1 /* 2 * QEMU System Emulator 3 * 4 * Copyright (c) 2003-2008 Fabrice Bellard 5 * Copyright (c) 2011-2015 Red Hat Inc 6 * 7 * Authors: 8 * Juan Quintela <quintela@redhat.com> 9 * 10 * Permission is hereby granted, free of charge, to any person obtaining a copy 11 * of this software and associated documentation files (the "Software"), to deal 12 * in the Software without restriction, including without limitation the rights 13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 14 * copies of the Software, and to permit persons to whom the Software is 15 * furnished to do so, subject to the following conditions: 16 * 17 * The above copyright notice and this permission notice shall be included in 18 * all copies or substantial portions of the Software. 19 * 20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 26 * THE SOFTWARE. 27 */ 28 29 #include "qemu/osdep.h" 30 #include "cpu.h" 31 #include <zlib.h> 32 #include "qemu/cutils.h" 33 #include "qemu/bitops.h" 34 #include "qemu/bitmap.h" 35 #include "qemu/main-loop.h" 36 #include "qemu/pmem.h" 37 #include "xbzrle.h" 38 #include "ram.h" 39 #include "migration.h" 40 #include "socket.h" 41 #include "migration/register.h" 42 #include "migration/misc.h" 43 #include "qemu-file.h" 44 #include "postcopy-ram.h" 45 #include "page_cache.h" 46 #include "qemu/error-report.h" 47 #include "qapi/error.h" 48 #include "qapi/qapi-events-migration.h" 49 #include "qapi/qmp/qerror.h" 50 #include "trace.h" 51 #include "exec/ram_addr.h" 52 #include "exec/target_page.h" 53 #include "qemu/rcu_queue.h" 54 #include "migration/colo.h" 55 #include "block.h" 56 #include "sysemu/sysemu.h" 57 #include "qemu/uuid.h" 58 #include "savevm.h" 59 #include "qemu/iov.h" 60 61 /***********************************************************/ 62 /* ram save/restore */ 63 64 /* RAM_SAVE_FLAG_ZERO used to be named RAM_SAVE_FLAG_COMPRESS, it 65 * worked for pages that where filled with the same char. We switched 66 * it to only search for the zero value. And to avoid confusion with 67 * RAM_SSAVE_FLAG_COMPRESS_PAGE just rename it. 68 */ 69 70 #define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */ 71 #define RAM_SAVE_FLAG_ZERO 0x02 72 #define RAM_SAVE_FLAG_MEM_SIZE 0x04 73 #define RAM_SAVE_FLAG_PAGE 0x08 74 #define RAM_SAVE_FLAG_EOS 0x10 75 #define RAM_SAVE_FLAG_CONTINUE 0x20 76 #define RAM_SAVE_FLAG_XBZRLE 0x40 77 /* 0x80 is reserved in migration.h start with 0x100 next */ 78 #define RAM_SAVE_FLAG_COMPRESS_PAGE 0x100 79 80 static inline bool is_zero_range(uint8_t *p, uint64_t size) 81 { 82 return buffer_is_zero(p, size); 83 } 84 85 XBZRLECacheStats xbzrle_counters; 86 87 /* struct contains XBZRLE cache and a static page 88 used by the compression */ 89 static struct { 90 /* buffer used for XBZRLE encoding */ 91 uint8_t *encoded_buf; 92 /* buffer for storing page content */ 93 uint8_t *current_buf; 94 /* Cache for XBZRLE, Protected by lock. */ 95 PageCache *cache; 96 QemuMutex lock; 97 /* it will store a page full of zeros */ 98 uint8_t *zero_target_page; 99 /* buffer used for XBZRLE decoding */ 100 uint8_t *decoded_buf; 101 } XBZRLE; 102 103 static void XBZRLE_cache_lock(void) 104 { 105 if (migrate_use_xbzrle()) 106 qemu_mutex_lock(&XBZRLE.lock); 107 } 108 109 static void XBZRLE_cache_unlock(void) 110 { 111 if (migrate_use_xbzrle()) 112 qemu_mutex_unlock(&XBZRLE.lock); 113 } 114 115 /** 116 * xbzrle_cache_resize: resize the xbzrle cache 117 * 118 * This function is called from qmp_migrate_set_cache_size in main 119 * thread, possibly while a migration is in progress. A running 120 * migration may be using the cache and might finish during this call, 121 * hence changes to the cache are protected by XBZRLE.lock(). 122 * 123 * Returns 0 for success or -1 for error 124 * 125 * @new_size: new cache size 126 * @errp: set *errp if the check failed, with reason 127 */ 128 int xbzrle_cache_resize(int64_t new_size, Error **errp) 129 { 130 PageCache *new_cache; 131 int64_t ret = 0; 132 133 /* Check for truncation */ 134 if (new_size != (size_t)new_size) { 135 error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cache size", 136 "exceeding address space"); 137 return -1; 138 } 139 140 if (new_size == migrate_xbzrle_cache_size()) { 141 /* nothing to do */ 142 return 0; 143 } 144 145 XBZRLE_cache_lock(); 146 147 if (XBZRLE.cache != NULL) { 148 new_cache = cache_init(new_size, TARGET_PAGE_SIZE, errp); 149 if (!new_cache) { 150 ret = -1; 151 goto out; 152 } 153 154 cache_fini(XBZRLE.cache); 155 XBZRLE.cache = new_cache; 156 } 157 out: 158 XBZRLE_cache_unlock(); 159 return ret; 160 } 161 162 static bool ramblock_is_ignored(RAMBlock *block) 163 { 164 return !qemu_ram_is_migratable(block) || 165 (migrate_ignore_shared() && qemu_ram_is_shared(block)); 166 } 167 168 /* Should be holding either ram_list.mutex, or the RCU lock. */ 169 #define RAMBLOCK_FOREACH_NOT_IGNORED(block) \ 170 INTERNAL_RAMBLOCK_FOREACH(block) \ 171 if (ramblock_is_ignored(block)) {} else 172 173 #define RAMBLOCK_FOREACH_MIGRATABLE(block) \ 174 INTERNAL_RAMBLOCK_FOREACH(block) \ 175 if (!qemu_ram_is_migratable(block)) {} else 176 177 #undef RAMBLOCK_FOREACH 178 179 int foreach_not_ignored_block(RAMBlockIterFunc func, void *opaque) 180 { 181 RAMBlock *block; 182 int ret = 0; 183 184 rcu_read_lock(); 185 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 186 ret = func(block, opaque); 187 if (ret) { 188 break; 189 } 190 } 191 rcu_read_unlock(); 192 return ret; 193 } 194 195 static void ramblock_recv_map_init(void) 196 { 197 RAMBlock *rb; 198 199 RAMBLOCK_FOREACH_NOT_IGNORED(rb) { 200 assert(!rb->receivedmap); 201 rb->receivedmap = bitmap_new(rb->max_length >> qemu_target_page_bits()); 202 } 203 } 204 205 int ramblock_recv_bitmap_test(RAMBlock *rb, void *host_addr) 206 { 207 return test_bit(ramblock_recv_bitmap_offset(host_addr, rb), 208 rb->receivedmap); 209 } 210 211 bool ramblock_recv_bitmap_test_byte_offset(RAMBlock *rb, uint64_t byte_offset) 212 { 213 return test_bit(byte_offset >> TARGET_PAGE_BITS, rb->receivedmap); 214 } 215 216 void ramblock_recv_bitmap_set(RAMBlock *rb, void *host_addr) 217 { 218 set_bit_atomic(ramblock_recv_bitmap_offset(host_addr, rb), rb->receivedmap); 219 } 220 221 void ramblock_recv_bitmap_set_range(RAMBlock *rb, void *host_addr, 222 size_t nr) 223 { 224 bitmap_set_atomic(rb->receivedmap, 225 ramblock_recv_bitmap_offset(host_addr, rb), 226 nr); 227 } 228 229 #define RAMBLOCK_RECV_BITMAP_ENDING (0x0123456789abcdefULL) 230 231 /* 232 * Format: bitmap_size (8 bytes) + whole_bitmap (N bytes). 233 * 234 * Returns >0 if success with sent bytes, or <0 if error. 235 */ 236 int64_t ramblock_recv_bitmap_send(QEMUFile *file, 237 const char *block_name) 238 { 239 RAMBlock *block = qemu_ram_block_by_name(block_name); 240 unsigned long *le_bitmap, nbits; 241 uint64_t size; 242 243 if (!block) { 244 error_report("%s: invalid block name: %s", __func__, block_name); 245 return -1; 246 } 247 248 nbits = block->used_length >> TARGET_PAGE_BITS; 249 250 /* 251 * Make sure the tmp bitmap buffer is big enough, e.g., on 32bit 252 * machines we may need 4 more bytes for padding (see below 253 * comment). So extend it a bit before hand. 254 */ 255 le_bitmap = bitmap_new(nbits + BITS_PER_LONG); 256 257 /* 258 * Always use little endian when sending the bitmap. This is 259 * required that when source and destination VMs are not using the 260 * same endianess. (Note: big endian won't work.) 261 */ 262 bitmap_to_le(le_bitmap, block->receivedmap, nbits); 263 264 /* Size of the bitmap, in bytes */ 265 size = DIV_ROUND_UP(nbits, 8); 266 267 /* 268 * size is always aligned to 8 bytes for 64bit machines, but it 269 * may not be true for 32bit machines. We need this padding to 270 * make sure the migration can survive even between 32bit and 271 * 64bit machines. 272 */ 273 size = ROUND_UP(size, 8); 274 275 qemu_put_be64(file, size); 276 qemu_put_buffer(file, (const uint8_t *)le_bitmap, size); 277 /* 278 * Mark as an end, in case the middle part is screwed up due to 279 * some "misterious" reason. 280 */ 281 qemu_put_be64(file, RAMBLOCK_RECV_BITMAP_ENDING); 282 qemu_fflush(file); 283 284 g_free(le_bitmap); 285 286 if (qemu_file_get_error(file)) { 287 return qemu_file_get_error(file); 288 } 289 290 return size + sizeof(size); 291 } 292 293 /* 294 * An outstanding page request, on the source, having been received 295 * and queued 296 */ 297 struct RAMSrcPageRequest { 298 RAMBlock *rb; 299 hwaddr offset; 300 hwaddr len; 301 302 QSIMPLEQ_ENTRY(RAMSrcPageRequest) next_req; 303 }; 304 305 /* State of RAM for migration */ 306 struct RAMState { 307 /* QEMUFile used for this migration */ 308 QEMUFile *f; 309 /* Last block that we have visited searching for dirty pages */ 310 RAMBlock *last_seen_block; 311 /* Last block from where we have sent data */ 312 RAMBlock *last_sent_block; 313 /* Last dirty target page we have sent */ 314 ram_addr_t last_page; 315 /* last ram version we have seen */ 316 uint32_t last_version; 317 /* We are in the first round */ 318 bool ram_bulk_stage; 319 /* The free page optimization is enabled */ 320 bool fpo_enabled; 321 /* How many times we have dirty too many pages */ 322 int dirty_rate_high_cnt; 323 /* these variables are used for bitmap sync */ 324 /* last time we did a full bitmap_sync */ 325 int64_t time_last_bitmap_sync; 326 /* bytes transferred at start_time */ 327 uint64_t bytes_xfer_prev; 328 /* number of dirty pages since start_time */ 329 uint64_t num_dirty_pages_period; 330 /* xbzrle misses since the beginning of the period */ 331 uint64_t xbzrle_cache_miss_prev; 332 333 /* compression statistics since the beginning of the period */ 334 /* amount of count that no free thread to compress data */ 335 uint64_t compress_thread_busy_prev; 336 /* amount bytes after compression */ 337 uint64_t compressed_size_prev; 338 /* amount of compressed pages */ 339 uint64_t compress_pages_prev; 340 341 /* total handled target pages at the beginning of period */ 342 uint64_t target_page_count_prev; 343 /* total handled target pages since start */ 344 uint64_t target_page_count; 345 /* number of dirty bits in the bitmap */ 346 uint64_t migration_dirty_pages; 347 /* Protects modification of the bitmap and migration dirty pages */ 348 QemuMutex bitmap_mutex; 349 /* The RAMBlock used in the last src_page_requests */ 350 RAMBlock *last_req_rb; 351 /* Queue of outstanding page requests from the destination */ 352 QemuMutex src_page_req_mutex; 353 QSIMPLEQ_HEAD(, RAMSrcPageRequest) src_page_requests; 354 }; 355 typedef struct RAMState RAMState; 356 357 static RAMState *ram_state; 358 359 static NotifierWithReturnList precopy_notifier_list; 360 361 void precopy_infrastructure_init(void) 362 { 363 notifier_with_return_list_init(&precopy_notifier_list); 364 } 365 366 void precopy_add_notifier(NotifierWithReturn *n) 367 { 368 notifier_with_return_list_add(&precopy_notifier_list, n); 369 } 370 371 void precopy_remove_notifier(NotifierWithReturn *n) 372 { 373 notifier_with_return_remove(n); 374 } 375 376 int precopy_notify(PrecopyNotifyReason reason, Error **errp) 377 { 378 PrecopyNotifyData pnd; 379 pnd.reason = reason; 380 pnd.errp = errp; 381 382 return notifier_with_return_list_notify(&precopy_notifier_list, &pnd); 383 } 384 385 void precopy_enable_free_page_optimization(void) 386 { 387 if (!ram_state) { 388 return; 389 } 390 391 ram_state->fpo_enabled = true; 392 } 393 394 uint64_t ram_bytes_remaining(void) 395 { 396 return ram_state ? (ram_state->migration_dirty_pages * TARGET_PAGE_SIZE) : 397 0; 398 } 399 400 MigrationStats ram_counters; 401 402 /* used by the search for pages to send */ 403 struct PageSearchStatus { 404 /* Current block being searched */ 405 RAMBlock *block; 406 /* Current page to search from */ 407 unsigned long page; 408 /* Set once we wrap around */ 409 bool complete_round; 410 }; 411 typedef struct PageSearchStatus PageSearchStatus; 412 413 CompressionStats compression_counters; 414 415 struct CompressParam { 416 bool done; 417 bool quit; 418 bool zero_page; 419 QEMUFile *file; 420 QemuMutex mutex; 421 QemuCond cond; 422 RAMBlock *block; 423 ram_addr_t offset; 424 425 /* internally used fields */ 426 z_stream stream; 427 uint8_t *originbuf; 428 }; 429 typedef struct CompressParam CompressParam; 430 431 struct DecompressParam { 432 bool done; 433 bool quit; 434 QemuMutex mutex; 435 QemuCond cond; 436 void *des; 437 uint8_t *compbuf; 438 int len; 439 z_stream stream; 440 }; 441 typedef struct DecompressParam DecompressParam; 442 443 static CompressParam *comp_param; 444 static QemuThread *compress_threads; 445 /* comp_done_cond is used to wake up the migration thread when 446 * one of the compression threads has finished the compression. 447 * comp_done_lock is used to co-work with comp_done_cond. 448 */ 449 static QemuMutex comp_done_lock; 450 static QemuCond comp_done_cond; 451 /* The empty QEMUFileOps will be used by file in CompressParam */ 452 static const QEMUFileOps empty_ops = { }; 453 454 static QEMUFile *decomp_file; 455 static DecompressParam *decomp_param; 456 static QemuThread *decompress_threads; 457 static QemuMutex decomp_done_lock; 458 static QemuCond decomp_done_cond; 459 460 static bool do_compress_ram_page(QEMUFile *f, z_stream *stream, RAMBlock *block, 461 ram_addr_t offset, uint8_t *source_buf); 462 463 static void *do_data_compress(void *opaque) 464 { 465 CompressParam *param = opaque; 466 RAMBlock *block; 467 ram_addr_t offset; 468 bool zero_page; 469 470 qemu_mutex_lock(¶m->mutex); 471 while (!param->quit) { 472 if (param->block) { 473 block = param->block; 474 offset = param->offset; 475 param->block = NULL; 476 qemu_mutex_unlock(¶m->mutex); 477 478 zero_page = do_compress_ram_page(param->file, ¶m->stream, 479 block, offset, param->originbuf); 480 481 qemu_mutex_lock(&comp_done_lock); 482 param->done = true; 483 param->zero_page = zero_page; 484 qemu_cond_signal(&comp_done_cond); 485 qemu_mutex_unlock(&comp_done_lock); 486 487 qemu_mutex_lock(¶m->mutex); 488 } else { 489 qemu_cond_wait(¶m->cond, ¶m->mutex); 490 } 491 } 492 qemu_mutex_unlock(¶m->mutex); 493 494 return NULL; 495 } 496 497 static void compress_threads_save_cleanup(void) 498 { 499 int i, thread_count; 500 501 if (!migrate_use_compression() || !comp_param) { 502 return; 503 } 504 505 thread_count = migrate_compress_threads(); 506 for (i = 0; i < thread_count; i++) { 507 /* 508 * we use it as a indicator which shows if the thread is 509 * properly init'd or not 510 */ 511 if (!comp_param[i].file) { 512 break; 513 } 514 515 qemu_mutex_lock(&comp_param[i].mutex); 516 comp_param[i].quit = true; 517 qemu_cond_signal(&comp_param[i].cond); 518 qemu_mutex_unlock(&comp_param[i].mutex); 519 520 qemu_thread_join(compress_threads + i); 521 qemu_mutex_destroy(&comp_param[i].mutex); 522 qemu_cond_destroy(&comp_param[i].cond); 523 deflateEnd(&comp_param[i].stream); 524 g_free(comp_param[i].originbuf); 525 qemu_fclose(comp_param[i].file); 526 comp_param[i].file = NULL; 527 } 528 qemu_mutex_destroy(&comp_done_lock); 529 qemu_cond_destroy(&comp_done_cond); 530 g_free(compress_threads); 531 g_free(comp_param); 532 compress_threads = NULL; 533 comp_param = NULL; 534 } 535 536 static int compress_threads_save_setup(void) 537 { 538 int i, thread_count; 539 540 if (!migrate_use_compression()) { 541 return 0; 542 } 543 thread_count = migrate_compress_threads(); 544 compress_threads = g_new0(QemuThread, thread_count); 545 comp_param = g_new0(CompressParam, thread_count); 546 qemu_cond_init(&comp_done_cond); 547 qemu_mutex_init(&comp_done_lock); 548 for (i = 0; i < thread_count; i++) { 549 comp_param[i].originbuf = g_try_malloc(TARGET_PAGE_SIZE); 550 if (!comp_param[i].originbuf) { 551 goto exit; 552 } 553 554 if (deflateInit(&comp_param[i].stream, 555 migrate_compress_level()) != Z_OK) { 556 g_free(comp_param[i].originbuf); 557 goto exit; 558 } 559 560 /* comp_param[i].file is just used as a dummy buffer to save data, 561 * set its ops to empty. 562 */ 563 comp_param[i].file = qemu_fopen_ops(NULL, &empty_ops); 564 comp_param[i].done = true; 565 comp_param[i].quit = false; 566 qemu_mutex_init(&comp_param[i].mutex); 567 qemu_cond_init(&comp_param[i].cond); 568 qemu_thread_create(compress_threads + i, "compress", 569 do_data_compress, comp_param + i, 570 QEMU_THREAD_JOINABLE); 571 } 572 return 0; 573 574 exit: 575 compress_threads_save_cleanup(); 576 return -1; 577 } 578 579 /* Multiple fd's */ 580 581 #define MULTIFD_MAGIC 0x11223344U 582 #define MULTIFD_VERSION 1 583 584 #define MULTIFD_FLAG_SYNC (1 << 0) 585 586 /* This value needs to be a multiple of qemu_target_page_size() */ 587 #define MULTIFD_PACKET_SIZE (512 * 1024) 588 589 typedef struct { 590 uint32_t magic; 591 uint32_t version; 592 unsigned char uuid[16]; /* QemuUUID */ 593 uint8_t id; 594 uint8_t unused1[7]; /* Reserved for future use */ 595 uint64_t unused2[4]; /* Reserved for future use */ 596 } __attribute__((packed)) MultiFDInit_t; 597 598 typedef struct { 599 uint32_t magic; 600 uint32_t version; 601 uint32_t flags; 602 /* maximum number of allocated pages */ 603 uint32_t pages_alloc; 604 uint32_t pages_used; 605 /* size of the next packet that contains pages */ 606 uint32_t next_packet_size; 607 uint64_t packet_num; 608 uint64_t unused[4]; /* Reserved for future use */ 609 char ramblock[256]; 610 uint64_t offset[]; 611 } __attribute__((packed)) MultiFDPacket_t; 612 613 typedef struct { 614 /* number of used pages */ 615 uint32_t used; 616 /* number of allocated pages */ 617 uint32_t allocated; 618 /* global number of generated multifd packets */ 619 uint64_t packet_num; 620 /* offset of each page */ 621 ram_addr_t *offset; 622 /* pointer to each page */ 623 struct iovec *iov; 624 RAMBlock *block; 625 } MultiFDPages_t; 626 627 typedef struct { 628 /* this fields are not changed once the thread is created */ 629 /* channel number */ 630 uint8_t id; 631 /* channel thread name */ 632 char *name; 633 /* channel thread id */ 634 QemuThread thread; 635 /* communication channel */ 636 QIOChannel *c; 637 /* sem where to wait for more work */ 638 QemuSemaphore sem; 639 /* this mutex protects the following parameters */ 640 QemuMutex mutex; 641 /* is this channel thread running */ 642 bool running; 643 /* should this thread finish */ 644 bool quit; 645 /* thread has work to do */ 646 int pending_job; 647 /* array of pages to sent */ 648 MultiFDPages_t *pages; 649 /* packet allocated len */ 650 uint32_t packet_len; 651 /* pointer to the packet */ 652 MultiFDPacket_t *packet; 653 /* multifd flags for each packet */ 654 uint32_t flags; 655 /* size of the next packet that contains pages */ 656 uint32_t next_packet_size; 657 /* global number of generated multifd packets */ 658 uint64_t packet_num; 659 /* thread local variables */ 660 /* packets sent through this channel */ 661 uint64_t num_packets; 662 /* pages sent through this channel */ 663 uint64_t num_pages; 664 /* syncs main thread and channels */ 665 QemuSemaphore sem_sync; 666 } MultiFDSendParams; 667 668 typedef struct { 669 /* this fields are not changed once the thread is created */ 670 /* channel number */ 671 uint8_t id; 672 /* channel thread name */ 673 char *name; 674 /* channel thread id */ 675 QemuThread thread; 676 /* communication channel */ 677 QIOChannel *c; 678 /* this mutex protects the following parameters */ 679 QemuMutex mutex; 680 /* is this channel thread running */ 681 bool running; 682 /* should this thread finish */ 683 bool quit; 684 /* array of pages to receive */ 685 MultiFDPages_t *pages; 686 /* packet allocated len */ 687 uint32_t packet_len; 688 /* pointer to the packet */ 689 MultiFDPacket_t *packet; 690 /* multifd flags for each packet */ 691 uint32_t flags; 692 /* global number of generated multifd packets */ 693 uint64_t packet_num; 694 /* thread local variables */ 695 /* size of the next packet that contains pages */ 696 uint32_t next_packet_size; 697 /* packets sent through this channel */ 698 uint64_t num_packets; 699 /* pages sent through this channel */ 700 uint64_t num_pages; 701 /* syncs main thread and channels */ 702 QemuSemaphore sem_sync; 703 } MultiFDRecvParams; 704 705 static int multifd_send_initial_packet(MultiFDSendParams *p, Error **errp) 706 { 707 MultiFDInit_t msg; 708 int ret; 709 710 msg.magic = cpu_to_be32(MULTIFD_MAGIC); 711 msg.version = cpu_to_be32(MULTIFD_VERSION); 712 msg.id = p->id; 713 memcpy(msg.uuid, &qemu_uuid.data, sizeof(msg.uuid)); 714 715 ret = qio_channel_write_all(p->c, (char *)&msg, sizeof(msg), errp); 716 if (ret != 0) { 717 return -1; 718 } 719 return 0; 720 } 721 722 static int multifd_recv_initial_packet(QIOChannel *c, Error **errp) 723 { 724 MultiFDInit_t msg; 725 int ret; 726 727 ret = qio_channel_read_all(c, (char *)&msg, sizeof(msg), errp); 728 if (ret != 0) { 729 return -1; 730 } 731 732 msg.magic = be32_to_cpu(msg.magic); 733 msg.version = be32_to_cpu(msg.version); 734 735 if (msg.magic != MULTIFD_MAGIC) { 736 error_setg(errp, "multifd: received packet magic %x " 737 "expected %x", msg.magic, MULTIFD_MAGIC); 738 return -1; 739 } 740 741 if (msg.version != MULTIFD_VERSION) { 742 error_setg(errp, "multifd: received packet version %d " 743 "expected %d", msg.version, MULTIFD_VERSION); 744 return -1; 745 } 746 747 if (memcmp(msg.uuid, &qemu_uuid, sizeof(qemu_uuid))) { 748 char *uuid = qemu_uuid_unparse_strdup(&qemu_uuid); 749 char *msg_uuid = qemu_uuid_unparse_strdup((const QemuUUID *)msg.uuid); 750 751 error_setg(errp, "multifd: received uuid '%s' and expected " 752 "uuid '%s' for channel %hhd", msg_uuid, uuid, msg.id); 753 g_free(uuid); 754 g_free(msg_uuid); 755 return -1; 756 } 757 758 if (msg.id > migrate_multifd_channels()) { 759 error_setg(errp, "multifd: received channel version %d " 760 "expected %d", msg.version, MULTIFD_VERSION); 761 return -1; 762 } 763 764 return msg.id; 765 } 766 767 static MultiFDPages_t *multifd_pages_init(size_t size) 768 { 769 MultiFDPages_t *pages = g_new0(MultiFDPages_t, 1); 770 771 pages->allocated = size; 772 pages->iov = g_new0(struct iovec, size); 773 pages->offset = g_new0(ram_addr_t, size); 774 775 return pages; 776 } 777 778 static void multifd_pages_clear(MultiFDPages_t *pages) 779 { 780 pages->used = 0; 781 pages->allocated = 0; 782 pages->packet_num = 0; 783 pages->block = NULL; 784 g_free(pages->iov); 785 pages->iov = NULL; 786 g_free(pages->offset); 787 pages->offset = NULL; 788 g_free(pages); 789 } 790 791 static void multifd_send_fill_packet(MultiFDSendParams *p) 792 { 793 MultiFDPacket_t *packet = p->packet; 794 uint32_t page_max = MULTIFD_PACKET_SIZE / qemu_target_page_size(); 795 int i; 796 797 packet->magic = cpu_to_be32(MULTIFD_MAGIC); 798 packet->version = cpu_to_be32(MULTIFD_VERSION); 799 packet->flags = cpu_to_be32(p->flags); 800 packet->pages_alloc = cpu_to_be32(page_max); 801 packet->pages_used = cpu_to_be32(p->pages->used); 802 packet->next_packet_size = cpu_to_be32(p->next_packet_size); 803 packet->packet_num = cpu_to_be64(p->packet_num); 804 805 if (p->pages->block) { 806 strncpy(packet->ramblock, p->pages->block->idstr, 256); 807 } 808 809 for (i = 0; i < p->pages->used; i++) { 810 packet->offset[i] = cpu_to_be64(p->pages->offset[i]); 811 } 812 } 813 814 static int multifd_recv_unfill_packet(MultiFDRecvParams *p, Error **errp) 815 { 816 MultiFDPacket_t *packet = p->packet; 817 uint32_t pages_max = MULTIFD_PACKET_SIZE / qemu_target_page_size(); 818 RAMBlock *block; 819 int i; 820 821 packet->magic = be32_to_cpu(packet->magic); 822 if (packet->magic != MULTIFD_MAGIC) { 823 error_setg(errp, "multifd: received packet " 824 "magic %x and expected magic %x", 825 packet->magic, MULTIFD_MAGIC); 826 return -1; 827 } 828 829 packet->version = be32_to_cpu(packet->version); 830 if (packet->version != MULTIFD_VERSION) { 831 error_setg(errp, "multifd: received packet " 832 "version %d and expected version %d", 833 packet->version, MULTIFD_VERSION); 834 return -1; 835 } 836 837 p->flags = be32_to_cpu(packet->flags); 838 839 packet->pages_alloc = be32_to_cpu(packet->pages_alloc); 840 /* 841 * If we recevied a packet that is 100 times bigger than expected 842 * just stop migration. It is a magic number. 843 */ 844 if (packet->pages_alloc > pages_max * 100) { 845 error_setg(errp, "multifd: received packet " 846 "with size %d and expected a maximum size of %d", 847 packet->pages_alloc, pages_max * 100) ; 848 return -1; 849 } 850 /* 851 * We received a packet that is bigger than expected but inside 852 * reasonable limits (see previous comment). Just reallocate. 853 */ 854 if (packet->pages_alloc > p->pages->allocated) { 855 multifd_pages_clear(p->pages); 856 p->pages = multifd_pages_init(packet->pages_alloc); 857 } 858 859 p->pages->used = be32_to_cpu(packet->pages_used); 860 if (p->pages->used > packet->pages_alloc) { 861 error_setg(errp, "multifd: received packet " 862 "with %d pages and expected maximum pages are %d", 863 p->pages->used, packet->pages_alloc) ; 864 return -1; 865 } 866 867 p->next_packet_size = be32_to_cpu(packet->next_packet_size); 868 p->packet_num = be64_to_cpu(packet->packet_num); 869 870 if (p->pages->used) { 871 /* make sure that ramblock is 0 terminated */ 872 packet->ramblock[255] = 0; 873 block = qemu_ram_block_by_name(packet->ramblock); 874 if (!block) { 875 error_setg(errp, "multifd: unknown ram block %s", 876 packet->ramblock); 877 return -1; 878 } 879 } 880 881 for (i = 0; i < p->pages->used; i++) { 882 ram_addr_t offset = be64_to_cpu(packet->offset[i]); 883 884 if (offset > (block->used_length - TARGET_PAGE_SIZE)) { 885 error_setg(errp, "multifd: offset too long " RAM_ADDR_FMT 886 " (max " RAM_ADDR_FMT ")", 887 offset, block->max_length); 888 return -1; 889 } 890 p->pages->iov[i].iov_base = block->host + offset; 891 p->pages->iov[i].iov_len = TARGET_PAGE_SIZE; 892 } 893 894 return 0; 895 } 896 897 struct { 898 MultiFDSendParams *params; 899 /* array of pages to sent */ 900 MultiFDPages_t *pages; 901 /* global number of generated multifd packets */ 902 uint64_t packet_num; 903 /* send channels ready */ 904 QemuSemaphore channels_ready; 905 } *multifd_send_state; 906 907 /* 908 * How we use multifd_send_state->pages and channel->pages? 909 * 910 * We create a pages for each channel, and a main one. Each time that 911 * we need to send a batch of pages we interchange the ones between 912 * multifd_send_state and the channel that is sending it. There are 913 * two reasons for that: 914 * - to not have to do so many mallocs during migration 915 * - to make easier to know what to free at the end of migration 916 * 917 * This way we always know who is the owner of each "pages" struct, 918 * and we don't need any locking. It belongs to the migration thread 919 * or to the channel thread. Switching is safe because the migration 920 * thread is using the channel mutex when changing it, and the channel 921 * have to had finish with its own, otherwise pending_job can't be 922 * false. 923 */ 924 925 static int multifd_send_pages(RAMState *rs) 926 { 927 int i; 928 static int next_channel; 929 MultiFDSendParams *p = NULL; /* make happy gcc */ 930 MultiFDPages_t *pages = multifd_send_state->pages; 931 uint64_t transferred; 932 933 qemu_sem_wait(&multifd_send_state->channels_ready); 934 for (i = next_channel;; i = (i + 1) % migrate_multifd_channels()) { 935 p = &multifd_send_state->params[i]; 936 937 qemu_mutex_lock(&p->mutex); 938 if (p->quit) { 939 error_report("%s: channel %d has already quit!", __func__, i); 940 qemu_mutex_unlock(&p->mutex); 941 return -1; 942 } 943 if (!p->pending_job) { 944 p->pending_job++; 945 next_channel = (i + 1) % migrate_multifd_channels(); 946 break; 947 } 948 qemu_mutex_unlock(&p->mutex); 949 } 950 p->pages->used = 0; 951 952 p->packet_num = multifd_send_state->packet_num++; 953 p->pages->block = NULL; 954 multifd_send_state->pages = p->pages; 955 p->pages = pages; 956 transferred = ((uint64_t) pages->used) * TARGET_PAGE_SIZE + p->packet_len; 957 qemu_file_update_transfer(rs->f, transferred); 958 ram_counters.multifd_bytes += transferred; 959 ram_counters.transferred += transferred;; 960 qemu_mutex_unlock(&p->mutex); 961 qemu_sem_post(&p->sem); 962 963 return 1; 964 } 965 966 static int multifd_queue_page(RAMState *rs, RAMBlock *block, ram_addr_t offset) 967 { 968 MultiFDPages_t *pages = multifd_send_state->pages; 969 970 if (!pages->block) { 971 pages->block = block; 972 } 973 974 if (pages->block == block) { 975 pages->offset[pages->used] = offset; 976 pages->iov[pages->used].iov_base = block->host + offset; 977 pages->iov[pages->used].iov_len = TARGET_PAGE_SIZE; 978 pages->used++; 979 980 if (pages->used < pages->allocated) { 981 return 1; 982 } 983 } 984 985 if (multifd_send_pages(rs) < 0) { 986 return -1; 987 } 988 989 if (pages->block != block) { 990 return multifd_queue_page(rs, block, offset); 991 } 992 993 return 1; 994 } 995 996 static void multifd_send_terminate_threads(Error *err) 997 { 998 int i; 999 1000 trace_multifd_send_terminate_threads(err != NULL); 1001 1002 if (err) { 1003 MigrationState *s = migrate_get_current(); 1004 migrate_set_error(s, err); 1005 if (s->state == MIGRATION_STATUS_SETUP || 1006 s->state == MIGRATION_STATUS_PRE_SWITCHOVER || 1007 s->state == MIGRATION_STATUS_DEVICE || 1008 s->state == MIGRATION_STATUS_ACTIVE) { 1009 migrate_set_state(&s->state, s->state, 1010 MIGRATION_STATUS_FAILED); 1011 } 1012 } 1013 1014 for (i = 0; i < migrate_multifd_channels(); i++) { 1015 MultiFDSendParams *p = &multifd_send_state->params[i]; 1016 1017 qemu_mutex_lock(&p->mutex); 1018 p->quit = true; 1019 qemu_sem_post(&p->sem); 1020 qemu_mutex_unlock(&p->mutex); 1021 } 1022 } 1023 1024 void multifd_save_cleanup(void) 1025 { 1026 int i; 1027 1028 if (!migrate_use_multifd()) { 1029 return; 1030 } 1031 multifd_send_terminate_threads(NULL); 1032 for (i = 0; i < migrate_multifd_channels(); i++) { 1033 MultiFDSendParams *p = &multifd_send_state->params[i]; 1034 1035 if (p->running) { 1036 qemu_thread_join(&p->thread); 1037 } 1038 socket_send_channel_destroy(p->c); 1039 p->c = NULL; 1040 qemu_mutex_destroy(&p->mutex); 1041 qemu_sem_destroy(&p->sem); 1042 qemu_sem_destroy(&p->sem_sync); 1043 g_free(p->name); 1044 p->name = NULL; 1045 multifd_pages_clear(p->pages); 1046 p->pages = NULL; 1047 p->packet_len = 0; 1048 g_free(p->packet); 1049 p->packet = NULL; 1050 } 1051 qemu_sem_destroy(&multifd_send_state->channels_ready); 1052 g_free(multifd_send_state->params); 1053 multifd_send_state->params = NULL; 1054 multifd_pages_clear(multifd_send_state->pages); 1055 multifd_send_state->pages = NULL; 1056 g_free(multifd_send_state); 1057 multifd_send_state = NULL; 1058 } 1059 1060 static void multifd_send_sync_main(RAMState *rs) 1061 { 1062 int i; 1063 1064 if (!migrate_use_multifd()) { 1065 return; 1066 } 1067 if (multifd_send_state->pages->used) { 1068 if (multifd_send_pages(rs) < 0) { 1069 error_report("%s: multifd_send_pages fail", __func__); 1070 return; 1071 } 1072 } 1073 for (i = 0; i < migrate_multifd_channels(); i++) { 1074 MultiFDSendParams *p = &multifd_send_state->params[i]; 1075 1076 trace_multifd_send_sync_main_signal(p->id); 1077 1078 qemu_mutex_lock(&p->mutex); 1079 1080 if (p->quit) { 1081 error_report("%s: channel %d has already quit", __func__, i); 1082 qemu_mutex_unlock(&p->mutex); 1083 return; 1084 } 1085 1086 p->packet_num = multifd_send_state->packet_num++; 1087 p->flags |= MULTIFD_FLAG_SYNC; 1088 p->pending_job++; 1089 qemu_file_update_transfer(rs->f, p->packet_len); 1090 ram_counters.multifd_bytes += p->packet_len; 1091 ram_counters.transferred += p->packet_len; 1092 qemu_mutex_unlock(&p->mutex); 1093 qemu_sem_post(&p->sem); 1094 } 1095 for (i = 0; i < migrate_multifd_channels(); i++) { 1096 MultiFDSendParams *p = &multifd_send_state->params[i]; 1097 1098 trace_multifd_send_sync_main_wait(p->id); 1099 qemu_sem_wait(&p->sem_sync); 1100 } 1101 trace_multifd_send_sync_main(multifd_send_state->packet_num); 1102 } 1103 1104 static void *multifd_send_thread(void *opaque) 1105 { 1106 MultiFDSendParams *p = opaque; 1107 Error *local_err = NULL; 1108 int ret = 0; 1109 uint32_t flags = 0; 1110 1111 trace_multifd_send_thread_start(p->id); 1112 rcu_register_thread(); 1113 1114 if (multifd_send_initial_packet(p, &local_err) < 0) { 1115 goto out; 1116 } 1117 /* initial packet */ 1118 p->num_packets = 1; 1119 1120 while (true) { 1121 qemu_sem_wait(&p->sem); 1122 qemu_mutex_lock(&p->mutex); 1123 1124 if (p->pending_job) { 1125 uint32_t used = p->pages->used; 1126 uint64_t packet_num = p->packet_num; 1127 flags = p->flags; 1128 1129 p->next_packet_size = used * qemu_target_page_size(); 1130 multifd_send_fill_packet(p); 1131 p->flags = 0; 1132 p->num_packets++; 1133 p->num_pages += used; 1134 p->pages->used = 0; 1135 qemu_mutex_unlock(&p->mutex); 1136 1137 trace_multifd_send(p->id, packet_num, used, flags, 1138 p->next_packet_size); 1139 1140 ret = qio_channel_write_all(p->c, (void *)p->packet, 1141 p->packet_len, &local_err); 1142 if (ret != 0) { 1143 break; 1144 } 1145 1146 if (used) { 1147 ret = qio_channel_writev_all(p->c, p->pages->iov, 1148 used, &local_err); 1149 if (ret != 0) { 1150 break; 1151 } 1152 } 1153 1154 qemu_mutex_lock(&p->mutex); 1155 p->pending_job--; 1156 qemu_mutex_unlock(&p->mutex); 1157 1158 if (flags & MULTIFD_FLAG_SYNC) { 1159 qemu_sem_post(&p->sem_sync); 1160 } 1161 qemu_sem_post(&multifd_send_state->channels_ready); 1162 } else if (p->quit) { 1163 qemu_mutex_unlock(&p->mutex); 1164 break; 1165 } else { 1166 qemu_mutex_unlock(&p->mutex); 1167 /* sometimes there are spurious wakeups */ 1168 } 1169 } 1170 1171 out: 1172 if (local_err) { 1173 trace_multifd_send_error(p->id); 1174 multifd_send_terminate_threads(local_err); 1175 } 1176 1177 /* 1178 * Error happen, I will exit, but I can't just leave, tell 1179 * who pay attention to me. 1180 */ 1181 if (ret != 0) { 1182 if (flags & MULTIFD_FLAG_SYNC) { 1183 qemu_sem_post(&p->sem_sync); 1184 } 1185 qemu_sem_post(&multifd_send_state->channels_ready); 1186 } 1187 1188 qemu_mutex_lock(&p->mutex); 1189 p->running = false; 1190 qemu_mutex_unlock(&p->mutex); 1191 1192 rcu_unregister_thread(); 1193 trace_multifd_send_thread_end(p->id, p->num_packets, p->num_pages); 1194 1195 return NULL; 1196 } 1197 1198 static void multifd_new_send_channel_async(QIOTask *task, gpointer opaque) 1199 { 1200 MultiFDSendParams *p = opaque; 1201 QIOChannel *sioc = QIO_CHANNEL(qio_task_get_source(task)); 1202 Error *local_err = NULL; 1203 1204 trace_multifd_new_send_channel_async(p->id); 1205 if (qio_task_propagate_error(task, &local_err)) { 1206 migrate_set_error(migrate_get_current(), local_err); 1207 multifd_save_cleanup(); 1208 } else { 1209 p->c = QIO_CHANNEL(sioc); 1210 qio_channel_set_delay(p->c, false); 1211 p->running = true; 1212 qemu_thread_create(&p->thread, p->name, multifd_send_thread, p, 1213 QEMU_THREAD_JOINABLE); 1214 } 1215 } 1216 1217 int multifd_save_setup(void) 1218 { 1219 int thread_count; 1220 uint32_t page_count = MULTIFD_PACKET_SIZE / qemu_target_page_size(); 1221 uint8_t i; 1222 1223 if (!migrate_use_multifd()) { 1224 return 0; 1225 } 1226 thread_count = migrate_multifd_channels(); 1227 multifd_send_state = g_malloc0(sizeof(*multifd_send_state)); 1228 multifd_send_state->params = g_new0(MultiFDSendParams, thread_count); 1229 multifd_send_state->pages = multifd_pages_init(page_count); 1230 qemu_sem_init(&multifd_send_state->channels_ready, 0); 1231 1232 for (i = 0; i < thread_count; i++) { 1233 MultiFDSendParams *p = &multifd_send_state->params[i]; 1234 1235 qemu_mutex_init(&p->mutex); 1236 qemu_sem_init(&p->sem, 0); 1237 qemu_sem_init(&p->sem_sync, 0); 1238 p->quit = false; 1239 p->pending_job = 0; 1240 p->id = i; 1241 p->pages = multifd_pages_init(page_count); 1242 p->packet_len = sizeof(MultiFDPacket_t) 1243 + sizeof(ram_addr_t) * page_count; 1244 p->packet = g_malloc0(p->packet_len); 1245 p->name = g_strdup_printf("multifdsend_%d", i); 1246 socket_send_channel_create(multifd_new_send_channel_async, p); 1247 } 1248 return 0; 1249 } 1250 1251 struct { 1252 MultiFDRecvParams *params; 1253 /* number of created threads */ 1254 int count; 1255 /* syncs main thread and channels */ 1256 QemuSemaphore sem_sync; 1257 /* global number of generated multifd packets */ 1258 uint64_t packet_num; 1259 } *multifd_recv_state; 1260 1261 static void multifd_recv_terminate_threads(Error *err) 1262 { 1263 int i; 1264 1265 trace_multifd_recv_terminate_threads(err != NULL); 1266 1267 if (err) { 1268 MigrationState *s = migrate_get_current(); 1269 migrate_set_error(s, err); 1270 if (s->state == MIGRATION_STATUS_SETUP || 1271 s->state == MIGRATION_STATUS_ACTIVE) { 1272 migrate_set_state(&s->state, s->state, 1273 MIGRATION_STATUS_FAILED); 1274 } 1275 } 1276 1277 for (i = 0; i < migrate_multifd_channels(); i++) { 1278 MultiFDRecvParams *p = &multifd_recv_state->params[i]; 1279 1280 qemu_mutex_lock(&p->mutex); 1281 p->quit = true; 1282 /* We could arrive here for two reasons: 1283 - normal quit, i.e. everything went fine, just finished 1284 - error quit: We close the channels so the channel threads 1285 finish the qio_channel_read_all_eof() */ 1286 qio_channel_shutdown(p->c, QIO_CHANNEL_SHUTDOWN_BOTH, NULL); 1287 qemu_mutex_unlock(&p->mutex); 1288 } 1289 } 1290 1291 int multifd_load_cleanup(Error **errp) 1292 { 1293 int i; 1294 int ret = 0; 1295 1296 if (!migrate_use_multifd()) { 1297 return 0; 1298 } 1299 multifd_recv_terminate_threads(NULL); 1300 for (i = 0; i < migrate_multifd_channels(); i++) { 1301 MultiFDRecvParams *p = &multifd_recv_state->params[i]; 1302 1303 if (p->running) { 1304 p->quit = true; 1305 /* 1306 * multifd_recv_thread may hung at MULTIFD_FLAG_SYNC handle code, 1307 * however try to wakeup it without harm in cleanup phase. 1308 */ 1309 qemu_sem_post(&p->sem_sync); 1310 qemu_thread_join(&p->thread); 1311 } 1312 object_unref(OBJECT(p->c)); 1313 p->c = NULL; 1314 qemu_mutex_destroy(&p->mutex); 1315 qemu_sem_destroy(&p->sem_sync); 1316 g_free(p->name); 1317 p->name = NULL; 1318 multifd_pages_clear(p->pages); 1319 p->pages = NULL; 1320 p->packet_len = 0; 1321 g_free(p->packet); 1322 p->packet = NULL; 1323 } 1324 qemu_sem_destroy(&multifd_recv_state->sem_sync); 1325 g_free(multifd_recv_state->params); 1326 multifd_recv_state->params = NULL; 1327 g_free(multifd_recv_state); 1328 multifd_recv_state = NULL; 1329 1330 return ret; 1331 } 1332 1333 static void multifd_recv_sync_main(void) 1334 { 1335 int i; 1336 1337 if (!migrate_use_multifd()) { 1338 return; 1339 } 1340 for (i = 0; i < migrate_multifd_channels(); i++) { 1341 MultiFDRecvParams *p = &multifd_recv_state->params[i]; 1342 1343 trace_multifd_recv_sync_main_wait(p->id); 1344 qemu_sem_wait(&multifd_recv_state->sem_sync); 1345 } 1346 for (i = 0; i < migrate_multifd_channels(); i++) { 1347 MultiFDRecvParams *p = &multifd_recv_state->params[i]; 1348 1349 qemu_mutex_lock(&p->mutex); 1350 if (multifd_recv_state->packet_num < p->packet_num) { 1351 multifd_recv_state->packet_num = p->packet_num; 1352 } 1353 qemu_mutex_unlock(&p->mutex); 1354 trace_multifd_recv_sync_main_signal(p->id); 1355 qemu_sem_post(&p->sem_sync); 1356 } 1357 trace_multifd_recv_sync_main(multifd_recv_state->packet_num); 1358 } 1359 1360 static void *multifd_recv_thread(void *opaque) 1361 { 1362 MultiFDRecvParams *p = opaque; 1363 Error *local_err = NULL; 1364 int ret; 1365 1366 trace_multifd_recv_thread_start(p->id); 1367 rcu_register_thread(); 1368 1369 while (true) { 1370 uint32_t used; 1371 uint32_t flags; 1372 1373 if (p->quit) { 1374 break; 1375 } 1376 1377 ret = qio_channel_read_all_eof(p->c, (void *)p->packet, 1378 p->packet_len, &local_err); 1379 if (ret == 0) { /* EOF */ 1380 break; 1381 } 1382 if (ret == -1) { /* Error */ 1383 break; 1384 } 1385 1386 qemu_mutex_lock(&p->mutex); 1387 ret = multifd_recv_unfill_packet(p, &local_err); 1388 if (ret) { 1389 qemu_mutex_unlock(&p->mutex); 1390 break; 1391 } 1392 1393 used = p->pages->used; 1394 flags = p->flags; 1395 trace_multifd_recv(p->id, p->packet_num, used, flags, 1396 p->next_packet_size); 1397 p->num_packets++; 1398 p->num_pages += used; 1399 qemu_mutex_unlock(&p->mutex); 1400 1401 if (used) { 1402 ret = qio_channel_readv_all(p->c, p->pages->iov, 1403 used, &local_err); 1404 if (ret != 0) { 1405 break; 1406 } 1407 } 1408 1409 if (flags & MULTIFD_FLAG_SYNC) { 1410 qemu_sem_post(&multifd_recv_state->sem_sync); 1411 qemu_sem_wait(&p->sem_sync); 1412 } 1413 } 1414 1415 if (local_err) { 1416 multifd_recv_terminate_threads(local_err); 1417 } 1418 qemu_mutex_lock(&p->mutex); 1419 p->running = false; 1420 qemu_mutex_unlock(&p->mutex); 1421 1422 rcu_unregister_thread(); 1423 trace_multifd_recv_thread_end(p->id, p->num_packets, p->num_pages); 1424 1425 return NULL; 1426 } 1427 1428 int multifd_load_setup(void) 1429 { 1430 int thread_count; 1431 uint32_t page_count = MULTIFD_PACKET_SIZE / qemu_target_page_size(); 1432 uint8_t i; 1433 1434 if (!migrate_use_multifd()) { 1435 return 0; 1436 } 1437 thread_count = migrate_multifd_channels(); 1438 multifd_recv_state = g_malloc0(sizeof(*multifd_recv_state)); 1439 multifd_recv_state->params = g_new0(MultiFDRecvParams, thread_count); 1440 atomic_set(&multifd_recv_state->count, 0); 1441 qemu_sem_init(&multifd_recv_state->sem_sync, 0); 1442 1443 for (i = 0; i < thread_count; i++) { 1444 MultiFDRecvParams *p = &multifd_recv_state->params[i]; 1445 1446 qemu_mutex_init(&p->mutex); 1447 qemu_sem_init(&p->sem_sync, 0); 1448 p->quit = false; 1449 p->id = i; 1450 p->pages = multifd_pages_init(page_count); 1451 p->packet_len = sizeof(MultiFDPacket_t) 1452 + sizeof(ram_addr_t) * page_count; 1453 p->packet = g_malloc0(p->packet_len); 1454 p->name = g_strdup_printf("multifdrecv_%d", i); 1455 } 1456 return 0; 1457 } 1458 1459 bool multifd_recv_all_channels_created(void) 1460 { 1461 int thread_count = migrate_multifd_channels(); 1462 1463 if (!migrate_use_multifd()) { 1464 return true; 1465 } 1466 1467 return thread_count == atomic_read(&multifd_recv_state->count); 1468 } 1469 1470 /* 1471 * Try to receive all multifd channels to get ready for the migration. 1472 * - Return true and do not set @errp when correctly receving all channels; 1473 * - Return false and do not set @errp when correctly receiving the current one; 1474 * - Return false and set @errp when failing to receive the current channel. 1475 */ 1476 bool multifd_recv_new_channel(QIOChannel *ioc, Error **errp) 1477 { 1478 MultiFDRecvParams *p; 1479 Error *local_err = NULL; 1480 int id; 1481 1482 id = multifd_recv_initial_packet(ioc, &local_err); 1483 if (id < 0) { 1484 multifd_recv_terminate_threads(local_err); 1485 error_propagate_prepend(errp, local_err, 1486 "failed to receive packet" 1487 " via multifd channel %d: ", 1488 atomic_read(&multifd_recv_state->count)); 1489 return false; 1490 } 1491 trace_multifd_recv_new_channel(id); 1492 1493 p = &multifd_recv_state->params[id]; 1494 if (p->c != NULL) { 1495 error_setg(&local_err, "multifd: received id '%d' already setup'", 1496 id); 1497 multifd_recv_terminate_threads(local_err); 1498 error_propagate(errp, local_err); 1499 return false; 1500 } 1501 p->c = ioc; 1502 object_ref(OBJECT(ioc)); 1503 /* initial packet */ 1504 p->num_packets = 1; 1505 1506 p->running = true; 1507 qemu_thread_create(&p->thread, p->name, multifd_recv_thread, p, 1508 QEMU_THREAD_JOINABLE); 1509 atomic_inc(&multifd_recv_state->count); 1510 return atomic_read(&multifd_recv_state->count) == 1511 migrate_multifd_channels(); 1512 } 1513 1514 /** 1515 * save_page_header: write page header to wire 1516 * 1517 * If this is the 1st block, it also writes the block identification 1518 * 1519 * Returns the number of bytes written 1520 * 1521 * @f: QEMUFile where to send the data 1522 * @block: block that contains the page we want to send 1523 * @offset: offset inside the block for the page 1524 * in the lower bits, it contains flags 1525 */ 1526 static size_t save_page_header(RAMState *rs, QEMUFile *f, RAMBlock *block, 1527 ram_addr_t offset) 1528 { 1529 size_t size, len; 1530 1531 if (block == rs->last_sent_block) { 1532 offset |= RAM_SAVE_FLAG_CONTINUE; 1533 } 1534 qemu_put_be64(f, offset); 1535 size = 8; 1536 1537 if (!(offset & RAM_SAVE_FLAG_CONTINUE)) { 1538 len = strlen(block->idstr); 1539 qemu_put_byte(f, len); 1540 qemu_put_buffer(f, (uint8_t *)block->idstr, len); 1541 size += 1 + len; 1542 rs->last_sent_block = block; 1543 } 1544 return size; 1545 } 1546 1547 /** 1548 * mig_throttle_guest_down: throotle down the guest 1549 * 1550 * Reduce amount of guest cpu execution to hopefully slow down memory 1551 * writes. If guest dirty memory rate is reduced below the rate at 1552 * which we can transfer pages to the destination then we should be 1553 * able to complete migration. Some workloads dirty memory way too 1554 * fast and will not effectively converge, even with auto-converge. 1555 */ 1556 static void mig_throttle_guest_down(void) 1557 { 1558 MigrationState *s = migrate_get_current(); 1559 uint64_t pct_initial = s->parameters.cpu_throttle_initial; 1560 uint64_t pct_icrement = s->parameters.cpu_throttle_increment; 1561 int pct_max = s->parameters.max_cpu_throttle; 1562 1563 /* We have not started throttling yet. Let's start it. */ 1564 if (!cpu_throttle_active()) { 1565 cpu_throttle_set(pct_initial); 1566 } else { 1567 /* Throttling already on, just increase the rate */ 1568 cpu_throttle_set(MIN(cpu_throttle_get_percentage() + pct_icrement, 1569 pct_max)); 1570 } 1571 } 1572 1573 /** 1574 * xbzrle_cache_zero_page: insert a zero page in the XBZRLE cache 1575 * 1576 * @rs: current RAM state 1577 * @current_addr: address for the zero page 1578 * 1579 * Update the xbzrle cache to reflect a page that's been sent as all 0. 1580 * The important thing is that a stale (not-yet-0'd) page be replaced 1581 * by the new data. 1582 * As a bonus, if the page wasn't in the cache it gets added so that 1583 * when a small write is made into the 0'd page it gets XBZRLE sent. 1584 */ 1585 static void xbzrle_cache_zero_page(RAMState *rs, ram_addr_t current_addr) 1586 { 1587 if (rs->ram_bulk_stage || !migrate_use_xbzrle()) { 1588 return; 1589 } 1590 1591 /* We don't care if this fails to allocate a new cache page 1592 * as long as it updated an old one */ 1593 cache_insert(XBZRLE.cache, current_addr, XBZRLE.zero_target_page, 1594 ram_counters.dirty_sync_count); 1595 } 1596 1597 #define ENCODING_FLAG_XBZRLE 0x1 1598 1599 /** 1600 * save_xbzrle_page: compress and send current page 1601 * 1602 * Returns: 1 means that we wrote the page 1603 * 0 means that page is identical to the one already sent 1604 * -1 means that xbzrle would be longer than normal 1605 * 1606 * @rs: current RAM state 1607 * @current_data: pointer to the address of the page contents 1608 * @current_addr: addr of the page 1609 * @block: block that contains the page we want to send 1610 * @offset: offset inside the block for the page 1611 * @last_stage: if we are at the completion stage 1612 */ 1613 static int save_xbzrle_page(RAMState *rs, uint8_t **current_data, 1614 ram_addr_t current_addr, RAMBlock *block, 1615 ram_addr_t offset, bool last_stage) 1616 { 1617 int encoded_len = 0, bytes_xbzrle; 1618 uint8_t *prev_cached_page; 1619 1620 if (!cache_is_cached(XBZRLE.cache, current_addr, 1621 ram_counters.dirty_sync_count)) { 1622 xbzrle_counters.cache_miss++; 1623 if (!last_stage) { 1624 if (cache_insert(XBZRLE.cache, current_addr, *current_data, 1625 ram_counters.dirty_sync_count) == -1) { 1626 return -1; 1627 } else { 1628 /* update *current_data when the page has been 1629 inserted into cache */ 1630 *current_data = get_cached_data(XBZRLE.cache, current_addr); 1631 } 1632 } 1633 return -1; 1634 } 1635 1636 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr); 1637 1638 /* save current buffer into memory */ 1639 memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE); 1640 1641 /* XBZRLE encoding (if there is no overflow) */ 1642 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf, 1643 TARGET_PAGE_SIZE, XBZRLE.encoded_buf, 1644 TARGET_PAGE_SIZE); 1645 1646 /* 1647 * Update the cache contents, so that it corresponds to the data 1648 * sent, in all cases except where we skip the page. 1649 */ 1650 if (!last_stage && encoded_len != 0) { 1651 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE); 1652 /* 1653 * In the case where we couldn't compress, ensure that the caller 1654 * sends the data from the cache, since the guest might have 1655 * changed the RAM since we copied it. 1656 */ 1657 *current_data = prev_cached_page; 1658 } 1659 1660 if (encoded_len == 0) { 1661 trace_save_xbzrle_page_skipping(); 1662 return 0; 1663 } else if (encoded_len == -1) { 1664 trace_save_xbzrle_page_overflow(); 1665 xbzrle_counters.overflow++; 1666 return -1; 1667 } 1668 1669 /* Send XBZRLE based compressed page */ 1670 bytes_xbzrle = save_page_header(rs, rs->f, block, 1671 offset | RAM_SAVE_FLAG_XBZRLE); 1672 qemu_put_byte(rs->f, ENCODING_FLAG_XBZRLE); 1673 qemu_put_be16(rs->f, encoded_len); 1674 qemu_put_buffer(rs->f, XBZRLE.encoded_buf, encoded_len); 1675 bytes_xbzrle += encoded_len + 1 + 2; 1676 xbzrle_counters.pages++; 1677 xbzrle_counters.bytes += bytes_xbzrle; 1678 ram_counters.transferred += bytes_xbzrle; 1679 1680 return 1; 1681 } 1682 1683 /** 1684 * migration_bitmap_find_dirty: find the next dirty page from start 1685 * 1686 * Returns the page offset within memory region of the start of a dirty page 1687 * 1688 * @rs: current RAM state 1689 * @rb: RAMBlock where to search for dirty pages 1690 * @start: page where we start the search 1691 */ 1692 static inline 1693 unsigned long migration_bitmap_find_dirty(RAMState *rs, RAMBlock *rb, 1694 unsigned long start) 1695 { 1696 unsigned long size = rb->used_length >> TARGET_PAGE_BITS; 1697 unsigned long *bitmap = rb->bmap; 1698 unsigned long next; 1699 1700 if (ramblock_is_ignored(rb)) { 1701 return size; 1702 } 1703 1704 /* 1705 * When the free page optimization is enabled, we need to check the bitmap 1706 * to send the non-free pages rather than all the pages in the bulk stage. 1707 */ 1708 if (!rs->fpo_enabled && rs->ram_bulk_stage && start > 0) { 1709 next = start + 1; 1710 } else { 1711 next = find_next_bit(bitmap, size, start); 1712 } 1713 1714 return next; 1715 } 1716 1717 static inline bool migration_bitmap_clear_dirty(RAMState *rs, 1718 RAMBlock *rb, 1719 unsigned long page) 1720 { 1721 bool ret; 1722 1723 qemu_mutex_lock(&rs->bitmap_mutex); 1724 1725 /* 1726 * Clear dirty bitmap if needed. This _must_ be called before we 1727 * send any of the page in the chunk because we need to make sure 1728 * we can capture further page content changes when we sync dirty 1729 * log the next time. So as long as we are going to send any of 1730 * the page in the chunk we clear the remote dirty bitmap for all. 1731 * Clearing it earlier won't be a problem, but too late will. 1732 */ 1733 if (rb->clear_bmap && clear_bmap_test_and_clear(rb, page)) { 1734 uint8_t shift = rb->clear_bmap_shift; 1735 hwaddr size = 1ULL << (TARGET_PAGE_BITS + shift); 1736 hwaddr start = (page << TARGET_PAGE_BITS) & (-size); 1737 1738 /* 1739 * CLEAR_BITMAP_SHIFT_MIN should always guarantee this... this 1740 * can make things easier sometimes since then start address 1741 * of the small chunk will always be 64 pages aligned so the 1742 * bitmap will always be aligned to unsigned long. We should 1743 * even be able to remove this restriction but I'm simply 1744 * keeping it. 1745 */ 1746 assert(shift >= 6); 1747 trace_migration_bitmap_clear_dirty(rb->idstr, start, size, page); 1748 memory_region_clear_dirty_bitmap(rb->mr, start, size); 1749 } 1750 1751 ret = test_and_clear_bit(page, rb->bmap); 1752 1753 if (ret) { 1754 rs->migration_dirty_pages--; 1755 } 1756 qemu_mutex_unlock(&rs->bitmap_mutex); 1757 1758 return ret; 1759 } 1760 1761 /* Called with RCU critical section */ 1762 static void ramblock_sync_dirty_bitmap(RAMState *rs, RAMBlock *rb) 1763 { 1764 rs->migration_dirty_pages += 1765 cpu_physical_memory_sync_dirty_bitmap(rb, 0, rb->used_length, 1766 &rs->num_dirty_pages_period); 1767 } 1768 1769 /** 1770 * ram_pagesize_summary: calculate all the pagesizes of a VM 1771 * 1772 * Returns a summary bitmap of the page sizes of all RAMBlocks 1773 * 1774 * For VMs with just normal pages this is equivalent to the host page 1775 * size. If it's got some huge pages then it's the OR of all the 1776 * different page sizes. 1777 */ 1778 uint64_t ram_pagesize_summary(void) 1779 { 1780 RAMBlock *block; 1781 uint64_t summary = 0; 1782 1783 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 1784 summary |= block->page_size; 1785 } 1786 1787 return summary; 1788 } 1789 1790 uint64_t ram_get_total_transferred_pages(void) 1791 { 1792 return ram_counters.normal + ram_counters.duplicate + 1793 compression_counters.pages + xbzrle_counters.pages; 1794 } 1795 1796 static void migration_update_rates(RAMState *rs, int64_t end_time) 1797 { 1798 uint64_t page_count = rs->target_page_count - rs->target_page_count_prev; 1799 double compressed_size; 1800 1801 /* calculate period counters */ 1802 ram_counters.dirty_pages_rate = rs->num_dirty_pages_period * 1000 1803 / (end_time - rs->time_last_bitmap_sync); 1804 1805 if (!page_count) { 1806 return; 1807 } 1808 1809 if (migrate_use_xbzrle()) { 1810 xbzrle_counters.cache_miss_rate = (double)(xbzrle_counters.cache_miss - 1811 rs->xbzrle_cache_miss_prev) / page_count; 1812 rs->xbzrle_cache_miss_prev = xbzrle_counters.cache_miss; 1813 } 1814 1815 if (migrate_use_compression()) { 1816 compression_counters.busy_rate = (double)(compression_counters.busy - 1817 rs->compress_thread_busy_prev) / page_count; 1818 rs->compress_thread_busy_prev = compression_counters.busy; 1819 1820 compressed_size = compression_counters.compressed_size - 1821 rs->compressed_size_prev; 1822 if (compressed_size) { 1823 double uncompressed_size = (compression_counters.pages - 1824 rs->compress_pages_prev) * TARGET_PAGE_SIZE; 1825 1826 /* Compression-Ratio = Uncompressed-size / Compressed-size */ 1827 compression_counters.compression_rate = 1828 uncompressed_size / compressed_size; 1829 1830 rs->compress_pages_prev = compression_counters.pages; 1831 rs->compressed_size_prev = compression_counters.compressed_size; 1832 } 1833 } 1834 } 1835 1836 static void migration_bitmap_sync(RAMState *rs) 1837 { 1838 RAMBlock *block; 1839 int64_t end_time; 1840 uint64_t bytes_xfer_now; 1841 1842 ram_counters.dirty_sync_count++; 1843 1844 if (!rs->time_last_bitmap_sync) { 1845 rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); 1846 } 1847 1848 trace_migration_bitmap_sync_start(); 1849 memory_global_dirty_log_sync(); 1850 1851 qemu_mutex_lock(&rs->bitmap_mutex); 1852 rcu_read_lock(); 1853 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 1854 ramblock_sync_dirty_bitmap(rs, block); 1855 } 1856 ram_counters.remaining = ram_bytes_remaining(); 1857 rcu_read_unlock(); 1858 qemu_mutex_unlock(&rs->bitmap_mutex); 1859 1860 memory_global_after_dirty_log_sync(); 1861 trace_migration_bitmap_sync_end(rs->num_dirty_pages_period); 1862 1863 end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); 1864 1865 /* more than 1 second = 1000 millisecons */ 1866 if (end_time > rs->time_last_bitmap_sync + 1000) { 1867 bytes_xfer_now = ram_counters.transferred; 1868 1869 /* During block migration the auto-converge logic incorrectly detects 1870 * that ram migration makes no progress. Avoid this by disabling the 1871 * throttling logic during the bulk phase of block migration. */ 1872 if (migrate_auto_converge() && !blk_mig_bulk_active()) { 1873 /* The following detection logic can be refined later. For now: 1874 Check to see if the dirtied bytes is 50% more than the approx. 1875 amount of bytes that just got transferred since the last time we 1876 were in this routine. If that happens twice, start or increase 1877 throttling */ 1878 1879 if ((rs->num_dirty_pages_period * TARGET_PAGE_SIZE > 1880 (bytes_xfer_now - rs->bytes_xfer_prev) / 2) && 1881 (++rs->dirty_rate_high_cnt >= 2)) { 1882 trace_migration_throttle(); 1883 rs->dirty_rate_high_cnt = 0; 1884 mig_throttle_guest_down(); 1885 } 1886 } 1887 1888 migration_update_rates(rs, end_time); 1889 1890 rs->target_page_count_prev = rs->target_page_count; 1891 1892 /* reset period counters */ 1893 rs->time_last_bitmap_sync = end_time; 1894 rs->num_dirty_pages_period = 0; 1895 rs->bytes_xfer_prev = bytes_xfer_now; 1896 } 1897 if (migrate_use_events()) { 1898 qapi_event_send_migration_pass(ram_counters.dirty_sync_count); 1899 } 1900 } 1901 1902 static void migration_bitmap_sync_precopy(RAMState *rs) 1903 { 1904 Error *local_err = NULL; 1905 1906 /* 1907 * The current notifier usage is just an optimization to migration, so we 1908 * don't stop the normal migration process in the error case. 1909 */ 1910 if (precopy_notify(PRECOPY_NOTIFY_BEFORE_BITMAP_SYNC, &local_err)) { 1911 error_report_err(local_err); 1912 } 1913 1914 migration_bitmap_sync(rs); 1915 1916 if (precopy_notify(PRECOPY_NOTIFY_AFTER_BITMAP_SYNC, &local_err)) { 1917 error_report_err(local_err); 1918 } 1919 } 1920 1921 /** 1922 * save_zero_page_to_file: send the zero page to the file 1923 * 1924 * Returns the size of data written to the file, 0 means the page is not 1925 * a zero page 1926 * 1927 * @rs: current RAM state 1928 * @file: the file where the data is saved 1929 * @block: block that contains the page we want to send 1930 * @offset: offset inside the block for the page 1931 */ 1932 static int save_zero_page_to_file(RAMState *rs, QEMUFile *file, 1933 RAMBlock *block, ram_addr_t offset) 1934 { 1935 uint8_t *p = block->host + offset; 1936 int len = 0; 1937 1938 if (is_zero_range(p, TARGET_PAGE_SIZE)) { 1939 len += save_page_header(rs, file, block, offset | RAM_SAVE_FLAG_ZERO); 1940 qemu_put_byte(file, 0); 1941 len += 1; 1942 } 1943 return len; 1944 } 1945 1946 /** 1947 * save_zero_page: send the zero page to the stream 1948 * 1949 * Returns the number of pages written. 1950 * 1951 * @rs: current RAM state 1952 * @block: block that contains the page we want to send 1953 * @offset: offset inside the block for the page 1954 */ 1955 static int save_zero_page(RAMState *rs, RAMBlock *block, ram_addr_t offset) 1956 { 1957 int len = save_zero_page_to_file(rs, rs->f, block, offset); 1958 1959 if (len) { 1960 ram_counters.duplicate++; 1961 ram_counters.transferred += len; 1962 return 1; 1963 } 1964 return -1; 1965 } 1966 1967 static void ram_release_pages(const char *rbname, uint64_t offset, int pages) 1968 { 1969 if (!migrate_release_ram() || !migration_in_postcopy()) { 1970 return; 1971 } 1972 1973 ram_discard_range(rbname, offset, pages << TARGET_PAGE_BITS); 1974 } 1975 1976 /* 1977 * @pages: the number of pages written by the control path, 1978 * < 0 - error 1979 * > 0 - number of pages written 1980 * 1981 * Return true if the pages has been saved, otherwise false is returned. 1982 */ 1983 static bool control_save_page(RAMState *rs, RAMBlock *block, ram_addr_t offset, 1984 int *pages) 1985 { 1986 uint64_t bytes_xmit = 0; 1987 int ret; 1988 1989 *pages = -1; 1990 ret = ram_control_save_page(rs->f, block->offset, offset, TARGET_PAGE_SIZE, 1991 &bytes_xmit); 1992 if (ret == RAM_SAVE_CONTROL_NOT_SUPP) { 1993 return false; 1994 } 1995 1996 if (bytes_xmit) { 1997 ram_counters.transferred += bytes_xmit; 1998 *pages = 1; 1999 } 2000 2001 if (ret == RAM_SAVE_CONTROL_DELAYED) { 2002 return true; 2003 } 2004 2005 if (bytes_xmit > 0) { 2006 ram_counters.normal++; 2007 } else if (bytes_xmit == 0) { 2008 ram_counters.duplicate++; 2009 } 2010 2011 return true; 2012 } 2013 2014 /* 2015 * directly send the page to the stream 2016 * 2017 * Returns the number of pages written. 2018 * 2019 * @rs: current RAM state 2020 * @block: block that contains the page we want to send 2021 * @offset: offset inside the block for the page 2022 * @buf: the page to be sent 2023 * @async: send to page asyncly 2024 */ 2025 static int save_normal_page(RAMState *rs, RAMBlock *block, ram_addr_t offset, 2026 uint8_t *buf, bool async) 2027 { 2028 ram_counters.transferred += save_page_header(rs, rs->f, block, 2029 offset | RAM_SAVE_FLAG_PAGE); 2030 if (async) { 2031 qemu_put_buffer_async(rs->f, buf, TARGET_PAGE_SIZE, 2032 migrate_release_ram() & 2033 migration_in_postcopy()); 2034 } else { 2035 qemu_put_buffer(rs->f, buf, TARGET_PAGE_SIZE); 2036 } 2037 ram_counters.transferred += TARGET_PAGE_SIZE; 2038 ram_counters.normal++; 2039 return 1; 2040 } 2041 2042 /** 2043 * ram_save_page: send the given page to the stream 2044 * 2045 * Returns the number of pages written. 2046 * < 0 - error 2047 * >=0 - Number of pages written - this might legally be 0 2048 * if xbzrle noticed the page was the same. 2049 * 2050 * @rs: current RAM state 2051 * @block: block that contains the page we want to send 2052 * @offset: offset inside the block for the page 2053 * @last_stage: if we are at the completion stage 2054 */ 2055 static int ram_save_page(RAMState *rs, PageSearchStatus *pss, bool last_stage) 2056 { 2057 int pages = -1; 2058 uint8_t *p; 2059 bool send_async = true; 2060 RAMBlock *block = pss->block; 2061 ram_addr_t offset = pss->page << TARGET_PAGE_BITS; 2062 ram_addr_t current_addr = block->offset + offset; 2063 2064 p = block->host + offset; 2065 trace_ram_save_page(block->idstr, (uint64_t)offset, p); 2066 2067 XBZRLE_cache_lock(); 2068 if (!rs->ram_bulk_stage && !migration_in_postcopy() && 2069 migrate_use_xbzrle()) { 2070 pages = save_xbzrle_page(rs, &p, current_addr, block, 2071 offset, last_stage); 2072 if (!last_stage) { 2073 /* Can't send this cached data async, since the cache page 2074 * might get updated before it gets to the wire 2075 */ 2076 send_async = false; 2077 } 2078 } 2079 2080 /* XBZRLE overflow or normal page */ 2081 if (pages == -1) { 2082 pages = save_normal_page(rs, block, offset, p, send_async); 2083 } 2084 2085 XBZRLE_cache_unlock(); 2086 2087 return pages; 2088 } 2089 2090 static int ram_save_multifd_page(RAMState *rs, RAMBlock *block, 2091 ram_addr_t offset) 2092 { 2093 if (multifd_queue_page(rs, block, offset) < 0) { 2094 return -1; 2095 } 2096 ram_counters.normal++; 2097 2098 return 1; 2099 } 2100 2101 static bool do_compress_ram_page(QEMUFile *f, z_stream *stream, RAMBlock *block, 2102 ram_addr_t offset, uint8_t *source_buf) 2103 { 2104 RAMState *rs = ram_state; 2105 uint8_t *p = block->host + (offset & TARGET_PAGE_MASK); 2106 bool zero_page = false; 2107 int ret; 2108 2109 if (save_zero_page_to_file(rs, f, block, offset)) { 2110 zero_page = true; 2111 goto exit; 2112 } 2113 2114 save_page_header(rs, f, block, offset | RAM_SAVE_FLAG_COMPRESS_PAGE); 2115 2116 /* 2117 * copy it to a internal buffer to avoid it being modified by VM 2118 * so that we can catch up the error during compression and 2119 * decompression 2120 */ 2121 memcpy(source_buf, p, TARGET_PAGE_SIZE); 2122 ret = qemu_put_compression_data(f, stream, source_buf, TARGET_PAGE_SIZE); 2123 if (ret < 0) { 2124 qemu_file_set_error(migrate_get_current()->to_dst_file, ret); 2125 error_report("compressed data failed!"); 2126 return false; 2127 } 2128 2129 exit: 2130 ram_release_pages(block->idstr, offset & TARGET_PAGE_MASK, 1); 2131 return zero_page; 2132 } 2133 2134 static void 2135 update_compress_thread_counts(const CompressParam *param, int bytes_xmit) 2136 { 2137 ram_counters.transferred += bytes_xmit; 2138 2139 if (param->zero_page) { 2140 ram_counters.duplicate++; 2141 return; 2142 } 2143 2144 /* 8 means a header with RAM_SAVE_FLAG_CONTINUE. */ 2145 compression_counters.compressed_size += bytes_xmit - 8; 2146 compression_counters.pages++; 2147 } 2148 2149 static bool save_page_use_compression(RAMState *rs); 2150 2151 static void flush_compressed_data(RAMState *rs) 2152 { 2153 int idx, len, thread_count; 2154 2155 if (!save_page_use_compression(rs)) { 2156 return; 2157 } 2158 thread_count = migrate_compress_threads(); 2159 2160 qemu_mutex_lock(&comp_done_lock); 2161 for (idx = 0; idx < thread_count; idx++) { 2162 while (!comp_param[idx].done) { 2163 qemu_cond_wait(&comp_done_cond, &comp_done_lock); 2164 } 2165 } 2166 qemu_mutex_unlock(&comp_done_lock); 2167 2168 for (idx = 0; idx < thread_count; idx++) { 2169 qemu_mutex_lock(&comp_param[idx].mutex); 2170 if (!comp_param[idx].quit) { 2171 len = qemu_put_qemu_file(rs->f, comp_param[idx].file); 2172 /* 2173 * it's safe to fetch zero_page without holding comp_done_lock 2174 * as there is no further request submitted to the thread, 2175 * i.e, the thread should be waiting for a request at this point. 2176 */ 2177 update_compress_thread_counts(&comp_param[idx], len); 2178 } 2179 qemu_mutex_unlock(&comp_param[idx].mutex); 2180 } 2181 } 2182 2183 static inline void set_compress_params(CompressParam *param, RAMBlock *block, 2184 ram_addr_t offset) 2185 { 2186 param->block = block; 2187 param->offset = offset; 2188 } 2189 2190 static int compress_page_with_multi_thread(RAMState *rs, RAMBlock *block, 2191 ram_addr_t offset) 2192 { 2193 int idx, thread_count, bytes_xmit = -1, pages = -1; 2194 bool wait = migrate_compress_wait_thread(); 2195 2196 thread_count = migrate_compress_threads(); 2197 qemu_mutex_lock(&comp_done_lock); 2198 retry: 2199 for (idx = 0; idx < thread_count; idx++) { 2200 if (comp_param[idx].done) { 2201 comp_param[idx].done = false; 2202 bytes_xmit = qemu_put_qemu_file(rs->f, comp_param[idx].file); 2203 qemu_mutex_lock(&comp_param[idx].mutex); 2204 set_compress_params(&comp_param[idx], block, offset); 2205 qemu_cond_signal(&comp_param[idx].cond); 2206 qemu_mutex_unlock(&comp_param[idx].mutex); 2207 pages = 1; 2208 update_compress_thread_counts(&comp_param[idx], bytes_xmit); 2209 break; 2210 } 2211 } 2212 2213 /* 2214 * wait for the free thread if the user specifies 'compress-wait-thread', 2215 * otherwise we will post the page out in the main thread as normal page. 2216 */ 2217 if (pages < 0 && wait) { 2218 qemu_cond_wait(&comp_done_cond, &comp_done_lock); 2219 goto retry; 2220 } 2221 qemu_mutex_unlock(&comp_done_lock); 2222 2223 return pages; 2224 } 2225 2226 /** 2227 * find_dirty_block: find the next dirty page and update any state 2228 * associated with the search process. 2229 * 2230 * Returns true if a page is found 2231 * 2232 * @rs: current RAM state 2233 * @pss: data about the state of the current dirty page scan 2234 * @again: set to false if the search has scanned the whole of RAM 2235 */ 2236 static bool find_dirty_block(RAMState *rs, PageSearchStatus *pss, bool *again) 2237 { 2238 pss->page = migration_bitmap_find_dirty(rs, pss->block, pss->page); 2239 if (pss->complete_round && pss->block == rs->last_seen_block && 2240 pss->page >= rs->last_page) { 2241 /* 2242 * We've been once around the RAM and haven't found anything. 2243 * Give up. 2244 */ 2245 *again = false; 2246 return false; 2247 } 2248 if ((pss->page << TARGET_PAGE_BITS) >= pss->block->used_length) { 2249 /* Didn't find anything in this RAM Block */ 2250 pss->page = 0; 2251 pss->block = QLIST_NEXT_RCU(pss->block, next); 2252 if (!pss->block) { 2253 /* 2254 * If memory migration starts over, we will meet a dirtied page 2255 * which may still exists in compression threads's ring, so we 2256 * should flush the compressed data to make sure the new page 2257 * is not overwritten by the old one in the destination. 2258 * 2259 * Also If xbzrle is on, stop using the data compression at this 2260 * point. In theory, xbzrle can do better than compression. 2261 */ 2262 flush_compressed_data(rs); 2263 2264 /* Hit the end of the list */ 2265 pss->block = QLIST_FIRST_RCU(&ram_list.blocks); 2266 /* Flag that we've looped */ 2267 pss->complete_round = true; 2268 rs->ram_bulk_stage = false; 2269 } 2270 /* Didn't find anything this time, but try again on the new block */ 2271 *again = true; 2272 return false; 2273 } else { 2274 /* Can go around again, but... */ 2275 *again = true; 2276 /* We've found something so probably don't need to */ 2277 return true; 2278 } 2279 } 2280 2281 /** 2282 * unqueue_page: gets a page of the queue 2283 * 2284 * Helper for 'get_queued_page' - gets a page off the queue 2285 * 2286 * Returns the block of the page (or NULL if none available) 2287 * 2288 * @rs: current RAM state 2289 * @offset: used to return the offset within the RAMBlock 2290 */ 2291 static RAMBlock *unqueue_page(RAMState *rs, ram_addr_t *offset) 2292 { 2293 RAMBlock *block = NULL; 2294 2295 if (QSIMPLEQ_EMPTY_ATOMIC(&rs->src_page_requests)) { 2296 return NULL; 2297 } 2298 2299 qemu_mutex_lock(&rs->src_page_req_mutex); 2300 if (!QSIMPLEQ_EMPTY(&rs->src_page_requests)) { 2301 struct RAMSrcPageRequest *entry = 2302 QSIMPLEQ_FIRST(&rs->src_page_requests); 2303 block = entry->rb; 2304 *offset = entry->offset; 2305 2306 if (entry->len > TARGET_PAGE_SIZE) { 2307 entry->len -= TARGET_PAGE_SIZE; 2308 entry->offset += TARGET_PAGE_SIZE; 2309 } else { 2310 memory_region_unref(block->mr); 2311 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req); 2312 g_free(entry); 2313 migration_consume_urgent_request(); 2314 } 2315 } 2316 qemu_mutex_unlock(&rs->src_page_req_mutex); 2317 2318 return block; 2319 } 2320 2321 /** 2322 * get_queued_page: unqueue a page from the postcopy requests 2323 * 2324 * Skips pages that are already sent (!dirty) 2325 * 2326 * Returns true if a queued page is found 2327 * 2328 * @rs: current RAM state 2329 * @pss: data about the state of the current dirty page scan 2330 */ 2331 static bool get_queued_page(RAMState *rs, PageSearchStatus *pss) 2332 { 2333 RAMBlock *block; 2334 ram_addr_t offset; 2335 bool dirty; 2336 2337 do { 2338 block = unqueue_page(rs, &offset); 2339 /* 2340 * We're sending this page, and since it's postcopy nothing else 2341 * will dirty it, and we must make sure it doesn't get sent again 2342 * even if this queue request was received after the background 2343 * search already sent it. 2344 */ 2345 if (block) { 2346 unsigned long page; 2347 2348 page = offset >> TARGET_PAGE_BITS; 2349 dirty = test_bit(page, block->bmap); 2350 if (!dirty) { 2351 trace_get_queued_page_not_dirty(block->idstr, (uint64_t)offset, 2352 page, test_bit(page, block->unsentmap)); 2353 } else { 2354 trace_get_queued_page(block->idstr, (uint64_t)offset, page); 2355 } 2356 } 2357 2358 } while (block && !dirty); 2359 2360 if (block) { 2361 /* 2362 * As soon as we start servicing pages out of order, then we have 2363 * to kill the bulk stage, since the bulk stage assumes 2364 * in (migration_bitmap_find_and_reset_dirty) that every page is 2365 * dirty, that's no longer true. 2366 */ 2367 rs->ram_bulk_stage = false; 2368 2369 /* 2370 * We want the background search to continue from the queued page 2371 * since the guest is likely to want other pages near to the page 2372 * it just requested. 2373 */ 2374 pss->block = block; 2375 pss->page = offset >> TARGET_PAGE_BITS; 2376 2377 /* 2378 * This unqueued page would break the "one round" check, even is 2379 * really rare. 2380 */ 2381 pss->complete_round = false; 2382 } 2383 2384 return !!block; 2385 } 2386 2387 /** 2388 * migration_page_queue_free: drop any remaining pages in the ram 2389 * request queue 2390 * 2391 * It should be empty at the end anyway, but in error cases there may 2392 * be some left. in case that there is any page left, we drop it. 2393 * 2394 */ 2395 static void migration_page_queue_free(RAMState *rs) 2396 { 2397 struct RAMSrcPageRequest *mspr, *next_mspr; 2398 /* This queue generally should be empty - but in the case of a failed 2399 * migration might have some droppings in. 2400 */ 2401 rcu_read_lock(); 2402 QSIMPLEQ_FOREACH_SAFE(mspr, &rs->src_page_requests, next_req, next_mspr) { 2403 memory_region_unref(mspr->rb->mr); 2404 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req); 2405 g_free(mspr); 2406 } 2407 rcu_read_unlock(); 2408 } 2409 2410 /** 2411 * ram_save_queue_pages: queue the page for transmission 2412 * 2413 * A request from postcopy destination for example. 2414 * 2415 * Returns zero on success or negative on error 2416 * 2417 * @rbname: Name of the RAMBLock of the request. NULL means the 2418 * same that last one. 2419 * @start: starting address from the start of the RAMBlock 2420 * @len: length (in bytes) to send 2421 */ 2422 int ram_save_queue_pages(const char *rbname, ram_addr_t start, ram_addr_t len) 2423 { 2424 RAMBlock *ramblock; 2425 RAMState *rs = ram_state; 2426 2427 ram_counters.postcopy_requests++; 2428 rcu_read_lock(); 2429 if (!rbname) { 2430 /* Reuse last RAMBlock */ 2431 ramblock = rs->last_req_rb; 2432 2433 if (!ramblock) { 2434 /* 2435 * Shouldn't happen, we can't reuse the last RAMBlock if 2436 * it's the 1st request. 2437 */ 2438 error_report("ram_save_queue_pages no previous block"); 2439 goto err; 2440 } 2441 } else { 2442 ramblock = qemu_ram_block_by_name(rbname); 2443 2444 if (!ramblock) { 2445 /* We shouldn't be asked for a non-existent RAMBlock */ 2446 error_report("ram_save_queue_pages no block '%s'", rbname); 2447 goto err; 2448 } 2449 rs->last_req_rb = ramblock; 2450 } 2451 trace_ram_save_queue_pages(ramblock->idstr, start, len); 2452 if (start+len > ramblock->used_length) { 2453 error_report("%s request overrun start=" RAM_ADDR_FMT " len=" 2454 RAM_ADDR_FMT " blocklen=" RAM_ADDR_FMT, 2455 __func__, start, len, ramblock->used_length); 2456 goto err; 2457 } 2458 2459 struct RAMSrcPageRequest *new_entry = 2460 g_malloc0(sizeof(struct RAMSrcPageRequest)); 2461 new_entry->rb = ramblock; 2462 new_entry->offset = start; 2463 new_entry->len = len; 2464 2465 memory_region_ref(ramblock->mr); 2466 qemu_mutex_lock(&rs->src_page_req_mutex); 2467 QSIMPLEQ_INSERT_TAIL(&rs->src_page_requests, new_entry, next_req); 2468 migration_make_urgent_request(); 2469 qemu_mutex_unlock(&rs->src_page_req_mutex); 2470 rcu_read_unlock(); 2471 2472 return 0; 2473 2474 err: 2475 rcu_read_unlock(); 2476 return -1; 2477 } 2478 2479 static bool save_page_use_compression(RAMState *rs) 2480 { 2481 if (!migrate_use_compression()) { 2482 return false; 2483 } 2484 2485 /* 2486 * If xbzrle is on, stop using the data compression after first 2487 * round of migration even if compression is enabled. In theory, 2488 * xbzrle can do better than compression. 2489 */ 2490 if (rs->ram_bulk_stage || !migrate_use_xbzrle()) { 2491 return true; 2492 } 2493 2494 return false; 2495 } 2496 2497 /* 2498 * try to compress the page before posting it out, return true if the page 2499 * has been properly handled by compression, otherwise needs other 2500 * paths to handle it 2501 */ 2502 static bool save_compress_page(RAMState *rs, RAMBlock *block, ram_addr_t offset) 2503 { 2504 if (!save_page_use_compression(rs)) { 2505 return false; 2506 } 2507 2508 /* 2509 * When starting the process of a new block, the first page of 2510 * the block should be sent out before other pages in the same 2511 * block, and all the pages in last block should have been sent 2512 * out, keeping this order is important, because the 'cont' flag 2513 * is used to avoid resending the block name. 2514 * 2515 * We post the fist page as normal page as compression will take 2516 * much CPU resource. 2517 */ 2518 if (block != rs->last_sent_block) { 2519 flush_compressed_data(rs); 2520 return false; 2521 } 2522 2523 if (compress_page_with_multi_thread(rs, block, offset) > 0) { 2524 return true; 2525 } 2526 2527 compression_counters.busy++; 2528 return false; 2529 } 2530 2531 /** 2532 * ram_save_target_page: save one target page 2533 * 2534 * Returns the number of pages written 2535 * 2536 * @rs: current RAM state 2537 * @pss: data about the page we want to send 2538 * @last_stage: if we are at the completion stage 2539 */ 2540 static int ram_save_target_page(RAMState *rs, PageSearchStatus *pss, 2541 bool last_stage) 2542 { 2543 RAMBlock *block = pss->block; 2544 ram_addr_t offset = pss->page << TARGET_PAGE_BITS; 2545 int res; 2546 2547 if (control_save_page(rs, block, offset, &res)) { 2548 return res; 2549 } 2550 2551 if (save_compress_page(rs, block, offset)) { 2552 return 1; 2553 } 2554 2555 res = save_zero_page(rs, block, offset); 2556 if (res > 0) { 2557 /* Must let xbzrle know, otherwise a previous (now 0'd) cached 2558 * page would be stale 2559 */ 2560 if (!save_page_use_compression(rs)) { 2561 XBZRLE_cache_lock(); 2562 xbzrle_cache_zero_page(rs, block->offset + offset); 2563 XBZRLE_cache_unlock(); 2564 } 2565 ram_release_pages(block->idstr, offset, res); 2566 return res; 2567 } 2568 2569 /* 2570 * do not use multifd for compression as the first page in the new 2571 * block should be posted out before sending the compressed page 2572 */ 2573 if (!save_page_use_compression(rs) && migrate_use_multifd()) { 2574 return ram_save_multifd_page(rs, block, offset); 2575 } 2576 2577 return ram_save_page(rs, pss, last_stage); 2578 } 2579 2580 /** 2581 * ram_save_host_page: save a whole host page 2582 * 2583 * Starting at *offset send pages up to the end of the current host 2584 * page. It's valid for the initial offset to point into the middle of 2585 * a host page in which case the remainder of the hostpage is sent. 2586 * Only dirty target pages are sent. Note that the host page size may 2587 * be a huge page for this block. 2588 * The saving stops at the boundary of the used_length of the block 2589 * if the RAMBlock isn't a multiple of the host page size. 2590 * 2591 * Returns the number of pages written or negative on error 2592 * 2593 * @rs: current RAM state 2594 * @ms: current migration state 2595 * @pss: data about the page we want to send 2596 * @last_stage: if we are at the completion stage 2597 */ 2598 static int ram_save_host_page(RAMState *rs, PageSearchStatus *pss, 2599 bool last_stage) 2600 { 2601 int tmppages, pages = 0; 2602 size_t pagesize_bits = 2603 qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS; 2604 2605 if (ramblock_is_ignored(pss->block)) { 2606 error_report("block %s should not be migrated !", pss->block->idstr); 2607 return 0; 2608 } 2609 2610 do { 2611 /* Check the pages is dirty and if it is send it */ 2612 if (!migration_bitmap_clear_dirty(rs, pss->block, pss->page)) { 2613 pss->page++; 2614 continue; 2615 } 2616 2617 tmppages = ram_save_target_page(rs, pss, last_stage); 2618 if (tmppages < 0) { 2619 return tmppages; 2620 } 2621 2622 pages += tmppages; 2623 if (pss->block->unsentmap) { 2624 clear_bit(pss->page, pss->block->unsentmap); 2625 } 2626 2627 pss->page++; 2628 } while ((pss->page & (pagesize_bits - 1)) && 2629 offset_in_ramblock(pss->block, pss->page << TARGET_PAGE_BITS)); 2630 2631 /* The offset we leave with is the last one we looked at */ 2632 pss->page--; 2633 return pages; 2634 } 2635 2636 /** 2637 * ram_find_and_save_block: finds a dirty page and sends it to f 2638 * 2639 * Called within an RCU critical section. 2640 * 2641 * Returns the number of pages written where zero means no dirty pages, 2642 * or negative on error 2643 * 2644 * @rs: current RAM state 2645 * @last_stage: if we are at the completion stage 2646 * 2647 * On systems where host-page-size > target-page-size it will send all the 2648 * pages in a host page that are dirty. 2649 */ 2650 2651 static int ram_find_and_save_block(RAMState *rs, bool last_stage) 2652 { 2653 PageSearchStatus pss; 2654 int pages = 0; 2655 bool again, found; 2656 2657 /* No dirty page as there is zero RAM */ 2658 if (!ram_bytes_total()) { 2659 return pages; 2660 } 2661 2662 pss.block = rs->last_seen_block; 2663 pss.page = rs->last_page; 2664 pss.complete_round = false; 2665 2666 if (!pss.block) { 2667 pss.block = QLIST_FIRST_RCU(&ram_list.blocks); 2668 } 2669 2670 do { 2671 again = true; 2672 found = get_queued_page(rs, &pss); 2673 2674 if (!found) { 2675 /* priority queue empty, so just search for something dirty */ 2676 found = find_dirty_block(rs, &pss, &again); 2677 } 2678 2679 if (found) { 2680 pages = ram_save_host_page(rs, &pss, last_stage); 2681 } 2682 } while (!pages && again); 2683 2684 rs->last_seen_block = pss.block; 2685 rs->last_page = pss.page; 2686 2687 return pages; 2688 } 2689 2690 void acct_update_position(QEMUFile *f, size_t size, bool zero) 2691 { 2692 uint64_t pages = size / TARGET_PAGE_SIZE; 2693 2694 if (zero) { 2695 ram_counters.duplicate += pages; 2696 } else { 2697 ram_counters.normal += pages; 2698 ram_counters.transferred += size; 2699 qemu_update_position(f, size); 2700 } 2701 } 2702 2703 static uint64_t ram_bytes_total_common(bool count_ignored) 2704 { 2705 RAMBlock *block; 2706 uint64_t total = 0; 2707 2708 rcu_read_lock(); 2709 if (count_ignored) { 2710 RAMBLOCK_FOREACH_MIGRATABLE(block) { 2711 total += block->used_length; 2712 } 2713 } else { 2714 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 2715 total += block->used_length; 2716 } 2717 } 2718 rcu_read_unlock(); 2719 return total; 2720 } 2721 2722 uint64_t ram_bytes_total(void) 2723 { 2724 return ram_bytes_total_common(false); 2725 } 2726 2727 static void xbzrle_load_setup(void) 2728 { 2729 XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE); 2730 } 2731 2732 static void xbzrle_load_cleanup(void) 2733 { 2734 g_free(XBZRLE.decoded_buf); 2735 XBZRLE.decoded_buf = NULL; 2736 } 2737 2738 static void ram_state_cleanup(RAMState **rsp) 2739 { 2740 if (*rsp) { 2741 migration_page_queue_free(*rsp); 2742 qemu_mutex_destroy(&(*rsp)->bitmap_mutex); 2743 qemu_mutex_destroy(&(*rsp)->src_page_req_mutex); 2744 g_free(*rsp); 2745 *rsp = NULL; 2746 } 2747 } 2748 2749 static void xbzrle_cleanup(void) 2750 { 2751 XBZRLE_cache_lock(); 2752 if (XBZRLE.cache) { 2753 cache_fini(XBZRLE.cache); 2754 g_free(XBZRLE.encoded_buf); 2755 g_free(XBZRLE.current_buf); 2756 g_free(XBZRLE.zero_target_page); 2757 XBZRLE.cache = NULL; 2758 XBZRLE.encoded_buf = NULL; 2759 XBZRLE.current_buf = NULL; 2760 XBZRLE.zero_target_page = NULL; 2761 } 2762 XBZRLE_cache_unlock(); 2763 } 2764 2765 static void ram_save_cleanup(void *opaque) 2766 { 2767 RAMState **rsp = opaque; 2768 RAMBlock *block; 2769 2770 /* caller have hold iothread lock or is in a bh, so there is 2771 * no writing race against the migration bitmap 2772 */ 2773 memory_global_dirty_log_stop(); 2774 2775 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 2776 g_free(block->clear_bmap); 2777 block->clear_bmap = NULL; 2778 g_free(block->bmap); 2779 block->bmap = NULL; 2780 g_free(block->unsentmap); 2781 block->unsentmap = NULL; 2782 } 2783 2784 xbzrle_cleanup(); 2785 compress_threads_save_cleanup(); 2786 ram_state_cleanup(rsp); 2787 } 2788 2789 static void ram_state_reset(RAMState *rs) 2790 { 2791 rs->last_seen_block = NULL; 2792 rs->last_sent_block = NULL; 2793 rs->last_page = 0; 2794 rs->last_version = ram_list.version; 2795 rs->ram_bulk_stage = true; 2796 rs->fpo_enabled = false; 2797 } 2798 2799 #define MAX_WAIT 50 /* ms, half buffered_file limit */ 2800 2801 /* 2802 * 'expected' is the value you expect the bitmap mostly to be full 2803 * of; it won't bother printing lines that are all this value. 2804 * If 'todump' is null the migration bitmap is dumped. 2805 */ 2806 void ram_debug_dump_bitmap(unsigned long *todump, bool expected, 2807 unsigned long pages) 2808 { 2809 int64_t cur; 2810 int64_t linelen = 128; 2811 char linebuf[129]; 2812 2813 for (cur = 0; cur < pages; cur += linelen) { 2814 int64_t curb; 2815 bool found = false; 2816 /* 2817 * Last line; catch the case where the line length 2818 * is longer than remaining ram 2819 */ 2820 if (cur + linelen > pages) { 2821 linelen = pages - cur; 2822 } 2823 for (curb = 0; curb < linelen; curb++) { 2824 bool thisbit = test_bit(cur + curb, todump); 2825 linebuf[curb] = thisbit ? '1' : '.'; 2826 found = found || (thisbit != expected); 2827 } 2828 if (found) { 2829 linebuf[curb] = '\0'; 2830 fprintf(stderr, "0x%08" PRIx64 " : %s\n", cur, linebuf); 2831 } 2832 } 2833 } 2834 2835 /* **** functions for postcopy ***** */ 2836 2837 void ram_postcopy_migrated_memory_release(MigrationState *ms) 2838 { 2839 struct RAMBlock *block; 2840 2841 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 2842 unsigned long *bitmap = block->bmap; 2843 unsigned long range = block->used_length >> TARGET_PAGE_BITS; 2844 unsigned long run_start = find_next_zero_bit(bitmap, range, 0); 2845 2846 while (run_start < range) { 2847 unsigned long run_end = find_next_bit(bitmap, range, run_start + 1); 2848 ram_discard_range(block->idstr, run_start << TARGET_PAGE_BITS, 2849 (run_end - run_start) << TARGET_PAGE_BITS); 2850 run_start = find_next_zero_bit(bitmap, range, run_end + 1); 2851 } 2852 } 2853 } 2854 2855 /** 2856 * postcopy_send_discard_bm_ram: discard a RAMBlock 2857 * 2858 * Returns zero on success 2859 * 2860 * Callback from postcopy_each_ram_send_discard for each RAMBlock 2861 * Note: At this point the 'unsentmap' is the processed bitmap combined 2862 * with the dirtymap; so a '1' means it's either dirty or unsent. 2863 * 2864 * @ms: current migration state 2865 * @block: RAMBlock to discard 2866 */ 2867 static int postcopy_send_discard_bm_ram(MigrationState *ms, RAMBlock *block) 2868 { 2869 unsigned long end = block->used_length >> TARGET_PAGE_BITS; 2870 unsigned long current; 2871 unsigned long *unsentmap = block->unsentmap; 2872 2873 for (current = 0; current < end; ) { 2874 unsigned long one = find_next_bit(unsentmap, end, current); 2875 unsigned long zero, discard_length; 2876 2877 if (one >= end) { 2878 break; 2879 } 2880 2881 zero = find_next_zero_bit(unsentmap, end, one + 1); 2882 2883 if (zero >= end) { 2884 discard_length = end - one; 2885 } else { 2886 discard_length = zero - one; 2887 } 2888 postcopy_discard_send_range(ms, one, discard_length); 2889 current = one + discard_length; 2890 } 2891 2892 return 0; 2893 } 2894 2895 /** 2896 * postcopy_each_ram_send_discard: discard all RAMBlocks 2897 * 2898 * Returns 0 for success or negative for error 2899 * 2900 * Utility for the outgoing postcopy code. 2901 * Calls postcopy_send_discard_bm_ram for each RAMBlock 2902 * passing it bitmap indexes and name. 2903 * (qemu_ram_foreach_block ends up passing unscaled lengths 2904 * which would mean postcopy code would have to deal with target page) 2905 * 2906 * @ms: current migration state 2907 */ 2908 static int postcopy_each_ram_send_discard(MigrationState *ms) 2909 { 2910 struct RAMBlock *block; 2911 int ret; 2912 2913 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 2914 postcopy_discard_send_init(ms, block->idstr); 2915 2916 /* 2917 * Postcopy sends chunks of bitmap over the wire, but it 2918 * just needs indexes at this point, avoids it having 2919 * target page specific code. 2920 */ 2921 ret = postcopy_send_discard_bm_ram(ms, block); 2922 postcopy_discard_send_finish(ms); 2923 if (ret) { 2924 return ret; 2925 } 2926 } 2927 2928 return 0; 2929 } 2930 2931 /** 2932 * postcopy_chunk_hostpages_pass: canocalize bitmap in hostpages 2933 * 2934 * Helper for postcopy_chunk_hostpages; it's called twice to 2935 * canonicalize the two bitmaps, that are similar, but one is 2936 * inverted. 2937 * 2938 * Postcopy requires that all target pages in a hostpage are dirty or 2939 * clean, not a mix. This function canonicalizes the bitmaps. 2940 * 2941 * @ms: current migration state 2942 * @unsent_pass: if true we need to canonicalize partially unsent host pages 2943 * otherwise we need to canonicalize partially dirty host pages 2944 * @block: block that contains the page we want to canonicalize 2945 */ 2946 static void postcopy_chunk_hostpages_pass(MigrationState *ms, bool unsent_pass, 2947 RAMBlock *block) 2948 { 2949 RAMState *rs = ram_state; 2950 unsigned long *bitmap = block->bmap; 2951 unsigned long *unsentmap = block->unsentmap; 2952 unsigned int host_ratio = block->page_size / TARGET_PAGE_SIZE; 2953 unsigned long pages = block->used_length >> TARGET_PAGE_BITS; 2954 unsigned long run_start; 2955 2956 if (block->page_size == TARGET_PAGE_SIZE) { 2957 /* Easy case - TPS==HPS for a non-huge page RAMBlock */ 2958 return; 2959 } 2960 2961 if (unsent_pass) { 2962 /* Find a sent page */ 2963 run_start = find_next_zero_bit(unsentmap, pages, 0); 2964 } else { 2965 /* Find a dirty page */ 2966 run_start = find_next_bit(bitmap, pages, 0); 2967 } 2968 2969 while (run_start < pages) { 2970 2971 /* 2972 * If the start of this run of pages is in the middle of a host 2973 * page, then we need to fixup this host page. 2974 */ 2975 if (QEMU_IS_ALIGNED(run_start, host_ratio)) { 2976 /* Find the end of this run */ 2977 if (unsent_pass) { 2978 run_start = find_next_bit(unsentmap, pages, run_start + 1); 2979 } else { 2980 run_start = find_next_zero_bit(bitmap, pages, run_start + 1); 2981 } 2982 /* 2983 * If the end isn't at the start of a host page, then the 2984 * run doesn't finish at the end of a host page 2985 * and we need to discard. 2986 */ 2987 } 2988 2989 if (!QEMU_IS_ALIGNED(run_start, host_ratio)) { 2990 unsigned long page; 2991 unsigned long fixup_start_addr = QEMU_ALIGN_DOWN(run_start, 2992 host_ratio); 2993 run_start = QEMU_ALIGN_UP(run_start, host_ratio); 2994 2995 /* Tell the destination to discard this page */ 2996 if (unsent_pass || !test_bit(fixup_start_addr, unsentmap)) { 2997 /* For the unsent_pass we: 2998 * discard partially sent pages 2999 * For the !unsent_pass (dirty) we: 3000 * discard partially dirty pages that were sent 3001 * (any partially sent pages were already discarded 3002 * by the previous unsent_pass) 3003 */ 3004 postcopy_discard_send_range(ms, fixup_start_addr, host_ratio); 3005 } 3006 3007 /* Clean up the bitmap */ 3008 for (page = fixup_start_addr; 3009 page < fixup_start_addr + host_ratio; page++) { 3010 /* All pages in this host page are now not sent */ 3011 set_bit(page, unsentmap); 3012 3013 /* 3014 * Remark them as dirty, updating the count for any pages 3015 * that weren't previously dirty. 3016 */ 3017 rs->migration_dirty_pages += !test_and_set_bit(page, bitmap); 3018 } 3019 } 3020 3021 if (unsent_pass) { 3022 /* Find the next sent page for the next iteration */ 3023 run_start = find_next_zero_bit(unsentmap, pages, run_start); 3024 } else { 3025 /* Find the next dirty page for the next iteration */ 3026 run_start = find_next_bit(bitmap, pages, run_start); 3027 } 3028 } 3029 } 3030 3031 /** 3032 * postcopy_chunk_hostpages: discard any partially sent host page 3033 * 3034 * Utility for the outgoing postcopy code. 3035 * 3036 * Discard any partially sent host-page size chunks, mark any partially 3037 * dirty host-page size chunks as all dirty. In this case the host-page 3038 * is the host-page for the particular RAMBlock, i.e. it might be a huge page 3039 * 3040 * Returns zero on success 3041 * 3042 * @ms: current migration state 3043 * @block: block we want to work with 3044 */ 3045 static int postcopy_chunk_hostpages(MigrationState *ms, RAMBlock *block) 3046 { 3047 postcopy_discard_send_init(ms, block->idstr); 3048 3049 /* First pass: Discard all partially sent host pages */ 3050 postcopy_chunk_hostpages_pass(ms, true, block); 3051 /* 3052 * Second pass: Ensure that all partially dirty host pages are made 3053 * fully dirty. 3054 */ 3055 postcopy_chunk_hostpages_pass(ms, false, block); 3056 3057 postcopy_discard_send_finish(ms); 3058 return 0; 3059 } 3060 3061 /** 3062 * ram_postcopy_send_discard_bitmap: transmit the discard bitmap 3063 * 3064 * Returns zero on success 3065 * 3066 * Transmit the set of pages to be discarded after precopy to the target 3067 * these are pages that: 3068 * a) Have been previously transmitted but are now dirty again 3069 * b) Pages that have never been transmitted, this ensures that 3070 * any pages on the destination that have been mapped by background 3071 * tasks get discarded (transparent huge pages is the specific concern) 3072 * Hopefully this is pretty sparse 3073 * 3074 * @ms: current migration state 3075 */ 3076 int ram_postcopy_send_discard_bitmap(MigrationState *ms) 3077 { 3078 RAMState *rs = ram_state; 3079 RAMBlock *block; 3080 int ret; 3081 3082 rcu_read_lock(); 3083 3084 /* This should be our last sync, the src is now paused */ 3085 migration_bitmap_sync(rs); 3086 3087 /* Easiest way to make sure we don't resume in the middle of a host-page */ 3088 rs->last_seen_block = NULL; 3089 rs->last_sent_block = NULL; 3090 rs->last_page = 0; 3091 3092 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3093 unsigned long pages = block->used_length >> TARGET_PAGE_BITS; 3094 unsigned long *bitmap = block->bmap; 3095 unsigned long *unsentmap = block->unsentmap; 3096 3097 if (!unsentmap) { 3098 /* We don't have a safe way to resize the sentmap, so 3099 * if the bitmap was resized it will be NULL at this 3100 * point. 3101 */ 3102 error_report("migration ram resized during precopy phase"); 3103 rcu_read_unlock(); 3104 return -EINVAL; 3105 } 3106 /* Deal with TPS != HPS and huge pages */ 3107 ret = postcopy_chunk_hostpages(ms, block); 3108 if (ret) { 3109 rcu_read_unlock(); 3110 return ret; 3111 } 3112 3113 /* 3114 * Update the unsentmap to be unsentmap = unsentmap | dirty 3115 */ 3116 bitmap_or(unsentmap, unsentmap, bitmap, pages); 3117 #ifdef DEBUG_POSTCOPY 3118 ram_debug_dump_bitmap(unsentmap, true, pages); 3119 #endif 3120 } 3121 trace_ram_postcopy_send_discard_bitmap(); 3122 3123 ret = postcopy_each_ram_send_discard(ms); 3124 rcu_read_unlock(); 3125 3126 return ret; 3127 } 3128 3129 /** 3130 * ram_discard_range: discard dirtied pages at the beginning of postcopy 3131 * 3132 * Returns zero on success 3133 * 3134 * @rbname: name of the RAMBlock of the request. NULL means the 3135 * same that last one. 3136 * @start: RAMBlock starting page 3137 * @length: RAMBlock size 3138 */ 3139 int ram_discard_range(const char *rbname, uint64_t start, size_t length) 3140 { 3141 int ret = -1; 3142 3143 trace_ram_discard_range(rbname, start, length); 3144 3145 rcu_read_lock(); 3146 RAMBlock *rb = qemu_ram_block_by_name(rbname); 3147 3148 if (!rb) { 3149 error_report("ram_discard_range: Failed to find block '%s'", rbname); 3150 goto err; 3151 } 3152 3153 /* 3154 * On source VM, we don't need to update the received bitmap since 3155 * we don't even have one. 3156 */ 3157 if (rb->receivedmap) { 3158 bitmap_clear(rb->receivedmap, start >> qemu_target_page_bits(), 3159 length >> qemu_target_page_bits()); 3160 } 3161 3162 ret = ram_block_discard_range(rb, start, length); 3163 3164 err: 3165 rcu_read_unlock(); 3166 3167 return ret; 3168 } 3169 3170 /* 3171 * For every allocation, we will try not to crash the VM if the 3172 * allocation failed. 3173 */ 3174 static int xbzrle_init(void) 3175 { 3176 Error *local_err = NULL; 3177 3178 if (!migrate_use_xbzrle()) { 3179 return 0; 3180 } 3181 3182 XBZRLE_cache_lock(); 3183 3184 XBZRLE.zero_target_page = g_try_malloc0(TARGET_PAGE_SIZE); 3185 if (!XBZRLE.zero_target_page) { 3186 error_report("%s: Error allocating zero page", __func__); 3187 goto err_out; 3188 } 3189 3190 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size(), 3191 TARGET_PAGE_SIZE, &local_err); 3192 if (!XBZRLE.cache) { 3193 error_report_err(local_err); 3194 goto free_zero_page; 3195 } 3196 3197 XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE); 3198 if (!XBZRLE.encoded_buf) { 3199 error_report("%s: Error allocating encoded_buf", __func__); 3200 goto free_cache; 3201 } 3202 3203 XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE); 3204 if (!XBZRLE.current_buf) { 3205 error_report("%s: Error allocating current_buf", __func__); 3206 goto free_encoded_buf; 3207 } 3208 3209 /* We are all good */ 3210 XBZRLE_cache_unlock(); 3211 return 0; 3212 3213 free_encoded_buf: 3214 g_free(XBZRLE.encoded_buf); 3215 XBZRLE.encoded_buf = NULL; 3216 free_cache: 3217 cache_fini(XBZRLE.cache); 3218 XBZRLE.cache = NULL; 3219 free_zero_page: 3220 g_free(XBZRLE.zero_target_page); 3221 XBZRLE.zero_target_page = NULL; 3222 err_out: 3223 XBZRLE_cache_unlock(); 3224 return -ENOMEM; 3225 } 3226 3227 static int ram_state_init(RAMState **rsp) 3228 { 3229 *rsp = g_try_new0(RAMState, 1); 3230 3231 if (!*rsp) { 3232 error_report("%s: Init ramstate fail", __func__); 3233 return -1; 3234 } 3235 3236 qemu_mutex_init(&(*rsp)->bitmap_mutex); 3237 qemu_mutex_init(&(*rsp)->src_page_req_mutex); 3238 QSIMPLEQ_INIT(&(*rsp)->src_page_requests); 3239 3240 /* 3241 * Count the total number of pages used by ram blocks not including any 3242 * gaps due to alignment or unplugs. 3243 * This must match with the initial values of dirty bitmap. 3244 */ 3245 (*rsp)->migration_dirty_pages = ram_bytes_total() >> TARGET_PAGE_BITS; 3246 ram_state_reset(*rsp); 3247 3248 return 0; 3249 } 3250 3251 static void ram_list_init_bitmaps(void) 3252 { 3253 MigrationState *ms = migrate_get_current(); 3254 RAMBlock *block; 3255 unsigned long pages; 3256 uint8_t shift; 3257 3258 /* Skip setting bitmap if there is no RAM */ 3259 if (ram_bytes_total()) { 3260 shift = ms->clear_bitmap_shift; 3261 if (shift > CLEAR_BITMAP_SHIFT_MAX) { 3262 error_report("clear_bitmap_shift (%u) too big, using " 3263 "max value (%u)", shift, CLEAR_BITMAP_SHIFT_MAX); 3264 shift = CLEAR_BITMAP_SHIFT_MAX; 3265 } else if (shift < CLEAR_BITMAP_SHIFT_MIN) { 3266 error_report("clear_bitmap_shift (%u) too small, using " 3267 "min value (%u)", shift, CLEAR_BITMAP_SHIFT_MIN); 3268 shift = CLEAR_BITMAP_SHIFT_MIN; 3269 } 3270 3271 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3272 pages = block->max_length >> TARGET_PAGE_BITS; 3273 /* 3274 * The initial dirty bitmap for migration must be set with all 3275 * ones to make sure we'll migrate every guest RAM page to 3276 * destination. 3277 * Here we set RAMBlock.bmap all to 1 because when rebegin a 3278 * new migration after a failed migration, ram_list. 3279 * dirty_memory[DIRTY_MEMORY_MIGRATION] don't include the whole 3280 * guest memory. 3281 */ 3282 block->bmap = bitmap_new(pages); 3283 bitmap_set(block->bmap, 0, pages); 3284 block->clear_bmap_shift = shift; 3285 block->clear_bmap = bitmap_new(clear_bmap_size(pages, shift)); 3286 if (migrate_postcopy_ram()) { 3287 block->unsentmap = bitmap_new(pages); 3288 bitmap_set(block->unsentmap, 0, pages); 3289 } 3290 } 3291 } 3292 } 3293 3294 static void ram_init_bitmaps(RAMState *rs) 3295 { 3296 /* For memory_global_dirty_log_start below. */ 3297 qemu_mutex_lock_iothread(); 3298 qemu_mutex_lock_ramlist(); 3299 rcu_read_lock(); 3300 3301 ram_list_init_bitmaps(); 3302 memory_global_dirty_log_start(); 3303 migration_bitmap_sync_precopy(rs); 3304 3305 rcu_read_unlock(); 3306 qemu_mutex_unlock_ramlist(); 3307 qemu_mutex_unlock_iothread(); 3308 } 3309 3310 static int ram_init_all(RAMState **rsp) 3311 { 3312 if (ram_state_init(rsp)) { 3313 return -1; 3314 } 3315 3316 if (xbzrle_init()) { 3317 ram_state_cleanup(rsp); 3318 return -1; 3319 } 3320 3321 ram_init_bitmaps(*rsp); 3322 3323 return 0; 3324 } 3325 3326 static void ram_state_resume_prepare(RAMState *rs, QEMUFile *out) 3327 { 3328 RAMBlock *block; 3329 uint64_t pages = 0; 3330 3331 /* 3332 * Postcopy is not using xbzrle/compression, so no need for that. 3333 * Also, since source are already halted, we don't need to care 3334 * about dirty page logging as well. 3335 */ 3336 3337 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3338 pages += bitmap_count_one(block->bmap, 3339 block->used_length >> TARGET_PAGE_BITS); 3340 } 3341 3342 /* This may not be aligned with current bitmaps. Recalculate. */ 3343 rs->migration_dirty_pages = pages; 3344 3345 rs->last_seen_block = NULL; 3346 rs->last_sent_block = NULL; 3347 rs->last_page = 0; 3348 rs->last_version = ram_list.version; 3349 /* 3350 * Disable the bulk stage, otherwise we'll resend the whole RAM no 3351 * matter what we have sent. 3352 */ 3353 rs->ram_bulk_stage = false; 3354 3355 /* Update RAMState cache of output QEMUFile */ 3356 rs->f = out; 3357 3358 trace_ram_state_resume_prepare(pages); 3359 } 3360 3361 /* 3362 * This function clears bits of the free pages reported by the caller from the 3363 * migration dirty bitmap. @addr is the host address corresponding to the 3364 * start of the continuous guest free pages, and @len is the total bytes of 3365 * those pages. 3366 */ 3367 void qemu_guest_free_page_hint(void *addr, size_t len) 3368 { 3369 RAMBlock *block; 3370 ram_addr_t offset; 3371 size_t used_len, start, npages; 3372 MigrationState *s = migrate_get_current(); 3373 3374 /* This function is currently expected to be used during live migration */ 3375 if (!migration_is_setup_or_active(s->state)) { 3376 return; 3377 } 3378 3379 for (; len > 0; len -= used_len, addr += used_len) { 3380 block = qemu_ram_block_from_host(addr, false, &offset); 3381 if (unlikely(!block || offset >= block->used_length)) { 3382 /* 3383 * The implementation might not support RAMBlock resize during 3384 * live migration, but it could happen in theory with future 3385 * updates. So we add a check here to capture that case. 3386 */ 3387 error_report_once("%s unexpected error", __func__); 3388 return; 3389 } 3390 3391 if (len <= block->used_length - offset) { 3392 used_len = len; 3393 } else { 3394 used_len = block->used_length - offset; 3395 } 3396 3397 start = offset >> TARGET_PAGE_BITS; 3398 npages = used_len >> TARGET_PAGE_BITS; 3399 3400 qemu_mutex_lock(&ram_state->bitmap_mutex); 3401 ram_state->migration_dirty_pages -= 3402 bitmap_count_one_with_offset(block->bmap, start, npages); 3403 bitmap_clear(block->bmap, start, npages); 3404 qemu_mutex_unlock(&ram_state->bitmap_mutex); 3405 } 3406 } 3407 3408 /* 3409 * Each of ram_save_setup, ram_save_iterate and ram_save_complete has 3410 * long-running RCU critical section. When rcu-reclaims in the code 3411 * start to become numerous it will be necessary to reduce the 3412 * granularity of these critical sections. 3413 */ 3414 3415 /** 3416 * ram_save_setup: Setup RAM for migration 3417 * 3418 * Returns zero to indicate success and negative for error 3419 * 3420 * @f: QEMUFile where to send the data 3421 * @opaque: RAMState pointer 3422 */ 3423 static int ram_save_setup(QEMUFile *f, void *opaque) 3424 { 3425 RAMState **rsp = opaque; 3426 RAMBlock *block; 3427 3428 if (compress_threads_save_setup()) { 3429 return -1; 3430 } 3431 3432 /* migration has already setup the bitmap, reuse it. */ 3433 if (!migration_in_colo_state()) { 3434 if (ram_init_all(rsp) != 0) { 3435 compress_threads_save_cleanup(); 3436 return -1; 3437 } 3438 } 3439 (*rsp)->f = f; 3440 3441 rcu_read_lock(); 3442 3443 qemu_put_be64(f, ram_bytes_total_common(true) | RAM_SAVE_FLAG_MEM_SIZE); 3444 3445 RAMBLOCK_FOREACH_MIGRATABLE(block) { 3446 qemu_put_byte(f, strlen(block->idstr)); 3447 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr)); 3448 qemu_put_be64(f, block->used_length); 3449 if (migrate_postcopy_ram() && block->page_size != qemu_host_page_size) { 3450 qemu_put_be64(f, block->page_size); 3451 } 3452 if (migrate_ignore_shared()) { 3453 qemu_put_be64(f, block->mr->addr); 3454 } 3455 } 3456 3457 rcu_read_unlock(); 3458 3459 ram_control_before_iterate(f, RAM_CONTROL_SETUP); 3460 ram_control_after_iterate(f, RAM_CONTROL_SETUP); 3461 3462 multifd_send_sync_main(*rsp); 3463 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 3464 qemu_fflush(f); 3465 3466 return 0; 3467 } 3468 3469 /** 3470 * ram_save_iterate: iterative stage for migration 3471 * 3472 * Returns zero to indicate success and negative for error 3473 * 3474 * @f: QEMUFile where to send the data 3475 * @opaque: RAMState pointer 3476 */ 3477 static int ram_save_iterate(QEMUFile *f, void *opaque) 3478 { 3479 RAMState **temp = opaque; 3480 RAMState *rs = *temp; 3481 int ret; 3482 int i; 3483 int64_t t0; 3484 int done = 0; 3485 3486 if (blk_mig_bulk_active()) { 3487 /* Avoid transferring ram during bulk phase of block migration as 3488 * the bulk phase will usually take a long time and transferring 3489 * ram updates during that time is pointless. */ 3490 goto out; 3491 } 3492 3493 rcu_read_lock(); 3494 if (ram_list.version != rs->last_version) { 3495 ram_state_reset(rs); 3496 } 3497 3498 /* Read version before ram_list.blocks */ 3499 smp_rmb(); 3500 3501 ram_control_before_iterate(f, RAM_CONTROL_ROUND); 3502 3503 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 3504 i = 0; 3505 while ((ret = qemu_file_rate_limit(f)) == 0 || 3506 !QSIMPLEQ_EMPTY(&rs->src_page_requests)) { 3507 int pages; 3508 3509 if (qemu_file_get_error(f)) { 3510 break; 3511 } 3512 3513 pages = ram_find_and_save_block(rs, false); 3514 /* no more pages to sent */ 3515 if (pages == 0) { 3516 done = 1; 3517 break; 3518 } 3519 3520 if (pages < 0) { 3521 qemu_file_set_error(f, pages); 3522 break; 3523 } 3524 3525 rs->target_page_count += pages; 3526 3527 /* we want to check in the 1st loop, just in case it was the 1st time 3528 and we had to sync the dirty bitmap. 3529 qemu_clock_get_ns() is a bit expensive, so we only check each some 3530 iterations 3531 */ 3532 if ((i & 63) == 0) { 3533 uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) / 1000000; 3534 if (t1 > MAX_WAIT) { 3535 trace_ram_save_iterate_big_wait(t1, i); 3536 break; 3537 } 3538 } 3539 i++; 3540 } 3541 rcu_read_unlock(); 3542 3543 /* 3544 * Must occur before EOS (or any QEMUFile operation) 3545 * because of RDMA protocol. 3546 */ 3547 ram_control_after_iterate(f, RAM_CONTROL_ROUND); 3548 3549 out: 3550 multifd_send_sync_main(rs); 3551 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 3552 qemu_fflush(f); 3553 ram_counters.transferred += 8; 3554 3555 ret = qemu_file_get_error(f); 3556 if (ret < 0) { 3557 return ret; 3558 } 3559 3560 return done; 3561 } 3562 3563 /** 3564 * ram_save_complete: function called to send the remaining amount of ram 3565 * 3566 * Returns zero to indicate success or negative on error 3567 * 3568 * Called with iothread lock 3569 * 3570 * @f: QEMUFile where to send the data 3571 * @opaque: RAMState pointer 3572 */ 3573 static int ram_save_complete(QEMUFile *f, void *opaque) 3574 { 3575 RAMState **temp = opaque; 3576 RAMState *rs = *temp; 3577 int ret = 0; 3578 3579 rcu_read_lock(); 3580 3581 if (!migration_in_postcopy()) { 3582 migration_bitmap_sync_precopy(rs); 3583 } 3584 3585 ram_control_before_iterate(f, RAM_CONTROL_FINISH); 3586 3587 /* try transferring iterative blocks of memory */ 3588 3589 /* flush all remaining blocks regardless of rate limiting */ 3590 while (true) { 3591 int pages; 3592 3593 pages = ram_find_and_save_block(rs, !migration_in_colo_state()); 3594 /* no more blocks to sent */ 3595 if (pages == 0) { 3596 break; 3597 } 3598 if (pages < 0) { 3599 ret = pages; 3600 break; 3601 } 3602 } 3603 3604 flush_compressed_data(rs); 3605 ram_control_after_iterate(f, RAM_CONTROL_FINISH); 3606 3607 rcu_read_unlock(); 3608 3609 multifd_send_sync_main(rs); 3610 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 3611 qemu_fflush(f); 3612 3613 return ret; 3614 } 3615 3616 static void ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size, 3617 uint64_t *res_precopy_only, 3618 uint64_t *res_compatible, 3619 uint64_t *res_postcopy_only) 3620 { 3621 RAMState **temp = opaque; 3622 RAMState *rs = *temp; 3623 uint64_t remaining_size; 3624 3625 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE; 3626 3627 if (!migration_in_postcopy() && 3628 remaining_size < max_size) { 3629 qemu_mutex_lock_iothread(); 3630 rcu_read_lock(); 3631 migration_bitmap_sync_precopy(rs); 3632 rcu_read_unlock(); 3633 qemu_mutex_unlock_iothread(); 3634 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE; 3635 } 3636 3637 if (migrate_postcopy_ram()) { 3638 /* We can do postcopy, and all the data is postcopiable */ 3639 *res_compatible += remaining_size; 3640 } else { 3641 *res_precopy_only += remaining_size; 3642 } 3643 } 3644 3645 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host) 3646 { 3647 unsigned int xh_len; 3648 int xh_flags; 3649 uint8_t *loaded_data; 3650 3651 /* extract RLE header */ 3652 xh_flags = qemu_get_byte(f); 3653 xh_len = qemu_get_be16(f); 3654 3655 if (xh_flags != ENCODING_FLAG_XBZRLE) { 3656 error_report("Failed to load XBZRLE page - wrong compression!"); 3657 return -1; 3658 } 3659 3660 if (xh_len > TARGET_PAGE_SIZE) { 3661 error_report("Failed to load XBZRLE page - len overflow!"); 3662 return -1; 3663 } 3664 loaded_data = XBZRLE.decoded_buf; 3665 /* load data and decode */ 3666 /* it can change loaded_data to point to an internal buffer */ 3667 qemu_get_buffer_in_place(f, &loaded_data, xh_len); 3668 3669 /* decode RLE */ 3670 if (xbzrle_decode_buffer(loaded_data, xh_len, host, 3671 TARGET_PAGE_SIZE) == -1) { 3672 error_report("Failed to load XBZRLE page - decode error!"); 3673 return -1; 3674 } 3675 3676 return 0; 3677 } 3678 3679 /** 3680 * ram_block_from_stream: read a RAMBlock id from the migration stream 3681 * 3682 * Must be called from within a rcu critical section. 3683 * 3684 * Returns a pointer from within the RCU-protected ram_list. 3685 * 3686 * @f: QEMUFile where to read the data from 3687 * @flags: Page flags (mostly to see if it's a continuation of previous block) 3688 */ 3689 static inline RAMBlock *ram_block_from_stream(QEMUFile *f, int flags) 3690 { 3691 static RAMBlock *block = NULL; 3692 char id[256]; 3693 uint8_t len; 3694 3695 if (flags & RAM_SAVE_FLAG_CONTINUE) { 3696 if (!block) { 3697 error_report("Ack, bad migration stream!"); 3698 return NULL; 3699 } 3700 return block; 3701 } 3702 3703 len = qemu_get_byte(f); 3704 qemu_get_buffer(f, (uint8_t *)id, len); 3705 id[len] = 0; 3706 3707 block = qemu_ram_block_by_name(id); 3708 if (!block) { 3709 error_report("Can't find block %s", id); 3710 return NULL; 3711 } 3712 3713 if (ramblock_is_ignored(block)) { 3714 error_report("block %s should not be migrated !", id); 3715 return NULL; 3716 } 3717 3718 return block; 3719 } 3720 3721 static inline void *host_from_ram_block_offset(RAMBlock *block, 3722 ram_addr_t offset) 3723 { 3724 if (!offset_in_ramblock(block, offset)) { 3725 return NULL; 3726 } 3727 3728 return block->host + offset; 3729 } 3730 3731 static inline void *colo_cache_from_block_offset(RAMBlock *block, 3732 ram_addr_t offset) 3733 { 3734 if (!offset_in_ramblock(block, offset)) { 3735 return NULL; 3736 } 3737 if (!block->colo_cache) { 3738 error_report("%s: colo_cache is NULL in block :%s", 3739 __func__, block->idstr); 3740 return NULL; 3741 } 3742 3743 /* 3744 * During colo checkpoint, we need bitmap of these migrated pages. 3745 * It help us to decide which pages in ram cache should be flushed 3746 * into VM's RAM later. 3747 */ 3748 if (!test_and_set_bit(offset >> TARGET_PAGE_BITS, block->bmap)) { 3749 ram_state->migration_dirty_pages++; 3750 } 3751 return block->colo_cache + offset; 3752 } 3753 3754 /** 3755 * ram_handle_compressed: handle the zero page case 3756 * 3757 * If a page (or a whole RDMA chunk) has been 3758 * determined to be zero, then zap it. 3759 * 3760 * @host: host address for the zero page 3761 * @ch: what the page is filled from. We only support zero 3762 * @size: size of the zero page 3763 */ 3764 void ram_handle_compressed(void *host, uint8_t ch, uint64_t size) 3765 { 3766 if (ch != 0 || !is_zero_range(host, size)) { 3767 memset(host, ch, size); 3768 } 3769 } 3770 3771 /* return the size after decompression, or negative value on error */ 3772 static int 3773 qemu_uncompress_data(z_stream *stream, uint8_t *dest, size_t dest_len, 3774 const uint8_t *source, size_t source_len) 3775 { 3776 int err; 3777 3778 err = inflateReset(stream); 3779 if (err != Z_OK) { 3780 return -1; 3781 } 3782 3783 stream->avail_in = source_len; 3784 stream->next_in = (uint8_t *)source; 3785 stream->avail_out = dest_len; 3786 stream->next_out = dest; 3787 3788 err = inflate(stream, Z_NO_FLUSH); 3789 if (err != Z_STREAM_END) { 3790 return -1; 3791 } 3792 3793 return stream->total_out; 3794 } 3795 3796 static void *do_data_decompress(void *opaque) 3797 { 3798 DecompressParam *param = opaque; 3799 unsigned long pagesize; 3800 uint8_t *des; 3801 int len, ret; 3802 3803 qemu_mutex_lock(¶m->mutex); 3804 while (!param->quit) { 3805 if (param->des) { 3806 des = param->des; 3807 len = param->len; 3808 param->des = 0; 3809 qemu_mutex_unlock(¶m->mutex); 3810 3811 pagesize = TARGET_PAGE_SIZE; 3812 3813 ret = qemu_uncompress_data(¶m->stream, des, pagesize, 3814 param->compbuf, len); 3815 if (ret < 0 && migrate_get_current()->decompress_error_check) { 3816 error_report("decompress data failed"); 3817 qemu_file_set_error(decomp_file, ret); 3818 } 3819 3820 qemu_mutex_lock(&decomp_done_lock); 3821 param->done = true; 3822 qemu_cond_signal(&decomp_done_cond); 3823 qemu_mutex_unlock(&decomp_done_lock); 3824 3825 qemu_mutex_lock(¶m->mutex); 3826 } else { 3827 qemu_cond_wait(¶m->cond, ¶m->mutex); 3828 } 3829 } 3830 qemu_mutex_unlock(¶m->mutex); 3831 3832 return NULL; 3833 } 3834 3835 static int wait_for_decompress_done(void) 3836 { 3837 int idx, thread_count; 3838 3839 if (!migrate_use_compression()) { 3840 return 0; 3841 } 3842 3843 thread_count = migrate_decompress_threads(); 3844 qemu_mutex_lock(&decomp_done_lock); 3845 for (idx = 0; idx < thread_count; idx++) { 3846 while (!decomp_param[idx].done) { 3847 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock); 3848 } 3849 } 3850 qemu_mutex_unlock(&decomp_done_lock); 3851 return qemu_file_get_error(decomp_file); 3852 } 3853 3854 static void compress_threads_load_cleanup(void) 3855 { 3856 int i, thread_count; 3857 3858 if (!migrate_use_compression()) { 3859 return; 3860 } 3861 thread_count = migrate_decompress_threads(); 3862 for (i = 0; i < thread_count; i++) { 3863 /* 3864 * we use it as a indicator which shows if the thread is 3865 * properly init'd or not 3866 */ 3867 if (!decomp_param[i].compbuf) { 3868 break; 3869 } 3870 3871 qemu_mutex_lock(&decomp_param[i].mutex); 3872 decomp_param[i].quit = true; 3873 qemu_cond_signal(&decomp_param[i].cond); 3874 qemu_mutex_unlock(&decomp_param[i].mutex); 3875 } 3876 for (i = 0; i < thread_count; i++) { 3877 if (!decomp_param[i].compbuf) { 3878 break; 3879 } 3880 3881 qemu_thread_join(decompress_threads + i); 3882 qemu_mutex_destroy(&decomp_param[i].mutex); 3883 qemu_cond_destroy(&decomp_param[i].cond); 3884 inflateEnd(&decomp_param[i].stream); 3885 g_free(decomp_param[i].compbuf); 3886 decomp_param[i].compbuf = NULL; 3887 } 3888 g_free(decompress_threads); 3889 g_free(decomp_param); 3890 decompress_threads = NULL; 3891 decomp_param = NULL; 3892 decomp_file = NULL; 3893 } 3894 3895 static int compress_threads_load_setup(QEMUFile *f) 3896 { 3897 int i, thread_count; 3898 3899 if (!migrate_use_compression()) { 3900 return 0; 3901 } 3902 3903 thread_count = migrate_decompress_threads(); 3904 decompress_threads = g_new0(QemuThread, thread_count); 3905 decomp_param = g_new0(DecompressParam, thread_count); 3906 qemu_mutex_init(&decomp_done_lock); 3907 qemu_cond_init(&decomp_done_cond); 3908 decomp_file = f; 3909 for (i = 0; i < thread_count; i++) { 3910 if (inflateInit(&decomp_param[i].stream) != Z_OK) { 3911 goto exit; 3912 } 3913 3914 decomp_param[i].compbuf = g_malloc0(compressBound(TARGET_PAGE_SIZE)); 3915 qemu_mutex_init(&decomp_param[i].mutex); 3916 qemu_cond_init(&decomp_param[i].cond); 3917 decomp_param[i].done = true; 3918 decomp_param[i].quit = false; 3919 qemu_thread_create(decompress_threads + i, "decompress", 3920 do_data_decompress, decomp_param + i, 3921 QEMU_THREAD_JOINABLE); 3922 } 3923 return 0; 3924 exit: 3925 compress_threads_load_cleanup(); 3926 return -1; 3927 } 3928 3929 static void decompress_data_with_multi_threads(QEMUFile *f, 3930 void *host, int len) 3931 { 3932 int idx, thread_count; 3933 3934 thread_count = migrate_decompress_threads(); 3935 qemu_mutex_lock(&decomp_done_lock); 3936 while (true) { 3937 for (idx = 0; idx < thread_count; idx++) { 3938 if (decomp_param[idx].done) { 3939 decomp_param[idx].done = false; 3940 qemu_mutex_lock(&decomp_param[idx].mutex); 3941 qemu_get_buffer(f, decomp_param[idx].compbuf, len); 3942 decomp_param[idx].des = host; 3943 decomp_param[idx].len = len; 3944 qemu_cond_signal(&decomp_param[idx].cond); 3945 qemu_mutex_unlock(&decomp_param[idx].mutex); 3946 break; 3947 } 3948 } 3949 if (idx < thread_count) { 3950 break; 3951 } else { 3952 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock); 3953 } 3954 } 3955 qemu_mutex_unlock(&decomp_done_lock); 3956 } 3957 3958 /* 3959 * colo cache: this is for secondary VM, we cache the whole 3960 * memory of the secondary VM, it is need to hold the global lock 3961 * to call this helper. 3962 */ 3963 int colo_init_ram_cache(void) 3964 { 3965 RAMBlock *block; 3966 3967 rcu_read_lock(); 3968 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3969 block->colo_cache = qemu_anon_ram_alloc(block->used_length, 3970 NULL, 3971 false); 3972 if (!block->colo_cache) { 3973 error_report("%s: Can't alloc memory for COLO cache of block %s," 3974 "size 0x" RAM_ADDR_FMT, __func__, block->idstr, 3975 block->used_length); 3976 goto out_locked; 3977 } 3978 memcpy(block->colo_cache, block->host, block->used_length); 3979 } 3980 rcu_read_unlock(); 3981 /* 3982 * Record the dirty pages that sent by PVM, we use this dirty bitmap together 3983 * with to decide which page in cache should be flushed into SVM's RAM. Here 3984 * we use the same name 'ram_bitmap' as for migration. 3985 */ 3986 if (ram_bytes_total()) { 3987 RAMBlock *block; 3988 3989 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3990 unsigned long pages = block->max_length >> TARGET_PAGE_BITS; 3991 3992 block->bmap = bitmap_new(pages); 3993 bitmap_set(block->bmap, 0, pages); 3994 } 3995 } 3996 ram_state = g_new0(RAMState, 1); 3997 ram_state->migration_dirty_pages = 0; 3998 qemu_mutex_init(&ram_state->bitmap_mutex); 3999 memory_global_dirty_log_start(); 4000 4001 return 0; 4002 4003 out_locked: 4004 4005 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 4006 if (block->colo_cache) { 4007 qemu_anon_ram_free(block->colo_cache, block->used_length); 4008 block->colo_cache = NULL; 4009 } 4010 } 4011 4012 rcu_read_unlock(); 4013 return -errno; 4014 } 4015 4016 /* It is need to hold the global lock to call this helper */ 4017 void colo_release_ram_cache(void) 4018 { 4019 RAMBlock *block; 4020 4021 memory_global_dirty_log_stop(); 4022 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 4023 g_free(block->bmap); 4024 block->bmap = NULL; 4025 } 4026 4027 rcu_read_lock(); 4028 4029 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 4030 if (block->colo_cache) { 4031 qemu_anon_ram_free(block->colo_cache, block->used_length); 4032 block->colo_cache = NULL; 4033 } 4034 } 4035 4036 rcu_read_unlock(); 4037 qemu_mutex_destroy(&ram_state->bitmap_mutex); 4038 g_free(ram_state); 4039 ram_state = NULL; 4040 } 4041 4042 /** 4043 * ram_load_setup: Setup RAM for migration incoming side 4044 * 4045 * Returns zero to indicate success and negative for error 4046 * 4047 * @f: QEMUFile where to receive the data 4048 * @opaque: RAMState pointer 4049 */ 4050 static int ram_load_setup(QEMUFile *f, void *opaque) 4051 { 4052 if (compress_threads_load_setup(f)) { 4053 return -1; 4054 } 4055 4056 xbzrle_load_setup(); 4057 ramblock_recv_map_init(); 4058 4059 return 0; 4060 } 4061 4062 static int ram_load_cleanup(void *opaque) 4063 { 4064 RAMBlock *rb; 4065 4066 RAMBLOCK_FOREACH_NOT_IGNORED(rb) { 4067 if (ramblock_is_pmem(rb)) { 4068 pmem_persist(rb->host, rb->used_length); 4069 } 4070 } 4071 4072 xbzrle_load_cleanup(); 4073 compress_threads_load_cleanup(); 4074 4075 RAMBLOCK_FOREACH_NOT_IGNORED(rb) { 4076 g_free(rb->receivedmap); 4077 rb->receivedmap = NULL; 4078 } 4079 4080 return 0; 4081 } 4082 4083 /** 4084 * ram_postcopy_incoming_init: allocate postcopy data structures 4085 * 4086 * Returns 0 for success and negative if there was one error 4087 * 4088 * @mis: current migration incoming state 4089 * 4090 * Allocate data structures etc needed by incoming migration with 4091 * postcopy-ram. postcopy-ram's similarly names 4092 * postcopy_ram_incoming_init does the work. 4093 */ 4094 int ram_postcopy_incoming_init(MigrationIncomingState *mis) 4095 { 4096 return postcopy_ram_incoming_init(mis); 4097 } 4098 4099 /** 4100 * ram_load_postcopy: load a page in postcopy case 4101 * 4102 * Returns 0 for success or -errno in case of error 4103 * 4104 * Called in postcopy mode by ram_load(). 4105 * rcu_read_lock is taken prior to this being called. 4106 * 4107 * @f: QEMUFile where to send the data 4108 */ 4109 static int ram_load_postcopy(QEMUFile *f) 4110 { 4111 int flags = 0, ret = 0; 4112 bool place_needed = false; 4113 bool matches_target_page_size = false; 4114 MigrationIncomingState *mis = migration_incoming_get_current(); 4115 /* Temporary page that is later 'placed' */ 4116 void *postcopy_host_page = postcopy_get_tmp_page(mis); 4117 void *last_host = NULL; 4118 bool all_zero = false; 4119 4120 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) { 4121 ram_addr_t addr; 4122 void *host = NULL; 4123 void *page_buffer = NULL; 4124 void *place_source = NULL; 4125 RAMBlock *block = NULL; 4126 uint8_t ch; 4127 4128 addr = qemu_get_be64(f); 4129 4130 /* 4131 * If qemu file error, we should stop here, and then "addr" 4132 * may be invalid 4133 */ 4134 ret = qemu_file_get_error(f); 4135 if (ret) { 4136 break; 4137 } 4138 4139 flags = addr & ~TARGET_PAGE_MASK; 4140 addr &= TARGET_PAGE_MASK; 4141 4142 trace_ram_load_postcopy_loop((uint64_t)addr, flags); 4143 place_needed = false; 4144 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE)) { 4145 block = ram_block_from_stream(f, flags); 4146 4147 host = host_from_ram_block_offset(block, addr); 4148 if (!host) { 4149 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr); 4150 ret = -EINVAL; 4151 break; 4152 } 4153 matches_target_page_size = block->page_size == TARGET_PAGE_SIZE; 4154 /* 4155 * Postcopy requires that we place whole host pages atomically; 4156 * these may be huge pages for RAMBlocks that are backed by 4157 * hugetlbfs. 4158 * To make it atomic, the data is read into a temporary page 4159 * that's moved into place later. 4160 * The migration protocol uses, possibly smaller, target-pages 4161 * however the source ensures it always sends all the components 4162 * of a host page in order. 4163 */ 4164 page_buffer = postcopy_host_page + 4165 ((uintptr_t)host & (block->page_size - 1)); 4166 /* If all TP are zero then we can optimise the place */ 4167 if (!((uintptr_t)host & (block->page_size - 1))) { 4168 all_zero = true; 4169 } else { 4170 /* not the 1st TP within the HP */ 4171 if (host != (last_host + TARGET_PAGE_SIZE)) { 4172 error_report("Non-sequential target page %p/%p", 4173 host, last_host); 4174 ret = -EINVAL; 4175 break; 4176 } 4177 } 4178 4179 4180 /* 4181 * If it's the last part of a host page then we place the host 4182 * page 4183 */ 4184 place_needed = (((uintptr_t)host + TARGET_PAGE_SIZE) & 4185 (block->page_size - 1)) == 0; 4186 place_source = postcopy_host_page; 4187 } 4188 last_host = host; 4189 4190 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) { 4191 case RAM_SAVE_FLAG_ZERO: 4192 ch = qemu_get_byte(f); 4193 memset(page_buffer, ch, TARGET_PAGE_SIZE); 4194 if (ch) { 4195 all_zero = false; 4196 } 4197 break; 4198 4199 case RAM_SAVE_FLAG_PAGE: 4200 all_zero = false; 4201 if (!matches_target_page_size) { 4202 /* For huge pages, we always use temporary buffer */ 4203 qemu_get_buffer(f, page_buffer, TARGET_PAGE_SIZE); 4204 } else { 4205 /* 4206 * For small pages that matches target page size, we 4207 * avoid the qemu_file copy. Instead we directly use 4208 * the buffer of QEMUFile to place the page. Note: we 4209 * cannot do any QEMUFile operation before using that 4210 * buffer to make sure the buffer is valid when 4211 * placing the page. 4212 */ 4213 qemu_get_buffer_in_place(f, (uint8_t **)&place_source, 4214 TARGET_PAGE_SIZE); 4215 } 4216 break; 4217 case RAM_SAVE_FLAG_EOS: 4218 /* normal exit */ 4219 multifd_recv_sync_main(); 4220 break; 4221 default: 4222 error_report("Unknown combination of migration flags: %#x" 4223 " (postcopy mode)", flags); 4224 ret = -EINVAL; 4225 break; 4226 } 4227 4228 /* Detect for any possible file errors */ 4229 if (!ret && qemu_file_get_error(f)) { 4230 ret = qemu_file_get_error(f); 4231 } 4232 4233 if (!ret && place_needed) { 4234 /* This gets called at the last target page in the host page */ 4235 void *place_dest = host + TARGET_PAGE_SIZE - block->page_size; 4236 4237 if (all_zero) { 4238 ret = postcopy_place_page_zero(mis, place_dest, 4239 block); 4240 } else { 4241 ret = postcopy_place_page(mis, place_dest, 4242 place_source, block); 4243 } 4244 } 4245 } 4246 4247 return ret; 4248 } 4249 4250 static bool postcopy_is_advised(void) 4251 { 4252 PostcopyState ps = postcopy_state_get(); 4253 return ps >= POSTCOPY_INCOMING_ADVISE && ps < POSTCOPY_INCOMING_END; 4254 } 4255 4256 static bool postcopy_is_running(void) 4257 { 4258 PostcopyState ps = postcopy_state_get(); 4259 return ps >= POSTCOPY_INCOMING_LISTENING && ps < POSTCOPY_INCOMING_END; 4260 } 4261 4262 /* 4263 * Flush content of RAM cache into SVM's memory. 4264 * Only flush the pages that be dirtied by PVM or SVM or both. 4265 */ 4266 static void colo_flush_ram_cache(void) 4267 { 4268 RAMBlock *block = NULL; 4269 void *dst_host; 4270 void *src_host; 4271 unsigned long offset = 0; 4272 4273 memory_global_dirty_log_sync(); 4274 rcu_read_lock(); 4275 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 4276 ramblock_sync_dirty_bitmap(ram_state, block); 4277 } 4278 rcu_read_unlock(); 4279 4280 trace_colo_flush_ram_cache_begin(ram_state->migration_dirty_pages); 4281 rcu_read_lock(); 4282 block = QLIST_FIRST_RCU(&ram_list.blocks); 4283 4284 while (block) { 4285 offset = migration_bitmap_find_dirty(ram_state, block, offset); 4286 4287 if (offset << TARGET_PAGE_BITS >= block->used_length) { 4288 offset = 0; 4289 block = QLIST_NEXT_RCU(block, next); 4290 } else { 4291 migration_bitmap_clear_dirty(ram_state, block, offset); 4292 dst_host = block->host + (offset << TARGET_PAGE_BITS); 4293 src_host = block->colo_cache + (offset << TARGET_PAGE_BITS); 4294 memcpy(dst_host, src_host, TARGET_PAGE_SIZE); 4295 } 4296 } 4297 4298 rcu_read_unlock(); 4299 trace_colo_flush_ram_cache_end(); 4300 } 4301 4302 /** 4303 * ram_load_precopy: load pages in precopy case 4304 * 4305 * Returns 0 for success or -errno in case of error 4306 * 4307 * Called in precopy mode by ram_load(). 4308 * rcu_read_lock is taken prior to this being called. 4309 * 4310 * @f: QEMUFile where to send the data 4311 */ 4312 static int ram_load_precopy(QEMUFile *f) 4313 { 4314 int flags = 0, ret = 0, invalid_flags = 0, len = 0; 4315 /* ADVISE is earlier, it shows the source has the postcopy capability on */ 4316 bool postcopy_advised = postcopy_is_advised(); 4317 if (!migrate_use_compression()) { 4318 invalid_flags |= RAM_SAVE_FLAG_COMPRESS_PAGE; 4319 } 4320 4321 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) { 4322 ram_addr_t addr, total_ram_bytes; 4323 void *host = NULL; 4324 uint8_t ch; 4325 4326 addr = qemu_get_be64(f); 4327 flags = addr & ~TARGET_PAGE_MASK; 4328 addr &= TARGET_PAGE_MASK; 4329 4330 if (flags & invalid_flags) { 4331 if (flags & invalid_flags & RAM_SAVE_FLAG_COMPRESS_PAGE) { 4332 error_report("Received an unexpected compressed page"); 4333 } 4334 4335 ret = -EINVAL; 4336 break; 4337 } 4338 4339 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE | 4340 RAM_SAVE_FLAG_COMPRESS_PAGE | RAM_SAVE_FLAG_XBZRLE)) { 4341 RAMBlock *block = ram_block_from_stream(f, flags); 4342 4343 /* 4344 * After going into COLO, we should load the Page into colo_cache. 4345 */ 4346 if (migration_incoming_in_colo_state()) { 4347 host = colo_cache_from_block_offset(block, addr); 4348 } else { 4349 host = host_from_ram_block_offset(block, addr); 4350 } 4351 if (!host) { 4352 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr); 4353 ret = -EINVAL; 4354 break; 4355 } 4356 4357 if (!migration_incoming_in_colo_state()) { 4358 ramblock_recv_bitmap_set(block, host); 4359 } 4360 4361 trace_ram_load_loop(block->idstr, (uint64_t)addr, flags, host); 4362 } 4363 4364 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) { 4365 case RAM_SAVE_FLAG_MEM_SIZE: 4366 /* Synchronize RAM block list */ 4367 total_ram_bytes = addr; 4368 while (!ret && total_ram_bytes) { 4369 RAMBlock *block; 4370 char id[256]; 4371 ram_addr_t length; 4372 4373 len = qemu_get_byte(f); 4374 qemu_get_buffer(f, (uint8_t *)id, len); 4375 id[len] = 0; 4376 length = qemu_get_be64(f); 4377 4378 block = qemu_ram_block_by_name(id); 4379 if (block && !qemu_ram_is_migratable(block)) { 4380 error_report("block %s should not be migrated !", id); 4381 ret = -EINVAL; 4382 } else if (block) { 4383 if (length != block->used_length) { 4384 Error *local_err = NULL; 4385 4386 ret = qemu_ram_resize(block, length, 4387 &local_err); 4388 if (local_err) { 4389 error_report_err(local_err); 4390 } 4391 } 4392 /* For postcopy we need to check hugepage sizes match */ 4393 if (postcopy_advised && 4394 block->page_size != qemu_host_page_size) { 4395 uint64_t remote_page_size = qemu_get_be64(f); 4396 if (remote_page_size != block->page_size) { 4397 error_report("Mismatched RAM page size %s " 4398 "(local) %zd != %" PRId64, 4399 id, block->page_size, 4400 remote_page_size); 4401 ret = -EINVAL; 4402 } 4403 } 4404 if (migrate_ignore_shared()) { 4405 hwaddr addr = qemu_get_be64(f); 4406 if (ramblock_is_ignored(block) && 4407 block->mr->addr != addr) { 4408 error_report("Mismatched GPAs for block %s " 4409 "%" PRId64 "!= %" PRId64, 4410 id, (uint64_t)addr, 4411 (uint64_t)block->mr->addr); 4412 ret = -EINVAL; 4413 } 4414 } 4415 ram_control_load_hook(f, RAM_CONTROL_BLOCK_REG, 4416 block->idstr); 4417 } else { 4418 error_report("Unknown ramblock \"%s\", cannot " 4419 "accept migration", id); 4420 ret = -EINVAL; 4421 } 4422 4423 total_ram_bytes -= length; 4424 } 4425 break; 4426 4427 case RAM_SAVE_FLAG_ZERO: 4428 ch = qemu_get_byte(f); 4429 ram_handle_compressed(host, ch, TARGET_PAGE_SIZE); 4430 break; 4431 4432 case RAM_SAVE_FLAG_PAGE: 4433 qemu_get_buffer(f, host, TARGET_PAGE_SIZE); 4434 break; 4435 4436 case RAM_SAVE_FLAG_COMPRESS_PAGE: 4437 len = qemu_get_be32(f); 4438 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) { 4439 error_report("Invalid compressed data length: %d", len); 4440 ret = -EINVAL; 4441 break; 4442 } 4443 decompress_data_with_multi_threads(f, host, len); 4444 break; 4445 4446 case RAM_SAVE_FLAG_XBZRLE: 4447 if (load_xbzrle(f, addr, host) < 0) { 4448 error_report("Failed to decompress XBZRLE page at " 4449 RAM_ADDR_FMT, addr); 4450 ret = -EINVAL; 4451 break; 4452 } 4453 break; 4454 case RAM_SAVE_FLAG_EOS: 4455 /* normal exit */ 4456 multifd_recv_sync_main(); 4457 break; 4458 default: 4459 if (flags & RAM_SAVE_FLAG_HOOK) { 4460 ram_control_load_hook(f, RAM_CONTROL_HOOK, NULL); 4461 } else { 4462 error_report("Unknown combination of migration flags: %#x", 4463 flags); 4464 ret = -EINVAL; 4465 } 4466 } 4467 if (!ret) { 4468 ret = qemu_file_get_error(f); 4469 } 4470 } 4471 4472 return ret; 4473 } 4474 4475 static int ram_load(QEMUFile *f, void *opaque, int version_id) 4476 { 4477 int ret = 0; 4478 static uint64_t seq_iter; 4479 /* 4480 * If system is running in postcopy mode, page inserts to host memory must 4481 * be atomic 4482 */ 4483 bool postcopy_running = postcopy_is_running(); 4484 4485 seq_iter++; 4486 4487 if (version_id != 4) { 4488 return -EINVAL; 4489 } 4490 4491 /* 4492 * This RCU critical section can be very long running. 4493 * When RCU reclaims in the code start to become numerous, 4494 * it will be necessary to reduce the granularity of this 4495 * critical section. 4496 */ 4497 rcu_read_lock(); 4498 4499 if (postcopy_running) { 4500 ret = ram_load_postcopy(f); 4501 } else { 4502 ret = ram_load_precopy(f); 4503 } 4504 4505 ret |= wait_for_decompress_done(); 4506 rcu_read_unlock(); 4507 trace_ram_load_complete(ret, seq_iter); 4508 4509 if (!ret && migration_incoming_in_colo_state()) { 4510 colo_flush_ram_cache(); 4511 } 4512 return ret; 4513 } 4514 4515 static bool ram_has_postcopy(void *opaque) 4516 { 4517 RAMBlock *rb; 4518 RAMBLOCK_FOREACH_NOT_IGNORED(rb) { 4519 if (ramblock_is_pmem(rb)) { 4520 info_report("Block: %s, host: %p is a nvdimm memory, postcopy" 4521 "is not supported now!", rb->idstr, rb->host); 4522 return false; 4523 } 4524 } 4525 4526 return migrate_postcopy_ram(); 4527 } 4528 4529 /* Sync all the dirty bitmap with destination VM. */ 4530 static int ram_dirty_bitmap_sync_all(MigrationState *s, RAMState *rs) 4531 { 4532 RAMBlock *block; 4533 QEMUFile *file = s->to_dst_file; 4534 int ramblock_count = 0; 4535 4536 trace_ram_dirty_bitmap_sync_start(); 4537 4538 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 4539 qemu_savevm_send_recv_bitmap(file, block->idstr); 4540 trace_ram_dirty_bitmap_request(block->idstr); 4541 ramblock_count++; 4542 } 4543 4544 trace_ram_dirty_bitmap_sync_wait(); 4545 4546 /* Wait until all the ramblocks' dirty bitmap synced */ 4547 while (ramblock_count--) { 4548 qemu_sem_wait(&s->rp_state.rp_sem); 4549 } 4550 4551 trace_ram_dirty_bitmap_sync_complete(); 4552 4553 return 0; 4554 } 4555 4556 static void ram_dirty_bitmap_reload_notify(MigrationState *s) 4557 { 4558 qemu_sem_post(&s->rp_state.rp_sem); 4559 } 4560 4561 /* 4562 * Read the received bitmap, revert it as the initial dirty bitmap. 4563 * This is only used when the postcopy migration is paused but wants 4564 * to resume from a middle point. 4565 */ 4566 int ram_dirty_bitmap_reload(MigrationState *s, RAMBlock *block) 4567 { 4568 int ret = -EINVAL; 4569 QEMUFile *file = s->rp_state.from_dst_file; 4570 unsigned long *le_bitmap, nbits = block->used_length >> TARGET_PAGE_BITS; 4571 uint64_t local_size = DIV_ROUND_UP(nbits, 8); 4572 uint64_t size, end_mark; 4573 4574 trace_ram_dirty_bitmap_reload_begin(block->idstr); 4575 4576 if (s->state != MIGRATION_STATUS_POSTCOPY_RECOVER) { 4577 error_report("%s: incorrect state %s", __func__, 4578 MigrationStatus_str(s->state)); 4579 return -EINVAL; 4580 } 4581 4582 /* 4583 * Note: see comments in ramblock_recv_bitmap_send() on why we 4584 * need the endianess convertion, and the paddings. 4585 */ 4586 local_size = ROUND_UP(local_size, 8); 4587 4588 /* Add paddings */ 4589 le_bitmap = bitmap_new(nbits + BITS_PER_LONG); 4590 4591 size = qemu_get_be64(file); 4592 4593 /* The size of the bitmap should match with our ramblock */ 4594 if (size != local_size) { 4595 error_report("%s: ramblock '%s' bitmap size mismatch " 4596 "(0x%"PRIx64" != 0x%"PRIx64")", __func__, 4597 block->idstr, size, local_size); 4598 ret = -EINVAL; 4599 goto out; 4600 } 4601 4602 size = qemu_get_buffer(file, (uint8_t *)le_bitmap, local_size); 4603 end_mark = qemu_get_be64(file); 4604 4605 ret = qemu_file_get_error(file); 4606 if (ret || size != local_size) { 4607 error_report("%s: read bitmap failed for ramblock '%s': %d" 4608 " (size 0x%"PRIx64", got: 0x%"PRIx64")", 4609 __func__, block->idstr, ret, local_size, size); 4610 ret = -EIO; 4611 goto out; 4612 } 4613 4614 if (end_mark != RAMBLOCK_RECV_BITMAP_ENDING) { 4615 error_report("%s: ramblock '%s' end mark incorrect: 0x%"PRIu64, 4616 __func__, block->idstr, end_mark); 4617 ret = -EINVAL; 4618 goto out; 4619 } 4620 4621 /* 4622 * Endianess convertion. We are during postcopy (though paused). 4623 * The dirty bitmap won't change. We can directly modify it. 4624 */ 4625 bitmap_from_le(block->bmap, le_bitmap, nbits); 4626 4627 /* 4628 * What we received is "received bitmap". Revert it as the initial 4629 * dirty bitmap for this ramblock. 4630 */ 4631 bitmap_complement(block->bmap, block->bmap, nbits); 4632 4633 trace_ram_dirty_bitmap_reload_complete(block->idstr); 4634 4635 /* 4636 * We succeeded to sync bitmap for current ramblock. If this is 4637 * the last one to sync, we need to notify the main send thread. 4638 */ 4639 ram_dirty_bitmap_reload_notify(s); 4640 4641 ret = 0; 4642 out: 4643 g_free(le_bitmap); 4644 return ret; 4645 } 4646 4647 static int ram_resume_prepare(MigrationState *s, void *opaque) 4648 { 4649 RAMState *rs = *(RAMState **)opaque; 4650 int ret; 4651 4652 ret = ram_dirty_bitmap_sync_all(s, rs); 4653 if (ret) { 4654 return ret; 4655 } 4656 4657 ram_state_resume_prepare(rs, s->to_dst_file); 4658 4659 return 0; 4660 } 4661 4662 static SaveVMHandlers savevm_ram_handlers = { 4663 .save_setup = ram_save_setup, 4664 .save_live_iterate = ram_save_iterate, 4665 .save_live_complete_postcopy = ram_save_complete, 4666 .save_live_complete_precopy = ram_save_complete, 4667 .has_postcopy = ram_has_postcopy, 4668 .save_live_pending = ram_save_pending, 4669 .load_state = ram_load, 4670 .save_cleanup = ram_save_cleanup, 4671 .load_setup = ram_load_setup, 4672 .load_cleanup = ram_load_cleanup, 4673 .resume_prepare = ram_resume_prepare, 4674 }; 4675 4676 void ram_mig_init(void) 4677 { 4678 qemu_mutex_init(&XBZRLE.lock); 4679 register_savevm_live(NULL, "ram", 0, 4, &savevm_ram_handlers, &ram_state); 4680 } 4681