sync) { 1072 rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); 1073 } 1074 1075 trace_migration_bitmap_sync_start(); 1076 memory_global_dirty_log_sync(last_stage); 1077 1078 qemu_mutex_lock(&rs->bitmap_mutex); 1079 WITH_RCU_READ_LOCK_GUARD() { 1080 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 1081 ramblock_sync_dirty_bitmap(rs, block); 1082 } 1083 stat64_set(&mig_stats.dirty_bytes_last_sync, ram_bytes_remaining()); 1084 } 1085 qemu_mutex_unlock(&rs->bitmap_mutex); 1086 1087 memory_global_after_dirty_log_sync(); 1088 trace_migration_bitmap_sync_end(rs->num_dirty_pages_period); 1089 1090 end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); 1091 1092 /* more than 1 second = 1000 millisecons */ 1093 if (end_time > rs->time_last_bitmap_sync + 1000) { 1094 migration_trigger_throttle(rs); 1095 1096 migration_update_rates(rs, end_time); 1097 1098 rs->target_page_count_prev = rs->target_page_count; 1099 1100 /* reset period counters */ 1101 rs->time_last_bitmap_sync = end_time; 1102 rs->num_dirty_pages_period = 0; 1103 rs->bytes_xfer_prev = stat64_get(&mig_stats.transferred); 1104 } 1105 if (migrate_events()) { 1106 uint64_t generation = stat64_get(&mig_stats.dirty_sync_count); 1107 qapi_event_send_migration_pass(generation); 1108 } 1109 } 1110 1111 static void migration_bitmap_sync_precopy(RAMState *rs, bool last_stage) 1112 { 1113 Error *local_err = NULL; 1114 1115 /* 1116 * The current notifier usage is just an optimization to migration, so we 1117 * don't stop the normal migration process in the error case. 1118 */ 1119 if (precopy_notify(PRECOPY_NOTIFY_BEFORE_BITMAP_SYNC, &local_err)) { 1120 error_report_err(local_err); 1121 local_err = NULL; 1122 } 1123 1124 migration_bitmap_sync(rs, last_stage); 1125 1126 if (precopy_notify(PRECOPY_NOTIFY_AFTER_BITMAP_SYNC, &local_err)) { 1127 error_report_err(local_err); 1128 } 1129 } 1130 1131 void ram_release_page(const char *rbname, uint64_t offset) 1132 { 1133 if (!migrate_release_ram() || !migration_in_postcopy()) { 1134 return; 1135 } 1136 1137 ram_discard_range(rbname, offset, TARGET_PAGE_SIZE); 1138 } 1139 1140 /** 1141 * save_zero_page: send the zero page to the stream 1142 * 1143 * Returns the number of pages written. 1144 * 1145 * @rs: current RAM state 1146 * @pss: current PSS channel 1147 * @offset: offset inside the block for the page 1148 */ 1149 static int save_zero_page(RAMState *rs, PageSearchStatus *pss, 1150 ram_addr_t offset) 1151 { 1152 uint8_t *p = pss->block->host + offset; 1153 QEMUFile *file = pss->pss_channel; 1154 int len = 0; 1155 1156 if (!buffer_is_zero(p, TARGET_PAGE_SIZE)) { 1157 return 0; 1158 } 1159 1160 len += save_page_header(pss, file, pss->block, offset | RAM_SAVE_FLAG_ZERO); 1161 qemu_put_byte(file, 0); 1162 len += 1; 1163 ram_release_page(pss->block->idstr, offset); 1164 1165 stat64_add(&mig_stats.zero_pages, 1); 1166 ram_transferred_add(len); 1167 1168 /* 1169 * Must let xbzrle know, otherwise a previous (now 0'd) cached 1170 * page would be stale. 1171 */ 1172 if (rs->xbzrle_started) { 1173 XBZRLE_cache_lock(); 1174 xbzrle_cache_zero_page(pss->block->offset + offset); 1175 XBZRLE_cache_unlock(); 1176 } 1177 1178 return len; 1179 } 1180 1181 /* 1182 * @pages: the number of pages written by the control path, 1183 * < 0 - error 1184 * > 0 - number of pages written 1185 * 1186 * Return true if the pages has been saved, otherwise false is returned. 1187 */ 1188 static bool control_save_page(PageSearchStatus *pss, 1189 ram_addr_t offset, int *pages) 1190 { 1191 int ret; 1192 1193 ret = rdma_control_save_page(pss->pss_channel, pss->block->offset, offset, 1194 TARGET_PAGE_SIZE); 1195 if (ret == RAM_SAVE_CONTROL_NOT_SUPP) { 1196 return false; 1197 } 1198 1199 if (ret == RAM_SAVE_CONTROL_DELAYED) { 1200 *pages = 1; 1201 return true; 1202 } 1203 *pages = ret; 1204 return true; 1205 } 1206 1207 /* 1208 * directly send the page to the stream 1209 * 1210 * Returns the number of pages written. 1211 * 1212 * @pss: current PSS channel 1213 * @block: block that contains the page we want to send 1214 * @offset: offset inside the block for the page 1215 * @buf: the page to be sent 1216 * @async: send to page asyncly 1217 */ 1218 static int save_normal_page(PageSearchStatus *pss, RAMBlock *block, 1219 ram_addr_t offset, uint8_t *buf, bool async) 1220 { 1221 QEMUFile *file = pss->pss_channel; 1222 1223 ram_transferred_add(save_page_header(pss, pss->pss_channel, block, 1224 offset | RAM_SAVE_FLAG_PAGE)); 1225 if (async) { 1226 qemu_put_buffer_async(file, buf, TARGET_PAGE_SIZE, 1227 migrate_release_ram() && 1228 migration_in_postcopy()); 1229 } else { 1230 qemu_put_buffer(file, buf, TARGET_PAGE_SIZE); 1231 } 1232 ram_transferred_add(TARGET_PAGE_SIZE); 1233 stat64_add(&mig_stats.normal_pages, 1); 1234 return 1; 1235 } 1236 1237 /** 1238 * ram_save_page: send the given page to the stream 1239 * 1240 * Returns the number of pages written. 1241 * < 0 - error 1242 * >=0 - Number of pages written - this might legally be 0 1243 * if xbzrle noticed the page was the same. 1244 * 1245 * @rs: current RAM state 1246 * @block: block that contains the page we want to send 1247 * @offset: offset inside the block for the page 1248 */ 1249 static int ram_save_page(RAMState *rs, PageSearchStatus *pss) 1250 { 1251 int pages = -1; 1252 uint8_t *p; 1253 bool send_async = true; 1254 RAMBlock *block = pss->block; 1255 ram_addr_t offset = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS; 1256 ram_addr_t current_addr = block->offset + offset; 1257 1258 p = block->host + offset; 1259 trace_ram_save_page(block->idstr, (uint64_t)offset, p); 1260 1261 XBZRLE_cache_lock(); 1262 if (rs->xbzrle_started && !migration_in_postcopy()) { 1263 pages = save_xbzrle_page(rs, pss, &p, current_addr, 1264 block, offset); 1265 if (!rs->last_stage) { 1266 /* Can't send this cached data async, since the cache page 1267 * might get updated before it gets to the wire 1268 */ 1269 send_async = false; 1270 } 1271 } 1272 1273 /* XBZRLE overflow or normal page */ 1274 if (pages == -1) { 1275 pages = save_normal_page(pss, block, offset, p, send_async); 1276 } 1277 1278 XBZRLE_cache_unlock(); 1279 1280 return pages; 1281 } 1282 1283 static int ram_save_multifd_page(QEMUFile *file, RAMBlock *block, 1284 ram_addr_t offset) 1285 { 1286 if (multifd_queue_page(file, block, offset) < 0) { 1287 return -1; 1288 } 1289 stat64_add(&mig_stats.normal_pages, 1); 1290 1291 return 1; 1292 } 1293 1294 static bool save_page_use_compression(RAMState *rs); 1295 1296 static int send_queued_data(CompressParam *param) 1297 { 1298 PageSearchStatus *pss = &ram_state->pss[RAM_CHANNEL_PRECOPY]; 1299 MigrationState *ms = migrate_get_current(); 1300 QEMUFile *file = ms->to_dst_file; 1301 int len = 0; 1302 1303 RAMBlock *block = param->block; 1304 ram_addr_t offset = param->offset; 1305 1306 if (param->result == RES_NONE) { 1307 return 0; 1308 } 1309 1310 assert(block == pss->last_sent_block); 1311 1312 if (param->result == RES_ZEROPAGE) { 1313 assert(qemu_file_buffer_empty(param->file)); 1314 len += save_page_header(pss, file, block, offset | RAM_SAVE_FLAG_ZERO); 1315 qemu_put_byte(file, 0); 1316 len += 1; 1317 ram_release_page(block->idstr, offset); 1318 } else if (param->result == RES_COMPRESS) { 1319 assert(!qemu_file_buffer_empty(param->file)); 1320 len += save_page_header(pss, file, block, 1321 offset | RAM_SAVE_FLAG_COMPRESS_PAGE); 1322 len += qemu_put_qemu_file(file, param->file); 1323 } else { 1324 abort(); 1325 } 1326 1327 update_compress_thread_counts(param, len); 1328 1329 return len; 1330 } 1331 1332 static void ram_flush_compressed_data(RAMState *rs) 1333 { 1334 if (!save_page_use_compression(rs)) { 1335 return; 1336 } 1337 1338 flush_compressed_data(send_queued_data); 1339 } 1340 1341 #define PAGE_ALL_CLEAN 0 1342 #define PAGE_TRY_AGAIN 1 1343 #define PAGE_DIRTY_FOUND 2 1344 /** 1345 * find_dirty_block: find the next dirty page and update any state 1346 * associated with the search process. 1347 * 1348 * Returns: 1349 * <0: An error happened 1350 * PAGE_ALL_CLEAN: no dirty page found, give up 1351 * PAGE_TRY_AGAIN: no dirty page found, retry for next block 1352 * PAGE_DIRTY_FOUND: dirty page found 1353 * 1354 * @rs: current RAM state 1355 * @pss: data about the state of the current dirty page scan 1356 * @again: set to false if the search has scanned the whole of RAM 1357 */ 1358 static int find_dirty_block(RAMState *rs, PageSearchStatus *pss) 1359 { 1360 /* Update pss->page for the next dirty bit in ramblock */ 1361 pss_find_next_dirty(pss); 1362 1363 if (pss->complete_round && pss->block == rs->last_seen_block && 1364 pss->page >= rs->last_page) { 1365 /* 1366 * We've been once around the RAM and haven't found anything. 1367 * Give up. 1368 */ 1369 return PAGE_ALL_CLEAN; 1370 } 1371 if (!offset_in_ramblock(pss->block, 1372 ((ram_addr_t)pss->page) << TARGET_PAGE_BITS)) { 1373 /* Didn't find anything in this RAM Block */ 1374 pss->page = 0; 1375 pss->block = QLIST_NEXT_RCU(pss->block, next); 1376 if (!pss->block) { 1377 if (migrate_multifd() && 1378 !migrate_multifd_flush_after_each_section()) { 1379 QEMUFile *f = rs->pss[RAM_CHANNEL_PRECOPY].pss_channel; 1380 int ret = multifd_send_sync_main(f); 1381 if (ret < 0) { 1382 return ret; 1383 } 1384 qemu_put_be64(f, RAM_SAVE_FLAG_MULTIFD_FLUSH); 1385 qemu_fflush(f); 1386 } 1387 /* 1388 * If memory migration starts over, we will meet a dirtied page 1389 * which may still exists in compression threads's ring, so we 1390 * should flush the compressed data to make sure the new page 1391 * is not overwritten by the old one in the destination. 1392 * 1393 * Also If xbzrle is on, stop using the data compression at this 1394 * point. In theory, xbzrle can do better than compression. 1395 */ 1396 ram_flush_compressed_data(rs); 1397 1398 /* Hit the end of the list */ 1399 pss->block = QLIST_FIRST_RCU(&ram_list.blocks); 1400 /* Flag that we've looped */ 1401 pss->complete_round = true; 1402 /* After the first round, enable XBZRLE. */ 1403 if (migrate_xbzrle()) { 1404 rs->xbzrle_started = true; 1405 } 1406 } 1407 /* Didn't find anything this time, but try again on the new block */ 1408 return PAGE_TRY_AGAIN; 1409 } else { 1410 /* We've found something */ 1411 return PAGE_DIRTY_FOUND; 1412 } 1413 } 1414 1415 /** 1416 * unqueue_page: gets a page of the queue 1417 * 1418 * Helper for 'get_queued_page' - gets a page off the queue 1419 * 1420 * Returns the block of the page (or NULL if none available) 1421 * 1422 * @rs: current RAM state 1423 * @offset: used to return the offset within the RAMBlock 1424 */ 1425 static RAMBlock *unqueue_page(RAMState *rs, ram_addr_t *offset) 1426 { 1427 struct RAMSrcPageRequest *entry; 1428 RAMBlock *block = NULL; 1429 1430 if (!postcopy_has_request(rs)) { 1431 return NULL; 1432 } 1433 1434 QEMU_LOCK_GUARD(&rs->src_page_req_mutex); 1435 1436 /* 1437 * This should _never_ change even after we take the lock, because no one 1438 * should be taking anything off the request list other than us. 1439 */ 1440 assert(postcopy_has_request(rs)); 1441 1442 entry = QSIMPLEQ_FIRST(&rs->src_page_requests); 1443 block = entry->rb; 1444 *offset = entry->offset; 1445 1446 if (entry->len > TARGET_PAGE_SIZE) { 1447 entry->len -= TARGET_PAGE_SIZE; 1448 entry->offset += TARGET_PAGE_SIZE; 1449 } else { 1450 memory_region_unref(block->mr); 1451 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req); 1452 g_free(entry); 1453 migration_consume_urgent_request(); 1454 } 1455 1456 return block; 1457 } 1458 1459 #if defined(__linux__) 1460 /** 1461 * poll_fault_page: try to get next UFFD write fault page and, if pending fault 1462 * is found, return RAM block pointer and page offset 1463 * 1464 * Returns pointer to the RAMBlock containing faulting page, 1465 * NULL if no write faults are pending 1466 * 1467 * @rs: current RAM state 1468 * @offset: page offset from the beginning of the block 1469 */ 1470 static RAMBlock *poll_fault_page(RAMState *rs, ram_addr_t *offset) 1471 { 1472 struct uffd_msg uffd_msg; 1473 void *page_address; 1474 RAMBlock *block; 1475 int res; 1476 1477 if (!migrate_background_snapshot()) { 1478 return NULL; 1479 } 1480 1481 res = uffd_read_events(rs->uffdio_fd, &uffd_msg, 1); 1482 if (res <= 0) { 1483 return NULL; 1484 } 1485 1486 page_address = (void *)(uintptr_t) uffd_msg.arg.pagefault.address; 1487 block = qemu_ram_block_from_host(page_address, false, offset); 1488 assert(block && (block->flags & RAM_UF_WRITEPROTECT) != 0); 1489 return block; 1490 } 1491 1492 /** 1493 * ram_save_release_protection: release UFFD write protection after 1494 * a range of pages has been saved 1495 * 1496 * @rs: current RAM state 1497 * @pss: page-search-status structure 1498 * @start_page: index of the first page in the range relative to pss->block 1499 * 1500 * Returns 0 on success, negative value in case of an error 1501 */ 1502 static int ram_save_release_protection(RAMState *rs, PageSearchStatus *pss, 1503 unsigned long start_page) 1504 { 1505 int res = 0; 1506 1507 /* Check if page is from UFFD-managed region. */ 1508 if (pss->block->flags & RAM_UF_WRITEPROTECT) { 1509 void *page_address = pss->block->host + (start_page << TARGET_PAGE_BITS); 1510 uint64_t run_length = (pss->page - start_page) << TARGET_PAGE_BITS; 1511 1512 /* Flush async buffers before un-protect. */ 1513 qemu_fflush(pss->pss_channel); 1514 /* Un-protect memory range. */ 1515 res = uffd_change_protection(rs->uffdio_fd, page_address, run_length, 1516 false, false); 1517 } 1518 1519 return res; 1520 } 1521 1522 /* ram_write_tracking_available: check if kernel supports required UFFD features 1523 * 1524 * Returns true if supports, false otherwise 1525 */ 1526 bool ram_write_tracking_available(void) 1527 { 1528 uint64_t uffd_features; 1529 int res; 1530 1531 res = uffd_query_features(&uffd_features); 1532 return (res == 0 && 1533 (uffd_features & UFFD_FEATURE_PAGEFAULT_FLAG_WP) != 0); 1534 } 1535 1536 /* ram_write_tracking_compatible: check if guest configuration is 1537 * compatible with 'write-tracking' 1538 * 1539 * Returns true if compatible, false otherwise 1540 */ 1541 bool ram_write_tracking_compatible(void) 1542 { 1543 const uint64_t uffd_ioctls_mask = BIT(_UFFDIO_WRITEPROTECT); 1544 int uffd_fd; 1545 RAMBlock *block; 1546 bool ret = false; 1547 1548 /* Open UFFD file descriptor */ 1549 uffd_fd = uffd_create_fd(UFFD_FEATURE_PAGEFAULT_FLAG_WP, false); 1550 if (uffd_fd < 0) { 1551 return false; 1552 } 1553 1554 RCU_READ_LOCK_GUARD(); 1555 1556 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 1557 uint64_t uffd_ioctls; 1558 1559 /* Nothing to do with read-only and MMIO-writable regions */ 1560 if (block->mr->readonly || block->mr->rom_device) { 1561 continue; 1562 } 1563 /* Try to register block memory via UFFD-IO to track writes */ 1564 if (uffd_register_memory(uffd_fd, block->host, block->max_length, 1565 UFFDIO_REGISTER_MODE_WP, &uffd_ioctls)) { 1566 goto out; 1567 } 1568 if ((uffd_ioctls & uffd_ioctls_mask) != uffd_ioctls_mask) { 1569 goto out; 1570 } 1571 } 1572 ret = true; 1573 1574 out: 1575 uffd_close_fd(uffd_fd); 1576 return ret; 1577 } 1578 1579 static inline void populate_read_range(RAMBlock *block, ram_addr_t offset, 1580 ram_addr_t size) 1581 { 1582 const ram_addr_t end = offset + size; 1583 1584 /* 1585 * We read one byte of each page; this will preallocate page tables if 1586 * required and populate the shared zeropage on MAP_PRIVATE anonymous memory 1587 * where no page was populated yet. This might require adaption when 1588 * supporting other mappings, like shmem. 1589 */ 1590 for (; offset < end; offset += block->page_size) { 1591 char tmp = *((char *)block->host + offset); 1592 1593 /* Don't optimize the read out */ 1594 asm volatile("" : "+r" (tmp)); 1595 } 1596 } 1597 1598 static inline int populate_read_section(MemoryRegionSection *section, 1599 void *opaque) 1600 { 1601 const hwaddr size = int128_get64(section->size); 1602 hwaddr offset = section->offset_within_region; 1603 RAMBlock *block = section->mr->ram_block; 1604 1605 populate_read_range(block, offset, size); 1606 return 0; 1607 } 1608 1609 /* 1610 * ram_block_populate_read: preallocate page tables and populate pages in the 1611 * RAM block by reading a byte of each page. 1612 * 1613 * Since it's solely used for userfault_fd WP feature, here we just 1614 * hardcode page size to qemu_real_host_page_size. 1615 * 1616 * @block: RAM block to populate 1617 */ 1618 static void ram_block_populate_read(RAMBlock *rb) 1619 { 1620 /* 1621 * Skip populating all pages that fall into a discarded range as managed by 1622 * a RamDiscardManager responsible for the mapped memory region of the 1623 * RAMBlock. Such discarded ("logically unplugged") parts of a RAMBlock 1624 * must not get populated automatically. We don't have to track 1625 * modifications via userfaultfd WP reliably, because these pages will 1626 * not be part of the migration stream either way -- see 1627 * ramblock_dirty_bitmap_exclude_discarded_pages(). 1628 * 1629 * Note: The result is only stable while migrating (precopy/postcopy). 1630 */ 1631 if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) { 1632 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr); 1633 MemoryRegionSection section = { 1634 .mr = rb->mr, 1635 .offset_within_region = 0, 1636 .size = rb->mr->size, 1637 }; 1638 1639 ram_discard_manager_replay_populated(rdm, §ion, 1640 populate_read_section, NULL); 1641 } else { 1642 populate_read_range(rb, 0, rb->used_length); 1643 } 1644 } 1645 1646 /* 1647 * ram_write_tracking_prepare: prepare for UFFD-WP memory tracking 1648 */ 1649 void ram_write_tracking_prepare(void) 1650 { 1651 RAMBlock *block; 1652 1653 RCU_READ_LOCK_GUARD(); 1654 1655 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 1656 /* Nothing to do with read-only and MMIO-writable regions */ 1657 if (block->mr->readonly || block->mr->rom_device) { 1658 continue; 1659 } 1660 1661 /* 1662 * Populate pages of the RAM block before enabling userfault_fd 1663 * write protection. 1664 * 1665 * This stage is required since ioctl(UFFDIO_WRITEPROTECT) with 1666 * UFFDIO_WRITEPROTECT_MODE_WP mode setting would silently skip 1667 * pages with pte_none() entries in page table. 1668 */ 1669 ram_block_populate_read(block); 1670 } 1671 } 1672 1673 static inline int uffd_protect_section(MemoryRegionSection *section, 1674 void *opaque) 1675 { 1676 const hwaddr size = int128_get64(section->size); 1677 const hwaddr offset = section->offset_within_region; 1678 RAMBlock *rb = section->mr->ram_block; 1679 int uffd_fd = (uintptr_t)opaque; 1680 1681 return uffd_change_protection(uffd_fd, rb->host + offset, size, true, 1682 false); 1683 } 1684 1685 static int ram_block_uffd_protect(RAMBlock *rb, int uffd_fd) 1686 { 1687 assert(rb->flags & RAM_UF_WRITEPROTECT); 1688 1689 /* See ram_block_populate_read() */ 1690 if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) { 1691 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr); 1692 MemoryRegionSection section = { 1693 .mr = rb->mr, 1694 .offset_within_region = 0, 1695 .size = rb->mr->size, 1696 }; 1697 1698 return ram_discard_manager_replay_populated(rdm, §ion, 1699 uffd_protect_section, 1700 (void *)(uintptr_t)uffd_fd); 1701 } 1702 return uffd_change_protection(uffd_fd, rb->host, 1703 rb->used_length, true, false); 1704 } 1705 1706 /* 1707 * ram_write_tracking_start: start UFFD-WP memory tracking 1708 * 1709 * Returns 0 for success or negative value in case of error 1710 */ 1711 int ram_write_tracking_start(void) 1712 { 1713 int uffd_fd; 1714 RAMState *rs = ram_state; 1715 RAMBlock *block; 1716 1717 /* Open UFFD file descriptor */ 1718 uffd_fd = uffd_create_fd(UFFD_FEATURE_PAGEFAULT_FLAG_WP, true); 1719 if (uffd_fd < 0) { 1720 return uffd_fd; 1721 } 1722 rs->uffdio_fd = uffd_fd; 1723 1724 RCU_READ_LOCK_GUARD(); 1725 1726 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 1727 /* Nothing to do with read-only and MMIO-writable regions */ 1728 if (block->mr->readonly || block->mr->rom_device) { 1729 continue; 1730 } 1731 1732 /* Register block memory with UFFD to track writes */ 1733 if (uffd_register_memory(rs->uffdio_fd, block->host, 1734 block->max_length, UFFDIO_REGISTER_MODE_WP, NULL)) { 1735 goto fail; 1736 } 1737 block->flags |= RAM_UF_WRITEPROTECT; 1738 memory_region_ref(block->mr); 1739 1740 /* Apply UFFD write protection to the block memory range */ 1741 if (ram_block_uffd_protect(block, uffd_fd)) { 1742 goto fail; 1743 } 1744 1745 trace_ram_write_tracking_ramblock_start(block->idstr, block->page_size, 1746 block->host, block->max_length); 1747 } 1748 1749 return 0; 1750 1751 fail: 1752 error_report("ram_write_tracking_start() failed: restoring initial memory state"); 1753 1754 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 1755 if ((block->flags & RAM_UF_WRITEPROTECT) == 0) { 1756 continue; 1757 } 1758 uffd_unregister_memory(rs->uffdio_fd, block->host, block->max_length); 1759 /* Cleanup flags and remove reference */ 1760 block->flags &= ~RAM_UF_WRITEPROTECT; 1761 memory_region_unref(block->mr); 1762 } 1763 1764 uffd_close_fd(uffd_fd); 1765 rs->uffdio_fd = -1; 1766 return -1; 1767 } 1768 1769 /** 1770 * ram_write_tracking_stop: stop UFFD-WP memory tracking and remove protection 1771 */ 1772 void ram_write_tracking_stop(void) 1773 { 1774 RAMState *rs = ram_state; 1775 RAMBlock *block; 1776 1777 RCU_READ_LOCK_GUARD(); 1778 1779 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 1780 if ((block->flags & RAM_UF_WRITEPROTECT) == 0) { 1781 continue; 1782 } 1783 uffd_unregister_memory(rs->uffdio_fd, block->host, block->max_length); 1784 1785 trace_ram_write_tracking_ramblock_stop(block->idstr, block->page_size, 1786 block->host, block->max_length); 1787 1788 /* Cleanup flags and remove reference */ 1789 block->flags &= ~RAM_UF_WRITEPROTECT; 1790 memory_region_unref(block->mr); 1791 } 1792 1793 /* Finally close UFFD file descriptor */ 1794 uffd_close_fd(rs->uffdio_fd); 1795 rs->uffdio_fd = -1; 1796 } 1797 1798 #else 1799 /* No target OS support, stubs just fail or ignore */ 1800 1801 static RAMBlock *poll_fault_page(RAMState *rs, ram_addr_t *offset) 1802 { 1803 (void) rs; 1804 (void) offset; 1805 1806 return NULL; 1807 } 1808 1809 static int ram_save_release_protection(RAMState *rs, PageSearchStatus *pss, 1810 unsigned long start_page) 1811 { 1812 (void) rs; 1813 (void) pss; 1814 (void) start_page; 1815 1816 return 0; 1817 } 1818 1819 bool ram_write_tracking_available(void) 1820 { 1821 return false; 1822 } 1823 1824 bool ram_write_tracking_compatible(void) 1825 { 1826 assert(0); 1827 return false; 1828 } 1829 1830 int ram_write_tracking_start(void) 1831 { 1832 assert(0); 1833 return -1; 1834 } 1835 1836 void ram_write_tracking_stop(void) 1837 { 1838 assert(0); 1839 } 1840 #endif /* defined(__linux__) */ 1841 1842 /** 1843 * get_queued_page: unqueue a page from the postcopy requests 1844 * 1845 * Skips pages that are already sent (!dirty) 1846 * 1847 * Returns true if a queued page is found 1848 * 1849 * @rs: current RAM state 1850 * @pss: data about the state of the current dirty page scan 1851 */ 1852 static bool get_queued_page(RAMState *rs, PageSearchStatus *pss) 1853 { 1854 RAMBlock *block; 1855 ram_addr_t offset; 1856 bool dirty; 1857 1858 do { 1859 block = unqueue_page(rs, &offset); 1860 /* 1861 * We're sending this page, and since it's postcopy nothing else 1862 * will dirty it, and we must make sure it doesn't get sent again 1863 * even if this queue request was received after the background 1864 * search already sent it. 1865 */ 1866 if (block) { 1867 unsigned long page; 1868 1869 page = offset >> TARGET_PAGE_BITS; 1870 dirty = test_bit(page, block->bmap); 1871 if (!dirty) { 1872 trace_get_queued_page_not_dirty(block->idstr, (uint64_t)offset, 1873 page); 1874 } else { 1875 trace_get_queued_page(block->idstr, (uint64_t)offset, page); 1876 } 1877 } 1878 1879 } while (block && !dirty); 1880 1881 if (!block) { 1882 /* 1883 * Poll write faults too if background snapshot is enabled; that's 1884 * when we have vcpus got blocked by the write protected pages. 1885 */ 1886 block = poll_fault_page(rs, &offset); 1887 } 1888 1889 if (block) { 1890 /* 1891 * We want the background search to continue from the queued page 1892 * since the guest is likely to want other pages near to the page 1893 * it just requested. 1894 */ 1895 pss->block = block; 1896 pss->page = offset >> TARGET_PAGE_BITS; 1897 1898 /* 1899 * This unqueued page would break the "one round" check, even is 1900 * really rare. 1901 */ 1902 pss->complete_round = false; 1903 } 1904 1905 return !!block; 1906 } 1907 1908 /** 1909 * migration_page_queue_free: drop any remaining pages in the ram 1910 * request queue 1911 * 1912 * It should be empty at the end anyway, but in error cases there may 1913 * be some left. in case that there is any page left, we drop it. 1914 * 1915 */ 1916 static void migration_page_queue_free(RAMState *rs) 1917 { 1918 struct RAMSrcPageRequest *mspr, *next_mspr; 1919 /* This queue generally should be empty - but in the case of a failed 1920 * migration might have some droppings in. 1921 */ 1922 RCU_READ_LOCK_GUARD(); 1923 QSIMPLEQ_FOREACH_SAFE(mspr, &rs->src_page_requests, next_req, next_mspr) { 1924 memory_region_unref(mspr->rb->mr); 1925 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req); 1926 g_free(mspr); 1927 } 1928 } 1929 1930 /** 1931 * ram_save_queue_pages: queue the page for transmission 1932 * 1933 * A request from postcopy destination for example. 1934 * 1935 * Returns zero on success or negative on error 1936 * 1937 * @rbname: Name of the RAMBLock of the request. NULL means the 1938 * same that last one. 1939 * @start: starting address from the start of the RAMBlock 1940 * @len: length (in bytes) to send 1941 */ 1942 int ram_save_queue_pages(const char *rbname, ram_addr_t start, ram_addr_t len) 1943 { 1944 RAMBlock *ramblock; 1945 RAMState *rs = ram_state; 1946 1947 stat64_add(&mig_stats.postcopy_requests, 1); 1948 RCU_READ_LOCK_GUARD(); 1949 1950 if (!rbname) { 1951 /* Reuse last RAMBlock */ 1952 ramblock = rs->last_req_rb; 1953 1954 if (!ramblock) { 1955 /* 1956 * Shouldn't happen, we can't reuse the last RAMBlock if 1957 * it's the 1st request. 1958 */ 1959 error_report("ram_save_queue_pages no previous block"); 1960 return -1; 1961 } 1962 } else { 1963 ramblock = qemu_ram_block_by_name(rbname); 1964 1965 if (!ramblock) { 1966 /* We shouldn't be asked for a non-existent RAMBlock */ 1967 error_report("ram_save_queue_pages no block '%s'", rbname); 1968 return -1; 1969 } 1970 rs->last_req_rb = ramblock; 1971 } 1972 trace_ram_save_queue_pages(ramblock->idstr, start, len); 1973 if (!offset_in_ramblock(ramblock, start + len - 1)) { 1974 error_report("%s request overrun start=" RAM_ADDR_FMT " len=" 1975 RAM_ADDR_FMT " blocklen=" RAM_ADDR_FMT, 1976 __func__, start, len, ramblock->used_length); 1977 return -1; 1978 } 1979 1980 /* 1981 * When with postcopy preempt, we send back the page directly in the 1982 * rp-return thread. 1983 */ 1984 if (postcopy_preempt_active()) { 1985 ram_addr_t page_start = start >> TARGET_PAGE_BITS; 1986 size_t page_size = qemu_ram_pagesize(ramblock); 1987 PageSearchStatus *pss = &ram_state->pss[RAM_CHANNEL_POSTCOPY]; 1988 int ret = 0; 1989 1990 qemu_mutex_lock(&rs->bitmap_mutex); 1991 1992 pss_init(pss, ramblock, page_start); 1993 /* 1994 * Always use the preempt channel, and make sure it's there. It's 1995 * safe to access without lock, because when rp-thread is running 1996 * we should be the only one who operates on the qemufile 1997 */ 1998 pss->pss_channel = migrate_get_current()->postcopy_qemufile_src; 1999 assert(pss->pss_channel); 2000 2001 /* 2002 * It must be either one or multiple of host page size. Just 2003 * assert; if something wrong we're mostly split brain anyway. 2004 */ 2005 assert(len % page_size == 0); 2006 while (len) { 2007 if (ram_save_host_page_urgent(pss)) { 2008 error_report("%s: ram_save_host_page_urgent() failed: " 2009 "ramblock=%s, start_addr=0x"RAM_ADDR_FMT, 2010 __func__, ramblock->idstr, start); 2011 ret = -1; 2012 break; 2013 } 2014 /* 2015 * NOTE: after ram_save_host_page_urgent() succeeded, pss->page 2016 * will automatically be moved and point to the next host page 2017 * we're going to send, so no need to update here. 2018 * 2019 * Normally QEMU never sends >1 host page in requests, so 2020 * logically we don't even need that as the loop should only 2021 * run once, but just to be consistent. 2022 */ 2023 len -= page_size; 2024 }; 2025 qemu_mutex_unlock(&rs->bitmap_mutex); 2026 2027 return ret; 2028 } 2029 2030 struct RAMSrcPageRequest *new_entry = 2031 g_new0(struct RAMSrcPageRequest, 1); 2032 new_entry->rb = ramblock; 2033 new_entry->offset = start; 2034 new_entry->len = len; 2035 2036 memory_region_ref(ramblock->mr); 2037 qemu_mutex_lock(&rs->src_page_req_mutex); 2038 QSIMPLEQ_INSERT_TAIL(&rs->src_page_requests, new_entry, next_req); 2039 migration_make_urgent_request(); 2040 qemu_mutex_unlock(&rs->src_page_req_mutex); 2041 2042 return 0; 2043 } 2044 2045 static bool save_page_use_compression(RAMState *rs) 2046 { 2047 if (!migrate_compress()) { 2048 return false; 2049 } 2050 2051 /* 2052 * If xbzrle is enabled (e.g., after first round of migration), stop 2053 * using the data compression. In theory, xbzrle can do better than 2054 * compression. 2055 */ 2056 if (rs->xbzrle_started) { 2057 return false; 2058 } 2059 2060 return true; 2061 } 2062 2063 /* 2064 * try to compress the page before posting it out, return true if the page 2065 * has been properly handled by compression, otherwise needs other 2066 * paths to handle it 2067 */ 2068 static bool save_compress_page(RAMState *rs, PageSearchStatus *pss, 2069 ram_addr_t offset) 2070 { 2071 if (!save_page_use_compression(rs)) { 2072 return false; 2073 } 2074 2075 /* 2076 * When starting the process of a new block, the first page of 2077 * the block should be sent out before other pages in the same 2078 * block, and all the pages in last block should have been sent 2079 * out, keeping this order is important, because the 'cont' flag 2080 * is used to avoid resending the block name. 2081 * 2082 * We post the fist page as normal page as compression will take 2083 * much CPU resource. 2084 */ 2085 if (pss->block != pss->last_sent_block) { 2086 ram_flush_compressed_data(rs); 2087 return false; 2088 } 2089 2090 if (compress_page_with_multi_thread(pss->block, offset, 2091 send_queued_data) > 0) { 2092 return true; 2093 } 2094 2095 compression_counters.busy++; 2096 return false; 2097 } 2098 2099 /** 2100 * ram_save_target_page_legacy: save one target page 2101 * 2102 * Returns the number of pages written 2103 * 2104 * @rs: current RAM state 2105 * @pss: data about the page we want to send 2106 */ 2107 static int ram_save_target_page_legacy(RAMState *rs, PageSearchStatus *pss) 2108 { 2109 RAMBlock *block = pss->block; 2110 ram_addr_t offset = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS; 2111 int res; 2112 2113 if (control_save_page(pss, offset, &res)) { 2114 return res; 2115 } 2116 2117 if (save_compress_page(rs, pss, offset)) { 2118 return 1; 2119 } 2120 2121 if (save_zero_page(rs, pss, offset)) { 2122 return 1; 2123 } 2124 2125 /* 2126 * Do not use multifd in postcopy as one whole host page should be 2127 * placed. Meanwhile postcopy requires atomic update of pages, so even 2128 * if host page size == guest page size the dest guest during run may 2129 * still see partially copied pages which is data corruption. 2130 */ 2131 if (migrate_multifd() && !migration_in_postcopy()) { 2132 return ram_save_multifd_page(pss->pss_channel, block, offset); 2133 } 2134 2135 return ram_save_page(rs, pss); 2136 } 2137 2138 /* Should be called before sending a host page */ 2139 static void pss_host_page_prepare(PageSearchStatus *pss) 2140 { 2141 /* How many guest pages are there in one host page? */ 2142 size_t guest_pfns = qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS; 2143 2144 pss->host_page_sending = true; 2145 if (guest_pfns <= 1) { 2146 /* 2147 * This covers both when guest psize == host psize, or when guest 2148 * has larger psize than the host (guest_pfns==0). 2149 * 2150 * For the latter, we always send one whole guest page per 2151 * iteration of the host page (example: an Alpha VM on x86 host 2152 * will have guest psize 8K while host psize 4K). 2153 */ 2154 pss->host_page_start = pss->page; 2155 pss->host_page_end = pss->page + 1; 2156 } else { 2157 /* 2158 * The host page spans over multiple guest pages, we send them 2159 * within the same host page iteration. 2160 */ 2161 pss->host_page_start = ROUND_DOWN(pss->page, guest_pfns); 2162 pss->host_page_end = ROUND_UP(pss->page + 1, guest_pfns); 2163 } 2164 } 2165 2166 /* 2167 * Whether the page pointed by PSS is within the host page being sent. 2168 * Must be called after a previous pss_host_page_prepare(). 2169 */ 2170 static bool pss_within_range(PageSearchStatus *pss) 2171 { 2172 ram_addr_t ram_addr; 2173 2174 assert(pss->host_page_sending); 2175 2176 /* Over host-page boundary? */ 2177 if (pss->page >= pss->host_page_end) { 2178 return false; 2179 } 2180 2181 ram_addr = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS; 2182 2183 return offset_in_ramblock(pss->block, ram_addr); 2184 } 2185 2186 static void pss_host_page_finish(PageSearchStatus *pss) 2187 { 2188 pss->host_page_sending = false; 2189 /* This is not needed, but just to reset it */ 2190 pss->host_page_start = pss->host_page_end = 0; 2191 } 2192 2193 /* 2194 * Send an urgent host page specified by `pss'. Need to be called with 2195 * bitmap_mutex held. 2196 * 2197 * Returns 0 if save host page succeeded, false otherwise. 2198 */ 2199 static int ram_save_host_page_urgent(PageSearchStatus *pss) 2200 { 2201 bool page_dirty, sent = false; 2202 RAMState *rs = ram_state; 2203 int ret = 0; 2204 2205 trace_postcopy_preempt_send_host_page(pss->block->idstr, pss->page); 2206 pss_host_page_prepare(pss); 2207 2208 /* 2209 * If precopy is sending the same page, let it be done in precopy, or 2210 * we could send the same page in two channels and none of them will 2211 * receive the whole page. 2212 */ 2213 if (pss_overlap(pss, &ram_state->pss[RAM_CHANNEL_PRECOPY])) { 2214 trace_postcopy_preempt_hit(pss->block->idstr, 2215 pss->page << TARGET_PAGE_BITS); 2216 return 0; 2217 } 2218 2219 do { 2220 page_dirty = migration_bitmap_clear_dirty(rs, pss->block, pss->page); 2221 2222 if (page_dirty) { 2223 /* Be strict to return code; it must be 1, or what else? */ 2224 if (migration_ops->ram_save_target_page(rs, pss) != 1) { 2225 error_report_once("%s: ram_save_target_page failed", __func__); 2226 ret = -1; 2227 goto out; 2228 } 2229 sent = true; 2230 } 2231 pss_find_next_dirty(pss); 2232 } while (pss_within_range(pss)); 2233 out: 2234 pss_host_page_finish(pss); 2235 /* For urgent requests, flush immediately if sent */ 2236 if (sent) { 2237 qemu_fflush(pss->pss_channel); 2238 } 2239 return ret; 2240 } 2241 2242 /** 2243 * ram_save_host_page: save a whole host page 2244 * 2245 * Starting at *offset send pages up to the end of the current host 2246 * page. It's valid for the initial offset to point into the middle of 2247 * a host page in which case the remainder of the hostpage is sent. 2248 * Only dirty target pages are sent. Note that the host page size may 2249 * be a huge page for this block. 2250 * 2251 * The saving stops at the boundary of the used_length of the block 2252 * if the RAMBlock isn't a multiple of the host page size. 2253 * 2254 * The caller must be with ram_state.bitmap_mutex held to call this 2255 * function. Note that this function can temporarily release the lock, but 2256 * when the function is returned it'll make sure the lock is still held. 2257 * 2258 * Returns the number of pages written or negative on error 2259 * 2260 * @rs: current RAM state 2261 * @pss: data about the page we want to send 2262 */ 2263 static int ram_save_host_page(RAMState *rs, PageSearchStatus *pss) 2264 { 2265 bool page_dirty, preempt_active = postcopy_preempt_active(); 2266 int tmppages, pages = 0; 2267 size_t pagesize_bits = 2268 qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS; 2269 unsigned long start_page = pss->page; 2270 int res; 2271 2272 if (migrate_ram_is_ignored(pss->block)) { 2273 error_report("block %s should not be migrated !", pss->block->idstr); 2274 return 0; 2275 } 2276 2277 /* Update host page boundary information */ 2278 pss_host_page_prepare(pss); 2279 2280 do { 2281 page_dirty = migration_bitmap_clear_dirty(rs, pss->block, pss->page); 2282 2283 /* Check the pages is dirty and if it is send it */ 2284 if (page_dirty) { 2285 /* 2286 * Properly yield the lock only in postcopy preempt mode 2287 * because both migration thread and rp-return thread can 2288 * operate on the bitmaps. 2289 */ 2290 if (preempt_active) { 2291 qemu_mutex_unlock(&rs->bitmap_mutex); 2292 } 2293 tmppages = migration_ops->ram_save_target_page(rs, pss); 2294 if (tmppages >= 0) { 2295 pages += tmppages; 2296 /* 2297 * Allow rate limiting to happen in the middle of huge pages if 2298 * something is sent in the current iteration. 2299 */ 2300 if (pagesize_bits > 1 && tmppages > 0) { 2301 migration_rate_limit(); 2302 } 2303 } 2304 if (preempt_active) { 2305 qemu_mutex_lock(&rs->bitmap_mutex); 2306 } 2307 } else { 2308 tmppages = 0; 2309 } 2310 2311 if (tmppages < 0) { 2312 pss_host_page_finish(pss); 2313 return tmppages; 2314 } 2315 2316 pss_find_next_dirty(pss); 2317 } while (pss_within_range(pss)); 2318 2319 pss_host_page_finish(pss); 2320 2321 res = ram_save_release_protection(rs, pss, start_page); 2322 return (res < 0 ? res : pages); 2323 } 2324 2325 /** 2326 * ram_find_and_save_block: finds a dirty page and sends it to f 2327 * 2328 * Called within an RCU critical section. 2329 * 2330 * Returns the number of pages written where zero means no dirty pages, 2331 * or negative on error 2332 * 2333 * @rs: current RAM state 2334 * 2335 * On systems where host-page-size > target-page-size it will send all the 2336 * pages in a host page that are dirty. 2337 */ 2338 static int ram_find_and_save_block(RAMState *rs) 2339 { 2340 PageSearchStatus *pss = &rs->pss[RAM_CHANNEL_PRECOPY]; 2341 int pages = 0; 2342 2343 /* No dirty page as there is zero RAM */ 2344 if (!rs->ram_bytes_total) { 2345 return pages; 2346 } 2347 2348 /* 2349 * Always keep last_seen_block/last_page valid during this procedure, 2350 * because find_dirty_block() relies on these values (e.g., we compare 2351 * last_seen_block with pss.block to see whether we searched all the 2352 * ramblocks) to detect the completion of migration. Having NULL value 2353 * of last_seen_block can conditionally cause below loop to run forever. 2354 */ 2355 if (!rs->last_seen_block) { 2356 rs->last_seen_block = QLIST_FIRST_RCU(&ram_list.blocks); 2357 rs->last_page = 0; 2358 } 2359 2360 pss_init(pss, rs->last_seen_block, rs->last_page); 2361 2362 while (true){ 2363 if (!get_queued_page(rs, pss)) { 2364 /* priority queue empty, so just search for something dirty */ 2365 int res = find_dirty_block(rs, pss); 2366 if (res != PAGE_DIRTY_FOUND) { 2367 if (res == PAGE_ALL_CLEAN) { 2368 break; 2369 } else if (res == PAGE_TRY_AGAIN) { 2370 continue; 2371 } else if (res < 0) { 2372 pages = res; 2373 break; 2374 } 2375 } 2376 } 2377 pages = ram_save_host_page(rs, pss); 2378 if (pages) { 2379 break; 2380 } 2381 } 2382 2383 rs->last_seen_block = pss->block; 2384 rs->last_page = pss->page; 2385 2386 return pages; 2387 } 2388 2389 static uint64_t ram_bytes_total_with_ignored(void) 2390 { 2391 RAMBlock *block; 2392 uint64_t total = 0; 2393 2394 RCU_READ_LOCK_GUARD(); 2395 2396 RAMBLOCK_FOREACH_MIGRATABLE(block) { 2397 total += block->used_length; 2398 } 2399 return total; 2400 } 2401 2402 uint64_t ram_bytes_total(void) 2403 { 2404 RAMBlock *block; 2405 uint64_t total = 0; 2406 2407 RCU_READ_LOCK_GUARD(); 2408 2409 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 2410 total += block->used_length; 2411 } 2412 return total; 2413 } 2414 2415 static void xbzrle_load_setup(void) 2416 { 2417 XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE); 2418 } 2419 2420 static void xbzrle_load_cleanup(void) 2421 { 2422 g_free(XBZRLE.decoded_buf); 2423 XBZRLE.decoded_buf = NULL; 2424 } 2425 2426 static void ram_state_cleanup(RAMState **rsp) 2427 { 2428 if (*rsp) { 2429 migration_page_queue_free(*rsp); 2430 qemu_mutex_destroy(&(*rsp)->bitmap_mutex); 2431 qemu_mutex_destroy(&(*rsp)->src_page_req_mutex); 2432 g_free(*rsp); 2433 *rsp = NULL; 2434 } 2435 } 2436 2437 static void xbzrle_cleanup(void) 2438 { 2439 XBZRLE_cache_lock(); 2440 if (XBZRLE.cache) { 2441 cache_fini(XBZRLE.cache); 2442 g_free(XBZRLE.encoded_buf); 2443 g_free(XBZRLE.current_buf); 2444 g_free(XBZRLE.zero_target_page); 2445 XBZRLE.cache = NULL; 2446 XBZRLE.encoded_buf = NULL; 2447 XBZRLE.current_buf = NULL; 2448 XBZRLE.zero_target_page = NULL; 2449 } 2450 XBZRLE_cache_unlock(); 2451 } 2452 2453 static void ram_save_cleanup(void *opaque) 2454 { 2455 RAMState **rsp = opaque; 2456 RAMBlock *block; 2457 2458 /* We don't use dirty log with background snapshots */ 2459 if (!migrate_background_snapshot()) { 2460 /* caller have hold iothread lock or is in a bh, so there is 2461 * no writing race against the migration bitmap 2462 */ 2463 if (global_dirty_tracking & GLOBAL_DIRTY_MIGRATION) { 2464 /* 2465 * do not stop dirty log without starting it, since 2466 * memory_global_dirty_log_stop will assert that 2467 * memory_global_dirty_log_start/stop used in pairs 2468 */ 2469 memory_global_dirty_log_stop(GLOBAL_DIRTY_MIGRATION); 2470 } 2471 } 2472 2473 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 2474 g_free(block->clear_bmap); 2475 block->clear_bmap = NULL; 2476 g_free(block->bmap); 2477 block->bmap = NULL; 2478 } 2479 2480 xbzrle_cleanup(); 2481 compress_threads_save_cleanup(); 2482 ram_state_cleanup(rsp); 2483 g_free(migration_ops); 2484 migration_ops = NULL; 2485 } 2486 2487 static void ram_state_reset(RAMState *rs) 2488 { 2489 int i; 2490 2491 for (i = 0; i < RAM_CHANNEL_MAX; i++) { 2492 rs->pss[i].last_sent_block = NULL; 2493 } 2494 2495 rs->last_seen_block = NULL; 2496 rs->last_page = 0; 2497 rs->last_version = ram_list.version; 2498 rs->xbzrle_started = false; 2499 } 2500 2501 #define MAX_WAIT 50 /* ms, half buffered_file limit */ 2502 2503 /* **** functions for postcopy ***** */ 2504 2505 void ram_postcopy_migrated_memory_release(MigrationState *ms) 2506 { 2507 struct RAMBlock *block; 2508 2509 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 2510 unsigned long *bitmap = block->bmap; 2511 unsigned long range = block->used_length >> TARGET_PAGE_BITS; 2512 unsigned long run_start = find_next_zero_bit(bitmap, range, 0); 2513 2514 while (run_start < range) { 2515 unsigned long run_end = find_next_bit(bitmap, range, run_start + 1); 2516 ram_discard_range(block->idstr, 2517 ((ram_addr_t)run_start) << TARGET_PAGE_BITS, 2518 ((ram_addr_t)(run_end - run_start)) 2519 << TARGET_PAGE_BITS); 2520 run_start = find_next_zero_bit(bitmap, range, run_end + 1); 2521 } 2522 } 2523 } 2524 2525 /** 2526 * postcopy_send_discard_bm_ram: discard a RAMBlock 2527 * 2528 * Callback from postcopy_each_ram_send_discard for each RAMBlock 2529 * 2530 * @ms: current migration state 2531 * @block: RAMBlock to discard 2532 */ 2533 static void postcopy_send_discard_bm_ram(MigrationState *ms, RAMBlock *block) 2534 { 2535 unsigned long end = block->used_length >> TARGET_PAGE_BITS; 2536 unsigned long current; 2537 unsigned long *bitmap = block->bmap; 2538 2539 for (current = 0; current < end; ) { 2540 unsigned long one = find_next_bit(bitmap, end, current); 2541 unsigned long zero, discard_length; 2542 2543 if (one >= end) { 2544 break; 2545 } 2546 2547 zero = find_next_zero_bit(bitmap, end, one + 1); 2548 2549 if (zero >= end) { 2550 discard_length = end - one; 2551 } else { 2552 discard_length = zero - one; 2553 } 2554 postcopy_discard_send_range(ms, one, discard_length); 2555 current = one + discard_length; 2556 } 2557 } 2558 2559 static void postcopy_chunk_hostpages_pass(MigrationState *ms, RAMBlock *block); 2560 2561 /** 2562 * postcopy_each_ram_send_discard: discard all RAMBlocks 2563 * 2564 * Utility for the outgoing postcopy code. 2565 * Calls postcopy_send_discard_bm_ram for each RAMBlock 2566 * passing it bitmap indexes and name. 2567 * (qemu_ram_foreach_block ends up passing unscaled lengths 2568 * which would mean postcopy code would have to deal with target page) 2569 * 2570 * @ms: current migration state 2571 */ 2572 static void postcopy_each_ram_send_discard(MigrationState *ms) 2573 { 2574 struct RAMBlock *block; 2575 2576 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 2577 postcopy_discard_send_init(ms, block->idstr); 2578 2579 /* 2580 * Deal with TPS != HPS and huge pages. It discard any partially sent 2581 * host-page size chunks, mark any partially dirty host-page size 2582 * chunks as all dirty. In this case the host-page is the host-page 2583 * for the particular RAMBlock, i.e. it might be a huge page. 2584 */ 2585 postcopy_chunk_hostpages_pass(ms, block); 2586 2587 /* 2588 * Postcopy sends chunks of bitmap over the wire, but it 2589 * just needs indexes at this point, avoids it having 2590 * target page specific code. 2591 */ 2592 postcopy_send_discard_bm_ram(ms, block); 2593 postcopy_discard_send_finish(ms); 2594 } 2595 } 2596 2597 /** 2598 * postcopy_chunk_hostpages_pass: canonicalize bitmap in hostpages 2599 * 2600 * Helper for postcopy_chunk_hostpages; it's called twice to 2601 * canonicalize the two bitmaps, that are similar, but one is 2602 * inverted. 2603 * 2604 * Postcopy requires that all target pages in a hostpage are dirty or 2605 * clean, not a mix. This function canonicalizes the bitmaps. 2606 * 2607 * @ms: current migration state 2608 * @block: block that contains the page we want to canonicalize 2609 */ 2610 static void postcopy_chunk_hostpages_pass(MigrationState *ms, RAMBlock *block) 2611 { 2612 RAMState *rs = ram_state; 2613 unsigned long *bitmap = block->bmap; 2614 unsigned int host_ratio = block->page_size / TARGET_PAGE_SIZE; 2615 unsigned long pages = block->used_length >> TARGET_PAGE_BITS; 2616 unsigned long run_start; 2617 2618 if (block->page_size == TARGET_PAGE_SIZE) { 2619 /* Easy case - TPS==HPS for a non-huge page RAMBlock */ 2620 return; 2621 } 2622 2623 /* Find a dirty page */ 2624 run_start = find_next_bit(bitmap, pages, 0); 2625 2626 while (run_start < pages) { 2627 2628 /* 2629 * If the start of this run of pages is in the middle of a host 2630 * page, then we need to fixup this host page. 2631 */ 2632 if (QEMU_IS_ALIGNED(run_start, host_ratio)) { 2633 /* Find the end of this run */ 2634 run_start = find_next_zero_bit(bitmap, pages, run_start + 1); 2635 /* 2636 * If the end isn't at the start of a host page, then the 2637 * run doesn't finish at the end of a host page 2638 * and we need to discard. 2639 */ 2640 } 2641 2642 if (!QEMU_IS_ALIGNED(run_start, host_ratio)) { 2643 unsigned long page; 2644 unsigned long fixup_start_addr = QEMU_ALIGN_DOWN(run_start, 2645 host_ratio); 2646 run_start = QEMU_ALIGN_UP(run_start, host_ratio); 2647 2648 /* Clean up the bitmap */ 2649 for (page = fixup_start_addr; 2650 page < fixup_start_addr + host_ratio; page++) { 2651 /* 2652 * Remark them as dirty, updating the count for any pages 2653 * that weren't previously dirty. 2654 */ 2655 rs->migration_dirty_pages += !test_and_set_bit(page, bitmap); 2656 } 2657 } 2658 2659 /* Find the next dirty page for the next iteration */ 2660 run_start = find_next_bit(bitmap, pages, run_start); 2661 } 2662 } 2663 2664 /** 2665 * ram_postcopy_send_discard_bitmap: transmit the discard bitmap 2666 * 2667 * Transmit the set of pages to be discarded after precopy to the target 2668 * these are pages that: 2669 * a) Have been previously transmitted but are now dirty again 2670 * b) Pages that have never been transmitted, this ensures that 2671 * any pages on the destination that have been mapped by background 2672 * tasks get discarded (transparent huge pages is the specific concern) 2673 * Hopefully this is pretty sparse 2674 * 2675 * @ms: current migration state 2676 */ 2677 void ram_postcopy_send_discard_bitmap(MigrationState *ms) 2678 { 2679 RAMState *rs = ram_state; 2680 2681 RCU_READ_LOCK_GUARD(); 2682 2683 /* This should be our last sync, the src is now paused */ 2684 migration_bitmap_sync(rs, false); 2685 2686 /* Easiest way to make sure we don't resume in the middle of a host-page */ 2687 rs->pss[RAM_CHANNEL_PRECOPY].last_sent_block = NULL; 2688 rs->last_seen_block = NULL; 2689 rs->last_page = 0; 2690 2691 postcopy_each_ram_send_discard(ms); 2692 2693 trace_ram_postcopy_send_discard_bitmap(); 2694 } 2695 2696 /** 2697 * ram_discard_range: discard dirtied pages at the beginning of postcopy 2698 * 2699 * Returns zero on success 2700 * 2701 * @rbname: name of the RAMBlock of the request. NULL means the 2702 * same that last one. 2703 * @start: RAMBlock starting page 2704 * @length: RAMBlock size 2705 */ 2706 int ram_discard_range(const char *rbname, uint64_t start, size_t length) 2707 { 2708 trace_ram_discard_range(rbname, start, length); 2709 2710 RCU_READ_LOCK_GUARD(); 2711 RAMBlock *rb = qemu_ram_block_by_name(rbname); 2712 2713 if (!rb) { 2714 error_report("ram_discard_range: Failed to find block '%s'", rbname); 2715 return -1; 2716 } 2717 2718 /* 2719 * On source VM, we don't need to update the received bitmap since 2720 * we don't even have one. 2721 */ 2722 if (rb->receivedmap) { 2723 bitmap_clear(rb->receivedmap, start >> qemu_target_page_bits(), 2724 length >> qemu_target_page_bits()); 2725 } 2726 2727 return ram_block_discard_range(rb, start, length); 2728 } 2729 2730 /* 2731 * For every allocation, we will try not to crash the VM if the 2732 * allocation failed. 2733 */ 2734 static int xbzrle_init(void) 2735 { 2736 Error *local_err = NULL; 2737 2738 if (!migrate_xbzrle()) { 2739 return 0; 2740 } 2741 2742 XBZRLE_cache_lock(); 2743 2744 XBZRLE.zero_target_page = g_try_malloc0(TARGET_PAGE_SIZE); 2745 if (!XBZRLE.zero_target_page) { 2746 error_report("%s: Error allocating zero page", __func__); 2747 goto err_out; 2748 } 2749 2750 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size(), 2751 TARGET_PAGE_SIZE, &local_err); 2752 if (!XBZRLE.cache) { 2753 error_report_err(local_err); 2754 goto free_zero_page; 2755 } 2756 2757 XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE); 2758 if (!XBZRLE.encoded_buf) { 2759 error_report("%s: Error allocating encoded_buf", __func__); 2760 goto free_cache; 2761 } 2762 2763 XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE); 2764 if (!XBZRLE.current_buf) { 2765 error_report("%s: Error allocating current_buf", __func__); 2766 goto free_encoded_buf; 2767 } 2768 2769 /* We are all good */ 2770 XBZRLE_cache_unlock(); 2771 return 0; 2772 2773 free_encoded_buf: 2774 g_free(XBZRLE.encoded_buf); 2775 XBZRLE.encoded_buf = NULL; 2776 free_cache: 2777 cache_fini(XBZRLE.cache); 2778 XBZRLE.cache = NULL; 2779 free_zero_page: 2780 g_free(XBZRLE.zero_target_page); 2781 XBZRLE.zero_target_page = NULL; 2782 err_out: 2783 XBZRLE_cache_unlock(); 2784 return -ENOMEM; 2785 } 2786 2787 static int ram_state_init(RAMState **rsp) 2788 { 2789 *rsp = g_try_new0(RAMState, 1); 2790 2791 if (!*rsp) { 2792 error_report("%s: Init ramstate fail", __func__); 2793 return -1; 2794 } 2795 2796 qemu_mutex_init(&(*rsp)->bitmap_mutex); 2797 qemu_mutex_init(&(*rsp)->src_page_req_mutex); 2798 QSIMPLEQ_INIT(&(*rsp)->src_page_requests); 2799 (*rsp)->ram_bytes_total = ram_bytes_total(); 2800 2801 /* 2802 * Count the total number of pages used by ram blocks not including any 2803 * gaps due to alignment or unplugs. 2804 * This must match with the initial values of dirty bitmap. 2805 */ 2806 (*rsp)->migration_dirty_pages = (*rsp)->ram_bytes_total >> TARGET_PAGE_BITS; 2807 ram_state_reset(*rsp); 2808 2809 return 0; 2810 } 2811 2812 static void ram_list_init_bitmaps(void) 2813 { 2814 MigrationState *ms = migrate_get_current(); 2815 RAMBlock *block; 2816 unsigned long pages; 2817 uint8_t shift; 2818 2819 /* Skip setting bitmap if there is no RAM */ 2820 if (ram_bytes_total()) { 2821 shift = ms->clear_bitmap_shift; 2822 if (shift > CLEAR_BITMAP_SHIFT_MAX) { 2823 error_report("clear_bitmap_shift (%u) too big, using " 2824 "max value (%u)", shift, CLEAR_BITMAP_SHIFT_MAX); 2825 shift = CLEAR_BITMAP_SHIFT_MAX; 2826 } else if (shift < CLEAR_BITMAP_SHIFT_MIN) { 2827 error_report("clear_bitmap_shift (%u) too small, using " 2828 "min value (%u)", shift, CLEAR_BITMAP_SHIFT_MIN); 2829 shift = CLEAR_BITMAP_SHIFT_MIN; 2830 } 2831 2832 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 2833 pages = block->max_length >> TARGET_PAGE_BITS; 2834 /* 2835 * The initial dirty bitmap for migration must be set with all 2836 * ones to make sure we'll migrate every guest RAM page to 2837 * destination. 2838 * Here we set RAMBlock.bmap all to 1 because when rebegin a 2839 * new migration after a failed migration, ram_list. 2840 * dirty_memory[DIRTY_MEMORY_MIGRATION] don't include the whole 2841 * guest memory. 2842 */ 2843 block->bmap = bitmap_new(pages); 2844 bitmap_set(block->bmap, 0, pages); 2845 block->clear_bmap_shift = shift; 2846 block->clear_bmap = bitmap_new(clear_bmap_size(pages, shift)); 2847 } 2848 } 2849 } 2850 2851 static void migration_bitmap_clear_discarded_pages(RAMState *rs) 2852 { 2853 unsigned long pages; 2854 RAMBlock *rb; 2855 2856 RCU_READ_LOCK_GUARD(); 2857 2858 RAMBLOCK_FOREACH_NOT_IGNORED(rb) { 2859 pages = ramblock_dirty_bitmap_clear_discarded_pages(rb); 2860 rs->migration_dirty_pages -= pages; 2861 } 2862 } 2863 2864 static void ram_init_bitmaps(RAMState *rs) 2865 { 2866 qemu_mutex_lock_ramlist(); 2867 2868 WITH_RCU_READ_LOCK_GUARD() { 2869 ram_list_init_bitmaps(); 2870 /* We don't use dirty log with background snapshots */ 2871 if (!migrate_background_snapshot()) { 2872 memory_global_dirty_log_start(GLOBAL_DIRTY_MIGRATION); 2873 migration_bitmap_sync_precopy(rs, false); 2874 } 2875 } 2876 qemu_mutex_unlock_ramlist(); 2877 2878 /* 2879 * After an eventual first bitmap sync, fixup the initial bitmap 2880 * containing all 1s to exclude any discarded pages from migration. 2881 */ 2882 migration_bitmap_clear_discarded_pages(rs); 2883 } 2884 2885 static int ram_init_all(RAMState **rsp) 2886 { 2887 if (ram_state_init(rsp)) { 2888 return -1; 2889 } 2890 2891 if (xbzrle_init()) { 2892 ram_state_cleanup(rsp); 2893 return -1; 2894 } 2895 2896 ram_init_bitmaps(*rsp); 2897 2898 return 0; 2899 } 2900 2901 static void ram_state_resume_prepare(RAMState *rs, QEMUFile *out) 2902 { 2903 RAMBlock *block; 2904 uint64_t pages = 0; 2905 2906 /* 2907 * Postcopy is not using xbzrle/compression, so no need for that. 2908 * Also, since source are already halted, we don't need to care 2909 * about dirty page logging as well. 2910 */ 2911 2912 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 2913 pages += bitmap_count_one(block->bmap, 2914 block->used_length >> TARGET_PAGE_BITS); 2915 } 2916 2917 /* This may not be aligned with current bitmaps. Recalculate. */ 2918 rs->migration_dirty_pages = pages; 2919 2920 ram_state_reset(rs); 2921 2922 /* Update RAMState cache of output QEMUFile */ 2923 rs->pss[RAM_CHANNEL_PRECOPY].pss_channel = out; 2924 2925 trace_ram_state_resume_prepare(pages); 2926 } 2927 2928 /* 2929 * This function clears bits of the free pages reported by the caller from the 2930 * migration dirty bitmap. @addr is the host address corresponding to the 2931 * start of the continuous guest free pages, and @len is the total bytes of 2932 * those pages. 2933 */ 2934 void qemu_guest_free_page_hint(void *addr, size_t len) 2935 { 2936 RAMBlock *block; 2937 ram_addr_t offset; 2938 size_t used_len, start, npages; 2939 MigrationState *s = migrate_get_current(); 2940 2941 /* This function is currently expected to be used during live migration */ 2942 if (!migration_is_setup_or_active(s->state)) { 2943 return; 2944 } 2945 2946 for (; len > 0; len -= used_len, addr += used_len) { 2947 block = qemu_ram_block_from_host(addr, false, &offset); 2948 if (unlikely(!block || offset >= block->used_length)) { 2949 /* 2950 * The implementation might not support RAMBlock resize during 2951 * live migration, but it could happen in theory with future 2952 * updates. So we add a check here to capture that case. 2953 */ 2954 error_report_once("%s unexpected error", __func__); 2955 return; 2956 } 2957 2958 if (len <= block->used_length - offset) { 2959 used_len = len; 2960 } else { 2961 used_len = block->used_length - offset; 2962 } 2963 2964 start = offset >> TARGET_PAGE_BITS; 2965 npages = used_len >> TARGET_PAGE_BITS; 2966 2967 qemu_mutex_lock(&ram_state->bitmap_mutex); 2968 /* 2969 * The skipped free pages are equavalent to be sent from clear_bmap's 2970 * perspective, so clear the bits from the memory region bitmap which 2971 * are initially set. Otherwise those skipped pages will be sent in 2972 * the next round after syncing from the memory region bitmap. 2973 */ 2974 migration_clear_memory_region_dirty_bitmap_range(block, start, npages); 2975 ram_state->migration_dirty_pages -= 2976 bitmap_count_one_with_offset(block->bmap, start, npages); 2977 bitmap_clear(block->bmap, start, npages); 2978 qemu_mutex_unlock(&ram_state->bitmap_mutex); 2979 } 2980 } 2981 2982 /* 2983 * Each of ram_save_setup, ram_save_iterate and ram_save_complete has 2984 * long-running RCU critical section. When rcu-reclaims in the code 2985 * start to become numerous it will be necessary to reduce the 2986 * granularity of these critical sections. 2987 */ 2988 2989 /** 2990 * ram_save_setup: Setup RAM for migration 2991 * 2992 * Returns zero to indicate success and negative for error 2993 * 2994 * @f: QEMUFile where to send the data 2995 * @opaque: RAMState pointer 2996 */ 2997 static int ram_save_setup(QEMUFile *f, void *opaque) 2998 { 2999 RAMState **rsp = opaque; 3000 RAMBlock *block; 3001 int ret; 3002 3003 if (compress_threads_save_setup()) { 3004 return -1; 3005 } 3006 3007 /* migration has already setup the bitmap, reuse it. */ 3008 if (!migration_in_colo_state()) { 3009 if (ram_init_all(rsp) != 0) { 3010 compress_threads_save_cleanup(); 3011 return -1; 3012 } 3013 } 3014 (*rsp)->pss[RAM_CHANNEL_PRECOPY].pss_channel = f; 3015 3016 WITH_RCU_READ_LOCK_GUARD() { 3017 qemu_put_be64(f, ram_bytes_total_with_ignored() 3018 | RAM_SAVE_FLAG_MEM_SIZE); 3019 3020 RAMBLOCK_FOREACH_MIGRATABLE(block) { 3021 qemu_put_byte(f, strlen(block->idstr)); 3022 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr)); 3023 qemu_put_be64(f, block->used_length); 3024 if (migrate_postcopy_ram() && block->page_size != 3025 qemu_host_page_size) { 3026 qemu_put_be64(f, block->page_size); 3027 } 3028 if (migrate_ignore_shared()) { 3029 qemu_put_be64(f, block->mr->addr); 3030 } 3031 } 3032 } 3033 3034 ret = rdma_registration_start(f, RAM_CONTROL_SETUP); 3035 if (ret < 0) { 3036 qemu_file_set_error(f, ret); 3037 } 3038 3039 ret = rdma_registration_stop(f, RAM_CONTROL_SETUP); 3040 if (ret < 0) { 3041 qemu_file_set_error(f, ret); 3042 } 3043 3044 migration_ops = g_malloc0(sizeof(MigrationOps)); 3045 migration_ops->ram_save_target_page = ram_save_target_page_legacy; 3046 3047 qemu_mutex_unlock_iothread(); 3048 ret = multifd_send_sync_main(f); 3049 qemu_mutex_lock_iothread(); 3050 if (ret < 0) { 3051 return ret; 3052 } 3053 3054 if (migrate_multifd() && !migrate_multifd_flush_after_each_section()) { 3055 qemu_put_be64(f, RAM_SAVE_FLAG_MULTIFD_FLUSH); 3056 } 3057 3058 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 3059 qemu_fflush(f); 3060 3061 return 0; 3062 } 3063 3064 /** 3065 * ram_save_iterate: iterative stage for migration 3066 * 3067 * Returns zero to indicate success and negative for error 3068 * 3069 * @f: QEMUFile where to send the data 3070 * @opaque: RAMState pointer 3071 */ 3072 static int ram_save_iterate(QEMUFile *f, void *opaque) 3073 { 3074 RAMState **temp = opaque; 3075 RAMState *rs = *temp; 3076 int ret = 0; 3077 int i; 3078 int64_t t0; 3079 int done = 0; 3080 3081 if (blk_mig_bulk_active()) { 3082 /* Avoid transferring ram during bulk phase of block migration as 3083 * the bulk phase will usually take a long time and transferring 3084 * ram updates during that time is pointless. */ 3085 goto out; 3086 } 3087 3088 /* 3089 * We'll take this lock a little bit long, but it's okay for two reasons. 3090 * Firstly, the only possible other thread to take it is who calls 3091 * qemu_guest_free_page_hint(), which should be rare; secondly, see 3092 * MAX_WAIT (if curious, further see commit 4508bd9ed8053ce) below, which 3093 * guarantees that we'll at least released it in a regular basis. 3094 */ 3095 qemu_mutex_lock(&rs->bitmap_mutex); 3096 WITH_RCU_READ_LOCK_GUARD() { 3097 if (ram_list.version != rs->last_version) { 3098 ram_state_reset(rs); 3099 } 3100 3101 /* Read version before ram_list.blocks */ 3102 smp_rmb(); 3103 3104 ret = rdma_registration_start(f, RAM_CONTROL_ROUND); 3105 if (ret < 0) { 3106 qemu_file_set_error(f, ret); 3107 } 3108 3109 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 3110 i = 0; 3111 while ((ret = migration_rate_exceeded(f)) == 0 || 3112 postcopy_has_request(rs)) { 3113 int pages; 3114 3115 if (qemu_file_get_error(f)) { 3116 break; 3117 } 3118 3119 pages = ram_find_and_save_block(rs); 3120 /* no more pages to sent */ 3121 if (pages == 0) { 3122 done = 1; 3123 break; 3124 } 3125 3126 if (pages < 0) { 3127 qemu_file_set_error(f, pages); 3128 break; 3129 } 3130 3131 rs->target_page_count += pages; 3132 3133 /* 3134 * During postcopy, it is necessary to make sure one whole host 3135 * page is sent in one chunk. 3136 */ 3137 if (migrate_postcopy_ram()) { 3138 ram_flush_compressed_data(rs); 3139 } 3140 3141 /* 3142 * we want to check in the 1st loop, just in case it was the 1st 3143 * time and we had to sync the dirty bitmap. 3144 * qemu_clock_get_ns() is a bit expensive, so we only check each 3145 * some iterations 3146 */ 3147 if ((i & 63) == 0) { 3148 uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) / 3149 1000000; 3150 if (t1 > MAX_WAIT) { 3151 trace_ram_save_iterate_big_wait(t1, i); 3152 break; 3153 } 3154 } 3155 i++; 3156 } 3157 } 3158 qemu_mutex_unlock(&rs->bitmap_mutex); 3159 3160 /* 3161 * Must occur before EOS (or any QEMUFile operation) 3162 * because of RDMA protocol. 3163 */ 3164 ret = rdma_registration_stop(f, RAM_CONTROL_ROUND); 3165 if (ret < 0) { 3166 qemu_file_set_error(f, ret); 3167 } 3168 3169 out: 3170 if (ret >= 0 3171 && migration_is_setup_or_active(migrate_get_current()->state)) { 3172 if (migrate_multifd() && migrate_multifd_flush_after_each_section()) { 3173 ret = multifd_send_sync_main(rs->pss[RAM_CHANNEL_PRECOPY].pss_channel); 3174 if (ret < 0) { 3175 return ret; 3176 } 3177 } 3178 3179 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 3180 qemu_fflush(f); 3181 ram_transferred_add(8); 3182 3183 ret = qemu_file_get_error(f); 3184 } 3185 if (ret < 0) { 3186 return ret; 3187 } 3188 3189 return done; 3190 } 3191 3192 /** 3193 * ram_save_complete: function called to send the remaining amount of ram 3194 * 3195 * Returns zero to indicate success or negative on error 3196 * 3197 * Called with iothread lock 3198 * 3199 * @f: QEMUFile where to send the data 3200 * @opaque: RAMState pointer 3201 */ 3202 static int ram_save_complete(QEMUFile *f, void *opaque) 3203 { 3204 RAMState **temp = opaque; 3205 RAMState *rs = *temp; 3206 int ret = 0; 3207 3208 rs->last_stage = !migration_in_colo_state(); 3209 3210 WITH_RCU_READ_LOCK_GUARD() { 3211 if (!migration_in_postcopy()) { 3212 migration_bitmap_sync_precopy(rs, true); 3213 } 3214 3215 ret = rdma_registration_start(f, RAM_CONTROL_FINISH); 3216 if (ret < 0) { 3217 qemu_file_set_error(f, ret); 3218 } 3219 3220 /* try transferring iterative blocks of memory */ 3221 3222 /* flush all remaining blocks regardless of rate limiting */ 3223 qemu_mutex_lock(&rs->bitmap_mutex); 3224 while (true) { 3225 int pages; 3226 3227 pages = ram_find_and_save_block(rs); 3228 /* no more blocks to sent */ 3229 if (pages == 0) { 3230 break; 3231 } 3232 if (pages < 0) { 3233 ret = pages; 3234 break; 3235 } 3236 } 3237 qemu_mutex_unlock(&rs->bitmap_mutex); 3238 3239 ram_flush_compressed_data(rs); 3240 3241 int ret = rdma_registration_stop(f, RAM_CONTROL_FINISH); 3242 if (ret < 0) { 3243 qemu_file_set_error(f, ret); 3244 } 3245 } 3246 3247 if (ret < 0) { 3248 return ret; 3249 } 3250 3251 ret = multifd_send_sync_main(rs->pss[RAM_CHANNEL_PRECOPY].pss_channel); 3252 if (ret < 0) { 3253 return ret; 3254 } 3255 3256 if (migrate_multifd() && !migrate_multifd_flush_after_each_section()) { 3257 qemu_put_be64(f, RAM_SAVE_FLAG_MULTIFD_FLUSH); 3258 } 3259 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 3260 qemu_fflush(f); 3261 3262 return 0; 3263 } 3264 3265 static void ram_state_pending_estimate(void *opaque, uint64_t *must_precopy, 3266 uint64_t *can_postcopy) 3267 { 3268 RAMState **temp = opaque; 3269 RAMState *rs = *temp; 3270 3271 uint64_t remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE; 3272 3273 if (migrate_postcopy_ram()) { 3274 /* We can do postcopy, and all the data is postcopiable */ 3275 *can_postcopy += remaining_size; 3276 } else { 3277 *must_precopy += remaining_size; 3278 } 3279 } 3280 3281 static void ram_state_pending_exact(void *opaque, uint64_t *must_precopy, 3282 uint64_t *can_postcopy) 3283 { 3284 MigrationState *s = migrate_get_current(); 3285 RAMState **temp = opaque; 3286 RAMState *rs = *temp; 3287 3288 uint64_t remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE; 3289 3290 if (!migration_in_postcopy() && remaining_size < s->threshold_size) { 3291 qemu_mutex_lock_iothread(); 3292 WITH_RCU_READ_LOCK_GUARD() { 3293 migration_bitmap_sync_precopy(rs, false); 3294 } 3295 qemu_mutex_unlock_iothread(); 3296 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE; 3297 } 3298 3299 if (migrate_postcopy_ram()) { 3300 /* We can do postcopy, and all the data is postcopiable */ 3301 *can_postcopy += remaining_size; 3302 } else { 3303 *must_precopy += remaining_size; 3304 } 3305 } 3306 3307 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host) 3308 { 3309 unsigned int xh_len; 3310 int xh_flags; 3311 uint8_t *loaded_data; 3312 3313 /* extract RLE header */ 3314 xh_flags = qemu_get_byte(f); 3315 xh_len = qemu_get_be16(f); 3316 3317 if (xh_flags != ENCODING_FLAG_XBZRLE) { 3318 error_report("Failed to load XBZRLE page - wrong compression!"); 3319 return -1; 3320 } 3321 3322 if (xh_len > TARGET_PAGE_SIZE) { 3323 error_report("Failed to load XBZRLE page - len overflow!"); 3324 return -1; 3325 } 3326 loaded_data = XBZRLE.decoded_buf; 3327 /* load data and decode */ 3328 /* it can change loaded_data to point to an internal buffer */ 3329 qemu_get_buffer_in_place(f, &loaded_data, xh_len); 3330 3331 /* decode RLE */ 3332 if (xbzrle_decode_buffer(loaded_data, xh_len, host, 3333 TARGET_PAGE_SIZE) == -1) { 3334 error_report("Failed to load XBZRLE page - decode error!"); 3335 return -1; 3336 } 3337 3338 return 0; 3339 } 3340 3341 /** 3342 * ram_block_from_stream: read a RAMBlock id from the migration stream 3343 * 3344 * Must be called from within a rcu critical section. 3345 * 3346 * Returns a pointer from within the RCU-protected ram_list. 3347 * 3348 * @mis: the migration incoming state pointer 3349 * @f: QEMUFile where to read the data from 3350 * @flags: Page flags (mostly to see if it's a continuation of previous block) 3351 * @channel: the channel we're using 3352 */ 3353 static inline RAMBlock *ram_block_from_stream(MigrationIncomingState *mis, 3354 QEMUFile *f, int flags, 3355 int channel) 3356 { 3357 RAMBlock *block = mis->last_recv_block[channel]; 3358 char id[256]; 3359 uint8_t len; 3360 3361 if (flags & RAM_SAVE_FLAG_CONTINUE) { 3362 if (!block) { 3363 error_report("Ack, bad migration stream!"); 3364 return NULL; 3365 } 3366 return block; 3367 } 3368 3369 len = qemu_get_byte(f); 3370 qemu_get_buffer(f, (uint8_t *)id, len); 3371 id[len] = 0; 3372 3373 block = qemu_ram_block_by_name(id); 3374 if (!block) { 3375 error_report("Can't find block %s", id); 3376 return NULL; 3377 } 3378 3379 if (migrate_ram_is_ignored(block)) { 3380 error_report("block %s should not be migrated !", id); 3381 return NULL; 3382 } 3383 3384 mis->last_recv_block[channel] = block; 3385 3386 return block; 3387 } 3388 3389 static inline void *host_from_ram_block_offset(RAMBlock *block, 3390 ram_addr_t offset) 3391 { 3392 if (!offset_in_ramblock(block, offset)) { 3393 return NULL; 3394 } 3395 3396 return block->host + offset; 3397 } 3398 3399 static void *host_page_from_ram_block_offset(RAMBlock *block, 3400 ram_addr_t offset) 3401 { 3402 /* Note: Explicitly no check against offset_in_ramblock(). */ 3403 return (void *)QEMU_ALIGN_DOWN((uintptr_t)(block->host + offset), 3404 block->page_size); 3405 } 3406 3407 static ram_addr_t host_page_offset_from_ram_block_offset(RAMBlock *block, 3408 ram_addr_t offset) 3409 { 3410 return ((uintptr_t)block->host + offset) & (block->page_size - 1); 3411 } 3412 3413 void colo_record_bitmap(RAMBlock *block, ram_addr_t *normal, uint32_t pages) 3414 { 3415 qemu_mutex_lock(&ram_state->bitmap_mutex); 3416 for (int i = 0; i < pages; i++) { 3417 ram_addr_t offset = normal[i]; 3418 ram_state->migration_dirty_pages += !test_and_set_bit( 3419 offset >> TARGET_PAGE_BITS, 3420 block->bmap); 3421 } 3422 qemu_mutex_unlock(&ram_state->bitmap_mutex); 3423 } 3424 3425 static inline void *colo_cache_from_block_offset(RAMBlock *block, 3426 ram_addr_t offset, bool record_bitmap) 3427 { 3428 if (!offset_in_ramblock(block, offset)) { 3429 return NULL; 3430 } 3431 if (!block->colo_cache) { 3432 error_report("%s: colo_cache is NULL in block :%s", 3433 __func__, block->idstr); 3434 return NULL; 3435 } 3436 3437 /* 3438 * During colo checkpoint, we need bitmap of these migrated pages. 3439 * It help us to decide which pages in ram cache should be flushed 3440 * into VM's RAM later. 3441 */ 3442 if (record_bitmap) { 3443 colo_record_bitmap(block, &offset, 1); 3444 } 3445 return block->colo_cache + offset; 3446 } 3447 3448 /** 3449 * ram_handle_compressed: handle the zero page case 3450 * 3451 * If a page (or a whole RDMA chunk) has been 3452 * determined to be zero, then zap it. 3453 * 3454 * @host: host address for the zero page 3455 * @ch: what the page is filled from. We only support zero 3456 * @size: size of the zero page 3457 */ 3458 void ram_handle_compressed(void *host, uint8_t ch, uint64_t size) 3459 { 3460 if (ch != 0 || !buffer_is_zero(host, size)) { 3461 memset(host, ch, size); 3462 } 3463 } 3464 3465 static void colo_init_ram_state(void) 3466 { 3467 ram_state_init(&ram_state); 3468 } 3469 3470 /* 3471 * colo cache: this is for secondary VM, we cache the whole 3472 * memory of the secondary VM, it is need to hold the global lock 3473 * to call this helper. 3474 */ 3475 int colo_init_ram_cache(void) 3476 { 3477 RAMBlock *block; 3478 3479 WITH_RCU_READ_LOCK_GUARD() { 3480 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3481 block->colo_cache = qemu_anon_ram_alloc(block->used_length, 3482 NULL, false, false); 3483 if (!block->colo_cache) { 3484 error_report("%s: Can't alloc memory for COLO cache of block %s," 3485 "size 0x" RAM_ADDR_FMT, __func__, block->idstr, 3486 block->used_length); 3487 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3488 if (block->colo_cache) { 3489 qemu_anon_ram_free(block->colo_cache, block->used_length); 3490 block->colo_cache = NULL; 3491 } 3492 } 3493 return -errno; 3494 } 3495 if (!machine_dump_guest_core(current_machine)) { 3496 qemu_madvise(block->colo_cache, block->used_length, 3497 QEMU_MADV_DONTDUMP); 3498 } 3499 } 3500 } 3501 3502 /* 3503 * Record the dirty pages that sent by PVM, we use this dirty bitmap together 3504 * with to decide which page in cache should be flushed into SVM's RAM. Here 3505 * we use the same name 'ram_bitmap' as for migration. 3506 */ 3507 if (ram_bytes_total()) { 3508 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3509 unsigned long pages = block->max_length >> TARGET_PAGE_BITS; 3510 block->bmap = bitmap_new(pages); 3511 } 3512 } 3513 3514 colo_init_ram_state(); 3515 return 0; 3516 } 3517 3518 /* TODO: duplicated with ram_init_bitmaps */ 3519 void colo_incoming_start_dirty_log(void) 3520 { 3521 RAMBlock *block = NULL; 3522 /* For memory_global_dirty_log_start below. */ 3523 qemu_mutex_lock_iothread(); 3524 qemu_mutex_lock_ramlist(); 3525 3526 memory_global_dirty_log_sync(false); 3527 WITH_RCU_READ_LOCK_GUARD() { 3528 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3529 ramblock_sync_dirty_bitmap(ram_state, block); 3530 /* Discard this dirty bitmap record */ 3531 bitmap_zero(block->bmap, block->max_length >> TARGET_PAGE_BITS); 3532 } 3533 memory_global_dirty_log_start(GLOBAL_DIRTY_MIGRATION); 3534 } 3535 ram_state->migration_dirty_pages = 0; 3536 qemu_mutex_unlock_ramlist(); 3537 qemu_mutex_unlock_iothread(); 3538 } 3539 3540 /* It is need to hold the global lock to call this helper */ 3541 void colo_release_ram_cache(void) 3542 { 3543 RAMBlock *block; 3544 3545 memory_global_dirty_log_stop(GLOBAL_DIRTY_MIGRATION); 3546 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3547 g_free(block->bmap); 3548 block->bmap = NULL; 3549 } 3550 3551 WITH_RCU_READ_LOCK_GUARD() { 3552 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3553 if (block->colo_cache) { 3554 qemu_anon_ram_free(block->colo_cache, block->used_length); 3555 block->colo_cache = NULL; 3556 } 3557 } 3558 } 3559 ram_state_cleanup(&ram_state); 3560 } 3561 3562 /** 3563 * ram_load_setup: Setup RAM for migration incoming side 3564 * 3565 * Returns zero to indicate success and negative for error 3566 * 3567 * @f: QEMUFile where to receive the data 3568 * @opaque: RAMState pointer 3569 */ 3570 static int ram_load_setup(QEMUFile *f, void *opaque) 3571 { 3572 xbzrle_load_setup(); 3573 ramblock_recv_map_init(); 3574 3575 return 0; 3576 } 3577 3578 static int ram_load_cleanup(void *opaque) 3579 { 3580 RAMBlock *rb; 3581 3582 RAMBLOCK_FOREACH_NOT_IGNORED(rb) { 3583 qemu_ram_block_writeback(rb); 3584 } 3585 3586 xbzrle_load_cleanup(); 3587 3588 RAMBLOCK_FOREACH_NOT_IGNORED(rb) { 3589 g_free(rb->receivedmap); 3590 rb->receivedmap = NULL; 3591 } 3592 3593 return 0; 3594 } 3595 3596 /** 3597 * ram_postcopy_incoming_init: allocate postcopy data structures 3598 * 3599 * Returns 0 for success and negative if there was one error 3600 * 3601 * @mis: current migration incoming state 3602 * 3603 * Allocate data structures etc needed by incoming migration with 3604 * postcopy-ram. postcopy-ram's similarly names 3605 * postcopy_ram_incoming_init does the work. 3606 */ 3607 int ram_postcopy_incoming_init(MigrationIncomingState *mis) 3608 { 3609 return postcopy_ram_incoming_init(mis); 3610 } 3611 3612 /** 3613 * ram_load_postcopy: load a page in postcopy case 3614 * 3615 * Returns 0 for success or -errno in case of error 3616 * 3617 * Called in postcopy mode by ram_load(). 3618 * rcu_read_lock is taken prior to this being called. 3619 * 3620 * @f: QEMUFile where to send the data 3621 * @channel: the channel to use for loading 3622 */ 3623 int ram_load_postcopy(QEMUFile *f, int channel) 3624 { 3625 int flags = 0, ret = 0; 3626 bool place_needed = false; 3627 bool matches_target_page_size = false; 3628 MigrationIncomingState *mis = migration_incoming_get_current(); 3629 PostcopyTmpPage *tmp_page = &mis->postcopy_tmp_pages[channel]; 3630 3631 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) { 3632 ram_addr_t addr; 3633 void *page_buffer = NULL; 3634 void *place_source = NULL; 3635 RAMBlock *block = NULL; 3636 uint8_t ch; 3637 int len; 3638 3639 addr = qemu_get_be64(f); 3640 3641 /* 3642 * If qemu file error, we should stop here, and then "addr" 3643 * may be invalid 3644 */ 3645 ret = qemu_file_get_error(f); 3646 if (ret) { 3647 break; 3648 } 3649 3650 flags = addr & ~TARGET_PAGE_MASK; 3651 addr &= TARGET_PAGE_MASK; 3652 3653 trace_ram_load_postcopy_loop(channel, (uint64_t)addr, flags); 3654 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE | 3655 RAM_SAVE_FLAG_COMPRESS_PAGE)) { 3656 block = ram_block_from_stream(mis, f, flags, channel); 3657 if (!block) { 3658 ret = -EINVAL; 3659 break; 3660 } 3661 3662 /* 3663 * Relying on used_length is racy and can result in false positives. 3664 * We might place pages beyond used_length in case RAM was shrunk 3665 * while in postcopy, which is fine - trying to place via 3666 * UFFDIO_COPY/UFFDIO_ZEROPAGE will never segfault. 3667 */ 3668 if (!block->host || addr >= block->postcopy_length) { 3669 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr); 3670 ret = -EINVAL; 3671 break; 3672 } 3673 tmp_page->target_pages++; 3674 matches_target_page_size = block->page_size == TARGET_PAGE_SIZE; 3675 /* 3676 * Postcopy requires that we place whole host pages atomically; 3677 * these may be huge pages for RAMBlocks that are backed by 3678 * hugetlbfs. 3679 * To make it atomic, the data is read into a temporary page 3680 * that's moved into place later. 3681 * The migration protocol uses, possibly smaller, target-pages 3682 * however the source ensures it always sends all the components 3683 * of a host page in one chunk. 3684 */ 3685 page_buffer = tmp_page->tmp_huge_page + 3686 host_page_offset_from_ram_block_offset(block, addr); 3687 /* If all TP are zero then we can optimise the place */ 3688 if (tmp_page->target_pages == 1) { 3689 tmp_page->host_addr = 3690 host_page_from_ram_block_offset(block, addr); 3691 } else if (tmp_page->host_addr != 3692 host_page_from_ram_block_offset(block, addr)) { 3693 /* not the 1st TP within the HP */ 3694 error_report("Non-same host page detected on channel %d: " 3695 "Target host page %p, received host page %p " 3696 "(rb %s offset 0x"RAM_ADDR_FMT" target_pages %d)", 3697 channel, tmp_page->host_addr, 3698 host_page_from_ram_block_offset(block, addr), 3699 block->idstr, addr, tmp_page->target_pages); 3700 ret = -EINVAL; 3701 break; 3702 } 3703 3704 /* 3705 * If it's the last part of a host page then we place the host 3706 * page 3707 */ 3708 if (tmp_page->target_pages == 3709 (block->page_size / TARGET_PAGE_SIZE)) { 3710 place_needed = true; 3711 } 3712 place_source = tmp_page->tmp_huge_page; 3713 } 3714 3715 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) { 3716 case RAM_SAVE_FLAG_ZERO: 3717 ch = qemu_get_byte(f); 3718 /* 3719 * Can skip to set page_buffer when 3720 * this is a zero page and (block->page_size == TARGET_PAGE_SIZE). 3721 */ 3722 if (ch || !matches_target_page_size) { 3723 memset(page_buffer, ch, TARGET_PAGE_SIZE); 3724 } 3725 if (ch) { 3726 tmp_page->all_zero = false; 3727 } 3728 break; 3729 3730 case RAM_SAVE_FLAG_PAGE: 3731 tmp_page->all_zero = false; 3732 if (!matches_target_page_size) { 3733 /* For huge pages, we always use temporary buffer */ 3734 qemu_get_buffer(f, page_buffer, TARGET_PAGE_SIZE); 3735 } else { 3736 /* 3737 * For small pages that matches target page size, we 3738 * avoid the qemu_file copy. Instead we directly use 3739 * the buffer of QEMUFile to place the page. Note: we 3740 * cannot do any QEMUFile operation before using that 3741 * buffer to make sure the buffer is valid when 3742 * placing the page. 3743 */ 3744 qemu_get_buffer_in_place(f, (uint8_t **)&place_source, 3745 TARGET_PAGE_SIZE); 3746 } 3747 break; 3748 case RAM_SAVE_FLAG_COMPRESS_PAGE: 3749 tmp_page->all_zero = false; 3750 len = qemu_get_be32(f); 3751 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) { 3752 error_report("Invalid compressed data length: %d", len); 3753 ret = -EINVAL; 3754 break; 3755 } 3756 decompress_data_with_multi_threads(f, page_buffer, len); 3757 break; 3758 case RAM_SAVE_FLAG_MULTIFD_FLUSH: 3759 multifd_recv_sync_main(); 3760 break; 3761 case RAM_SAVE_FLAG_EOS: 3762 /* normal exit */ 3763 if (migrate_multifd() && 3764 migrate_multifd_flush_after_each_section()) { 3765 multifd_recv_sync_main(); 3766 } 3767 break; 3768 default: 3769 error_report("Unknown combination of migration flags: 0x%x" 3770 " (postcopy mode)", flags); 3771 ret = -EINVAL; 3772 break; 3773 } 3774 3775 /* Got the whole host page, wait for decompress before placing. */ 3776 if (place_needed) { 3777 ret |= wait_for_decompress_done(); 3778 } 3779 3780 /* Detect for any possible file errors */ 3781 if (!ret && qemu_file_get_error(f)) { 3782 ret = qemu_file_get_error(f); 3783 } 3784 3785 if (!ret && place_needed) { 3786 if (tmp_page->all_zero) { 3787 ret = postcopy_place_page_zero(mis, tmp_page->host_addr, block); 3788 } else { 3789 ret = postcopy_place_page(mis, tmp_page->host_addr, 3790 place_source, block); 3791 } 3792 place_needed = false; 3793 postcopy_temp_page_reset(tmp_page); 3794 } 3795 } 3796 3797 return ret; 3798 } 3799 3800 static bool postcopy_is_running(void) 3801 { 3802 PostcopyState ps = postcopy_state_get(); 3803 return ps >= POSTCOPY_INCOMING_LISTENING && ps < POSTCOPY_INCOMING_END; 3804 } 3805 3806 /* 3807 * Flush content of RAM cache into SVM's memory. 3808 * Only flush the pages that be dirtied by PVM or SVM or both. 3809 */ 3810 void colo_flush_ram_cache(void) 3811 { 3812 RAMBlock *block = NULL; 3813 void *dst_host; 3814 void *src_host; 3815 unsigned long offset = 0; 3816 3817 memory_global_dirty_log_sync(false); 3818 qemu_mutex_lock(&ram_state->bitmap_mutex); 3819 WITH_RCU_READ_LOCK_GUARD() { 3820 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3821 ramblock_sync_dirty_bitmap(ram_state, block); 3822 } 3823 } 3824 3825 trace_colo_flush_ram_cache_begin(ram_state->migration_dirty_pages); 3826 WITH_RCU_READ_LOCK_GUARD() { 3827 block = QLIST_FIRST_RCU(&ram_list.blocks); 3828 3829 while (block) { 3830 unsigned long num = 0; 3831 3832 offset = colo_bitmap_find_dirty(ram_state, block, offset, &num); 3833 if (!offset_in_ramblock(block, 3834 ((ram_addr_t)offset) << TARGET_PAGE_BITS)) { 3835 offset = 0; 3836 num = 0; 3837 block = QLIST_NEXT_RCU(block, next); 3838 } else { 3839 unsigned long i = 0; 3840 3841 for (i = 0; i < num; i++) { 3842 migration_bitmap_clear_dirty(ram_state, block, offset + i); 3843 } 3844 dst_host = block->host 3845 + (((ram_addr_t)offset) << TARGET_PAGE_BITS); 3846 src_host = block->colo_cache 3847 + (((ram_addr_t)offset) << TARGET_PAGE_BITS); 3848 memcpy(dst_host, src_host, TARGET_PAGE_SIZE * num); 3849 offset += num; 3850 } 3851 } 3852 } 3853 qemu_mutex_unlock(&ram_state->bitmap_mutex); 3854 trace_colo_flush_ram_cache_end(); 3855 } 3856 3857 static int parse_ramblock(QEMUFile *f, RAMBlock *block, ram_addr_t length) 3858 { 3859 int ret = 0; 3860 /* ADVISE is earlier, it shows the source has the postcopy capability on */ 3861 bool postcopy_advised = migration_incoming_postcopy_advised(); 3862 3863 assert(block); 3864 3865 if (!qemu_ram_is_migratable(block)) { 3866 error_report("block %s should not be migrated !", block->idstr); 3867 return -EINVAL; 3868 } 3869 3870 if (length != block->used_length) { 3871 Error *local_err = NULL; 3872 3873 ret = qemu_ram_resize(block, length, &local_err); 3874 if (local_err) { 3875 error_report_err(local_err); 3876 } 3877 } 3878 /* For postcopy we need to check hugepage sizes match */ 3879 if (postcopy_advised && migrate_postcopy_ram() && 3880 block->page_size != qemu_host_page_size) { 3881 uint64_t remote_page_size = qemu_get_be64(f); 3882 if (remote_page_size != block->page_size) { 3883 error_report("Mismatched RAM page size %s " 3884 "(local) %zd != %" PRId64, block->idstr, 3885 block->page_size, remote_page_size); 3886 ret = -EINVAL; 3887 } 3888 } 3889 if (migrate_ignore_shared()) { 3890 hwaddr addr = qemu_get_be64(f); 3891 if (migrate_ram_is_ignored(block) && 3892 block->mr->addr != addr) { 3893 error_report("Mismatched GPAs for block %s " 3894 "%" PRId64 "!= %" PRId64, block->idstr, 3895 (uint64_t)addr, (uint64_t)block->mr->addr); 3896 ret = -EINVAL; 3897 } 3898 } 3899 ret = rdma_block_notification_handle(f, block->idstr); 3900 if (ret < 0) { 3901 qemu_file_set_error(f, ret); 3902 } 3903 3904 return ret; 3905 } 3906 3907 static int parse_ramblocks(QEMUFile *f, ram_addr_t total_ram_bytes) 3908 { 3909 int ret = 0; 3910 3911 /* Synchronize RAM block list */ 3912 while (!ret && total_ram_bytes) { 3913 RAMBlock *block; 3914 char id[256]; 3915 ram_addr_t length; 3916 int len = qemu_get_byte(f); 3917 3918 qemu_get_buffer(f, (uint8_t *)id, len); 3919 id[len] = 0; 3920 length = qemu_get_be64(f); 3921 3922 block = qemu_ram_block_by_name(id); 3923 if (block) { 3924 ret = parse_ramblock(f, block, length); 3925 } else { 3926 error_report("Unknown ramblock \"%s\", cannot accept " 3927 "migration", id); 3928 ret = -EINVAL; 3929 } 3930 total_ram_bytes -= length; 3931 } 3932 3933 return ret; 3934 } 3935 3936 /** 3937 * ram_load_precopy: load pages in precopy case 3938 * 3939 * Returns 0 for success or -errno in case of error 3940 * 3941 * Called in precopy mode by ram_load(). 3942 * rcu_read_lock is taken prior to this being called. 3943 * 3944 * @f: QEMUFile where to send the data 3945 */ 3946 static int ram_load_precopy(QEMUFile *f) 3947 { 3948 MigrationIncomingState *mis = migration_incoming_get_current(); 3949 int flags = 0, ret = 0, invalid_flags = 0, len = 0, i = 0; 3950 3951 if (!migrate_compress()) { 3952 invalid_flags |= RAM_SAVE_FLAG_COMPRESS_PAGE; 3953 } 3954 3955 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) { 3956 ram_addr_t addr; 3957 void *host = NULL, *host_bak = NULL; 3958 uint8_t ch; 3959 3960 /* 3961 * Yield periodically to let main loop run, but an iteration of 3962 * the main loop is expensive, so do it each some iterations 3963 */ 3964 if ((i & 32767) == 0 && qemu_in_coroutine()) { 3965 aio_co_schedule(qemu_get_current_aio_context(), 3966 qemu_coroutine_self()); 3967 qemu_coroutine_yield(); 3968 } 3969 i++; 3970 3971 addr = qemu_get_be64(f); 3972 flags = addr & ~TARGET_PAGE_MASK; 3973 addr &= TARGET_PAGE_MASK; 3974 3975 if (flags & invalid_flags) { 3976 if (flags & invalid_flags & RAM_SAVE_FLAG_COMPRESS_PAGE) { 3977 error_report("Received an unexpected compressed page"); 3978 } 3979 3980 ret = -EINVAL; 3981 break; 3982 } 3983 3984 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE | 3985 RAM_SAVE_FLAG_COMPRESS_PAGE | RAM_SAVE_FLAG_XBZRLE)) { 3986 RAMBlock *block = ram_block_from_stream(mis, f, flags, 3987 RAM_CHANNEL_PRECOPY); 3988 3989 host = host_from_ram_block_offset(block, addr); 3990 /* 3991 * After going into COLO stage, we should not load the page 3992 * into SVM's memory directly, we put them into colo_cache firstly. 3993 * NOTE: We need to keep a copy of SVM's ram in colo_cache. 3994 * Previously, we copied all these memory in preparing stage of COLO 3995 * while we need to stop VM, which is a time-consuming process. 3996 * Here we optimize it by a trick, back-up every page while in 3997 * migration process while COLO is enabled, though it affects the 3998 * speed of the migration, but it obviously reduce the downtime of 3999 * back-up all SVM'S memory in COLO preparing stage. 4000 */ 4001 if (migration_incoming_colo_enabled()) { 4002 if (migration_incoming_in_colo_state()) { 4003 /* In COLO stage, put all pages into cache temporarily */ 4004 host = colo_cache_from_block_offset(block, addr, true); 4005 } else { 4006 /* 4007 * In migration stage but before COLO stage, 4008 * Put all pages into both cache and SVM's memory. 4009 */ 4010 host_bak = colo_cache_from_block_offset(block, addr, false); 4011 } 4012 } 4013 if (!host) { 4014 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr); 4015 ret = -EINVAL; 4016 break; 4017 } 4018 if (!migration_incoming_in_colo_state()) { 4019 ramblock_recv_bitmap_set(block, host); 4020 } 4021 4022 trace_ram_load_loop(block->idstr, (uint64_t)addr, flags, host); 4023 } 4024 4025 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) { 4026 case RAM_SAVE_FLAG_MEM_SIZE: 4027 ret = parse_ramblocks(f, addr); 4028 break; 4029 4030 case RAM_SAVE_FLAG_ZERO: 4031 ch = qemu_get_byte(f); 4032 ram_handle_compressed(host, ch, TARGET_PAGE_SIZE); 4033 break; 4034 4035 case RAM_SAVE_FLAG_PAGE: 4036 qemu_get_buffer(f, host, TARGET_PAGE_SIZE); 4037 break; 4038 4039 case RAM_SAVE_FLAG_COMPRESS_PAGE: 4040 len = qemu_get_be32(f); 4041 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) { 4042 error_report("Invalid compressed data length: %d", len); 4043 ret = -EINVAL; 4044 break; 4045 } 4046 decompress_data_with_multi_threads(f, host, len); 4047 break; 4048 4049 case RAM_SAVE_FLAG_XBZRLE: 4050 if (load_xbzrle(f, addr, host) < 0) { 4051 error_report("Failed to decompress XBZRLE page at " 4052 RAM_ADDR_FMT, addr); 4053 ret = -EINVAL; 4054 break; 4055 } 4056 break; 4057 case RAM_SAVE_FLAG_MULTIFD_FLUSH: 4058 multifd_recv_sync_main(); 4059 break; 4060 case RAM_SAVE_FLAG_EOS: 4061 /* normal exit */ 4062 if (migrate_multifd() && 4063 migrate_multifd_flush_after_each_section()) { 4064 multifd_recv_sync_main(); 4065 } 4066 break; 4067 case RAM_SAVE_FLAG_HOOK: 4068 ret = rdma_registration_handle(f); 4069 if (ret < 0) { 4070 qemu_file_set_error(f, ret); 4071 } 4072 break; 4073 default: 4074 error_report("Unknown combination of migration flags: 0x%x", flags); 4075 ret = -EINVAL; 4076 } 4077 if (!ret) { 4078 ret = qemu_file_get_error(f); 4079 } 4080 if (!ret && host_bak) { 4081 memcpy(host_bak, host, TARGET_PAGE_SIZE); 4082 } 4083 } 4084 4085 ret |= wait_for_decompress_done(); 4086 return ret; 4087 } 4088 4089 static int ram_load(QEMUFile *f, void *opaque, int version_id) 4090 { 4091 int ret = 0; 4092 static uint64_t seq_iter; 4093 /* 4094 * If system is running in postcopy mode, page inserts to host memory must 4095 * be atomic 4096 */ 4097 bool postcopy_running = postcopy_is_running(); 4098 4099 seq_iter++; 4100 4101 if (version_id != 4) { 4102 return -EINVAL; 4103 } 4104 4105 /* 4106 * This RCU critical section can be very long running. 4107 * When RCU reclaims in the code start to become numerous, 4108 * it will be necessary to reduce the granularity of this 4109 * critical section. 4110 */ 4111 WITH_RCU_READ_LOCK_GUARD() { 4112 if (postcopy_running) { 4113 /* 4114 * Note! Here RAM_CHANNEL_PRECOPY is the precopy channel of 4115 * postcopy migration, we have another RAM_CHANNEL_POSTCOPY to 4116 * service fast page faults. 4117 */ 4118 ret = ram_load_postcopy(f, RAM_CHANNEL_PRECOPY); 4119 } else { 4120 ret = ram_load_precopy(f); 4121 } 4122 } 4123 trace_ram_load_complete(ret, seq_iter); 4124 4125 return ret; 4126 } 4127 4128 static bool ram_has_postcopy(void *opaque) 4129 { 4130 RAMBlock *rb; 4131 RAMBLOCK_FOREACH_NOT_IGNORED(rb) { 4132 if (ramblock_is_pmem(rb)) { 4133 info_report("Block: %s, host: %p is a nvdimm memory, postcopy" 4134 "is not supported now!", rb->idstr, rb->host); 4135 return false; 4136 } 4137 } 4138 4139 return migrate_postcopy_ram(); 4140 } 4141 4142 /* Sync all the dirty bitmap with destination VM. */ 4143 static int ram_dirty_bitmap_sync_all(MigrationState *s, RAMState *rs) 4144 { 4145 RAMBlock *block; 4146 QEMUFile *file = s->to_dst_file; 4147 4148 trace_ram_dirty_bitmap_sync_start(); 4149 4150 qatomic_set(&rs->postcopy_bmap_sync_requested, 0); 4151 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 4152 qemu_savevm_send_recv_bitmap(file, block->idstr); 4153 trace_ram_dirty_bitmap_request(block->idstr); 4154 qatomic_inc(&rs->postcopy_bmap_sync_requested); 4155 } 4156 4157 trace_ram_dirty_bitmap_sync_wait(); 4158 4159 /* Wait until all the ramblocks' dirty bitmap synced */ 4160 while (qatomic_read(&rs->postcopy_bmap_sync_requested)) { 4161 migration_rp_wait(s); 4162 } 4163 4164 trace_ram_dirty_bitmap_sync_complete(); 4165 4166 return 0; 4167 } 4168 4169 /* 4170 * Read the received bitmap, revert it as the initial dirty bitmap. 4171 * This is only used when the postcopy migration is paused but wants 4172 * to resume from a middle point. 4173 */ 4174 int ram_dirty_bitmap_reload(MigrationState *s, RAMBlock *block) 4175 { 4176 int ret = -EINVAL; 4177 /* from_dst_file is always valid because we're within rp_thread */ 4178 QEMUFile *file = s->rp_state.from_dst_file; 4179 g_autofree unsigned long *le_bitmap = NULL; 4180 unsigned long nbits = block->used_length >> TARGET_PAGE_BITS; 4181 uint64_t local_size = DIV_ROUND_UP(nbits, 8); 4182 uint64_t size, end_mark; 4183 RAMState *rs = ram_state; 4184 4185 trace_ram_dirty_bitmap_reload_begin(block->idstr); 4186 4187 if (s->state != MIGRATION_STATUS_POSTCOPY_RECOVER) { 4188 error_report("%s: incorrect state %s", __func__, 4189 MigrationStatus_str(s->state)); 4190 return -EINVAL; 4191 } 4192 4193 /* 4194 * Note: see comments in ramblock_recv_bitmap_send() on why we 4195 * need the endianness conversion, and the paddings. 4196 */ 4197 local_size = ROUND_UP(local_size, 8); 4198 4199 /* Add paddings */ 4200 le_bitmap = bitmap_new(nbits + BITS_PER_LONG); 4201 4202 size = qemu_get_be64(file); 4203 4204 /* The size of the bitmap should match with our ramblock */ 4205 if (size != local_size) { 4206 error_report("%s: ramblock '%s' bitmap size mismatch " 4207 "(0x%"PRIx64" != 0x%"PRIx64")", __func__, 4208 block->idstr, size, local_size); 4209 return -EINVAL; 4210 } 4211 4212 size = qemu_get_buffer(file, (uint8_t *)le_bitmap, local_size); 4213 end_mark = qemu_get_be64(file); 4214 4215 ret = qemu_file_get_error(file); 4216 if (ret || size != local_size) { 4217 error_report("%s: read bitmap failed for ramblock '%s': %d" 4218 " (size 0x%"PRIx64", got: 0x%"PRIx64")", 4219 __func__, block->idstr, ret, local_size, size); 4220 return -EIO; 4221 } 4222 4223 if (end_mark != RAMBLOCK_RECV_BITMAP_ENDING) { 4224 error_report("%s: ramblock '%s' end mark incorrect: 0x%"PRIx64, 4225 __func__, block->idstr, end_mark); 4226 return -EINVAL; 4227 } 4228 4229 /* 4230 * Endianness conversion. We are during postcopy (though paused). 4231 * The dirty bitmap won't change. We can directly modify it. 4232 */ 4233 bitmap_from_le(block->bmap, le_bitmap, nbits); 4234 4235 /* 4236 * What we received is "received bitmap". Revert it as the initial 4237 * dirty bitmap for this ramblock. 4238 */ 4239 bitmap_complement(block->bmap, block->bmap, nbits); 4240 4241 /* Clear dirty bits of discarded ranges that we don't want to migrate. */ 4242 ramblock_dirty_bitmap_clear_discarded_pages(block); 4243 4244 /* We'll recalculate migration_dirty_pages in ram_state_resume_prepare(). */ 4245 trace_ram_dirty_bitmap_reload_complete(block->idstr); 4246 4247 qatomic_dec(&rs->postcopy_bmap_sync_requested); 4248 4249 /* 4250 * We succeeded to sync bitmap for current ramblock. Always kick the 4251 * migration thread to check whether all requested bitmaps are 4252 * reloaded. NOTE: it's racy to only kick when requested==0, because 4253 * we don't know whether the migration thread may still be increasing 4254 * it. 4255 */ 4256 migration_rp_kick(s); 4257 4258 return 0; 4259 } 4260 4261 static int ram_resume_prepare(MigrationState *s, void *opaque) 4262 { 4263 RAMState *rs = *(RAMState **)opaque; 4264 int ret; 4265 4266 ret = ram_dirty_bitmap_sync_all(s, rs); 4267 if (ret) { 4268 return ret; 4269 } 4270 4271 ram_state_resume_prepare(rs, s->to_dst_file); 4272 4273 return 0; 4274 } 4275 4276 void postcopy_preempt_shutdown_file(MigrationState *s) 4277 { 4278 qemu_put_be64(s->postcopy_qemufile_src, RAM_SAVE_FLAG_EOS); 4279 qemu_fflush(s->postcopy_qemufile_src); 4280 } 4281 4282 static SaveVMHandlers savevm_ram_handlers = { 4283 .save_setup = ram_save_setup, 4284 .save_live_iterate = ram_save_iterate, 4285 .save_live_complete_postcopy = ram_save_complete, 4286 .save_live_complete_precopy = ram_save_complete, 4287 .has_postcopy = ram_has_postcopy, 4288 .state_pending_exact = ram_state_pending_exact, 4289 .state_pending_estimate = ram_state_pending_estimate, 4290 .load_state = ram_load, 4291 .save_cleanup = ram_save_cleanup, 4292 .load_setup = ram_load_setup, 4293 .load_cleanup = ram_load_cleanup, 4294 .resume_prepare = ram_resume_prepare, 4295 }; 4296 4297 static void ram_mig_ram_block_resized(RAMBlockNotifier *n, void *host, 4298 size_t old_size, size_t new_size) 4299 { 4300 PostcopyState ps = postcopy_state_get(); 4301 ram_addr_t offset; 4302 RAMBlock *rb = qemu_ram_block_from_host(host, false, &offset); 4303 Error *err = NULL; 4304 4305 if (!rb) { 4306 error_report("RAM block not found"); 4307 return; 4308 } 4309 4310 if (migrate_ram_is_ignored(rb)) { 4311 return; 4312 } 4313 4314 if (!migration_is_idle()) { 4315 /* 4316 * Precopy code on the source cannot deal with the size of RAM blocks 4317 * changing at random points in time - especially after sending the 4318 * RAM block sizes in the migration stream, they must no longer change. 4319 * Abort and indicate a proper reason. 4320 */ 4321 error_setg(&err, "RAM block '%s' resized during precopy.", rb->idstr); 4322 migration_cancel(err); 4323 error_free(err); 4324 } 4325 4326 switch (ps) { 4327 case POSTCOPY_INCOMING_ADVISE: 4328 /* 4329 * Update what ram_postcopy_incoming_init()->init_range() does at the 4330 * time postcopy was advised. Syncing RAM blocks with the source will 4331 * result in RAM resizes. 4332 */ 4333 if (old_size < new_size) { 4334 if (ram_discard_range(rb->idstr, old_size, new_size - old_size)) { 4335 error_report("RAM block '%s' discard of resized RAM failed", 4336 rb->idstr); 4337 } 4338 } 4339 rb->postcopy_length = new_size; 4340 break; 4341 case POSTCOPY_INCOMING_NONE: 4342 case POSTCOPY_INCOMING_RUNNING: 4343 case POSTCOPY_INCOMING_END: 4344 /* 4345 * Once our guest is running, postcopy does no longer care about 4346 * resizes. When growing, the new memory was not available on the 4347 * source, no handler needed. 4348 */ 4349 break; 4350 default: 4351 error_report("RAM block '%s' resized during postcopy state: %d", 4352 rb->idstr, ps); 4353 exit(-1); 4354 } 4355 } 4356 4357 static RAMBlockNotifier ram_mig_ram_notifier = { 4358 .ram_block_resized = ram_mig_ram_block_resized, 4359 }; 4360 4361 void ram_mig_init(void) 4362 { 4363 qemu_mutex_init(&XBZRLE.lock); 4364 register_savevm_live("ram", 0, 4, &savevm_ram_handlers, &ram_state); 4365 ram_block_notifier_add(&ram_mig_ram_notifier); 4366 } 4367