1 /* 2 * QEMU System Emulator 3 * 4 * Copyright (c) 2003-2008 Fabrice Bellard 5 * Copyright (c) 2011-2015 Red Hat Inc 6 * 7 * Authors: 8 * Juan Quintela <quintela@redhat.com> 9 * 10 * Permission is hereby granted, free of charge, to any person obtaining a copy 11 * of this software and associated documentation files (the "Software"), to deal 12 * in the Software without restriction, including without limitation the rights 13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 14 * copies of the Software, and to permit persons to whom the Software is 15 * furnished to do so, subject to the following conditions: 16 * 17 * The above copyright notice and this permission notice shall be included in 18 * all copies or substantial portions of the Software. 19 * 20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 26 * THE SOFTWARE. 27 */ 28 29 #include "qemu/osdep.h" 30 #include "qemu/cutils.h" 31 #include "qemu/bitops.h" 32 #include "qemu/bitmap.h" 33 #include "qemu/madvise.h" 34 #include "qemu/main-loop.h" 35 #include "xbzrle.h" 36 #include "ram.h" 37 #include "migration.h" 38 #include "migration-stats.h" 39 #include "migration/register.h" 40 #include "migration/misc.h" 41 #include "qemu-file.h" 42 #include "postcopy-ram.h" 43 #include "page_cache.h" 44 #include "qemu/error-report.h" 45 #include "qapi/error.h" 46 #include "qapi/qapi-types-migration.h" 47 #include "qapi/qapi-events-migration.h" 48 #include "qapi/qapi-commands-migration.h" 49 #include "qapi/qmp/qerror.h" 50 #include "trace.h" 51 #include "exec/ram_addr.h" 52 #include "exec/target_page.h" 53 #include "qemu/rcu_queue.h" 54 #include "migration/colo.h" 55 #include "sysemu/cpu-throttle.h" 56 #include "savevm.h" 57 #include "qemu/iov.h" 58 #include "multifd.h" 59 #include "sysemu/runstate.h" 60 #include "rdma.h" 61 #include "options.h" 62 #include "sysemu/dirtylimit.h" 63 #include "sysemu/kvm.h" 64 65 #include "hw/boards.h" /* for machine_dump_guest_core() */ 66 67 #if defined(__linux__) 68 #include "qemu/userfaultfd.h" 69 #endif /* defined(__linux__) */ 70 71 /***********************************************************/ 72 /* ram save/restore */ 73 74 /* 75 * RAM_SAVE_FLAG_ZERO used to be named RAM_SAVE_FLAG_COMPRESS, it 76 * worked for pages that were filled with the same char. We switched 77 * it to only search for the zero value. And to avoid confusion with 78 * RAM_SAVE_FLAG_COMPRESS_PAGE just rename it. 79 * 80 * RAM_SAVE_FLAG_FULL was obsoleted in 2009. 81 * 82 * RAM_SAVE_FLAG_COMPRESS_PAGE (0x100) was removed in QEMU 9.1. 83 */ 84 #define RAM_SAVE_FLAG_FULL 0x01 85 #define RAM_SAVE_FLAG_ZERO 0x02 86 #define RAM_SAVE_FLAG_MEM_SIZE 0x04 87 #define RAM_SAVE_FLAG_PAGE 0x08 88 #define RAM_SAVE_FLAG_EOS 0x10 89 #define RAM_SAVE_FLAG_CONTINUE 0x20 90 #define RAM_SAVE_FLAG_XBZRLE 0x40 91 /* 0x80 is reserved in rdma.h for RAM_SAVE_FLAG_HOOK */ 92 #define RAM_SAVE_FLAG_MULTIFD_FLUSH 0x200 93 /* We can't use any flag that is bigger than 0x200 */ 94 95 /* 96 * mapped-ram migration supports O_DIRECT, so we need to make sure the 97 * userspace buffer, the IO operation size and the file offset are 98 * aligned according to the underlying device's block size. The first 99 * two are already aligned to page size, but we need to add padding to 100 * the file to align the offset. We cannot read the block size 101 * dynamically because the migration file can be moved between 102 * different systems, so use 1M to cover most block sizes and to keep 103 * the file offset aligned at page size as well. 104 */ 105 #define MAPPED_RAM_FILE_OFFSET_ALIGNMENT 0x100000 106 107 /* 108 * When doing mapped-ram migration, this is the amount we read from 109 * the pages region in the migration file at a time. 110 */ 111 #define MAPPED_RAM_LOAD_BUF_SIZE 0x100000 112 113 XBZRLECacheStats xbzrle_counters; 114 115 /* used by the search for pages to send */ 116 struct PageSearchStatus { 117 /* The migration channel used for a specific host page */ 118 QEMUFile *pss_channel; 119 /* Last block from where we have sent data */ 120 RAMBlock *last_sent_block; 121 /* Current block being searched */ 122 RAMBlock *block; 123 /* Current page to search from */ 124 unsigned long page; 125 /* Set once we wrap around */ 126 bool complete_round; 127 /* Whether we're sending a host page */ 128 bool host_page_sending; 129 /* The start/end of current host page. Invalid if host_page_sending==false */ 130 unsigned long host_page_start; 131 unsigned long host_page_end; 132 }; 133 typedef struct PageSearchStatus PageSearchStatus; 134 135 /* struct contains XBZRLE cache and a static page 136 used by the compression */ 137 static struct { 138 /* buffer used for XBZRLE encoding */ 139 uint8_t *encoded_buf; 140 /* buffer for storing page content */ 141 uint8_t *current_buf; 142 /* Cache for XBZRLE, Protected by lock. */ 143 PageCache *cache; 144 QemuMutex lock; 145 /* it will store a page full of zeros */ 146 uint8_t *zero_target_page; 147 /* buffer used for XBZRLE decoding */ 148 uint8_t *decoded_buf; 149 } XBZRLE; 150 151 static void XBZRLE_cache_lock(void) 152 { 153 if (migrate_xbzrle()) { 154 qemu_mutex_lock(&XBZRLE.lock); 155 } 156 } 157 158 static void XBZRLE_cache_unlock(void) 159 { 160 if (migrate_xbzrle()) { 161 qemu_mutex_unlock(&XBZRLE.lock); 162 } 163 } 164 165 /** 166 * xbzrle_cache_resize: resize the xbzrle cache 167 * 168 * This function is called from migrate_params_apply in main 169 * thread, possibly while a migration is in progress. A running 170 * migration may be using the cache and might finish during this call, 171 * hence changes to the cache are protected by XBZRLE.lock(). 172 * 173 * Returns 0 for success or -1 for error 174 * 175 * @new_size: new cache size 176 * @errp: set *errp if the check failed, with reason 177 */ 178 int xbzrle_cache_resize(uint64_t new_size, Error **errp) 179 { 180 PageCache *new_cache; 181 int64_t ret = 0; 182 183 /* Check for truncation */ 184 if (new_size != (size_t)new_size) { 185 error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cache size", 186 "exceeding address space"); 187 return -1; 188 } 189 190 if (new_size == migrate_xbzrle_cache_size()) { 191 /* nothing to do */ 192 return 0; 193 } 194 195 XBZRLE_cache_lock(); 196 197 if (XBZRLE.cache != NULL) { 198 new_cache = cache_init(new_size, TARGET_PAGE_SIZE, errp); 199 if (!new_cache) { 200 ret = -1; 201 goto out; 202 } 203 204 cache_fini(XBZRLE.cache); 205 XBZRLE.cache = new_cache; 206 } 207 out: 208 XBZRLE_cache_unlock(); 209 return ret; 210 } 211 212 static bool postcopy_preempt_active(void) 213 { 214 return migrate_postcopy_preempt() && migration_in_postcopy(); 215 } 216 217 bool migrate_ram_is_ignored(RAMBlock *block) 218 { 219 return !qemu_ram_is_migratable(block) || 220 (migrate_ignore_shared() && qemu_ram_is_shared(block) 221 && qemu_ram_is_named_file(block)); 222 } 223 224 #undef RAMBLOCK_FOREACH 225 226 int foreach_not_ignored_block(RAMBlockIterFunc func, void *opaque) 227 { 228 RAMBlock *block; 229 int ret = 0; 230 231 RCU_READ_LOCK_GUARD(); 232 233 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 234 ret = func(block, opaque); 235 if (ret) { 236 break; 237 } 238 } 239 return ret; 240 } 241 242 static void ramblock_recv_map_init(void) 243 { 244 RAMBlock *rb; 245 246 RAMBLOCK_FOREACH_NOT_IGNORED(rb) { 247 assert(!rb->receivedmap); 248 rb->receivedmap = bitmap_new(rb->max_length >> qemu_target_page_bits()); 249 } 250 } 251 252 int ramblock_recv_bitmap_test(RAMBlock *rb, void *host_addr) 253 { 254 return test_bit(ramblock_recv_bitmap_offset(host_addr, rb), 255 rb->receivedmap); 256 } 257 258 bool ramblock_recv_bitmap_test_byte_offset(RAMBlock *rb, uint64_t byte_offset) 259 { 260 return test_bit(byte_offset >> TARGET_PAGE_BITS, rb->receivedmap); 261 } 262 263 void ramblock_recv_bitmap_set(RAMBlock *rb, void *host_addr) 264 { 265 set_bit_atomic(ramblock_recv_bitmap_offset(host_addr, rb), rb->receivedmap); 266 } 267 268 void ramblock_recv_bitmap_set_range(RAMBlock *rb, void *host_addr, 269 size_t nr) 270 { 271 bitmap_set_atomic(rb->receivedmap, 272 ramblock_recv_bitmap_offset(host_addr, rb), 273 nr); 274 } 275 276 void ramblock_recv_bitmap_set_offset(RAMBlock *rb, uint64_t byte_offset) 277 { 278 set_bit_atomic(byte_offset >> TARGET_PAGE_BITS, rb->receivedmap); 279 } 280 #define RAMBLOCK_RECV_BITMAP_ENDING (0x0123456789abcdefULL) 281 282 /* 283 * Format: bitmap_size (8 bytes) + whole_bitmap (N bytes). 284 * 285 * Returns >0 if success with sent bytes, or <0 if error. 286 */ 287 int64_t ramblock_recv_bitmap_send(QEMUFile *file, 288 const char *block_name) 289 { 290 RAMBlock *block = qemu_ram_block_by_name(block_name); 291 unsigned long *le_bitmap, nbits; 292 uint64_t size; 293 294 if (!block) { 295 error_report("%s: invalid block name: %s", __func__, block_name); 296 return -1; 297 } 298 299 nbits = block->postcopy_length >> TARGET_PAGE_BITS; 300 301 /* 302 * Make sure the tmp bitmap buffer is big enough, e.g., on 32bit 303 * machines we may need 4 more bytes for padding (see below 304 * comment). So extend it a bit before hand. 305 */ 306 le_bitmap = bitmap_new(nbits + BITS_PER_LONG); 307 308 /* 309 * Always use little endian when sending the bitmap. This is 310 * required that when source and destination VMs are not using the 311 * same endianness. (Note: big endian won't work.) 312 */ 313 bitmap_to_le(le_bitmap, block->receivedmap, nbits); 314 315 /* Size of the bitmap, in bytes */ 316 size = DIV_ROUND_UP(nbits, 8); 317 318 /* 319 * size is always aligned to 8 bytes for 64bit machines, but it 320 * may not be true for 32bit machines. We need this padding to 321 * make sure the migration can survive even between 32bit and 322 * 64bit machines. 323 */ 324 size = ROUND_UP(size, 8); 325 326 qemu_put_be64(file, size); 327 qemu_put_buffer(file, (const uint8_t *)le_bitmap, size); 328 g_free(le_bitmap); 329 /* 330 * Mark as an end, in case the middle part is screwed up due to 331 * some "mysterious" reason. 332 */ 333 qemu_put_be64(file, RAMBLOCK_RECV_BITMAP_ENDING); 334 int ret = qemu_fflush(file); 335 if (ret) { 336 return ret; 337 } 338 339 return size + sizeof(size); 340 } 341 342 /* 343 * An outstanding page request, on the source, having been received 344 * and queued 345 */ 346 struct RAMSrcPageRequest { 347 RAMBlock *rb; 348 hwaddr offset; 349 hwaddr len; 350 351 QSIMPLEQ_ENTRY(RAMSrcPageRequest) next_req; 352 }; 353 354 /* State of RAM for migration */ 355 struct RAMState { 356 /* 357 * PageSearchStatus structures for the channels when send pages. 358 * Protected by the bitmap_mutex. 359 */ 360 PageSearchStatus pss[RAM_CHANNEL_MAX]; 361 /* UFFD file descriptor, used in 'write-tracking' migration */ 362 int uffdio_fd; 363 /* total ram size in bytes */ 364 uint64_t ram_bytes_total; 365 /* Last block that we have visited searching for dirty pages */ 366 RAMBlock *last_seen_block; 367 /* Last dirty target page we have sent */ 368 ram_addr_t last_page; 369 /* last ram version we have seen */ 370 uint32_t last_version; 371 /* How many times we have dirty too many pages */ 372 int dirty_rate_high_cnt; 373 /* these variables are used for bitmap sync */ 374 /* last time we did a full bitmap_sync */ 375 int64_t time_last_bitmap_sync; 376 /* bytes transferred at start_time */ 377 uint64_t bytes_xfer_prev; 378 /* number of dirty pages since start_time */ 379 uint64_t num_dirty_pages_period; 380 /* xbzrle misses since the beginning of the period */ 381 uint64_t xbzrle_cache_miss_prev; 382 /* Amount of xbzrle pages since the beginning of the period */ 383 uint64_t xbzrle_pages_prev; 384 /* Amount of xbzrle encoded bytes since the beginning of the period */ 385 uint64_t xbzrle_bytes_prev; 386 /* Are we really using XBZRLE (e.g., after the first round). */ 387 bool xbzrle_started; 388 /* Are we on the last stage of migration */ 389 bool last_stage; 390 391 /* total handled target pages at the beginning of period */ 392 uint64_t target_page_count_prev; 393 /* total handled target pages since start */ 394 uint64_t target_page_count; 395 /* number of dirty bits in the bitmap */ 396 uint64_t migration_dirty_pages; 397 /* 398 * Protects: 399 * - dirty/clear bitmap 400 * - migration_dirty_pages 401 * - pss structures 402 */ 403 QemuMutex bitmap_mutex; 404 /* The RAMBlock used in the last src_page_requests */ 405 RAMBlock *last_req_rb; 406 /* Queue of outstanding page requests from the destination */ 407 QemuMutex src_page_req_mutex; 408 QSIMPLEQ_HEAD(, RAMSrcPageRequest) src_page_requests; 409 410 /* 411 * This is only used when postcopy is in recovery phase, to communicate 412 * between the migration thread and the return path thread on dirty 413 * bitmap synchronizations. This field is unused in other stages of 414 * RAM migration. 415 */ 416 unsigned int postcopy_bmap_sync_requested; 417 }; 418 typedef struct RAMState RAMState; 419 420 static RAMState *ram_state; 421 422 static NotifierWithReturnList precopy_notifier_list; 423 424 /* Whether postcopy has queued requests? */ 425 static bool postcopy_has_request(RAMState *rs) 426 { 427 return !QSIMPLEQ_EMPTY_ATOMIC(&rs->src_page_requests); 428 } 429 430 void precopy_infrastructure_init(void) 431 { 432 notifier_with_return_list_init(&precopy_notifier_list); 433 } 434 435 void precopy_add_notifier(NotifierWithReturn *n) 436 { 437 notifier_with_return_list_add(&precopy_notifier_list, n); 438 } 439 440 void precopy_remove_notifier(NotifierWithReturn *n) 441 { 442 notifier_with_return_remove(n); 443 } 444 445 int precopy_notify(PrecopyNotifyReason reason, Error **errp) 446 { 447 PrecopyNotifyData pnd; 448 pnd.reason = reason; 449 450 return notifier_with_return_list_notify(&precopy_notifier_list, &pnd, errp); 451 } 452 453 uint64_t ram_bytes_remaining(void) 454 { 455 return ram_state ? (ram_state->migration_dirty_pages * TARGET_PAGE_SIZE) : 456 0; 457 } 458 459 void ram_transferred_add(uint64_t bytes) 460 { 461 if (runstate_is_running()) { 462 stat64_add(&mig_stats.precopy_bytes, bytes); 463 } else if (migration_in_postcopy()) { 464 stat64_add(&mig_stats.postcopy_bytes, bytes); 465 } else { 466 stat64_add(&mig_stats.downtime_bytes, bytes); 467 } 468 } 469 470 struct MigrationOps { 471 int (*ram_save_target_page)(RAMState *rs, PageSearchStatus *pss); 472 }; 473 typedef struct MigrationOps MigrationOps; 474 475 MigrationOps *migration_ops; 476 477 static int ram_save_host_page_urgent(PageSearchStatus *pss); 478 479 /* NOTE: page is the PFN not real ram_addr_t. */ 480 static void pss_init(PageSearchStatus *pss, RAMBlock *rb, ram_addr_t page) 481 { 482 pss->block = rb; 483 pss->page = page; 484 pss->complete_round = false; 485 } 486 487 /* 488 * Check whether two PSSs are actively sending the same page. Return true 489 * if it is, false otherwise. 490 */ 491 static bool pss_overlap(PageSearchStatus *pss1, PageSearchStatus *pss2) 492 { 493 return pss1->host_page_sending && pss2->host_page_sending && 494 (pss1->host_page_start == pss2->host_page_start); 495 } 496 497 /** 498 * save_page_header: write page header to wire 499 * 500 * If this is the 1st block, it also writes the block identification 501 * 502 * Returns the number of bytes written 503 * 504 * @pss: current PSS channel status 505 * @block: block that contains the page we want to send 506 * @offset: offset inside the block for the page 507 * in the lower bits, it contains flags 508 */ 509 static size_t save_page_header(PageSearchStatus *pss, QEMUFile *f, 510 RAMBlock *block, ram_addr_t offset) 511 { 512 size_t size, len; 513 bool same_block = (block == pss->last_sent_block); 514 515 if (same_block) { 516 offset |= RAM_SAVE_FLAG_CONTINUE; 517 } 518 qemu_put_be64(f, offset); 519 size = 8; 520 521 if (!same_block) { 522 len = strlen(block->idstr); 523 qemu_put_byte(f, len); 524 qemu_put_buffer(f, (uint8_t *)block->idstr, len); 525 size += 1 + len; 526 pss->last_sent_block = block; 527 } 528 return size; 529 } 530 531 /** 532 * mig_throttle_guest_down: throttle down the guest 533 * 534 * Reduce amount of guest cpu execution to hopefully slow down memory 535 * writes. If guest dirty memory rate is reduced below the rate at 536 * which we can transfer pages to the destination then we should be 537 * able to complete migration. Some workloads dirty memory way too 538 * fast and will not effectively converge, even with auto-converge. 539 */ 540 static void mig_throttle_guest_down(uint64_t bytes_dirty_period, 541 uint64_t bytes_dirty_threshold) 542 { 543 uint64_t pct_initial = migrate_cpu_throttle_initial(); 544 uint64_t pct_increment = migrate_cpu_throttle_increment(); 545 bool pct_tailslow = migrate_cpu_throttle_tailslow(); 546 int pct_max = migrate_max_cpu_throttle(); 547 548 uint64_t throttle_now = cpu_throttle_get_percentage(); 549 uint64_t cpu_now, cpu_ideal, throttle_inc; 550 551 /* We have not started throttling yet. Let's start it. */ 552 if (!cpu_throttle_active()) { 553 cpu_throttle_set(pct_initial); 554 } else { 555 /* Throttling already on, just increase the rate */ 556 if (!pct_tailslow) { 557 throttle_inc = pct_increment; 558 } else { 559 /* Compute the ideal CPU percentage used by Guest, which may 560 * make the dirty rate match the dirty rate threshold. */ 561 cpu_now = 100 - throttle_now; 562 cpu_ideal = cpu_now * (bytes_dirty_threshold * 1.0 / 563 bytes_dirty_period); 564 throttle_inc = MIN(cpu_now - cpu_ideal, pct_increment); 565 } 566 cpu_throttle_set(MIN(throttle_now + throttle_inc, pct_max)); 567 } 568 } 569 570 void mig_throttle_counter_reset(void) 571 { 572 RAMState *rs = ram_state; 573 574 rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); 575 rs->num_dirty_pages_period = 0; 576 rs->bytes_xfer_prev = migration_transferred_bytes(); 577 } 578 579 /** 580 * xbzrle_cache_zero_page: insert a zero page in the XBZRLE cache 581 * 582 * @current_addr: address for the zero page 583 * 584 * Update the xbzrle cache to reflect a page that's been sent as all 0. 585 * The important thing is that a stale (not-yet-0'd) page be replaced 586 * by the new data. 587 * As a bonus, if the page wasn't in the cache it gets added so that 588 * when a small write is made into the 0'd page it gets XBZRLE sent. 589 */ 590 static void xbzrle_cache_zero_page(ram_addr_t current_addr) 591 { 592 /* We don't care if this fails to allocate a new cache page 593 * as long as it updated an old one */ 594 cache_insert(XBZRLE.cache, current_addr, XBZRLE.zero_target_page, 595 stat64_get(&mig_stats.dirty_sync_count)); 596 } 597 598 #define ENCODING_FLAG_XBZRLE 0x1 599 600 /** 601 * save_xbzrle_page: compress and send current page 602 * 603 * Returns: 1 means that we wrote the page 604 * 0 means that page is identical to the one already sent 605 * -1 means that xbzrle would be longer than normal 606 * 607 * @rs: current RAM state 608 * @pss: current PSS channel 609 * @current_data: pointer to the address of the page contents 610 * @current_addr: addr of the page 611 * @block: block that contains the page we want to send 612 * @offset: offset inside the block for the page 613 */ 614 static int save_xbzrle_page(RAMState *rs, PageSearchStatus *pss, 615 uint8_t **current_data, ram_addr_t current_addr, 616 RAMBlock *block, ram_addr_t offset) 617 { 618 int encoded_len = 0, bytes_xbzrle; 619 uint8_t *prev_cached_page; 620 QEMUFile *file = pss->pss_channel; 621 uint64_t generation = stat64_get(&mig_stats.dirty_sync_count); 622 623 if (!cache_is_cached(XBZRLE.cache, current_addr, generation)) { 624 xbzrle_counters.cache_miss++; 625 if (!rs->last_stage) { 626 if (cache_insert(XBZRLE.cache, current_addr, *current_data, 627 generation) == -1) { 628 return -1; 629 } else { 630 /* update *current_data when the page has been 631 inserted into cache */ 632 *current_data = get_cached_data(XBZRLE.cache, current_addr); 633 } 634 } 635 return -1; 636 } 637 638 /* 639 * Reaching here means the page has hit the xbzrle cache, no matter what 640 * encoding result it is (normal encoding, overflow or skipping the page), 641 * count the page as encoded. This is used to calculate the encoding rate. 642 * 643 * Example: 2 pages (8KB) being encoded, first page encoding generates 2KB, 644 * 2nd page turns out to be skipped (i.e. no new bytes written to the 645 * page), the overall encoding rate will be 8KB / 2KB = 4, which has the 646 * skipped page included. In this way, the encoding rate can tell if the 647 * guest page is good for xbzrle encoding. 648 */ 649 xbzrle_counters.pages++; 650 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr); 651 652 /* save current buffer into memory */ 653 memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE); 654 655 /* XBZRLE encoding (if there is no overflow) */ 656 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf, 657 TARGET_PAGE_SIZE, XBZRLE.encoded_buf, 658 TARGET_PAGE_SIZE); 659 660 /* 661 * Update the cache contents, so that it corresponds to the data 662 * sent, in all cases except where we skip the page. 663 */ 664 if (!rs->last_stage && encoded_len != 0) { 665 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE); 666 /* 667 * In the case where we couldn't compress, ensure that the caller 668 * sends the data from the cache, since the guest might have 669 * changed the RAM since we copied it. 670 */ 671 *current_data = prev_cached_page; 672 } 673 674 if (encoded_len == 0) { 675 trace_save_xbzrle_page_skipping(); 676 return 0; 677 } else if (encoded_len == -1) { 678 trace_save_xbzrle_page_overflow(); 679 xbzrle_counters.overflow++; 680 xbzrle_counters.bytes += TARGET_PAGE_SIZE; 681 return -1; 682 } 683 684 /* Send XBZRLE based compressed page */ 685 bytes_xbzrle = save_page_header(pss, pss->pss_channel, block, 686 offset | RAM_SAVE_FLAG_XBZRLE); 687 qemu_put_byte(file, ENCODING_FLAG_XBZRLE); 688 qemu_put_be16(file, encoded_len); 689 qemu_put_buffer(file, XBZRLE.encoded_buf, encoded_len); 690 bytes_xbzrle += encoded_len + 1 + 2; 691 /* 692 * The xbzrle encoded bytes don't count the 8 byte header with 693 * RAM_SAVE_FLAG_CONTINUE. 694 */ 695 xbzrle_counters.bytes += bytes_xbzrle - 8; 696 ram_transferred_add(bytes_xbzrle); 697 698 return 1; 699 } 700 701 /** 702 * pss_find_next_dirty: find the next dirty page of current ramblock 703 * 704 * This function updates pss->page to point to the next dirty page index 705 * within the ramblock to migrate, or the end of ramblock when nothing 706 * found. Note that when pss->host_page_sending==true it means we're 707 * during sending a host page, so we won't look for dirty page that is 708 * outside the host page boundary. 709 * 710 * @pss: the current page search status 711 */ 712 static void pss_find_next_dirty(PageSearchStatus *pss) 713 { 714 RAMBlock *rb = pss->block; 715 unsigned long size = rb->used_length >> TARGET_PAGE_BITS; 716 unsigned long *bitmap = rb->bmap; 717 718 if (migrate_ram_is_ignored(rb)) { 719 /* Points directly to the end, so we know no dirty page */ 720 pss->page = size; 721 return; 722 } 723 724 /* 725 * If during sending a host page, only look for dirty pages within the 726 * current host page being send. 727 */ 728 if (pss->host_page_sending) { 729 assert(pss->host_page_end); 730 size = MIN(size, pss->host_page_end); 731 } 732 733 pss->page = find_next_bit(bitmap, size, pss->page); 734 } 735 736 static void migration_clear_memory_region_dirty_bitmap(RAMBlock *rb, 737 unsigned long page) 738 { 739 uint8_t shift; 740 hwaddr size, start; 741 742 if (!rb->clear_bmap || !clear_bmap_test_and_clear(rb, page)) { 743 return; 744 } 745 746 shift = rb->clear_bmap_shift; 747 /* 748 * CLEAR_BITMAP_SHIFT_MIN should always guarantee this... this 749 * can make things easier sometimes since then start address 750 * of the small chunk will always be 64 pages aligned so the 751 * bitmap will always be aligned to unsigned long. We should 752 * even be able to remove this restriction but I'm simply 753 * keeping it. 754 */ 755 assert(shift >= 6); 756 757 size = 1ULL << (TARGET_PAGE_BITS + shift); 758 start = QEMU_ALIGN_DOWN((ram_addr_t)page << TARGET_PAGE_BITS, size); 759 trace_migration_bitmap_clear_dirty(rb->idstr, start, size, page); 760 memory_region_clear_dirty_bitmap(rb->mr, start, size); 761 } 762 763 static void 764 migration_clear_memory_region_dirty_bitmap_range(RAMBlock *rb, 765 unsigned long start, 766 unsigned long npages) 767 { 768 unsigned long i, chunk_pages = 1UL << rb->clear_bmap_shift; 769 unsigned long chunk_start = QEMU_ALIGN_DOWN(start, chunk_pages); 770 unsigned long chunk_end = QEMU_ALIGN_UP(start + npages, chunk_pages); 771 772 /* 773 * Clear pages from start to start + npages - 1, so the end boundary is 774 * exclusive. 775 */ 776 for (i = chunk_start; i < chunk_end; i += chunk_pages) { 777 migration_clear_memory_region_dirty_bitmap(rb, i); 778 } 779 } 780 781 /* 782 * colo_bitmap_find_diry:find contiguous dirty pages from start 783 * 784 * Returns the page offset within memory region of the start of the contiguout 785 * dirty page 786 * 787 * @rs: current RAM state 788 * @rb: RAMBlock where to search for dirty pages 789 * @start: page where we start the search 790 * @num: the number of contiguous dirty pages 791 */ 792 static inline 793 unsigned long colo_bitmap_find_dirty(RAMState *rs, RAMBlock *rb, 794 unsigned long start, unsigned long *num) 795 { 796 unsigned long size = rb->used_length >> TARGET_PAGE_BITS; 797 unsigned long *bitmap = rb->bmap; 798 unsigned long first, next; 799 800 *num = 0; 801 802 if (migrate_ram_is_ignored(rb)) { 803 return size; 804 } 805 806 first = find_next_bit(bitmap, size, start); 807 if (first >= size) { 808 return first; 809 } 810 next = find_next_zero_bit(bitmap, size, first + 1); 811 assert(next >= first); 812 *num = next - first; 813 return first; 814 } 815 816 static inline bool migration_bitmap_clear_dirty(RAMState *rs, 817 RAMBlock *rb, 818 unsigned long page) 819 { 820 bool ret; 821 822 /* 823 * Clear dirty bitmap if needed. This _must_ be called before we 824 * send any of the page in the chunk because we need to make sure 825 * we can capture further page content changes when we sync dirty 826 * log the next time. So as long as we are going to send any of 827 * the page in the chunk we clear the remote dirty bitmap for all. 828 * Clearing it earlier won't be a problem, but too late will. 829 */ 830 migration_clear_memory_region_dirty_bitmap(rb, page); 831 832 ret = test_and_clear_bit(page, rb->bmap); 833 if (ret) { 834 rs->migration_dirty_pages--; 835 } 836 837 return ret; 838 } 839 840 static void dirty_bitmap_clear_section(MemoryRegionSection *section, 841 void *opaque) 842 { 843 const hwaddr offset = section->offset_within_region; 844 const hwaddr size = int128_get64(section->size); 845 const unsigned long start = offset >> TARGET_PAGE_BITS; 846 const unsigned long npages = size >> TARGET_PAGE_BITS; 847 RAMBlock *rb = section->mr->ram_block; 848 uint64_t *cleared_bits = opaque; 849 850 /* 851 * We don't grab ram_state->bitmap_mutex because we expect to run 852 * only when starting migration or during postcopy recovery where 853 * we don't have concurrent access. 854 */ 855 if (!migration_in_postcopy() && !migrate_background_snapshot()) { 856 migration_clear_memory_region_dirty_bitmap_range(rb, start, npages); 857 } 858 *cleared_bits += bitmap_count_one_with_offset(rb->bmap, start, npages); 859 bitmap_clear(rb->bmap, start, npages); 860 } 861 862 /* 863 * Exclude all dirty pages from migration that fall into a discarded range as 864 * managed by a RamDiscardManager responsible for the mapped memory region of 865 * the RAMBlock. Clear the corresponding bits in the dirty bitmaps. 866 * 867 * Discarded pages ("logically unplugged") have undefined content and must 868 * not get migrated, because even reading these pages for migration might 869 * result in undesired behavior. 870 * 871 * Returns the number of cleared bits in the RAMBlock dirty bitmap. 872 * 873 * Note: The result is only stable while migrating (precopy/postcopy). 874 */ 875 static uint64_t ramblock_dirty_bitmap_clear_discarded_pages(RAMBlock *rb) 876 { 877 uint64_t cleared_bits = 0; 878 879 if (rb->mr && rb->bmap && memory_region_has_ram_discard_manager(rb->mr)) { 880 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr); 881 MemoryRegionSection section = { 882 .mr = rb->mr, 883 .offset_within_region = 0, 884 .size = int128_make64(qemu_ram_get_used_length(rb)), 885 }; 886 887 ram_discard_manager_replay_discarded(rdm, §ion, 888 dirty_bitmap_clear_section, 889 &cleared_bits); 890 } 891 return cleared_bits; 892 } 893 894 /* 895 * Check if a host-page aligned page falls into a discarded range as managed by 896 * a RamDiscardManager responsible for the mapped memory region of the RAMBlock. 897 * 898 * Note: The result is only stable while migrating (precopy/postcopy). 899 */ 900 bool ramblock_page_is_discarded(RAMBlock *rb, ram_addr_t start) 901 { 902 if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) { 903 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr); 904 MemoryRegionSection section = { 905 .mr = rb->mr, 906 .offset_within_region = start, 907 .size = int128_make64(qemu_ram_pagesize(rb)), 908 }; 909 910 return !ram_discard_manager_is_populated(rdm, §ion); 911 } 912 return false; 913 } 914 915 /* Called with RCU critical section */ 916 static void ramblock_sync_dirty_bitmap(RAMState *rs, RAMBlock *rb) 917 { 918 uint64_t new_dirty_pages = 919 cpu_physical_memory_sync_dirty_bitmap(rb, 0, rb->used_length); 920 921 rs->migration_dirty_pages += new_dirty_pages; 922 rs->num_dirty_pages_period += new_dirty_pages; 923 } 924 925 /** 926 * ram_pagesize_summary: calculate all the pagesizes of a VM 927 * 928 * Returns a summary bitmap of the page sizes of all RAMBlocks 929 * 930 * For VMs with just normal pages this is equivalent to the host page 931 * size. If it's got some huge pages then it's the OR of all the 932 * different page sizes. 933 */ 934 uint64_t ram_pagesize_summary(void) 935 { 936 RAMBlock *block; 937 uint64_t summary = 0; 938 939 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 940 summary |= block->page_size; 941 } 942 943 return summary; 944 } 945 946 uint64_t ram_get_total_transferred_pages(void) 947 { 948 return stat64_get(&mig_stats.normal_pages) + 949 stat64_get(&mig_stats.zero_pages) + 950 xbzrle_counters.pages; 951 } 952 953 static void migration_update_rates(RAMState *rs, int64_t end_time) 954 { 955 uint64_t page_count = rs->target_page_count - rs->target_page_count_prev; 956 957 /* calculate period counters */ 958 stat64_set(&mig_stats.dirty_pages_rate, 959 rs->num_dirty_pages_period * 1000 / 960 (end_time - rs->time_last_bitmap_sync)); 961 962 if (!page_count) { 963 return; 964 } 965 966 if (migrate_xbzrle()) { 967 double encoded_size, unencoded_size; 968 969 xbzrle_counters.cache_miss_rate = (double)(xbzrle_counters.cache_miss - 970 rs->xbzrle_cache_miss_prev) / page_count; 971 rs->xbzrle_cache_miss_prev = xbzrle_counters.cache_miss; 972 unencoded_size = (xbzrle_counters.pages - rs->xbzrle_pages_prev) * 973 TARGET_PAGE_SIZE; 974 encoded_size = xbzrle_counters.bytes - rs->xbzrle_bytes_prev; 975 if (xbzrle_counters.pages == rs->xbzrle_pages_prev || !encoded_size) { 976 xbzrle_counters.encoding_rate = 0; 977 } else { 978 xbzrle_counters.encoding_rate = unencoded_size / encoded_size; 979 } 980 rs->xbzrle_pages_prev = xbzrle_counters.pages; 981 rs->xbzrle_bytes_prev = xbzrle_counters.bytes; 982 } 983 } 984 985 /* 986 * Enable dirty-limit to throttle down the guest 987 */ 988 static void migration_dirty_limit_guest(void) 989 { 990 /* 991 * dirty page rate quota for all vCPUs fetched from 992 * migration parameter 'vcpu_dirty_limit' 993 */ 994 static int64_t quota_dirtyrate; 995 MigrationState *s = migrate_get_current(); 996 997 /* 998 * If dirty limit already enabled and migration parameter 999 * vcpu-dirty-limit untouched. 1000 */ 1001 if (dirtylimit_in_service() && 1002 quota_dirtyrate == s->parameters.vcpu_dirty_limit) { 1003 return; 1004 } 1005 1006 quota_dirtyrate = s->parameters.vcpu_dirty_limit; 1007 1008 /* 1009 * Set all vCPU a quota dirtyrate, note that the second 1010 * parameter will be ignored if setting all vCPU for the vm 1011 */ 1012 qmp_set_vcpu_dirty_limit(false, -1, quota_dirtyrate, NULL); 1013 trace_migration_dirty_limit_guest(quota_dirtyrate); 1014 } 1015 1016 static void migration_trigger_throttle(RAMState *rs) 1017 { 1018 uint64_t threshold = migrate_throttle_trigger_threshold(); 1019 uint64_t bytes_xfer_period = 1020 migration_transferred_bytes() - rs->bytes_xfer_prev; 1021 uint64_t bytes_dirty_period = rs->num_dirty_pages_period * TARGET_PAGE_SIZE; 1022 uint64_t bytes_dirty_threshold = bytes_xfer_period * threshold / 100; 1023 1024 /* 1025 * The following detection logic can be refined later. For now: 1026 * Check to see if the ratio between dirtied bytes and the approx. 1027 * amount of bytes that just got transferred since the last time 1028 * we were in this routine reaches the threshold. If that happens 1029 * twice, start or increase throttling. 1030 */ 1031 if ((bytes_dirty_period > bytes_dirty_threshold) && 1032 (++rs->dirty_rate_high_cnt >= 2)) { 1033 rs->dirty_rate_high_cnt = 0; 1034 if (migrate_auto_converge()) { 1035 trace_migration_throttle(); 1036 mig_throttle_guest_down(bytes_dirty_period, 1037 bytes_dirty_threshold); 1038 } else if (migrate_dirty_limit()) { 1039 migration_dirty_limit_guest(); 1040 } 1041 } 1042 } 1043 1044 static void migration_bitmap_sync(RAMState *rs, bool last_stage) 1045 { 1046 RAMBlock *block; 1047 int64_t end_time; 1048 1049 stat64_add(&mig_stats.dirty_sync_count, 1); 1050 1051 if (!rs->time_last_bitmap_sync) { 1052 rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); 1053 } 1054 1055 trace_migration_bitmap_sync_start(); 1056 memory_global_dirty_log_sync(last_stage); 1057 1058 WITH_QEMU_LOCK_GUARD(&rs->bitmap_mutex) { 1059 WITH_RCU_READ_LOCK_GUARD() { 1060 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 1061 ramblock_sync_dirty_bitmap(rs, block); 1062 } 1063 stat64_set(&mig_stats.dirty_bytes_last_sync, ram_bytes_remaining()); 1064 } 1065 } 1066 1067 memory_global_after_dirty_log_sync(); 1068 trace_migration_bitmap_sync_end(rs->num_dirty_pages_period); 1069 1070 end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); 1071 1072 /* more than 1 second = 1000 millisecons */ 1073 if (end_time > rs->time_last_bitmap_sync + 1000) { 1074 migration_trigger_throttle(rs); 1075 1076 migration_update_rates(rs, end_time); 1077 1078 rs->target_page_count_prev = rs->target_page_count; 1079 1080 /* reset period counters */ 1081 rs->time_last_bitmap_sync = end_time; 1082 rs->num_dirty_pages_period = 0; 1083 rs->bytes_xfer_prev = migration_transferred_bytes(); 1084 } 1085 if (migrate_events()) { 1086 uint64_t generation = stat64_get(&mig_stats.dirty_sync_count); 1087 qapi_event_send_migration_pass(generation); 1088 } 1089 } 1090 1091 static void migration_bitmap_sync_precopy(RAMState *rs, bool last_stage) 1092 { 1093 Error *local_err = NULL; 1094 1095 /* 1096 * The current notifier usage is just an optimization to migration, so we 1097 * don't stop the normal migration process in the error case. 1098 */ 1099 if (precopy_notify(PRECOPY_NOTIFY_BEFORE_BITMAP_SYNC, &local_err)) { 1100 error_report_err(local_err); 1101 local_err = NULL; 1102 } 1103 1104 migration_bitmap_sync(rs, last_stage); 1105 1106 if (precopy_notify(PRECOPY_NOTIFY_AFTER_BITMAP_SYNC, &local_err)) { 1107 error_report_err(local_err); 1108 } 1109 } 1110 1111 void ram_release_page(const char *rbname, uint64_t offset) 1112 { 1113 if (!migrate_release_ram() || !migration_in_postcopy()) { 1114 return; 1115 } 1116 1117 ram_discard_range(rbname, offset, TARGET_PAGE_SIZE); 1118 } 1119 1120 /** 1121 * save_zero_page: send the zero page to the stream 1122 * 1123 * Returns the number of pages written. 1124 * 1125 * @rs: current RAM state 1126 * @pss: current PSS channel 1127 * @offset: offset inside the block for the page 1128 */ 1129 static int save_zero_page(RAMState *rs, PageSearchStatus *pss, 1130 ram_addr_t offset) 1131 { 1132 uint8_t *p = pss->block->host + offset; 1133 QEMUFile *file = pss->pss_channel; 1134 int len = 0; 1135 1136 if (migrate_zero_page_detection() == ZERO_PAGE_DETECTION_NONE) { 1137 return 0; 1138 } 1139 1140 if (!buffer_is_zero(p, TARGET_PAGE_SIZE)) { 1141 return 0; 1142 } 1143 1144 stat64_add(&mig_stats.zero_pages, 1); 1145 1146 if (migrate_mapped_ram()) { 1147 /* zero pages are not transferred with mapped-ram */ 1148 clear_bit_atomic(offset >> TARGET_PAGE_BITS, pss->block->file_bmap); 1149 return 1; 1150 } 1151 1152 len += save_page_header(pss, file, pss->block, offset | RAM_SAVE_FLAG_ZERO); 1153 qemu_put_byte(file, 0); 1154 len += 1; 1155 ram_release_page(pss->block->idstr, offset); 1156 ram_transferred_add(len); 1157 1158 /* 1159 * Must let xbzrle know, otherwise a previous (now 0'd) cached 1160 * page would be stale. 1161 */ 1162 if (rs->xbzrle_started) { 1163 XBZRLE_cache_lock(); 1164 xbzrle_cache_zero_page(pss->block->offset + offset); 1165 XBZRLE_cache_unlock(); 1166 } 1167 1168 return len; 1169 } 1170 1171 /* 1172 * @pages: the number of pages written by the control path, 1173 * < 0 - error 1174 * > 0 - number of pages written 1175 * 1176 * Return true if the pages has been saved, otherwise false is returned. 1177 */ 1178 static bool control_save_page(PageSearchStatus *pss, 1179 ram_addr_t offset, int *pages) 1180 { 1181 int ret; 1182 1183 ret = rdma_control_save_page(pss->pss_channel, pss->block->offset, offset, 1184 TARGET_PAGE_SIZE); 1185 if (ret == RAM_SAVE_CONTROL_NOT_SUPP) { 1186 return false; 1187 } 1188 1189 if (ret == RAM_SAVE_CONTROL_DELAYED) { 1190 *pages = 1; 1191 return true; 1192 } 1193 *pages = ret; 1194 return true; 1195 } 1196 1197 /* 1198 * directly send the page to the stream 1199 * 1200 * Returns the number of pages written. 1201 * 1202 * @pss: current PSS channel 1203 * @block: block that contains the page we want to send 1204 * @offset: offset inside the block for the page 1205 * @buf: the page to be sent 1206 * @async: send to page asyncly 1207 */ 1208 static int save_normal_page(PageSearchStatus *pss, RAMBlock *block, 1209 ram_addr_t offset, uint8_t *buf, bool async) 1210 { 1211 QEMUFile *file = pss->pss_channel; 1212 1213 if (migrate_mapped_ram()) { 1214 qemu_put_buffer_at(file, buf, TARGET_PAGE_SIZE, 1215 block->pages_offset + offset); 1216 set_bit(offset >> TARGET_PAGE_BITS, block->file_bmap); 1217 } else { 1218 ram_transferred_add(save_page_header(pss, pss->pss_channel, block, 1219 offset | RAM_SAVE_FLAG_PAGE)); 1220 if (async) { 1221 qemu_put_buffer_async(file, buf, TARGET_PAGE_SIZE, 1222 migrate_release_ram() && 1223 migration_in_postcopy()); 1224 } else { 1225 qemu_put_buffer(file, buf, TARGET_PAGE_SIZE); 1226 } 1227 } 1228 ram_transferred_add(TARGET_PAGE_SIZE); 1229 stat64_add(&mig_stats.normal_pages, 1); 1230 return 1; 1231 } 1232 1233 /** 1234 * ram_save_page: send the given page to the stream 1235 * 1236 * Returns the number of pages written. 1237 * < 0 - error 1238 * >=0 - Number of pages written - this might legally be 0 1239 * if xbzrle noticed the page was the same. 1240 * 1241 * @rs: current RAM state 1242 * @block: block that contains the page we want to send 1243 * @offset: offset inside the block for the page 1244 */ 1245 static int ram_save_page(RAMState *rs, PageSearchStatus *pss) 1246 { 1247 int pages = -1; 1248 uint8_t *p; 1249 bool send_async = true; 1250 RAMBlock *block = pss->block; 1251 ram_addr_t offset = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS; 1252 ram_addr_t current_addr = block->offset + offset; 1253 1254 p = block->host + offset; 1255 trace_ram_save_page(block->idstr, (uint64_t)offset, p); 1256 1257 XBZRLE_cache_lock(); 1258 if (rs->xbzrle_started && !migration_in_postcopy()) { 1259 pages = save_xbzrle_page(rs, pss, &p, current_addr, 1260 block, offset); 1261 if (!rs->last_stage) { 1262 /* Can't send this cached data async, since the cache page 1263 * might get updated before it gets to the wire 1264 */ 1265 send_async = false; 1266 } 1267 } 1268 1269 /* XBZRLE overflow or normal page */ 1270 if (pages == -1) { 1271 pages = save_normal_page(pss, block, offset, p, send_async); 1272 } 1273 1274 XBZRLE_cache_unlock(); 1275 1276 return pages; 1277 } 1278 1279 static int ram_save_multifd_page(RAMBlock *block, ram_addr_t offset) 1280 { 1281 if (!multifd_queue_page(block, offset)) { 1282 return -1; 1283 } 1284 1285 return 1; 1286 } 1287 1288 1289 #define PAGE_ALL_CLEAN 0 1290 #define PAGE_TRY_AGAIN 1 1291 #define PAGE_DIRTY_FOUND 2 1292 /** 1293 * find_dirty_block: find the next dirty page and update any state 1294 * associated with the search process. 1295 * 1296 * Returns: 1297 * <0: An error happened 1298 * PAGE_ALL_CLEAN: no dirty page found, give up 1299 * PAGE_TRY_AGAIN: no dirty page found, retry for next block 1300 * PAGE_DIRTY_FOUND: dirty page found 1301 * 1302 * @rs: current RAM state 1303 * @pss: data about the state of the current dirty page scan 1304 * @again: set to false if the search has scanned the whole of RAM 1305 */ 1306 static int find_dirty_block(RAMState *rs, PageSearchStatus *pss) 1307 { 1308 /* Update pss->page for the next dirty bit in ramblock */ 1309 pss_find_next_dirty(pss); 1310 1311 if (pss->complete_round && pss->block == rs->last_seen_block && 1312 pss->page >= rs->last_page) { 1313 /* 1314 * We've been once around the RAM and haven't found anything. 1315 * Give up. 1316 */ 1317 return PAGE_ALL_CLEAN; 1318 } 1319 if (!offset_in_ramblock(pss->block, 1320 ((ram_addr_t)pss->page) << TARGET_PAGE_BITS)) { 1321 /* Didn't find anything in this RAM Block */ 1322 pss->page = 0; 1323 pss->block = QLIST_NEXT_RCU(pss->block, next); 1324 if (!pss->block) { 1325 if (migrate_multifd() && 1326 (!migrate_multifd_flush_after_each_section() || 1327 migrate_mapped_ram())) { 1328 QEMUFile *f = rs->pss[RAM_CHANNEL_PRECOPY].pss_channel; 1329 int ret = multifd_send_sync_main(); 1330 if (ret < 0) { 1331 return ret; 1332 } 1333 1334 if (!migrate_mapped_ram()) { 1335 qemu_put_be64(f, RAM_SAVE_FLAG_MULTIFD_FLUSH); 1336 qemu_fflush(f); 1337 } 1338 } 1339 1340 /* Hit the end of the list */ 1341 pss->block = QLIST_FIRST_RCU(&ram_list.blocks); 1342 /* Flag that we've looped */ 1343 pss->complete_round = true; 1344 /* After the first round, enable XBZRLE. */ 1345 if (migrate_xbzrle()) { 1346 rs->xbzrle_started = true; 1347 } 1348 } 1349 /* Didn't find anything this time, but try again on the new block */ 1350 return PAGE_TRY_AGAIN; 1351 } else { 1352 /* We've found something */ 1353 return PAGE_DIRTY_FOUND; 1354 } 1355 } 1356 1357 /** 1358 * unqueue_page: gets a page of the queue 1359 * 1360 * Helper for 'get_queued_page' - gets a page off the queue 1361 * 1362 * Returns the block of the page (or NULL if none available) 1363 * 1364 * @rs: current RAM state 1365 * @offset: used to return the offset within the RAMBlock 1366 */ 1367 static RAMBlock *unqueue_page(RAMState *rs, ram_addr_t *offset) 1368 { 1369 struct RAMSrcPageRequest *entry; 1370 RAMBlock *block = NULL; 1371 1372 if (!postcopy_has_request(rs)) { 1373 return NULL; 1374 } 1375 1376 QEMU_LOCK_GUARD(&rs->src_page_req_mutex); 1377 1378 /* 1379 * This should _never_ change even after we take the lock, because no one 1380 * should be taking anything off the request list other than us. 1381 */ 1382 assert(postcopy_has_request(rs)); 1383 1384 entry = QSIMPLEQ_FIRST(&rs->src_page_requests); 1385 block = entry->rb; 1386 *offset = entry->offset; 1387 1388 if (entry->len > TARGET_PAGE_SIZE) { 1389 entry->len -= TARGET_PAGE_SIZE; 1390 entry->offset += TARGET_PAGE_SIZE; 1391 } else { 1392 memory_region_unref(block->mr); 1393 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req); 1394 g_free(entry); 1395 migration_consume_urgent_request(); 1396 } 1397 1398 return block; 1399 } 1400 1401 #if defined(__linux__) 1402 /** 1403 * poll_fault_page: try to get next UFFD write fault page and, if pending fault 1404 * is found, return RAM block pointer and page offset 1405 * 1406 * Returns pointer to the RAMBlock containing faulting page, 1407 * NULL if no write faults are pending 1408 * 1409 * @rs: current RAM state 1410 * @offset: page offset from the beginning of the block 1411 */ 1412 static RAMBlock *poll_fault_page(RAMState *rs, ram_addr_t *offset) 1413 { 1414 struct uffd_msg uffd_msg; 1415 void *page_address; 1416 RAMBlock *block; 1417 int res; 1418 1419 if (!migrate_background_snapshot()) { 1420 return NULL; 1421 } 1422 1423 res = uffd_read_events(rs->uffdio_fd, &uffd_msg, 1); 1424 if (res <= 0) { 1425 return NULL; 1426 } 1427 1428 page_address = (void *)(uintptr_t) uffd_msg.arg.pagefault.address; 1429 block = qemu_ram_block_from_host(page_address, false, offset); 1430 assert(block && (block->flags & RAM_UF_WRITEPROTECT) != 0); 1431 return block; 1432 } 1433 1434 /** 1435 * ram_save_release_protection: release UFFD write protection after 1436 * a range of pages has been saved 1437 * 1438 * @rs: current RAM state 1439 * @pss: page-search-status structure 1440 * @start_page: index of the first page in the range relative to pss->block 1441 * 1442 * Returns 0 on success, negative value in case of an error 1443 */ 1444 static int ram_save_release_protection(RAMState *rs, PageSearchStatus *pss, 1445 unsigned long start_page) 1446 { 1447 int res = 0; 1448 1449 /* Check if page is from UFFD-managed region. */ 1450 if (pss->block->flags & RAM_UF_WRITEPROTECT) { 1451 void *page_address = pss->block->host + (start_page << TARGET_PAGE_BITS); 1452 uint64_t run_length = (pss->page - start_page) << TARGET_PAGE_BITS; 1453 1454 /* Flush async buffers before un-protect. */ 1455 qemu_fflush(pss->pss_channel); 1456 /* Un-protect memory range. */ 1457 res = uffd_change_protection(rs->uffdio_fd, page_address, run_length, 1458 false, false); 1459 } 1460 1461 return res; 1462 } 1463 1464 /* ram_write_tracking_available: check if kernel supports required UFFD features 1465 * 1466 * Returns true if supports, false otherwise 1467 */ 1468 bool ram_write_tracking_available(void) 1469 { 1470 uint64_t uffd_features; 1471 int res; 1472 1473 res = uffd_query_features(&uffd_features); 1474 return (res == 0 && 1475 (uffd_features & UFFD_FEATURE_PAGEFAULT_FLAG_WP) != 0); 1476 } 1477 1478 /* ram_write_tracking_compatible: check if guest configuration is 1479 * compatible with 'write-tracking' 1480 * 1481 * Returns true if compatible, false otherwise 1482 */ 1483 bool ram_write_tracking_compatible(void) 1484 { 1485 const uint64_t uffd_ioctls_mask = BIT(_UFFDIO_WRITEPROTECT); 1486 int uffd_fd; 1487 RAMBlock *block; 1488 bool ret = false; 1489 1490 /* Open UFFD file descriptor */ 1491 uffd_fd = uffd_create_fd(UFFD_FEATURE_PAGEFAULT_FLAG_WP, false); 1492 if (uffd_fd < 0) { 1493 return false; 1494 } 1495 1496 RCU_READ_LOCK_GUARD(); 1497 1498 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 1499 uint64_t uffd_ioctls; 1500 1501 /* Nothing to do with read-only and MMIO-writable regions */ 1502 if (block->mr->readonly || block->mr->rom_device) { 1503 continue; 1504 } 1505 /* Try to register block memory via UFFD-IO to track writes */ 1506 if (uffd_register_memory(uffd_fd, block->host, block->max_length, 1507 UFFDIO_REGISTER_MODE_WP, &uffd_ioctls)) { 1508 goto out; 1509 } 1510 if ((uffd_ioctls & uffd_ioctls_mask) != uffd_ioctls_mask) { 1511 goto out; 1512 } 1513 } 1514 ret = true; 1515 1516 out: 1517 uffd_close_fd(uffd_fd); 1518 return ret; 1519 } 1520 1521 static inline void populate_read_range(RAMBlock *block, ram_addr_t offset, 1522 ram_addr_t size) 1523 { 1524 const ram_addr_t end = offset + size; 1525 1526 /* 1527 * We read one byte of each page; this will preallocate page tables if 1528 * required and populate the shared zeropage on MAP_PRIVATE anonymous memory 1529 * where no page was populated yet. This might require adaption when 1530 * supporting other mappings, like shmem. 1531 */ 1532 for (; offset < end; offset += block->page_size) { 1533 char tmp = *((char *)block->host + offset); 1534 1535 /* Don't optimize the read out */ 1536 asm volatile("" : "+r" (tmp)); 1537 } 1538 } 1539 1540 static inline int populate_read_section(MemoryRegionSection *section, 1541 void *opaque) 1542 { 1543 const hwaddr size = int128_get64(section->size); 1544 hwaddr offset = section->offset_within_region; 1545 RAMBlock *block = section->mr->ram_block; 1546 1547 populate_read_range(block, offset, size); 1548 return 0; 1549 } 1550 1551 /* 1552 * ram_block_populate_read: preallocate page tables and populate pages in the 1553 * RAM block by reading a byte of each page. 1554 * 1555 * Since it's solely used for userfault_fd WP feature, here we just 1556 * hardcode page size to qemu_real_host_page_size. 1557 * 1558 * @block: RAM block to populate 1559 */ 1560 static void ram_block_populate_read(RAMBlock *rb) 1561 { 1562 /* 1563 * Skip populating all pages that fall into a discarded range as managed by 1564 * a RamDiscardManager responsible for the mapped memory region of the 1565 * RAMBlock. Such discarded ("logically unplugged") parts of a RAMBlock 1566 * must not get populated automatically. We don't have to track 1567 * modifications via userfaultfd WP reliably, because these pages will 1568 * not be part of the migration stream either way -- see 1569 * ramblock_dirty_bitmap_exclude_discarded_pages(). 1570 * 1571 * Note: The result is only stable while migrating (precopy/postcopy). 1572 */ 1573 if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) { 1574 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr); 1575 MemoryRegionSection section = { 1576 .mr = rb->mr, 1577 .offset_within_region = 0, 1578 .size = rb->mr->size, 1579 }; 1580 1581 ram_discard_manager_replay_populated(rdm, §ion, 1582 populate_read_section, NULL); 1583 } else { 1584 populate_read_range(rb, 0, rb->used_length); 1585 } 1586 } 1587 1588 /* 1589 * ram_write_tracking_prepare: prepare for UFFD-WP memory tracking 1590 */ 1591 void ram_write_tracking_prepare(void) 1592 { 1593 RAMBlock *block; 1594 1595 RCU_READ_LOCK_GUARD(); 1596 1597 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 1598 /* Nothing to do with read-only and MMIO-writable regions */ 1599 if (block->mr->readonly || block->mr->rom_device) { 1600 continue; 1601 } 1602 1603 /* 1604 * Populate pages of the RAM block before enabling userfault_fd 1605 * write protection. 1606 * 1607 * This stage is required since ioctl(UFFDIO_WRITEPROTECT) with 1608 * UFFDIO_WRITEPROTECT_MODE_WP mode setting would silently skip 1609 * pages with pte_none() entries in page table. 1610 */ 1611 ram_block_populate_read(block); 1612 } 1613 } 1614 1615 static inline int uffd_protect_section(MemoryRegionSection *section, 1616 void *opaque) 1617 { 1618 const hwaddr size = int128_get64(section->size); 1619 const hwaddr offset = section->offset_within_region; 1620 RAMBlock *rb = section->mr->ram_block; 1621 int uffd_fd = (uintptr_t)opaque; 1622 1623 return uffd_change_protection(uffd_fd, rb->host + offset, size, true, 1624 false); 1625 } 1626 1627 static int ram_block_uffd_protect(RAMBlock *rb, int uffd_fd) 1628 { 1629 assert(rb->flags & RAM_UF_WRITEPROTECT); 1630 1631 /* See ram_block_populate_read() */ 1632 if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) { 1633 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr); 1634 MemoryRegionSection section = { 1635 .mr = rb->mr, 1636 .offset_within_region = 0, 1637 .size = rb->mr->size, 1638 }; 1639 1640 return ram_discard_manager_replay_populated(rdm, §ion, 1641 uffd_protect_section, 1642 (void *)(uintptr_t)uffd_fd); 1643 } 1644 return uffd_change_protection(uffd_fd, rb->host, 1645 rb->used_length, true, false); 1646 } 1647 1648 /* 1649 * ram_write_tracking_start: start UFFD-WP memory tracking 1650 * 1651 * Returns 0 for success or negative value in case of error 1652 */ 1653 int ram_write_tracking_start(void) 1654 { 1655 int uffd_fd; 1656 RAMState *rs = ram_state; 1657 RAMBlock *block; 1658 1659 /* Open UFFD file descriptor */ 1660 uffd_fd = uffd_create_fd(UFFD_FEATURE_PAGEFAULT_FLAG_WP, true); 1661 if (uffd_fd < 0) { 1662 return uffd_fd; 1663 } 1664 rs->uffdio_fd = uffd_fd; 1665 1666 RCU_READ_LOCK_GUARD(); 1667 1668 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 1669 /* Nothing to do with read-only and MMIO-writable regions */ 1670 if (block->mr->readonly || block->mr->rom_device) { 1671 continue; 1672 } 1673 1674 /* Register block memory with UFFD to track writes */ 1675 if (uffd_register_memory(rs->uffdio_fd, block->host, 1676 block->max_length, UFFDIO_REGISTER_MODE_WP, NULL)) { 1677 goto fail; 1678 } 1679 block->flags |= RAM_UF_WRITEPROTECT; 1680 memory_region_ref(block->mr); 1681 1682 /* Apply UFFD write protection to the block memory range */ 1683 if (ram_block_uffd_protect(block, uffd_fd)) { 1684 goto fail; 1685 } 1686 1687 trace_ram_write_tracking_ramblock_start(block->idstr, block->page_size, 1688 block->host, block->max_length); 1689 } 1690 1691 return 0; 1692 1693 fail: 1694 error_report("ram_write_tracking_start() failed: restoring initial memory state"); 1695 1696 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 1697 if ((block->flags & RAM_UF_WRITEPROTECT) == 0) { 1698 continue; 1699 } 1700 uffd_unregister_memory(rs->uffdio_fd, block->host, block->max_length); 1701 /* Cleanup flags and remove reference */ 1702 block->flags &= ~RAM_UF_WRITEPROTECT; 1703 memory_region_unref(block->mr); 1704 } 1705 1706 uffd_close_fd(uffd_fd); 1707 rs->uffdio_fd = -1; 1708 return -1; 1709 } 1710 1711 /** 1712 * ram_write_tracking_stop: stop UFFD-WP memory tracking and remove protection 1713 */ 1714 void ram_write_tracking_stop(void) 1715 { 1716 RAMState *rs = ram_state; 1717 RAMBlock *block; 1718 1719 RCU_READ_LOCK_GUARD(); 1720 1721 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 1722 if ((block->flags & RAM_UF_WRITEPROTECT) == 0) { 1723 continue; 1724 } 1725 uffd_unregister_memory(rs->uffdio_fd, block->host, block->max_length); 1726 1727 trace_ram_write_tracking_ramblock_stop(block->idstr, block->page_size, 1728 block->host, block->max_length); 1729 1730 /* Cleanup flags and remove reference */ 1731 block->flags &= ~RAM_UF_WRITEPROTECT; 1732 memory_region_unref(block->mr); 1733 } 1734 1735 /* Finally close UFFD file descriptor */ 1736 uffd_close_fd(rs->uffdio_fd); 1737 rs->uffdio_fd = -1; 1738 } 1739 1740 #else 1741 /* No target OS support, stubs just fail or ignore */ 1742 1743 static RAMBlock *poll_fault_page(RAMState *rs, ram_addr_t *offset) 1744 { 1745 (void) rs; 1746 (void) offset; 1747 1748 return NULL; 1749 } 1750 1751 static int ram_save_release_protection(RAMState *rs, PageSearchStatus *pss, 1752 unsigned long start_page) 1753 { 1754 (void) rs; 1755 (void) pss; 1756 (void) start_page; 1757 1758 return 0; 1759 } 1760 1761 bool ram_write_tracking_available(void) 1762 { 1763 return false; 1764 } 1765 1766 bool ram_write_tracking_compatible(void) 1767 { 1768 assert(0); 1769 return false; 1770 } 1771 1772 int ram_write_tracking_start(void) 1773 { 1774 assert(0); 1775 return -1; 1776 } 1777 1778 void ram_write_tracking_stop(void) 1779 { 1780 assert(0); 1781 } 1782 #endif /* defined(__linux__) */ 1783 1784 /** 1785 * get_queued_page: unqueue a page from the postcopy requests 1786 * 1787 * Skips pages that are already sent (!dirty) 1788 * 1789 * Returns true if a queued page is found 1790 * 1791 * @rs: current RAM state 1792 * @pss: data about the state of the current dirty page scan 1793 */ 1794 static bool get_queued_page(RAMState *rs, PageSearchStatus *pss) 1795 { 1796 RAMBlock *block; 1797 ram_addr_t offset; 1798 bool dirty; 1799 1800 do { 1801 block = unqueue_page(rs, &offset); 1802 /* 1803 * We're sending this page, and since it's postcopy nothing else 1804 * will dirty it, and we must make sure it doesn't get sent again 1805 * even if this queue request was received after the background 1806 * search already sent it. 1807 */ 1808 if (block) { 1809 unsigned long page; 1810 1811 page = offset >> TARGET_PAGE_BITS; 1812 dirty = test_bit(page, block->bmap); 1813 if (!dirty) { 1814 trace_get_queued_page_not_dirty(block->idstr, (uint64_t)offset, 1815 page); 1816 } else { 1817 trace_get_queued_page(block->idstr, (uint64_t)offset, page); 1818 } 1819 } 1820 1821 } while (block && !dirty); 1822 1823 if (!block) { 1824 /* 1825 * Poll write faults too if background snapshot is enabled; that's 1826 * when we have vcpus got blocked by the write protected pages. 1827 */ 1828 block = poll_fault_page(rs, &offset); 1829 } 1830 1831 if (block) { 1832 /* 1833 * We want the background search to continue from the queued page 1834 * since the guest is likely to want other pages near to the page 1835 * it just requested. 1836 */ 1837 pss->block = block; 1838 pss->page = offset >> TARGET_PAGE_BITS; 1839 1840 /* 1841 * This unqueued page would break the "one round" check, even is 1842 * really rare. 1843 */ 1844 pss->complete_round = false; 1845 } 1846 1847 return !!block; 1848 } 1849 1850 /** 1851 * migration_page_queue_free: drop any remaining pages in the ram 1852 * request queue 1853 * 1854 * It should be empty at the end anyway, but in error cases there may 1855 * be some left. in case that there is any page left, we drop it. 1856 * 1857 */ 1858 static void migration_page_queue_free(RAMState *rs) 1859 { 1860 struct RAMSrcPageRequest *mspr, *next_mspr; 1861 /* This queue generally should be empty - but in the case of a failed 1862 * migration might have some droppings in. 1863 */ 1864 RCU_READ_LOCK_GUARD(); 1865 QSIMPLEQ_FOREACH_SAFE(mspr, &rs->src_page_requests, next_req, next_mspr) { 1866 memory_region_unref(mspr->rb->mr); 1867 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req); 1868 g_free(mspr); 1869 } 1870 } 1871 1872 /** 1873 * ram_save_queue_pages: queue the page for transmission 1874 * 1875 * A request from postcopy destination for example. 1876 * 1877 * Returns zero on success or negative on error 1878 * 1879 * @rbname: Name of the RAMBLock of the request. NULL means the 1880 * same that last one. 1881 * @start: starting address from the start of the RAMBlock 1882 * @len: length (in bytes) to send 1883 */ 1884 int ram_save_queue_pages(const char *rbname, ram_addr_t start, ram_addr_t len, 1885 Error **errp) 1886 { 1887 RAMBlock *ramblock; 1888 RAMState *rs = ram_state; 1889 1890 stat64_add(&mig_stats.postcopy_requests, 1); 1891 RCU_READ_LOCK_GUARD(); 1892 1893 if (!rbname) { 1894 /* Reuse last RAMBlock */ 1895 ramblock = rs->last_req_rb; 1896 1897 if (!ramblock) { 1898 /* 1899 * Shouldn't happen, we can't reuse the last RAMBlock if 1900 * it's the 1st request. 1901 */ 1902 error_setg(errp, "MIG_RP_MSG_REQ_PAGES has no previous block"); 1903 return -1; 1904 } 1905 } else { 1906 ramblock = qemu_ram_block_by_name(rbname); 1907 1908 if (!ramblock) { 1909 /* We shouldn't be asked for a non-existent RAMBlock */ 1910 error_setg(errp, "MIG_RP_MSG_REQ_PAGES has no block '%s'", rbname); 1911 return -1; 1912 } 1913 rs->last_req_rb = ramblock; 1914 } 1915 trace_ram_save_queue_pages(ramblock->idstr, start, len); 1916 if (!offset_in_ramblock(ramblock, start + len - 1)) { 1917 error_setg(errp, "MIG_RP_MSG_REQ_PAGES request overrun, " 1918 "start=" RAM_ADDR_FMT " len=" 1919 RAM_ADDR_FMT " blocklen=" RAM_ADDR_FMT, 1920 start, len, ramblock->used_length); 1921 return -1; 1922 } 1923 1924 /* 1925 * When with postcopy preempt, we send back the page directly in the 1926 * rp-return thread. 1927 */ 1928 if (postcopy_preempt_active()) { 1929 ram_addr_t page_start = start >> TARGET_PAGE_BITS; 1930 size_t page_size = qemu_ram_pagesize(ramblock); 1931 PageSearchStatus *pss = &ram_state->pss[RAM_CHANNEL_POSTCOPY]; 1932 int ret = 0; 1933 1934 qemu_mutex_lock(&rs->bitmap_mutex); 1935 1936 pss_init(pss, ramblock, page_start); 1937 /* 1938 * Always use the preempt channel, and make sure it's there. It's 1939 * safe to access without lock, because when rp-thread is running 1940 * we should be the only one who operates on the qemufile 1941 */ 1942 pss->pss_channel = migrate_get_current()->postcopy_qemufile_src; 1943 assert(pss->pss_channel); 1944 1945 /* 1946 * It must be either one or multiple of host page size. Just 1947 * assert; if something wrong we're mostly split brain anyway. 1948 */ 1949 assert(len % page_size == 0); 1950 while (len) { 1951 if (ram_save_host_page_urgent(pss)) { 1952 error_setg(errp, "ram_save_host_page_urgent() failed: " 1953 "ramblock=%s, start_addr=0x"RAM_ADDR_FMT, 1954 ramblock->idstr, start); 1955 ret = -1; 1956 break; 1957 } 1958 /* 1959 * NOTE: after ram_save_host_page_urgent() succeeded, pss->page 1960 * will automatically be moved and point to the next host page 1961 * we're going to send, so no need to update here. 1962 * 1963 * Normally QEMU never sends >1 host page in requests, so 1964 * logically we don't even need that as the loop should only 1965 * run once, but just to be consistent. 1966 */ 1967 len -= page_size; 1968 }; 1969 qemu_mutex_unlock(&rs->bitmap_mutex); 1970 1971 return ret; 1972 } 1973 1974 struct RAMSrcPageRequest *new_entry = 1975 g_new0(struct RAMSrcPageRequest, 1); 1976 new_entry->rb = ramblock; 1977 new_entry->offset = start; 1978 new_entry->len = len; 1979 1980 memory_region_ref(ramblock->mr); 1981 qemu_mutex_lock(&rs->src_page_req_mutex); 1982 QSIMPLEQ_INSERT_TAIL(&rs->src_page_requests, new_entry, next_req); 1983 migration_make_urgent_request(); 1984 qemu_mutex_unlock(&rs->src_page_req_mutex); 1985 1986 return 0; 1987 } 1988 1989 /** 1990 * ram_save_target_page_legacy: save one target page 1991 * 1992 * Returns the number of pages written 1993 * 1994 * @rs: current RAM state 1995 * @pss: data about the page we want to send 1996 */ 1997 static int ram_save_target_page_legacy(RAMState *rs, PageSearchStatus *pss) 1998 { 1999 ram_addr_t offset = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS; 2000 int res; 2001 2002 if (control_save_page(pss, offset, &res)) { 2003 return res; 2004 } 2005 2006 if (save_zero_page(rs, pss, offset)) { 2007 return 1; 2008 } 2009 2010 return ram_save_page(rs, pss); 2011 } 2012 2013 /** 2014 * ram_save_target_page_multifd: send one target page to multifd workers 2015 * 2016 * Returns 1 if the page was queued, -1 otherwise. 2017 * 2018 * @rs: current RAM state 2019 * @pss: data about the page we want to send 2020 */ 2021 static int ram_save_target_page_multifd(RAMState *rs, PageSearchStatus *pss) 2022 { 2023 RAMBlock *block = pss->block; 2024 ram_addr_t offset = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS; 2025 2026 /* 2027 * While using multifd live migration, we still need to handle zero 2028 * page checking on the migration main thread. 2029 */ 2030 if (migrate_zero_page_detection() == ZERO_PAGE_DETECTION_LEGACY) { 2031 if (save_zero_page(rs, pss, offset)) { 2032 return 1; 2033 } 2034 } 2035 2036 return ram_save_multifd_page(block, offset); 2037 } 2038 2039 /* Should be called before sending a host page */ 2040 static void pss_host_page_prepare(PageSearchStatus *pss) 2041 { 2042 /* How many guest pages are there in one host page? */ 2043 size_t guest_pfns = qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS; 2044 2045 pss->host_page_sending = true; 2046 if (guest_pfns <= 1) { 2047 /* 2048 * This covers both when guest psize == host psize, or when guest 2049 * has larger psize than the host (guest_pfns==0). 2050 * 2051 * For the latter, we always send one whole guest page per 2052 * iteration of the host page (example: an Alpha VM on x86 host 2053 * will have guest psize 8K while host psize 4K). 2054 */ 2055 pss->host_page_start = pss->page; 2056 pss->host_page_end = pss->page + 1; 2057 } else { 2058 /* 2059 * The host page spans over multiple guest pages, we send them 2060 * within the same host page iteration. 2061 */ 2062 pss->host_page_start = ROUND_DOWN(pss->page, guest_pfns); 2063 pss->host_page_end = ROUND_UP(pss->page + 1, guest_pfns); 2064 } 2065 } 2066 2067 /* 2068 * Whether the page pointed by PSS is within the host page being sent. 2069 * Must be called after a previous pss_host_page_prepare(). 2070 */ 2071 static bool pss_within_range(PageSearchStatus *pss) 2072 { 2073 ram_addr_t ram_addr; 2074 2075 assert(pss->host_page_sending); 2076 2077 /* Over host-page boundary? */ 2078 if (pss->page >= pss->host_page_end) { 2079 return false; 2080 } 2081 2082 ram_addr = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS; 2083 2084 return offset_in_ramblock(pss->block, ram_addr); 2085 } 2086 2087 static void pss_host_page_finish(PageSearchStatus *pss) 2088 { 2089 pss->host_page_sending = false; 2090 /* This is not needed, but just to reset it */ 2091 pss->host_page_start = pss->host_page_end = 0; 2092 } 2093 2094 /* 2095 * Send an urgent host page specified by `pss'. Need to be called with 2096 * bitmap_mutex held. 2097 * 2098 * Returns 0 if save host page succeeded, false otherwise. 2099 */ 2100 static int ram_save_host_page_urgent(PageSearchStatus *pss) 2101 { 2102 bool page_dirty, sent = false; 2103 RAMState *rs = ram_state; 2104 int ret = 0; 2105 2106 trace_postcopy_preempt_send_host_page(pss->block->idstr, pss->page); 2107 pss_host_page_prepare(pss); 2108 2109 /* 2110 * If precopy is sending the same page, let it be done in precopy, or 2111 * we could send the same page in two channels and none of them will 2112 * receive the whole page. 2113 */ 2114 if (pss_overlap(pss, &ram_state->pss[RAM_CHANNEL_PRECOPY])) { 2115 trace_postcopy_preempt_hit(pss->block->idstr, 2116 pss->page << TARGET_PAGE_BITS); 2117 return 0; 2118 } 2119 2120 do { 2121 page_dirty = migration_bitmap_clear_dirty(rs, pss->block, pss->page); 2122 2123 if (page_dirty) { 2124 /* Be strict to return code; it must be 1, or what else? */ 2125 if (migration_ops->ram_save_target_page(rs, pss) != 1) { 2126 error_report_once("%s: ram_save_target_page failed", __func__); 2127 ret = -1; 2128 goto out; 2129 } 2130 sent = true; 2131 } 2132 pss_find_next_dirty(pss); 2133 } while (pss_within_range(pss)); 2134 out: 2135 pss_host_page_finish(pss); 2136 /* For urgent requests, flush immediately if sent */ 2137 if (sent) { 2138 qemu_fflush(pss->pss_channel); 2139 } 2140 return ret; 2141 } 2142 2143 /** 2144 * ram_save_host_page: save a whole host page 2145 * 2146 * Starting at *offset send pages up to the end of the current host 2147 * page. It's valid for the initial offset to point into the middle of 2148 * a host page in which case the remainder of the hostpage is sent. 2149 * Only dirty target pages are sent. Note that the host page size may 2150 * be a huge page for this block. 2151 * 2152 * The saving stops at the boundary of the used_length of the block 2153 * if the RAMBlock isn't a multiple of the host page size. 2154 * 2155 * The caller must be with ram_state.bitmap_mutex held to call this 2156 * function. Note that this function can temporarily release the lock, but 2157 * when the function is returned it'll make sure the lock is still held. 2158 * 2159 * Returns the number of pages written or negative on error 2160 * 2161 * @rs: current RAM state 2162 * @pss: data about the page we want to send 2163 */ 2164 static int ram_save_host_page(RAMState *rs, PageSearchStatus *pss) 2165 { 2166 bool page_dirty, preempt_active = postcopy_preempt_active(); 2167 int tmppages, pages = 0; 2168 size_t pagesize_bits = 2169 qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS; 2170 unsigned long start_page = pss->page; 2171 int res; 2172 2173 if (migrate_ram_is_ignored(pss->block)) { 2174 error_report("block %s should not be migrated !", pss->block->idstr); 2175 return 0; 2176 } 2177 2178 /* Update host page boundary information */ 2179 pss_host_page_prepare(pss); 2180 2181 do { 2182 page_dirty = migration_bitmap_clear_dirty(rs, pss->block, pss->page); 2183 2184 /* Check the pages is dirty and if it is send it */ 2185 if (page_dirty) { 2186 /* 2187 * Properly yield the lock only in postcopy preempt mode 2188 * because both migration thread and rp-return thread can 2189 * operate on the bitmaps. 2190 */ 2191 if (preempt_active) { 2192 qemu_mutex_unlock(&rs->bitmap_mutex); 2193 } 2194 tmppages = migration_ops->ram_save_target_page(rs, pss); 2195 if (tmppages >= 0) { 2196 pages += tmppages; 2197 /* 2198 * Allow rate limiting to happen in the middle of huge pages if 2199 * something is sent in the current iteration. 2200 */ 2201 if (pagesize_bits > 1 && tmppages > 0) { 2202 migration_rate_limit(); 2203 } 2204 } 2205 if (preempt_active) { 2206 qemu_mutex_lock(&rs->bitmap_mutex); 2207 } 2208 } else { 2209 tmppages = 0; 2210 } 2211 2212 if (tmppages < 0) { 2213 pss_host_page_finish(pss); 2214 return tmppages; 2215 } 2216 2217 pss_find_next_dirty(pss); 2218 } while (pss_within_range(pss)); 2219 2220 pss_host_page_finish(pss); 2221 2222 res = ram_save_release_protection(rs, pss, start_page); 2223 return (res < 0 ? res : pages); 2224 } 2225 2226 /** 2227 * ram_find_and_save_block: finds a dirty page and sends it to f 2228 * 2229 * Called within an RCU critical section. 2230 * 2231 * Returns the number of pages written where zero means no dirty pages, 2232 * or negative on error 2233 * 2234 * @rs: current RAM state 2235 * 2236 * On systems where host-page-size > target-page-size it will send all the 2237 * pages in a host page that are dirty. 2238 */ 2239 static int ram_find_and_save_block(RAMState *rs) 2240 { 2241 PageSearchStatus *pss = &rs->pss[RAM_CHANNEL_PRECOPY]; 2242 int pages = 0; 2243 2244 /* No dirty page as there is zero RAM */ 2245 if (!rs->ram_bytes_total) { 2246 return pages; 2247 } 2248 2249 /* 2250 * Always keep last_seen_block/last_page valid during this procedure, 2251 * because find_dirty_block() relies on these values (e.g., we compare 2252 * last_seen_block with pss.block to see whether we searched all the 2253 * ramblocks) to detect the completion of migration. Having NULL value 2254 * of last_seen_block can conditionally cause below loop to run forever. 2255 */ 2256 if (!rs->last_seen_block) { 2257 rs->last_seen_block = QLIST_FIRST_RCU(&ram_list.blocks); 2258 rs->last_page = 0; 2259 } 2260 2261 pss_init(pss, rs->last_seen_block, rs->last_page); 2262 2263 while (true){ 2264 if (!get_queued_page(rs, pss)) { 2265 /* priority queue empty, so just search for something dirty */ 2266 int res = find_dirty_block(rs, pss); 2267 if (res != PAGE_DIRTY_FOUND) { 2268 if (res == PAGE_ALL_CLEAN) { 2269 break; 2270 } else if (res == PAGE_TRY_AGAIN) { 2271 continue; 2272 } else if (res < 0) { 2273 pages = res; 2274 break; 2275 } 2276 } 2277 } 2278 pages = ram_save_host_page(rs, pss); 2279 if (pages) { 2280 break; 2281 } 2282 } 2283 2284 rs->last_seen_block = pss->block; 2285 rs->last_page = pss->page; 2286 2287 return pages; 2288 } 2289 2290 static uint64_t ram_bytes_total_with_ignored(void) 2291 { 2292 RAMBlock *block; 2293 uint64_t total = 0; 2294 2295 RCU_READ_LOCK_GUARD(); 2296 2297 RAMBLOCK_FOREACH_MIGRATABLE(block) { 2298 total += block->used_length; 2299 } 2300 return total; 2301 } 2302 2303 uint64_t ram_bytes_total(void) 2304 { 2305 RAMBlock *block; 2306 uint64_t total = 0; 2307 2308 RCU_READ_LOCK_GUARD(); 2309 2310 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 2311 total += block->used_length; 2312 } 2313 return total; 2314 } 2315 2316 static void xbzrle_load_setup(void) 2317 { 2318 XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE); 2319 } 2320 2321 static void xbzrle_load_cleanup(void) 2322 { 2323 g_free(XBZRLE.decoded_buf); 2324 XBZRLE.decoded_buf = NULL; 2325 } 2326 2327 static void ram_state_cleanup(RAMState **rsp) 2328 { 2329 if (*rsp) { 2330 migration_page_queue_free(*rsp); 2331 qemu_mutex_destroy(&(*rsp)->bitmap_mutex); 2332 qemu_mutex_destroy(&(*rsp)->src_page_req_mutex); 2333 g_free(*rsp); 2334 *rsp = NULL; 2335 } 2336 } 2337 2338 static void xbzrle_cleanup(void) 2339 { 2340 XBZRLE_cache_lock(); 2341 if (XBZRLE.cache) { 2342 cache_fini(XBZRLE.cache); 2343 g_free(XBZRLE.encoded_buf); 2344 g_free(XBZRLE.current_buf); 2345 g_free(XBZRLE.zero_target_page); 2346 XBZRLE.cache = NULL; 2347 XBZRLE.encoded_buf = NULL; 2348 XBZRLE.current_buf = NULL; 2349 XBZRLE.zero_target_page = NULL; 2350 } 2351 XBZRLE_cache_unlock(); 2352 } 2353 2354 static void ram_bitmaps_destroy(void) 2355 { 2356 RAMBlock *block; 2357 2358 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 2359 g_free(block->clear_bmap); 2360 block->clear_bmap = NULL; 2361 g_free(block->bmap); 2362 block->bmap = NULL; 2363 g_free(block->file_bmap); 2364 block->file_bmap = NULL; 2365 } 2366 } 2367 2368 static void ram_save_cleanup(void *opaque) 2369 { 2370 RAMState **rsp = opaque; 2371 2372 /* We don't use dirty log with background snapshots */ 2373 if (!migrate_background_snapshot()) { 2374 /* caller have hold BQL or is in a bh, so there is 2375 * no writing race against the migration bitmap 2376 */ 2377 if (global_dirty_tracking & GLOBAL_DIRTY_MIGRATION) { 2378 /* 2379 * do not stop dirty log without starting it, since 2380 * memory_global_dirty_log_stop will assert that 2381 * memory_global_dirty_log_start/stop used in pairs 2382 */ 2383 memory_global_dirty_log_stop(GLOBAL_DIRTY_MIGRATION); 2384 } 2385 } 2386 2387 ram_bitmaps_destroy(); 2388 2389 xbzrle_cleanup(); 2390 ram_state_cleanup(rsp); 2391 g_free(migration_ops); 2392 migration_ops = NULL; 2393 } 2394 2395 static void ram_state_reset(RAMState *rs) 2396 { 2397 int i; 2398 2399 for (i = 0; i < RAM_CHANNEL_MAX; i++) { 2400 rs->pss[i].last_sent_block = NULL; 2401 } 2402 2403 rs->last_seen_block = NULL; 2404 rs->last_page = 0; 2405 rs->last_version = ram_list.version; 2406 rs->xbzrle_started = false; 2407 } 2408 2409 #define MAX_WAIT 50 /* ms, half buffered_file limit */ 2410 2411 /* **** functions for postcopy ***** */ 2412 2413 void ram_postcopy_migrated_memory_release(MigrationState *ms) 2414 { 2415 struct RAMBlock *block; 2416 2417 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 2418 unsigned long *bitmap = block->bmap; 2419 unsigned long range = block->used_length >> TARGET_PAGE_BITS; 2420 unsigned long run_start = find_next_zero_bit(bitmap, range, 0); 2421 2422 while (run_start < range) { 2423 unsigned long run_end = find_next_bit(bitmap, range, run_start + 1); 2424 ram_discard_range(block->idstr, 2425 ((ram_addr_t)run_start) << TARGET_PAGE_BITS, 2426 ((ram_addr_t)(run_end - run_start)) 2427 << TARGET_PAGE_BITS); 2428 run_start = find_next_zero_bit(bitmap, range, run_end + 1); 2429 } 2430 } 2431 } 2432 2433 /** 2434 * postcopy_send_discard_bm_ram: discard a RAMBlock 2435 * 2436 * Callback from postcopy_each_ram_send_discard for each RAMBlock 2437 * 2438 * @ms: current migration state 2439 * @block: RAMBlock to discard 2440 */ 2441 static void postcopy_send_discard_bm_ram(MigrationState *ms, RAMBlock *block) 2442 { 2443 unsigned long end = block->used_length >> TARGET_PAGE_BITS; 2444 unsigned long current; 2445 unsigned long *bitmap = block->bmap; 2446 2447 for (current = 0; current < end; ) { 2448 unsigned long one = find_next_bit(bitmap, end, current); 2449 unsigned long zero, discard_length; 2450 2451 if (one >= end) { 2452 break; 2453 } 2454 2455 zero = find_next_zero_bit(bitmap, end, one + 1); 2456 2457 if (zero >= end) { 2458 discard_length = end - one; 2459 } else { 2460 discard_length = zero - one; 2461 } 2462 postcopy_discard_send_range(ms, one, discard_length); 2463 current = one + discard_length; 2464 } 2465 } 2466 2467 static void postcopy_chunk_hostpages_pass(MigrationState *ms, RAMBlock *block); 2468 2469 /** 2470 * postcopy_each_ram_send_discard: discard all RAMBlocks 2471 * 2472 * Utility for the outgoing postcopy code. 2473 * Calls postcopy_send_discard_bm_ram for each RAMBlock 2474 * passing it bitmap indexes and name. 2475 * (qemu_ram_foreach_block ends up passing unscaled lengths 2476 * which would mean postcopy code would have to deal with target page) 2477 * 2478 * @ms: current migration state 2479 */ 2480 static void postcopy_each_ram_send_discard(MigrationState *ms) 2481 { 2482 struct RAMBlock *block; 2483 2484 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 2485 postcopy_discard_send_init(ms, block->idstr); 2486 2487 /* 2488 * Deal with TPS != HPS and huge pages. It discard any partially sent 2489 * host-page size chunks, mark any partially dirty host-page size 2490 * chunks as all dirty. In this case the host-page is the host-page 2491 * for the particular RAMBlock, i.e. it might be a huge page. 2492 */ 2493 postcopy_chunk_hostpages_pass(ms, block); 2494 2495 /* 2496 * Postcopy sends chunks of bitmap over the wire, but it 2497 * just needs indexes at this point, avoids it having 2498 * target page specific code. 2499 */ 2500 postcopy_send_discard_bm_ram(ms, block); 2501 postcopy_discard_send_finish(ms); 2502 } 2503 } 2504 2505 /** 2506 * postcopy_chunk_hostpages_pass: canonicalize bitmap in hostpages 2507 * 2508 * Helper for postcopy_chunk_hostpages; it's called twice to 2509 * canonicalize the two bitmaps, that are similar, but one is 2510 * inverted. 2511 * 2512 * Postcopy requires that all target pages in a hostpage are dirty or 2513 * clean, not a mix. This function canonicalizes the bitmaps. 2514 * 2515 * @ms: current migration state 2516 * @block: block that contains the page we want to canonicalize 2517 */ 2518 static void postcopy_chunk_hostpages_pass(MigrationState *ms, RAMBlock *block) 2519 { 2520 RAMState *rs = ram_state; 2521 unsigned long *bitmap = block->bmap; 2522 unsigned int host_ratio = block->page_size / TARGET_PAGE_SIZE; 2523 unsigned long pages = block->used_length >> TARGET_PAGE_BITS; 2524 unsigned long run_start; 2525 2526 if (block->page_size == TARGET_PAGE_SIZE) { 2527 /* Easy case - TPS==HPS for a non-huge page RAMBlock */ 2528 return; 2529 } 2530 2531 /* Find a dirty page */ 2532 run_start = find_next_bit(bitmap, pages, 0); 2533 2534 while (run_start < pages) { 2535 2536 /* 2537 * If the start of this run of pages is in the middle of a host 2538 * page, then we need to fixup this host page. 2539 */ 2540 if (QEMU_IS_ALIGNED(run_start, host_ratio)) { 2541 /* Find the end of this run */ 2542 run_start = find_next_zero_bit(bitmap, pages, run_start + 1); 2543 /* 2544 * If the end isn't at the start of a host page, then the 2545 * run doesn't finish at the end of a host page 2546 * and we need to discard. 2547 */ 2548 } 2549 2550 if (!QEMU_IS_ALIGNED(run_start, host_ratio)) { 2551 unsigned long page; 2552 unsigned long fixup_start_addr = QEMU_ALIGN_DOWN(run_start, 2553 host_ratio); 2554 run_start = QEMU_ALIGN_UP(run_start, host_ratio); 2555 2556 /* Clean up the bitmap */ 2557 for (page = fixup_start_addr; 2558 page < fixup_start_addr + host_ratio; page++) { 2559 /* 2560 * Remark them as dirty, updating the count for any pages 2561 * that weren't previously dirty. 2562 */ 2563 rs->migration_dirty_pages += !test_and_set_bit(page, bitmap); 2564 } 2565 } 2566 2567 /* Find the next dirty page for the next iteration */ 2568 run_start = find_next_bit(bitmap, pages, run_start); 2569 } 2570 } 2571 2572 /** 2573 * ram_postcopy_send_discard_bitmap: transmit the discard bitmap 2574 * 2575 * Transmit the set of pages to be discarded after precopy to the target 2576 * these are pages that: 2577 * a) Have been previously transmitted but are now dirty again 2578 * b) Pages that have never been transmitted, this ensures that 2579 * any pages on the destination that have been mapped by background 2580 * tasks get discarded (transparent huge pages is the specific concern) 2581 * Hopefully this is pretty sparse 2582 * 2583 * @ms: current migration state 2584 */ 2585 void ram_postcopy_send_discard_bitmap(MigrationState *ms) 2586 { 2587 RAMState *rs = ram_state; 2588 2589 RCU_READ_LOCK_GUARD(); 2590 2591 /* This should be our last sync, the src is now paused */ 2592 migration_bitmap_sync(rs, false); 2593 2594 /* Easiest way to make sure we don't resume in the middle of a host-page */ 2595 rs->pss[RAM_CHANNEL_PRECOPY].last_sent_block = NULL; 2596 rs->last_seen_block = NULL; 2597 rs->last_page = 0; 2598 2599 postcopy_each_ram_send_discard(ms); 2600 2601 trace_ram_postcopy_send_discard_bitmap(); 2602 } 2603 2604 /** 2605 * ram_discard_range: discard dirtied pages at the beginning of postcopy 2606 * 2607 * Returns zero on success 2608 * 2609 * @rbname: name of the RAMBlock of the request. NULL means the 2610 * same that last one. 2611 * @start: RAMBlock starting page 2612 * @length: RAMBlock size 2613 */ 2614 int ram_discard_range(const char *rbname, uint64_t start, size_t length) 2615 { 2616 trace_ram_discard_range(rbname, start, length); 2617 2618 RCU_READ_LOCK_GUARD(); 2619 RAMBlock *rb = qemu_ram_block_by_name(rbname); 2620 2621 if (!rb) { 2622 error_report("ram_discard_range: Failed to find block '%s'", rbname); 2623 return -1; 2624 } 2625 2626 /* 2627 * On source VM, we don't need to update the received bitmap since 2628 * we don't even have one. 2629 */ 2630 if (rb->receivedmap) { 2631 bitmap_clear(rb->receivedmap, start >> qemu_target_page_bits(), 2632 length >> qemu_target_page_bits()); 2633 } 2634 2635 return ram_block_discard_range(rb, start, length); 2636 } 2637 2638 /* 2639 * For every allocation, we will try not to crash the VM if the 2640 * allocation failed. 2641 */ 2642 static bool xbzrle_init(Error **errp) 2643 { 2644 if (!migrate_xbzrle()) { 2645 return true; 2646 } 2647 2648 XBZRLE_cache_lock(); 2649 2650 XBZRLE.zero_target_page = g_try_malloc0(TARGET_PAGE_SIZE); 2651 if (!XBZRLE.zero_target_page) { 2652 error_setg(errp, "%s: Error allocating zero page", __func__); 2653 goto err_out; 2654 } 2655 2656 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size(), 2657 TARGET_PAGE_SIZE, errp); 2658 if (!XBZRLE.cache) { 2659 goto free_zero_page; 2660 } 2661 2662 XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE); 2663 if (!XBZRLE.encoded_buf) { 2664 error_setg(errp, "%s: Error allocating encoded_buf", __func__); 2665 goto free_cache; 2666 } 2667 2668 XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE); 2669 if (!XBZRLE.current_buf) { 2670 error_setg(errp, "%s: Error allocating current_buf", __func__); 2671 goto free_encoded_buf; 2672 } 2673 2674 /* We are all good */ 2675 XBZRLE_cache_unlock(); 2676 return true; 2677 2678 free_encoded_buf: 2679 g_free(XBZRLE.encoded_buf); 2680 XBZRLE.encoded_buf = NULL; 2681 free_cache: 2682 cache_fini(XBZRLE.cache); 2683 XBZRLE.cache = NULL; 2684 free_zero_page: 2685 g_free(XBZRLE.zero_target_page); 2686 XBZRLE.zero_target_page = NULL; 2687 err_out: 2688 XBZRLE_cache_unlock(); 2689 return false; 2690 } 2691 2692 static bool ram_state_init(RAMState **rsp, Error **errp) 2693 { 2694 *rsp = g_try_new0(RAMState, 1); 2695 2696 if (!*rsp) { 2697 error_setg(errp, "%s: Init ramstate fail", __func__); 2698 return false; 2699 } 2700 2701 qemu_mutex_init(&(*rsp)->bitmap_mutex); 2702 qemu_mutex_init(&(*rsp)->src_page_req_mutex); 2703 QSIMPLEQ_INIT(&(*rsp)->src_page_requests); 2704 (*rsp)->ram_bytes_total = ram_bytes_total(); 2705 2706 /* 2707 * Count the total number of pages used by ram blocks not including any 2708 * gaps due to alignment or unplugs. 2709 * This must match with the initial values of dirty bitmap. 2710 */ 2711 (*rsp)->migration_dirty_pages = (*rsp)->ram_bytes_total >> TARGET_PAGE_BITS; 2712 ram_state_reset(*rsp); 2713 2714 return true; 2715 } 2716 2717 static void ram_list_init_bitmaps(void) 2718 { 2719 MigrationState *ms = migrate_get_current(); 2720 RAMBlock *block; 2721 unsigned long pages; 2722 uint8_t shift; 2723 2724 /* Skip setting bitmap if there is no RAM */ 2725 if (ram_bytes_total()) { 2726 shift = ms->clear_bitmap_shift; 2727 if (shift > CLEAR_BITMAP_SHIFT_MAX) { 2728 error_report("clear_bitmap_shift (%u) too big, using " 2729 "max value (%u)", shift, CLEAR_BITMAP_SHIFT_MAX); 2730 shift = CLEAR_BITMAP_SHIFT_MAX; 2731 } else if (shift < CLEAR_BITMAP_SHIFT_MIN) { 2732 error_report("clear_bitmap_shift (%u) too small, using " 2733 "min value (%u)", shift, CLEAR_BITMAP_SHIFT_MIN); 2734 shift = CLEAR_BITMAP_SHIFT_MIN; 2735 } 2736 2737 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 2738 pages = block->max_length >> TARGET_PAGE_BITS; 2739 /* 2740 * The initial dirty bitmap for migration must be set with all 2741 * ones to make sure we'll migrate every guest RAM page to 2742 * destination. 2743 * Here we set RAMBlock.bmap all to 1 because when rebegin a 2744 * new migration after a failed migration, ram_list. 2745 * dirty_memory[DIRTY_MEMORY_MIGRATION] don't include the whole 2746 * guest memory. 2747 */ 2748 block->bmap = bitmap_new(pages); 2749 bitmap_set(block->bmap, 0, pages); 2750 if (migrate_mapped_ram()) { 2751 block->file_bmap = bitmap_new(pages); 2752 } 2753 block->clear_bmap_shift = shift; 2754 block->clear_bmap = bitmap_new(clear_bmap_size(pages, shift)); 2755 } 2756 } 2757 } 2758 2759 static void migration_bitmap_clear_discarded_pages(RAMState *rs) 2760 { 2761 unsigned long pages; 2762 RAMBlock *rb; 2763 2764 RCU_READ_LOCK_GUARD(); 2765 2766 RAMBLOCK_FOREACH_NOT_IGNORED(rb) { 2767 pages = ramblock_dirty_bitmap_clear_discarded_pages(rb); 2768 rs->migration_dirty_pages -= pages; 2769 } 2770 } 2771 2772 static bool ram_init_bitmaps(RAMState *rs, Error **errp) 2773 { 2774 bool ret = true; 2775 2776 qemu_mutex_lock_ramlist(); 2777 2778 WITH_RCU_READ_LOCK_GUARD() { 2779 ram_list_init_bitmaps(); 2780 /* We don't use dirty log with background snapshots */ 2781 if (!migrate_background_snapshot()) { 2782 ret = memory_global_dirty_log_start(GLOBAL_DIRTY_MIGRATION, errp); 2783 if (!ret) { 2784 goto out_unlock; 2785 } 2786 migration_bitmap_sync_precopy(rs, false); 2787 } 2788 } 2789 out_unlock: 2790 qemu_mutex_unlock_ramlist(); 2791 2792 if (!ret) { 2793 ram_bitmaps_destroy(); 2794 return false; 2795 } 2796 2797 /* 2798 * After an eventual first bitmap sync, fixup the initial bitmap 2799 * containing all 1s to exclude any discarded pages from migration. 2800 */ 2801 migration_bitmap_clear_discarded_pages(rs); 2802 return true; 2803 } 2804 2805 static int ram_init_all(RAMState **rsp, Error **errp) 2806 { 2807 if (!ram_state_init(rsp, errp)) { 2808 return -1; 2809 } 2810 2811 if (!xbzrle_init(errp)) { 2812 ram_state_cleanup(rsp); 2813 return -1; 2814 } 2815 2816 if (!ram_init_bitmaps(*rsp, errp)) { 2817 return -1; 2818 } 2819 2820 return 0; 2821 } 2822 2823 static void ram_state_resume_prepare(RAMState *rs, QEMUFile *out) 2824 { 2825 RAMBlock *block; 2826 uint64_t pages = 0; 2827 2828 /* 2829 * Postcopy is not using xbzrle/compression, so no need for that. 2830 * Also, since source are already halted, we don't need to care 2831 * about dirty page logging as well. 2832 */ 2833 2834 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 2835 pages += bitmap_count_one(block->bmap, 2836 block->used_length >> TARGET_PAGE_BITS); 2837 } 2838 2839 /* This may not be aligned with current bitmaps. Recalculate. */ 2840 rs->migration_dirty_pages = pages; 2841 2842 ram_state_reset(rs); 2843 2844 /* Update RAMState cache of output QEMUFile */ 2845 rs->pss[RAM_CHANNEL_PRECOPY].pss_channel = out; 2846 2847 trace_ram_state_resume_prepare(pages); 2848 } 2849 2850 /* 2851 * This function clears bits of the free pages reported by the caller from the 2852 * migration dirty bitmap. @addr is the host address corresponding to the 2853 * start of the continuous guest free pages, and @len is the total bytes of 2854 * those pages. 2855 */ 2856 void qemu_guest_free_page_hint(void *addr, size_t len) 2857 { 2858 RAMBlock *block; 2859 ram_addr_t offset; 2860 size_t used_len, start, npages; 2861 2862 /* This function is currently expected to be used during live migration */ 2863 if (!migration_is_setup_or_active()) { 2864 return; 2865 } 2866 2867 for (; len > 0; len -= used_len, addr += used_len) { 2868 block = qemu_ram_block_from_host(addr, false, &offset); 2869 if (unlikely(!block || offset >= block->used_length)) { 2870 /* 2871 * The implementation might not support RAMBlock resize during 2872 * live migration, but it could happen in theory with future 2873 * updates. So we add a check here to capture that case. 2874 */ 2875 error_report_once("%s unexpected error", __func__); 2876 return; 2877 } 2878 2879 if (len <= block->used_length - offset) { 2880 used_len = len; 2881 } else { 2882 used_len = block->used_length - offset; 2883 } 2884 2885 start = offset >> TARGET_PAGE_BITS; 2886 npages = used_len >> TARGET_PAGE_BITS; 2887 2888 qemu_mutex_lock(&ram_state->bitmap_mutex); 2889 /* 2890 * The skipped free pages are equavalent to be sent from clear_bmap's 2891 * perspective, so clear the bits from the memory region bitmap which 2892 * are initially set. Otherwise those skipped pages will be sent in 2893 * the next round after syncing from the memory region bitmap. 2894 */ 2895 migration_clear_memory_region_dirty_bitmap_range(block, start, npages); 2896 ram_state->migration_dirty_pages -= 2897 bitmap_count_one_with_offset(block->bmap, start, npages); 2898 bitmap_clear(block->bmap, start, npages); 2899 qemu_mutex_unlock(&ram_state->bitmap_mutex); 2900 } 2901 } 2902 2903 #define MAPPED_RAM_HDR_VERSION 1 2904 struct MappedRamHeader { 2905 uint32_t version; 2906 /* 2907 * The target's page size, so we know how many pages are in the 2908 * bitmap. 2909 */ 2910 uint64_t page_size; 2911 /* 2912 * The offset in the migration file where the pages bitmap is 2913 * stored. 2914 */ 2915 uint64_t bitmap_offset; 2916 /* 2917 * The offset in the migration file where the actual pages (data) 2918 * are stored. 2919 */ 2920 uint64_t pages_offset; 2921 } QEMU_PACKED; 2922 typedef struct MappedRamHeader MappedRamHeader; 2923 2924 static void mapped_ram_setup_ramblock(QEMUFile *file, RAMBlock *block) 2925 { 2926 g_autofree MappedRamHeader *header = NULL; 2927 size_t header_size, bitmap_size; 2928 long num_pages; 2929 2930 header = g_new0(MappedRamHeader, 1); 2931 header_size = sizeof(MappedRamHeader); 2932 2933 num_pages = block->used_length >> TARGET_PAGE_BITS; 2934 bitmap_size = BITS_TO_LONGS(num_pages) * sizeof(unsigned long); 2935 2936 /* 2937 * Save the file offsets of where the bitmap and the pages should 2938 * go as they are written at the end of migration and during the 2939 * iterative phase, respectively. 2940 */ 2941 block->bitmap_offset = qemu_get_offset(file) + header_size; 2942 block->pages_offset = ROUND_UP(block->bitmap_offset + 2943 bitmap_size, 2944 MAPPED_RAM_FILE_OFFSET_ALIGNMENT); 2945 2946 header->version = cpu_to_be32(MAPPED_RAM_HDR_VERSION); 2947 header->page_size = cpu_to_be64(TARGET_PAGE_SIZE); 2948 header->bitmap_offset = cpu_to_be64(block->bitmap_offset); 2949 header->pages_offset = cpu_to_be64(block->pages_offset); 2950 2951 qemu_put_buffer(file, (uint8_t *) header, header_size); 2952 2953 /* prepare offset for next ramblock */ 2954 qemu_set_offset(file, block->pages_offset + block->used_length, SEEK_SET); 2955 } 2956 2957 static bool mapped_ram_read_header(QEMUFile *file, MappedRamHeader *header, 2958 Error **errp) 2959 { 2960 size_t ret, header_size = sizeof(MappedRamHeader); 2961 2962 ret = qemu_get_buffer(file, (uint8_t *)header, header_size); 2963 if (ret != header_size) { 2964 error_setg(errp, "Could not read whole mapped-ram migration header " 2965 "(expected %zd, got %zd bytes)", header_size, ret); 2966 return false; 2967 } 2968 2969 /* migration stream is big-endian */ 2970 header->version = be32_to_cpu(header->version); 2971 2972 if (header->version > MAPPED_RAM_HDR_VERSION) { 2973 error_setg(errp, "Migration mapped-ram capability version not " 2974 "supported (expected <= %d, got %d)", MAPPED_RAM_HDR_VERSION, 2975 header->version); 2976 return false; 2977 } 2978 2979 header->page_size = be64_to_cpu(header->page_size); 2980 header->bitmap_offset = be64_to_cpu(header->bitmap_offset); 2981 header->pages_offset = be64_to_cpu(header->pages_offset); 2982 2983 return true; 2984 } 2985 2986 /* 2987 * Each of ram_save_setup, ram_save_iterate and ram_save_complete has 2988 * long-running RCU critical section. When rcu-reclaims in the code 2989 * start to become numerous it will be necessary to reduce the 2990 * granularity of these critical sections. 2991 */ 2992 2993 /** 2994 * ram_save_setup: Setup RAM for migration 2995 * 2996 * Returns zero to indicate success and negative for error 2997 * 2998 * @f: QEMUFile where to send the data 2999 * @opaque: RAMState pointer 3000 * @errp: pointer to Error*, to store an error if it happens. 3001 */ 3002 static int ram_save_setup(QEMUFile *f, void *opaque, Error **errp) 3003 { 3004 RAMState **rsp = opaque; 3005 RAMBlock *block; 3006 int ret, max_hg_page_size; 3007 3008 /* migration has already setup the bitmap, reuse it. */ 3009 if (!migration_in_colo_state()) { 3010 if (ram_init_all(rsp, errp) != 0) { 3011 return -1; 3012 } 3013 } 3014 (*rsp)->pss[RAM_CHANNEL_PRECOPY].pss_channel = f; 3015 3016 /* 3017 * ??? Mirrors the previous value of qemu_host_page_size, 3018 * but is this really what was intended for the migration? 3019 */ 3020 max_hg_page_size = MAX(qemu_real_host_page_size(), TARGET_PAGE_SIZE); 3021 3022 WITH_RCU_READ_LOCK_GUARD() { 3023 qemu_put_be64(f, ram_bytes_total_with_ignored() 3024 | RAM_SAVE_FLAG_MEM_SIZE); 3025 3026 RAMBLOCK_FOREACH_MIGRATABLE(block) { 3027 qemu_put_byte(f, strlen(block->idstr)); 3028 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr)); 3029 qemu_put_be64(f, block->used_length); 3030 if (migrate_postcopy_ram() && 3031 block->page_size != max_hg_page_size) { 3032 qemu_put_be64(f, block->page_size); 3033 } 3034 if (migrate_ignore_shared()) { 3035 qemu_put_be64(f, block->mr->addr); 3036 } 3037 3038 if (migrate_mapped_ram()) { 3039 mapped_ram_setup_ramblock(f, block); 3040 } 3041 } 3042 } 3043 3044 ret = rdma_registration_start(f, RAM_CONTROL_SETUP); 3045 if (ret < 0) { 3046 error_setg(errp, "%s: failed to start RDMA registration", __func__); 3047 qemu_file_set_error(f, ret); 3048 return ret; 3049 } 3050 3051 ret = rdma_registration_stop(f, RAM_CONTROL_SETUP); 3052 if (ret < 0) { 3053 error_setg(errp, "%s: failed to stop RDMA registration", __func__); 3054 qemu_file_set_error(f, ret); 3055 return ret; 3056 } 3057 3058 migration_ops = g_malloc0(sizeof(MigrationOps)); 3059 3060 if (migrate_multifd()) { 3061 migration_ops->ram_save_target_page = ram_save_target_page_multifd; 3062 } else { 3063 migration_ops->ram_save_target_page = ram_save_target_page_legacy; 3064 } 3065 3066 bql_unlock(); 3067 ret = multifd_send_sync_main(); 3068 bql_lock(); 3069 if (ret < 0) { 3070 error_setg(errp, "%s: multifd synchronization failed", __func__); 3071 return ret; 3072 } 3073 3074 if (migrate_multifd() && !migrate_multifd_flush_after_each_section() 3075 && !migrate_mapped_ram()) { 3076 qemu_put_be64(f, RAM_SAVE_FLAG_MULTIFD_FLUSH); 3077 } 3078 3079 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 3080 ret = qemu_fflush(f); 3081 if (ret < 0) { 3082 error_setg_errno(errp, -ret, "%s failed", __func__); 3083 } 3084 return ret; 3085 } 3086 3087 static void ram_save_file_bmap(QEMUFile *f) 3088 { 3089 RAMBlock *block; 3090 3091 RAMBLOCK_FOREACH_MIGRATABLE(block) { 3092 long num_pages = block->used_length >> TARGET_PAGE_BITS; 3093 long bitmap_size = BITS_TO_LONGS(num_pages) * sizeof(unsigned long); 3094 3095 qemu_put_buffer_at(f, (uint8_t *)block->file_bmap, bitmap_size, 3096 block->bitmap_offset); 3097 ram_transferred_add(bitmap_size); 3098 3099 /* 3100 * Free the bitmap here to catch any synchronization issues 3101 * with multifd channels. No channels should be sending pages 3102 * after we've written the bitmap to file. 3103 */ 3104 g_free(block->file_bmap); 3105 block->file_bmap = NULL; 3106 } 3107 } 3108 3109 void ramblock_set_file_bmap_atomic(RAMBlock *block, ram_addr_t offset, bool set) 3110 { 3111 if (set) { 3112 set_bit_atomic(offset >> TARGET_PAGE_BITS, block->file_bmap); 3113 } else { 3114 clear_bit_atomic(offset >> TARGET_PAGE_BITS, block->file_bmap); 3115 } 3116 } 3117 3118 /** 3119 * ram_save_iterate: iterative stage for migration 3120 * 3121 * Returns zero to indicate success and negative for error 3122 * 3123 * @f: QEMUFile where to send the data 3124 * @opaque: RAMState pointer 3125 */ 3126 static int ram_save_iterate(QEMUFile *f, void *opaque) 3127 { 3128 RAMState **temp = opaque; 3129 RAMState *rs = *temp; 3130 int ret = 0; 3131 int i; 3132 int64_t t0; 3133 int done = 0; 3134 3135 /* 3136 * We'll take this lock a little bit long, but it's okay for two reasons. 3137 * Firstly, the only possible other thread to take it is who calls 3138 * qemu_guest_free_page_hint(), which should be rare; secondly, see 3139 * MAX_WAIT (if curious, further see commit 4508bd9ed8053ce) below, which 3140 * guarantees that we'll at least released it in a regular basis. 3141 */ 3142 WITH_QEMU_LOCK_GUARD(&rs->bitmap_mutex) { 3143 WITH_RCU_READ_LOCK_GUARD() { 3144 if (ram_list.version != rs->last_version) { 3145 ram_state_reset(rs); 3146 } 3147 3148 /* Read version before ram_list.blocks */ 3149 smp_rmb(); 3150 3151 ret = rdma_registration_start(f, RAM_CONTROL_ROUND); 3152 if (ret < 0) { 3153 qemu_file_set_error(f, ret); 3154 goto out; 3155 } 3156 3157 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 3158 i = 0; 3159 while ((ret = migration_rate_exceeded(f)) == 0 || 3160 postcopy_has_request(rs)) { 3161 int pages; 3162 3163 if (qemu_file_get_error(f)) { 3164 break; 3165 } 3166 3167 pages = ram_find_and_save_block(rs); 3168 /* no more pages to sent */ 3169 if (pages == 0) { 3170 done = 1; 3171 break; 3172 } 3173 3174 if (pages < 0) { 3175 qemu_file_set_error(f, pages); 3176 break; 3177 } 3178 3179 rs->target_page_count += pages; 3180 3181 /* 3182 * we want to check in the 1st loop, just in case it was the 1st 3183 * time and we had to sync the dirty bitmap. 3184 * qemu_clock_get_ns() is a bit expensive, so we only check each 3185 * some iterations 3186 */ 3187 if ((i & 63) == 0) { 3188 uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) / 3189 1000000; 3190 if (t1 > MAX_WAIT) { 3191 trace_ram_save_iterate_big_wait(t1, i); 3192 break; 3193 } 3194 } 3195 i++; 3196 } 3197 } 3198 } 3199 3200 /* 3201 * Must occur before EOS (or any QEMUFile operation) 3202 * because of RDMA protocol. 3203 */ 3204 ret = rdma_registration_stop(f, RAM_CONTROL_ROUND); 3205 if (ret < 0) { 3206 qemu_file_set_error(f, ret); 3207 } 3208 3209 out: 3210 if (ret >= 0 3211 && migration_is_setup_or_active()) { 3212 if (migrate_multifd() && migrate_multifd_flush_after_each_section() && 3213 !migrate_mapped_ram()) { 3214 ret = multifd_send_sync_main(); 3215 if (ret < 0) { 3216 return ret; 3217 } 3218 } 3219 3220 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 3221 ram_transferred_add(8); 3222 ret = qemu_fflush(f); 3223 } 3224 if (ret < 0) { 3225 return ret; 3226 } 3227 3228 return done; 3229 } 3230 3231 /** 3232 * ram_save_complete: function called to send the remaining amount of ram 3233 * 3234 * Returns zero to indicate success or negative on error 3235 * 3236 * Called with the BQL 3237 * 3238 * @f: QEMUFile where to send the data 3239 * @opaque: RAMState pointer 3240 */ 3241 static int ram_save_complete(QEMUFile *f, void *opaque) 3242 { 3243 RAMState **temp = opaque; 3244 RAMState *rs = *temp; 3245 int ret = 0; 3246 3247 rs->last_stage = !migration_in_colo_state(); 3248 3249 WITH_RCU_READ_LOCK_GUARD() { 3250 if (!migration_in_postcopy()) { 3251 migration_bitmap_sync_precopy(rs, true); 3252 } 3253 3254 ret = rdma_registration_start(f, RAM_CONTROL_FINISH); 3255 if (ret < 0) { 3256 qemu_file_set_error(f, ret); 3257 return ret; 3258 } 3259 3260 /* try transferring iterative blocks of memory */ 3261 3262 /* flush all remaining blocks regardless of rate limiting */ 3263 qemu_mutex_lock(&rs->bitmap_mutex); 3264 while (true) { 3265 int pages; 3266 3267 pages = ram_find_and_save_block(rs); 3268 /* no more blocks to sent */ 3269 if (pages == 0) { 3270 break; 3271 } 3272 if (pages < 0) { 3273 qemu_mutex_unlock(&rs->bitmap_mutex); 3274 return pages; 3275 } 3276 } 3277 qemu_mutex_unlock(&rs->bitmap_mutex); 3278 3279 ret = rdma_registration_stop(f, RAM_CONTROL_FINISH); 3280 if (ret < 0) { 3281 qemu_file_set_error(f, ret); 3282 return ret; 3283 } 3284 } 3285 3286 ret = multifd_send_sync_main(); 3287 if (ret < 0) { 3288 return ret; 3289 } 3290 3291 if (migrate_mapped_ram()) { 3292 ram_save_file_bmap(f); 3293 3294 if (qemu_file_get_error(f)) { 3295 Error *local_err = NULL; 3296 int err = qemu_file_get_error_obj(f, &local_err); 3297 3298 error_reportf_err(local_err, "Failed to write bitmap to file: "); 3299 return -err; 3300 } 3301 } 3302 3303 if (migrate_multifd() && !migrate_multifd_flush_after_each_section() && 3304 !migrate_mapped_ram()) { 3305 qemu_put_be64(f, RAM_SAVE_FLAG_MULTIFD_FLUSH); 3306 } 3307 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 3308 return qemu_fflush(f); 3309 } 3310 3311 static void ram_state_pending_estimate(void *opaque, uint64_t *must_precopy, 3312 uint64_t *can_postcopy) 3313 { 3314 RAMState **temp = opaque; 3315 RAMState *rs = *temp; 3316 3317 uint64_t remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE; 3318 3319 if (migrate_postcopy_ram()) { 3320 /* We can do postcopy, and all the data is postcopiable */ 3321 *can_postcopy += remaining_size; 3322 } else { 3323 *must_precopy += remaining_size; 3324 } 3325 } 3326 3327 static void ram_state_pending_exact(void *opaque, uint64_t *must_precopy, 3328 uint64_t *can_postcopy) 3329 { 3330 RAMState **temp = opaque; 3331 RAMState *rs = *temp; 3332 uint64_t remaining_size; 3333 3334 if (!migration_in_postcopy()) { 3335 bql_lock(); 3336 WITH_RCU_READ_LOCK_GUARD() { 3337 migration_bitmap_sync_precopy(rs, false); 3338 } 3339 bql_unlock(); 3340 } 3341 3342 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE; 3343 3344 if (migrate_postcopy_ram()) { 3345 /* We can do postcopy, and all the data is postcopiable */ 3346 *can_postcopy += remaining_size; 3347 } else { 3348 *must_precopy += remaining_size; 3349 } 3350 } 3351 3352 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host) 3353 { 3354 unsigned int xh_len; 3355 int xh_flags; 3356 uint8_t *loaded_data; 3357 3358 /* extract RLE header */ 3359 xh_flags = qemu_get_byte(f); 3360 xh_len = qemu_get_be16(f); 3361 3362 if (xh_flags != ENCODING_FLAG_XBZRLE) { 3363 error_report("Failed to load XBZRLE page - wrong compression!"); 3364 return -1; 3365 } 3366 3367 if (xh_len > TARGET_PAGE_SIZE) { 3368 error_report("Failed to load XBZRLE page - len overflow!"); 3369 return -1; 3370 } 3371 loaded_data = XBZRLE.decoded_buf; 3372 /* load data and decode */ 3373 /* it can change loaded_data to point to an internal buffer */ 3374 qemu_get_buffer_in_place(f, &loaded_data, xh_len); 3375 3376 /* decode RLE */ 3377 if (xbzrle_decode_buffer(loaded_data, xh_len, host, 3378 TARGET_PAGE_SIZE) == -1) { 3379 error_report("Failed to load XBZRLE page - decode error!"); 3380 return -1; 3381 } 3382 3383 return 0; 3384 } 3385 3386 /** 3387 * ram_block_from_stream: read a RAMBlock id from the migration stream 3388 * 3389 * Must be called from within a rcu critical section. 3390 * 3391 * Returns a pointer from within the RCU-protected ram_list. 3392 * 3393 * @mis: the migration incoming state pointer 3394 * @f: QEMUFile where to read the data from 3395 * @flags: Page flags (mostly to see if it's a continuation of previous block) 3396 * @channel: the channel we're using 3397 */ 3398 static inline RAMBlock *ram_block_from_stream(MigrationIncomingState *mis, 3399 QEMUFile *f, int flags, 3400 int channel) 3401 { 3402 RAMBlock *block = mis->last_recv_block[channel]; 3403 char id[256]; 3404 uint8_t len; 3405 3406 if (flags & RAM_SAVE_FLAG_CONTINUE) { 3407 if (!block) { 3408 error_report("Ack, bad migration stream!"); 3409 return NULL; 3410 } 3411 return block; 3412 } 3413 3414 len = qemu_get_byte(f); 3415 qemu_get_buffer(f, (uint8_t *)id, len); 3416 id[len] = 0; 3417 3418 block = qemu_ram_block_by_name(id); 3419 if (!block) { 3420 error_report("Can't find block %s", id); 3421 return NULL; 3422 } 3423 3424 if (migrate_ram_is_ignored(block)) { 3425 error_report("block %s should not be migrated !", id); 3426 return NULL; 3427 } 3428 3429 mis->last_recv_block[channel] = block; 3430 3431 return block; 3432 } 3433 3434 static inline void *host_from_ram_block_offset(RAMBlock *block, 3435 ram_addr_t offset) 3436 { 3437 if (!offset_in_ramblock(block, offset)) { 3438 return NULL; 3439 } 3440 3441 return block->host + offset; 3442 } 3443 3444 static void *host_page_from_ram_block_offset(RAMBlock *block, 3445 ram_addr_t offset) 3446 { 3447 /* Note: Explicitly no check against offset_in_ramblock(). */ 3448 return (void *)QEMU_ALIGN_DOWN((uintptr_t)(block->host + offset), 3449 block->page_size); 3450 } 3451 3452 static ram_addr_t host_page_offset_from_ram_block_offset(RAMBlock *block, 3453 ram_addr_t offset) 3454 { 3455 return ((uintptr_t)block->host + offset) & (block->page_size - 1); 3456 } 3457 3458 void colo_record_bitmap(RAMBlock *block, ram_addr_t *normal, uint32_t pages) 3459 { 3460 qemu_mutex_lock(&ram_state->bitmap_mutex); 3461 for (int i = 0; i < pages; i++) { 3462 ram_addr_t offset = normal[i]; 3463 ram_state->migration_dirty_pages += !test_and_set_bit( 3464 offset >> TARGET_PAGE_BITS, 3465 block->bmap); 3466 } 3467 qemu_mutex_unlock(&ram_state->bitmap_mutex); 3468 } 3469 3470 static inline void *colo_cache_from_block_offset(RAMBlock *block, 3471 ram_addr_t offset, bool record_bitmap) 3472 { 3473 if (!offset_in_ramblock(block, offset)) { 3474 return NULL; 3475 } 3476 if (!block->colo_cache) { 3477 error_report("%s: colo_cache is NULL in block :%s", 3478 __func__, block->idstr); 3479 return NULL; 3480 } 3481 3482 /* 3483 * During colo checkpoint, we need bitmap of these migrated pages. 3484 * It help us to decide which pages in ram cache should be flushed 3485 * into VM's RAM later. 3486 */ 3487 if (record_bitmap) { 3488 colo_record_bitmap(block, &offset, 1); 3489 } 3490 return block->colo_cache + offset; 3491 } 3492 3493 /** 3494 * ram_handle_zero: handle the zero page case 3495 * 3496 * If a page (or a whole RDMA chunk) has been 3497 * determined to be zero, then zap it. 3498 * 3499 * @host: host address for the zero page 3500 * @ch: what the page is filled from. We only support zero 3501 * @size: size of the zero page 3502 */ 3503 void ram_handle_zero(void *host, uint64_t size) 3504 { 3505 if (!buffer_is_zero(host, size)) { 3506 memset(host, 0, size); 3507 } 3508 } 3509 3510 static void colo_init_ram_state(void) 3511 { 3512 Error *local_err = NULL; 3513 3514 if (!ram_state_init(&ram_state, &local_err)) { 3515 error_report_err(local_err); 3516 } 3517 } 3518 3519 /* 3520 * colo cache: this is for secondary VM, we cache the whole 3521 * memory of the secondary VM, it is need to hold the global lock 3522 * to call this helper. 3523 */ 3524 int colo_init_ram_cache(void) 3525 { 3526 RAMBlock *block; 3527 3528 WITH_RCU_READ_LOCK_GUARD() { 3529 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3530 block->colo_cache = qemu_anon_ram_alloc(block->used_length, 3531 NULL, false, false); 3532 if (!block->colo_cache) { 3533 error_report("%s: Can't alloc memory for COLO cache of block %s," 3534 "size 0x" RAM_ADDR_FMT, __func__, block->idstr, 3535 block->used_length); 3536 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3537 if (block->colo_cache) { 3538 qemu_anon_ram_free(block->colo_cache, block->used_length); 3539 block->colo_cache = NULL; 3540 } 3541 } 3542 return -errno; 3543 } 3544 if (!machine_dump_guest_core(current_machine)) { 3545 qemu_madvise(block->colo_cache, block->used_length, 3546 QEMU_MADV_DONTDUMP); 3547 } 3548 } 3549 } 3550 3551 /* 3552 * Record the dirty pages that sent by PVM, we use this dirty bitmap together 3553 * with to decide which page in cache should be flushed into SVM's RAM. Here 3554 * we use the same name 'ram_bitmap' as for migration. 3555 */ 3556 if (ram_bytes_total()) { 3557 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3558 unsigned long pages = block->max_length >> TARGET_PAGE_BITS; 3559 block->bmap = bitmap_new(pages); 3560 } 3561 } 3562 3563 colo_init_ram_state(); 3564 return 0; 3565 } 3566 3567 /* TODO: duplicated with ram_init_bitmaps */ 3568 void colo_incoming_start_dirty_log(void) 3569 { 3570 RAMBlock *block = NULL; 3571 Error *local_err = NULL; 3572 3573 /* For memory_global_dirty_log_start below. */ 3574 bql_lock(); 3575 qemu_mutex_lock_ramlist(); 3576 3577 memory_global_dirty_log_sync(false); 3578 WITH_RCU_READ_LOCK_GUARD() { 3579 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3580 ramblock_sync_dirty_bitmap(ram_state, block); 3581 /* Discard this dirty bitmap record */ 3582 bitmap_zero(block->bmap, block->max_length >> TARGET_PAGE_BITS); 3583 } 3584 if (!memory_global_dirty_log_start(GLOBAL_DIRTY_MIGRATION, 3585 &local_err)) { 3586 error_report_err(local_err); 3587 } 3588 } 3589 ram_state->migration_dirty_pages = 0; 3590 qemu_mutex_unlock_ramlist(); 3591 bql_unlock(); 3592 } 3593 3594 /* It is need to hold the global lock to call this helper */ 3595 void colo_release_ram_cache(void) 3596 { 3597 RAMBlock *block; 3598 3599 memory_global_dirty_log_stop(GLOBAL_DIRTY_MIGRATION); 3600 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3601 g_free(block->bmap); 3602 block->bmap = NULL; 3603 } 3604 3605 WITH_RCU_READ_LOCK_GUARD() { 3606 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3607 if (block->colo_cache) { 3608 qemu_anon_ram_free(block->colo_cache, block->used_length); 3609 block->colo_cache = NULL; 3610 } 3611 } 3612 } 3613 ram_state_cleanup(&ram_state); 3614 } 3615 3616 /** 3617 * ram_load_setup: Setup RAM for migration incoming side 3618 * 3619 * Returns zero to indicate success and negative for error 3620 * 3621 * @f: QEMUFile where to receive the data 3622 * @opaque: RAMState pointer 3623 * @errp: pointer to Error*, to store an error if it happens. 3624 */ 3625 static int ram_load_setup(QEMUFile *f, void *opaque, Error **errp) 3626 { 3627 xbzrle_load_setup(); 3628 ramblock_recv_map_init(); 3629 3630 return 0; 3631 } 3632 3633 static int ram_load_cleanup(void *opaque) 3634 { 3635 RAMBlock *rb; 3636 3637 RAMBLOCK_FOREACH_NOT_IGNORED(rb) { 3638 qemu_ram_block_writeback(rb); 3639 } 3640 3641 xbzrle_load_cleanup(); 3642 3643 RAMBLOCK_FOREACH_NOT_IGNORED(rb) { 3644 g_free(rb->receivedmap); 3645 rb->receivedmap = NULL; 3646 } 3647 3648 return 0; 3649 } 3650 3651 /** 3652 * ram_postcopy_incoming_init: allocate postcopy data structures 3653 * 3654 * Returns 0 for success and negative if there was one error 3655 * 3656 * @mis: current migration incoming state 3657 * 3658 * Allocate data structures etc needed by incoming migration with 3659 * postcopy-ram. postcopy-ram's similarly names 3660 * postcopy_ram_incoming_init does the work. 3661 */ 3662 int ram_postcopy_incoming_init(MigrationIncomingState *mis) 3663 { 3664 return postcopy_ram_incoming_init(mis); 3665 } 3666 3667 /** 3668 * ram_load_postcopy: load a page in postcopy case 3669 * 3670 * Returns 0 for success or -errno in case of error 3671 * 3672 * Called in postcopy mode by ram_load(). 3673 * rcu_read_lock is taken prior to this being called. 3674 * 3675 * @f: QEMUFile where to send the data 3676 * @channel: the channel to use for loading 3677 */ 3678 int ram_load_postcopy(QEMUFile *f, int channel) 3679 { 3680 int flags = 0, ret = 0; 3681 bool place_needed = false; 3682 bool matches_target_page_size = false; 3683 MigrationIncomingState *mis = migration_incoming_get_current(); 3684 PostcopyTmpPage *tmp_page = &mis->postcopy_tmp_pages[channel]; 3685 3686 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) { 3687 ram_addr_t addr; 3688 void *page_buffer = NULL; 3689 void *place_source = NULL; 3690 RAMBlock *block = NULL; 3691 uint8_t ch; 3692 3693 addr = qemu_get_be64(f); 3694 3695 /* 3696 * If qemu file error, we should stop here, and then "addr" 3697 * may be invalid 3698 */ 3699 ret = qemu_file_get_error(f); 3700 if (ret) { 3701 break; 3702 } 3703 3704 flags = addr & ~TARGET_PAGE_MASK; 3705 addr &= TARGET_PAGE_MASK; 3706 3707 trace_ram_load_postcopy_loop(channel, (uint64_t)addr, flags); 3708 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE)) { 3709 block = ram_block_from_stream(mis, f, flags, channel); 3710 if (!block) { 3711 ret = -EINVAL; 3712 break; 3713 } 3714 3715 /* 3716 * Relying on used_length is racy and can result in false positives. 3717 * We might place pages beyond used_length in case RAM was shrunk 3718 * while in postcopy, which is fine - trying to place via 3719 * UFFDIO_COPY/UFFDIO_ZEROPAGE will never segfault. 3720 */ 3721 if (!block->host || addr >= block->postcopy_length) { 3722 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr); 3723 ret = -EINVAL; 3724 break; 3725 } 3726 tmp_page->target_pages++; 3727 matches_target_page_size = block->page_size == TARGET_PAGE_SIZE; 3728 /* 3729 * Postcopy requires that we place whole host pages atomically; 3730 * these may be huge pages for RAMBlocks that are backed by 3731 * hugetlbfs. 3732 * To make it atomic, the data is read into a temporary page 3733 * that's moved into place later. 3734 * The migration protocol uses, possibly smaller, target-pages 3735 * however the source ensures it always sends all the components 3736 * of a host page in one chunk. 3737 */ 3738 page_buffer = tmp_page->tmp_huge_page + 3739 host_page_offset_from_ram_block_offset(block, addr); 3740 /* If all TP are zero then we can optimise the place */ 3741 if (tmp_page->target_pages == 1) { 3742 tmp_page->host_addr = 3743 host_page_from_ram_block_offset(block, addr); 3744 } else if (tmp_page->host_addr != 3745 host_page_from_ram_block_offset(block, addr)) { 3746 /* not the 1st TP within the HP */ 3747 error_report("Non-same host page detected on channel %d: " 3748 "Target host page %p, received host page %p " 3749 "(rb %s offset 0x"RAM_ADDR_FMT" target_pages %d)", 3750 channel, tmp_page->host_addr, 3751 host_page_from_ram_block_offset(block, addr), 3752 block->idstr, addr, tmp_page->target_pages); 3753 ret = -EINVAL; 3754 break; 3755 } 3756 3757 /* 3758 * If it's the last part of a host page then we place the host 3759 * page 3760 */ 3761 if (tmp_page->target_pages == 3762 (block->page_size / TARGET_PAGE_SIZE)) { 3763 place_needed = true; 3764 } 3765 place_source = tmp_page->tmp_huge_page; 3766 } 3767 3768 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) { 3769 case RAM_SAVE_FLAG_ZERO: 3770 ch = qemu_get_byte(f); 3771 if (ch != 0) { 3772 error_report("Found a zero page with value %d", ch); 3773 ret = -EINVAL; 3774 break; 3775 } 3776 /* 3777 * Can skip to set page_buffer when 3778 * this is a zero page and (block->page_size == TARGET_PAGE_SIZE). 3779 */ 3780 if (!matches_target_page_size) { 3781 memset(page_buffer, ch, TARGET_PAGE_SIZE); 3782 } 3783 break; 3784 3785 case RAM_SAVE_FLAG_PAGE: 3786 tmp_page->all_zero = false; 3787 if (!matches_target_page_size) { 3788 /* For huge pages, we always use temporary buffer */ 3789 qemu_get_buffer(f, page_buffer, TARGET_PAGE_SIZE); 3790 } else { 3791 /* 3792 * For small pages that matches target page size, we 3793 * avoid the qemu_file copy. Instead we directly use 3794 * the buffer of QEMUFile to place the page. Note: we 3795 * cannot do any QEMUFile operation before using that 3796 * buffer to make sure the buffer is valid when 3797 * placing the page. 3798 */ 3799 qemu_get_buffer_in_place(f, (uint8_t **)&place_source, 3800 TARGET_PAGE_SIZE); 3801 } 3802 break; 3803 case RAM_SAVE_FLAG_MULTIFD_FLUSH: 3804 multifd_recv_sync_main(); 3805 break; 3806 case RAM_SAVE_FLAG_EOS: 3807 /* normal exit */ 3808 if (migrate_multifd() && 3809 migrate_multifd_flush_after_each_section()) { 3810 multifd_recv_sync_main(); 3811 } 3812 break; 3813 default: 3814 error_report("Unknown combination of migration flags: 0x%x" 3815 " (postcopy mode)", flags); 3816 ret = -EINVAL; 3817 break; 3818 } 3819 3820 /* Detect for any possible file errors */ 3821 if (!ret && qemu_file_get_error(f)) { 3822 ret = qemu_file_get_error(f); 3823 } 3824 3825 if (!ret && place_needed) { 3826 if (tmp_page->all_zero) { 3827 ret = postcopy_place_page_zero(mis, tmp_page->host_addr, block); 3828 } else { 3829 ret = postcopy_place_page(mis, tmp_page->host_addr, 3830 place_source, block); 3831 } 3832 place_needed = false; 3833 postcopy_temp_page_reset(tmp_page); 3834 } 3835 } 3836 3837 return ret; 3838 } 3839 3840 static bool postcopy_is_running(void) 3841 { 3842 PostcopyState ps = postcopy_state_get(); 3843 return ps >= POSTCOPY_INCOMING_LISTENING && ps < POSTCOPY_INCOMING_END; 3844 } 3845 3846 /* 3847 * Flush content of RAM cache into SVM's memory. 3848 * Only flush the pages that be dirtied by PVM or SVM or both. 3849 */ 3850 void colo_flush_ram_cache(void) 3851 { 3852 RAMBlock *block = NULL; 3853 void *dst_host; 3854 void *src_host; 3855 unsigned long offset = 0; 3856 3857 memory_global_dirty_log_sync(false); 3858 qemu_mutex_lock(&ram_state->bitmap_mutex); 3859 WITH_RCU_READ_LOCK_GUARD() { 3860 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3861 ramblock_sync_dirty_bitmap(ram_state, block); 3862 } 3863 } 3864 3865 trace_colo_flush_ram_cache_begin(ram_state->migration_dirty_pages); 3866 WITH_RCU_READ_LOCK_GUARD() { 3867 block = QLIST_FIRST_RCU(&ram_list.blocks); 3868 3869 while (block) { 3870 unsigned long num = 0; 3871 3872 offset = colo_bitmap_find_dirty(ram_state, block, offset, &num); 3873 if (!offset_in_ramblock(block, 3874 ((ram_addr_t)offset) << TARGET_PAGE_BITS)) { 3875 offset = 0; 3876 num = 0; 3877 block = QLIST_NEXT_RCU(block, next); 3878 } else { 3879 unsigned long i = 0; 3880 3881 for (i = 0; i < num; i++) { 3882 migration_bitmap_clear_dirty(ram_state, block, offset + i); 3883 } 3884 dst_host = block->host 3885 + (((ram_addr_t)offset) << TARGET_PAGE_BITS); 3886 src_host = block->colo_cache 3887 + (((ram_addr_t)offset) << TARGET_PAGE_BITS); 3888 memcpy(dst_host, src_host, TARGET_PAGE_SIZE * num); 3889 offset += num; 3890 } 3891 } 3892 } 3893 qemu_mutex_unlock(&ram_state->bitmap_mutex); 3894 trace_colo_flush_ram_cache_end(); 3895 } 3896 3897 static size_t ram_load_multifd_pages(void *host_addr, size_t size, 3898 uint64_t offset) 3899 { 3900 MultiFDRecvData *data = multifd_get_recv_data(); 3901 3902 data->opaque = host_addr; 3903 data->file_offset = offset; 3904 data->size = size; 3905 3906 if (!multifd_recv()) { 3907 return 0; 3908 } 3909 3910 return size; 3911 } 3912 3913 static bool read_ramblock_mapped_ram(QEMUFile *f, RAMBlock *block, 3914 long num_pages, unsigned long *bitmap, 3915 Error **errp) 3916 { 3917 ERRP_GUARD(); 3918 unsigned long set_bit_idx, clear_bit_idx; 3919 ram_addr_t offset; 3920 void *host; 3921 size_t read, unread, size; 3922 3923 for (set_bit_idx = find_first_bit(bitmap, num_pages); 3924 set_bit_idx < num_pages; 3925 set_bit_idx = find_next_bit(bitmap, num_pages, clear_bit_idx + 1)) { 3926 3927 clear_bit_idx = find_next_zero_bit(bitmap, num_pages, set_bit_idx + 1); 3928 3929 unread = TARGET_PAGE_SIZE * (clear_bit_idx - set_bit_idx); 3930 offset = set_bit_idx << TARGET_PAGE_BITS; 3931 3932 while (unread > 0) { 3933 host = host_from_ram_block_offset(block, offset); 3934 if (!host) { 3935 error_setg(errp, "page outside of ramblock %s range", 3936 block->idstr); 3937 return false; 3938 } 3939 3940 size = MIN(unread, MAPPED_RAM_LOAD_BUF_SIZE); 3941 3942 if (migrate_multifd()) { 3943 read = ram_load_multifd_pages(host, size, 3944 block->pages_offset + offset); 3945 } else { 3946 read = qemu_get_buffer_at(f, host, size, 3947 block->pages_offset + offset); 3948 } 3949 3950 if (!read) { 3951 goto err; 3952 } 3953 offset += read; 3954 unread -= read; 3955 } 3956 } 3957 3958 return true; 3959 3960 err: 3961 qemu_file_get_error_obj(f, errp); 3962 error_prepend(errp, "(%s) failed to read page " RAM_ADDR_FMT 3963 "from file offset %" PRIx64 ": ", block->idstr, offset, 3964 block->pages_offset + offset); 3965 return false; 3966 } 3967 3968 static void parse_ramblock_mapped_ram(QEMUFile *f, RAMBlock *block, 3969 ram_addr_t length, Error **errp) 3970 { 3971 g_autofree unsigned long *bitmap = NULL; 3972 MappedRamHeader header; 3973 size_t bitmap_size; 3974 long num_pages; 3975 3976 if (!mapped_ram_read_header(f, &header, errp)) { 3977 return; 3978 } 3979 3980 block->pages_offset = header.pages_offset; 3981 3982 /* 3983 * Check the alignment of the file region that contains pages. We 3984 * don't enforce MAPPED_RAM_FILE_OFFSET_ALIGNMENT to allow that 3985 * value to change in the future. Do only a sanity check with page 3986 * size alignment. 3987 */ 3988 if (!QEMU_IS_ALIGNED(block->pages_offset, TARGET_PAGE_SIZE)) { 3989 error_setg(errp, 3990 "Error reading ramblock %s pages, region has bad alignment", 3991 block->idstr); 3992 return; 3993 } 3994 3995 num_pages = length / header.page_size; 3996 bitmap_size = BITS_TO_LONGS(num_pages) * sizeof(unsigned long); 3997 3998 bitmap = g_malloc0(bitmap_size); 3999 if (qemu_get_buffer_at(f, (uint8_t *)bitmap, bitmap_size, 4000 header.bitmap_offset) != bitmap_size) { 4001 error_setg(errp, "Error reading dirty bitmap"); 4002 return; 4003 } 4004 4005 if (!read_ramblock_mapped_ram(f, block, num_pages, bitmap, errp)) { 4006 return; 4007 } 4008 4009 /* Skip pages array */ 4010 qemu_set_offset(f, block->pages_offset + length, SEEK_SET); 4011 4012 return; 4013 } 4014 4015 static int parse_ramblock(QEMUFile *f, RAMBlock *block, ram_addr_t length) 4016 { 4017 int ret = 0; 4018 /* ADVISE is earlier, it shows the source has the postcopy capability on */ 4019 bool postcopy_advised = migration_incoming_postcopy_advised(); 4020 int max_hg_page_size; 4021 Error *local_err = NULL; 4022 4023 assert(block); 4024 4025 if (migrate_mapped_ram()) { 4026 parse_ramblock_mapped_ram(f, block, length, &local_err); 4027 if (local_err) { 4028 error_report_err(local_err); 4029 return -EINVAL; 4030 } 4031 return 0; 4032 } 4033 4034 if (!qemu_ram_is_migratable(block)) { 4035 error_report("block %s should not be migrated !", block->idstr); 4036 return -EINVAL; 4037 } 4038 4039 if (length != block->used_length) { 4040 ret = qemu_ram_resize(block, length, &local_err); 4041 if (local_err) { 4042 error_report_err(local_err); 4043 return ret; 4044 } 4045 } 4046 4047 /* 4048 * ??? Mirrors the previous value of qemu_host_page_size, 4049 * but is this really what was intended for the migration? 4050 */ 4051 max_hg_page_size = MAX(qemu_real_host_page_size(), TARGET_PAGE_SIZE); 4052 4053 /* For postcopy we need to check hugepage sizes match */ 4054 if (postcopy_advised && migrate_postcopy_ram() && 4055 block->page_size != max_hg_page_size) { 4056 uint64_t remote_page_size = qemu_get_be64(f); 4057 if (remote_page_size != block->page_size) { 4058 error_report("Mismatched RAM page size %s " 4059 "(local) %zd != %" PRId64, block->idstr, 4060 block->page_size, remote_page_size); 4061 return -EINVAL; 4062 } 4063 } 4064 if (migrate_ignore_shared()) { 4065 hwaddr addr = qemu_get_be64(f); 4066 if (migrate_ram_is_ignored(block) && 4067 block->mr->addr != addr) { 4068 error_report("Mismatched GPAs for block %s " 4069 "%" PRId64 "!= %" PRId64, block->idstr, 4070 (uint64_t)addr, (uint64_t)block->mr->addr); 4071 return -EINVAL; 4072 } 4073 } 4074 ret = rdma_block_notification_handle(f, block->idstr); 4075 if (ret < 0) { 4076 qemu_file_set_error(f, ret); 4077 } 4078 4079 return ret; 4080 } 4081 4082 static int parse_ramblocks(QEMUFile *f, ram_addr_t total_ram_bytes) 4083 { 4084 int ret = 0; 4085 4086 /* Synchronize RAM block list */ 4087 while (!ret && total_ram_bytes) { 4088 RAMBlock *block; 4089 char id[256]; 4090 ram_addr_t length; 4091 int len = qemu_get_byte(f); 4092 4093 qemu_get_buffer(f, (uint8_t *)id, len); 4094 id[len] = 0; 4095 length = qemu_get_be64(f); 4096 4097 block = qemu_ram_block_by_name(id); 4098 if (block) { 4099 ret = parse_ramblock(f, block, length); 4100 } else { 4101 error_report("Unknown ramblock \"%s\", cannot accept " 4102 "migration", id); 4103 ret = -EINVAL; 4104 } 4105 total_ram_bytes -= length; 4106 } 4107 4108 return ret; 4109 } 4110 4111 /** 4112 * ram_load_precopy: load pages in precopy case 4113 * 4114 * Returns 0 for success or -errno in case of error 4115 * 4116 * Called in precopy mode by ram_load(). 4117 * rcu_read_lock is taken prior to this being called. 4118 * 4119 * @f: QEMUFile where to send the data 4120 */ 4121 static int ram_load_precopy(QEMUFile *f) 4122 { 4123 MigrationIncomingState *mis = migration_incoming_get_current(); 4124 int flags = 0, ret = 0, invalid_flags = 0, i = 0; 4125 4126 if (migrate_mapped_ram()) { 4127 invalid_flags |= (RAM_SAVE_FLAG_HOOK | RAM_SAVE_FLAG_MULTIFD_FLUSH | 4128 RAM_SAVE_FLAG_PAGE | RAM_SAVE_FLAG_XBZRLE | 4129 RAM_SAVE_FLAG_ZERO); 4130 } 4131 4132 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) { 4133 ram_addr_t addr; 4134 void *host = NULL, *host_bak = NULL; 4135 uint8_t ch; 4136 4137 /* 4138 * Yield periodically to let main loop run, but an iteration of 4139 * the main loop is expensive, so do it each some iterations 4140 */ 4141 if ((i & 32767) == 0 && qemu_in_coroutine()) { 4142 aio_co_schedule(qemu_get_current_aio_context(), 4143 qemu_coroutine_self()); 4144 qemu_coroutine_yield(); 4145 } 4146 i++; 4147 4148 addr = qemu_get_be64(f); 4149 ret = qemu_file_get_error(f); 4150 if (ret) { 4151 error_report("Getting RAM address failed"); 4152 break; 4153 } 4154 4155 flags = addr & ~TARGET_PAGE_MASK; 4156 addr &= TARGET_PAGE_MASK; 4157 4158 if (flags & invalid_flags) { 4159 error_report("Unexpected RAM flags: %d", flags & invalid_flags); 4160 4161 ret = -EINVAL; 4162 break; 4163 } 4164 4165 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE | 4166 RAM_SAVE_FLAG_XBZRLE)) { 4167 RAMBlock *block = ram_block_from_stream(mis, f, flags, 4168 RAM_CHANNEL_PRECOPY); 4169 4170 host = host_from_ram_block_offset(block, addr); 4171 /* 4172 * After going into COLO stage, we should not load the page 4173 * into SVM's memory directly, we put them into colo_cache firstly. 4174 * NOTE: We need to keep a copy of SVM's ram in colo_cache. 4175 * Previously, we copied all these memory in preparing stage of COLO 4176 * while we need to stop VM, which is a time-consuming process. 4177 * Here we optimize it by a trick, back-up every page while in 4178 * migration process while COLO is enabled, though it affects the 4179 * speed of the migration, but it obviously reduce the downtime of 4180 * back-up all SVM'S memory in COLO preparing stage. 4181 */ 4182 if (migration_incoming_colo_enabled()) { 4183 if (migration_incoming_in_colo_state()) { 4184 /* In COLO stage, put all pages into cache temporarily */ 4185 host = colo_cache_from_block_offset(block, addr, true); 4186 } else { 4187 /* 4188 * In migration stage but before COLO stage, 4189 * Put all pages into both cache and SVM's memory. 4190 */ 4191 host_bak = colo_cache_from_block_offset(block, addr, false); 4192 } 4193 } 4194 if (!host) { 4195 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr); 4196 ret = -EINVAL; 4197 break; 4198 } 4199 if (!migration_incoming_in_colo_state()) { 4200 ramblock_recv_bitmap_set(block, host); 4201 } 4202 4203 trace_ram_load_loop(block->idstr, (uint64_t)addr, flags, host); 4204 } 4205 4206 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) { 4207 case RAM_SAVE_FLAG_MEM_SIZE: 4208 ret = parse_ramblocks(f, addr); 4209 /* 4210 * For mapped-ram migration (to a file) using multifd, we sync 4211 * once and for all here to make sure all tasks we queued to 4212 * multifd threads are completed, so that all the ramblocks 4213 * (including all the guest memory pages within) are fully 4214 * loaded after this sync returns. 4215 */ 4216 if (migrate_mapped_ram()) { 4217 multifd_recv_sync_main(); 4218 } 4219 break; 4220 4221 case RAM_SAVE_FLAG_ZERO: 4222 ch = qemu_get_byte(f); 4223 if (ch != 0) { 4224 error_report("Found a zero page with value %d", ch); 4225 ret = -EINVAL; 4226 break; 4227 } 4228 ram_handle_zero(host, TARGET_PAGE_SIZE); 4229 break; 4230 4231 case RAM_SAVE_FLAG_PAGE: 4232 qemu_get_buffer(f, host, TARGET_PAGE_SIZE); 4233 break; 4234 4235 case RAM_SAVE_FLAG_XBZRLE: 4236 if (load_xbzrle(f, addr, host) < 0) { 4237 error_report("Failed to decompress XBZRLE page at " 4238 RAM_ADDR_FMT, addr); 4239 ret = -EINVAL; 4240 break; 4241 } 4242 break; 4243 case RAM_SAVE_FLAG_MULTIFD_FLUSH: 4244 multifd_recv_sync_main(); 4245 break; 4246 case RAM_SAVE_FLAG_EOS: 4247 /* normal exit */ 4248 if (migrate_multifd() && 4249 migrate_multifd_flush_after_each_section() && 4250 /* 4251 * Mapped-ram migration flushes once and for all after 4252 * parsing ramblocks. Always ignore EOS for it. 4253 */ 4254 !migrate_mapped_ram()) { 4255 multifd_recv_sync_main(); 4256 } 4257 break; 4258 case RAM_SAVE_FLAG_HOOK: 4259 ret = rdma_registration_handle(f); 4260 if (ret < 0) { 4261 qemu_file_set_error(f, ret); 4262 } 4263 break; 4264 default: 4265 error_report("Unknown combination of migration flags: 0x%x", flags); 4266 ret = -EINVAL; 4267 } 4268 if (!ret) { 4269 ret = qemu_file_get_error(f); 4270 } 4271 if (!ret && host_bak) { 4272 memcpy(host_bak, host, TARGET_PAGE_SIZE); 4273 } 4274 } 4275 4276 return ret; 4277 } 4278 4279 static int ram_load(QEMUFile *f, void *opaque, int version_id) 4280 { 4281 int ret = 0; 4282 static uint64_t seq_iter; 4283 /* 4284 * If system is running in postcopy mode, page inserts to host memory must 4285 * be atomic 4286 */ 4287 bool postcopy_running = postcopy_is_running(); 4288 4289 seq_iter++; 4290 4291 if (version_id != 4) { 4292 return -EINVAL; 4293 } 4294 4295 /* 4296 * This RCU critical section can be very long running. 4297 * When RCU reclaims in the code start to become numerous, 4298 * it will be necessary to reduce the granularity of this 4299 * critical section. 4300 */ 4301 WITH_RCU_READ_LOCK_GUARD() { 4302 if (postcopy_running) { 4303 /* 4304 * Note! Here RAM_CHANNEL_PRECOPY is the precopy channel of 4305 * postcopy migration, we have another RAM_CHANNEL_POSTCOPY to 4306 * service fast page faults. 4307 */ 4308 ret = ram_load_postcopy(f, RAM_CHANNEL_PRECOPY); 4309 } else { 4310 ret = ram_load_precopy(f); 4311 } 4312 } 4313 trace_ram_load_complete(ret, seq_iter); 4314 4315 return ret; 4316 } 4317 4318 static bool ram_has_postcopy(void *opaque) 4319 { 4320 RAMBlock *rb; 4321 RAMBLOCK_FOREACH_NOT_IGNORED(rb) { 4322 if (ramblock_is_pmem(rb)) { 4323 info_report("Block: %s, host: %p is a nvdimm memory, postcopy" 4324 "is not supported now!", rb->idstr, rb->host); 4325 return false; 4326 } 4327 } 4328 4329 return migrate_postcopy_ram(); 4330 } 4331 4332 /* Sync all the dirty bitmap with destination VM. */ 4333 static int ram_dirty_bitmap_sync_all(MigrationState *s, RAMState *rs) 4334 { 4335 RAMBlock *block; 4336 QEMUFile *file = s->to_dst_file; 4337 4338 trace_ram_dirty_bitmap_sync_start(); 4339 4340 qatomic_set(&rs->postcopy_bmap_sync_requested, 0); 4341 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 4342 qemu_savevm_send_recv_bitmap(file, block->idstr); 4343 trace_ram_dirty_bitmap_request(block->idstr); 4344 qatomic_inc(&rs->postcopy_bmap_sync_requested); 4345 } 4346 4347 trace_ram_dirty_bitmap_sync_wait(); 4348 4349 /* Wait until all the ramblocks' dirty bitmap synced */ 4350 while (qatomic_read(&rs->postcopy_bmap_sync_requested)) { 4351 if (migration_rp_wait(s)) { 4352 return -1; 4353 } 4354 } 4355 4356 trace_ram_dirty_bitmap_sync_complete(); 4357 4358 return 0; 4359 } 4360 4361 /* 4362 * Read the received bitmap, revert it as the initial dirty bitmap. 4363 * This is only used when the postcopy migration is paused but wants 4364 * to resume from a middle point. 4365 * 4366 * Returns true if succeeded, false for errors. 4367 */ 4368 bool ram_dirty_bitmap_reload(MigrationState *s, RAMBlock *block, Error **errp) 4369 { 4370 /* from_dst_file is always valid because we're within rp_thread */ 4371 QEMUFile *file = s->rp_state.from_dst_file; 4372 g_autofree unsigned long *le_bitmap = NULL; 4373 unsigned long nbits = block->used_length >> TARGET_PAGE_BITS; 4374 uint64_t local_size = DIV_ROUND_UP(nbits, 8); 4375 uint64_t size, end_mark; 4376 RAMState *rs = ram_state; 4377 4378 trace_ram_dirty_bitmap_reload_begin(block->idstr); 4379 4380 if (s->state != MIGRATION_STATUS_POSTCOPY_RECOVER) { 4381 error_setg(errp, "Reload bitmap in incorrect state %s", 4382 MigrationStatus_str(s->state)); 4383 return false; 4384 } 4385 4386 /* 4387 * Note: see comments in ramblock_recv_bitmap_send() on why we 4388 * need the endianness conversion, and the paddings. 4389 */ 4390 local_size = ROUND_UP(local_size, 8); 4391 4392 /* Add paddings */ 4393 le_bitmap = bitmap_new(nbits + BITS_PER_LONG); 4394 4395 size = qemu_get_be64(file); 4396 4397 /* The size of the bitmap should match with our ramblock */ 4398 if (size != local_size) { 4399 error_setg(errp, "ramblock '%s' bitmap size mismatch (0x%"PRIx64 4400 " != 0x%"PRIx64")", block->idstr, size, local_size); 4401 return false; 4402 } 4403 4404 size = qemu_get_buffer(file, (uint8_t *)le_bitmap, local_size); 4405 end_mark = qemu_get_be64(file); 4406 4407 if (qemu_file_get_error(file) || size != local_size) { 4408 error_setg(errp, "read bitmap failed for ramblock '%s': " 4409 "(size 0x%"PRIx64", got: 0x%"PRIx64")", 4410 block->idstr, local_size, size); 4411 return false; 4412 } 4413 4414 if (end_mark != RAMBLOCK_RECV_BITMAP_ENDING) { 4415 error_setg(errp, "ramblock '%s' end mark incorrect: 0x%"PRIx64, 4416 block->idstr, end_mark); 4417 return false; 4418 } 4419 4420 /* 4421 * Endianness conversion. We are during postcopy (though paused). 4422 * The dirty bitmap won't change. We can directly modify it. 4423 */ 4424 bitmap_from_le(block->bmap, le_bitmap, nbits); 4425 4426 /* 4427 * What we received is "received bitmap". Revert it as the initial 4428 * dirty bitmap for this ramblock. 4429 */ 4430 bitmap_complement(block->bmap, block->bmap, nbits); 4431 4432 /* Clear dirty bits of discarded ranges that we don't want to migrate. */ 4433 ramblock_dirty_bitmap_clear_discarded_pages(block); 4434 4435 /* We'll recalculate migration_dirty_pages in ram_state_resume_prepare(). */ 4436 trace_ram_dirty_bitmap_reload_complete(block->idstr); 4437 4438 qatomic_dec(&rs->postcopy_bmap_sync_requested); 4439 4440 /* 4441 * We succeeded to sync bitmap for current ramblock. Always kick the 4442 * migration thread to check whether all requested bitmaps are 4443 * reloaded. NOTE: it's racy to only kick when requested==0, because 4444 * we don't know whether the migration thread may still be increasing 4445 * it. 4446 */ 4447 migration_rp_kick(s); 4448 4449 return true; 4450 } 4451 4452 static int ram_resume_prepare(MigrationState *s, void *opaque) 4453 { 4454 RAMState *rs = *(RAMState **)opaque; 4455 int ret; 4456 4457 ret = ram_dirty_bitmap_sync_all(s, rs); 4458 if (ret) { 4459 return ret; 4460 } 4461 4462 ram_state_resume_prepare(rs, s->to_dst_file); 4463 4464 return 0; 4465 } 4466 4467 void postcopy_preempt_shutdown_file(MigrationState *s) 4468 { 4469 qemu_put_be64(s->postcopy_qemufile_src, RAM_SAVE_FLAG_EOS); 4470 qemu_fflush(s->postcopy_qemufile_src); 4471 } 4472 4473 static SaveVMHandlers savevm_ram_handlers = { 4474 .save_setup = ram_save_setup, 4475 .save_live_iterate = ram_save_iterate, 4476 .save_live_complete_postcopy = ram_save_complete, 4477 .save_live_complete_precopy = ram_save_complete, 4478 .has_postcopy = ram_has_postcopy, 4479 .state_pending_exact = ram_state_pending_exact, 4480 .state_pending_estimate = ram_state_pending_estimate, 4481 .load_state = ram_load, 4482 .save_cleanup = ram_save_cleanup, 4483 .load_setup = ram_load_setup, 4484 .load_cleanup = ram_load_cleanup, 4485 .resume_prepare = ram_resume_prepare, 4486 }; 4487 4488 static void ram_mig_ram_block_resized(RAMBlockNotifier *n, void *host, 4489 size_t old_size, size_t new_size) 4490 { 4491 PostcopyState ps = postcopy_state_get(); 4492 ram_addr_t offset; 4493 RAMBlock *rb = qemu_ram_block_from_host(host, false, &offset); 4494 Error *err = NULL; 4495 4496 if (!rb) { 4497 error_report("RAM block not found"); 4498 return; 4499 } 4500 4501 if (migrate_ram_is_ignored(rb)) { 4502 return; 4503 } 4504 4505 if (!migration_is_idle()) { 4506 /* 4507 * Precopy code on the source cannot deal with the size of RAM blocks 4508 * changing at random points in time - especially after sending the 4509 * RAM block sizes in the migration stream, they must no longer change. 4510 * Abort and indicate a proper reason. 4511 */ 4512 error_setg(&err, "RAM block '%s' resized during precopy.", rb->idstr); 4513 migration_cancel(err); 4514 error_free(err); 4515 } 4516 4517 switch (ps) { 4518 case POSTCOPY_INCOMING_ADVISE: 4519 /* 4520 * Update what ram_postcopy_incoming_init()->init_range() does at the 4521 * time postcopy was advised. Syncing RAM blocks with the source will 4522 * result in RAM resizes. 4523 */ 4524 if (old_size < new_size) { 4525 if (ram_discard_range(rb->idstr, old_size, new_size - old_size)) { 4526 error_report("RAM block '%s' discard of resized RAM failed", 4527 rb->idstr); 4528 } 4529 } 4530 rb->postcopy_length = new_size; 4531 break; 4532 case POSTCOPY_INCOMING_NONE: 4533 case POSTCOPY_INCOMING_RUNNING: 4534 case POSTCOPY_INCOMING_END: 4535 /* 4536 * Once our guest is running, postcopy does no longer care about 4537 * resizes. When growing, the new memory was not available on the 4538 * source, no handler needed. 4539 */ 4540 break; 4541 default: 4542 error_report("RAM block '%s' resized during postcopy state: %d", 4543 rb->idstr, ps); 4544 exit(-1); 4545 } 4546 } 4547 4548 static RAMBlockNotifier ram_mig_ram_notifier = { 4549 .ram_block_resized = ram_mig_ram_block_resized, 4550 }; 4551 4552 void ram_mig_init(void) 4553 { 4554 qemu_mutex_init(&XBZRLE.lock); 4555 register_savevm_live("ram", 0, 4, &savevm_ram_handlers, &ram_state); 4556 ram_block_notifier_add(&ram_mig_ram_notifier); 4557 } 4558