1 /* 2 * QEMU System Emulator 3 * 4 * Copyright (c) 2003-2008 Fabrice Bellard 5 * Copyright (c) 2011-2015 Red Hat Inc 6 * 7 * Authors: 8 * Juan Quintela <quintela@redhat.com> 9 * 10 * Permission is hereby granted, free of charge, to any person obtaining a copy 11 * of this software and associated documentation files (the "Software"), to deal 12 * in the Software without restriction, including without limitation the rights 13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 14 * copies of the Software, and to permit persons to whom the Software is 15 * furnished to do so, subject to the following conditions: 16 * 17 * The above copyright notice and this permission notice shall be included in 18 * all copies or substantial portions of the Software. 19 * 20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 26 * THE SOFTWARE. 27 */ 28 29 #include "qemu/osdep.h" 30 #include "cpu.h" 31 #include <zlib.h> 32 #include "qemu/cutils.h" 33 #include "qemu/bitops.h" 34 #include "qemu/bitmap.h" 35 #include "qemu/main-loop.h" 36 #include "qemu/pmem.h" 37 #include "xbzrle.h" 38 #include "ram.h" 39 #include "migration.h" 40 #include "socket.h" 41 #include "migration/register.h" 42 #include "migration/misc.h" 43 #include "qemu-file.h" 44 #include "postcopy-ram.h" 45 #include "page_cache.h" 46 #include "qemu/error-report.h" 47 #include "qapi/error.h" 48 #include "qapi/qapi-events-migration.h" 49 #include "qapi/qmp/qerror.h" 50 #include "trace.h" 51 #include "exec/ram_addr.h" 52 #include "exec/target_page.h" 53 #include "qemu/rcu_queue.h" 54 #include "migration/colo.h" 55 #include "block.h" 56 #include "sysemu/sysemu.h" 57 #include "qemu/uuid.h" 58 #include "savevm.h" 59 #include "qemu/iov.h" 60 61 /***********************************************************/ 62 /* ram save/restore */ 63 64 /* RAM_SAVE_FLAG_ZERO used to be named RAM_SAVE_FLAG_COMPRESS, it 65 * worked for pages that where filled with the same char. We switched 66 * it to only search for the zero value. And to avoid confusion with 67 * RAM_SSAVE_FLAG_COMPRESS_PAGE just rename it. 68 */ 69 70 #define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */ 71 #define RAM_SAVE_FLAG_ZERO 0x02 72 #define RAM_SAVE_FLAG_MEM_SIZE 0x04 73 #define RAM_SAVE_FLAG_PAGE 0x08 74 #define RAM_SAVE_FLAG_EOS 0x10 75 #define RAM_SAVE_FLAG_CONTINUE 0x20 76 #define RAM_SAVE_FLAG_XBZRLE 0x40 77 /* 0x80 is reserved in migration.h start with 0x100 next */ 78 #define RAM_SAVE_FLAG_COMPRESS_PAGE 0x100 79 80 static inline bool is_zero_range(uint8_t *p, uint64_t size) 81 { 82 return buffer_is_zero(p, size); 83 } 84 85 XBZRLECacheStats xbzrle_counters; 86 87 /* struct contains XBZRLE cache and a static page 88 used by the compression */ 89 static struct { 90 /* buffer used for XBZRLE encoding */ 91 uint8_t *encoded_buf; 92 /* buffer for storing page content */ 93 uint8_t *current_buf; 94 /* Cache for XBZRLE, Protected by lock. */ 95 PageCache *cache; 96 QemuMutex lock; 97 /* it will store a page full of zeros */ 98 uint8_t *zero_target_page; 99 /* buffer used for XBZRLE decoding */ 100 uint8_t *decoded_buf; 101 } XBZRLE; 102 103 static void XBZRLE_cache_lock(void) 104 { 105 if (migrate_use_xbzrle()) 106 qemu_mutex_lock(&XBZRLE.lock); 107 } 108 109 static void XBZRLE_cache_unlock(void) 110 { 111 if (migrate_use_xbzrle()) 112 qemu_mutex_unlock(&XBZRLE.lock); 113 } 114 115 /** 116 * xbzrle_cache_resize: resize the xbzrle cache 117 * 118 * This function is called from qmp_migrate_set_cache_size in main 119 * thread, possibly while a migration is in progress. A running 120 * migration may be using the cache and might finish during this call, 121 * hence changes to the cache are protected by XBZRLE.lock(). 122 * 123 * Returns 0 for success or -1 for error 124 * 125 * @new_size: new cache size 126 * @errp: set *errp if the check failed, with reason 127 */ 128 int xbzrle_cache_resize(int64_t new_size, Error **errp) 129 { 130 PageCache *new_cache; 131 int64_t ret = 0; 132 133 /* Check for truncation */ 134 if (new_size != (size_t)new_size) { 135 error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cache size", 136 "exceeding address space"); 137 return -1; 138 } 139 140 if (new_size == migrate_xbzrle_cache_size()) { 141 /* nothing to do */ 142 return 0; 143 } 144 145 XBZRLE_cache_lock(); 146 147 if (XBZRLE.cache != NULL) { 148 new_cache = cache_init(new_size, TARGET_PAGE_SIZE, errp); 149 if (!new_cache) { 150 ret = -1; 151 goto out; 152 } 153 154 cache_fini(XBZRLE.cache); 155 XBZRLE.cache = new_cache; 156 } 157 out: 158 XBZRLE_cache_unlock(); 159 return ret; 160 } 161 162 static bool ramblock_is_ignored(RAMBlock *block) 163 { 164 return !qemu_ram_is_migratable(block) || 165 (migrate_ignore_shared() && qemu_ram_is_shared(block)); 166 } 167 168 /* Should be holding either ram_list.mutex, or the RCU lock. */ 169 #define RAMBLOCK_FOREACH_NOT_IGNORED(block) \ 170 INTERNAL_RAMBLOCK_FOREACH(block) \ 171 if (ramblock_is_ignored(block)) {} else 172 173 #define RAMBLOCK_FOREACH_MIGRATABLE(block) \ 174 INTERNAL_RAMBLOCK_FOREACH(block) \ 175 if (!qemu_ram_is_migratable(block)) {} else 176 177 #undef RAMBLOCK_FOREACH 178 179 int foreach_not_ignored_block(RAMBlockIterFunc func, void *opaque) 180 { 181 RAMBlock *block; 182 int ret = 0; 183 184 rcu_read_lock(); 185 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 186 ret = func(block, opaque); 187 if (ret) { 188 break; 189 } 190 } 191 rcu_read_unlock(); 192 return ret; 193 } 194 195 static void ramblock_recv_map_init(void) 196 { 197 RAMBlock *rb; 198 199 RAMBLOCK_FOREACH_NOT_IGNORED(rb) { 200 assert(!rb->receivedmap); 201 rb->receivedmap = bitmap_new(rb->max_length >> qemu_target_page_bits()); 202 } 203 } 204 205 int ramblock_recv_bitmap_test(RAMBlock *rb, void *host_addr) 206 { 207 return test_bit(ramblock_recv_bitmap_offset(host_addr, rb), 208 rb->receivedmap); 209 } 210 211 bool ramblock_recv_bitmap_test_byte_offset(RAMBlock *rb, uint64_t byte_offset) 212 { 213 return test_bit(byte_offset >> TARGET_PAGE_BITS, rb->receivedmap); 214 } 215 216 void ramblock_recv_bitmap_set(RAMBlock *rb, void *host_addr) 217 { 218 set_bit_atomic(ramblock_recv_bitmap_offset(host_addr, rb), rb->receivedmap); 219 } 220 221 void ramblock_recv_bitmap_set_range(RAMBlock *rb, void *host_addr, 222 size_t nr) 223 { 224 bitmap_set_atomic(rb->receivedmap, 225 ramblock_recv_bitmap_offset(host_addr, rb), 226 nr); 227 } 228 229 #define RAMBLOCK_RECV_BITMAP_ENDING (0x0123456789abcdefULL) 230 231 /* 232 * Format: bitmap_size (8 bytes) + whole_bitmap (N bytes). 233 * 234 * Returns >0 if success with sent bytes, or <0 if error. 235 */ 236 int64_t ramblock_recv_bitmap_send(QEMUFile *file, 237 const char *block_name) 238 { 239 RAMBlock *block = qemu_ram_block_by_name(block_name); 240 unsigned long *le_bitmap, nbits; 241 uint64_t size; 242 243 if (!block) { 244 error_report("%s: invalid block name: %s", __func__, block_name); 245 return -1; 246 } 247 248 nbits = block->used_length >> TARGET_PAGE_BITS; 249 250 /* 251 * Make sure the tmp bitmap buffer is big enough, e.g., on 32bit 252 * machines we may need 4 more bytes for padding (see below 253 * comment). So extend it a bit before hand. 254 */ 255 le_bitmap = bitmap_new(nbits + BITS_PER_LONG); 256 257 /* 258 * Always use little endian when sending the bitmap. This is 259 * required that when source and destination VMs are not using the 260 * same endianess. (Note: big endian won't work.) 261 */ 262 bitmap_to_le(le_bitmap, block->receivedmap, nbits); 263 264 /* Size of the bitmap, in bytes */ 265 size = DIV_ROUND_UP(nbits, 8); 266 267 /* 268 * size is always aligned to 8 bytes for 64bit machines, but it 269 * may not be true for 32bit machines. We need this padding to 270 * make sure the migration can survive even between 32bit and 271 * 64bit machines. 272 */ 273 size = ROUND_UP(size, 8); 274 275 qemu_put_be64(file, size); 276 qemu_put_buffer(file, (const uint8_t *)le_bitmap, size); 277 /* 278 * Mark as an end, in case the middle part is screwed up due to 279 * some "misterious" reason. 280 */ 281 qemu_put_be64(file, RAMBLOCK_RECV_BITMAP_ENDING); 282 qemu_fflush(file); 283 284 g_free(le_bitmap); 285 286 if (qemu_file_get_error(file)) { 287 return qemu_file_get_error(file); 288 } 289 290 return size + sizeof(size); 291 } 292 293 /* 294 * An outstanding page request, on the source, having been received 295 * and queued 296 */ 297 struct RAMSrcPageRequest { 298 RAMBlock *rb; 299 hwaddr offset; 300 hwaddr len; 301 302 QSIMPLEQ_ENTRY(RAMSrcPageRequest) next_req; 303 }; 304 305 /* State of RAM for migration */ 306 struct RAMState { 307 /* QEMUFile used for this migration */ 308 QEMUFile *f; 309 /* Last block that we have visited searching for dirty pages */ 310 RAMBlock *last_seen_block; 311 /* Last block from where we have sent data */ 312 RAMBlock *last_sent_block; 313 /* Last dirty target page we have sent */ 314 ram_addr_t last_page; 315 /* last ram version we have seen */ 316 uint32_t last_version; 317 /* We are in the first round */ 318 bool ram_bulk_stage; 319 /* The free page optimization is enabled */ 320 bool fpo_enabled; 321 /* How many times we have dirty too many pages */ 322 int dirty_rate_high_cnt; 323 /* these variables are used for bitmap sync */ 324 /* last time we did a full bitmap_sync */ 325 int64_t time_last_bitmap_sync; 326 /* bytes transferred at start_time */ 327 uint64_t bytes_xfer_prev; 328 /* number of dirty pages since start_time */ 329 uint64_t num_dirty_pages_period; 330 /* xbzrle misses since the beginning of the period */ 331 uint64_t xbzrle_cache_miss_prev; 332 333 /* compression statistics since the beginning of the period */ 334 /* amount of count that no free thread to compress data */ 335 uint64_t compress_thread_busy_prev; 336 /* amount bytes after compression */ 337 uint64_t compressed_size_prev; 338 /* amount of compressed pages */ 339 uint64_t compress_pages_prev; 340 341 /* total handled target pages at the beginning of period */ 342 uint64_t target_page_count_prev; 343 /* total handled target pages since start */ 344 uint64_t target_page_count; 345 /* number of dirty bits in the bitmap */ 346 uint64_t migration_dirty_pages; 347 /* Protects modification of the bitmap and migration dirty pages */ 348 QemuMutex bitmap_mutex; 349 /* The RAMBlock used in the last src_page_requests */ 350 RAMBlock *last_req_rb; 351 /* Queue of outstanding page requests from the destination */ 352 QemuMutex src_page_req_mutex; 353 QSIMPLEQ_HEAD(, RAMSrcPageRequest) src_page_requests; 354 }; 355 typedef struct RAMState RAMState; 356 357 static RAMState *ram_state; 358 359 static NotifierWithReturnList precopy_notifier_list; 360 361 void precopy_infrastructure_init(void) 362 { 363 notifier_with_return_list_init(&precopy_notifier_list); 364 } 365 366 void precopy_add_notifier(NotifierWithReturn *n) 367 { 368 notifier_with_return_list_add(&precopy_notifier_list, n); 369 } 370 371 void precopy_remove_notifier(NotifierWithReturn *n) 372 { 373 notifier_with_return_remove(n); 374 } 375 376 int precopy_notify(PrecopyNotifyReason reason, Error **errp) 377 { 378 PrecopyNotifyData pnd; 379 pnd.reason = reason; 380 pnd.errp = errp; 381 382 return notifier_with_return_list_notify(&precopy_notifier_list, &pnd); 383 } 384 385 void precopy_enable_free_page_optimization(void) 386 { 387 if (!ram_state) { 388 return; 389 } 390 391 ram_state->fpo_enabled = true; 392 } 393 394 uint64_t ram_bytes_remaining(void) 395 { 396 return ram_state ? (ram_state->migration_dirty_pages * TARGET_PAGE_SIZE) : 397 0; 398 } 399 400 MigrationStats ram_counters; 401 402 /* used by the search for pages to send */ 403 struct PageSearchStatus { 404 /* Current block being searched */ 405 RAMBlock *block; 406 /* Current page to search from */ 407 unsigned long page; 408 /* Set once we wrap around */ 409 bool complete_round; 410 }; 411 typedef struct PageSearchStatus PageSearchStatus; 412 413 CompressionStats compression_counters; 414 415 struct CompressParam { 416 bool done; 417 bool quit; 418 bool zero_page; 419 QEMUFile *file; 420 QemuMutex mutex; 421 QemuCond cond; 422 RAMBlock *block; 423 ram_addr_t offset; 424 425 /* internally used fields */ 426 z_stream stream; 427 uint8_t *originbuf; 428 }; 429 typedef struct CompressParam CompressParam; 430 431 struct DecompressParam { 432 bool done; 433 bool quit; 434 QemuMutex mutex; 435 QemuCond cond; 436 void *des; 437 uint8_t *compbuf; 438 int len; 439 z_stream stream; 440 }; 441 typedef struct DecompressParam DecompressParam; 442 443 static CompressParam *comp_param; 444 static QemuThread *compress_threads; 445 /* comp_done_cond is used to wake up the migration thread when 446 * one of the compression threads has finished the compression. 447 * comp_done_lock is used to co-work with comp_done_cond. 448 */ 449 static QemuMutex comp_done_lock; 450 static QemuCond comp_done_cond; 451 /* The empty QEMUFileOps will be used by file in CompressParam */ 452 static const QEMUFileOps empty_ops = { }; 453 454 static QEMUFile *decomp_file; 455 static DecompressParam *decomp_param; 456 static QemuThread *decompress_threads; 457 static QemuMutex decomp_done_lock; 458 static QemuCond decomp_done_cond; 459 460 static bool do_compress_ram_page(QEMUFile *f, z_stream *stream, RAMBlock *block, 461 ram_addr_t offset, uint8_t *source_buf); 462 463 static void *do_data_compress(void *opaque) 464 { 465 CompressParam *param = opaque; 466 RAMBlock *block; 467 ram_addr_t offset; 468 bool zero_page; 469 470 qemu_mutex_lock(¶m->mutex); 471 while (!param->quit) { 472 if (param->block) { 473 block = param->block; 474 offset = param->offset; 475 param->block = NULL; 476 qemu_mutex_unlock(¶m->mutex); 477 478 zero_page = do_compress_ram_page(param->file, ¶m->stream, 479 block, offset, param->originbuf); 480 481 qemu_mutex_lock(&comp_done_lock); 482 param->done = true; 483 param->zero_page = zero_page; 484 qemu_cond_signal(&comp_done_cond); 485 qemu_mutex_unlock(&comp_done_lock); 486 487 qemu_mutex_lock(¶m->mutex); 488 } else { 489 qemu_cond_wait(¶m->cond, ¶m->mutex); 490 } 491 } 492 qemu_mutex_unlock(¶m->mutex); 493 494 return NULL; 495 } 496 497 static void compress_threads_save_cleanup(void) 498 { 499 int i, thread_count; 500 501 if (!migrate_use_compression() || !comp_param) { 502 return; 503 } 504 505 thread_count = migrate_compress_threads(); 506 for (i = 0; i < thread_count; i++) { 507 /* 508 * we use it as a indicator which shows if the thread is 509 * properly init'd or not 510 */ 511 if (!comp_param[i].file) { 512 break; 513 } 514 515 qemu_mutex_lock(&comp_param[i].mutex); 516 comp_param[i].quit = true; 517 qemu_cond_signal(&comp_param[i].cond); 518 qemu_mutex_unlock(&comp_param[i].mutex); 519 520 qemu_thread_join(compress_threads + i); 521 qemu_mutex_destroy(&comp_param[i].mutex); 522 qemu_cond_destroy(&comp_param[i].cond); 523 deflateEnd(&comp_param[i].stream); 524 g_free(comp_param[i].originbuf); 525 qemu_fclose(comp_param[i].file); 526 comp_param[i].file = NULL; 527 } 528 qemu_mutex_destroy(&comp_done_lock); 529 qemu_cond_destroy(&comp_done_cond); 530 g_free(compress_threads); 531 g_free(comp_param); 532 compress_threads = NULL; 533 comp_param = NULL; 534 } 535 536 static int compress_threads_save_setup(void) 537 { 538 int i, thread_count; 539 540 if (!migrate_use_compression()) { 541 return 0; 542 } 543 thread_count = migrate_compress_threads(); 544 compress_threads = g_new0(QemuThread, thread_count); 545 comp_param = g_new0(CompressParam, thread_count); 546 qemu_cond_init(&comp_done_cond); 547 qemu_mutex_init(&comp_done_lock); 548 for (i = 0; i < thread_count; i++) { 549 comp_param[i].originbuf = g_try_malloc(TARGET_PAGE_SIZE); 550 if (!comp_param[i].originbuf) { 551 goto exit; 552 } 553 554 if (deflateInit(&comp_param[i].stream, 555 migrate_compress_level()) != Z_OK) { 556 g_free(comp_param[i].originbuf); 557 goto exit; 558 } 559 560 /* comp_param[i].file is just used as a dummy buffer to save data, 561 * set its ops to empty. 562 */ 563 comp_param[i].file = qemu_fopen_ops(NULL, &empty_ops); 564 comp_param[i].done = true; 565 comp_param[i].quit = false; 566 qemu_mutex_init(&comp_param[i].mutex); 567 qemu_cond_init(&comp_param[i].cond); 568 qemu_thread_create(compress_threads + i, "compress", 569 do_data_compress, comp_param + i, 570 QEMU_THREAD_JOINABLE); 571 } 572 return 0; 573 574 exit: 575 compress_threads_save_cleanup(); 576 return -1; 577 } 578 579 /* Multiple fd's */ 580 581 #define MULTIFD_MAGIC 0x11223344U 582 #define MULTIFD_VERSION 1 583 584 #define MULTIFD_FLAG_SYNC (1 << 0) 585 586 /* This value needs to be a multiple of qemu_target_page_size() */ 587 #define MULTIFD_PACKET_SIZE (512 * 1024) 588 589 typedef struct { 590 uint32_t magic; 591 uint32_t version; 592 unsigned char uuid[16]; /* QemuUUID */ 593 uint8_t id; 594 uint8_t unused1[7]; /* Reserved for future use */ 595 uint64_t unused2[4]; /* Reserved for future use */ 596 } __attribute__((packed)) MultiFDInit_t; 597 598 typedef struct { 599 uint32_t magic; 600 uint32_t version; 601 uint32_t flags; 602 /* maximum number of allocated pages */ 603 uint32_t pages_alloc; 604 uint32_t pages_used; 605 /* size of the next packet that contains pages */ 606 uint32_t next_packet_size; 607 uint64_t packet_num; 608 uint64_t unused[4]; /* Reserved for future use */ 609 char ramblock[256]; 610 uint64_t offset[]; 611 } __attribute__((packed)) MultiFDPacket_t; 612 613 typedef struct { 614 /* number of used pages */ 615 uint32_t used; 616 /* number of allocated pages */ 617 uint32_t allocated; 618 /* global number of generated multifd packets */ 619 uint64_t packet_num; 620 /* offset of each page */ 621 ram_addr_t *offset; 622 /* pointer to each page */ 623 struct iovec *iov; 624 RAMBlock *block; 625 } MultiFDPages_t; 626 627 typedef struct { 628 /* this fields are not changed once the thread is created */ 629 /* channel number */ 630 uint8_t id; 631 /* channel thread name */ 632 char *name; 633 /* channel thread id */ 634 QemuThread thread; 635 /* communication channel */ 636 QIOChannel *c; 637 /* sem where to wait for more work */ 638 QemuSemaphore sem; 639 /* this mutex protects the following parameters */ 640 QemuMutex mutex; 641 /* is this channel thread running */ 642 bool running; 643 /* should this thread finish */ 644 bool quit; 645 /* thread has work to do */ 646 int pending_job; 647 /* array of pages to sent */ 648 MultiFDPages_t *pages; 649 /* packet allocated len */ 650 uint32_t packet_len; 651 /* pointer to the packet */ 652 MultiFDPacket_t *packet; 653 /* multifd flags for each packet */ 654 uint32_t flags; 655 /* size of the next packet that contains pages */ 656 uint32_t next_packet_size; 657 /* global number of generated multifd packets */ 658 uint64_t packet_num; 659 /* thread local variables */ 660 /* packets sent through this channel */ 661 uint64_t num_packets; 662 /* pages sent through this channel */ 663 uint64_t num_pages; 664 /* syncs main thread and channels */ 665 QemuSemaphore sem_sync; 666 } MultiFDSendParams; 667 668 typedef struct { 669 /* this fields are not changed once the thread is created */ 670 /* channel number */ 671 uint8_t id; 672 /* channel thread name */ 673 char *name; 674 /* channel thread id */ 675 QemuThread thread; 676 /* communication channel */ 677 QIOChannel *c; 678 /* this mutex protects the following parameters */ 679 QemuMutex mutex; 680 /* is this channel thread running */ 681 bool running; 682 /* array of pages to receive */ 683 MultiFDPages_t *pages; 684 /* packet allocated len */ 685 uint32_t packet_len; 686 /* pointer to the packet */ 687 MultiFDPacket_t *packet; 688 /* multifd flags for each packet */ 689 uint32_t flags; 690 /* global number of generated multifd packets */ 691 uint64_t packet_num; 692 /* thread local variables */ 693 /* size of the next packet that contains pages */ 694 uint32_t next_packet_size; 695 /* packets sent through this channel */ 696 uint64_t num_packets; 697 /* pages sent through this channel */ 698 uint64_t num_pages; 699 /* syncs main thread and channels */ 700 QemuSemaphore sem_sync; 701 } MultiFDRecvParams; 702 703 static int multifd_send_initial_packet(MultiFDSendParams *p, Error **errp) 704 { 705 MultiFDInit_t msg; 706 int ret; 707 708 msg.magic = cpu_to_be32(MULTIFD_MAGIC); 709 msg.version = cpu_to_be32(MULTIFD_VERSION); 710 msg.id = p->id; 711 memcpy(msg.uuid, &qemu_uuid.data, sizeof(msg.uuid)); 712 713 ret = qio_channel_write_all(p->c, (char *)&msg, sizeof(msg), errp); 714 if (ret != 0) { 715 return -1; 716 } 717 return 0; 718 } 719 720 static int multifd_recv_initial_packet(QIOChannel *c, Error **errp) 721 { 722 MultiFDInit_t msg; 723 int ret; 724 725 ret = qio_channel_read_all(c, (char *)&msg, sizeof(msg), errp); 726 if (ret != 0) { 727 return -1; 728 } 729 730 msg.magic = be32_to_cpu(msg.magic); 731 msg.version = be32_to_cpu(msg.version); 732 733 if (msg.magic != MULTIFD_MAGIC) { 734 error_setg(errp, "multifd: received packet magic %x " 735 "expected %x", msg.magic, MULTIFD_MAGIC); 736 return -1; 737 } 738 739 if (msg.version != MULTIFD_VERSION) { 740 error_setg(errp, "multifd: received packet version %d " 741 "expected %d", msg.version, MULTIFD_VERSION); 742 return -1; 743 } 744 745 if (memcmp(msg.uuid, &qemu_uuid, sizeof(qemu_uuid))) { 746 char *uuid = qemu_uuid_unparse_strdup(&qemu_uuid); 747 char *msg_uuid = qemu_uuid_unparse_strdup((const QemuUUID *)msg.uuid); 748 749 error_setg(errp, "multifd: received uuid '%s' and expected " 750 "uuid '%s' for channel %hhd", msg_uuid, uuid, msg.id); 751 g_free(uuid); 752 g_free(msg_uuid); 753 return -1; 754 } 755 756 if (msg.id > migrate_multifd_channels()) { 757 error_setg(errp, "multifd: received channel version %d " 758 "expected %d", msg.version, MULTIFD_VERSION); 759 return -1; 760 } 761 762 return msg.id; 763 } 764 765 static MultiFDPages_t *multifd_pages_init(size_t size) 766 { 767 MultiFDPages_t *pages = g_new0(MultiFDPages_t, 1); 768 769 pages->allocated = size; 770 pages->iov = g_new0(struct iovec, size); 771 pages->offset = g_new0(ram_addr_t, size); 772 773 return pages; 774 } 775 776 static void multifd_pages_clear(MultiFDPages_t *pages) 777 { 778 pages->used = 0; 779 pages->allocated = 0; 780 pages->packet_num = 0; 781 pages->block = NULL; 782 g_free(pages->iov); 783 pages->iov = NULL; 784 g_free(pages->offset); 785 pages->offset = NULL; 786 g_free(pages); 787 } 788 789 static void multifd_send_fill_packet(MultiFDSendParams *p) 790 { 791 MultiFDPacket_t *packet = p->packet; 792 uint32_t page_max = MULTIFD_PACKET_SIZE / qemu_target_page_size(); 793 int i; 794 795 packet->magic = cpu_to_be32(MULTIFD_MAGIC); 796 packet->version = cpu_to_be32(MULTIFD_VERSION); 797 packet->flags = cpu_to_be32(p->flags); 798 packet->pages_alloc = cpu_to_be32(page_max); 799 packet->pages_used = cpu_to_be32(p->pages->used); 800 packet->next_packet_size = cpu_to_be32(p->next_packet_size); 801 packet->packet_num = cpu_to_be64(p->packet_num); 802 803 if (p->pages->block) { 804 strncpy(packet->ramblock, p->pages->block->idstr, 256); 805 } 806 807 for (i = 0; i < p->pages->used; i++) { 808 packet->offset[i] = cpu_to_be64(p->pages->offset[i]); 809 } 810 } 811 812 static int multifd_recv_unfill_packet(MultiFDRecvParams *p, Error **errp) 813 { 814 MultiFDPacket_t *packet = p->packet; 815 uint32_t pages_max = MULTIFD_PACKET_SIZE / qemu_target_page_size(); 816 RAMBlock *block; 817 int i; 818 819 packet->magic = be32_to_cpu(packet->magic); 820 if (packet->magic != MULTIFD_MAGIC) { 821 error_setg(errp, "multifd: received packet " 822 "magic %x and expected magic %x", 823 packet->magic, MULTIFD_MAGIC); 824 return -1; 825 } 826 827 packet->version = be32_to_cpu(packet->version); 828 if (packet->version != MULTIFD_VERSION) { 829 error_setg(errp, "multifd: received packet " 830 "version %d and expected version %d", 831 packet->version, MULTIFD_VERSION); 832 return -1; 833 } 834 835 p->flags = be32_to_cpu(packet->flags); 836 837 packet->pages_alloc = be32_to_cpu(packet->pages_alloc); 838 /* 839 * If we recevied a packet that is 100 times bigger than expected 840 * just stop migration. It is a magic number. 841 */ 842 if (packet->pages_alloc > pages_max * 100) { 843 error_setg(errp, "multifd: received packet " 844 "with size %d and expected a maximum size of %d", 845 packet->pages_alloc, pages_max * 100) ; 846 return -1; 847 } 848 /* 849 * We received a packet that is bigger than expected but inside 850 * reasonable limits (see previous comment). Just reallocate. 851 */ 852 if (packet->pages_alloc > p->pages->allocated) { 853 multifd_pages_clear(p->pages); 854 p->pages = multifd_pages_init(packet->pages_alloc); 855 } 856 857 p->pages->used = be32_to_cpu(packet->pages_used); 858 if (p->pages->used > packet->pages_alloc) { 859 error_setg(errp, "multifd: received packet " 860 "with %d pages and expected maximum pages are %d", 861 p->pages->used, packet->pages_alloc) ; 862 return -1; 863 } 864 865 p->next_packet_size = be32_to_cpu(packet->next_packet_size); 866 p->packet_num = be64_to_cpu(packet->packet_num); 867 868 if (p->pages->used) { 869 /* make sure that ramblock is 0 terminated */ 870 packet->ramblock[255] = 0; 871 block = qemu_ram_block_by_name(packet->ramblock); 872 if (!block) { 873 error_setg(errp, "multifd: unknown ram block %s", 874 packet->ramblock); 875 return -1; 876 } 877 } 878 879 for (i = 0; i < p->pages->used; i++) { 880 ram_addr_t offset = be64_to_cpu(packet->offset[i]); 881 882 if (offset > (block->used_length - TARGET_PAGE_SIZE)) { 883 error_setg(errp, "multifd: offset too long " RAM_ADDR_FMT 884 " (max " RAM_ADDR_FMT ")", 885 offset, block->max_length); 886 return -1; 887 } 888 p->pages->iov[i].iov_base = block->host + offset; 889 p->pages->iov[i].iov_len = TARGET_PAGE_SIZE; 890 } 891 892 return 0; 893 } 894 895 struct { 896 MultiFDSendParams *params; 897 /* number of created threads */ 898 int count; 899 /* array of pages to sent */ 900 MultiFDPages_t *pages; 901 /* syncs main thread and channels */ 902 QemuSemaphore sem_sync; 903 /* global number of generated multifd packets */ 904 uint64_t packet_num; 905 /* send channels ready */ 906 QemuSemaphore channels_ready; 907 } *multifd_send_state; 908 909 /* 910 * How we use multifd_send_state->pages and channel->pages? 911 * 912 * We create a pages for each channel, and a main one. Each time that 913 * we need to send a batch of pages we interchange the ones between 914 * multifd_send_state and the channel that is sending it. There are 915 * two reasons for that: 916 * - to not have to do so many mallocs during migration 917 * - to make easier to know what to free at the end of migration 918 * 919 * This way we always know who is the owner of each "pages" struct, 920 * and we don't need any loocking. It belongs to the migration thread 921 * or to the channel thread. Switching is safe because the migration 922 * thread is using the channel mutex when changing it, and the channel 923 * have to had finish with its own, otherwise pending_job can't be 924 * false. 925 */ 926 927 static void multifd_send_pages(void) 928 { 929 int i; 930 static int next_channel; 931 MultiFDSendParams *p = NULL; /* make happy gcc */ 932 MultiFDPages_t *pages = multifd_send_state->pages; 933 uint64_t transferred; 934 935 qemu_sem_wait(&multifd_send_state->channels_ready); 936 for (i = next_channel;; i = (i + 1) % migrate_multifd_channels()) { 937 p = &multifd_send_state->params[i]; 938 939 qemu_mutex_lock(&p->mutex); 940 if (!p->pending_job) { 941 p->pending_job++; 942 next_channel = (i + 1) % migrate_multifd_channels(); 943 break; 944 } 945 qemu_mutex_unlock(&p->mutex); 946 } 947 p->pages->used = 0; 948 949 p->packet_num = multifd_send_state->packet_num++; 950 p->pages->block = NULL; 951 multifd_send_state->pages = p->pages; 952 p->pages = pages; 953 transferred = ((uint64_t) pages->used) * TARGET_PAGE_SIZE + p->packet_len; 954 ram_counters.multifd_bytes += transferred; 955 ram_counters.transferred += transferred;; 956 qemu_mutex_unlock(&p->mutex); 957 qemu_sem_post(&p->sem); 958 } 959 960 static void multifd_queue_page(RAMBlock *block, ram_addr_t offset) 961 { 962 MultiFDPages_t *pages = multifd_send_state->pages; 963 964 if (!pages->block) { 965 pages->block = block; 966 } 967 968 if (pages->block == block) { 969 pages->offset[pages->used] = offset; 970 pages->iov[pages->used].iov_base = block->host + offset; 971 pages->iov[pages->used].iov_len = TARGET_PAGE_SIZE; 972 pages->used++; 973 974 if (pages->used < pages->allocated) { 975 return; 976 } 977 } 978 979 multifd_send_pages(); 980 981 if (pages->block != block) { 982 multifd_queue_page(block, offset); 983 } 984 } 985 986 static void multifd_send_terminate_threads(Error *err) 987 { 988 int i; 989 990 if (err) { 991 MigrationState *s = migrate_get_current(); 992 migrate_set_error(s, err); 993 if (s->state == MIGRATION_STATUS_SETUP || 994 s->state == MIGRATION_STATUS_PRE_SWITCHOVER || 995 s->state == MIGRATION_STATUS_DEVICE || 996 s->state == MIGRATION_STATUS_ACTIVE) { 997 migrate_set_state(&s->state, s->state, 998 MIGRATION_STATUS_FAILED); 999 } 1000 } 1001 1002 for (i = 0; i < migrate_multifd_channels(); i++) { 1003 MultiFDSendParams *p = &multifd_send_state->params[i]; 1004 1005 qemu_mutex_lock(&p->mutex); 1006 p->quit = true; 1007 qemu_sem_post(&p->sem); 1008 qemu_mutex_unlock(&p->mutex); 1009 } 1010 } 1011 1012 void multifd_save_cleanup(void) 1013 { 1014 int i; 1015 1016 if (!migrate_use_multifd()) { 1017 return; 1018 } 1019 multifd_send_terminate_threads(NULL); 1020 for (i = 0; i < migrate_multifd_channels(); i++) { 1021 MultiFDSendParams *p = &multifd_send_state->params[i]; 1022 1023 if (p->running) { 1024 qemu_thread_join(&p->thread); 1025 } 1026 socket_send_channel_destroy(p->c); 1027 p->c = NULL; 1028 qemu_mutex_destroy(&p->mutex); 1029 qemu_sem_destroy(&p->sem); 1030 qemu_sem_destroy(&p->sem_sync); 1031 g_free(p->name); 1032 p->name = NULL; 1033 multifd_pages_clear(p->pages); 1034 p->pages = NULL; 1035 p->packet_len = 0; 1036 g_free(p->packet); 1037 p->packet = NULL; 1038 } 1039 qemu_sem_destroy(&multifd_send_state->channels_ready); 1040 qemu_sem_destroy(&multifd_send_state->sem_sync); 1041 g_free(multifd_send_state->params); 1042 multifd_send_state->params = NULL; 1043 multifd_pages_clear(multifd_send_state->pages); 1044 multifd_send_state->pages = NULL; 1045 g_free(multifd_send_state); 1046 multifd_send_state = NULL; 1047 } 1048 1049 static void multifd_send_sync_main(void) 1050 { 1051 int i; 1052 1053 if (!migrate_use_multifd()) { 1054 return; 1055 } 1056 if (multifd_send_state->pages->used) { 1057 multifd_send_pages(); 1058 } 1059 for (i = 0; i < migrate_multifd_channels(); i++) { 1060 MultiFDSendParams *p = &multifd_send_state->params[i]; 1061 1062 trace_multifd_send_sync_main_signal(p->id); 1063 1064 qemu_mutex_lock(&p->mutex); 1065 1066 p->packet_num = multifd_send_state->packet_num++; 1067 p->flags |= MULTIFD_FLAG_SYNC; 1068 p->pending_job++; 1069 qemu_mutex_unlock(&p->mutex); 1070 qemu_sem_post(&p->sem); 1071 } 1072 for (i = 0; i < migrate_multifd_channels(); i++) { 1073 MultiFDSendParams *p = &multifd_send_state->params[i]; 1074 1075 trace_multifd_send_sync_main_wait(p->id); 1076 qemu_sem_wait(&multifd_send_state->sem_sync); 1077 } 1078 trace_multifd_send_sync_main(multifd_send_state->packet_num); 1079 } 1080 1081 static void *multifd_send_thread(void *opaque) 1082 { 1083 MultiFDSendParams *p = opaque; 1084 Error *local_err = NULL; 1085 int ret; 1086 1087 trace_multifd_send_thread_start(p->id); 1088 rcu_register_thread(); 1089 1090 if (multifd_send_initial_packet(p, &local_err) < 0) { 1091 goto out; 1092 } 1093 /* initial packet */ 1094 p->num_packets = 1; 1095 1096 while (true) { 1097 qemu_sem_wait(&p->sem); 1098 qemu_mutex_lock(&p->mutex); 1099 1100 if (p->pending_job) { 1101 uint32_t used = p->pages->used; 1102 uint64_t packet_num = p->packet_num; 1103 uint32_t flags = p->flags; 1104 1105 p->next_packet_size = used * qemu_target_page_size(); 1106 multifd_send_fill_packet(p); 1107 p->flags = 0; 1108 p->num_packets++; 1109 p->num_pages += used; 1110 p->pages->used = 0; 1111 qemu_mutex_unlock(&p->mutex); 1112 1113 trace_multifd_send(p->id, packet_num, used, flags, 1114 p->next_packet_size); 1115 1116 ret = qio_channel_write_all(p->c, (void *)p->packet, 1117 p->packet_len, &local_err); 1118 if (ret != 0) { 1119 break; 1120 } 1121 1122 if (used) { 1123 ret = qio_channel_writev_all(p->c, p->pages->iov, 1124 used, &local_err); 1125 if (ret != 0) { 1126 break; 1127 } 1128 } 1129 1130 qemu_mutex_lock(&p->mutex); 1131 p->pending_job--; 1132 qemu_mutex_unlock(&p->mutex); 1133 1134 if (flags & MULTIFD_FLAG_SYNC) { 1135 qemu_sem_post(&multifd_send_state->sem_sync); 1136 } 1137 qemu_sem_post(&multifd_send_state->channels_ready); 1138 } else if (p->quit) { 1139 qemu_mutex_unlock(&p->mutex); 1140 break; 1141 } else { 1142 qemu_mutex_unlock(&p->mutex); 1143 /* sometimes there are spurious wakeups */ 1144 } 1145 } 1146 1147 out: 1148 if (local_err) { 1149 multifd_send_terminate_threads(local_err); 1150 } 1151 1152 qemu_mutex_lock(&p->mutex); 1153 p->running = false; 1154 qemu_mutex_unlock(&p->mutex); 1155 1156 rcu_unregister_thread(); 1157 trace_multifd_send_thread_end(p->id, p->num_packets, p->num_pages); 1158 1159 return NULL; 1160 } 1161 1162 static void multifd_new_send_channel_async(QIOTask *task, gpointer opaque) 1163 { 1164 MultiFDSendParams *p = opaque; 1165 QIOChannel *sioc = QIO_CHANNEL(qio_task_get_source(task)); 1166 Error *local_err = NULL; 1167 1168 if (qio_task_propagate_error(task, &local_err)) { 1169 migrate_set_error(migrate_get_current(), local_err); 1170 multifd_save_cleanup(); 1171 } else { 1172 p->c = QIO_CHANNEL(sioc); 1173 qio_channel_set_delay(p->c, false); 1174 p->running = true; 1175 qemu_thread_create(&p->thread, p->name, multifd_send_thread, p, 1176 QEMU_THREAD_JOINABLE); 1177 1178 atomic_inc(&multifd_send_state->count); 1179 } 1180 } 1181 1182 int multifd_save_setup(void) 1183 { 1184 int thread_count; 1185 uint32_t page_count = MULTIFD_PACKET_SIZE / qemu_target_page_size(); 1186 uint8_t i; 1187 1188 if (!migrate_use_multifd()) { 1189 return 0; 1190 } 1191 thread_count = migrate_multifd_channels(); 1192 multifd_send_state = g_malloc0(sizeof(*multifd_send_state)); 1193 multifd_send_state->params = g_new0(MultiFDSendParams, thread_count); 1194 atomic_set(&multifd_send_state->count, 0); 1195 multifd_send_state->pages = multifd_pages_init(page_count); 1196 qemu_sem_init(&multifd_send_state->sem_sync, 0); 1197 qemu_sem_init(&multifd_send_state->channels_ready, 0); 1198 1199 for (i = 0; i < thread_count; i++) { 1200 MultiFDSendParams *p = &multifd_send_state->params[i]; 1201 1202 qemu_mutex_init(&p->mutex); 1203 qemu_sem_init(&p->sem, 0); 1204 qemu_sem_init(&p->sem_sync, 0); 1205 p->quit = false; 1206 p->pending_job = 0; 1207 p->id = i; 1208 p->pages = multifd_pages_init(page_count); 1209 p->packet_len = sizeof(MultiFDPacket_t) 1210 + sizeof(ram_addr_t) * page_count; 1211 p->packet = g_malloc0(p->packet_len); 1212 p->name = g_strdup_printf("multifdsend_%d", i); 1213 socket_send_channel_create(multifd_new_send_channel_async, p); 1214 } 1215 return 0; 1216 } 1217 1218 struct { 1219 MultiFDRecvParams *params; 1220 /* number of created threads */ 1221 int count; 1222 /* syncs main thread and channels */ 1223 QemuSemaphore sem_sync; 1224 /* global number of generated multifd packets */ 1225 uint64_t packet_num; 1226 } *multifd_recv_state; 1227 1228 static void multifd_recv_terminate_threads(Error *err) 1229 { 1230 int i; 1231 1232 if (err) { 1233 MigrationState *s = migrate_get_current(); 1234 migrate_set_error(s, err); 1235 if (s->state == MIGRATION_STATUS_SETUP || 1236 s->state == MIGRATION_STATUS_ACTIVE) { 1237 migrate_set_state(&s->state, s->state, 1238 MIGRATION_STATUS_FAILED); 1239 } 1240 } 1241 1242 for (i = 0; i < migrate_multifd_channels(); i++) { 1243 MultiFDRecvParams *p = &multifd_recv_state->params[i]; 1244 1245 qemu_mutex_lock(&p->mutex); 1246 /* We could arrive here for two reasons: 1247 - normal quit, i.e. everything went fine, just finished 1248 - error quit: We close the channels so the channel threads 1249 finish the qio_channel_read_all_eof() */ 1250 qio_channel_shutdown(p->c, QIO_CHANNEL_SHUTDOWN_BOTH, NULL); 1251 qemu_mutex_unlock(&p->mutex); 1252 } 1253 } 1254 1255 int multifd_load_cleanup(Error **errp) 1256 { 1257 int i; 1258 int ret = 0; 1259 1260 if (!migrate_use_multifd()) { 1261 return 0; 1262 } 1263 multifd_recv_terminate_threads(NULL); 1264 for (i = 0; i < migrate_multifd_channels(); i++) { 1265 MultiFDRecvParams *p = &multifd_recv_state->params[i]; 1266 1267 if (p->running) { 1268 qemu_thread_join(&p->thread); 1269 } 1270 object_unref(OBJECT(p->c)); 1271 p->c = NULL; 1272 qemu_mutex_destroy(&p->mutex); 1273 qemu_sem_destroy(&p->sem_sync); 1274 g_free(p->name); 1275 p->name = NULL; 1276 multifd_pages_clear(p->pages); 1277 p->pages = NULL; 1278 p->packet_len = 0; 1279 g_free(p->packet); 1280 p->packet = NULL; 1281 } 1282 qemu_sem_destroy(&multifd_recv_state->sem_sync); 1283 g_free(multifd_recv_state->params); 1284 multifd_recv_state->params = NULL; 1285 g_free(multifd_recv_state); 1286 multifd_recv_state = NULL; 1287 1288 return ret; 1289 } 1290 1291 static void multifd_recv_sync_main(void) 1292 { 1293 int i; 1294 1295 if (!migrate_use_multifd()) { 1296 return; 1297 } 1298 for (i = 0; i < migrate_multifd_channels(); i++) { 1299 MultiFDRecvParams *p = &multifd_recv_state->params[i]; 1300 1301 trace_multifd_recv_sync_main_wait(p->id); 1302 qemu_sem_wait(&multifd_recv_state->sem_sync); 1303 qemu_mutex_lock(&p->mutex); 1304 if (multifd_recv_state->packet_num < p->packet_num) { 1305 multifd_recv_state->packet_num = p->packet_num; 1306 } 1307 qemu_mutex_unlock(&p->mutex); 1308 } 1309 for (i = 0; i < migrate_multifd_channels(); i++) { 1310 MultiFDRecvParams *p = &multifd_recv_state->params[i]; 1311 1312 trace_multifd_recv_sync_main_signal(p->id); 1313 qemu_sem_post(&p->sem_sync); 1314 } 1315 trace_multifd_recv_sync_main(multifd_recv_state->packet_num); 1316 } 1317 1318 static void *multifd_recv_thread(void *opaque) 1319 { 1320 MultiFDRecvParams *p = opaque; 1321 Error *local_err = NULL; 1322 int ret; 1323 1324 trace_multifd_recv_thread_start(p->id); 1325 rcu_register_thread(); 1326 1327 while (true) { 1328 uint32_t used; 1329 uint32_t flags; 1330 1331 ret = qio_channel_read_all_eof(p->c, (void *)p->packet, 1332 p->packet_len, &local_err); 1333 if (ret == 0) { /* EOF */ 1334 break; 1335 } 1336 if (ret == -1) { /* Error */ 1337 break; 1338 } 1339 1340 qemu_mutex_lock(&p->mutex); 1341 ret = multifd_recv_unfill_packet(p, &local_err); 1342 if (ret) { 1343 qemu_mutex_unlock(&p->mutex); 1344 break; 1345 } 1346 1347 used = p->pages->used; 1348 flags = p->flags; 1349 trace_multifd_recv(p->id, p->packet_num, used, flags, 1350 p->next_packet_size); 1351 p->num_packets++; 1352 p->num_pages += used; 1353 qemu_mutex_unlock(&p->mutex); 1354 1355 if (used) { 1356 ret = qio_channel_readv_all(p->c, p->pages->iov, 1357 used, &local_err); 1358 if (ret != 0) { 1359 break; 1360 } 1361 } 1362 1363 if (flags & MULTIFD_FLAG_SYNC) { 1364 qemu_sem_post(&multifd_recv_state->sem_sync); 1365 qemu_sem_wait(&p->sem_sync); 1366 } 1367 } 1368 1369 if (local_err) { 1370 multifd_recv_terminate_threads(local_err); 1371 } 1372 qemu_mutex_lock(&p->mutex); 1373 p->running = false; 1374 qemu_mutex_unlock(&p->mutex); 1375 1376 rcu_unregister_thread(); 1377 trace_multifd_recv_thread_end(p->id, p->num_packets, p->num_pages); 1378 1379 return NULL; 1380 } 1381 1382 int multifd_load_setup(void) 1383 { 1384 int thread_count; 1385 uint32_t page_count = MULTIFD_PACKET_SIZE / qemu_target_page_size(); 1386 uint8_t i; 1387 1388 if (!migrate_use_multifd()) { 1389 return 0; 1390 } 1391 thread_count = migrate_multifd_channels(); 1392 multifd_recv_state = g_malloc0(sizeof(*multifd_recv_state)); 1393 multifd_recv_state->params = g_new0(MultiFDRecvParams, thread_count); 1394 atomic_set(&multifd_recv_state->count, 0); 1395 qemu_sem_init(&multifd_recv_state->sem_sync, 0); 1396 1397 for (i = 0; i < thread_count; i++) { 1398 MultiFDRecvParams *p = &multifd_recv_state->params[i]; 1399 1400 qemu_mutex_init(&p->mutex); 1401 qemu_sem_init(&p->sem_sync, 0); 1402 p->id = i; 1403 p->pages = multifd_pages_init(page_count); 1404 p->packet_len = sizeof(MultiFDPacket_t) 1405 + sizeof(ram_addr_t) * page_count; 1406 p->packet = g_malloc0(p->packet_len); 1407 p->name = g_strdup_printf("multifdrecv_%d", i); 1408 } 1409 return 0; 1410 } 1411 1412 bool multifd_recv_all_channels_created(void) 1413 { 1414 int thread_count = migrate_multifd_channels(); 1415 1416 if (!migrate_use_multifd()) { 1417 return true; 1418 } 1419 1420 return thread_count == atomic_read(&multifd_recv_state->count); 1421 } 1422 1423 /* 1424 * Try to receive all multifd channels to get ready for the migration. 1425 * - Return true and do not set @errp when correctly receving all channels; 1426 * - Return false and do not set @errp when correctly receiving the current one; 1427 * - Return false and set @errp when failing to receive the current channel. 1428 */ 1429 bool multifd_recv_new_channel(QIOChannel *ioc, Error **errp) 1430 { 1431 MultiFDRecvParams *p; 1432 Error *local_err = NULL; 1433 int id; 1434 1435 id = multifd_recv_initial_packet(ioc, &local_err); 1436 if (id < 0) { 1437 multifd_recv_terminate_threads(local_err); 1438 error_propagate_prepend(errp, local_err, 1439 "failed to receive packet" 1440 " via multifd channel %d: ", 1441 atomic_read(&multifd_recv_state->count)); 1442 return false; 1443 } 1444 1445 p = &multifd_recv_state->params[id]; 1446 if (p->c != NULL) { 1447 error_setg(&local_err, "multifd: received id '%d' already setup'", 1448 id); 1449 multifd_recv_terminate_threads(local_err); 1450 error_propagate(errp, local_err); 1451 return false; 1452 } 1453 p->c = ioc; 1454 object_ref(OBJECT(ioc)); 1455 /* initial packet */ 1456 p->num_packets = 1; 1457 1458 p->running = true; 1459 qemu_thread_create(&p->thread, p->name, multifd_recv_thread, p, 1460 QEMU_THREAD_JOINABLE); 1461 atomic_inc(&multifd_recv_state->count); 1462 return atomic_read(&multifd_recv_state->count) == 1463 migrate_multifd_channels(); 1464 } 1465 1466 /** 1467 * save_page_header: write page header to wire 1468 * 1469 * If this is the 1st block, it also writes the block identification 1470 * 1471 * Returns the number of bytes written 1472 * 1473 * @f: QEMUFile where to send the data 1474 * @block: block that contains the page we want to send 1475 * @offset: offset inside the block for the page 1476 * in the lower bits, it contains flags 1477 */ 1478 static size_t save_page_header(RAMState *rs, QEMUFile *f, RAMBlock *block, 1479 ram_addr_t offset) 1480 { 1481 size_t size, len; 1482 1483 if (block == rs->last_sent_block) { 1484 offset |= RAM_SAVE_FLAG_CONTINUE; 1485 } 1486 qemu_put_be64(f, offset); 1487 size = 8; 1488 1489 if (!(offset & RAM_SAVE_FLAG_CONTINUE)) { 1490 len = strlen(block->idstr); 1491 qemu_put_byte(f, len); 1492 qemu_put_buffer(f, (uint8_t *)block->idstr, len); 1493 size += 1 + len; 1494 rs->last_sent_block = block; 1495 } 1496 return size; 1497 } 1498 1499 /** 1500 * mig_throttle_guest_down: throotle down the guest 1501 * 1502 * Reduce amount of guest cpu execution to hopefully slow down memory 1503 * writes. If guest dirty memory rate is reduced below the rate at 1504 * which we can transfer pages to the destination then we should be 1505 * able to complete migration. Some workloads dirty memory way too 1506 * fast and will not effectively converge, even with auto-converge. 1507 */ 1508 static void mig_throttle_guest_down(void) 1509 { 1510 MigrationState *s = migrate_get_current(); 1511 uint64_t pct_initial = s->parameters.cpu_throttle_initial; 1512 uint64_t pct_icrement = s->parameters.cpu_throttle_increment; 1513 int pct_max = s->parameters.max_cpu_throttle; 1514 1515 /* We have not started throttling yet. Let's start it. */ 1516 if (!cpu_throttle_active()) { 1517 cpu_throttle_set(pct_initial); 1518 } else { 1519 /* Throttling already on, just increase the rate */ 1520 cpu_throttle_set(MIN(cpu_throttle_get_percentage() + pct_icrement, 1521 pct_max)); 1522 } 1523 } 1524 1525 /** 1526 * xbzrle_cache_zero_page: insert a zero page in the XBZRLE cache 1527 * 1528 * @rs: current RAM state 1529 * @current_addr: address for the zero page 1530 * 1531 * Update the xbzrle cache to reflect a page that's been sent as all 0. 1532 * The important thing is that a stale (not-yet-0'd) page be replaced 1533 * by the new data. 1534 * As a bonus, if the page wasn't in the cache it gets added so that 1535 * when a small write is made into the 0'd page it gets XBZRLE sent. 1536 */ 1537 static void xbzrle_cache_zero_page(RAMState *rs, ram_addr_t current_addr) 1538 { 1539 if (rs->ram_bulk_stage || !migrate_use_xbzrle()) { 1540 return; 1541 } 1542 1543 /* We don't care if this fails to allocate a new cache page 1544 * as long as it updated an old one */ 1545 cache_insert(XBZRLE.cache, current_addr, XBZRLE.zero_target_page, 1546 ram_counters.dirty_sync_count); 1547 } 1548 1549 #define ENCODING_FLAG_XBZRLE 0x1 1550 1551 /** 1552 * save_xbzrle_page: compress and send current page 1553 * 1554 * Returns: 1 means that we wrote the page 1555 * 0 means that page is identical to the one already sent 1556 * -1 means that xbzrle would be longer than normal 1557 * 1558 * @rs: current RAM state 1559 * @current_data: pointer to the address of the page contents 1560 * @current_addr: addr of the page 1561 * @block: block that contains the page we want to send 1562 * @offset: offset inside the block for the page 1563 * @last_stage: if we are at the completion stage 1564 */ 1565 static int save_xbzrle_page(RAMState *rs, uint8_t **current_data, 1566 ram_addr_t current_addr, RAMBlock *block, 1567 ram_addr_t offset, bool last_stage) 1568 { 1569 int encoded_len = 0, bytes_xbzrle; 1570 uint8_t *prev_cached_page; 1571 1572 if (!cache_is_cached(XBZRLE.cache, current_addr, 1573 ram_counters.dirty_sync_count)) { 1574 xbzrle_counters.cache_miss++; 1575 if (!last_stage) { 1576 if (cache_insert(XBZRLE.cache, current_addr, *current_data, 1577 ram_counters.dirty_sync_count) == -1) { 1578 return -1; 1579 } else { 1580 /* update *current_data when the page has been 1581 inserted into cache */ 1582 *current_data = get_cached_data(XBZRLE.cache, current_addr); 1583 } 1584 } 1585 return -1; 1586 } 1587 1588 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr); 1589 1590 /* save current buffer into memory */ 1591 memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE); 1592 1593 /* XBZRLE encoding (if there is no overflow) */ 1594 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf, 1595 TARGET_PAGE_SIZE, XBZRLE.encoded_buf, 1596 TARGET_PAGE_SIZE); 1597 if (encoded_len == 0) { 1598 trace_save_xbzrle_page_skipping(); 1599 return 0; 1600 } else if (encoded_len == -1) { 1601 trace_save_xbzrle_page_overflow(); 1602 xbzrle_counters.overflow++; 1603 /* update data in the cache */ 1604 if (!last_stage) { 1605 memcpy(prev_cached_page, *current_data, TARGET_PAGE_SIZE); 1606 *current_data = prev_cached_page; 1607 } 1608 return -1; 1609 } 1610 1611 /* we need to update the data in the cache, in order to get the same data */ 1612 if (!last_stage) { 1613 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE); 1614 } 1615 1616 /* Send XBZRLE based compressed page */ 1617 bytes_xbzrle = save_page_header(rs, rs->f, block, 1618 offset | RAM_SAVE_FLAG_XBZRLE); 1619 qemu_put_byte(rs->f, ENCODING_FLAG_XBZRLE); 1620 qemu_put_be16(rs->f, encoded_len); 1621 qemu_put_buffer(rs->f, XBZRLE.encoded_buf, encoded_len); 1622 bytes_xbzrle += encoded_len + 1 + 2; 1623 xbzrle_counters.pages++; 1624 xbzrle_counters.bytes += bytes_xbzrle; 1625 ram_counters.transferred += bytes_xbzrle; 1626 1627 return 1; 1628 } 1629 1630 /** 1631 * migration_bitmap_find_dirty: find the next dirty page from start 1632 * 1633 * Called with rcu_read_lock() to protect migration_bitmap 1634 * 1635 * Returns the byte offset within memory region of the start of a dirty page 1636 * 1637 * @rs: current RAM state 1638 * @rb: RAMBlock where to search for dirty pages 1639 * @start: page where we start the search 1640 */ 1641 static inline 1642 unsigned long migration_bitmap_find_dirty(RAMState *rs, RAMBlock *rb, 1643 unsigned long start) 1644 { 1645 unsigned long size = rb->used_length >> TARGET_PAGE_BITS; 1646 unsigned long *bitmap = rb->bmap; 1647 unsigned long next; 1648 1649 if (ramblock_is_ignored(rb)) { 1650 return size; 1651 } 1652 1653 /* 1654 * When the free page optimization is enabled, we need to check the bitmap 1655 * to send the non-free pages rather than all the pages in the bulk stage. 1656 */ 1657 if (!rs->fpo_enabled && rs->ram_bulk_stage && start > 0) { 1658 next = start + 1; 1659 } else { 1660 next = find_next_bit(bitmap, size, start); 1661 } 1662 1663 return next; 1664 } 1665 1666 static inline bool migration_bitmap_clear_dirty(RAMState *rs, 1667 RAMBlock *rb, 1668 unsigned long page) 1669 { 1670 bool ret; 1671 1672 qemu_mutex_lock(&rs->bitmap_mutex); 1673 ret = test_and_clear_bit(page, rb->bmap); 1674 1675 if (ret) { 1676 rs->migration_dirty_pages--; 1677 } 1678 qemu_mutex_unlock(&rs->bitmap_mutex); 1679 1680 return ret; 1681 } 1682 1683 static void migration_bitmap_sync_range(RAMState *rs, RAMBlock *rb, 1684 ram_addr_t start, ram_addr_t length) 1685 { 1686 rs->migration_dirty_pages += 1687 cpu_physical_memory_sync_dirty_bitmap(rb, start, length, 1688 &rs->num_dirty_pages_period); 1689 } 1690 1691 /** 1692 * ram_pagesize_summary: calculate all the pagesizes of a VM 1693 * 1694 * Returns a summary bitmap of the page sizes of all RAMBlocks 1695 * 1696 * For VMs with just normal pages this is equivalent to the host page 1697 * size. If it's got some huge pages then it's the OR of all the 1698 * different page sizes. 1699 */ 1700 uint64_t ram_pagesize_summary(void) 1701 { 1702 RAMBlock *block; 1703 uint64_t summary = 0; 1704 1705 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 1706 summary |= block->page_size; 1707 } 1708 1709 return summary; 1710 } 1711 1712 uint64_t ram_get_total_transferred_pages(void) 1713 { 1714 return ram_counters.normal + ram_counters.duplicate + 1715 compression_counters.pages + xbzrle_counters.pages; 1716 } 1717 1718 static void migration_update_rates(RAMState *rs, int64_t end_time) 1719 { 1720 uint64_t page_count = rs->target_page_count - rs->target_page_count_prev; 1721 double compressed_size; 1722 1723 /* calculate period counters */ 1724 ram_counters.dirty_pages_rate = rs->num_dirty_pages_period * 1000 1725 / (end_time - rs->time_last_bitmap_sync); 1726 1727 if (!page_count) { 1728 return; 1729 } 1730 1731 if (migrate_use_xbzrle()) { 1732 xbzrle_counters.cache_miss_rate = (double)(xbzrle_counters.cache_miss - 1733 rs->xbzrle_cache_miss_prev) / page_count; 1734 rs->xbzrle_cache_miss_prev = xbzrle_counters.cache_miss; 1735 } 1736 1737 if (migrate_use_compression()) { 1738 compression_counters.busy_rate = (double)(compression_counters.busy - 1739 rs->compress_thread_busy_prev) / page_count; 1740 rs->compress_thread_busy_prev = compression_counters.busy; 1741 1742 compressed_size = compression_counters.compressed_size - 1743 rs->compressed_size_prev; 1744 if (compressed_size) { 1745 double uncompressed_size = (compression_counters.pages - 1746 rs->compress_pages_prev) * TARGET_PAGE_SIZE; 1747 1748 /* Compression-Ratio = Uncompressed-size / Compressed-size */ 1749 compression_counters.compression_rate = 1750 uncompressed_size / compressed_size; 1751 1752 rs->compress_pages_prev = compression_counters.pages; 1753 rs->compressed_size_prev = compression_counters.compressed_size; 1754 } 1755 } 1756 } 1757 1758 static void migration_bitmap_sync(RAMState *rs) 1759 { 1760 RAMBlock *block; 1761 int64_t end_time; 1762 uint64_t bytes_xfer_now; 1763 1764 ram_counters.dirty_sync_count++; 1765 1766 if (!rs->time_last_bitmap_sync) { 1767 rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); 1768 } 1769 1770 trace_migration_bitmap_sync_start(); 1771 memory_global_dirty_log_sync(); 1772 1773 qemu_mutex_lock(&rs->bitmap_mutex); 1774 rcu_read_lock(); 1775 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 1776 migration_bitmap_sync_range(rs, block, 0, block->used_length); 1777 } 1778 ram_counters.remaining = ram_bytes_remaining(); 1779 rcu_read_unlock(); 1780 qemu_mutex_unlock(&rs->bitmap_mutex); 1781 1782 trace_migration_bitmap_sync_end(rs->num_dirty_pages_period); 1783 1784 end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); 1785 1786 /* more than 1 second = 1000 millisecons */ 1787 if (end_time > rs->time_last_bitmap_sync + 1000) { 1788 bytes_xfer_now = ram_counters.transferred; 1789 1790 /* During block migration the auto-converge logic incorrectly detects 1791 * that ram migration makes no progress. Avoid this by disabling the 1792 * throttling logic during the bulk phase of block migration. */ 1793 if (migrate_auto_converge() && !blk_mig_bulk_active()) { 1794 /* The following detection logic can be refined later. For now: 1795 Check to see if the dirtied bytes is 50% more than the approx. 1796 amount of bytes that just got transferred since the last time we 1797 were in this routine. If that happens twice, start or increase 1798 throttling */ 1799 1800 if ((rs->num_dirty_pages_period * TARGET_PAGE_SIZE > 1801 (bytes_xfer_now - rs->bytes_xfer_prev) / 2) && 1802 (++rs->dirty_rate_high_cnt >= 2)) { 1803 trace_migration_throttle(); 1804 rs->dirty_rate_high_cnt = 0; 1805 mig_throttle_guest_down(); 1806 } 1807 } 1808 1809 migration_update_rates(rs, end_time); 1810 1811 rs->target_page_count_prev = rs->target_page_count; 1812 1813 /* reset period counters */ 1814 rs->time_last_bitmap_sync = end_time; 1815 rs->num_dirty_pages_period = 0; 1816 rs->bytes_xfer_prev = bytes_xfer_now; 1817 } 1818 if (migrate_use_events()) { 1819 qapi_event_send_migration_pass(ram_counters.dirty_sync_count); 1820 } 1821 } 1822 1823 static void migration_bitmap_sync_precopy(RAMState *rs) 1824 { 1825 Error *local_err = NULL; 1826 1827 /* 1828 * The current notifier usage is just an optimization to migration, so we 1829 * don't stop the normal migration process in the error case. 1830 */ 1831 if (precopy_notify(PRECOPY_NOTIFY_BEFORE_BITMAP_SYNC, &local_err)) { 1832 error_report_err(local_err); 1833 } 1834 1835 migration_bitmap_sync(rs); 1836 1837 if (precopy_notify(PRECOPY_NOTIFY_AFTER_BITMAP_SYNC, &local_err)) { 1838 error_report_err(local_err); 1839 } 1840 } 1841 1842 /** 1843 * save_zero_page_to_file: send the zero page to the file 1844 * 1845 * Returns the size of data written to the file, 0 means the page is not 1846 * a zero page 1847 * 1848 * @rs: current RAM state 1849 * @file: the file where the data is saved 1850 * @block: block that contains the page we want to send 1851 * @offset: offset inside the block for the page 1852 */ 1853 static int save_zero_page_to_file(RAMState *rs, QEMUFile *file, 1854 RAMBlock *block, ram_addr_t offset) 1855 { 1856 uint8_t *p = block->host + offset; 1857 int len = 0; 1858 1859 if (is_zero_range(p, TARGET_PAGE_SIZE)) { 1860 len += save_page_header(rs, file, block, offset | RAM_SAVE_FLAG_ZERO); 1861 qemu_put_byte(file, 0); 1862 len += 1; 1863 } 1864 return len; 1865 } 1866 1867 /** 1868 * save_zero_page: send the zero page to the stream 1869 * 1870 * Returns the number of pages written. 1871 * 1872 * @rs: current RAM state 1873 * @block: block that contains the page we want to send 1874 * @offset: offset inside the block for the page 1875 */ 1876 static int save_zero_page(RAMState *rs, RAMBlock *block, ram_addr_t offset) 1877 { 1878 int len = save_zero_page_to_file(rs, rs->f, block, offset); 1879 1880 if (len) { 1881 ram_counters.duplicate++; 1882 ram_counters.transferred += len; 1883 return 1; 1884 } 1885 return -1; 1886 } 1887 1888 static void ram_release_pages(const char *rbname, uint64_t offset, int pages) 1889 { 1890 if (!migrate_release_ram() || !migration_in_postcopy()) { 1891 return; 1892 } 1893 1894 ram_discard_range(rbname, offset, pages << TARGET_PAGE_BITS); 1895 } 1896 1897 /* 1898 * @pages: the number of pages written by the control path, 1899 * < 0 - error 1900 * > 0 - number of pages written 1901 * 1902 * Return true if the pages has been saved, otherwise false is returned. 1903 */ 1904 static bool control_save_page(RAMState *rs, RAMBlock *block, ram_addr_t offset, 1905 int *pages) 1906 { 1907 uint64_t bytes_xmit = 0; 1908 int ret; 1909 1910 *pages = -1; 1911 ret = ram_control_save_page(rs->f, block->offset, offset, TARGET_PAGE_SIZE, 1912 &bytes_xmit); 1913 if (ret == RAM_SAVE_CONTROL_NOT_SUPP) { 1914 return false; 1915 } 1916 1917 if (bytes_xmit) { 1918 ram_counters.transferred += bytes_xmit; 1919 *pages = 1; 1920 } 1921 1922 if (ret == RAM_SAVE_CONTROL_DELAYED) { 1923 return true; 1924 } 1925 1926 if (bytes_xmit > 0) { 1927 ram_counters.normal++; 1928 } else if (bytes_xmit == 0) { 1929 ram_counters.duplicate++; 1930 } 1931 1932 return true; 1933 } 1934 1935 /* 1936 * directly send the page to the stream 1937 * 1938 * Returns the number of pages written. 1939 * 1940 * @rs: current RAM state 1941 * @block: block that contains the page we want to send 1942 * @offset: offset inside the block for the page 1943 * @buf: the page to be sent 1944 * @async: send to page asyncly 1945 */ 1946 static int save_normal_page(RAMState *rs, RAMBlock *block, ram_addr_t offset, 1947 uint8_t *buf, bool async) 1948 { 1949 ram_counters.transferred += save_page_header(rs, rs->f, block, 1950 offset | RAM_SAVE_FLAG_PAGE); 1951 if (async) { 1952 qemu_put_buffer_async(rs->f, buf, TARGET_PAGE_SIZE, 1953 migrate_release_ram() & 1954 migration_in_postcopy()); 1955 } else { 1956 qemu_put_buffer(rs->f, buf, TARGET_PAGE_SIZE); 1957 } 1958 ram_counters.transferred += TARGET_PAGE_SIZE; 1959 ram_counters.normal++; 1960 return 1; 1961 } 1962 1963 /** 1964 * ram_save_page: send the given page to the stream 1965 * 1966 * Returns the number of pages written. 1967 * < 0 - error 1968 * >=0 - Number of pages written - this might legally be 0 1969 * if xbzrle noticed the page was the same. 1970 * 1971 * @rs: current RAM state 1972 * @block: block that contains the page we want to send 1973 * @offset: offset inside the block for the page 1974 * @last_stage: if we are at the completion stage 1975 */ 1976 static int ram_save_page(RAMState *rs, PageSearchStatus *pss, bool last_stage) 1977 { 1978 int pages = -1; 1979 uint8_t *p; 1980 bool send_async = true; 1981 RAMBlock *block = pss->block; 1982 ram_addr_t offset = pss->page << TARGET_PAGE_BITS; 1983 ram_addr_t current_addr = block->offset + offset; 1984 1985 p = block->host + offset; 1986 trace_ram_save_page(block->idstr, (uint64_t)offset, p); 1987 1988 XBZRLE_cache_lock(); 1989 if (!rs->ram_bulk_stage && !migration_in_postcopy() && 1990 migrate_use_xbzrle()) { 1991 pages = save_xbzrle_page(rs, &p, current_addr, block, 1992 offset, last_stage); 1993 if (!last_stage) { 1994 /* Can't send this cached data async, since the cache page 1995 * might get updated before it gets to the wire 1996 */ 1997 send_async = false; 1998 } 1999 } 2000 2001 /* XBZRLE overflow or normal page */ 2002 if (pages == -1) { 2003 pages = save_normal_page(rs, block, offset, p, send_async); 2004 } 2005 2006 XBZRLE_cache_unlock(); 2007 2008 return pages; 2009 } 2010 2011 static int ram_save_multifd_page(RAMState *rs, RAMBlock *block, 2012 ram_addr_t offset) 2013 { 2014 multifd_queue_page(block, offset); 2015 ram_counters.normal++; 2016 2017 return 1; 2018 } 2019 2020 static bool do_compress_ram_page(QEMUFile *f, z_stream *stream, RAMBlock *block, 2021 ram_addr_t offset, uint8_t *source_buf) 2022 { 2023 RAMState *rs = ram_state; 2024 uint8_t *p = block->host + (offset & TARGET_PAGE_MASK); 2025 bool zero_page = false; 2026 int ret; 2027 2028 if (save_zero_page_to_file(rs, f, block, offset)) { 2029 zero_page = true; 2030 goto exit; 2031 } 2032 2033 save_page_header(rs, f, block, offset | RAM_SAVE_FLAG_COMPRESS_PAGE); 2034 2035 /* 2036 * copy it to a internal buffer to avoid it being modified by VM 2037 * so that we can catch up the error during compression and 2038 * decompression 2039 */ 2040 memcpy(source_buf, p, TARGET_PAGE_SIZE); 2041 ret = qemu_put_compression_data(f, stream, source_buf, TARGET_PAGE_SIZE); 2042 if (ret < 0) { 2043 qemu_file_set_error(migrate_get_current()->to_dst_file, ret); 2044 error_report("compressed data failed!"); 2045 return false; 2046 } 2047 2048 exit: 2049 ram_release_pages(block->idstr, offset & TARGET_PAGE_MASK, 1); 2050 return zero_page; 2051 } 2052 2053 static void 2054 update_compress_thread_counts(const CompressParam *param, int bytes_xmit) 2055 { 2056 ram_counters.transferred += bytes_xmit; 2057 2058 if (param->zero_page) { 2059 ram_counters.duplicate++; 2060 return; 2061 } 2062 2063 /* 8 means a header with RAM_SAVE_FLAG_CONTINUE. */ 2064 compression_counters.compressed_size += bytes_xmit - 8; 2065 compression_counters.pages++; 2066 } 2067 2068 static bool save_page_use_compression(RAMState *rs); 2069 2070 static void flush_compressed_data(RAMState *rs) 2071 { 2072 int idx, len, thread_count; 2073 2074 if (!save_page_use_compression(rs)) { 2075 return; 2076 } 2077 thread_count = migrate_compress_threads(); 2078 2079 qemu_mutex_lock(&comp_done_lock); 2080 for (idx = 0; idx < thread_count; idx++) { 2081 while (!comp_param[idx].done) { 2082 qemu_cond_wait(&comp_done_cond, &comp_done_lock); 2083 } 2084 } 2085 qemu_mutex_unlock(&comp_done_lock); 2086 2087 for (idx = 0; idx < thread_count; idx++) { 2088 qemu_mutex_lock(&comp_param[idx].mutex); 2089 if (!comp_param[idx].quit) { 2090 len = qemu_put_qemu_file(rs->f, comp_param[idx].file); 2091 /* 2092 * it's safe to fetch zero_page without holding comp_done_lock 2093 * as there is no further request submitted to the thread, 2094 * i.e, the thread should be waiting for a request at this point. 2095 */ 2096 update_compress_thread_counts(&comp_param[idx], len); 2097 } 2098 qemu_mutex_unlock(&comp_param[idx].mutex); 2099 } 2100 } 2101 2102 static inline void set_compress_params(CompressParam *param, RAMBlock *block, 2103 ram_addr_t offset) 2104 { 2105 param->block = block; 2106 param->offset = offset; 2107 } 2108 2109 static int compress_page_with_multi_thread(RAMState *rs, RAMBlock *block, 2110 ram_addr_t offset) 2111 { 2112 int idx, thread_count, bytes_xmit = -1, pages = -1; 2113 bool wait = migrate_compress_wait_thread(); 2114 2115 thread_count = migrate_compress_threads(); 2116 qemu_mutex_lock(&comp_done_lock); 2117 retry: 2118 for (idx = 0; idx < thread_count; idx++) { 2119 if (comp_param[idx].done) { 2120 comp_param[idx].done = false; 2121 bytes_xmit = qemu_put_qemu_file(rs->f, comp_param[idx].file); 2122 qemu_mutex_lock(&comp_param[idx].mutex); 2123 set_compress_params(&comp_param[idx], block, offset); 2124 qemu_cond_signal(&comp_param[idx].cond); 2125 qemu_mutex_unlock(&comp_param[idx].mutex); 2126 pages = 1; 2127 update_compress_thread_counts(&comp_param[idx], bytes_xmit); 2128 break; 2129 } 2130 } 2131 2132 /* 2133 * wait for the free thread if the user specifies 'compress-wait-thread', 2134 * otherwise we will post the page out in the main thread as normal page. 2135 */ 2136 if (pages < 0 && wait) { 2137 qemu_cond_wait(&comp_done_cond, &comp_done_lock); 2138 goto retry; 2139 } 2140 qemu_mutex_unlock(&comp_done_lock); 2141 2142 return pages; 2143 } 2144 2145 /** 2146 * find_dirty_block: find the next dirty page and update any state 2147 * associated with the search process. 2148 * 2149 * Returns if a page is found 2150 * 2151 * @rs: current RAM state 2152 * @pss: data about the state of the current dirty page scan 2153 * @again: set to false if the search has scanned the whole of RAM 2154 */ 2155 static bool find_dirty_block(RAMState *rs, PageSearchStatus *pss, bool *again) 2156 { 2157 pss->page = migration_bitmap_find_dirty(rs, pss->block, pss->page); 2158 if (pss->complete_round && pss->block == rs->last_seen_block && 2159 pss->page >= rs->last_page) { 2160 /* 2161 * We've been once around the RAM and haven't found anything. 2162 * Give up. 2163 */ 2164 *again = false; 2165 return false; 2166 } 2167 if ((pss->page << TARGET_PAGE_BITS) >= pss->block->used_length) { 2168 /* Didn't find anything in this RAM Block */ 2169 pss->page = 0; 2170 pss->block = QLIST_NEXT_RCU(pss->block, next); 2171 if (!pss->block) { 2172 /* 2173 * If memory migration starts over, we will meet a dirtied page 2174 * which may still exists in compression threads's ring, so we 2175 * should flush the compressed data to make sure the new page 2176 * is not overwritten by the old one in the destination. 2177 * 2178 * Also If xbzrle is on, stop using the data compression at this 2179 * point. In theory, xbzrle can do better than compression. 2180 */ 2181 flush_compressed_data(rs); 2182 2183 /* Hit the end of the list */ 2184 pss->block = QLIST_FIRST_RCU(&ram_list.blocks); 2185 /* Flag that we've looped */ 2186 pss->complete_round = true; 2187 rs->ram_bulk_stage = false; 2188 } 2189 /* Didn't find anything this time, but try again on the new block */ 2190 *again = true; 2191 return false; 2192 } else { 2193 /* Can go around again, but... */ 2194 *again = true; 2195 /* We've found something so probably don't need to */ 2196 return true; 2197 } 2198 } 2199 2200 /** 2201 * unqueue_page: gets a page of the queue 2202 * 2203 * Helper for 'get_queued_page' - gets a page off the queue 2204 * 2205 * Returns the block of the page (or NULL if none available) 2206 * 2207 * @rs: current RAM state 2208 * @offset: used to return the offset within the RAMBlock 2209 */ 2210 static RAMBlock *unqueue_page(RAMState *rs, ram_addr_t *offset) 2211 { 2212 RAMBlock *block = NULL; 2213 2214 if (QSIMPLEQ_EMPTY_ATOMIC(&rs->src_page_requests)) { 2215 return NULL; 2216 } 2217 2218 qemu_mutex_lock(&rs->src_page_req_mutex); 2219 if (!QSIMPLEQ_EMPTY(&rs->src_page_requests)) { 2220 struct RAMSrcPageRequest *entry = 2221 QSIMPLEQ_FIRST(&rs->src_page_requests); 2222 block = entry->rb; 2223 *offset = entry->offset; 2224 2225 if (entry->len > TARGET_PAGE_SIZE) { 2226 entry->len -= TARGET_PAGE_SIZE; 2227 entry->offset += TARGET_PAGE_SIZE; 2228 } else { 2229 memory_region_unref(block->mr); 2230 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req); 2231 g_free(entry); 2232 migration_consume_urgent_request(); 2233 } 2234 } 2235 qemu_mutex_unlock(&rs->src_page_req_mutex); 2236 2237 return block; 2238 } 2239 2240 /** 2241 * get_queued_page: unqueue a page from the postocpy requests 2242 * 2243 * Skips pages that are already sent (!dirty) 2244 * 2245 * Returns if a queued page is found 2246 * 2247 * @rs: current RAM state 2248 * @pss: data about the state of the current dirty page scan 2249 */ 2250 static bool get_queued_page(RAMState *rs, PageSearchStatus *pss) 2251 { 2252 RAMBlock *block; 2253 ram_addr_t offset; 2254 bool dirty; 2255 2256 do { 2257 block = unqueue_page(rs, &offset); 2258 /* 2259 * We're sending this page, and since it's postcopy nothing else 2260 * will dirty it, and we must make sure it doesn't get sent again 2261 * even if this queue request was received after the background 2262 * search already sent it. 2263 */ 2264 if (block) { 2265 unsigned long page; 2266 2267 page = offset >> TARGET_PAGE_BITS; 2268 dirty = test_bit(page, block->bmap); 2269 if (!dirty) { 2270 trace_get_queued_page_not_dirty(block->idstr, (uint64_t)offset, 2271 page, test_bit(page, block->unsentmap)); 2272 } else { 2273 trace_get_queued_page(block->idstr, (uint64_t)offset, page); 2274 } 2275 } 2276 2277 } while (block && !dirty); 2278 2279 if (block) { 2280 /* 2281 * As soon as we start servicing pages out of order, then we have 2282 * to kill the bulk stage, since the bulk stage assumes 2283 * in (migration_bitmap_find_and_reset_dirty) that every page is 2284 * dirty, that's no longer true. 2285 */ 2286 rs->ram_bulk_stage = false; 2287 2288 /* 2289 * We want the background search to continue from the queued page 2290 * since the guest is likely to want other pages near to the page 2291 * it just requested. 2292 */ 2293 pss->block = block; 2294 pss->page = offset >> TARGET_PAGE_BITS; 2295 } 2296 2297 return !!block; 2298 } 2299 2300 /** 2301 * migration_page_queue_free: drop any remaining pages in the ram 2302 * request queue 2303 * 2304 * It should be empty at the end anyway, but in error cases there may 2305 * be some left. in case that there is any page left, we drop it. 2306 * 2307 */ 2308 static void migration_page_queue_free(RAMState *rs) 2309 { 2310 struct RAMSrcPageRequest *mspr, *next_mspr; 2311 /* This queue generally should be empty - but in the case of a failed 2312 * migration might have some droppings in. 2313 */ 2314 rcu_read_lock(); 2315 QSIMPLEQ_FOREACH_SAFE(mspr, &rs->src_page_requests, next_req, next_mspr) { 2316 memory_region_unref(mspr->rb->mr); 2317 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req); 2318 g_free(mspr); 2319 } 2320 rcu_read_unlock(); 2321 } 2322 2323 /** 2324 * ram_save_queue_pages: queue the page for transmission 2325 * 2326 * A request from postcopy destination for example. 2327 * 2328 * Returns zero on success or negative on error 2329 * 2330 * @rbname: Name of the RAMBLock of the request. NULL means the 2331 * same that last one. 2332 * @start: starting address from the start of the RAMBlock 2333 * @len: length (in bytes) to send 2334 */ 2335 int ram_save_queue_pages(const char *rbname, ram_addr_t start, ram_addr_t len) 2336 { 2337 RAMBlock *ramblock; 2338 RAMState *rs = ram_state; 2339 2340 ram_counters.postcopy_requests++; 2341 rcu_read_lock(); 2342 if (!rbname) { 2343 /* Reuse last RAMBlock */ 2344 ramblock = rs->last_req_rb; 2345 2346 if (!ramblock) { 2347 /* 2348 * Shouldn't happen, we can't reuse the last RAMBlock if 2349 * it's the 1st request. 2350 */ 2351 error_report("ram_save_queue_pages no previous block"); 2352 goto err; 2353 } 2354 } else { 2355 ramblock = qemu_ram_block_by_name(rbname); 2356 2357 if (!ramblock) { 2358 /* We shouldn't be asked for a non-existent RAMBlock */ 2359 error_report("ram_save_queue_pages no block '%s'", rbname); 2360 goto err; 2361 } 2362 rs->last_req_rb = ramblock; 2363 } 2364 trace_ram_save_queue_pages(ramblock->idstr, start, len); 2365 if (start+len > ramblock->used_length) { 2366 error_report("%s request overrun start=" RAM_ADDR_FMT " len=" 2367 RAM_ADDR_FMT " blocklen=" RAM_ADDR_FMT, 2368 __func__, start, len, ramblock->used_length); 2369 goto err; 2370 } 2371 2372 struct RAMSrcPageRequest *new_entry = 2373 g_malloc0(sizeof(struct RAMSrcPageRequest)); 2374 new_entry->rb = ramblock; 2375 new_entry->offset = start; 2376 new_entry->len = len; 2377 2378 memory_region_ref(ramblock->mr); 2379 qemu_mutex_lock(&rs->src_page_req_mutex); 2380 QSIMPLEQ_INSERT_TAIL(&rs->src_page_requests, new_entry, next_req); 2381 migration_make_urgent_request(); 2382 qemu_mutex_unlock(&rs->src_page_req_mutex); 2383 rcu_read_unlock(); 2384 2385 return 0; 2386 2387 err: 2388 rcu_read_unlock(); 2389 return -1; 2390 } 2391 2392 static bool save_page_use_compression(RAMState *rs) 2393 { 2394 if (!migrate_use_compression()) { 2395 return false; 2396 } 2397 2398 /* 2399 * If xbzrle is on, stop using the data compression after first 2400 * round of migration even if compression is enabled. In theory, 2401 * xbzrle can do better than compression. 2402 */ 2403 if (rs->ram_bulk_stage || !migrate_use_xbzrle()) { 2404 return true; 2405 } 2406 2407 return false; 2408 } 2409 2410 /* 2411 * try to compress the page before posting it out, return true if the page 2412 * has been properly handled by compression, otherwise needs other 2413 * paths to handle it 2414 */ 2415 static bool save_compress_page(RAMState *rs, RAMBlock *block, ram_addr_t offset) 2416 { 2417 if (!save_page_use_compression(rs)) { 2418 return false; 2419 } 2420 2421 /* 2422 * When starting the process of a new block, the first page of 2423 * the block should be sent out before other pages in the same 2424 * block, and all the pages in last block should have been sent 2425 * out, keeping this order is important, because the 'cont' flag 2426 * is used to avoid resending the block name. 2427 * 2428 * We post the fist page as normal page as compression will take 2429 * much CPU resource. 2430 */ 2431 if (block != rs->last_sent_block) { 2432 flush_compressed_data(rs); 2433 return false; 2434 } 2435 2436 if (compress_page_with_multi_thread(rs, block, offset) > 0) { 2437 return true; 2438 } 2439 2440 compression_counters.busy++; 2441 return false; 2442 } 2443 2444 /** 2445 * ram_save_target_page: save one target page 2446 * 2447 * Returns the number of pages written 2448 * 2449 * @rs: current RAM state 2450 * @pss: data about the page we want to send 2451 * @last_stage: if we are at the completion stage 2452 */ 2453 static int ram_save_target_page(RAMState *rs, PageSearchStatus *pss, 2454 bool last_stage) 2455 { 2456 RAMBlock *block = pss->block; 2457 ram_addr_t offset = pss->page << TARGET_PAGE_BITS; 2458 int res; 2459 2460 if (control_save_page(rs, block, offset, &res)) { 2461 return res; 2462 } 2463 2464 if (save_compress_page(rs, block, offset)) { 2465 return 1; 2466 } 2467 2468 res = save_zero_page(rs, block, offset); 2469 if (res > 0) { 2470 /* Must let xbzrle know, otherwise a previous (now 0'd) cached 2471 * page would be stale 2472 */ 2473 if (!save_page_use_compression(rs)) { 2474 XBZRLE_cache_lock(); 2475 xbzrle_cache_zero_page(rs, block->offset + offset); 2476 XBZRLE_cache_unlock(); 2477 } 2478 ram_release_pages(block->idstr, offset, res); 2479 return res; 2480 } 2481 2482 /* 2483 * do not use multifd for compression as the first page in the new 2484 * block should be posted out before sending the compressed page 2485 */ 2486 if (!save_page_use_compression(rs) && migrate_use_multifd()) { 2487 return ram_save_multifd_page(rs, block, offset); 2488 } 2489 2490 return ram_save_page(rs, pss, last_stage); 2491 } 2492 2493 /** 2494 * ram_save_host_page: save a whole host page 2495 * 2496 * Starting at *offset send pages up to the end of the current host 2497 * page. It's valid for the initial offset to point into the middle of 2498 * a host page in which case the remainder of the hostpage is sent. 2499 * Only dirty target pages are sent. Note that the host page size may 2500 * be a huge page for this block. 2501 * The saving stops at the boundary of the used_length of the block 2502 * if the RAMBlock isn't a multiple of the host page size. 2503 * 2504 * Returns the number of pages written or negative on error 2505 * 2506 * @rs: current RAM state 2507 * @ms: current migration state 2508 * @pss: data about the page we want to send 2509 * @last_stage: if we are at the completion stage 2510 */ 2511 static int ram_save_host_page(RAMState *rs, PageSearchStatus *pss, 2512 bool last_stage) 2513 { 2514 int tmppages, pages = 0; 2515 size_t pagesize_bits = 2516 qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS; 2517 2518 if (ramblock_is_ignored(pss->block)) { 2519 error_report("block %s should not be migrated !", pss->block->idstr); 2520 return 0; 2521 } 2522 2523 do { 2524 /* Check the pages is dirty and if it is send it */ 2525 if (!migration_bitmap_clear_dirty(rs, pss->block, pss->page)) { 2526 pss->page++; 2527 continue; 2528 } 2529 2530 tmppages = ram_save_target_page(rs, pss, last_stage); 2531 if (tmppages < 0) { 2532 return tmppages; 2533 } 2534 2535 pages += tmppages; 2536 if (pss->block->unsentmap) { 2537 clear_bit(pss->page, pss->block->unsentmap); 2538 } 2539 2540 pss->page++; 2541 } while ((pss->page & (pagesize_bits - 1)) && 2542 offset_in_ramblock(pss->block, pss->page << TARGET_PAGE_BITS)); 2543 2544 /* The offset we leave with is the last one we looked at */ 2545 pss->page--; 2546 return pages; 2547 } 2548 2549 /** 2550 * ram_find_and_save_block: finds a dirty page and sends it to f 2551 * 2552 * Called within an RCU critical section. 2553 * 2554 * Returns the number of pages written where zero means no dirty pages, 2555 * or negative on error 2556 * 2557 * @rs: current RAM state 2558 * @last_stage: if we are at the completion stage 2559 * 2560 * On systems where host-page-size > target-page-size it will send all the 2561 * pages in a host page that are dirty. 2562 */ 2563 2564 static int ram_find_and_save_block(RAMState *rs, bool last_stage) 2565 { 2566 PageSearchStatus pss; 2567 int pages = 0; 2568 bool again, found; 2569 2570 /* No dirty page as there is zero RAM */ 2571 if (!ram_bytes_total()) { 2572 return pages; 2573 } 2574 2575 pss.block = rs->last_seen_block; 2576 pss.page = rs->last_page; 2577 pss.complete_round = false; 2578 2579 if (!pss.block) { 2580 pss.block = QLIST_FIRST_RCU(&ram_list.blocks); 2581 } 2582 2583 do { 2584 again = true; 2585 found = get_queued_page(rs, &pss); 2586 2587 if (!found) { 2588 /* priority queue empty, so just search for something dirty */ 2589 found = find_dirty_block(rs, &pss, &again); 2590 } 2591 2592 if (found) { 2593 pages = ram_save_host_page(rs, &pss, last_stage); 2594 } 2595 } while (!pages && again); 2596 2597 rs->last_seen_block = pss.block; 2598 rs->last_page = pss.page; 2599 2600 return pages; 2601 } 2602 2603 void acct_update_position(QEMUFile *f, size_t size, bool zero) 2604 { 2605 uint64_t pages = size / TARGET_PAGE_SIZE; 2606 2607 if (zero) { 2608 ram_counters.duplicate += pages; 2609 } else { 2610 ram_counters.normal += pages; 2611 ram_counters.transferred += size; 2612 qemu_update_position(f, size); 2613 } 2614 } 2615 2616 static uint64_t ram_bytes_total_common(bool count_ignored) 2617 { 2618 RAMBlock *block; 2619 uint64_t total = 0; 2620 2621 rcu_read_lock(); 2622 if (count_ignored) { 2623 RAMBLOCK_FOREACH_MIGRATABLE(block) { 2624 total += block->used_length; 2625 } 2626 } else { 2627 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 2628 total += block->used_length; 2629 } 2630 } 2631 rcu_read_unlock(); 2632 return total; 2633 } 2634 2635 uint64_t ram_bytes_total(void) 2636 { 2637 return ram_bytes_total_common(false); 2638 } 2639 2640 static void xbzrle_load_setup(void) 2641 { 2642 XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE); 2643 } 2644 2645 static void xbzrle_load_cleanup(void) 2646 { 2647 g_free(XBZRLE.decoded_buf); 2648 XBZRLE.decoded_buf = NULL; 2649 } 2650 2651 static void ram_state_cleanup(RAMState **rsp) 2652 { 2653 if (*rsp) { 2654 migration_page_queue_free(*rsp); 2655 qemu_mutex_destroy(&(*rsp)->bitmap_mutex); 2656 qemu_mutex_destroy(&(*rsp)->src_page_req_mutex); 2657 g_free(*rsp); 2658 *rsp = NULL; 2659 } 2660 } 2661 2662 static void xbzrle_cleanup(void) 2663 { 2664 XBZRLE_cache_lock(); 2665 if (XBZRLE.cache) { 2666 cache_fini(XBZRLE.cache); 2667 g_free(XBZRLE.encoded_buf); 2668 g_free(XBZRLE.current_buf); 2669 g_free(XBZRLE.zero_target_page); 2670 XBZRLE.cache = NULL; 2671 XBZRLE.encoded_buf = NULL; 2672 XBZRLE.current_buf = NULL; 2673 XBZRLE.zero_target_page = NULL; 2674 } 2675 XBZRLE_cache_unlock(); 2676 } 2677 2678 static void ram_save_cleanup(void *opaque) 2679 { 2680 RAMState **rsp = opaque; 2681 RAMBlock *block; 2682 2683 /* caller have hold iothread lock or is in a bh, so there is 2684 * no writing race against this migration_bitmap 2685 */ 2686 memory_global_dirty_log_stop(); 2687 2688 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 2689 g_free(block->bmap); 2690 block->bmap = NULL; 2691 g_free(block->unsentmap); 2692 block->unsentmap = NULL; 2693 } 2694 2695 xbzrle_cleanup(); 2696 compress_threads_save_cleanup(); 2697 ram_state_cleanup(rsp); 2698 } 2699 2700 static void ram_state_reset(RAMState *rs) 2701 { 2702 rs->last_seen_block = NULL; 2703 rs->last_sent_block = NULL; 2704 rs->last_page = 0; 2705 rs->last_version = ram_list.version; 2706 rs->ram_bulk_stage = true; 2707 rs->fpo_enabled = false; 2708 } 2709 2710 #define MAX_WAIT 50 /* ms, half buffered_file limit */ 2711 2712 /* 2713 * 'expected' is the value you expect the bitmap mostly to be full 2714 * of; it won't bother printing lines that are all this value. 2715 * If 'todump' is null the migration bitmap is dumped. 2716 */ 2717 void ram_debug_dump_bitmap(unsigned long *todump, bool expected, 2718 unsigned long pages) 2719 { 2720 int64_t cur; 2721 int64_t linelen = 128; 2722 char linebuf[129]; 2723 2724 for (cur = 0; cur < pages; cur += linelen) { 2725 int64_t curb; 2726 bool found = false; 2727 /* 2728 * Last line; catch the case where the line length 2729 * is longer than remaining ram 2730 */ 2731 if (cur + linelen > pages) { 2732 linelen = pages - cur; 2733 } 2734 for (curb = 0; curb < linelen; curb++) { 2735 bool thisbit = test_bit(cur + curb, todump); 2736 linebuf[curb] = thisbit ? '1' : '.'; 2737 found = found || (thisbit != expected); 2738 } 2739 if (found) { 2740 linebuf[curb] = '\0'; 2741 fprintf(stderr, "0x%08" PRIx64 " : %s\n", cur, linebuf); 2742 } 2743 } 2744 } 2745 2746 /* **** functions for postcopy ***** */ 2747 2748 void ram_postcopy_migrated_memory_release(MigrationState *ms) 2749 { 2750 struct RAMBlock *block; 2751 2752 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 2753 unsigned long *bitmap = block->bmap; 2754 unsigned long range = block->used_length >> TARGET_PAGE_BITS; 2755 unsigned long run_start = find_next_zero_bit(bitmap, range, 0); 2756 2757 while (run_start < range) { 2758 unsigned long run_end = find_next_bit(bitmap, range, run_start + 1); 2759 ram_discard_range(block->idstr, run_start << TARGET_PAGE_BITS, 2760 (run_end - run_start) << TARGET_PAGE_BITS); 2761 run_start = find_next_zero_bit(bitmap, range, run_end + 1); 2762 } 2763 } 2764 } 2765 2766 /** 2767 * postcopy_send_discard_bm_ram: discard a RAMBlock 2768 * 2769 * Returns zero on success 2770 * 2771 * Callback from postcopy_each_ram_send_discard for each RAMBlock 2772 * Note: At this point the 'unsentmap' is the processed bitmap combined 2773 * with the dirtymap; so a '1' means it's either dirty or unsent. 2774 * 2775 * @ms: current migration state 2776 * @pds: state for postcopy 2777 * @start: RAMBlock starting page 2778 * @length: RAMBlock size 2779 */ 2780 static int postcopy_send_discard_bm_ram(MigrationState *ms, 2781 PostcopyDiscardState *pds, 2782 RAMBlock *block) 2783 { 2784 unsigned long end = block->used_length >> TARGET_PAGE_BITS; 2785 unsigned long current; 2786 unsigned long *unsentmap = block->unsentmap; 2787 2788 for (current = 0; current < end; ) { 2789 unsigned long one = find_next_bit(unsentmap, end, current); 2790 2791 if (one <= end) { 2792 unsigned long zero = find_next_zero_bit(unsentmap, end, one + 1); 2793 unsigned long discard_length; 2794 2795 if (zero >= end) { 2796 discard_length = end - one; 2797 } else { 2798 discard_length = zero - one; 2799 } 2800 if (discard_length) { 2801 postcopy_discard_send_range(ms, pds, one, discard_length); 2802 } 2803 current = one + discard_length; 2804 } else { 2805 current = one; 2806 } 2807 } 2808 2809 return 0; 2810 } 2811 2812 /** 2813 * postcopy_each_ram_send_discard: discard all RAMBlocks 2814 * 2815 * Returns 0 for success or negative for error 2816 * 2817 * Utility for the outgoing postcopy code. 2818 * Calls postcopy_send_discard_bm_ram for each RAMBlock 2819 * passing it bitmap indexes and name. 2820 * (qemu_ram_foreach_block ends up passing unscaled lengths 2821 * which would mean postcopy code would have to deal with target page) 2822 * 2823 * @ms: current migration state 2824 */ 2825 static int postcopy_each_ram_send_discard(MigrationState *ms) 2826 { 2827 struct RAMBlock *block; 2828 int ret; 2829 2830 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 2831 PostcopyDiscardState *pds = 2832 postcopy_discard_send_init(ms, block->idstr); 2833 2834 /* 2835 * Postcopy sends chunks of bitmap over the wire, but it 2836 * just needs indexes at this point, avoids it having 2837 * target page specific code. 2838 */ 2839 ret = postcopy_send_discard_bm_ram(ms, pds, block); 2840 postcopy_discard_send_finish(ms, pds); 2841 if (ret) { 2842 return ret; 2843 } 2844 } 2845 2846 return 0; 2847 } 2848 2849 /** 2850 * postcopy_chunk_hostpages_pass: canocalize bitmap in hostpages 2851 * 2852 * Helper for postcopy_chunk_hostpages; it's called twice to 2853 * canonicalize the two bitmaps, that are similar, but one is 2854 * inverted. 2855 * 2856 * Postcopy requires that all target pages in a hostpage are dirty or 2857 * clean, not a mix. This function canonicalizes the bitmaps. 2858 * 2859 * @ms: current migration state 2860 * @unsent_pass: if true we need to canonicalize partially unsent host pages 2861 * otherwise we need to canonicalize partially dirty host pages 2862 * @block: block that contains the page we want to canonicalize 2863 * @pds: state for postcopy 2864 */ 2865 static void postcopy_chunk_hostpages_pass(MigrationState *ms, bool unsent_pass, 2866 RAMBlock *block, 2867 PostcopyDiscardState *pds) 2868 { 2869 RAMState *rs = ram_state; 2870 unsigned long *bitmap = block->bmap; 2871 unsigned long *unsentmap = block->unsentmap; 2872 unsigned int host_ratio = block->page_size / TARGET_PAGE_SIZE; 2873 unsigned long pages = block->used_length >> TARGET_PAGE_BITS; 2874 unsigned long run_start; 2875 2876 if (block->page_size == TARGET_PAGE_SIZE) { 2877 /* Easy case - TPS==HPS for a non-huge page RAMBlock */ 2878 return; 2879 } 2880 2881 if (unsent_pass) { 2882 /* Find a sent page */ 2883 run_start = find_next_zero_bit(unsentmap, pages, 0); 2884 } else { 2885 /* Find a dirty page */ 2886 run_start = find_next_bit(bitmap, pages, 0); 2887 } 2888 2889 while (run_start < pages) { 2890 bool do_fixup = false; 2891 unsigned long fixup_start_addr; 2892 unsigned long host_offset; 2893 2894 /* 2895 * If the start of this run of pages is in the middle of a host 2896 * page, then we need to fixup this host page. 2897 */ 2898 host_offset = run_start % host_ratio; 2899 if (host_offset) { 2900 do_fixup = true; 2901 run_start -= host_offset; 2902 fixup_start_addr = run_start; 2903 /* For the next pass */ 2904 run_start = run_start + host_ratio; 2905 } else { 2906 /* Find the end of this run */ 2907 unsigned long run_end; 2908 if (unsent_pass) { 2909 run_end = find_next_bit(unsentmap, pages, run_start + 1); 2910 } else { 2911 run_end = find_next_zero_bit(bitmap, pages, run_start + 1); 2912 } 2913 /* 2914 * If the end isn't at the start of a host page, then the 2915 * run doesn't finish at the end of a host page 2916 * and we need to discard. 2917 */ 2918 host_offset = run_end % host_ratio; 2919 if (host_offset) { 2920 do_fixup = true; 2921 fixup_start_addr = run_end - host_offset; 2922 /* 2923 * This host page has gone, the next loop iteration starts 2924 * from after the fixup 2925 */ 2926 run_start = fixup_start_addr + host_ratio; 2927 } else { 2928 /* 2929 * No discards on this iteration, next loop starts from 2930 * next sent/dirty page 2931 */ 2932 run_start = run_end + 1; 2933 } 2934 } 2935 2936 if (do_fixup) { 2937 unsigned long page; 2938 2939 /* Tell the destination to discard this page */ 2940 if (unsent_pass || !test_bit(fixup_start_addr, unsentmap)) { 2941 /* For the unsent_pass we: 2942 * discard partially sent pages 2943 * For the !unsent_pass (dirty) we: 2944 * discard partially dirty pages that were sent 2945 * (any partially sent pages were already discarded 2946 * by the previous unsent_pass) 2947 */ 2948 postcopy_discard_send_range(ms, pds, fixup_start_addr, 2949 host_ratio); 2950 } 2951 2952 /* Clean up the bitmap */ 2953 for (page = fixup_start_addr; 2954 page < fixup_start_addr + host_ratio; page++) { 2955 /* All pages in this host page are now not sent */ 2956 set_bit(page, unsentmap); 2957 2958 /* 2959 * Remark them as dirty, updating the count for any pages 2960 * that weren't previously dirty. 2961 */ 2962 rs->migration_dirty_pages += !test_and_set_bit(page, bitmap); 2963 } 2964 } 2965 2966 if (unsent_pass) { 2967 /* Find the next sent page for the next iteration */ 2968 run_start = find_next_zero_bit(unsentmap, pages, run_start); 2969 } else { 2970 /* Find the next dirty page for the next iteration */ 2971 run_start = find_next_bit(bitmap, pages, run_start); 2972 } 2973 } 2974 } 2975 2976 /** 2977 * postcopy_chuck_hostpages: discrad any partially sent host page 2978 * 2979 * Utility for the outgoing postcopy code. 2980 * 2981 * Discard any partially sent host-page size chunks, mark any partially 2982 * dirty host-page size chunks as all dirty. In this case the host-page 2983 * is the host-page for the particular RAMBlock, i.e. it might be a huge page 2984 * 2985 * Returns zero on success 2986 * 2987 * @ms: current migration state 2988 * @block: block we want to work with 2989 */ 2990 static int postcopy_chunk_hostpages(MigrationState *ms, RAMBlock *block) 2991 { 2992 PostcopyDiscardState *pds = 2993 postcopy_discard_send_init(ms, block->idstr); 2994 2995 /* First pass: Discard all partially sent host pages */ 2996 postcopy_chunk_hostpages_pass(ms, true, block, pds); 2997 /* 2998 * Second pass: Ensure that all partially dirty host pages are made 2999 * fully dirty. 3000 */ 3001 postcopy_chunk_hostpages_pass(ms, false, block, pds); 3002 3003 postcopy_discard_send_finish(ms, pds); 3004 return 0; 3005 } 3006 3007 /** 3008 * ram_postcopy_send_discard_bitmap: transmit the discard bitmap 3009 * 3010 * Returns zero on success 3011 * 3012 * Transmit the set of pages to be discarded after precopy to the target 3013 * these are pages that: 3014 * a) Have been previously transmitted but are now dirty again 3015 * b) Pages that have never been transmitted, this ensures that 3016 * any pages on the destination that have been mapped by background 3017 * tasks get discarded (transparent huge pages is the specific concern) 3018 * Hopefully this is pretty sparse 3019 * 3020 * @ms: current migration state 3021 */ 3022 int ram_postcopy_send_discard_bitmap(MigrationState *ms) 3023 { 3024 RAMState *rs = ram_state; 3025 RAMBlock *block; 3026 int ret; 3027 3028 rcu_read_lock(); 3029 3030 /* This should be our last sync, the src is now paused */ 3031 migration_bitmap_sync(rs); 3032 3033 /* Easiest way to make sure we don't resume in the middle of a host-page */ 3034 rs->last_seen_block = NULL; 3035 rs->last_sent_block = NULL; 3036 rs->last_page = 0; 3037 3038 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3039 unsigned long pages = block->used_length >> TARGET_PAGE_BITS; 3040 unsigned long *bitmap = block->bmap; 3041 unsigned long *unsentmap = block->unsentmap; 3042 3043 if (!unsentmap) { 3044 /* We don't have a safe way to resize the sentmap, so 3045 * if the bitmap was resized it will be NULL at this 3046 * point. 3047 */ 3048 error_report("migration ram resized during precopy phase"); 3049 rcu_read_unlock(); 3050 return -EINVAL; 3051 } 3052 /* Deal with TPS != HPS and huge pages */ 3053 ret = postcopy_chunk_hostpages(ms, block); 3054 if (ret) { 3055 rcu_read_unlock(); 3056 return ret; 3057 } 3058 3059 /* 3060 * Update the unsentmap to be unsentmap = unsentmap | dirty 3061 */ 3062 bitmap_or(unsentmap, unsentmap, bitmap, pages); 3063 #ifdef DEBUG_POSTCOPY 3064 ram_debug_dump_bitmap(unsentmap, true, pages); 3065 #endif 3066 } 3067 trace_ram_postcopy_send_discard_bitmap(); 3068 3069 ret = postcopy_each_ram_send_discard(ms); 3070 rcu_read_unlock(); 3071 3072 return ret; 3073 } 3074 3075 /** 3076 * ram_discard_range: discard dirtied pages at the beginning of postcopy 3077 * 3078 * Returns zero on success 3079 * 3080 * @rbname: name of the RAMBlock of the request. NULL means the 3081 * same that last one. 3082 * @start: RAMBlock starting page 3083 * @length: RAMBlock size 3084 */ 3085 int ram_discard_range(const char *rbname, uint64_t start, size_t length) 3086 { 3087 int ret = -1; 3088 3089 trace_ram_discard_range(rbname, start, length); 3090 3091 rcu_read_lock(); 3092 RAMBlock *rb = qemu_ram_block_by_name(rbname); 3093 3094 if (!rb) { 3095 error_report("ram_discard_range: Failed to find block '%s'", rbname); 3096 goto err; 3097 } 3098 3099 /* 3100 * On source VM, we don't need to update the received bitmap since 3101 * we don't even have one. 3102 */ 3103 if (rb->receivedmap) { 3104 bitmap_clear(rb->receivedmap, start >> qemu_target_page_bits(), 3105 length >> qemu_target_page_bits()); 3106 } 3107 3108 ret = ram_block_discard_range(rb, start, length); 3109 3110 err: 3111 rcu_read_unlock(); 3112 3113 return ret; 3114 } 3115 3116 /* 3117 * For every allocation, we will try not to crash the VM if the 3118 * allocation failed. 3119 */ 3120 static int xbzrle_init(void) 3121 { 3122 Error *local_err = NULL; 3123 3124 if (!migrate_use_xbzrle()) { 3125 return 0; 3126 } 3127 3128 XBZRLE_cache_lock(); 3129 3130 XBZRLE.zero_target_page = g_try_malloc0(TARGET_PAGE_SIZE); 3131 if (!XBZRLE.zero_target_page) { 3132 error_report("%s: Error allocating zero page", __func__); 3133 goto err_out; 3134 } 3135 3136 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size(), 3137 TARGET_PAGE_SIZE, &local_err); 3138 if (!XBZRLE.cache) { 3139 error_report_err(local_err); 3140 goto free_zero_page; 3141 } 3142 3143 XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE); 3144 if (!XBZRLE.encoded_buf) { 3145 error_report("%s: Error allocating encoded_buf", __func__); 3146 goto free_cache; 3147 } 3148 3149 XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE); 3150 if (!XBZRLE.current_buf) { 3151 error_report("%s: Error allocating current_buf", __func__); 3152 goto free_encoded_buf; 3153 } 3154 3155 /* We are all good */ 3156 XBZRLE_cache_unlock(); 3157 return 0; 3158 3159 free_encoded_buf: 3160 g_free(XBZRLE.encoded_buf); 3161 XBZRLE.encoded_buf = NULL; 3162 free_cache: 3163 cache_fini(XBZRLE.cache); 3164 XBZRLE.cache = NULL; 3165 free_zero_page: 3166 g_free(XBZRLE.zero_target_page); 3167 XBZRLE.zero_target_page = NULL; 3168 err_out: 3169 XBZRLE_cache_unlock(); 3170 return -ENOMEM; 3171 } 3172 3173 static int ram_state_init(RAMState **rsp) 3174 { 3175 *rsp = g_try_new0(RAMState, 1); 3176 3177 if (!*rsp) { 3178 error_report("%s: Init ramstate fail", __func__); 3179 return -1; 3180 } 3181 3182 qemu_mutex_init(&(*rsp)->bitmap_mutex); 3183 qemu_mutex_init(&(*rsp)->src_page_req_mutex); 3184 QSIMPLEQ_INIT(&(*rsp)->src_page_requests); 3185 3186 /* 3187 * Count the total number of pages used by ram blocks not including any 3188 * gaps due to alignment or unplugs. 3189 */ 3190 (*rsp)->migration_dirty_pages = ram_bytes_total() >> TARGET_PAGE_BITS; 3191 3192 ram_state_reset(*rsp); 3193 3194 return 0; 3195 } 3196 3197 static void ram_list_init_bitmaps(void) 3198 { 3199 RAMBlock *block; 3200 unsigned long pages; 3201 3202 /* Skip setting bitmap if there is no RAM */ 3203 if (ram_bytes_total()) { 3204 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3205 pages = block->max_length >> TARGET_PAGE_BITS; 3206 block->bmap = bitmap_new(pages); 3207 bitmap_set(block->bmap, 0, pages); 3208 if (migrate_postcopy_ram()) { 3209 block->unsentmap = bitmap_new(pages); 3210 bitmap_set(block->unsentmap, 0, pages); 3211 } 3212 } 3213 } 3214 } 3215 3216 static void ram_init_bitmaps(RAMState *rs) 3217 { 3218 /* For memory_global_dirty_log_start below. */ 3219 qemu_mutex_lock_iothread(); 3220 qemu_mutex_lock_ramlist(); 3221 rcu_read_lock(); 3222 3223 ram_list_init_bitmaps(); 3224 memory_global_dirty_log_start(); 3225 migration_bitmap_sync_precopy(rs); 3226 3227 rcu_read_unlock(); 3228 qemu_mutex_unlock_ramlist(); 3229 qemu_mutex_unlock_iothread(); 3230 } 3231 3232 static int ram_init_all(RAMState **rsp) 3233 { 3234 if (ram_state_init(rsp)) { 3235 return -1; 3236 } 3237 3238 if (xbzrle_init()) { 3239 ram_state_cleanup(rsp); 3240 return -1; 3241 } 3242 3243 ram_init_bitmaps(*rsp); 3244 3245 return 0; 3246 } 3247 3248 static void ram_state_resume_prepare(RAMState *rs, QEMUFile *out) 3249 { 3250 RAMBlock *block; 3251 uint64_t pages = 0; 3252 3253 /* 3254 * Postcopy is not using xbzrle/compression, so no need for that. 3255 * Also, since source are already halted, we don't need to care 3256 * about dirty page logging as well. 3257 */ 3258 3259 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3260 pages += bitmap_count_one(block->bmap, 3261 block->used_length >> TARGET_PAGE_BITS); 3262 } 3263 3264 /* This may not be aligned with current bitmaps. Recalculate. */ 3265 rs->migration_dirty_pages = pages; 3266 3267 rs->last_seen_block = NULL; 3268 rs->last_sent_block = NULL; 3269 rs->last_page = 0; 3270 rs->last_version = ram_list.version; 3271 /* 3272 * Disable the bulk stage, otherwise we'll resend the whole RAM no 3273 * matter what we have sent. 3274 */ 3275 rs->ram_bulk_stage = false; 3276 3277 /* Update RAMState cache of output QEMUFile */ 3278 rs->f = out; 3279 3280 trace_ram_state_resume_prepare(pages); 3281 } 3282 3283 /* 3284 * This function clears bits of the free pages reported by the caller from the 3285 * migration dirty bitmap. @addr is the host address corresponding to the 3286 * start of the continuous guest free pages, and @len is the total bytes of 3287 * those pages. 3288 */ 3289 void qemu_guest_free_page_hint(void *addr, size_t len) 3290 { 3291 RAMBlock *block; 3292 ram_addr_t offset; 3293 size_t used_len, start, npages; 3294 MigrationState *s = migrate_get_current(); 3295 3296 /* This function is currently expected to be used during live migration */ 3297 if (!migration_is_setup_or_active(s->state)) { 3298 return; 3299 } 3300 3301 for (; len > 0; len -= used_len, addr += used_len) { 3302 block = qemu_ram_block_from_host(addr, false, &offset); 3303 if (unlikely(!block || offset >= block->used_length)) { 3304 /* 3305 * The implementation might not support RAMBlock resize during 3306 * live migration, but it could happen in theory with future 3307 * updates. So we add a check here to capture that case. 3308 */ 3309 error_report_once("%s unexpected error", __func__); 3310 return; 3311 } 3312 3313 if (len <= block->used_length - offset) { 3314 used_len = len; 3315 } else { 3316 used_len = block->used_length - offset; 3317 } 3318 3319 start = offset >> TARGET_PAGE_BITS; 3320 npages = used_len >> TARGET_PAGE_BITS; 3321 3322 qemu_mutex_lock(&ram_state->bitmap_mutex); 3323 ram_state->migration_dirty_pages -= 3324 bitmap_count_one_with_offset(block->bmap, start, npages); 3325 bitmap_clear(block->bmap, start, npages); 3326 qemu_mutex_unlock(&ram_state->bitmap_mutex); 3327 } 3328 } 3329 3330 /* 3331 * Each of ram_save_setup, ram_save_iterate and ram_save_complete has 3332 * long-running RCU critical section. When rcu-reclaims in the code 3333 * start to become numerous it will be necessary to reduce the 3334 * granularity of these critical sections. 3335 */ 3336 3337 /** 3338 * ram_save_setup: Setup RAM for migration 3339 * 3340 * Returns zero to indicate success and negative for error 3341 * 3342 * @f: QEMUFile where to send the data 3343 * @opaque: RAMState pointer 3344 */ 3345 static int ram_save_setup(QEMUFile *f, void *opaque) 3346 { 3347 RAMState **rsp = opaque; 3348 RAMBlock *block; 3349 3350 if (compress_threads_save_setup()) { 3351 return -1; 3352 } 3353 3354 /* migration has already setup the bitmap, reuse it. */ 3355 if (!migration_in_colo_state()) { 3356 if (ram_init_all(rsp) != 0) { 3357 compress_threads_save_cleanup(); 3358 return -1; 3359 } 3360 } 3361 (*rsp)->f = f; 3362 3363 rcu_read_lock(); 3364 3365 qemu_put_be64(f, ram_bytes_total_common(true) | RAM_SAVE_FLAG_MEM_SIZE); 3366 3367 RAMBLOCK_FOREACH_MIGRATABLE(block) { 3368 qemu_put_byte(f, strlen(block->idstr)); 3369 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr)); 3370 qemu_put_be64(f, block->used_length); 3371 if (migrate_postcopy_ram() && block->page_size != qemu_host_page_size) { 3372 qemu_put_be64(f, block->page_size); 3373 } 3374 if (migrate_ignore_shared()) { 3375 qemu_put_be64(f, block->mr->addr); 3376 qemu_put_byte(f, ramblock_is_ignored(block) ? 1 : 0); 3377 } 3378 } 3379 3380 rcu_read_unlock(); 3381 3382 ram_control_before_iterate(f, RAM_CONTROL_SETUP); 3383 ram_control_after_iterate(f, RAM_CONTROL_SETUP); 3384 3385 multifd_send_sync_main(); 3386 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 3387 qemu_fflush(f); 3388 3389 return 0; 3390 } 3391 3392 /** 3393 * ram_save_iterate: iterative stage for migration 3394 * 3395 * Returns zero to indicate success and negative for error 3396 * 3397 * @f: QEMUFile where to send the data 3398 * @opaque: RAMState pointer 3399 */ 3400 static int ram_save_iterate(QEMUFile *f, void *opaque) 3401 { 3402 RAMState **temp = opaque; 3403 RAMState *rs = *temp; 3404 int ret; 3405 int i; 3406 int64_t t0; 3407 int done = 0; 3408 3409 if (blk_mig_bulk_active()) { 3410 /* Avoid transferring ram during bulk phase of block migration as 3411 * the bulk phase will usually take a long time and transferring 3412 * ram updates during that time is pointless. */ 3413 goto out; 3414 } 3415 3416 rcu_read_lock(); 3417 if (ram_list.version != rs->last_version) { 3418 ram_state_reset(rs); 3419 } 3420 3421 /* Read version before ram_list.blocks */ 3422 smp_rmb(); 3423 3424 ram_control_before_iterate(f, RAM_CONTROL_ROUND); 3425 3426 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 3427 i = 0; 3428 while ((ret = qemu_file_rate_limit(f)) == 0 || 3429 !QSIMPLEQ_EMPTY(&rs->src_page_requests)) { 3430 int pages; 3431 3432 if (qemu_file_get_error(f)) { 3433 break; 3434 } 3435 3436 pages = ram_find_and_save_block(rs, false); 3437 /* no more pages to sent */ 3438 if (pages == 0) { 3439 done = 1; 3440 break; 3441 } 3442 3443 if (pages < 0) { 3444 qemu_file_set_error(f, pages); 3445 break; 3446 } 3447 3448 rs->target_page_count += pages; 3449 3450 /* we want to check in the 1st loop, just in case it was the 1st time 3451 and we had to sync the dirty bitmap. 3452 qemu_get_clock_ns() is a bit expensive, so we only check each some 3453 iterations 3454 */ 3455 if ((i & 63) == 0) { 3456 uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) / 1000000; 3457 if (t1 > MAX_WAIT) { 3458 trace_ram_save_iterate_big_wait(t1, i); 3459 break; 3460 } 3461 } 3462 i++; 3463 } 3464 rcu_read_unlock(); 3465 3466 /* 3467 * Must occur before EOS (or any QEMUFile operation) 3468 * because of RDMA protocol. 3469 */ 3470 ram_control_after_iterate(f, RAM_CONTROL_ROUND); 3471 3472 multifd_send_sync_main(); 3473 out: 3474 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 3475 qemu_fflush(f); 3476 ram_counters.transferred += 8; 3477 3478 ret = qemu_file_get_error(f); 3479 if (ret < 0) { 3480 return ret; 3481 } 3482 3483 return done; 3484 } 3485 3486 /** 3487 * ram_save_complete: function called to send the remaining amount of ram 3488 * 3489 * Returns zero to indicate success or negative on error 3490 * 3491 * Called with iothread lock 3492 * 3493 * @f: QEMUFile where to send the data 3494 * @opaque: RAMState pointer 3495 */ 3496 static int ram_save_complete(QEMUFile *f, void *opaque) 3497 { 3498 RAMState **temp = opaque; 3499 RAMState *rs = *temp; 3500 int ret = 0; 3501 3502 rcu_read_lock(); 3503 3504 if (!migration_in_postcopy()) { 3505 migration_bitmap_sync_precopy(rs); 3506 } 3507 3508 ram_control_before_iterate(f, RAM_CONTROL_FINISH); 3509 3510 /* try transferring iterative blocks of memory */ 3511 3512 /* flush all remaining blocks regardless of rate limiting */ 3513 while (true) { 3514 int pages; 3515 3516 pages = ram_find_and_save_block(rs, !migration_in_colo_state()); 3517 /* no more blocks to sent */ 3518 if (pages == 0) { 3519 break; 3520 } 3521 if (pages < 0) { 3522 ret = pages; 3523 break; 3524 } 3525 } 3526 3527 flush_compressed_data(rs); 3528 ram_control_after_iterate(f, RAM_CONTROL_FINISH); 3529 3530 rcu_read_unlock(); 3531 3532 multifd_send_sync_main(); 3533 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 3534 qemu_fflush(f); 3535 3536 return ret; 3537 } 3538 3539 static void ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size, 3540 uint64_t *res_precopy_only, 3541 uint64_t *res_compatible, 3542 uint64_t *res_postcopy_only) 3543 { 3544 RAMState **temp = opaque; 3545 RAMState *rs = *temp; 3546 uint64_t remaining_size; 3547 3548 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE; 3549 3550 if (!migration_in_postcopy() && 3551 remaining_size < max_size) { 3552 qemu_mutex_lock_iothread(); 3553 rcu_read_lock(); 3554 migration_bitmap_sync_precopy(rs); 3555 rcu_read_unlock(); 3556 qemu_mutex_unlock_iothread(); 3557 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE; 3558 } 3559 3560 if (migrate_postcopy_ram()) { 3561 /* We can do postcopy, and all the data is postcopiable */ 3562 *res_compatible += remaining_size; 3563 } else { 3564 *res_precopy_only += remaining_size; 3565 } 3566 } 3567 3568 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host) 3569 { 3570 unsigned int xh_len; 3571 int xh_flags; 3572 uint8_t *loaded_data; 3573 3574 /* extract RLE header */ 3575 xh_flags = qemu_get_byte(f); 3576 xh_len = qemu_get_be16(f); 3577 3578 if (xh_flags != ENCODING_FLAG_XBZRLE) { 3579 error_report("Failed to load XBZRLE page - wrong compression!"); 3580 return -1; 3581 } 3582 3583 if (xh_len > TARGET_PAGE_SIZE) { 3584 error_report("Failed to load XBZRLE page - len overflow!"); 3585 return -1; 3586 } 3587 loaded_data = XBZRLE.decoded_buf; 3588 /* load data and decode */ 3589 /* it can change loaded_data to point to an internal buffer */ 3590 qemu_get_buffer_in_place(f, &loaded_data, xh_len); 3591 3592 /* decode RLE */ 3593 if (xbzrle_decode_buffer(loaded_data, xh_len, host, 3594 TARGET_PAGE_SIZE) == -1) { 3595 error_report("Failed to load XBZRLE page - decode error!"); 3596 return -1; 3597 } 3598 3599 return 0; 3600 } 3601 3602 /** 3603 * ram_block_from_stream: read a RAMBlock id from the migration stream 3604 * 3605 * Must be called from within a rcu critical section. 3606 * 3607 * Returns a pointer from within the RCU-protected ram_list. 3608 * 3609 * @f: QEMUFile where to read the data from 3610 * @flags: Page flags (mostly to see if it's a continuation of previous block) 3611 */ 3612 static inline RAMBlock *ram_block_from_stream(QEMUFile *f, int flags) 3613 { 3614 static RAMBlock *block = NULL; 3615 char id[256]; 3616 uint8_t len; 3617 3618 if (flags & RAM_SAVE_FLAG_CONTINUE) { 3619 if (!block) { 3620 error_report("Ack, bad migration stream!"); 3621 return NULL; 3622 } 3623 return block; 3624 } 3625 3626 len = qemu_get_byte(f); 3627 qemu_get_buffer(f, (uint8_t *)id, len); 3628 id[len] = 0; 3629 3630 block = qemu_ram_block_by_name(id); 3631 if (!block) { 3632 error_report("Can't find block %s", id); 3633 return NULL; 3634 } 3635 3636 if (ramblock_is_ignored(block)) { 3637 error_report("block %s should not be migrated !", id); 3638 return NULL; 3639 } 3640 3641 return block; 3642 } 3643 3644 static inline void *host_from_ram_block_offset(RAMBlock *block, 3645 ram_addr_t offset) 3646 { 3647 if (!offset_in_ramblock(block, offset)) { 3648 return NULL; 3649 } 3650 3651 return block->host + offset; 3652 } 3653 3654 static inline void *colo_cache_from_block_offset(RAMBlock *block, 3655 ram_addr_t offset) 3656 { 3657 if (!offset_in_ramblock(block, offset)) { 3658 return NULL; 3659 } 3660 if (!block->colo_cache) { 3661 error_report("%s: colo_cache is NULL in block :%s", 3662 __func__, block->idstr); 3663 return NULL; 3664 } 3665 3666 /* 3667 * During colo checkpoint, we need bitmap of these migrated pages. 3668 * It help us to decide which pages in ram cache should be flushed 3669 * into VM's RAM later. 3670 */ 3671 if (!test_and_set_bit(offset >> TARGET_PAGE_BITS, block->bmap)) { 3672 ram_state->migration_dirty_pages++; 3673 } 3674 return block->colo_cache + offset; 3675 } 3676 3677 /** 3678 * ram_handle_compressed: handle the zero page case 3679 * 3680 * If a page (or a whole RDMA chunk) has been 3681 * determined to be zero, then zap it. 3682 * 3683 * @host: host address for the zero page 3684 * @ch: what the page is filled from. We only support zero 3685 * @size: size of the zero page 3686 */ 3687 void ram_handle_compressed(void *host, uint8_t ch, uint64_t size) 3688 { 3689 if (ch != 0 || !is_zero_range(host, size)) { 3690 memset(host, ch, size); 3691 } 3692 } 3693 3694 /* return the size after decompression, or negative value on error */ 3695 static int 3696 qemu_uncompress_data(z_stream *stream, uint8_t *dest, size_t dest_len, 3697 const uint8_t *source, size_t source_len) 3698 { 3699 int err; 3700 3701 err = inflateReset(stream); 3702 if (err != Z_OK) { 3703 return -1; 3704 } 3705 3706 stream->avail_in = source_len; 3707 stream->next_in = (uint8_t *)source; 3708 stream->avail_out = dest_len; 3709 stream->next_out = dest; 3710 3711 err = inflate(stream, Z_NO_FLUSH); 3712 if (err != Z_STREAM_END) { 3713 return -1; 3714 } 3715 3716 return stream->total_out; 3717 } 3718 3719 static void *do_data_decompress(void *opaque) 3720 { 3721 DecompressParam *param = opaque; 3722 unsigned long pagesize; 3723 uint8_t *des; 3724 int len, ret; 3725 3726 qemu_mutex_lock(¶m->mutex); 3727 while (!param->quit) { 3728 if (param->des) { 3729 des = param->des; 3730 len = param->len; 3731 param->des = 0; 3732 qemu_mutex_unlock(¶m->mutex); 3733 3734 pagesize = TARGET_PAGE_SIZE; 3735 3736 ret = qemu_uncompress_data(¶m->stream, des, pagesize, 3737 param->compbuf, len); 3738 if (ret < 0 && migrate_get_current()->decompress_error_check) { 3739 error_report("decompress data failed"); 3740 qemu_file_set_error(decomp_file, ret); 3741 } 3742 3743 qemu_mutex_lock(&decomp_done_lock); 3744 param->done = true; 3745 qemu_cond_signal(&decomp_done_cond); 3746 qemu_mutex_unlock(&decomp_done_lock); 3747 3748 qemu_mutex_lock(¶m->mutex); 3749 } else { 3750 qemu_cond_wait(¶m->cond, ¶m->mutex); 3751 } 3752 } 3753 qemu_mutex_unlock(¶m->mutex); 3754 3755 return NULL; 3756 } 3757 3758 static int wait_for_decompress_done(void) 3759 { 3760 int idx, thread_count; 3761 3762 if (!migrate_use_compression()) { 3763 return 0; 3764 } 3765 3766 thread_count = migrate_decompress_threads(); 3767 qemu_mutex_lock(&decomp_done_lock); 3768 for (idx = 0; idx < thread_count; idx++) { 3769 while (!decomp_param[idx].done) { 3770 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock); 3771 } 3772 } 3773 qemu_mutex_unlock(&decomp_done_lock); 3774 return qemu_file_get_error(decomp_file); 3775 } 3776 3777 static void compress_threads_load_cleanup(void) 3778 { 3779 int i, thread_count; 3780 3781 if (!migrate_use_compression()) { 3782 return; 3783 } 3784 thread_count = migrate_decompress_threads(); 3785 for (i = 0; i < thread_count; i++) { 3786 /* 3787 * we use it as a indicator which shows if the thread is 3788 * properly init'd or not 3789 */ 3790 if (!decomp_param[i].compbuf) { 3791 break; 3792 } 3793 3794 qemu_mutex_lock(&decomp_param[i].mutex); 3795 decomp_param[i].quit = true; 3796 qemu_cond_signal(&decomp_param[i].cond); 3797 qemu_mutex_unlock(&decomp_param[i].mutex); 3798 } 3799 for (i = 0; i < thread_count; i++) { 3800 if (!decomp_param[i].compbuf) { 3801 break; 3802 } 3803 3804 qemu_thread_join(decompress_threads + i); 3805 qemu_mutex_destroy(&decomp_param[i].mutex); 3806 qemu_cond_destroy(&decomp_param[i].cond); 3807 inflateEnd(&decomp_param[i].stream); 3808 g_free(decomp_param[i].compbuf); 3809 decomp_param[i].compbuf = NULL; 3810 } 3811 g_free(decompress_threads); 3812 g_free(decomp_param); 3813 decompress_threads = NULL; 3814 decomp_param = NULL; 3815 decomp_file = NULL; 3816 } 3817 3818 static int compress_threads_load_setup(QEMUFile *f) 3819 { 3820 int i, thread_count; 3821 3822 if (!migrate_use_compression()) { 3823 return 0; 3824 } 3825 3826 thread_count = migrate_decompress_threads(); 3827 decompress_threads = g_new0(QemuThread, thread_count); 3828 decomp_param = g_new0(DecompressParam, thread_count); 3829 qemu_mutex_init(&decomp_done_lock); 3830 qemu_cond_init(&decomp_done_cond); 3831 decomp_file = f; 3832 for (i = 0; i < thread_count; i++) { 3833 if (inflateInit(&decomp_param[i].stream) != Z_OK) { 3834 goto exit; 3835 } 3836 3837 decomp_param[i].compbuf = g_malloc0(compressBound(TARGET_PAGE_SIZE)); 3838 qemu_mutex_init(&decomp_param[i].mutex); 3839 qemu_cond_init(&decomp_param[i].cond); 3840 decomp_param[i].done = true; 3841 decomp_param[i].quit = false; 3842 qemu_thread_create(decompress_threads + i, "decompress", 3843 do_data_decompress, decomp_param + i, 3844 QEMU_THREAD_JOINABLE); 3845 } 3846 return 0; 3847 exit: 3848 compress_threads_load_cleanup(); 3849 return -1; 3850 } 3851 3852 static void decompress_data_with_multi_threads(QEMUFile *f, 3853 void *host, int len) 3854 { 3855 int idx, thread_count; 3856 3857 thread_count = migrate_decompress_threads(); 3858 qemu_mutex_lock(&decomp_done_lock); 3859 while (true) { 3860 for (idx = 0; idx < thread_count; idx++) { 3861 if (decomp_param[idx].done) { 3862 decomp_param[idx].done = false; 3863 qemu_mutex_lock(&decomp_param[idx].mutex); 3864 qemu_get_buffer(f, decomp_param[idx].compbuf, len); 3865 decomp_param[idx].des = host; 3866 decomp_param[idx].len = len; 3867 qemu_cond_signal(&decomp_param[idx].cond); 3868 qemu_mutex_unlock(&decomp_param[idx].mutex); 3869 break; 3870 } 3871 } 3872 if (idx < thread_count) { 3873 break; 3874 } else { 3875 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock); 3876 } 3877 } 3878 qemu_mutex_unlock(&decomp_done_lock); 3879 } 3880 3881 /* 3882 * colo cache: this is for secondary VM, we cache the whole 3883 * memory of the secondary VM, it is need to hold the global lock 3884 * to call this helper. 3885 */ 3886 int colo_init_ram_cache(void) 3887 { 3888 RAMBlock *block; 3889 3890 rcu_read_lock(); 3891 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3892 block->colo_cache = qemu_anon_ram_alloc(block->used_length, 3893 NULL, 3894 false); 3895 if (!block->colo_cache) { 3896 error_report("%s: Can't alloc memory for COLO cache of block %s," 3897 "size 0x" RAM_ADDR_FMT, __func__, block->idstr, 3898 block->used_length); 3899 goto out_locked; 3900 } 3901 memcpy(block->colo_cache, block->host, block->used_length); 3902 } 3903 rcu_read_unlock(); 3904 /* 3905 * Record the dirty pages that sent by PVM, we use this dirty bitmap together 3906 * with to decide which page in cache should be flushed into SVM's RAM. Here 3907 * we use the same name 'ram_bitmap' as for migration. 3908 */ 3909 if (ram_bytes_total()) { 3910 RAMBlock *block; 3911 3912 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3913 unsigned long pages = block->max_length >> TARGET_PAGE_BITS; 3914 3915 block->bmap = bitmap_new(pages); 3916 bitmap_set(block->bmap, 0, pages); 3917 } 3918 } 3919 ram_state = g_new0(RAMState, 1); 3920 ram_state->migration_dirty_pages = 0; 3921 qemu_mutex_init(&ram_state->bitmap_mutex); 3922 memory_global_dirty_log_start(); 3923 3924 return 0; 3925 3926 out_locked: 3927 3928 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3929 if (block->colo_cache) { 3930 qemu_anon_ram_free(block->colo_cache, block->used_length); 3931 block->colo_cache = NULL; 3932 } 3933 } 3934 3935 rcu_read_unlock(); 3936 return -errno; 3937 } 3938 3939 /* It is need to hold the global lock to call this helper */ 3940 void colo_release_ram_cache(void) 3941 { 3942 RAMBlock *block; 3943 3944 memory_global_dirty_log_stop(); 3945 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3946 g_free(block->bmap); 3947 block->bmap = NULL; 3948 } 3949 3950 rcu_read_lock(); 3951 3952 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3953 if (block->colo_cache) { 3954 qemu_anon_ram_free(block->colo_cache, block->used_length); 3955 block->colo_cache = NULL; 3956 } 3957 } 3958 3959 rcu_read_unlock(); 3960 qemu_mutex_destroy(&ram_state->bitmap_mutex); 3961 g_free(ram_state); 3962 ram_state = NULL; 3963 } 3964 3965 /** 3966 * ram_load_setup: Setup RAM for migration incoming side 3967 * 3968 * Returns zero to indicate success and negative for error 3969 * 3970 * @f: QEMUFile where to receive the data 3971 * @opaque: RAMState pointer 3972 */ 3973 static int ram_load_setup(QEMUFile *f, void *opaque) 3974 { 3975 if (compress_threads_load_setup(f)) { 3976 return -1; 3977 } 3978 3979 xbzrle_load_setup(); 3980 ramblock_recv_map_init(); 3981 3982 return 0; 3983 } 3984 3985 static int ram_load_cleanup(void *opaque) 3986 { 3987 RAMBlock *rb; 3988 3989 RAMBLOCK_FOREACH_NOT_IGNORED(rb) { 3990 if (ramblock_is_pmem(rb)) { 3991 pmem_persist(rb->host, rb->used_length); 3992 } 3993 } 3994 3995 xbzrle_load_cleanup(); 3996 compress_threads_load_cleanup(); 3997 3998 RAMBLOCK_FOREACH_NOT_IGNORED(rb) { 3999 g_free(rb->receivedmap); 4000 rb->receivedmap = NULL; 4001 } 4002 4003 return 0; 4004 } 4005 4006 /** 4007 * ram_postcopy_incoming_init: allocate postcopy data structures 4008 * 4009 * Returns 0 for success and negative if there was one error 4010 * 4011 * @mis: current migration incoming state 4012 * 4013 * Allocate data structures etc needed by incoming migration with 4014 * postcopy-ram. postcopy-ram's similarly names 4015 * postcopy_ram_incoming_init does the work. 4016 */ 4017 int ram_postcopy_incoming_init(MigrationIncomingState *mis) 4018 { 4019 return postcopy_ram_incoming_init(mis); 4020 } 4021 4022 /** 4023 * ram_load_postcopy: load a page in postcopy case 4024 * 4025 * Returns 0 for success or -errno in case of error 4026 * 4027 * Called in postcopy mode by ram_load(). 4028 * rcu_read_lock is taken prior to this being called. 4029 * 4030 * @f: QEMUFile where to send the data 4031 */ 4032 static int ram_load_postcopy(QEMUFile *f) 4033 { 4034 int flags = 0, ret = 0; 4035 bool place_needed = false; 4036 bool matches_target_page_size = false; 4037 MigrationIncomingState *mis = migration_incoming_get_current(); 4038 /* Temporary page that is later 'placed' */ 4039 void *postcopy_host_page = postcopy_get_tmp_page(mis); 4040 void *last_host = NULL; 4041 bool all_zero = false; 4042 4043 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) { 4044 ram_addr_t addr; 4045 void *host = NULL; 4046 void *page_buffer = NULL; 4047 void *place_source = NULL; 4048 RAMBlock *block = NULL; 4049 uint8_t ch; 4050 4051 addr = qemu_get_be64(f); 4052 4053 /* 4054 * If qemu file error, we should stop here, and then "addr" 4055 * may be invalid 4056 */ 4057 ret = qemu_file_get_error(f); 4058 if (ret) { 4059 break; 4060 } 4061 4062 flags = addr & ~TARGET_PAGE_MASK; 4063 addr &= TARGET_PAGE_MASK; 4064 4065 trace_ram_load_postcopy_loop((uint64_t)addr, flags); 4066 place_needed = false; 4067 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE)) { 4068 block = ram_block_from_stream(f, flags); 4069 4070 host = host_from_ram_block_offset(block, addr); 4071 if (!host) { 4072 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr); 4073 ret = -EINVAL; 4074 break; 4075 } 4076 matches_target_page_size = block->page_size == TARGET_PAGE_SIZE; 4077 /* 4078 * Postcopy requires that we place whole host pages atomically; 4079 * these may be huge pages for RAMBlocks that are backed by 4080 * hugetlbfs. 4081 * To make it atomic, the data is read into a temporary page 4082 * that's moved into place later. 4083 * The migration protocol uses, possibly smaller, target-pages 4084 * however the source ensures it always sends all the components 4085 * of a host page in order. 4086 */ 4087 page_buffer = postcopy_host_page + 4088 ((uintptr_t)host & (block->page_size - 1)); 4089 /* If all TP are zero then we can optimise the place */ 4090 if (!((uintptr_t)host & (block->page_size - 1))) { 4091 all_zero = true; 4092 } else { 4093 /* not the 1st TP within the HP */ 4094 if (host != (last_host + TARGET_PAGE_SIZE)) { 4095 error_report("Non-sequential target page %p/%p", 4096 host, last_host); 4097 ret = -EINVAL; 4098 break; 4099 } 4100 } 4101 4102 4103 /* 4104 * If it's the last part of a host page then we place the host 4105 * page 4106 */ 4107 place_needed = (((uintptr_t)host + TARGET_PAGE_SIZE) & 4108 (block->page_size - 1)) == 0; 4109 place_source = postcopy_host_page; 4110 } 4111 last_host = host; 4112 4113 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) { 4114 case RAM_SAVE_FLAG_ZERO: 4115 ch = qemu_get_byte(f); 4116 memset(page_buffer, ch, TARGET_PAGE_SIZE); 4117 if (ch) { 4118 all_zero = false; 4119 } 4120 break; 4121 4122 case RAM_SAVE_FLAG_PAGE: 4123 all_zero = false; 4124 if (!matches_target_page_size) { 4125 /* For huge pages, we always use temporary buffer */ 4126 qemu_get_buffer(f, page_buffer, TARGET_PAGE_SIZE); 4127 } else { 4128 /* 4129 * For small pages that matches target page size, we 4130 * avoid the qemu_file copy. Instead we directly use 4131 * the buffer of QEMUFile to place the page. Note: we 4132 * cannot do any QEMUFile operation before using that 4133 * buffer to make sure the buffer is valid when 4134 * placing the page. 4135 */ 4136 qemu_get_buffer_in_place(f, (uint8_t **)&place_source, 4137 TARGET_PAGE_SIZE); 4138 } 4139 break; 4140 case RAM_SAVE_FLAG_EOS: 4141 /* normal exit */ 4142 multifd_recv_sync_main(); 4143 break; 4144 default: 4145 error_report("Unknown combination of migration flags: %#x" 4146 " (postcopy mode)", flags); 4147 ret = -EINVAL; 4148 break; 4149 } 4150 4151 /* Detect for any possible file errors */ 4152 if (!ret && qemu_file_get_error(f)) { 4153 ret = qemu_file_get_error(f); 4154 } 4155 4156 if (!ret && place_needed) { 4157 /* This gets called at the last target page in the host page */ 4158 void *place_dest = host + TARGET_PAGE_SIZE - block->page_size; 4159 4160 if (all_zero) { 4161 ret = postcopy_place_page_zero(mis, place_dest, 4162 block); 4163 } else { 4164 ret = postcopy_place_page(mis, place_dest, 4165 place_source, block); 4166 } 4167 } 4168 } 4169 4170 return ret; 4171 } 4172 4173 static bool postcopy_is_advised(void) 4174 { 4175 PostcopyState ps = postcopy_state_get(); 4176 return ps >= POSTCOPY_INCOMING_ADVISE && ps < POSTCOPY_INCOMING_END; 4177 } 4178 4179 static bool postcopy_is_running(void) 4180 { 4181 PostcopyState ps = postcopy_state_get(); 4182 return ps >= POSTCOPY_INCOMING_LISTENING && ps < POSTCOPY_INCOMING_END; 4183 } 4184 4185 /* 4186 * Flush content of RAM cache into SVM's memory. 4187 * Only flush the pages that be dirtied by PVM or SVM or both. 4188 */ 4189 static void colo_flush_ram_cache(void) 4190 { 4191 RAMBlock *block = NULL; 4192 void *dst_host; 4193 void *src_host; 4194 unsigned long offset = 0; 4195 4196 memory_global_dirty_log_sync(); 4197 rcu_read_lock(); 4198 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 4199 migration_bitmap_sync_range(ram_state, block, 0, block->used_length); 4200 } 4201 rcu_read_unlock(); 4202 4203 trace_colo_flush_ram_cache_begin(ram_state->migration_dirty_pages); 4204 rcu_read_lock(); 4205 block = QLIST_FIRST_RCU(&ram_list.blocks); 4206 4207 while (block) { 4208 offset = migration_bitmap_find_dirty(ram_state, block, offset); 4209 4210 if (offset << TARGET_PAGE_BITS >= block->used_length) { 4211 offset = 0; 4212 block = QLIST_NEXT_RCU(block, next); 4213 } else { 4214 migration_bitmap_clear_dirty(ram_state, block, offset); 4215 dst_host = block->host + (offset << TARGET_PAGE_BITS); 4216 src_host = block->colo_cache + (offset << TARGET_PAGE_BITS); 4217 memcpy(dst_host, src_host, TARGET_PAGE_SIZE); 4218 } 4219 } 4220 4221 rcu_read_unlock(); 4222 trace_colo_flush_ram_cache_end(); 4223 } 4224 4225 static int ram_load(QEMUFile *f, void *opaque, int version_id) 4226 { 4227 int flags = 0, ret = 0, invalid_flags = 0; 4228 static uint64_t seq_iter; 4229 int len = 0; 4230 /* 4231 * If system is running in postcopy mode, page inserts to host memory must 4232 * be atomic 4233 */ 4234 bool postcopy_running = postcopy_is_running(); 4235 /* ADVISE is earlier, it shows the source has the postcopy capability on */ 4236 bool postcopy_advised = postcopy_is_advised(); 4237 4238 seq_iter++; 4239 4240 if (version_id != 4) { 4241 ret = -EINVAL; 4242 } 4243 4244 if (!migrate_use_compression()) { 4245 invalid_flags |= RAM_SAVE_FLAG_COMPRESS_PAGE; 4246 } 4247 /* This RCU critical section can be very long running. 4248 * When RCU reclaims in the code start to become numerous, 4249 * it will be necessary to reduce the granularity of this 4250 * critical section. 4251 */ 4252 rcu_read_lock(); 4253 4254 if (postcopy_running) { 4255 ret = ram_load_postcopy(f); 4256 } 4257 4258 while (!postcopy_running && !ret && !(flags & RAM_SAVE_FLAG_EOS)) { 4259 ram_addr_t addr, total_ram_bytes; 4260 void *host = NULL; 4261 uint8_t ch; 4262 4263 addr = qemu_get_be64(f); 4264 flags = addr & ~TARGET_PAGE_MASK; 4265 addr &= TARGET_PAGE_MASK; 4266 4267 if (flags & invalid_flags) { 4268 if (flags & invalid_flags & RAM_SAVE_FLAG_COMPRESS_PAGE) { 4269 error_report("Received an unexpected compressed page"); 4270 } 4271 4272 ret = -EINVAL; 4273 break; 4274 } 4275 4276 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE | 4277 RAM_SAVE_FLAG_COMPRESS_PAGE | RAM_SAVE_FLAG_XBZRLE)) { 4278 RAMBlock *block = ram_block_from_stream(f, flags); 4279 4280 /* 4281 * After going into COLO, we should load the Page into colo_cache. 4282 */ 4283 if (migration_incoming_in_colo_state()) { 4284 host = colo_cache_from_block_offset(block, addr); 4285 } else { 4286 host = host_from_ram_block_offset(block, addr); 4287 } 4288 if (!host) { 4289 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr); 4290 ret = -EINVAL; 4291 break; 4292 } 4293 4294 if (!migration_incoming_in_colo_state()) { 4295 ramblock_recv_bitmap_set(block, host); 4296 } 4297 4298 trace_ram_load_loop(block->idstr, (uint64_t)addr, flags, host); 4299 } 4300 4301 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) { 4302 case RAM_SAVE_FLAG_MEM_SIZE: 4303 /* Synchronize RAM block list */ 4304 total_ram_bytes = addr; 4305 while (!ret && total_ram_bytes) { 4306 RAMBlock *block; 4307 char id[256]; 4308 ram_addr_t length; 4309 4310 len = qemu_get_byte(f); 4311 qemu_get_buffer(f, (uint8_t *)id, len); 4312 id[len] = 0; 4313 length = qemu_get_be64(f); 4314 4315 block = qemu_ram_block_by_name(id); 4316 if (block && !qemu_ram_is_migratable(block)) { 4317 error_report("block %s should not be migrated !", id); 4318 ret = -EINVAL; 4319 } else if (block) { 4320 if (length != block->used_length) { 4321 Error *local_err = NULL; 4322 4323 ret = qemu_ram_resize(block, length, 4324 &local_err); 4325 if (local_err) { 4326 error_report_err(local_err); 4327 } 4328 } 4329 /* For postcopy we need to check hugepage sizes match */ 4330 if (postcopy_advised && 4331 block->page_size != qemu_host_page_size) { 4332 uint64_t remote_page_size = qemu_get_be64(f); 4333 if (remote_page_size != block->page_size) { 4334 error_report("Mismatched RAM page size %s " 4335 "(local) %zd != %" PRId64, 4336 id, block->page_size, 4337 remote_page_size); 4338 ret = -EINVAL; 4339 } 4340 } 4341 if (migrate_ignore_shared()) { 4342 hwaddr addr = qemu_get_be64(f); 4343 bool ignored = qemu_get_byte(f); 4344 if (ignored != ramblock_is_ignored(block)) { 4345 error_report("RAM block %s should %s be migrated", 4346 id, ignored ? "" : "not"); 4347 ret = -EINVAL; 4348 } 4349 if (ramblock_is_ignored(block) && 4350 block->mr->addr != addr) { 4351 error_report("Mismatched GPAs for block %s " 4352 "%" PRId64 "!= %" PRId64, 4353 id, (uint64_t)addr, 4354 (uint64_t)block->mr->addr); 4355 ret = -EINVAL; 4356 } 4357 } 4358 ram_control_load_hook(f, RAM_CONTROL_BLOCK_REG, 4359 block->idstr); 4360 } else { 4361 error_report("Unknown ramblock \"%s\", cannot " 4362 "accept migration", id); 4363 ret = -EINVAL; 4364 } 4365 4366 total_ram_bytes -= length; 4367 } 4368 break; 4369 4370 case RAM_SAVE_FLAG_ZERO: 4371 ch = qemu_get_byte(f); 4372 ram_handle_compressed(host, ch, TARGET_PAGE_SIZE); 4373 break; 4374 4375 case RAM_SAVE_FLAG_PAGE: 4376 qemu_get_buffer(f, host, TARGET_PAGE_SIZE); 4377 break; 4378 4379 case RAM_SAVE_FLAG_COMPRESS_PAGE: 4380 len = qemu_get_be32(f); 4381 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) { 4382 error_report("Invalid compressed data length: %d", len); 4383 ret = -EINVAL; 4384 break; 4385 } 4386 decompress_data_with_multi_threads(f, host, len); 4387 break; 4388 4389 case RAM_SAVE_FLAG_XBZRLE: 4390 if (load_xbzrle(f, addr, host) < 0) { 4391 error_report("Failed to decompress XBZRLE page at " 4392 RAM_ADDR_FMT, addr); 4393 ret = -EINVAL; 4394 break; 4395 } 4396 break; 4397 case RAM_SAVE_FLAG_EOS: 4398 /* normal exit */ 4399 multifd_recv_sync_main(); 4400 break; 4401 default: 4402 if (flags & RAM_SAVE_FLAG_HOOK) { 4403 ram_control_load_hook(f, RAM_CONTROL_HOOK, NULL); 4404 } else { 4405 error_report("Unknown combination of migration flags: %#x", 4406 flags); 4407 ret = -EINVAL; 4408 } 4409 } 4410 if (!ret) { 4411 ret = qemu_file_get_error(f); 4412 } 4413 } 4414 4415 ret |= wait_for_decompress_done(); 4416 rcu_read_unlock(); 4417 trace_ram_load_complete(ret, seq_iter); 4418 4419 if (!ret && migration_incoming_in_colo_state()) { 4420 colo_flush_ram_cache(); 4421 } 4422 return ret; 4423 } 4424 4425 static bool ram_has_postcopy(void *opaque) 4426 { 4427 RAMBlock *rb; 4428 RAMBLOCK_FOREACH_NOT_IGNORED(rb) { 4429 if (ramblock_is_pmem(rb)) { 4430 info_report("Block: %s, host: %p is a nvdimm memory, postcopy" 4431 "is not supported now!", rb->idstr, rb->host); 4432 return false; 4433 } 4434 } 4435 4436 return migrate_postcopy_ram(); 4437 } 4438 4439 /* Sync all the dirty bitmap with destination VM. */ 4440 static int ram_dirty_bitmap_sync_all(MigrationState *s, RAMState *rs) 4441 { 4442 RAMBlock *block; 4443 QEMUFile *file = s->to_dst_file; 4444 int ramblock_count = 0; 4445 4446 trace_ram_dirty_bitmap_sync_start(); 4447 4448 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 4449 qemu_savevm_send_recv_bitmap(file, block->idstr); 4450 trace_ram_dirty_bitmap_request(block->idstr); 4451 ramblock_count++; 4452 } 4453 4454 trace_ram_dirty_bitmap_sync_wait(); 4455 4456 /* Wait until all the ramblocks' dirty bitmap synced */ 4457 while (ramblock_count--) { 4458 qemu_sem_wait(&s->rp_state.rp_sem); 4459 } 4460 4461 trace_ram_dirty_bitmap_sync_complete(); 4462 4463 return 0; 4464 } 4465 4466 static void ram_dirty_bitmap_reload_notify(MigrationState *s) 4467 { 4468 qemu_sem_post(&s->rp_state.rp_sem); 4469 } 4470 4471 /* 4472 * Read the received bitmap, revert it as the initial dirty bitmap. 4473 * This is only used when the postcopy migration is paused but wants 4474 * to resume from a middle point. 4475 */ 4476 int ram_dirty_bitmap_reload(MigrationState *s, RAMBlock *block) 4477 { 4478 int ret = -EINVAL; 4479 QEMUFile *file = s->rp_state.from_dst_file; 4480 unsigned long *le_bitmap, nbits = block->used_length >> TARGET_PAGE_BITS; 4481 uint64_t local_size = DIV_ROUND_UP(nbits, 8); 4482 uint64_t size, end_mark; 4483 4484 trace_ram_dirty_bitmap_reload_begin(block->idstr); 4485 4486 if (s->state != MIGRATION_STATUS_POSTCOPY_RECOVER) { 4487 error_report("%s: incorrect state %s", __func__, 4488 MigrationStatus_str(s->state)); 4489 return -EINVAL; 4490 } 4491 4492 /* 4493 * Note: see comments in ramblock_recv_bitmap_send() on why we 4494 * need the endianess convertion, and the paddings. 4495 */ 4496 local_size = ROUND_UP(local_size, 8); 4497 4498 /* Add paddings */ 4499 le_bitmap = bitmap_new(nbits + BITS_PER_LONG); 4500 4501 size = qemu_get_be64(file); 4502 4503 /* The size of the bitmap should match with our ramblock */ 4504 if (size != local_size) { 4505 error_report("%s: ramblock '%s' bitmap size mismatch " 4506 "(0x%"PRIx64" != 0x%"PRIx64")", __func__, 4507 block->idstr, size, local_size); 4508 ret = -EINVAL; 4509 goto out; 4510 } 4511 4512 size = qemu_get_buffer(file, (uint8_t *)le_bitmap, local_size); 4513 end_mark = qemu_get_be64(file); 4514 4515 ret = qemu_file_get_error(file); 4516 if (ret || size != local_size) { 4517 error_report("%s: read bitmap failed for ramblock '%s': %d" 4518 " (size 0x%"PRIx64", got: 0x%"PRIx64")", 4519 __func__, block->idstr, ret, local_size, size); 4520 ret = -EIO; 4521 goto out; 4522 } 4523 4524 if (end_mark != RAMBLOCK_RECV_BITMAP_ENDING) { 4525 error_report("%s: ramblock '%s' end mark incorrect: 0x%"PRIu64, 4526 __func__, block->idstr, end_mark); 4527 ret = -EINVAL; 4528 goto out; 4529 } 4530 4531 /* 4532 * Endianess convertion. We are during postcopy (though paused). 4533 * The dirty bitmap won't change. We can directly modify it. 4534 */ 4535 bitmap_from_le(block->bmap, le_bitmap, nbits); 4536 4537 /* 4538 * What we received is "received bitmap". Revert it as the initial 4539 * dirty bitmap for this ramblock. 4540 */ 4541 bitmap_complement(block->bmap, block->bmap, nbits); 4542 4543 trace_ram_dirty_bitmap_reload_complete(block->idstr); 4544 4545 /* 4546 * We succeeded to sync bitmap for current ramblock. If this is 4547 * the last one to sync, we need to notify the main send thread. 4548 */ 4549 ram_dirty_bitmap_reload_notify(s); 4550 4551 ret = 0; 4552 out: 4553 g_free(le_bitmap); 4554 return ret; 4555 } 4556 4557 static int ram_resume_prepare(MigrationState *s, void *opaque) 4558 { 4559 RAMState *rs = *(RAMState **)opaque; 4560 int ret; 4561 4562 ret = ram_dirty_bitmap_sync_all(s, rs); 4563 if (ret) { 4564 return ret; 4565 } 4566 4567 ram_state_resume_prepare(rs, s->to_dst_file); 4568 4569 return 0; 4570 } 4571 4572 static SaveVMHandlers savevm_ram_handlers = { 4573 .save_setup = ram_save_setup, 4574 .save_live_iterate = ram_save_iterate, 4575 .save_live_complete_postcopy = ram_save_complete, 4576 .save_live_complete_precopy = ram_save_complete, 4577 .has_postcopy = ram_has_postcopy, 4578 .save_live_pending = ram_save_pending, 4579 .load_state = ram_load, 4580 .save_cleanup = ram_save_cleanup, 4581 .load_setup = ram_load_setup, 4582 .load_cleanup = ram_load_cleanup, 4583 .resume_prepare = ram_resume_prepare, 4584 }; 4585 4586 void ram_mig_init(void) 4587 { 4588 qemu_mutex_init(&XBZRLE.lock); 4589 register_savevm_live(NULL, "ram", 0, 4, &savevm_ram_handlers, &ram_state); 4590 } 4591