1 /* 2 * QEMU System Emulator 3 * 4 * Copyright (c) 2003-2008 Fabrice Bellard 5 * Copyright (c) 2011-2015 Red Hat Inc 6 * 7 * Authors: 8 * Juan Quintela <quintela@redhat.com> 9 * 10 * Permission is hereby granted, free of charge, to any person obtaining a copy 11 * of this software and associated documentation files (the "Software"), to deal 12 * in the Software without restriction, including without limitation the rights 13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 14 * copies of the Software, and to permit persons to whom the Software is 15 * furnished to do so, subject to the following conditions: 16 * 17 * The above copyright notice and this permission notice shall be included in 18 * all copies or substantial portions of the Software. 19 * 20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 26 * THE SOFTWARE. 27 */ 28 29 #include "qemu/osdep.h" 30 #include "cpu.h" 31 #include <zlib.h> 32 #include "qemu/cutils.h" 33 #include "qemu/bitops.h" 34 #include "qemu/bitmap.h" 35 #include "qemu/main-loop.h" 36 #include "qemu/pmem.h" 37 #include "xbzrle.h" 38 #include "ram.h" 39 #include "migration.h" 40 #include "socket.h" 41 #include "migration/register.h" 42 #include "migration/misc.h" 43 #include "qemu-file.h" 44 #include "postcopy-ram.h" 45 #include "page_cache.h" 46 #include "qemu/error-report.h" 47 #include "qapi/error.h" 48 #include "qapi/qapi-events-migration.h" 49 #include "qapi/qmp/qerror.h" 50 #include "trace.h" 51 #include "exec/ram_addr.h" 52 #include "exec/target_page.h" 53 #include "qemu/rcu_queue.h" 54 #include "migration/colo.h" 55 #include "block.h" 56 #include "sysemu/sysemu.h" 57 #include "qemu/uuid.h" 58 #include "savevm.h" 59 #include "qemu/iov.h" 60 61 /***********************************************************/ 62 /* ram save/restore */ 63 64 /* RAM_SAVE_FLAG_ZERO used to be named RAM_SAVE_FLAG_COMPRESS, it 65 * worked for pages that where filled with the same char. We switched 66 * it to only search for the zero value. And to avoid confusion with 67 * RAM_SSAVE_FLAG_COMPRESS_PAGE just rename it. 68 */ 69 70 #define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */ 71 #define RAM_SAVE_FLAG_ZERO 0x02 72 #define RAM_SAVE_FLAG_MEM_SIZE 0x04 73 #define RAM_SAVE_FLAG_PAGE 0x08 74 #define RAM_SAVE_FLAG_EOS 0x10 75 #define RAM_SAVE_FLAG_CONTINUE 0x20 76 #define RAM_SAVE_FLAG_XBZRLE 0x40 77 /* 0x80 is reserved in migration.h start with 0x100 next */ 78 #define RAM_SAVE_FLAG_COMPRESS_PAGE 0x100 79 80 static inline bool is_zero_range(uint8_t *p, uint64_t size) 81 { 82 return buffer_is_zero(p, size); 83 } 84 85 XBZRLECacheStats xbzrle_counters; 86 87 /* struct contains XBZRLE cache and a static page 88 used by the compression */ 89 static struct { 90 /* buffer used for XBZRLE encoding */ 91 uint8_t *encoded_buf; 92 /* buffer for storing page content */ 93 uint8_t *current_buf; 94 /* Cache for XBZRLE, Protected by lock. */ 95 PageCache *cache; 96 QemuMutex lock; 97 /* it will store a page full of zeros */ 98 uint8_t *zero_target_page; 99 /* buffer used for XBZRLE decoding */ 100 uint8_t *decoded_buf; 101 } XBZRLE; 102 103 static void XBZRLE_cache_lock(void) 104 { 105 if (migrate_use_xbzrle()) 106 qemu_mutex_lock(&XBZRLE.lock); 107 } 108 109 static void XBZRLE_cache_unlock(void) 110 { 111 if (migrate_use_xbzrle()) 112 qemu_mutex_unlock(&XBZRLE.lock); 113 } 114 115 /** 116 * xbzrle_cache_resize: resize the xbzrle cache 117 * 118 * This function is called from qmp_migrate_set_cache_size in main 119 * thread, possibly while a migration is in progress. A running 120 * migration may be using the cache and might finish during this call, 121 * hence changes to the cache are protected by XBZRLE.lock(). 122 * 123 * Returns 0 for success or -1 for error 124 * 125 * @new_size: new cache size 126 * @errp: set *errp if the check failed, with reason 127 */ 128 int xbzrle_cache_resize(int64_t new_size, Error **errp) 129 { 130 PageCache *new_cache; 131 int64_t ret = 0; 132 133 /* Check for truncation */ 134 if (new_size != (size_t)new_size) { 135 error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cache size", 136 "exceeding address space"); 137 return -1; 138 } 139 140 if (new_size == migrate_xbzrle_cache_size()) { 141 /* nothing to do */ 142 return 0; 143 } 144 145 XBZRLE_cache_lock(); 146 147 if (XBZRLE.cache != NULL) { 148 new_cache = cache_init(new_size, TARGET_PAGE_SIZE, errp); 149 if (!new_cache) { 150 ret = -1; 151 goto out; 152 } 153 154 cache_fini(XBZRLE.cache); 155 XBZRLE.cache = new_cache; 156 } 157 out: 158 XBZRLE_cache_unlock(); 159 return ret; 160 } 161 162 /* Should be holding either ram_list.mutex, or the RCU lock. */ 163 #define RAMBLOCK_FOREACH_MIGRATABLE(block) \ 164 INTERNAL_RAMBLOCK_FOREACH(block) \ 165 if (!qemu_ram_is_migratable(block)) {} else 166 167 #undef RAMBLOCK_FOREACH 168 169 static void ramblock_recv_map_init(void) 170 { 171 RAMBlock *rb; 172 173 RAMBLOCK_FOREACH_MIGRATABLE(rb) { 174 assert(!rb->receivedmap); 175 rb->receivedmap = bitmap_new(rb->max_length >> qemu_target_page_bits()); 176 } 177 } 178 179 int ramblock_recv_bitmap_test(RAMBlock *rb, void *host_addr) 180 { 181 return test_bit(ramblock_recv_bitmap_offset(host_addr, rb), 182 rb->receivedmap); 183 } 184 185 bool ramblock_recv_bitmap_test_byte_offset(RAMBlock *rb, uint64_t byte_offset) 186 { 187 return test_bit(byte_offset >> TARGET_PAGE_BITS, rb->receivedmap); 188 } 189 190 void ramblock_recv_bitmap_set(RAMBlock *rb, void *host_addr) 191 { 192 set_bit_atomic(ramblock_recv_bitmap_offset(host_addr, rb), rb->receivedmap); 193 } 194 195 void ramblock_recv_bitmap_set_range(RAMBlock *rb, void *host_addr, 196 size_t nr) 197 { 198 bitmap_set_atomic(rb->receivedmap, 199 ramblock_recv_bitmap_offset(host_addr, rb), 200 nr); 201 } 202 203 #define RAMBLOCK_RECV_BITMAP_ENDING (0x0123456789abcdefULL) 204 205 /* 206 * Format: bitmap_size (8 bytes) + whole_bitmap (N bytes). 207 * 208 * Returns >0 if success with sent bytes, or <0 if error. 209 */ 210 int64_t ramblock_recv_bitmap_send(QEMUFile *file, 211 const char *block_name) 212 { 213 RAMBlock *block = qemu_ram_block_by_name(block_name); 214 unsigned long *le_bitmap, nbits; 215 uint64_t size; 216 217 if (!block) { 218 error_report("%s: invalid block name: %s", __func__, block_name); 219 return -1; 220 } 221 222 nbits = block->used_length >> TARGET_PAGE_BITS; 223 224 /* 225 * Make sure the tmp bitmap buffer is big enough, e.g., on 32bit 226 * machines we may need 4 more bytes for padding (see below 227 * comment). So extend it a bit before hand. 228 */ 229 le_bitmap = bitmap_new(nbits + BITS_PER_LONG); 230 231 /* 232 * Always use little endian when sending the bitmap. This is 233 * required that when source and destination VMs are not using the 234 * same endianess. (Note: big endian won't work.) 235 */ 236 bitmap_to_le(le_bitmap, block->receivedmap, nbits); 237 238 /* Size of the bitmap, in bytes */ 239 size = DIV_ROUND_UP(nbits, 8); 240 241 /* 242 * size is always aligned to 8 bytes for 64bit machines, but it 243 * may not be true for 32bit machines. We need this padding to 244 * make sure the migration can survive even between 32bit and 245 * 64bit machines. 246 */ 247 size = ROUND_UP(size, 8); 248 249 qemu_put_be64(file, size); 250 qemu_put_buffer(file, (const uint8_t *)le_bitmap, size); 251 /* 252 * Mark as an end, in case the middle part is screwed up due to 253 * some "misterious" reason. 254 */ 255 qemu_put_be64(file, RAMBLOCK_RECV_BITMAP_ENDING); 256 qemu_fflush(file); 257 258 g_free(le_bitmap); 259 260 if (qemu_file_get_error(file)) { 261 return qemu_file_get_error(file); 262 } 263 264 return size + sizeof(size); 265 } 266 267 /* 268 * An outstanding page request, on the source, having been received 269 * and queued 270 */ 271 struct RAMSrcPageRequest { 272 RAMBlock *rb; 273 hwaddr offset; 274 hwaddr len; 275 276 QSIMPLEQ_ENTRY(RAMSrcPageRequest) next_req; 277 }; 278 279 /* State of RAM for migration */ 280 struct RAMState { 281 /* QEMUFile used for this migration */ 282 QEMUFile *f; 283 /* Last block that we have visited searching for dirty pages */ 284 RAMBlock *last_seen_block; 285 /* Last block from where we have sent data */ 286 RAMBlock *last_sent_block; 287 /* Last dirty target page we have sent */ 288 ram_addr_t last_page; 289 /* last ram version we have seen */ 290 uint32_t last_version; 291 /* We are in the first round */ 292 bool ram_bulk_stage; 293 /* How many times we have dirty too many pages */ 294 int dirty_rate_high_cnt; 295 /* these variables are used for bitmap sync */ 296 /* last time we did a full bitmap_sync */ 297 int64_t time_last_bitmap_sync; 298 /* bytes transferred at start_time */ 299 uint64_t bytes_xfer_prev; 300 /* number of dirty pages since start_time */ 301 uint64_t num_dirty_pages_period; 302 /* xbzrle misses since the beginning of the period */ 303 uint64_t xbzrle_cache_miss_prev; 304 305 /* compression statistics since the beginning of the period */ 306 /* amount of count that no free thread to compress data */ 307 uint64_t compress_thread_busy_prev; 308 /* amount bytes after compression */ 309 uint64_t compressed_size_prev; 310 /* amount of compressed pages */ 311 uint64_t compress_pages_prev; 312 313 /* total handled target pages at the beginning of period */ 314 uint64_t target_page_count_prev; 315 /* total handled target pages since start */ 316 uint64_t target_page_count; 317 /* number of dirty bits in the bitmap */ 318 uint64_t migration_dirty_pages; 319 /* protects modification of the bitmap */ 320 QemuMutex bitmap_mutex; 321 /* The RAMBlock used in the last src_page_requests */ 322 RAMBlock *last_req_rb; 323 /* Queue of outstanding page requests from the destination */ 324 QemuMutex src_page_req_mutex; 325 QSIMPLEQ_HEAD(, RAMSrcPageRequest) src_page_requests; 326 }; 327 typedef struct RAMState RAMState; 328 329 static RAMState *ram_state; 330 331 uint64_t ram_bytes_remaining(void) 332 { 333 return ram_state ? (ram_state->migration_dirty_pages * TARGET_PAGE_SIZE) : 334 0; 335 } 336 337 MigrationStats ram_counters; 338 339 /* used by the search for pages to send */ 340 struct PageSearchStatus { 341 /* Current block being searched */ 342 RAMBlock *block; 343 /* Current page to search from */ 344 unsigned long page; 345 /* Set once we wrap around */ 346 bool complete_round; 347 }; 348 typedef struct PageSearchStatus PageSearchStatus; 349 350 CompressionStats compression_counters; 351 352 struct CompressParam { 353 bool done; 354 bool quit; 355 bool zero_page; 356 QEMUFile *file; 357 QemuMutex mutex; 358 QemuCond cond; 359 RAMBlock *block; 360 ram_addr_t offset; 361 362 /* internally used fields */ 363 z_stream stream; 364 uint8_t *originbuf; 365 }; 366 typedef struct CompressParam CompressParam; 367 368 struct DecompressParam { 369 bool done; 370 bool quit; 371 QemuMutex mutex; 372 QemuCond cond; 373 void *des; 374 uint8_t *compbuf; 375 int len; 376 z_stream stream; 377 }; 378 typedef struct DecompressParam DecompressParam; 379 380 static CompressParam *comp_param; 381 static QemuThread *compress_threads; 382 /* comp_done_cond is used to wake up the migration thread when 383 * one of the compression threads has finished the compression. 384 * comp_done_lock is used to co-work with comp_done_cond. 385 */ 386 static QemuMutex comp_done_lock; 387 static QemuCond comp_done_cond; 388 /* The empty QEMUFileOps will be used by file in CompressParam */ 389 static const QEMUFileOps empty_ops = { }; 390 391 static QEMUFile *decomp_file; 392 static DecompressParam *decomp_param; 393 static QemuThread *decompress_threads; 394 static QemuMutex decomp_done_lock; 395 static QemuCond decomp_done_cond; 396 397 static bool do_compress_ram_page(QEMUFile *f, z_stream *stream, RAMBlock *block, 398 ram_addr_t offset, uint8_t *source_buf); 399 400 static void *do_data_compress(void *opaque) 401 { 402 CompressParam *param = opaque; 403 RAMBlock *block; 404 ram_addr_t offset; 405 bool zero_page; 406 407 qemu_mutex_lock(¶m->mutex); 408 while (!param->quit) { 409 if (param->block) { 410 block = param->block; 411 offset = param->offset; 412 param->block = NULL; 413 qemu_mutex_unlock(¶m->mutex); 414 415 zero_page = do_compress_ram_page(param->file, ¶m->stream, 416 block, offset, param->originbuf); 417 418 qemu_mutex_lock(&comp_done_lock); 419 param->done = true; 420 param->zero_page = zero_page; 421 qemu_cond_signal(&comp_done_cond); 422 qemu_mutex_unlock(&comp_done_lock); 423 424 qemu_mutex_lock(¶m->mutex); 425 } else { 426 qemu_cond_wait(¶m->cond, ¶m->mutex); 427 } 428 } 429 qemu_mutex_unlock(¶m->mutex); 430 431 return NULL; 432 } 433 434 static void compress_threads_save_cleanup(void) 435 { 436 int i, thread_count; 437 438 if (!migrate_use_compression() || !comp_param) { 439 return; 440 } 441 442 thread_count = migrate_compress_threads(); 443 for (i = 0; i < thread_count; i++) { 444 /* 445 * we use it as a indicator which shows if the thread is 446 * properly init'd or not 447 */ 448 if (!comp_param[i].file) { 449 break; 450 } 451 452 qemu_mutex_lock(&comp_param[i].mutex); 453 comp_param[i].quit = true; 454 qemu_cond_signal(&comp_param[i].cond); 455 qemu_mutex_unlock(&comp_param[i].mutex); 456 457 qemu_thread_join(compress_threads + i); 458 qemu_mutex_destroy(&comp_param[i].mutex); 459 qemu_cond_destroy(&comp_param[i].cond); 460 deflateEnd(&comp_param[i].stream); 461 g_free(comp_param[i].originbuf); 462 qemu_fclose(comp_param[i].file); 463 comp_param[i].file = NULL; 464 } 465 qemu_mutex_destroy(&comp_done_lock); 466 qemu_cond_destroy(&comp_done_cond); 467 g_free(compress_threads); 468 g_free(comp_param); 469 compress_threads = NULL; 470 comp_param = NULL; 471 } 472 473 static int compress_threads_save_setup(void) 474 { 475 int i, thread_count; 476 477 if (!migrate_use_compression()) { 478 return 0; 479 } 480 thread_count = migrate_compress_threads(); 481 compress_threads = g_new0(QemuThread, thread_count); 482 comp_param = g_new0(CompressParam, thread_count); 483 qemu_cond_init(&comp_done_cond); 484 qemu_mutex_init(&comp_done_lock); 485 for (i = 0; i < thread_count; i++) { 486 comp_param[i].originbuf = g_try_malloc(TARGET_PAGE_SIZE); 487 if (!comp_param[i].originbuf) { 488 goto exit; 489 } 490 491 if (deflateInit(&comp_param[i].stream, 492 migrate_compress_level()) != Z_OK) { 493 g_free(comp_param[i].originbuf); 494 goto exit; 495 } 496 497 /* comp_param[i].file is just used as a dummy buffer to save data, 498 * set its ops to empty. 499 */ 500 comp_param[i].file = qemu_fopen_ops(NULL, &empty_ops); 501 comp_param[i].done = true; 502 comp_param[i].quit = false; 503 qemu_mutex_init(&comp_param[i].mutex); 504 qemu_cond_init(&comp_param[i].cond); 505 qemu_thread_create(compress_threads + i, "compress", 506 do_data_compress, comp_param + i, 507 QEMU_THREAD_JOINABLE); 508 } 509 return 0; 510 511 exit: 512 compress_threads_save_cleanup(); 513 return -1; 514 } 515 516 /* Multiple fd's */ 517 518 #define MULTIFD_MAGIC 0x11223344U 519 #define MULTIFD_VERSION 1 520 521 #define MULTIFD_FLAG_SYNC (1 << 0) 522 523 typedef struct { 524 uint32_t magic; 525 uint32_t version; 526 unsigned char uuid[16]; /* QemuUUID */ 527 uint8_t id; 528 } __attribute__((packed)) MultiFDInit_t; 529 530 typedef struct { 531 uint32_t magic; 532 uint32_t version; 533 uint32_t flags; 534 uint32_t size; 535 uint32_t used; 536 uint64_t packet_num; 537 char ramblock[256]; 538 uint64_t offset[]; 539 } __attribute__((packed)) MultiFDPacket_t; 540 541 typedef struct { 542 /* number of used pages */ 543 uint32_t used; 544 /* number of allocated pages */ 545 uint32_t allocated; 546 /* global number of generated multifd packets */ 547 uint64_t packet_num; 548 /* offset of each page */ 549 ram_addr_t *offset; 550 /* pointer to each page */ 551 struct iovec *iov; 552 RAMBlock *block; 553 } MultiFDPages_t; 554 555 typedef struct { 556 /* this fields are not changed once the thread is created */ 557 /* channel number */ 558 uint8_t id; 559 /* channel thread name */ 560 char *name; 561 /* channel thread id */ 562 QemuThread thread; 563 /* communication channel */ 564 QIOChannel *c; 565 /* sem where to wait for more work */ 566 QemuSemaphore sem; 567 /* this mutex protects the following parameters */ 568 QemuMutex mutex; 569 /* is this channel thread running */ 570 bool running; 571 /* should this thread finish */ 572 bool quit; 573 /* thread has work to do */ 574 int pending_job; 575 /* array of pages to sent */ 576 MultiFDPages_t *pages; 577 /* packet allocated len */ 578 uint32_t packet_len; 579 /* pointer to the packet */ 580 MultiFDPacket_t *packet; 581 /* multifd flags for each packet */ 582 uint32_t flags; 583 /* global number of generated multifd packets */ 584 uint64_t packet_num; 585 /* thread local variables */ 586 /* packets sent through this channel */ 587 uint64_t num_packets; 588 /* pages sent through this channel */ 589 uint64_t num_pages; 590 /* syncs main thread and channels */ 591 QemuSemaphore sem_sync; 592 } MultiFDSendParams; 593 594 typedef struct { 595 /* this fields are not changed once the thread is created */ 596 /* channel number */ 597 uint8_t id; 598 /* channel thread name */ 599 char *name; 600 /* channel thread id */ 601 QemuThread thread; 602 /* communication channel */ 603 QIOChannel *c; 604 /* this mutex protects the following parameters */ 605 QemuMutex mutex; 606 /* is this channel thread running */ 607 bool running; 608 /* array of pages to receive */ 609 MultiFDPages_t *pages; 610 /* packet allocated len */ 611 uint32_t packet_len; 612 /* pointer to the packet */ 613 MultiFDPacket_t *packet; 614 /* multifd flags for each packet */ 615 uint32_t flags; 616 /* global number of generated multifd packets */ 617 uint64_t packet_num; 618 /* thread local variables */ 619 /* packets sent through this channel */ 620 uint64_t num_packets; 621 /* pages sent through this channel */ 622 uint64_t num_pages; 623 /* syncs main thread and channels */ 624 QemuSemaphore sem_sync; 625 } MultiFDRecvParams; 626 627 static int multifd_send_initial_packet(MultiFDSendParams *p, Error **errp) 628 { 629 MultiFDInit_t msg; 630 int ret; 631 632 msg.magic = cpu_to_be32(MULTIFD_MAGIC); 633 msg.version = cpu_to_be32(MULTIFD_VERSION); 634 msg.id = p->id; 635 memcpy(msg.uuid, &qemu_uuid.data, sizeof(msg.uuid)); 636 637 ret = qio_channel_write_all(p->c, (char *)&msg, sizeof(msg), errp); 638 if (ret != 0) { 639 return -1; 640 } 641 return 0; 642 } 643 644 static int multifd_recv_initial_packet(QIOChannel *c, Error **errp) 645 { 646 MultiFDInit_t msg; 647 int ret; 648 649 ret = qio_channel_read_all(c, (char *)&msg, sizeof(msg), errp); 650 if (ret != 0) { 651 return -1; 652 } 653 654 msg.magic = be32_to_cpu(msg.magic); 655 msg.version = be32_to_cpu(msg.version); 656 657 if (msg.magic != MULTIFD_MAGIC) { 658 error_setg(errp, "multifd: received packet magic %x " 659 "expected %x", msg.magic, MULTIFD_MAGIC); 660 return -1; 661 } 662 663 if (msg.version != MULTIFD_VERSION) { 664 error_setg(errp, "multifd: received packet version %d " 665 "expected %d", msg.version, MULTIFD_VERSION); 666 return -1; 667 } 668 669 if (memcmp(msg.uuid, &qemu_uuid, sizeof(qemu_uuid))) { 670 char *uuid = qemu_uuid_unparse_strdup(&qemu_uuid); 671 char *msg_uuid = qemu_uuid_unparse_strdup((const QemuUUID *)msg.uuid); 672 673 error_setg(errp, "multifd: received uuid '%s' and expected " 674 "uuid '%s' for channel %hhd", msg_uuid, uuid, msg.id); 675 g_free(uuid); 676 g_free(msg_uuid); 677 return -1; 678 } 679 680 if (msg.id > migrate_multifd_channels()) { 681 error_setg(errp, "multifd: received channel version %d " 682 "expected %d", msg.version, MULTIFD_VERSION); 683 return -1; 684 } 685 686 return msg.id; 687 } 688 689 static MultiFDPages_t *multifd_pages_init(size_t size) 690 { 691 MultiFDPages_t *pages = g_new0(MultiFDPages_t, 1); 692 693 pages->allocated = size; 694 pages->iov = g_new0(struct iovec, size); 695 pages->offset = g_new0(ram_addr_t, size); 696 697 return pages; 698 } 699 700 static void multifd_pages_clear(MultiFDPages_t *pages) 701 { 702 pages->used = 0; 703 pages->allocated = 0; 704 pages->packet_num = 0; 705 pages->block = NULL; 706 g_free(pages->iov); 707 pages->iov = NULL; 708 g_free(pages->offset); 709 pages->offset = NULL; 710 g_free(pages); 711 } 712 713 static void multifd_send_fill_packet(MultiFDSendParams *p) 714 { 715 MultiFDPacket_t *packet = p->packet; 716 int i; 717 718 packet->magic = cpu_to_be32(MULTIFD_MAGIC); 719 packet->version = cpu_to_be32(MULTIFD_VERSION); 720 packet->flags = cpu_to_be32(p->flags); 721 packet->size = cpu_to_be32(migrate_multifd_page_count()); 722 packet->used = cpu_to_be32(p->pages->used); 723 packet->packet_num = cpu_to_be64(p->packet_num); 724 725 if (p->pages->block) { 726 strncpy(packet->ramblock, p->pages->block->idstr, 256); 727 } 728 729 for (i = 0; i < p->pages->used; i++) { 730 packet->offset[i] = cpu_to_be64(p->pages->offset[i]); 731 } 732 } 733 734 static int multifd_recv_unfill_packet(MultiFDRecvParams *p, Error **errp) 735 { 736 MultiFDPacket_t *packet = p->packet; 737 RAMBlock *block; 738 int i; 739 740 packet->magic = be32_to_cpu(packet->magic); 741 if (packet->magic != MULTIFD_MAGIC) { 742 error_setg(errp, "multifd: received packet " 743 "magic %x and expected magic %x", 744 packet->magic, MULTIFD_MAGIC); 745 return -1; 746 } 747 748 packet->version = be32_to_cpu(packet->version); 749 if (packet->version != MULTIFD_VERSION) { 750 error_setg(errp, "multifd: received packet " 751 "version %d and expected version %d", 752 packet->version, MULTIFD_VERSION); 753 return -1; 754 } 755 756 p->flags = be32_to_cpu(packet->flags); 757 758 packet->size = be32_to_cpu(packet->size); 759 if (packet->size > migrate_multifd_page_count()) { 760 error_setg(errp, "multifd: received packet " 761 "with size %d and expected maximum size %d", 762 packet->size, migrate_multifd_page_count()) ; 763 return -1; 764 } 765 766 p->pages->used = be32_to_cpu(packet->used); 767 if (p->pages->used > packet->size) { 768 error_setg(errp, "multifd: received packet " 769 "with size %d and expected maximum size %d", 770 p->pages->used, packet->size) ; 771 return -1; 772 } 773 774 p->packet_num = be64_to_cpu(packet->packet_num); 775 776 if (p->pages->used) { 777 /* make sure that ramblock is 0 terminated */ 778 packet->ramblock[255] = 0; 779 block = qemu_ram_block_by_name(packet->ramblock); 780 if (!block) { 781 error_setg(errp, "multifd: unknown ram block %s", 782 packet->ramblock); 783 return -1; 784 } 785 } 786 787 for (i = 0; i < p->pages->used; i++) { 788 ram_addr_t offset = be64_to_cpu(packet->offset[i]); 789 790 if (offset > (block->used_length - TARGET_PAGE_SIZE)) { 791 error_setg(errp, "multifd: offset too long " RAM_ADDR_FMT 792 " (max " RAM_ADDR_FMT ")", 793 offset, block->max_length); 794 return -1; 795 } 796 p->pages->iov[i].iov_base = block->host + offset; 797 p->pages->iov[i].iov_len = TARGET_PAGE_SIZE; 798 } 799 800 return 0; 801 } 802 803 struct { 804 MultiFDSendParams *params; 805 /* number of created threads */ 806 int count; 807 /* array of pages to sent */ 808 MultiFDPages_t *pages; 809 /* syncs main thread and channels */ 810 QemuSemaphore sem_sync; 811 /* global number of generated multifd packets */ 812 uint64_t packet_num; 813 /* send channels ready */ 814 QemuSemaphore channels_ready; 815 } *multifd_send_state; 816 817 /* 818 * How we use multifd_send_state->pages and channel->pages? 819 * 820 * We create a pages for each channel, and a main one. Each time that 821 * we need to send a batch of pages we interchange the ones between 822 * multifd_send_state and the channel that is sending it. There are 823 * two reasons for that: 824 * - to not have to do so many mallocs during migration 825 * - to make easier to know what to free at the end of migration 826 * 827 * This way we always know who is the owner of each "pages" struct, 828 * and we don't need any loocking. It belongs to the migration thread 829 * or to the channel thread. Switching is safe because the migration 830 * thread is using the channel mutex when changing it, and the channel 831 * have to had finish with its own, otherwise pending_job can't be 832 * false. 833 */ 834 835 static void multifd_send_pages(void) 836 { 837 int i; 838 static int next_channel; 839 MultiFDSendParams *p = NULL; /* make happy gcc */ 840 MultiFDPages_t *pages = multifd_send_state->pages; 841 uint64_t transferred; 842 843 qemu_sem_wait(&multifd_send_state->channels_ready); 844 for (i = next_channel;; i = (i + 1) % migrate_multifd_channels()) { 845 p = &multifd_send_state->params[i]; 846 847 qemu_mutex_lock(&p->mutex); 848 if (!p->pending_job) { 849 p->pending_job++; 850 next_channel = (i + 1) % migrate_multifd_channels(); 851 break; 852 } 853 qemu_mutex_unlock(&p->mutex); 854 } 855 p->pages->used = 0; 856 857 p->packet_num = multifd_send_state->packet_num++; 858 p->pages->block = NULL; 859 multifd_send_state->pages = p->pages; 860 p->pages = pages; 861 transferred = ((uint64_t) pages->used) * TARGET_PAGE_SIZE + p->packet_len; 862 ram_counters.multifd_bytes += transferred; 863 ram_counters.transferred += transferred;; 864 qemu_mutex_unlock(&p->mutex); 865 qemu_sem_post(&p->sem); 866 } 867 868 static void multifd_queue_page(RAMBlock *block, ram_addr_t offset) 869 { 870 MultiFDPages_t *pages = multifd_send_state->pages; 871 872 if (!pages->block) { 873 pages->block = block; 874 } 875 876 if (pages->block == block) { 877 pages->offset[pages->used] = offset; 878 pages->iov[pages->used].iov_base = block->host + offset; 879 pages->iov[pages->used].iov_len = TARGET_PAGE_SIZE; 880 pages->used++; 881 882 if (pages->used < pages->allocated) { 883 return; 884 } 885 } 886 887 multifd_send_pages(); 888 889 if (pages->block != block) { 890 multifd_queue_page(block, offset); 891 } 892 } 893 894 static void multifd_send_terminate_threads(Error *err) 895 { 896 int i; 897 898 if (err) { 899 MigrationState *s = migrate_get_current(); 900 migrate_set_error(s, err); 901 if (s->state == MIGRATION_STATUS_SETUP || 902 s->state == MIGRATION_STATUS_PRE_SWITCHOVER || 903 s->state == MIGRATION_STATUS_DEVICE || 904 s->state == MIGRATION_STATUS_ACTIVE) { 905 migrate_set_state(&s->state, s->state, 906 MIGRATION_STATUS_FAILED); 907 } 908 } 909 910 for (i = 0; i < migrate_multifd_channels(); i++) { 911 MultiFDSendParams *p = &multifd_send_state->params[i]; 912 913 qemu_mutex_lock(&p->mutex); 914 p->quit = true; 915 qemu_sem_post(&p->sem); 916 qemu_mutex_unlock(&p->mutex); 917 } 918 } 919 920 int multifd_save_cleanup(Error **errp) 921 { 922 int i; 923 int ret = 0; 924 925 if (!migrate_use_multifd()) { 926 return 0; 927 } 928 multifd_send_terminate_threads(NULL); 929 for (i = 0; i < migrate_multifd_channels(); i++) { 930 MultiFDSendParams *p = &multifd_send_state->params[i]; 931 932 if (p->running) { 933 qemu_thread_join(&p->thread); 934 } 935 socket_send_channel_destroy(p->c); 936 p->c = NULL; 937 qemu_mutex_destroy(&p->mutex); 938 qemu_sem_destroy(&p->sem); 939 qemu_sem_destroy(&p->sem_sync); 940 g_free(p->name); 941 p->name = NULL; 942 multifd_pages_clear(p->pages); 943 p->pages = NULL; 944 p->packet_len = 0; 945 g_free(p->packet); 946 p->packet = NULL; 947 } 948 qemu_sem_destroy(&multifd_send_state->channels_ready); 949 qemu_sem_destroy(&multifd_send_state->sem_sync); 950 g_free(multifd_send_state->params); 951 multifd_send_state->params = NULL; 952 multifd_pages_clear(multifd_send_state->pages); 953 multifd_send_state->pages = NULL; 954 g_free(multifd_send_state); 955 multifd_send_state = NULL; 956 return ret; 957 } 958 959 static void multifd_send_sync_main(void) 960 { 961 int i; 962 963 if (!migrate_use_multifd()) { 964 return; 965 } 966 if (multifd_send_state->pages->used) { 967 multifd_send_pages(); 968 } 969 for (i = 0; i < migrate_multifd_channels(); i++) { 970 MultiFDSendParams *p = &multifd_send_state->params[i]; 971 972 trace_multifd_send_sync_main_signal(p->id); 973 974 qemu_mutex_lock(&p->mutex); 975 976 p->packet_num = multifd_send_state->packet_num++; 977 p->flags |= MULTIFD_FLAG_SYNC; 978 p->pending_job++; 979 qemu_mutex_unlock(&p->mutex); 980 qemu_sem_post(&p->sem); 981 } 982 for (i = 0; i < migrate_multifd_channels(); i++) { 983 MultiFDSendParams *p = &multifd_send_state->params[i]; 984 985 trace_multifd_send_sync_main_wait(p->id); 986 qemu_sem_wait(&multifd_send_state->sem_sync); 987 } 988 trace_multifd_send_sync_main(multifd_send_state->packet_num); 989 } 990 991 static void *multifd_send_thread(void *opaque) 992 { 993 MultiFDSendParams *p = opaque; 994 Error *local_err = NULL; 995 int ret; 996 997 trace_multifd_send_thread_start(p->id); 998 rcu_register_thread(); 999 1000 if (multifd_send_initial_packet(p, &local_err) < 0) { 1001 goto out; 1002 } 1003 /* initial packet */ 1004 p->num_packets = 1; 1005 1006 while (true) { 1007 qemu_sem_wait(&p->sem); 1008 qemu_mutex_lock(&p->mutex); 1009 1010 if (p->pending_job) { 1011 uint32_t used = p->pages->used; 1012 uint64_t packet_num = p->packet_num; 1013 uint32_t flags = p->flags; 1014 1015 multifd_send_fill_packet(p); 1016 p->flags = 0; 1017 p->num_packets++; 1018 p->num_pages += used; 1019 p->pages->used = 0; 1020 qemu_mutex_unlock(&p->mutex); 1021 1022 trace_multifd_send(p->id, packet_num, used, flags); 1023 1024 ret = qio_channel_write_all(p->c, (void *)p->packet, 1025 p->packet_len, &local_err); 1026 if (ret != 0) { 1027 break; 1028 } 1029 1030 ret = qio_channel_writev_all(p->c, p->pages->iov, used, &local_err); 1031 if (ret != 0) { 1032 break; 1033 } 1034 1035 qemu_mutex_lock(&p->mutex); 1036 p->pending_job--; 1037 qemu_mutex_unlock(&p->mutex); 1038 1039 if (flags & MULTIFD_FLAG_SYNC) { 1040 qemu_sem_post(&multifd_send_state->sem_sync); 1041 } 1042 qemu_sem_post(&multifd_send_state->channels_ready); 1043 } else if (p->quit) { 1044 qemu_mutex_unlock(&p->mutex); 1045 break; 1046 } else { 1047 qemu_mutex_unlock(&p->mutex); 1048 /* sometimes there are spurious wakeups */ 1049 } 1050 } 1051 1052 out: 1053 if (local_err) { 1054 multifd_send_terminate_threads(local_err); 1055 } 1056 1057 qemu_mutex_lock(&p->mutex); 1058 p->running = false; 1059 qemu_mutex_unlock(&p->mutex); 1060 1061 rcu_unregister_thread(); 1062 trace_multifd_send_thread_end(p->id, p->num_packets, p->num_pages); 1063 1064 return NULL; 1065 } 1066 1067 static void multifd_new_send_channel_async(QIOTask *task, gpointer opaque) 1068 { 1069 MultiFDSendParams *p = opaque; 1070 QIOChannel *sioc = QIO_CHANNEL(qio_task_get_source(task)); 1071 Error *local_err = NULL; 1072 1073 if (qio_task_propagate_error(task, &local_err)) { 1074 if (multifd_save_cleanup(&local_err) != 0) { 1075 migrate_set_error(migrate_get_current(), local_err); 1076 } 1077 } else { 1078 p->c = QIO_CHANNEL(sioc); 1079 qio_channel_set_delay(p->c, false); 1080 p->running = true; 1081 qemu_thread_create(&p->thread, p->name, multifd_send_thread, p, 1082 QEMU_THREAD_JOINABLE); 1083 1084 atomic_inc(&multifd_send_state->count); 1085 } 1086 } 1087 1088 int multifd_save_setup(void) 1089 { 1090 int thread_count; 1091 uint32_t page_count = migrate_multifd_page_count(); 1092 uint8_t i; 1093 1094 if (!migrate_use_multifd()) { 1095 return 0; 1096 } 1097 thread_count = migrate_multifd_channels(); 1098 multifd_send_state = g_malloc0(sizeof(*multifd_send_state)); 1099 multifd_send_state->params = g_new0(MultiFDSendParams, thread_count); 1100 atomic_set(&multifd_send_state->count, 0); 1101 multifd_send_state->pages = multifd_pages_init(page_count); 1102 qemu_sem_init(&multifd_send_state->sem_sync, 0); 1103 qemu_sem_init(&multifd_send_state->channels_ready, 0); 1104 1105 for (i = 0; i < thread_count; i++) { 1106 MultiFDSendParams *p = &multifd_send_state->params[i]; 1107 1108 qemu_mutex_init(&p->mutex); 1109 qemu_sem_init(&p->sem, 0); 1110 qemu_sem_init(&p->sem_sync, 0); 1111 p->quit = false; 1112 p->pending_job = 0; 1113 p->id = i; 1114 p->pages = multifd_pages_init(page_count); 1115 p->packet_len = sizeof(MultiFDPacket_t) 1116 + sizeof(ram_addr_t) * page_count; 1117 p->packet = g_malloc0(p->packet_len); 1118 p->name = g_strdup_printf("multifdsend_%d", i); 1119 socket_send_channel_create(multifd_new_send_channel_async, p); 1120 } 1121 return 0; 1122 } 1123 1124 struct { 1125 MultiFDRecvParams *params; 1126 /* number of created threads */ 1127 int count; 1128 /* syncs main thread and channels */ 1129 QemuSemaphore sem_sync; 1130 /* global number of generated multifd packets */ 1131 uint64_t packet_num; 1132 } *multifd_recv_state; 1133 1134 static void multifd_recv_terminate_threads(Error *err) 1135 { 1136 int i; 1137 1138 if (err) { 1139 MigrationState *s = migrate_get_current(); 1140 migrate_set_error(s, err); 1141 if (s->state == MIGRATION_STATUS_SETUP || 1142 s->state == MIGRATION_STATUS_ACTIVE) { 1143 migrate_set_state(&s->state, s->state, 1144 MIGRATION_STATUS_FAILED); 1145 } 1146 } 1147 1148 for (i = 0; i < migrate_multifd_channels(); i++) { 1149 MultiFDRecvParams *p = &multifd_recv_state->params[i]; 1150 1151 qemu_mutex_lock(&p->mutex); 1152 /* We could arrive here for two reasons: 1153 - normal quit, i.e. everything went fine, just finished 1154 - error quit: We close the channels so the channel threads 1155 finish the qio_channel_read_all_eof() */ 1156 qio_channel_shutdown(p->c, QIO_CHANNEL_SHUTDOWN_BOTH, NULL); 1157 qemu_mutex_unlock(&p->mutex); 1158 } 1159 } 1160 1161 int multifd_load_cleanup(Error **errp) 1162 { 1163 int i; 1164 int ret = 0; 1165 1166 if (!migrate_use_multifd()) { 1167 return 0; 1168 } 1169 multifd_recv_terminate_threads(NULL); 1170 for (i = 0; i < migrate_multifd_channels(); i++) { 1171 MultiFDRecvParams *p = &multifd_recv_state->params[i]; 1172 1173 if (p->running) { 1174 qemu_thread_join(&p->thread); 1175 } 1176 object_unref(OBJECT(p->c)); 1177 p->c = NULL; 1178 qemu_mutex_destroy(&p->mutex); 1179 qemu_sem_destroy(&p->sem_sync); 1180 g_free(p->name); 1181 p->name = NULL; 1182 multifd_pages_clear(p->pages); 1183 p->pages = NULL; 1184 p->packet_len = 0; 1185 g_free(p->packet); 1186 p->packet = NULL; 1187 } 1188 qemu_sem_destroy(&multifd_recv_state->sem_sync); 1189 g_free(multifd_recv_state->params); 1190 multifd_recv_state->params = NULL; 1191 g_free(multifd_recv_state); 1192 multifd_recv_state = NULL; 1193 1194 return ret; 1195 } 1196 1197 static void multifd_recv_sync_main(void) 1198 { 1199 int i; 1200 1201 if (!migrate_use_multifd()) { 1202 return; 1203 } 1204 for (i = 0; i < migrate_multifd_channels(); i++) { 1205 MultiFDRecvParams *p = &multifd_recv_state->params[i]; 1206 1207 trace_multifd_recv_sync_main_wait(p->id); 1208 qemu_sem_wait(&multifd_recv_state->sem_sync); 1209 qemu_mutex_lock(&p->mutex); 1210 if (multifd_recv_state->packet_num < p->packet_num) { 1211 multifd_recv_state->packet_num = p->packet_num; 1212 } 1213 qemu_mutex_unlock(&p->mutex); 1214 } 1215 for (i = 0; i < migrate_multifd_channels(); i++) { 1216 MultiFDRecvParams *p = &multifd_recv_state->params[i]; 1217 1218 trace_multifd_recv_sync_main_signal(p->id); 1219 qemu_sem_post(&p->sem_sync); 1220 } 1221 trace_multifd_recv_sync_main(multifd_recv_state->packet_num); 1222 } 1223 1224 static void *multifd_recv_thread(void *opaque) 1225 { 1226 MultiFDRecvParams *p = opaque; 1227 Error *local_err = NULL; 1228 int ret; 1229 1230 trace_multifd_recv_thread_start(p->id); 1231 rcu_register_thread(); 1232 1233 while (true) { 1234 uint32_t used; 1235 uint32_t flags; 1236 1237 ret = qio_channel_read_all_eof(p->c, (void *)p->packet, 1238 p->packet_len, &local_err); 1239 if (ret == 0) { /* EOF */ 1240 break; 1241 } 1242 if (ret == -1) { /* Error */ 1243 break; 1244 } 1245 1246 qemu_mutex_lock(&p->mutex); 1247 ret = multifd_recv_unfill_packet(p, &local_err); 1248 if (ret) { 1249 qemu_mutex_unlock(&p->mutex); 1250 break; 1251 } 1252 1253 used = p->pages->used; 1254 flags = p->flags; 1255 trace_multifd_recv(p->id, p->packet_num, used, flags); 1256 p->num_packets++; 1257 p->num_pages += used; 1258 qemu_mutex_unlock(&p->mutex); 1259 1260 ret = qio_channel_readv_all(p->c, p->pages->iov, used, &local_err); 1261 if (ret != 0) { 1262 break; 1263 } 1264 1265 if (flags & MULTIFD_FLAG_SYNC) { 1266 qemu_sem_post(&multifd_recv_state->sem_sync); 1267 qemu_sem_wait(&p->sem_sync); 1268 } 1269 } 1270 1271 if (local_err) { 1272 multifd_recv_terminate_threads(local_err); 1273 } 1274 qemu_mutex_lock(&p->mutex); 1275 p->running = false; 1276 qemu_mutex_unlock(&p->mutex); 1277 1278 rcu_unregister_thread(); 1279 trace_multifd_recv_thread_end(p->id, p->num_packets, p->num_pages); 1280 1281 return NULL; 1282 } 1283 1284 int multifd_load_setup(void) 1285 { 1286 int thread_count; 1287 uint32_t page_count = migrate_multifd_page_count(); 1288 uint8_t i; 1289 1290 if (!migrate_use_multifd()) { 1291 return 0; 1292 } 1293 thread_count = migrate_multifd_channels(); 1294 multifd_recv_state = g_malloc0(sizeof(*multifd_recv_state)); 1295 multifd_recv_state->params = g_new0(MultiFDRecvParams, thread_count); 1296 atomic_set(&multifd_recv_state->count, 0); 1297 qemu_sem_init(&multifd_recv_state->sem_sync, 0); 1298 1299 for (i = 0; i < thread_count; i++) { 1300 MultiFDRecvParams *p = &multifd_recv_state->params[i]; 1301 1302 qemu_mutex_init(&p->mutex); 1303 qemu_sem_init(&p->sem_sync, 0); 1304 p->id = i; 1305 p->pages = multifd_pages_init(page_count); 1306 p->packet_len = sizeof(MultiFDPacket_t) 1307 + sizeof(ram_addr_t) * page_count; 1308 p->packet = g_malloc0(p->packet_len); 1309 p->name = g_strdup_printf("multifdrecv_%d", i); 1310 } 1311 return 0; 1312 } 1313 1314 bool multifd_recv_all_channels_created(void) 1315 { 1316 int thread_count = migrate_multifd_channels(); 1317 1318 if (!migrate_use_multifd()) { 1319 return true; 1320 } 1321 1322 return thread_count == atomic_read(&multifd_recv_state->count); 1323 } 1324 1325 /* Return true if multifd is ready for the migration, otherwise false */ 1326 bool multifd_recv_new_channel(QIOChannel *ioc) 1327 { 1328 MultiFDRecvParams *p; 1329 Error *local_err = NULL; 1330 int id; 1331 1332 id = multifd_recv_initial_packet(ioc, &local_err); 1333 if (id < 0) { 1334 multifd_recv_terminate_threads(local_err); 1335 return false; 1336 } 1337 1338 p = &multifd_recv_state->params[id]; 1339 if (p->c != NULL) { 1340 error_setg(&local_err, "multifd: received id '%d' already setup'", 1341 id); 1342 multifd_recv_terminate_threads(local_err); 1343 return false; 1344 } 1345 p->c = ioc; 1346 object_ref(OBJECT(ioc)); 1347 /* initial packet */ 1348 p->num_packets = 1; 1349 1350 p->running = true; 1351 qemu_thread_create(&p->thread, p->name, multifd_recv_thread, p, 1352 QEMU_THREAD_JOINABLE); 1353 atomic_inc(&multifd_recv_state->count); 1354 return multifd_recv_state->count == migrate_multifd_channels(); 1355 } 1356 1357 /** 1358 * save_page_header: write page header to wire 1359 * 1360 * If this is the 1st block, it also writes the block identification 1361 * 1362 * Returns the number of bytes written 1363 * 1364 * @f: QEMUFile where to send the data 1365 * @block: block that contains the page we want to send 1366 * @offset: offset inside the block for the page 1367 * in the lower bits, it contains flags 1368 */ 1369 static size_t save_page_header(RAMState *rs, QEMUFile *f, RAMBlock *block, 1370 ram_addr_t offset) 1371 { 1372 size_t size, len; 1373 1374 if (block == rs->last_sent_block) { 1375 offset |= RAM_SAVE_FLAG_CONTINUE; 1376 } 1377 qemu_put_be64(f, offset); 1378 size = 8; 1379 1380 if (!(offset & RAM_SAVE_FLAG_CONTINUE)) { 1381 len = strlen(block->idstr); 1382 qemu_put_byte(f, len); 1383 qemu_put_buffer(f, (uint8_t *)block->idstr, len); 1384 size += 1 + len; 1385 rs->last_sent_block = block; 1386 } 1387 return size; 1388 } 1389 1390 /** 1391 * mig_throttle_guest_down: throotle down the guest 1392 * 1393 * Reduce amount of guest cpu execution to hopefully slow down memory 1394 * writes. If guest dirty memory rate is reduced below the rate at 1395 * which we can transfer pages to the destination then we should be 1396 * able to complete migration. Some workloads dirty memory way too 1397 * fast and will not effectively converge, even with auto-converge. 1398 */ 1399 static void mig_throttle_guest_down(void) 1400 { 1401 MigrationState *s = migrate_get_current(); 1402 uint64_t pct_initial = s->parameters.cpu_throttle_initial; 1403 uint64_t pct_icrement = s->parameters.cpu_throttle_increment; 1404 int pct_max = s->parameters.max_cpu_throttle; 1405 1406 /* We have not started throttling yet. Let's start it. */ 1407 if (!cpu_throttle_active()) { 1408 cpu_throttle_set(pct_initial); 1409 } else { 1410 /* Throttling already on, just increase the rate */ 1411 cpu_throttle_set(MIN(cpu_throttle_get_percentage() + pct_icrement, 1412 pct_max)); 1413 } 1414 } 1415 1416 /** 1417 * xbzrle_cache_zero_page: insert a zero page in the XBZRLE cache 1418 * 1419 * @rs: current RAM state 1420 * @current_addr: address for the zero page 1421 * 1422 * Update the xbzrle cache to reflect a page that's been sent as all 0. 1423 * The important thing is that a stale (not-yet-0'd) page be replaced 1424 * by the new data. 1425 * As a bonus, if the page wasn't in the cache it gets added so that 1426 * when a small write is made into the 0'd page it gets XBZRLE sent. 1427 */ 1428 static void xbzrle_cache_zero_page(RAMState *rs, ram_addr_t current_addr) 1429 { 1430 if (rs->ram_bulk_stage || !migrate_use_xbzrle()) { 1431 return; 1432 } 1433 1434 /* We don't care if this fails to allocate a new cache page 1435 * as long as it updated an old one */ 1436 cache_insert(XBZRLE.cache, current_addr, XBZRLE.zero_target_page, 1437 ram_counters.dirty_sync_count); 1438 } 1439 1440 #define ENCODING_FLAG_XBZRLE 0x1 1441 1442 /** 1443 * save_xbzrle_page: compress and send current page 1444 * 1445 * Returns: 1 means that we wrote the page 1446 * 0 means that page is identical to the one already sent 1447 * -1 means that xbzrle would be longer than normal 1448 * 1449 * @rs: current RAM state 1450 * @current_data: pointer to the address of the page contents 1451 * @current_addr: addr of the page 1452 * @block: block that contains the page we want to send 1453 * @offset: offset inside the block for the page 1454 * @last_stage: if we are at the completion stage 1455 */ 1456 static int save_xbzrle_page(RAMState *rs, uint8_t **current_data, 1457 ram_addr_t current_addr, RAMBlock *block, 1458 ram_addr_t offset, bool last_stage) 1459 { 1460 int encoded_len = 0, bytes_xbzrle; 1461 uint8_t *prev_cached_page; 1462 1463 if (!cache_is_cached(XBZRLE.cache, current_addr, 1464 ram_counters.dirty_sync_count)) { 1465 xbzrle_counters.cache_miss++; 1466 if (!last_stage) { 1467 if (cache_insert(XBZRLE.cache, current_addr, *current_data, 1468 ram_counters.dirty_sync_count) == -1) { 1469 return -1; 1470 } else { 1471 /* update *current_data when the page has been 1472 inserted into cache */ 1473 *current_data = get_cached_data(XBZRLE.cache, current_addr); 1474 } 1475 } 1476 return -1; 1477 } 1478 1479 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr); 1480 1481 /* save current buffer into memory */ 1482 memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE); 1483 1484 /* XBZRLE encoding (if there is no overflow) */ 1485 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf, 1486 TARGET_PAGE_SIZE, XBZRLE.encoded_buf, 1487 TARGET_PAGE_SIZE); 1488 if (encoded_len == 0) { 1489 trace_save_xbzrle_page_skipping(); 1490 return 0; 1491 } else if (encoded_len == -1) { 1492 trace_save_xbzrle_page_overflow(); 1493 xbzrle_counters.overflow++; 1494 /* update data in the cache */ 1495 if (!last_stage) { 1496 memcpy(prev_cached_page, *current_data, TARGET_PAGE_SIZE); 1497 *current_data = prev_cached_page; 1498 } 1499 return -1; 1500 } 1501 1502 /* we need to update the data in the cache, in order to get the same data */ 1503 if (!last_stage) { 1504 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE); 1505 } 1506 1507 /* Send XBZRLE based compressed page */ 1508 bytes_xbzrle = save_page_header(rs, rs->f, block, 1509 offset | RAM_SAVE_FLAG_XBZRLE); 1510 qemu_put_byte(rs->f, ENCODING_FLAG_XBZRLE); 1511 qemu_put_be16(rs->f, encoded_len); 1512 qemu_put_buffer(rs->f, XBZRLE.encoded_buf, encoded_len); 1513 bytes_xbzrle += encoded_len + 1 + 2; 1514 xbzrle_counters.pages++; 1515 xbzrle_counters.bytes += bytes_xbzrle; 1516 ram_counters.transferred += bytes_xbzrle; 1517 1518 return 1; 1519 } 1520 1521 /** 1522 * migration_bitmap_find_dirty: find the next dirty page from start 1523 * 1524 * Called with rcu_read_lock() to protect migration_bitmap 1525 * 1526 * Returns the byte offset within memory region of the start of a dirty page 1527 * 1528 * @rs: current RAM state 1529 * @rb: RAMBlock where to search for dirty pages 1530 * @start: page where we start the search 1531 */ 1532 static inline 1533 unsigned long migration_bitmap_find_dirty(RAMState *rs, RAMBlock *rb, 1534 unsigned long start) 1535 { 1536 unsigned long size = rb->used_length >> TARGET_PAGE_BITS; 1537 unsigned long *bitmap = rb->bmap; 1538 unsigned long next; 1539 1540 if (!qemu_ram_is_migratable(rb)) { 1541 return size; 1542 } 1543 1544 if (rs->ram_bulk_stage && start > 0) { 1545 next = start + 1; 1546 } else { 1547 next = find_next_bit(bitmap, size, start); 1548 } 1549 1550 return next; 1551 } 1552 1553 static inline bool migration_bitmap_clear_dirty(RAMState *rs, 1554 RAMBlock *rb, 1555 unsigned long page) 1556 { 1557 bool ret; 1558 1559 ret = test_and_clear_bit(page, rb->bmap); 1560 1561 if (ret) { 1562 rs->migration_dirty_pages--; 1563 } 1564 return ret; 1565 } 1566 1567 static void migration_bitmap_sync_range(RAMState *rs, RAMBlock *rb, 1568 ram_addr_t start, ram_addr_t length) 1569 { 1570 rs->migration_dirty_pages += 1571 cpu_physical_memory_sync_dirty_bitmap(rb, start, length, 1572 &rs->num_dirty_pages_period); 1573 } 1574 1575 /** 1576 * ram_pagesize_summary: calculate all the pagesizes of a VM 1577 * 1578 * Returns a summary bitmap of the page sizes of all RAMBlocks 1579 * 1580 * For VMs with just normal pages this is equivalent to the host page 1581 * size. If it's got some huge pages then it's the OR of all the 1582 * different page sizes. 1583 */ 1584 uint64_t ram_pagesize_summary(void) 1585 { 1586 RAMBlock *block; 1587 uint64_t summary = 0; 1588 1589 RAMBLOCK_FOREACH_MIGRATABLE(block) { 1590 summary |= block->page_size; 1591 } 1592 1593 return summary; 1594 } 1595 1596 static void migration_update_rates(RAMState *rs, int64_t end_time) 1597 { 1598 uint64_t page_count = rs->target_page_count - rs->target_page_count_prev; 1599 double compressed_size; 1600 1601 /* calculate period counters */ 1602 ram_counters.dirty_pages_rate = rs->num_dirty_pages_period * 1000 1603 / (end_time - rs->time_last_bitmap_sync); 1604 1605 if (!page_count) { 1606 return; 1607 } 1608 1609 if (migrate_use_xbzrle()) { 1610 xbzrle_counters.cache_miss_rate = (double)(xbzrle_counters.cache_miss - 1611 rs->xbzrle_cache_miss_prev) / page_count; 1612 rs->xbzrle_cache_miss_prev = xbzrle_counters.cache_miss; 1613 } 1614 1615 if (migrate_use_compression()) { 1616 compression_counters.busy_rate = (double)(compression_counters.busy - 1617 rs->compress_thread_busy_prev) / page_count; 1618 rs->compress_thread_busy_prev = compression_counters.busy; 1619 1620 compressed_size = compression_counters.compressed_size - 1621 rs->compressed_size_prev; 1622 if (compressed_size) { 1623 double uncompressed_size = (compression_counters.pages - 1624 rs->compress_pages_prev) * TARGET_PAGE_SIZE; 1625 1626 /* Compression-Ratio = Uncompressed-size / Compressed-size */ 1627 compression_counters.compression_rate = 1628 uncompressed_size / compressed_size; 1629 1630 rs->compress_pages_prev = compression_counters.pages; 1631 rs->compressed_size_prev = compression_counters.compressed_size; 1632 } 1633 } 1634 } 1635 1636 static void migration_bitmap_sync(RAMState *rs) 1637 { 1638 RAMBlock *block; 1639 int64_t end_time; 1640 uint64_t bytes_xfer_now; 1641 1642 ram_counters.dirty_sync_count++; 1643 1644 if (!rs->time_last_bitmap_sync) { 1645 rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); 1646 } 1647 1648 trace_migration_bitmap_sync_start(); 1649 memory_global_dirty_log_sync(); 1650 1651 qemu_mutex_lock(&rs->bitmap_mutex); 1652 rcu_read_lock(); 1653 RAMBLOCK_FOREACH_MIGRATABLE(block) { 1654 migration_bitmap_sync_range(rs, block, 0, block->used_length); 1655 } 1656 ram_counters.remaining = ram_bytes_remaining(); 1657 rcu_read_unlock(); 1658 qemu_mutex_unlock(&rs->bitmap_mutex); 1659 1660 trace_migration_bitmap_sync_end(rs->num_dirty_pages_period); 1661 1662 end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); 1663 1664 /* more than 1 second = 1000 millisecons */ 1665 if (end_time > rs->time_last_bitmap_sync + 1000) { 1666 bytes_xfer_now = ram_counters.transferred; 1667 1668 /* During block migration the auto-converge logic incorrectly detects 1669 * that ram migration makes no progress. Avoid this by disabling the 1670 * throttling logic during the bulk phase of block migration. */ 1671 if (migrate_auto_converge() && !blk_mig_bulk_active()) { 1672 /* The following detection logic can be refined later. For now: 1673 Check to see if the dirtied bytes is 50% more than the approx. 1674 amount of bytes that just got transferred since the last time we 1675 were in this routine. If that happens twice, start or increase 1676 throttling */ 1677 1678 if ((rs->num_dirty_pages_period * TARGET_PAGE_SIZE > 1679 (bytes_xfer_now - rs->bytes_xfer_prev) / 2) && 1680 (++rs->dirty_rate_high_cnt >= 2)) { 1681 trace_migration_throttle(); 1682 rs->dirty_rate_high_cnt = 0; 1683 mig_throttle_guest_down(); 1684 } 1685 } 1686 1687 migration_update_rates(rs, end_time); 1688 1689 rs->target_page_count_prev = rs->target_page_count; 1690 1691 /* reset period counters */ 1692 rs->time_last_bitmap_sync = end_time; 1693 rs->num_dirty_pages_period = 0; 1694 rs->bytes_xfer_prev = bytes_xfer_now; 1695 } 1696 if (migrate_use_events()) { 1697 qapi_event_send_migration_pass(ram_counters.dirty_sync_count); 1698 } 1699 } 1700 1701 /** 1702 * save_zero_page_to_file: send the zero page to the file 1703 * 1704 * Returns the size of data written to the file, 0 means the page is not 1705 * a zero page 1706 * 1707 * @rs: current RAM state 1708 * @file: the file where the data is saved 1709 * @block: block that contains the page we want to send 1710 * @offset: offset inside the block for the page 1711 */ 1712 static int save_zero_page_to_file(RAMState *rs, QEMUFile *file, 1713 RAMBlock *block, ram_addr_t offset) 1714 { 1715 uint8_t *p = block->host + offset; 1716 int len = 0; 1717 1718 if (is_zero_range(p, TARGET_PAGE_SIZE)) { 1719 len += save_page_header(rs, file, block, offset | RAM_SAVE_FLAG_ZERO); 1720 qemu_put_byte(file, 0); 1721 len += 1; 1722 } 1723 return len; 1724 } 1725 1726 /** 1727 * save_zero_page: send the zero page to the stream 1728 * 1729 * Returns the number of pages written. 1730 * 1731 * @rs: current RAM state 1732 * @block: block that contains the page we want to send 1733 * @offset: offset inside the block for the page 1734 */ 1735 static int save_zero_page(RAMState *rs, RAMBlock *block, ram_addr_t offset) 1736 { 1737 int len = save_zero_page_to_file(rs, rs->f, block, offset); 1738 1739 if (len) { 1740 ram_counters.duplicate++; 1741 ram_counters.transferred += len; 1742 return 1; 1743 } 1744 return -1; 1745 } 1746 1747 static void ram_release_pages(const char *rbname, uint64_t offset, int pages) 1748 { 1749 if (!migrate_release_ram() || !migration_in_postcopy()) { 1750 return; 1751 } 1752 1753 ram_discard_range(rbname, offset, pages << TARGET_PAGE_BITS); 1754 } 1755 1756 /* 1757 * @pages: the number of pages written by the control path, 1758 * < 0 - error 1759 * > 0 - number of pages written 1760 * 1761 * Return true if the pages has been saved, otherwise false is returned. 1762 */ 1763 static bool control_save_page(RAMState *rs, RAMBlock *block, ram_addr_t offset, 1764 int *pages) 1765 { 1766 uint64_t bytes_xmit = 0; 1767 int ret; 1768 1769 *pages = -1; 1770 ret = ram_control_save_page(rs->f, block->offset, offset, TARGET_PAGE_SIZE, 1771 &bytes_xmit); 1772 if (ret == RAM_SAVE_CONTROL_NOT_SUPP) { 1773 return false; 1774 } 1775 1776 if (bytes_xmit) { 1777 ram_counters.transferred += bytes_xmit; 1778 *pages = 1; 1779 } 1780 1781 if (ret == RAM_SAVE_CONTROL_DELAYED) { 1782 return true; 1783 } 1784 1785 if (bytes_xmit > 0) { 1786 ram_counters.normal++; 1787 } else if (bytes_xmit == 0) { 1788 ram_counters.duplicate++; 1789 } 1790 1791 return true; 1792 } 1793 1794 /* 1795 * directly send the page to the stream 1796 * 1797 * Returns the number of pages written. 1798 * 1799 * @rs: current RAM state 1800 * @block: block that contains the page we want to send 1801 * @offset: offset inside the block for the page 1802 * @buf: the page to be sent 1803 * @async: send to page asyncly 1804 */ 1805 static int save_normal_page(RAMState *rs, RAMBlock *block, ram_addr_t offset, 1806 uint8_t *buf, bool async) 1807 { 1808 ram_counters.transferred += save_page_header(rs, rs->f, block, 1809 offset | RAM_SAVE_FLAG_PAGE); 1810 if (async) { 1811 qemu_put_buffer_async(rs->f, buf, TARGET_PAGE_SIZE, 1812 migrate_release_ram() & 1813 migration_in_postcopy()); 1814 } else { 1815 qemu_put_buffer(rs->f, buf, TARGET_PAGE_SIZE); 1816 } 1817 ram_counters.transferred += TARGET_PAGE_SIZE; 1818 ram_counters.normal++; 1819 return 1; 1820 } 1821 1822 /** 1823 * ram_save_page: send the given page to the stream 1824 * 1825 * Returns the number of pages written. 1826 * < 0 - error 1827 * >=0 - Number of pages written - this might legally be 0 1828 * if xbzrle noticed the page was the same. 1829 * 1830 * @rs: current RAM state 1831 * @block: block that contains the page we want to send 1832 * @offset: offset inside the block for the page 1833 * @last_stage: if we are at the completion stage 1834 */ 1835 static int ram_save_page(RAMState *rs, PageSearchStatus *pss, bool last_stage) 1836 { 1837 int pages = -1; 1838 uint8_t *p; 1839 bool send_async = true; 1840 RAMBlock *block = pss->block; 1841 ram_addr_t offset = pss->page << TARGET_PAGE_BITS; 1842 ram_addr_t current_addr = block->offset + offset; 1843 1844 p = block->host + offset; 1845 trace_ram_save_page(block->idstr, (uint64_t)offset, p); 1846 1847 XBZRLE_cache_lock(); 1848 if (!rs->ram_bulk_stage && !migration_in_postcopy() && 1849 migrate_use_xbzrle()) { 1850 pages = save_xbzrle_page(rs, &p, current_addr, block, 1851 offset, last_stage); 1852 if (!last_stage) { 1853 /* Can't send this cached data async, since the cache page 1854 * might get updated before it gets to the wire 1855 */ 1856 send_async = false; 1857 } 1858 } 1859 1860 /* XBZRLE overflow or normal page */ 1861 if (pages == -1) { 1862 pages = save_normal_page(rs, block, offset, p, send_async); 1863 } 1864 1865 XBZRLE_cache_unlock(); 1866 1867 return pages; 1868 } 1869 1870 static int ram_save_multifd_page(RAMState *rs, RAMBlock *block, 1871 ram_addr_t offset) 1872 { 1873 multifd_queue_page(block, offset); 1874 ram_counters.normal++; 1875 1876 return 1; 1877 } 1878 1879 static bool do_compress_ram_page(QEMUFile *f, z_stream *stream, RAMBlock *block, 1880 ram_addr_t offset, uint8_t *source_buf) 1881 { 1882 RAMState *rs = ram_state; 1883 uint8_t *p = block->host + (offset & TARGET_PAGE_MASK); 1884 bool zero_page = false; 1885 int ret; 1886 1887 if (save_zero_page_to_file(rs, f, block, offset)) { 1888 zero_page = true; 1889 goto exit; 1890 } 1891 1892 save_page_header(rs, f, block, offset | RAM_SAVE_FLAG_COMPRESS_PAGE); 1893 1894 /* 1895 * copy it to a internal buffer to avoid it being modified by VM 1896 * so that we can catch up the error during compression and 1897 * decompression 1898 */ 1899 memcpy(source_buf, p, TARGET_PAGE_SIZE); 1900 ret = qemu_put_compression_data(f, stream, source_buf, TARGET_PAGE_SIZE); 1901 if (ret < 0) { 1902 qemu_file_set_error(migrate_get_current()->to_dst_file, ret); 1903 error_report("compressed data failed!"); 1904 return false; 1905 } 1906 1907 exit: 1908 ram_release_pages(block->idstr, offset & TARGET_PAGE_MASK, 1); 1909 return zero_page; 1910 } 1911 1912 static void 1913 update_compress_thread_counts(const CompressParam *param, int bytes_xmit) 1914 { 1915 ram_counters.transferred += bytes_xmit; 1916 1917 if (param->zero_page) { 1918 ram_counters.duplicate++; 1919 return; 1920 } 1921 1922 /* 8 means a header with RAM_SAVE_FLAG_CONTINUE. */ 1923 compression_counters.compressed_size += bytes_xmit - 8; 1924 compression_counters.pages++; 1925 } 1926 1927 static bool save_page_use_compression(RAMState *rs); 1928 1929 static void flush_compressed_data(RAMState *rs) 1930 { 1931 int idx, len, thread_count; 1932 1933 if (!save_page_use_compression(rs)) { 1934 return; 1935 } 1936 thread_count = migrate_compress_threads(); 1937 1938 qemu_mutex_lock(&comp_done_lock); 1939 for (idx = 0; idx < thread_count; idx++) { 1940 while (!comp_param[idx].done) { 1941 qemu_cond_wait(&comp_done_cond, &comp_done_lock); 1942 } 1943 } 1944 qemu_mutex_unlock(&comp_done_lock); 1945 1946 for (idx = 0; idx < thread_count; idx++) { 1947 qemu_mutex_lock(&comp_param[idx].mutex); 1948 if (!comp_param[idx].quit) { 1949 len = qemu_put_qemu_file(rs->f, comp_param[idx].file); 1950 /* 1951 * it's safe to fetch zero_page without holding comp_done_lock 1952 * as there is no further request submitted to the thread, 1953 * i.e, the thread should be waiting for a request at this point. 1954 */ 1955 update_compress_thread_counts(&comp_param[idx], len); 1956 } 1957 qemu_mutex_unlock(&comp_param[idx].mutex); 1958 } 1959 } 1960 1961 static inline void set_compress_params(CompressParam *param, RAMBlock *block, 1962 ram_addr_t offset) 1963 { 1964 param->block = block; 1965 param->offset = offset; 1966 } 1967 1968 static int compress_page_with_multi_thread(RAMState *rs, RAMBlock *block, 1969 ram_addr_t offset) 1970 { 1971 int idx, thread_count, bytes_xmit = -1, pages = -1; 1972 bool wait = migrate_compress_wait_thread(); 1973 1974 thread_count = migrate_compress_threads(); 1975 qemu_mutex_lock(&comp_done_lock); 1976 retry: 1977 for (idx = 0; idx < thread_count; idx++) { 1978 if (comp_param[idx].done) { 1979 comp_param[idx].done = false; 1980 bytes_xmit = qemu_put_qemu_file(rs->f, comp_param[idx].file); 1981 qemu_mutex_lock(&comp_param[idx].mutex); 1982 set_compress_params(&comp_param[idx], block, offset); 1983 qemu_cond_signal(&comp_param[idx].cond); 1984 qemu_mutex_unlock(&comp_param[idx].mutex); 1985 pages = 1; 1986 update_compress_thread_counts(&comp_param[idx], bytes_xmit); 1987 break; 1988 } 1989 } 1990 1991 /* 1992 * wait for the free thread if the user specifies 'compress-wait-thread', 1993 * otherwise we will post the page out in the main thread as normal page. 1994 */ 1995 if (pages < 0 && wait) { 1996 qemu_cond_wait(&comp_done_cond, &comp_done_lock); 1997 goto retry; 1998 } 1999 qemu_mutex_unlock(&comp_done_lock); 2000 2001 return pages; 2002 } 2003 2004 /** 2005 * find_dirty_block: find the next dirty page and update any state 2006 * associated with the search process. 2007 * 2008 * Returns if a page is found 2009 * 2010 * @rs: current RAM state 2011 * @pss: data about the state of the current dirty page scan 2012 * @again: set to false if the search has scanned the whole of RAM 2013 */ 2014 static bool find_dirty_block(RAMState *rs, PageSearchStatus *pss, bool *again) 2015 { 2016 pss->page = migration_bitmap_find_dirty(rs, pss->block, pss->page); 2017 if (pss->complete_round && pss->block == rs->last_seen_block && 2018 pss->page >= rs->last_page) { 2019 /* 2020 * We've been once around the RAM and haven't found anything. 2021 * Give up. 2022 */ 2023 *again = false; 2024 return false; 2025 } 2026 if ((pss->page << TARGET_PAGE_BITS) >= pss->block->used_length) { 2027 /* Didn't find anything in this RAM Block */ 2028 pss->page = 0; 2029 pss->block = QLIST_NEXT_RCU(pss->block, next); 2030 if (!pss->block) { 2031 /* 2032 * If memory migration starts over, we will meet a dirtied page 2033 * which may still exists in compression threads's ring, so we 2034 * should flush the compressed data to make sure the new page 2035 * is not overwritten by the old one in the destination. 2036 * 2037 * Also If xbzrle is on, stop using the data compression at this 2038 * point. In theory, xbzrle can do better than compression. 2039 */ 2040 flush_compressed_data(rs); 2041 2042 /* Hit the end of the list */ 2043 pss->block = QLIST_FIRST_RCU(&ram_list.blocks); 2044 /* Flag that we've looped */ 2045 pss->complete_round = true; 2046 rs->ram_bulk_stage = false; 2047 } 2048 /* Didn't find anything this time, but try again on the new block */ 2049 *again = true; 2050 return false; 2051 } else { 2052 /* Can go around again, but... */ 2053 *again = true; 2054 /* We've found something so probably don't need to */ 2055 return true; 2056 } 2057 } 2058 2059 /** 2060 * unqueue_page: gets a page of the queue 2061 * 2062 * Helper for 'get_queued_page' - gets a page off the queue 2063 * 2064 * Returns the block of the page (or NULL if none available) 2065 * 2066 * @rs: current RAM state 2067 * @offset: used to return the offset within the RAMBlock 2068 */ 2069 static RAMBlock *unqueue_page(RAMState *rs, ram_addr_t *offset) 2070 { 2071 RAMBlock *block = NULL; 2072 2073 if (QSIMPLEQ_EMPTY_ATOMIC(&rs->src_page_requests)) { 2074 return NULL; 2075 } 2076 2077 qemu_mutex_lock(&rs->src_page_req_mutex); 2078 if (!QSIMPLEQ_EMPTY(&rs->src_page_requests)) { 2079 struct RAMSrcPageRequest *entry = 2080 QSIMPLEQ_FIRST(&rs->src_page_requests); 2081 block = entry->rb; 2082 *offset = entry->offset; 2083 2084 if (entry->len > TARGET_PAGE_SIZE) { 2085 entry->len -= TARGET_PAGE_SIZE; 2086 entry->offset += TARGET_PAGE_SIZE; 2087 } else { 2088 memory_region_unref(block->mr); 2089 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req); 2090 g_free(entry); 2091 migration_consume_urgent_request(); 2092 } 2093 } 2094 qemu_mutex_unlock(&rs->src_page_req_mutex); 2095 2096 return block; 2097 } 2098 2099 /** 2100 * get_queued_page: unqueue a page from the postocpy requests 2101 * 2102 * Skips pages that are already sent (!dirty) 2103 * 2104 * Returns if a queued page is found 2105 * 2106 * @rs: current RAM state 2107 * @pss: data about the state of the current dirty page scan 2108 */ 2109 static bool get_queued_page(RAMState *rs, PageSearchStatus *pss) 2110 { 2111 RAMBlock *block; 2112 ram_addr_t offset; 2113 bool dirty; 2114 2115 do { 2116 block = unqueue_page(rs, &offset); 2117 /* 2118 * We're sending this page, and since it's postcopy nothing else 2119 * will dirty it, and we must make sure it doesn't get sent again 2120 * even if this queue request was received after the background 2121 * search already sent it. 2122 */ 2123 if (block) { 2124 unsigned long page; 2125 2126 page = offset >> TARGET_PAGE_BITS; 2127 dirty = test_bit(page, block->bmap); 2128 if (!dirty) { 2129 trace_get_queued_page_not_dirty(block->idstr, (uint64_t)offset, 2130 page, test_bit(page, block->unsentmap)); 2131 } else { 2132 trace_get_queued_page(block->idstr, (uint64_t)offset, page); 2133 } 2134 } 2135 2136 } while (block && !dirty); 2137 2138 if (block) { 2139 /* 2140 * As soon as we start servicing pages out of order, then we have 2141 * to kill the bulk stage, since the bulk stage assumes 2142 * in (migration_bitmap_find_and_reset_dirty) that every page is 2143 * dirty, that's no longer true. 2144 */ 2145 rs->ram_bulk_stage = false; 2146 2147 /* 2148 * We want the background search to continue from the queued page 2149 * since the guest is likely to want other pages near to the page 2150 * it just requested. 2151 */ 2152 pss->block = block; 2153 pss->page = offset >> TARGET_PAGE_BITS; 2154 } 2155 2156 return !!block; 2157 } 2158 2159 /** 2160 * migration_page_queue_free: drop any remaining pages in the ram 2161 * request queue 2162 * 2163 * It should be empty at the end anyway, but in error cases there may 2164 * be some left. in case that there is any page left, we drop it. 2165 * 2166 */ 2167 static void migration_page_queue_free(RAMState *rs) 2168 { 2169 struct RAMSrcPageRequest *mspr, *next_mspr; 2170 /* This queue generally should be empty - but in the case of a failed 2171 * migration might have some droppings in. 2172 */ 2173 rcu_read_lock(); 2174 QSIMPLEQ_FOREACH_SAFE(mspr, &rs->src_page_requests, next_req, next_mspr) { 2175 memory_region_unref(mspr->rb->mr); 2176 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req); 2177 g_free(mspr); 2178 } 2179 rcu_read_unlock(); 2180 } 2181 2182 /** 2183 * ram_save_queue_pages: queue the page for transmission 2184 * 2185 * A request from postcopy destination for example. 2186 * 2187 * Returns zero on success or negative on error 2188 * 2189 * @rbname: Name of the RAMBLock of the request. NULL means the 2190 * same that last one. 2191 * @start: starting address from the start of the RAMBlock 2192 * @len: length (in bytes) to send 2193 */ 2194 int ram_save_queue_pages(const char *rbname, ram_addr_t start, ram_addr_t len) 2195 { 2196 RAMBlock *ramblock; 2197 RAMState *rs = ram_state; 2198 2199 ram_counters.postcopy_requests++; 2200 rcu_read_lock(); 2201 if (!rbname) { 2202 /* Reuse last RAMBlock */ 2203 ramblock = rs->last_req_rb; 2204 2205 if (!ramblock) { 2206 /* 2207 * Shouldn't happen, we can't reuse the last RAMBlock if 2208 * it's the 1st request. 2209 */ 2210 error_report("ram_save_queue_pages no previous block"); 2211 goto err; 2212 } 2213 } else { 2214 ramblock = qemu_ram_block_by_name(rbname); 2215 2216 if (!ramblock) { 2217 /* We shouldn't be asked for a non-existent RAMBlock */ 2218 error_report("ram_save_queue_pages no block '%s'", rbname); 2219 goto err; 2220 } 2221 rs->last_req_rb = ramblock; 2222 } 2223 trace_ram_save_queue_pages(ramblock->idstr, start, len); 2224 if (start+len > ramblock->used_length) { 2225 error_report("%s request overrun start=" RAM_ADDR_FMT " len=" 2226 RAM_ADDR_FMT " blocklen=" RAM_ADDR_FMT, 2227 __func__, start, len, ramblock->used_length); 2228 goto err; 2229 } 2230 2231 struct RAMSrcPageRequest *new_entry = 2232 g_malloc0(sizeof(struct RAMSrcPageRequest)); 2233 new_entry->rb = ramblock; 2234 new_entry->offset = start; 2235 new_entry->len = len; 2236 2237 memory_region_ref(ramblock->mr); 2238 qemu_mutex_lock(&rs->src_page_req_mutex); 2239 QSIMPLEQ_INSERT_TAIL(&rs->src_page_requests, new_entry, next_req); 2240 migration_make_urgent_request(); 2241 qemu_mutex_unlock(&rs->src_page_req_mutex); 2242 rcu_read_unlock(); 2243 2244 return 0; 2245 2246 err: 2247 rcu_read_unlock(); 2248 return -1; 2249 } 2250 2251 static bool save_page_use_compression(RAMState *rs) 2252 { 2253 if (!migrate_use_compression()) { 2254 return false; 2255 } 2256 2257 /* 2258 * If xbzrle is on, stop using the data compression after first 2259 * round of migration even if compression is enabled. In theory, 2260 * xbzrle can do better than compression. 2261 */ 2262 if (rs->ram_bulk_stage || !migrate_use_xbzrle()) { 2263 return true; 2264 } 2265 2266 return false; 2267 } 2268 2269 /* 2270 * try to compress the page before posting it out, return true if the page 2271 * has been properly handled by compression, otherwise needs other 2272 * paths to handle it 2273 */ 2274 static bool save_compress_page(RAMState *rs, RAMBlock *block, ram_addr_t offset) 2275 { 2276 if (!save_page_use_compression(rs)) { 2277 return false; 2278 } 2279 2280 /* 2281 * When starting the process of a new block, the first page of 2282 * the block should be sent out before other pages in the same 2283 * block, and all the pages in last block should have been sent 2284 * out, keeping this order is important, because the 'cont' flag 2285 * is used to avoid resending the block name. 2286 * 2287 * We post the fist page as normal page as compression will take 2288 * much CPU resource. 2289 */ 2290 if (block != rs->last_sent_block) { 2291 flush_compressed_data(rs); 2292 return false; 2293 } 2294 2295 if (compress_page_with_multi_thread(rs, block, offset) > 0) { 2296 return true; 2297 } 2298 2299 compression_counters.busy++; 2300 return false; 2301 } 2302 2303 /** 2304 * ram_save_target_page: save one target page 2305 * 2306 * Returns the number of pages written 2307 * 2308 * @rs: current RAM state 2309 * @pss: data about the page we want to send 2310 * @last_stage: if we are at the completion stage 2311 */ 2312 static int ram_save_target_page(RAMState *rs, PageSearchStatus *pss, 2313 bool last_stage) 2314 { 2315 RAMBlock *block = pss->block; 2316 ram_addr_t offset = pss->page << TARGET_PAGE_BITS; 2317 int res; 2318 2319 if (control_save_page(rs, block, offset, &res)) { 2320 return res; 2321 } 2322 2323 if (save_compress_page(rs, block, offset)) { 2324 return 1; 2325 } 2326 2327 res = save_zero_page(rs, block, offset); 2328 if (res > 0) { 2329 /* Must let xbzrle know, otherwise a previous (now 0'd) cached 2330 * page would be stale 2331 */ 2332 if (!save_page_use_compression(rs)) { 2333 XBZRLE_cache_lock(); 2334 xbzrle_cache_zero_page(rs, block->offset + offset); 2335 XBZRLE_cache_unlock(); 2336 } 2337 ram_release_pages(block->idstr, offset, res); 2338 return res; 2339 } 2340 2341 /* 2342 * do not use multifd for compression as the first page in the new 2343 * block should be posted out before sending the compressed page 2344 */ 2345 if (!save_page_use_compression(rs) && migrate_use_multifd()) { 2346 return ram_save_multifd_page(rs, block, offset); 2347 } 2348 2349 return ram_save_page(rs, pss, last_stage); 2350 } 2351 2352 /** 2353 * ram_save_host_page: save a whole host page 2354 * 2355 * Starting at *offset send pages up to the end of the current host 2356 * page. It's valid for the initial offset to point into the middle of 2357 * a host page in which case the remainder of the hostpage is sent. 2358 * Only dirty target pages are sent. Note that the host page size may 2359 * be a huge page for this block. 2360 * The saving stops at the boundary of the used_length of the block 2361 * if the RAMBlock isn't a multiple of the host page size. 2362 * 2363 * Returns the number of pages written or negative on error 2364 * 2365 * @rs: current RAM state 2366 * @ms: current migration state 2367 * @pss: data about the page we want to send 2368 * @last_stage: if we are at the completion stage 2369 */ 2370 static int ram_save_host_page(RAMState *rs, PageSearchStatus *pss, 2371 bool last_stage) 2372 { 2373 int tmppages, pages = 0; 2374 size_t pagesize_bits = 2375 qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS; 2376 2377 if (!qemu_ram_is_migratable(pss->block)) { 2378 error_report("block %s should not be migrated !", pss->block->idstr); 2379 return 0; 2380 } 2381 2382 do { 2383 /* Check the pages is dirty and if it is send it */ 2384 if (!migration_bitmap_clear_dirty(rs, pss->block, pss->page)) { 2385 pss->page++; 2386 continue; 2387 } 2388 2389 tmppages = ram_save_target_page(rs, pss, last_stage); 2390 if (tmppages < 0) { 2391 return tmppages; 2392 } 2393 2394 pages += tmppages; 2395 if (pss->block->unsentmap) { 2396 clear_bit(pss->page, pss->block->unsentmap); 2397 } 2398 2399 pss->page++; 2400 } while ((pss->page & (pagesize_bits - 1)) && 2401 offset_in_ramblock(pss->block, pss->page << TARGET_PAGE_BITS)); 2402 2403 /* The offset we leave with is the last one we looked at */ 2404 pss->page--; 2405 return pages; 2406 } 2407 2408 /** 2409 * ram_find_and_save_block: finds a dirty page and sends it to f 2410 * 2411 * Called within an RCU critical section. 2412 * 2413 * Returns the number of pages written where zero means no dirty pages, 2414 * or negative on error 2415 * 2416 * @rs: current RAM state 2417 * @last_stage: if we are at the completion stage 2418 * 2419 * On systems where host-page-size > target-page-size it will send all the 2420 * pages in a host page that are dirty. 2421 */ 2422 2423 static int ram_find_and_save_block(RAMState *rs, bool last_stage) 2424 { 2425 PageSearchStatus pss; 2426 int pages = 0; 2427 bool again, found; 2428 2429 /* No dirty page as there is zero RAM */ 2430 if (!ram_bytes_total()) { 2431 return pages; 2432 } 2433 2434 pss.block = rs->last_seen_block; 2435 pss.page = rs->last_page; 2436 pss.complete_round = false; 2437 2438 if (!pss.block) { 2439 pss.block = QLIST_FIRST_RCU(&ram_list.blocks); 2440 } 2441 2442 do { 2443 again = true; 2444 found = get_queued_page(rs, &pss); 2445 2446 if (!found) { 2447 /* priority queue empty, so just search for something dirty */ 2448 found = find_dirty_block(rs, &pss, &again); 2449 } 2450 2451 if (found) { 2452 pages = ram_save_host_page(rs, &pss, last_stage); 2453 } 2454 } while (!pages && again); 2455 2456 rs->last_seen_block = pss.block; 2457 rs->last_page = pss.page; 2458 2459 return pages; 2460 } 2461 2462 void acct_update_position(QEMUFile *f, size_t size, bool zero) 2463 { 2464 uint64_t pages = size / TARGET_PAGE_SIZE; 2465 2466 if (zero) { 2467 ram_counters.duplicate += pages; 2468 } else { 2469 ram_counters.normal += pages; 2470 ram_counters.transferred += size; 2471 qemu_update_position(f, size); 2472 } 2473 } 2474 2475 uint64_t ram_bytes_total(void) 2476 { 2477 RAMBlock *block; 2478 uint64_t total = 0; 2479 2480 rcu_read_lock(); 2481 RAMBLOCK_FOREACH_MIGRATABLE(block) { 2482 total += block->used_length; 2483 } 2484 rcu_read_unlock(); 2485 return total; 2486 } 2487 2488 static void xbzrle_load_setup(void) 2489 { 2490 XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE); 2491 } 2492 2493 static void xbzrle_load_cleanup(void) 2494 { 2495 g_free(XBZRLE.decoded_buf); 2496 XBZRLE.decoded_buf = NULL; 2497 } 2498 2499 static void ram_state_cleanup(RAMState **rsp) 2500 { 2501 if (*rsp) { 2502 migration_page_queue_free(*rsp); 2503 qemu_mutex_destroy(&(*rsp)->bitmap_mutex); 2504 qemu_mutex_destroy(&(*rsp)->src_page_req_mutex); 2505 g_free(*rsp); 2506 *rsp = NULL; 2507 } 2508 } 2509 2510 static void xbzrle_cleanup(void) 2511 { 2512 XBZRLE_cache_lock(); 2513 if (XBZRLE.cache) { 2514 cache_fini(XBZRLE.cache); 2515 g_free(XBZRLE.encoded_buf); 2516 g_free(XBZRLE.current_buf); 2517 g_free(XBZRLE.zero_target_page); 2518 XBZRLE.cache = NULL; 2519 XBZRLE.encoded_buf = NULL; 2520 XBZRLE.current_buf = NULL; 2521 XBZRLE.zero_target_page = NULL; 2522 } 2523 XBZRLE_cache_unlock(); 2524 } 2525 2526 static void ram_save_cleanup(void *opaque) 2527 { 2528 RAMState **rsp = opaque; 2529 RAMBlock *block; 2530 2531 /* caller have hold iothread lock or is in a bh, so there is 2532 * no writing race against this migration_bitmap 2533 */ 2534 memory_global_dirty_log_stop(); 2535 2536 RAMBLOCK_FOREACH_MIGRATABLE(block) { 2537 g_free(block->bmap); 2538 block->bmap = NULL; 2539 g_free(block->unsentmap); 2540 block->unsentmap = NULL; 2541 } 2542 2543 xbzrle_cleanup(); 2544 compress_threads_save_cleanup(); 2545 ram_state_cleanup(rsp); 2546 } 2547 2548 static void ram_state_reset(RAMState *rs) 2549 { 2550 rs->last_seen_block = NULL; 2551 rs->last_sent_block = NULL; 2552 rs->last_page = 0; 2553 rs->last_version = ram_list.version; 2554 rs->ram_bulk_stage = true; 2555 } 2556 2557 #define MAX_WAIT 50 /* ms, half buffered_file limit */ 2558 2559 /* 2560 * 'expected' is the value you expect the bitmap mostly to be full 2561 * of; it won't bother printing lines that are all this value. 2562 * If 'todump' is null the migration bitmap is dumped. 2563 */ 2564 void ram_debug_dump_bitmap(unsigned long *todump, bool expected, 2565 unsigned long pages) 2566 { 2567 int64_t cur; 2568 int64_t linelen = 128; 2569 char linebuf[129]; 2570 2571 for (cur = 0; cur < pages; cur += linelen) { 2572 int64_t curb; 2573 bool found = false; 2574 /* 2575 * Last line; catch the case where the line length 2576 * is longer than remaining ram 2577 */ 2578 if (cur + linelen > pages) { 2579 linelen = pages - cur; 2580 } 2581 for (curb = 0; curb < linelen; curb++) { 2582 bool thisbit = test_bit(cur + curb, todump); 2583 linebuf[curb] = thisbit ? '1' : '.'; 2584 found = found || (thisbit != expected); 2585 } 2586 if (found) { 2587 linebuf[curb] = '\0'; 2588 fprintf(stderr, "0x%08" PRIx64 " : %s\n", cur, linebuf); 2589 } 2590 } 2591 } 2592 2593 /* **** functions for postcopy ***** */ 2594 2595 void ram_postcopy_migrated_memory_release(MigrationState *ms) 2596 { 2597 struct RAMBlock *block; 2598 2599 RAMBLOCK_FOREACH_MIGRATABLE(block) { 2600 unsigned long *bitmap = block->bmap; 2601 unsigned long range = block->used_length >> TARGET_PAGE_BITS; 2602 unsigned long run_start = find_next_zero_bit(bitmap, range, 0); 2603 2604 while (run_start < range) { 2605 unsigned long run_end = find_next_bit(bitmap, range, run_start + 1); 2606 ram_discard_range(block->idstr, run_start << TARGET_PAGE_BITS, 2607 (run_end - run_start) << TARGET_PAGE_BITS); 2608 run_start = find_next_zero_bit(bitmap, range, run_end + 1); 2609 } 2610 } 2611 } 2612 2613 /** 2614 * postcopy_send_discard_bm_ram: discard a RAMBlock 2615 * 2616 * Returns zero on success 2617 * 2618 * Callback from postcopy_each_ram_send_discard for each RAMBlock 2619 * Note: At this point the 'unsentmap' is the processed bitmap combined 2620 * with the dirtymap; so a '1' means it's either dirty or unsent. 2621 * 2622 * @ms: current migration state 2623 * @pds: state for postcopy 2624 * @start: RAMBlock starting page 2625 * @length: RAMBlock size 2626 */ 2627 static int postcopy_send_discard_bm_ram(MigrationState *ms, 2628 PostcopyDiscardState *pds, 2629 RAMBlock *block) 2630 { 2631 unsigned long end = block->used_length >> TARGET_PAGE_BITS; 2632 unsigned long current; 2633 unsigned long *unsentmap = block->unsentmap; 2634 2635 for (current = 0; current < end; ) { 2636 unsigned long one = find_next_bit(unsentmap, end, current); 2637 2638 if (one <= end) { 2639 unsigned long zero = find_next_zero_bit(unsentmap, end, one + 1); 2640 unsigned long discard_length; 2641 2642 if (zero >= end) { 2643 discard_length = end - one; 2644 } else { 2645 discard_length = zero - one; 2646 } 2647 if (discard_length) { 2648 postcopy_discard_send_range(ms, pds, one, discard_length); 2649 } 2650 current = one + discard_length; 2651 } else { 2652 current = one; 2653 } 2654 } 2655 2656 return 0; 2657 } 2658 2659 /** 2660 * postcopy_each_ram_send_discard: discard all RAMBlocks 2661 * 2662 * Returns 0 for success or negative for error 2663 * 2664 * Utility for the outgoing postcopy code. 2665 * Calls postcopy_send_discard_bm_ram for each RAMBlock 2666 * passing it bitmap indexes and name. 2667 * (qemu_ram_foreach_block ends up passing unscaled lengths 2668 * which would mean postcopy code would have to deal with target page) 2669 * 2670 * @ms: current migration state 2671 */ 2672 static int postcopy_each_ram_send_discard(MigrationState *ms) 2673 { 2674 struct RAMBlock *block; 2675 int ret; 2676 2677 RAMBLOCK_FOREACH_MIGRATABLE(block) { 2678 PostcopyDiscardState *pds = 2679 postcopy_discard_send_init(ms, block->idstr); 2680 2681 /* 2682 * Postcopy sends chunks of bitmap over the wire, but it 2683 * just needs indexes at this point, avoids it having 2684 * target page specific code. 2685 */ 2686 ret = postcopy_send_discard_bm_ram(ms, pds, block); 2687 postcopy_discard_send_finish(ms, pds); 2688 if (ret) { 2689 return ret; 2690 } 2691 } 2692 2693 return 0; 2694 } 2695 2696 /** 2697 * postcopy_chunk_hostpages_pass: canocalize bitmap in hostpages 2698 * 2699 * Helper for postcopy_chunk_hostpages; it's called twice to 2700 * canonicalize the two bitmaps, that are similar, but one is 2701 * inverted. 2702 * 2703 * Postcopy requires that all target pages in a hostpage are dirty or 2704 * clean, not a mix. This function canonicalizes the bitmaps. 2705 * 2706 * @ms: current migration state 2707 * @unsent_pass: if true we need to canonicalize partially unsent host pages 2708 * otherwise we need to canonicalize partially dirty host pages 2709 * @block: block that contains the page we want to canonicalize 2710 * @pds: state for postcopy 2711 */ 2712 static void postcopy_chunk_hostpages_pass(MigrationState *ms, bool unsent_pass, 2713 RAMBlock *block, 2714 PostcopyDiscardState *pds) 2715 { 2716 RAMState *rs = ram_state; 2717 unsigned long *bitmap = block->bmap; 2718 unsigned long *unsentmap = block->unsentmap; 2719 unsigned int host_ratio = block->page_size / TARGET_PAGE_SIZE; 2720 unsigned long pages = block->used_length >> TARGET_PAGE_BITS; 2721 unsigned long run_start; 2722 2723 if (block->page_size == TARGET_PAGE_SIZE) { 2724 /* Easy case - TPS==HPS for a non-huge page RAMBlock */ 2725 return; 2726 } 2727 2728 if (unsent_pass) { 2729 /* Find a sent page */ 2730 run_start = find_next_zero_bit(unsentmap, pages, 0); 2731 } else { 2732 /* Find a dirty page */ 2733 run_start = find_next_bit(bitmap, pages, 0); 2734 } 2735 2736 while (run_start < pages) { 2737 bool do_fixup = false; 2738 unsigned long fixup_start_addr; 2739 unsigned long host_offset; 2740 2741 /* 2742 * If the start of this run of pages is in the middle of a host 2743 * page, then we need to fixup this host page. 2744 */ 2745 host_offset = run_start % host_ratio; 2746 if (host_offset) { 2747 do_fixup = true; 2748 run_start -= host_offset; 2749 fixup_start_addr = run_start; 2750 /* For the next pass */ 2751 run_start = run_start + host_ratio; 2752 } else { 2753 /* Find the end of this run */ 2754 unsigned long run_end; 2755 if (unsent_pass) { 2756 run_end = find_next_bit(unsentmap, pages, run_start + 1); 2757 } else { 2758 run_end = find_next_zero_bit(bitmap, pages, run_start + 1); 2759 } 2760 /* 2761 * If the end isn't at the start of a host page, then the 2762 * run doesn't finish at the end of a host page 2763 * and we need to discard. 2764 */ 2765 host_offset = run_end % host_ratio; 2766 if (host_offset) { 2767 do_fixup = true; 2768 fixup_start_addr = run_end - host_offset; 2769 /* 2770 * This host page has gone, the next loop iteration starts 2771 * from after the fixup 2772 */ 2773 run_start = fixup_start_addr + host_ratio; 2774 } else { 2775 /* 2776 * No discards on this iteration, next loop starts from 2777 * next sent/dirty page 2778 */ 2779 run_start = run_end + 1; 2780 } 2781 } 2782 2783 if (do_fixup) { 2784 unsigned long page; 2785 2786 /* Tell the destination to discard this page */ 2787 if (unsent_pass || !test_bit(fixup_start_addr, unsentmap)) { 2788 /* For the unsent_pass we: 2789 * discard partially sent pages 2790 * For the !unsent_pass (dirty) we: 2791 * discard partially dirty pages that were sent 2792 * (any partially sent pages were already discarded 2793 * by the previous unsent_pass) 2794 */ 2795 postcopy_discard_send_range(ms, pds, fixup_start_addr, 2796 host_ratio); 2797 } 2798 2799 /* Clean up the bitmap */ 2800 for (page = fixup_start_addr; 2801 page < fixup_start_addr + host_ratio; page++) { 2802 /* All pages in this host page are now not sent */ 2803 set_bit(page, unsentmap); 2804 2805 /* 2806 * Remark them as dirty, updating the count for any pages 2807 * that weren't previously dirty. 2808 */ 2809 rs->migration_dirty_pages += !test_and_set_bit(page, bitmap); 2810 } 2811 } 2812 2813 if (unsent_pass) { 2814 /* Find the next sent page for the next iteration */ 2815 run_start = find_next_zero_bit(unsentmap, pages, run_start); 2816 } else { 2817 /* Find the next dirty page for the next iteration */ 2818 run_start = find_next_bit(bitmap, pages, run_start); 2819 } 2820 } 2821 } 2822 2823 /** 2824 * postcopy_chuck_hostpages: discrad any partially sent host page 2825 * 2826 * Utility for the outgoing postcopy code. 2827 * 2828 * Discard any partially sent host-page size chunks, mark any partially 2829 * dirty host-page size chunks as all dirty. In this case the host-page 2830 * is the host-page for the particular RAMBlock, i.e. it might be a huge page 2831 * 2832 * Returns zero on success 2833 * 2834 * @ms: current migration state 2835 * @block: block we want to work with 2836 */ 2837 static int postcopy_chunk_hostpages(MigrationState *ms, RAMBlock *block) 2838 { 2839 PostcopyDiscardState *pds = 2840 postcopy_discard_send_init(ms, block->idstr); 2841 2842 /* First pass: Discard all partially sent host pages */ 2843 postcopy_chunk_hostpages_pass(ms, true, block, pds); 2844 /* 2845 * Second pass: Ensure that all partially dirty host pages are made 2846 * fully dirty. 2847 */ 2848 postcopy_chunk_hostpages_pass(ms, false, block, pds); 2849 2850 postcopy_discard_send_finish(ms, pds); 2851 return 0; 2852 } 2853 2854 /** 2855 * ram_postcopy_send_discard_bitmap: transmit the discard bitmap 2856 * 2857 * Returns zero on success 2858 * 2859 * Transmit the set of pages to be discarded after precopy to the target 2860 * these are pages that: 2861 * a) Have been previously transmitted but are now dirty again 2862 * b) Pages that have never been transmitted, this ensures that 2863 * any pages on the destination that have been mapped by background 2864 * tasks get discarded (transparent huge pages is the specific concern) 2865 * Hopefully this is pretty sparse 2866 * 2867 * @ms: current migration state 2868 */ 2869 int ram_postcopy_send_discard_bitmap(MigrationState *ms) 2870 { 2871 RAMState *rs = ram_state; 2872 RAMBlock *block; 2873 int ret; 2874 2875 rcu_read_lock(); 2876 2877 /* This should be our last sync, the src is now paused */ 2878 migration_bitmap_sync(rs); 2879 2880 /* Easiest way to make sure we don't resume in the middle of a host-page */ 2881 rs->last_seen_block = NULL; 2882 rs->last_sent_block = NULL; 2883 rs->last_page = 0; 2884 2885 RAMBLOCK_FOREACH_MIGRATABLE(block) { 2886 unsigned long pages = block->used_length >> TARGET_PAGE_BITS; 2887 unsigned long *bitmap = block->bmap; 2888 unsigned long *unsentmap = block->unsentmap; 2889 2890 if (!unsentmap) { 2891 /* We don't have a safe way to resize the sentmap, so 2892 * if the bitmap was resized it will be NULL at this 2893 * point. 2894 */ 2895 error_report("migration ram resized during precopy phase"); 2896 rcu_read_unlock(); 2897 return -EINVAL; 2898 } 2899 /* Deal with TPS != HPS and huge pages */ 2900 ret = postcopy_chunk_hostpages(ms, block); 2901 if (ret) { 2902 rcu_read_unlock(); 2903 return ret; 2904 } 2905 2906 /* 2907 * Update the unsentmap to be unsentmap = unsentmap | dirty 2908 */ 2909 bitmap_or(unsentmap, unsentmap, bitmap, pages); 2910 #ifdef DEBUG_POSTCOPY 2911 ram_debug_dump_bitmap(unsentmap, true, pages); 2912 #endif 2913 } 2914 trace_ram_postcopy_send_discard_bitmap(); 2915 2916 ret = postcopy_each_ram_send_discard(ms); 2917 rcu_read_unlock(); 2918 2919 return ret; 2920 } 2921 2922 /** 2923 * ram_discard_range: discard dirtied pages at the beginning of postcopy 2924 * 2925 * Returns zero on success 2926 * 2927 * @rbname: name of the RAMBlock of the request. NULL means the 2928 * same that last one. 2929 * @start: RAMBlock starting page 2930 * @length: RAMBlock size 2931 */ 2932 int ram_discard_range(const char *rbname, uint64_t start, size_t length) 2933 { 2934 int ret = -1; 2935 2936 trace_ram_discard_range(rbname, start, length); 2937 2938 rcu_read_lock(); 2939 RAMBlock *rb = qemu_ram_block_by_name(rbname); 2940 2941 if (!rb) { 2942 error_report("ram_discard_range: Failed to find block '%s'", rbname); 2943 goto err; 2944 } 2945 2946 /* 2947 * On source VM, we don't need to update the received bitmap since 2948 * we don't even have one. 2949 */ 2950 if (rb->receivedmap) { 2951 bitmap_clear(rb->receivedmap, start >> qemu_target_page_bits(), 2952 length >> qemu_target_page_bits()); 2953 } 2954 2955 ret = ram_block_discard_range(rb, start, length); 2956 2957 err: 2958 rcu_read_unlock(); 2959 2960 return ret; 2961 } 2962 2963 /* 2964 * For every allocation, we will try not to crash the VM if the 2965 * allocation failed. 2966 */ 2967 static int xbzrle_init(void) 2968 { 2969 Error *local_err = NULL; 2970 2971 if (!migrate_use_xbzrle()) { 2972 return 0; 2973 } 2974 2975 XBZRLE_cache_lock(); 2976 2977 XBZRLE.zero_target_page = g_try_malloc0(TARGET_PAGE_SIZE); 2978 if (!XBZRLE.zero_target_page) { 2979 error_report("%s: Error allocating zero page", __func__); 2980 goto err_out; 2981 } 2982 2983 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size(), 2984 TARGET_PAGE_SIZE, &local_err); 2985 if (!XBZRLE.cache) { 2986 error_report_err(local_err); 2987 goto free_zero_page; 2988 } 2989 2990 XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE); 2991 if (!XBZRLE.encoded_buf) { 2992 error_report("%s: Error allocating encoded_buf", __func__); 2993 goto free_cache; 2994 } 2995 2996 XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE); 2997 if (!XBZRLE.current_buf) { 2998 error_report("%s: Error allocating current_buf", __func__); 2999 goto free_encoded_buf; 3000 } 3001 3002 /* We are all good */ 3003 XBZRLE_cache_unlock(); 3004 return 0; 3005 3006 free_encoded_buf: 3007 g_free(XBZRLE.encoded_buf); 3008 XBZRLE.encoded_buf = NULL; 3009 free_cache: 3010 cache_fini(XBZRLE.cache); 3011 XBZRLE.cache = NULL; 3012 free_zero_page: 3013 g_free(XBZRLE.zero_target_page); 3014 XBZRLE.zero_target_page = NULL; 3015 err_out: 3016 XBZRLE_cache_unlock(); 3017 return -ENOMEM; 3018 } 3019 3020 static int ram_state_init(RAMState **rsp) 3021 { 3022 *rsp = g_try_new0(RAMState, 1); 3023 3024 if (!*rsp) { 3025 error_report("%s: Init ramstate fail", __func__); 3026 return -1; 3027 } 3028 3029 qemu_mutex_init(&(*rsp)->bitmap_mutex); 3030 qemu_mutex_init(&(*rsp)->src_page_req_mutex); 3031 QSIMPLEQ_INIT(&(*rsp)->src_page_requests); 3032 3033 /* 3034 * Count the total number of pages used by ram blocks not including any 3035 * gaps due to alignment or unplugs. 3036 */ 3037 (*rsp)->migration_dirty_pages = ram_bytes_total() >> TARGET_PAGE_BITS; 3038 3039 ram_state_reset(*rsp); 3040 3041 return 0; 3042 } 3043 3044 static void ram_list_init_bitmaps(void) 3045 { 3046 RAMBlock *block; 3047 unsigned long pages; 3048 3049 /* Skip setting bitmap if there is no RAM */ 3050 if (ram_bytes_total()) { 3051 RAMBLOCK_FOREACH_MIGRATABLE(block) { 3052 pages = block->max_length >> TARGET_PAGE_BITS; 3053 block->bmap = bitmap_new(pages); 3054 bitmap_set(block->bmap, 0, pages); 3055 if (migrate_postcopy_ram()) { 3056 block->unsentmap = bitmap_new(pages); 3057 bitmap_set(block->unsentmap, 0, pages); 3058 } 3059 } 3060 } 3061 } 3062 3063 static void ram_init_bitmaps(RAMState *rs) 3064 { 3065 /* For memory_global_dirty_log_start below. */ 3066 qemu_mutex_lock_iothread(); 3067 qemu_mutex_lock_ramlist(); 3068 rcu_read_lock(); 3069 3070 ram_list_init_bitmaps(); 3071 memory_global_dirty_log_start(); 3072 migration_bitmap_sync(rs); 3073 3074 rcu_read_unlock(); 3075 qemu_mutex_unlock_ramlist(); 3076 qemu_mutex_unlock_iothread(); 3077 } 3078 3079 static int ram_init_all(RAMState **rsp) 3080 { 3081 if (ram_state_init(rsp)) { 3082 return -1; 3083 } 3084 3085 if (xbzrle_init()) { 3086 ram_state_cleanup(rsp); 3087 return -1; 3088 } 3089 3090 ram_init_bitmaps(*rsp); 3091 3092 return 0; 3093 } 3094 3095 static void ram_state_resume_prepare(RAMState *rs, QEMUFile *out) 3096 { 3097 RAMBlock *block; 3098 uint64_t pages = 0; 3099 3100 /* 3101 * Postcopy is not using xbzrle/compression, so no need for that. 3102 * Also, since source are already halted, we don't need to care 3103 * about dirty page logging as well. 3104 */ 3105 3106 RAMBLOCK_FOREACH_MIGRATABLE(block) { 3107 pages += bitmap_count_one(block->bmap, 3108 block->used_length >> TARGET_PAGE_BITS); 3109 } 3110 3111 /* This may not be aligned with current bitmaps. Recalculate. */ 3112 rs->migration_dirty_pages = pages; 3113 3114 rs->last_seen_block = NULL; 3115 rs->last_sent_block = NULL; 3116 rs->last_page = 0; 3117 rs->last_version = ram_list.version; 3118 /* 3119 * Disable the bulk stage, otherwise we'll resend the whole RAM no 3120 * matter what we have sent. 3121 */ 3122 rs->ram_bulk_stage = false; 3123 3124 /* Update RAMState cache of output QEMUFile */ 3125 rs->f = out; 3126 3127 trace_ram_state_resume_prepare(pages); 3128 } 3129 3130 /* 3131 * Each of ram_save_setup, ram_save_iterate and ram_save_complete has 3132 * long-running RCU critical section. When rcu-reclaims in the code 3133 * start to become numerous it will be necessary to reduce the 3134 * granularity of these critical sections. 3135 */ 3136 3137 /** 3138 * ram_save_setup: Setup RAM for migration 3139 * 3140 * Returns zero to indicate success and negative for error 3141 * 3142 * @f: QEMUFile where to send the data 3143 * @opaque: RAMState pointer 3144 */ 3145 static int ram_save_setup(QEMUFile *f, void *opaque) 3146 { 3147 RAMState **rsp = opaque; 3148 RAMBlock *block; 3149 3150 if (compress_threads_save_setup()) { 3151 return -1; 3152 } 3153 3154 /* migration has already setup the bitmap, reuse it. */ 3155 if (!migration_in_colo_state()) { 3156 if (ram_init_all(rsp) != 0) { 3157 compress_threads_save_cleanup(); 3158 return -1; 3159 } 3160 } 3161 (*rsp)->f = f; 3162 3163 rcu_read_lock(); 3164 3165 qemu_put_be64(f, ram_bytes_total() | RAM_SAVE_FLAG_MEM_SIZE); 3166 3167 RAMBLOCK_FOREACH_MIGRATABLE(block) { 3168 qemu_put_byte(f, strlen(block->idstr)); 3169 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr)); 3170 qemu_put_be64(f, block->used_length); 3171 if (migrate_postcopy_ram() && block->page_size != qemu_host_page_size) { 3172 qemu_put_be64(f, block->page_size); 3173 } 3174 } 3175 3176 rcu_read_unlock(); 3177 3178 ram_control_before_iterate(f, RAM_CONTROL_SETUP); 3179 ram_control_after_iterate(f, RAM_CONTROL_SETUP); 3180 3181 multifd_send_sync_main(); 3182 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 3183 qemu_fflush(f); 3184 3185 return 0; 3186 } 3187 3188 /** 3189 * ram_save_iterate: iterative stage for migration 3190 * 3191 * Returns zero to indicate success and negative for error 3192 * 3193 * @f: QEMUFile where to send the data 3194 * @opaque: RAMState pointer 3195 */ 3196 static int ram_save_iterate(QEMUFile *f, void *opaque) 3197 { 3198 RAMState **temp = opaque; 3199 RAMState *rs = *temp; 3200 int ret; 3201 int i; 3202 int64_t t0; 3203 int done = 0; 3204 3205 if (blk_mig_bulk_active()) { 3206 /* Avoid transferring ram during bulk phase of block migration as 3207 * the bulk phase will usually take a long time and transferring 3208 * ram updates during that time is pointless. */ 3209 goto out; 3210 } 3211 3212 rcu_read_lock(); 3213 if (ram_list.version != rs->last_version) { 3214 ram_state_reset(rs); 3215 } 3216 3217 /* Read version before ram_list.blocks */ 3218 smp_rmb(); 3219 3220 ram_control_before_iterate(f, RAM_CONTROL_ROUND); 3221 3222 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 3223 i = 0; 3224 while ((ret = qemu_file_rate_limit(f)) == 0 || 3225 !QSIMPLEQ_EMPTY(&rs->src_page_requests)) { 3226 int pages; 3227 3228 if (qemu_file_get_error(f)) { 3229 break; 3230 } 3231 3232 pages = ram_find_and_save_block(rs, false); 3233 /* no more pages to sent */ 3234 if (pages == 0) { 3235 done = 1; 3236 break; 3237 } 3238 3239 if (pages < 0) { 3240 qemu_file_set_error(f, pages); 3241 break; 3242 } 3243 3244 rs->target_page_count += pages; 3245 3246 /* we want to check in the 1st loop, just in case it was the 1st time 3247 and we had to sync the dirty bitmap. 3248 qemu_get_clock_ns() is a bit expensive, so we only check each some 3249 iterations 3250 */ 3251 if ((i & 63) == 0) { 3252 uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) / 1000000; 3253 if (t1 > MAX_WAIT) { 3254 trace_ram_save_iterate_big_wait(t1, i); 3255 break; 3256 } 3257 } 3258 i++; 3259 } 3260 rcu_read_unlock(); 3261 3262 /* 3263 * Must occur before EOS (or any QEMUFile operation) 3264 * because of RDMA protocol. 3265 */ 3266 ram_control_after_iterate(f, RAM_CONTROL_ROUND); 3267 3268 multifd_send_sync_main(); 3269 out: 3270 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 3271 qemu_fflush(f); 3272 ram_counters.transferred += 8; 3273 3274 ret = qemu_file_get_error(f); 3275 if (ret < 0) { 3276 return ret; 3277 } 3278 3279 return done; 3280 } 3281 3282 /** 3283 * ram_save_complete: function called to send the remaining amount of ram 3284 * 3285 * Returns zero to indicate success or negative on error 3286 * 3287 * Called with iothread lock 3288 * 3289 * @f: QEMUFile where to send the data 3290 * @opaque: RAMState pointer 3291 */ 3292 static int ram_save_complete(QEMUFile *f, void *opaque) 3293 { 3294 RAMState **temp = opaque; 3295 RAMState *rs = *temp; 3296 int ret = 0; 3297 3298 rcu_read_lock(); 3299 3300 if (!migration_in_postcopy()) { 3301 migration_bitmap_sync(rs); 3302 } 3303 3304 ram_control_before_iterate(f, RAM_CONTROL_FINISH); 3305 3306 /* try transferring iterative blocks of memory */ 3307 3308 /* flush all remaining blocks regardless of rate limiting */ 3309 while (true) { 3310 int pages; 3311 3312 pages = ram_find_and_save_block(rs, !migration_in_colo_state()); 3313 /* no more blocks to sent */ 3314 if (pages == 0) { 3315 break; 3316 } 3317 if (pages < 0) { 3318 ret = pages; 3319 break; 3320 } 3321 } 3322 3323 flush_compressed_data(rs); 3324 ram_control_after_iterate(f, RAM_CONTROL_FINISH); 3325 3326 rcu_read_unlock(); 3327 3328 multifd_send_sync_main(); 3329 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 3330 qemu_fflush(f); 3331 3332 return ret; 3333 } 3334 3335 static void ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size, 3336 uint64_t *res_precopy_only, 3337 uint64_t *res_compatible, 3338 uint64_t *res_postcopy_only) 3339 { 3340 RAMState **temp = opaque; 3341 RAMState *rs = *temp; 3342 uint64_t remaining_size; 3343 3344 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE; 3345 3346 if (!migration_in_postcopy() && 3347 remaining_size < max_size) { 3348 qemu_mutex_lock_iothread(); 3349 rcu_read_lock(); 3350 migration_bitmap_sync(rs); 3351 rcu_read_unlock(); 3352 qemu_mutex_unlock_iothread(); 3353 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE; 3354 } 3355 3356 if (migrate_postcopy_ram()) { 3357 /* We can do postcopy, and all the data is postcopiable */ 3358 *res_compatible += remaining_size; 3359 } else { 3360 *res_precopy_only += remaining_size; 3361 } 3362 } 3363 3364 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host) 3365 { 3366 unsigned int xh_len; 3367 int xh_flags; 3368 uint8_t *loaded_data; 3369 3370 /* extract RLE header */ 3371 xh_flags = qemu_get_byte(f); 3372 xh_len = qemu_get_be16(f); 3373 3374 if (xh_flags != ENCODING_FLAG_XBZRLE) { 3375 error_report("Failed to load XBZRLE page - wrong compression!"); 3376 return -1; 3377 } 3378 3379 if (xh_len > TARGET_PAGE_SIZE) { 3380 error_report("Failed to load XBZRLE page - len overflow!"); 3381 return -1; 3382 } 3383 loaded_data = XBZRLE.decoded_buf; 3384 /* load data and decode */ 3385 /* it can change loaded_data to point to an internal buffer */ 3386 qemu_get_buffer_in_place(f, &loaded_data, xh_len); 3387 3388 /* decode RLE */ 3389 if (xbzrle_decode_buffer(loaded_data, xh_len, host, 3390 TARGET_PAGE_SIZE) == -1) { 3391 error_report("Failed to load XBZRLE page - decode error!"); 3392 return -1; 3393 } 3394 3395 return 0; 3396 } 3397 3398 /** 3399 * ram_block_from_stream: read a RAMBlock id from the migration stream 3400 * 3401 * Must be called from within a rcu critical section. 3402 * 3403 * Returns a pointer from within the RCU-protected ram_list. 3404 * 3405 * @f: QEMUFile where to read the data from 3406 * @flags: Page flags (mostly to see if it's a continuation of previous block) 3407 */ 3408 static inline RAMBlock *ram_block_from_stream(QEMUFile *f, int flags) 3409 { 3410 static RAMBlock *block = NULL; 3411 char id[256]; 3412 uint8_t len; 3413 3414 if (flags & RAM_SAVE_FLAG_CONTINUE) { 3415 if (!block) { 3416 error_report("Ack, bad migration stream!"); 3417 return NULL; 3418 } 3419 return block; 3420 } 3421 3422 len = qemu_get_byte(f); 3423 qemu_get_buffer(f, (uint8_t *)id, len); 3424 id[len] = 0; 3425 3426 block = qemu_ram_block_by_name(id); 3427 if (!block) { 3428 error_report("Can't find block %s", id); 3429 return NULL; 3430 } 3431 3432 if (!qemu_ram_is_migratable(block)) { 3433 error_report("block %s should not be migrated !", id); 3434 return NULL; 3435 } 3436 3437 return block; 3438 } 3439 3440 static inline void *host_from_ram_block_offset(RAMBlock *block, 3441 ram_addr_t offset) 3442 { 3443 if (!offset_in_ramblock(block, offset)) { 3444 return NULL; 3445 } 3446 3447 return block->host + offset; 3448 } 3449 3450 static inline void *colo_cache_from_block_offset(RAMBlock *block, 3451 ram_addr_t offset) 3452 { 3453 if (!offset_in_ramblock(block, offset)) { 3454 return NULL; 3455 } 3456 if (!block->colo_cache) { 3457 error_report("%s: colo_cache is NULL in block :%s", 3458 __func__, block->idstr); 3459 return NULL; 3460 } 3461 3462 /* 3463 * During colo checkpoint, we need bitmap of these migrated pages. 3464 * It help us to decide which pages in ram cache should be flushed 3465 * into VM's RAM later. 3466 */ 3467 if (!test_and_set_bit(offset >> TARGET_PAGE_BITS, block->bmap)) { 3468 ram_state->migration_dirty_pages++; 3469 } 3470 return block->colo_cache + offset; 3471 } 3472 3473 /** 3474 * ram_handle_compressed: handle the zero page case 3475 * 3476 * If a page (or a whole RDMA chunk) has been 3477 * determined to be zero, then zap it. 3478 * 3479 * @host: host address for the zero page 3480 * @ch: what the page is filled from. We only support zero 3481 * @size: size of the zero page 3482 */ 3483 void ram_handle_compressed(void *host, uint8_t ch, uint64_t size) 3484 { 3485 if (ch != 0 || !is_zero_range(host, size)) { 3486 memset(host, ch, size); 3487 } 3488 } 3489 3490 /* return the size after decompression, or negative value on error */ 3491 static int 3492 qemu_uncompress_data(z_stream *stream, uint8_t *dest, size_t dest_len, 3493 const uint8_t *source, size_t source_len) 3494 { 3495 int err; 3496 3497 err = inflateReset(stream); 3498 if (err != Z_OK) { 3499 return -1; 3500 } 3501 3502 stream->avail_in = source_len; 3503 stream->next_in = (uint8_t *)source; 3504 stream->avail_out = dest_len; 3505 stream->next_out = dest; 3506 3507 err = inflate(stream, Z_NO_FLUSH); 3508 if (err != Z_STREAM_END) { 3509 return -1; 3510 } 3511 3512 return stream->total_out; 3513 } 3514 3515 static void *do_data_decompress(void *opaque) 3516 { 3517 DecompressParam *param = opaque; 3518 unsigned long pagesize; 3519 uint8_t *des; 3520 int len, ret; 3521 3522 qemu_mutex_lock(¶m->mutex); 3523 while (!param->quit) { 3524 if (param->des) { 3525 des = param->des; 3526 len = param->len; 3527 param->des = 0; 3528 qemu_mutex_unlock(¶m->mutex); 3529 3530 pagesize = TARGET_PAGE_SIZE; 3531 3532 ret = qemu_uncompress_data(¶m->stream, des, pagesize, 3533 param->compbuf, len); 3534 if (ret < 0 && migrate_get_current()->decompress_error_check) { 3535 error_report("decompress data failed"); 3536 qemu_file_set_error(decomp_file, ret); 3537 } 3538 3539 qemu_mutex_lock(&decomp_done_lock); 3540 param->done = true; 3541 qemu_cond_signal(&decomp_done_cond); 3542 qemu_mutex_unlock(&decomp_done_lock); 3543 3544 qemu_mutex_lock(¶m->mutex); 3545 } else { 3546 qemu_cond_wait(¶m->cond, ¶m->mutex); 3547 } 3548 } 3549 qemu_mutex_unlock(¶m->mutex); 3550 3551 return NULL; 3552 } 3553 3554 static int wait_for_decompress_done(void) 3555 { 3556 int idx, thread_count; 3557 3558 if (!migrate_use_compression()) { 3559 return 0; 3560 } 3561 3562 thread_count = migrate_decompress_threads(); 3563 qemu_mutex_lock(&decomp_done_lock); 3564 for (idx = 0; idx < thread_count; idx++) { 3565 while (!decomp_param[idx].done) { 3566 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock); 3567 } 3568 } 3569 qemu_mutex_unlock(&decomp_done_lock); 3570 return qemu_file_get_error(decomp_file); 3571 } 3572 3573 static void compress_threads_load_cleanup(void) 3574 { 3575 int i, thread_count; 3576 3577 if (!migrate_use_compression()) { 3578 return; 3579 } 3580 thread_count = migrate_decompress_threads(); 3581 for (i = 0; i < thread_count; i++) { 3582 /* 3583 * we use it as a indicator which shows if the thread is 3584 * properly init'd or not 3585 */ 3586 if (!decomp_param[i].compbuf) { 3587 break; 3588 } 3589 3590 qemu_mutex_lock(&decomp_param[i].mutex); 3591 decomp_param[i].quit = true; 3592 qemu_cond_signal(&decomp_param[i].cond); 3593 qemu_mutex_unlock(&decomp_param[i].mutex); 3594 } 3595 for (i = 0; i < thread_count; i++) { 3596 if (!decomp_param[i].compbuf) { 3597 break; 3598 } 3599 3600 qemu_thread_join(decompress_threads + i); 3601 qemu_mutex_destroy(&decomp_param[i].mutex); 3602 qemu_cond_destroy(&decomp_param[i].cond); 3603 inflateEnd(&decomp_param[i].stream); 3604 g_free(decomp_param[i].compbuf); 3605 decomp_param[i].compbuf = NULL; 3606 } 3607 g_free(decompress_threads); 3608 g_free(decomp_param); 3609 decompress_threads = NULL; 3610 decomp_param = NULL; 3611 decomp_file = NULL; 3612 } 3613 3614 static int compress_threads_load_setup(QEMUFile *f) 3615 { 3616 int i, thread_count; 3617 3618 if (!migrate_use_compression()) { 3619 return 0; 3620 } 3621 3622 thread_count = migrate_decompress_threads(); 3623 decompress_threads = g_new0(QemuThread, thread_count); 3624 decomp_param = g_new0(DecompressParam, thread_count); 3625 qemu_mutex_init(&decomp_done_lock); 3626 qemu_cond_init(&decomp_done_cond); 3627 decomp_file = f; 3628 for (i = 0; i < thread_count; i++) { 3629 if (inflateInit(&decomp_param[i].stream) != Z_OK) { 3630 goto exit; 3631 } 3632 3633 decomp_param[i].compbuf = g_malloc0(compressBound(TARGET_PAGE_SIZE)); 3634 qemu_mutex_init(&decomp_param[i].mutex); 3635 qemu_cond_init(&decomp_param[i].cond); 3636 decomp_param[i].done = true; 3637 decomp_param[i].quit = false; 3638 qemu_thread_create(decompress_threads + i, "decompress", 3639 do_data_decompress, decomp_param + i, 3640 QEMU_THREAD_JOINABLE); 3641 } 3642 return 0; 3643 exit: 3644 compress_threads_load_cleanup(); 3645 return -1; 3646 } 3647 3648 static void decompress_data_with_multi_threads(QEMUFile *f, 3649 void *host, int len) 3650 { 3651 int idx, thread_count; 3652 3653 thread_count = migrate_decompress_threads(); 3654 qemu_mutex_lock(&decomp_done_lock); 3655 while (true) { 3656 for (idx = 0; idx < thread_count; idx++) { 3657 if (decomp_param[idx].done) { 3658 decomp_param[idx].done = false; 3659 qemu_mutex_lock(&decomp_param[idx].mutex); 3660 qemu_get_buffer(f, decomp_param[idx].compbuf, len); 3661 decomp_param[idx].des = host; 3662 decomp_param[idx].len = len; 3663 qemu_cond_signal(&decomp_param[idx].cond); 3664 qemu_mutex_unlock(&decomp_param[idx].mutex); 3665 break; 3666 } 3667 } 3668 if (idx < thread_count) { 3669 break; 3670 } else { 3671 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock); 3672 } 3673 } 3674 qemu_mutex_unlock(&decomp_done_lock); 3675 } 3676 3677 /* 3678 * colo cache: this is for secondary VM, we cache the whole 3679 * memory of the secondary VM, it is need to hold the global lock 3680 * to call this helper. 3681 */ 3682 int colo_init_ram_cache(void) 3683 { 3684 RAMBlock *block; 3685 3686 rcu_read_lock(); 3687 RAMBLOCK_FOREACH_MIGRATABLE(block) { 3688 block->colo_cache = qemu_anon_ram_alloc(block->used_length, 3689 NULL, 3690 false); 3691 if (!block->colo_cache) { 3692 error_report("%s: Can't alloc memory for COLO cache of block %s," 3693 "size 0x" RAM_ADDR_FMT, __func__, block->idstr, 3694 block->used_length); 3695 goto out_locked; 3696 } 3697 memcpy(block->colo_cache, block->host, block->used_length); 3698 } 3699 rcu_read_unlock(); 3700 /* 3701 * Record the dirty pages that sent by PVM, we use this dirty bitmap together 3702 * with to decide which page in cache should be flushed into SVM's RAM. Here 3703 * we use the same name 'ram_bitmap' as for migration. 3704 */ 3705 if (ram_bytes_total()) { 3706 RAMBlock *block; 3707 3708 RAMBLOCK_FOREACH_MIGRATABLE(block) { 3709 unsigned long pages = block->max_length >> TARGET_PAGE_BITS; 3710 3711 block->bmap = bitmap_new(pages); 3712 bitmap_set(block->bmap, 0, pages); 3713 } 3714 } 3715 ram_state = g_new0(RAMState, 1); 3716 ram_state->migration_dirty_pages = 0; 3717 memory_global_dirty_log_start(); 3718 3719 return 0; 3720 3721 out_locked: 3722 3723 RAMBLOCK_FOREACH_MIGRATABLE(block) { 3724 if (block->colo_cache) { 3725 qemu_anon_ram_free(block->colo_cache, block->used_length); 3726 block->colo_cache = NULL; 3727 } 3728 } 3729 3730 rcu_read_unlock(); 3731 return -errno; 3732 } 3733 3734 /* It is need to hold the global lock to call this helper */ 3735 void colo_release_ram_cache(void) 3736 { 3737 RAMBlock *block; 3738 3739 memory_global_dirty_log_stop(); 3740 RAMBLOCK_FOREACH_MIGRATABLE(block) { 3741 g_free(block->bmap); 3742 block->bmap = NULL; 3743 } 3744 3745 rcu_read_lock(); 3746 3747 RAMBLOCK_FOREACH_MIGRATABLE(block) { 3748 if (block->colo_cache) { 3749 qemu_anon_ram_free(block->colo_cache, block->used_length); 3750 block->colo_cache = NULL; 3751 } 3752 } 3753 3754 rcu_read_unlock(); 3755 g_free(ram_state); 3756 ram_state = NULL; 3757 } 3758 3759 /** 3760 * ram_load_setup: Setup RAM for migration incoming side 3761 * 3762 * Returns zero to indicate success and negative for error 3763 * 3764 * @f: QEMUFile where to receive the data 3765 * @opaque: RAMState pointer 3766 */ 3767 static int ram_load_setup(QEMUFile *f, void *opaque) 3768 { 3769 if (compress_threads_load_setup(f)) { 3770 return -1; 3771 } 3772 3773 xbzrle_load_setup(); 3774 ramblock_recv_map_init(); 3775 3776 return 0; 3777 } 3778 3779 static int ram_load_cleanup(void *opaque) 3780 { 3781 RAMBlock *rb; 3782 3783 RAMBLOCK_FOREACH_MIGRATABLE(rb) { 3784 if (ramblock_is_pmem(rb)) { 3785 pmem_persist(rb->host, rb->used_length); 3786 } 3787 } 3788 3789 xbzrle_load_cleanup(); 3790 compress_threads_load_cleanup(); 3791 3792 RAMBLOCK_FOREACH_MIGRATABLE(rb) { 3793 g_free(rb->receivedmap); 3794 rb->receivedmap = NULL; 3795 } 3796 3797 return 0; 3798 } 3799 3800 /** 3801 * ram_postcopy_incoming_init: allocate postcopy data structures 3802 * 3803 * Returns 0 for success and negative if there was one error 3804 * 3805 * @mis: current migration incoming state 3806 * 3807 * Allocate data structures etc needed by incoming migration with 3808 * postcopy-ram. postcopy-ram's similarly names 3809 * postcopy_ram_incoming_init does the work. 3810 */ 3811 int ram_postcopy_incoming_init(MigrationIncomingState *mis) 3812 { 3813 return postcopy_ram_incoming_init(mis); 3814 } 3815 3816 /** 3817 * ram_load_postcopy: load a page in postcopy case 3818 * 3819 * Returns 0 for success or -errno in case of error 3820 * 3821 * Called in postcopy mode by ram_load(). 3822 * rcu_read_lock is taken prior to this being called. 3823 * 3824 * @f: QEMUFile where to send the data 3825 */ 3826 static int ram_load_postcopy(QEMUFile *f) 3827 { 3828 int flags = 0, ret = 0; 3829 bool place_needed = false; 3830 bool matches_target_page_size = false; 3831 MigrationIncomingState *mis = migration_incoming_get_current(); 3832 /* Temporary page that is later 'placed' */ 3833 void *postcopy_host_page = postcopy_get_tmp_page(mis); 3834 void *last_host = NULL; 3835 bool all_zero = false; 3836 3837 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) { 3838 ram_addr_t addr; 3839 void *host = NULL; 3840 void *page_buffer = NULL; 3841 void *place_source = NULL; 3842 RAMBlock *block = NULL; 3843 uint8_t ch; 3844 3845 addr = qemu_get_be64(f); 3846 3847 /* 3848 * If qemu file error, we should stop here, and then "addr" 3849 * may be invalid 3850 */ 3851 ret = qemu_file_get_error(f); 3852 if (ret) { 3853 break; 3854 } 3855 3856 flags = addr & ~TARGET_PAGE_MASK; 3857 addr &= TARGET_PAGE_MASK; 3858 3859 trace_ram_load_postcopy_loop((uint64_t)addr, flags); 3860 place_needed = false; 3861 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE)) { 3862 block = ram_block_from_stream(f, flags); 3863 3864 host = host_from_ram_block_offset(block, addr); 3865 if (!host) { 3866 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr); 3867 ret = -EINVAL; 3868 break; 3869 } 3870 matches_target_page_size = block->page_size == TARGET_PAGE_SIZE; 3871 /* 3872 * Postcopy requires that we place whole host pages atomically; 3873 * these may be huge pages for RAMBlocks that are backed by 3874 * hugetlbfs. 3875 * To make it atomic, the data is read into a temporary page 3876 * that's moved into place later. 3877 * The migration protocol uses, possibly smaller, target-pages 3878 * however the source ensures it always sends all the components 3879 * of a host page in order. 3880 */ 3881 page_buffer = postcopy_host_page + 3882 ((uintptr_t)host & (block->page_size - 1)); 3883 /* If all TP are zero then we can optimise the place */ 3884 if (!((uintptr_t)host & (block->page_size - 1))) { 3885 all_zero = true; 3886 } else { 3887 /* not the 1st TP within the HP */ 3888 if (host != (last_host + TARGET_PAGE_SIZE)) { 3889 error_report("Non-sequential target page %p/%p", 3890 host, last_host); 3891 ret = -EINVAL; 3892 break; 3893 } 3894 } 3895 3896 3897 /* 3898 * If it's the last part of a host page then we place the host 3899 * page 3900 */ 3901 place_needed = (((uintptr_t)host + TARGET_PAGE_SIZE) & 3902 (block->page_size - 1)) == 0; 3903 place_source = postcopy_host_page; 3904 } 3905 last_host = host; 3906 3907 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) { 3908 case RAM_SAVE_FLAG_ZERO: 3909 ch = qemu_get_byte(f); 3910 memset(page_buffer, ch, TARGET_PAGE_SIZE); 3911 if (ch) { 3912 all_zero = false; 3913 } 3914 break; 3915 3916 case RAM_SAVE_FLAG_PAGE: 3917 all_zero = false; 3918 if (!matches_target_page_size) { 3919 /* For huge pages, we always use temporary buffer */ 3920 qemu_get_buffer(f, page_buffer, TARGET_PAGE_SIZE); 3921 } else { 3922 /* 3923 * For small pages that matches target page size, we 3924 * avoid the qemu_file copy. Instead we directly use 3925 * the buffer of QEMUFile to place the page. Note: we 3926 * cannot do any QEMUFile operation before using that 3927 * buffer to make sure the buffer is valid when 3928 * placing the page. 3929 */ 3930 qemu_get_buffer_in_place(f, (uint8_t **)&place_source, 3931 TARGET_PAGE_SIZE); 3932 } 3933 break; 3934 case RAM_SAVE_FLAG_EOS: 3935 /* normal exit */ 3936 multifd_recv_sync_main(); 3937 break; 3938 default: 3939 error_report("Unknown combination of migration flags: %#x" 3940 " (postcopy mode)", flags); 3941 ret = -EINVAL; 3942 break; 3943 } 3944 3945 /* Detect for any possible file errors */ 3946 if (!ret && qemu_file_get_error(f)) { 3947 ret = qemu_file_get_error(f); 3948 } 3949 3950 if (!ret && place_needed) { 3951 /* This gets called at the last target page in the host page */ 3952 void *place_dest = host + TARGET_PAGE_SIZE - block->page_size; 3953 3954 if (all_zero) { 3955 ret = postcopy_place_page_zero(mis, place_dest, 3956 block); 3957 } else { 3958 ret = postcopy_place_page(mis, place_dest, 3959 place_source, block); 3960 } 3961 } 3962 } 3963 3964 return ret; 3965 } 3966 3967 static bool postcopy_is_advised(void) 3968 { 3969 PostcopyState ps = postcopy_state_get(); 3970 return ps >= POSTCOPY_INCOMING_ADVISE && ps < POSTCOPY_INCOMING_END; 3971 } 3972 3973 static bool postcopy_is_running(void) 3974 { 3975 PostcopyState ps = postcopy_state_get(); 3976 return ps >= POSTCOPY_INCOMING_LISTENING && ps < POSTCOPY_INCOMING_END; 3977 } 3978 3979 /* 3980 * Flush content of RAM cache into SVM's memory. 3981 * Only flush the pages that be dirtied by PVM or SVM or both. 3982 */ 3983 static void colo_flush_ram_cache(void) 3984 { 3985 RAMBlock *block = NULL; 3986 void *dst_host; 3987 void *src_host; 3988 unsigned long offset = 0; 3989 3990 memory_global_dirty_log_sync(); 3991 rcu_read_lock(); 3992 RAMBLOCK_FOREACH_MIGRATABLE(block) { 3993 migration_bitmap_sync_range(ram_state, block, 0, block->used_length); 3994 } 3995 rcu_read_unlock(); 3996 3997 trace_colo_flush_ram_cache_begin(ram_state->migration_dirty_pages); 3998 rcu_read_lock(); 3999 block = QLIST_FIRST_RCU(&ram_list.blocks); 4000 4001 while (block) { 4002 offset = migration_bitmap_find_dirty(ram_state, block, offset); 4003 4004 if (offset << TARGET_PAGE_BITS >= block->used_length) { 4005 offset = 0; 4006 block = QLIST_NEXT_RCU(block, next); 4007 } else { 4008 migration_bitmap_clear_dirty(ram_state, block, offset); 4009 dst_host = block->host + (offset << TARGET_PAGE_BITS); 4010 src_host = block->colo_cache + (offset << TARGET_PAGE_BITS); 4011 memcpy(dst_host, src_host, TARGET_PAGE_SIZE); 4012 } 4013 } 4014 4015 rcu_read_unlock(); 4016 trace_colo_flush_ram_cache_end(); 4017 } 4018 4019 static int ram_load(QEMUFile *f, void *opaque, int version_id) 4020 { 4021 int flags = 0, ret = 0, invalid_flags = 0; 4022 static uint64_t seq_iter; 4023 int len = 0; 4024 /* 4025 * If system is running in postcopy mode, page inserts to host memory must 4026 * be atomic 4027 */ 4028 bool postcopy_running = postcopy_is_running(); 4029 /* ADVISE is earlier, it shows the source has the postcopy capability on */ 4030 bool postcopy_advised = postcopy_is_advised(); 4031 4032 seq_iter++; 4033 4034 if (version_id != 4) { 4035 ret = -EINVAL; 4036 } 4037 4038 if (!migrate_use_compression()) { 4039 invalid_flags |= RAM_SAVE_FLAG_COMPRESS_PAGE; 4040 } 4041 /* This RCU critical section can be very long running. 4042 * When RCU reclaims in the code start to become numerous, 4043 * it will be necessary to reduce the granularity of this 4044 * critical section. 4045 */ 4046 rcu_read_lock(); 4047 4048 if (postcopy_running) { 4049 ret = ram_load_postcopy(f); 4050 } 4051 4052 while (!postcopy_running && !ret && !(flags & RAM_SAVE_FLAG_EOS)) { 4053 ram_addr_t addr, total_ram_bytes; 4054 void *host = NULL; 4055 uint8_t ch; 4056 4057 addr = qemu_get_be64(f); 4058 flags = addr & ~TARGET_PAGE_MASK; 4059 addr &= TARGET_PAGE_MASK; 4060 4061 if (flags & invalid_flags) { 4062 if (flags & invalid_flags & RAM_SAVE_FLAG_COMPRESS_PAGE) { 4063 error_report("Received an unexpected compressed page"); 4064 } 4065 4066 ret = -EINVAL; 4067 break; 4068 } 4069 4070 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE | 4071 RAM_SAVE_FLAG_COMPRESS_PAGE | RAM_SAVE_FLAG_XBZRLE)) { 4072 RAMBlock *block = ram_block_from_stream(f, flags); 4073 4074 /* 4075 * After going into COLO, we should load the Page into colo_cache. 4076 */ 4077 if (migration_incoming_in_colo_state()) { 4078 host = colo_cache_from_block_offset(block, addr); 4079 } else { 4080 host = host_from_ram_block_offset(block, addr); 4081 } 4082 if (!host) { 4083 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr); 4084 ret = -EINVAL; 4085 break; 4086 } 4087 4088 if (!migration_incoming_in_colo_state()) { 4089 ramblock_recv_bitmap_set(block, host); 4090 } 4091 4092 trace_ram_load_loop(block->idstr, (uint64_t)addr, flags, host); 4093 } 4094 4095 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) { 4096 case RAM_SAVE_FLAG_MEM_SIZE: 4097 /* Synchronize RAM block list */ 4098 total_ram_bytes = addr; 4099 while (!ret && total_ram_bytes) { 4100 RAMBlock *block; 4101 char id[256]; 4102 ram_addr_t length; 4103 4104 len = qemu_get_byte(f); 4105 qemu_get_buffer(f, (uint8_t *)id, len); 4106 id[len] = 0; 4107 length = qemu_get_be64(f); 4108 4109 block = qemu_ram_block_by_name(id); 4110 if (block && !qemu_ram_is_migratable(block)) { 4111 error_report("block %s should not be migrated !", id); 4112 ret = -EINVAL; 4113 } else if (block) { 4114 if (length != block->used_length) { 4115 Error *local_err = NULL; 4116 4117 ret = qemu_ram_resize(block, length, 4118 &local_err); 4119 if (local_err) { 4120 error_report_err(local_err); 4121 } 4122 } 4123 /* For postcopy we need to check hugepage sizes match */ 4124 if (postcopy_advised && 4125 block->page_size != qemu_host_page_size) { 4126 uint64_t remote_page_size = qemu_get_be64(f); 4127 if (remote_page_size != block->page_size) { 4128 error_report("Mismatched RAM page size %s " 4129 "(local) %zd != %" PRId64, 4130 id, block->page_size, 4131 remote_page_size); 4132 ret = -EINVAL; 4133 } 4134 } 4135 ram_control_load_hook(f, RAM_CONTROL_BLOCK_REG, 4136 block->idstr); 4137 } else { 4138 error_report("Unknown ramblock \"%s\", cannot " 4139 "accept migration", id); 4140 ret = -EINVAL; 4141 } 4142 4143 total_ram_bytes -= length; 4144 } 4145 break; 4146 4147 case RAM_SAVE_FLAG_ZERO: 4148 ch = qemu_get_byte(f); 4149 ram_handle_compressed(host, ch, TARGET_PAGE_SIZE); 4150 break; 4151 4152 case RAM_SAVE_FLAG_PAGE: 4153 qemu_get_buffer(f, host, TARGET_PAGE_SIZE); 4154 break; 4155 4156 case RAM_SAVE_FLAG_COMPRESS_PAGE: 4157 len = qemu_get_be32(f); 4158 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) { 4159 error_report("Invalid compressed data length: %d", len); 4160 ret = -EINVAL; 4161 break; 4162 } 4163 decompress_data_with_multi_threads(f, host, len); 4164 break; 4165 4166 case RAM_SAVE_FLAG_XBZRLE: 4167 if (load_xbzrle(f, addr, host) < 0) { 4168 error_report("Failed to decompress XBZRLE page at " 4169 RAM_ADDR_FMT, addr); 4170 ret = -EINVAL; 4171 break; 4172 } 4173 break; 4174 case RAM_SAVE_FLAG_EOS: 4175 /* normal exit */ 4176 multifd_recv_sync_main(); 4177 break; 4178 default: 4179 if (flags & RAM_SAVE_FLAG_HOOK) { 4180 ram_control_load_hook(f, RAM_CONTROL_HOOK, NULL); 4181 } else { 4182 error_report("Unknown combination of migration flags: %#x", 4183 flags); 4184 ret = -EINVAL; 4185 } 4186 } 4187 if (!ret) { 4188 ret = qemu_file_get_error(f); 4189 } 4190 } 4191 4192 ret |= wait_for_decompress_done(); 4193 rcu_read_unlock(); 4194 trace_ram_load_complete(ret, seq_iter); 4195 4196 if (!ret && migration_incoming_in_colo_state()) { 4197 colo_flush_ram_cache(); 4198 } 4199 return ret; 4200 } 4201 4202 static bool ram_has_postcopy(void *opaque) 4203 { 4204 RAMBlock *rb; 4205 RAMBLOCK_FOREACH_MIGRATABLE(rb) { 4206 if (ramblock_is_pmem(rb)) { 4207 info_report("Block: %s, host: %p is a nvdimm memory, postcopy" 4208 "is not supported now!", rb->idstr, rb->host); 4209 return false; 4210 } 4211 } 4212 4213 return migrate_postcopy_ram(); 4214 } 4215 4216 /* Sync all the dirty bitmap with destination VM. */ 4217 static int ram_dirty_bitmap_sync_all(MigrationState *s, RAMState *rs) 4218 { 4219 RAMBlock *block; 4220 QEMUFile *file = s->to_dst_file; 4221 int ramblock_count = 0; 4222 4223 trace_ram_dirty_bitmap_sync_start(); 4224 4225 RAMBLOCK_FOREACH_MIGRATABLE(block) { 4226 qemu_savevm_send_recv_bitmap(file, block->idstr); 4227 trace_ram_dirty_bitmap_request(block->idstr); 4228 ramblock_count++; 4229 } 4230 4231 trace_ram_dirty_bitmap_sync_wait(); 4232 4233 /* Wait until all the ramblocks' dirty bitmap synced */ 4234 while (ramblock_count--) { 4235 qemu_sem_wait(&s->rp_state.rp_sem); 4236 } 4237 4238 trace_ram_dirty_bitmap_sync_complete(); 4239 4240 return 0; 4241 } 4242 4243 static void ram_dirty_bitmap_reload_notify(MigrationState *s) 4244 { 4245 qemu_sem_post(&s->rp_state.rp_sem); 4246 } 4247 4248 /* 4249 * Read the received bitmap, revert it as the initial dirty bitmap. 4250 * This is only used when the postcopy migration is paused but wants 4251 * to resume from a middle point. 4252 */ 4253 int ram_dirty_bitmap_reload(MigrationState *s, RAMBlock *block) 4254 { 4255 int ret = -EINVAL; 4256 QEMUFile *file = s->rp_state.from_dst_file; 4257 unsigned long *le_bitmap, nbits = block->used_length >> TARGET_PAGE_BITS; 4258 uint64_t local_size = DIV_ROUND_UP(nbits, 8); 4259 uint64_t size, end_mark; 4260 4261 trace_ram_dirty_bitmap_reload_begin(block->idstr); 4262 4263 if (s->state != MIGRATION_STATUS_POSTCOPY_RECOVER) { 4264 error_report("%s: incorrect state %s", __func__, 4265 MigrationStatus_str(s->state)); 4266 return -EINVAL; 4267 } 4268 4269 /* 4270 * Note: see comments in ramblock_recv_bitmap_send() on why we 4271 * need the endianess convertion, and the paddings. 4272 */ 4273 local_size = ROUND_UP(local_size, 8); 4274 4275 /* Add paddings */ 4276 le_bitmap = bitmap_new(nbits + BITS_PER_LONG); 4277 4278 size = qemu_get_be64(file); 4279 4280 /* The size of the bitmap should match with our ramblock */ 4281 if (size != local_size) { 4282 error_report("%s: ramblock '%s' bitmap size mismatch " 4283 "(0x%"PRIx64" != 0x%"PRIx64")", __func__, 4284 block->idstr, size, local_size); 4285 ret = -EINVAL; 4286 goto out; 4287 } 4288 4289 size = qemu_get_buffer(file, (uint8_t *)le_bitmap, local_size); 4290 end_mark = qemu_get_be64(file); 4291 4292 ret = qemu_file_get_error(file); 4293 if (ret || size != local_size) { 4294 error_report("%s: read bitmap failed for ramblock '%s': %d" 4295 " (size 0x%"PRIx64", got: 0x%"PRIx64")", 4296 __func__, block->idstr, ret, local_size, size); 4297 ret = -EIO; 4298 goto out; 4299 } 4300 4301 if (end_mark != RAMBLOCK_RECV_BITMAP_ENDING) { 4302 error_report("%s: ramblock '%s' end mark incorrect: 0x%"PRIu64, 4303 __func__, block->idstr, end_mark); 4304 ret = -EINVAL; 4305 goto out; 4306 } 4307 4308 /* 4309 * Endianess convertion. We are during postcopy (though paused). 4310 * The dirty bitmap won't change. We can directly modify it. 4311 */ 4312 bitmap_from_le(block->bmap, le_bitmap, nbits); 4313 4314 /* 4315 * What we received is "received bitmap". Revert it as the initial 4316 * dirty bitmap for this ramblock. 4317 */ 4318 bitmap_complement(block->bmap, block->bmap, nbits); 4319 4320 trace_ram_dirty_bitmap_reload_complete(block->idstr); 4321 4322 /* 4323 * We succeeded to sync bitmap for current ramblock. If this is 4324 * the last one to sync, we need to notify the main send thread. 4325 */ 4326 ram_dirty_bitmap_reload_notify(s); 4327 4328 ret = 0; 4329 out: 4330 g_free(le_bitmap); 4331 return ret; 4332 } 4333 4334 static int ram_resume_prepare(MigrationState *s, void *opaque) 4335 { 4336 RAMState *rs = *(RAMState **)opaque; 4337 int ret; 4338 4339 ret = ram_dirty_bitmap_sync_all(s, rs); 4340 if (ret) { 4341 return ret; 4342 } 4343 4344 ram_state_resume_prepare(rs, s->to_dst_file); 4345 4346 return 0; 4347 } 4348 4349 static SaveVMHandlers savevm_ram_handlers = { 4350 .save_setup = ram_save_setup, 4351 .save_live_iterate = ram_save_iterate, 4352 .save_live_complete_postcopy = ram_save_complete, 4353 .save_live_complete_precopy = ram_save_complete, 4354 .has_postcopy = ram_has_postcopy, 4355 .save_live_pending = ram_save_pending, 4356 .load_state = ram_load, 4357 .save_cleanup = ram_save_cleanup, 4358 .load_setup = ram_load_setup, 4359 .load_cleanup = ram_load_cleanup, 4360 .resume_prepare = ram_resume_prepare, 4361 }; 4362 4363 void ram_mig_init(void) 4364 { 4365 qemu_mutex_init(&XBZRLE.lock); 4366 register_savevm_live(NULL, "ram", 0, 4, &savevm_ram_handlers, &ram_state); 4367 } 4368