1 /* 2 * QEMU System Emulator 3 * 4 * Copyright (c) 2003-2008 Fabrice Bellard 5 * Copyright (c) 2011-2015 Red Hat Inc 6 * 7 * Authors: 8 * Juan Quintela <quintela@redhat.com> 9 * 10 * Permission is hereby granted, free of charge, to any person obtaining a copy 11 * of this software and associated documentation files (the "Software"), to deal 12 * in the Software without restriction, including without limitation the rights 13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 14 * copies of the Software, and to permit persons to whom the Software is 15 * furnished to do so, subject to the following conditions: 16 * 17 * The above copyright notice and this permission notice shall be included in 18 * all copies or substantial portions of the Software. 19 * 20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 26 * THE SOFTWARE. 27 */ 28 #include "qemu/osdep.h" 29 #include "cpu.h" 30 #include <zlib.h> 31 #include "qapi-event.h" 32 #include "qemu/cutils.h" 33 #include "qemu/bitops.h" 34 #include "qemu/bitmap.h" 35 #include "qemu/main-loop.h" 36 #include "xbzrle.h" 37 #include "ram.h" 38 #include "migration.h" 39 #include "migration/register.h" 40 #include "migration/misc.h" 41 #include "qemu-file.h" 42 #include "postcopy-ram.h" 43 #include "migration/page_cache.h" 44 #include "qemu/error-report.h" 45 #include "qapi/qmp/qerror.h" 46 #include "trace.h" 47 #include "exec/ram_addr.h" 48 #include "exec/target_page.h" 49 #include "qemu/rcu_queue.h" 50 #include "migration/colo.h" 51 #include "migration/block.h" 52 53 /***********************************************************/ 54 /* ram save/restore */ 55 56 /* RAM_SAVE_FLAG_ZERO used to be named RAM_SAVE_FLAG_COMPRESS, it 57 * worked for pages that where filled with the same char. We switched 58 * it to only search for the zero value. And to avoid confusion with 59 * RAM_SSAVE_FLAG_COMPRESS_PAGE just rename it. 60 */ 61 62 #define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */ 63 #define RAM_SAVE_FLAG_ZERO 0x02 64 #define RAM_SAVE_FLAG_MEM_SIZE 0x04 65 #define RAM_SAVE_FLAG_PAGE 0x08 66 #define RAM_SAVE_FLAG_EOS 0x10 67 #define RAM_SAVE_FLAG_CONTINUE 0x20 68 #define RAM_SAVE_FLAG_XBZRLE 0x40 69 /* 0x80 is reserved in migration.h start with 0x100 next */ 70 #define RAM_SAVE_FLAG_COMPRESS_PAGE 0x100 71 72 static inline bool is_zero_range(uint8_t *p, uint64_t size) 73 { 74 return buffer_is_zero(p, size); 75 } 76 77 XBZRLECacheStats xbzrle_counters; 78 79 /* struct contains XBZRLE cache and a static page 80 used by the compression */ 81 static struct { 82 /* buffer used for XBZRLE encoding */ 83 uint8_t *encoded_buf; 84 /* buffer for storing page content */ 85 uint8_t *current_buf; 86 /* Cache for XBZRLE, Protected by lock. */ 87 PageCache *cache; 88 QemuMutex lock; 89 /* it will store a page full of zeros */ 90 uint8_t *zero_target_page; 91 /* buffer used for XBZRLE decoding */ 92 uint8_t *decoded_buf; 93 } XBZRLE; 94 95 static void XBZRLE_cache_lock(void) 96 { 97 if (migrate_use_xbzrle()) 98 qemu_mutex_lock(&XBZRLE.lock); 99 } 100 101 static void XBZRLE_cache_unlock(void) 102 { 103 if (migrate_use_xbzrle()) 104 qemu_mutex_unlock(&XBZRLE.lock); 105 } 106 107 /** 108 * xbzrle_cache_resize: resize the xbzrle cache 109 * 110 * This function is called from qmp_migrate_set_cache_size in main 111 * thread, possibly while a migration is in progress. A running 112 * migration may be using the cache and might finish during this call, 113 * hence changes to the cache are protected by XBZRLE.lock(). 114 * 115 * Returns 0 for success or -1 for error 116 * 117 * @new_size: new cache size 118 * @errp: set *errp if the check failed, with reason 119 */ 120 int xbzrle_cache_resize(int64_t new_size, Error **errp) 121 { 122 PageCache *new_cache; 123 int64_t ret = 0; 124 125 /* Check for truncation */ 126 if (new_size != (size_t)new_size) { 127 error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cache size", 128 "exceeding address space"); 129 return -1; 130 } 131 132 if (new_size == migrate_xbzrle_cache_size()) { 133 /* nothing to do */ 134 return 0; 135 } 136 137 XBZRLE_cache_lock(); 138 139 if (XBZRLE.cache != NULL) { 140 new_cache = cache_init(new_size, TARGET_PAGE_SIZE, errp); 141 if (!new_cache) { 142 ret = -1; 143 goto out; 144 } 145 146 cache_fini(XBZRLE.cache); 147 XBZRLE.cache = new_cache; 148 } 149 out: 150 XBZRLE_cache_unlock(); 151 return ret; 152 } 153 154 static void ramblock_recv_map_init(void) 155 { 156 RAMBlock *rb; 157 158 RAMBLOCK_FOREACH(rb) { 159 assert(!rb->receivedmap); 160 rb->receivedmap = bitmap_new(rb->max_length >> qemu_target_page_bits()); 161 } 162 } 163 164 int ramblock_recv_bitmap_test(RAMBlock *rb, void *host_addr) 165 { 166 return test_bit(ramblock_recv_bitmap_offset(host_addr, rb), 167 rb->receivedmap); 168 } 169 170 void ramblock_recv_bitmap_set(RAMBlock *rb, void *host_addr) 171 { 172 set_bit_atomic(ramblock_recv_bitmap_offset(host_addr, rb), rb->receivedmap); 173 } 174 175 void ramblock_recv_bitmap_set_range(RAMBlock *rb, void *host_addr, 176 size_t nr) 177 { 178 bitmap_set_atomic(rb->receivedmap, 179 ramblock_recv_bitmap_offset(host_addr, rb), 180 nr); 181 } 182 183 /* 184 * An outstanding page request, on the source, having been received 185 * and queued 186 */ 187 struct RAMSrcPageRequest { 188 RAMBlock *rb; 189 hwaddr offset; 190 hwaddr len; 191 192 QSIMPLEQ_ENTRY(RAMSrcPageRequest) next_req; 193 }; 194 195 /* State of RAM for migration */ 196 struct RAMState { 197 /* QEMUFile used for this migration */ 198 QEMUFile *f; 199 /* Last block that we have visited searching for dirty pages */ 200 RAMBlock *last_seen_block; 201 /* Last block from where we have sent data */ 202 RAMBlock *last_sent_block; 203 /* Last dirty target page we have sent */ 204 ram_addr_t last_page; 205 /* last ram version we have seen */ 206 uint32_t last_version; 207 /* We are in the first round */ 208 bool ram_bulk_stage; 209 /* How many times we have dirty too many pages */ 210 int dirty_rate_high_cnt; 211 /* these variables are used for bitmap sync */ 212 /* last time we did a full bitmap_sync */ 213 int64_t time_last_bitmap_sync; 214 /* bytes transferred at start_time */ 215 uint64_t bytes_xfer_prev; 216 /* number of dirty pages since start_time */ 217 uint64_t num_dirty_pages_period; 218 /* xbzrle misses since the beginning of the period */ 219 uint64_t xbzrle_cache_miss_prev; 220 /* number of iterations at the beginning of period */ 221 uint64_t iterations_prev; 222 /* Iterations since start */ 223 uint64_t iterations; 224 /* number of dirty bits in the bitmap */ 225 uint64_t migration_dirty_pages; 226 /* protects modification of the bitmap */ 227 QemuMutex bitmap_mutex; 228 /* The RAMBlock used in the last src_page_requests */ 229 RAMBlock *last_req_rb; 230 /* Queue of outstanding page requests from the destination */ 231 QemuMutex src_page_req_mutex; 232 QSIMPLEQ_HEAD(src_page_requests, RAMSrcPageRequest) src_page_requests; 233 }; 234 typedef struct RAMState RAMState; 235 236 static RAMState *ram_state; 237 238 uint64_t ram_bytes_remaining(void) 239 { 240 return ram_state ? (ram_state->migration_dirty_pages * TARGET_PAGE_SIZE) : 241 0; 242 } 243 244 MigrationStats ram_counters; 245 246 /* used by the search for pages to send */ 247 struct PageSearchStatus { 248 /* Current block being searched */ 249 RAMBlock *block; 250 /* Current page to search from */ 251 unsigned long page; 252 /* Set once we wrap around */ 253 bool complete_round; 254 }; 255 typedef struct PageSearchStatus PageSearchStatus; 256 257 struct CompressParam { 258 bool done; 259 bool quit; 260 QEMUFile *file; 261 QemuMutex mutex; 262 QemuCond cond; 263 RAMBlock *block; 264 ram_addr_t offset; 265 }; 266 typedef struct CompressParam CompressParam; 267 268 struct DecompressParam { 269 bool done; 270 bool quit; 271 QemuMutex mutex; 272 QemuCond cond; 273 void *des; 274 uint8_t *compbuf; 275 int len; 276 }; 277 typedef struct DecompressParam DecompressParam; 278 279 static CompressParam *comp_param; 280 static QemuThread *compress_threads; 281 /* comp_done_cond is used to wake up the migration thread when 282 * one of the compression threads has finished the compression. 283 * comp_done_lock is used to co-work with comp_done_cond. 284 */ 285 static QemuMutex comp_done_lock; 286 static QemuCond comp_done_cond; 287 /* The empty QEMUFileOps will be used by file in CompressParam */ 288 static const QEMUFileOps empty_ops = { }; 289 290 static DecompressParam *decomp_param; 291 static QemuThread *decompress_threads; 292 static QemuMutex decomp_done_lock; 293 static QemuCond decomp_done_cond; 294 295 static int do_compress_ram_page(QEMUFile *f, RAMBlock *block, 296 ram_addr_t offset); 297 298 static void *do_data_compress(void *opaque) 299 { 300 CompressParam *param = opaque; 301 RAMBlock *block; 302 ram_addr_t offset; 303 304 qemu_mutex_lock(¶m->mutex); 305 while (!param->quit) { 306 if (param->block) { 307 block = param->block; 308 offset = param->offset; 309 param->block = NULL; 310 qemu_mutex_unlock(¶m->mutex); 311 312 do_compress_ram_page(param->file, block, offset); 313 314 qemu_mutex_lock(&comp_done_lock); 315 param->done = true; 316 qemu_cond_signal(&comp_done_cond); 317 qemu_mutex_unlock(&comp_done_lock); 318 319 qemu_mutex_lock(¶m->mutex); 320 } else { 321 qemu_cond_wait(¶m->cond, ¶m->mutex); 322 } 323 } 324 qemu_mutex_unlock(¶m->mutex); 325 326 return NULL; 327 } 328 329 static inline void terminate_compression_threads(void) 330 { 331 int idx, thread_count; 332 333 thread_count = migrate_compress_threads(); 334 335 for (idx = 0; idx < thread_count; idx++) { 336 qemu_mutex_lock(&comp_param[idx].mutex); 337 comp_param[idx].quit = true; 338 qemu_cond_signal(&comp_param[idx].cond); 339 qemu_mutex_unlock(&comp_param[idx].mutex); 340 } 341 } 342 343 static void compress_threads_save_cleanup(void) 344 { 345 int i, thread_count; 346 347 if (!migrate_use_compression()) { 348 return; 349 } 350 terminate_compression_threads(); 351 thread_count = migrate_compress_threads(); 352 for (i = 0; i < thread_count; i++) { 353 qemu_thread_join(compress_threads + i); 354 qemu_fclose(comp_param[i].file); 355 qemu_mutex_destroy(&comp_param[i].mutex); 356 qemu_cond_destroy(&comp_param[i].cond); 357 } 358 qemu_mutex_destroy(&comp_done_lock); 359 qemu_cond_destroy(&comp_done_cond); 360 g_free(compress_threads); 361 g_free(comp_param); 362 compress_threads = NULL; 363 comp_param = NULL; 364 } 365 366 static void compress_threads_save_setup(void) 367 { 368 int i, thread_count; 369 370 if (!migrate_use_compression()) { 371 return; 372 } 373 thread_count = migrate_compress_threads(); 374 compress_threads = g_new0(QemuThread, thread_count); 375 comp_param = g_new0(CompressParam, thread_count); 376 qemu_cond_init(&comp_done_cond); 377 qemu_mutex_init(&comp_done_lock); 378 for (i = 0; i < thread_count; i++) { 379 /* comp_param[i].file is just used as a dummy buffer to save data, 380 * set its ops to empty. 381 */ 382 comp_param[i].file = qemu_fopen_ops(NULL, &empty_ops); 383 comp_param[i].done = true; 384 comp_param[i].quit = false; 385 qemu_mutex_init(&comp_param[i].mutex); 386 qemu_cond_init(&comp_param[i].cond); 387 qemu_thread_create(compress_threads + i, "compress", 388 do_data_compress, comp_param + i, 389 QEMU_THREAD_JOINABLE); 390 } 391 } 392 393 /* Multiple fd's */ 394 395 struct MultiFDSendParams { 396 uint8_t id; 397 char *name; 398 QemuThread thread; 399 QemuSemaphore sem; 400 QemuMutex mutex; 401 bool quit; 402 }; 403 typedef struct MultiFDSendParams MultiFDSendParams; 404 405 struct { 406 MultiFDSendParams *params; 407 /* number of created threads */ 408 int count; 409 } *multifd_send_state; 410 411 static void terminate_multifd_send_threads(Error *errp) 412 { 413 int i; 414 415 for (i = 0; i < multifd_send_state->count; i++) { 416 MultiFDSendParams *p = &multifd_send_state->params[i]; 417 418 qemu_mutex_lock(&p->mutex); 419 p->quit = true; 420 qemu_sem_post(&p->sem); 421 qemu_mutex_unlock(&p->mutex); 422 } 423 } 424 425 int multifd_save_cleanup(Error **errp) 426 { 427 int i; 428 int ret = 0; 429 430 if (!migrate_use_multifd()) { 431 return 0; 432 } 433 terminate_multifd_send_threads(NULL); 434 for (i = 0; i < multifd_send_state->count; i++) { 435 MultiFDSendParams *p = &multifd_send_state->params[i]; 436 437 qemu_thread_join(&p->thread); 438 qemu_mutex_destroy(&p->mutex); 439 qemu_sem_destroy(&p->sem); 440 g_free(p->name); 441 p->name = NULL; 442 } 443 g_free(multifd_send_state->params); 444 multifd_send_state->params = NULL; 445 g_free(multifd_send_state); 446 multifd_send_state = NULL; 447 return ret; 448 } 449 450 static void *multifd_send_thread(void *opaque) 451 { 452 MultiFDSendParams *p = opaque; 453 454 while (true) { 455 qemu_mutex_lock(&p->mutex); 456 if (p->quit) { 457 qemu_mutex_unlock(&p->mutex); 458 break; 459 } 460 qemu_mutex_unlock(&p->mutex); 461 qemu_sem_wait(&p->sem); 462 } 463 464 return NULL; 465 } 466 467 int multifd_save_setup(void) 468 { 469 int thread_count; 470 uint8_t i; 471 472 if (!migrate_use_multifd()) { 473 return 0; 474 } 475 thread_count = migrate_multifd_channels(); 476 multifd_send_state = g_malloc0(sizeof(*multifd_send_state)); 477 multifd_send_state->params = g_new0(MultiFDSendParams, thread_count); 478 multifd_send_state->count = 0; 479 for (i = 0; i < thread_count; i++) { 480 MultiFDSendParams *p = &multifd_send_state->params[i]; 481 482 qemu_mutex_init(&p->mutex); 483 qemu_sem_init(&p->sem, 0); 484 p->quit = false; 485 p->id = i; 486 p->name = g_strdup_printf("multifdsend_%d", i); 487 qemu_thread_create(&p->thread, p->name, multifd_send_thread, p, 488 QEMU_THREAD_JOINABLE); 489 490 multifd_send_state->count++; 491 } 492 return 0; 493 } 494 495 struct MultiFDRecvParams { 496 uint8_t id; 497 char *name; 498 QemuThread thread; 499 QemuSemaphore sem; 500 QemuMutex mutex; 501 bool quit; 502 }; 503 typedef struct MultiFDRecvParams MultiFDRecvParams; 504 505 struct { 506 MultiFDRecvParams *params; 507 /* number of created threads */ 508 int count; 509 } *multifd_recv_state; 510 511 static void terminate_multifd_recv_threads(Error *errp) 512 { 513 int i; 514 515 for (i = 0; i < multifd_recv_state->count; i++) { 516 MultiFDRecvParams *p = &multifd_recv_state->params[i]; 517 518 qemu_mutex_lock(&p->mutex); 519 p->quit = true; 520 qemu_sem_post(&p->sem); 521 qemu_mutex_unlock(&p->mutex); 522 } 523 } 524 525 int multifd_load_cleanup(Error **errp) 526 { 527 int i; 528 int ret = 0; 529 530 if (!migrate_use_multifd()) { 531 return 0; 532 } 533 terminate_multifd_recv_threads(NULL); 534 for (i = 0; i < multifd_recv_state->count; i++) { 535 MultiFDRecvParams *p = &multifd_recv_state->params[i]; 536 537 qemu_thread_join(&p->thread); 538 qemu_mutex_destroy(&p->mutex); 539 qemu_sem_destroy(&p->sem); 540 g_free(p->name); 541 p->name = NULL; 542 } 543 g_free(multifd_recv_state->params); 544 multifd_recv_state->params = NULL; 545 g_free(multifd_recv_state); 546 multifd_recv_state = NULL; 547 548 return ret; 549 } 550 551 static void *multifd_recv_thread(void *opaque) 552 { 553 MultiFDRecvParams *p = opaque; 554 555 while (true) { 556 qemu_mutex_lock(&p->mutex); 557 if (p->quit) { 558 qemu_mutex_unlock(&p->mutex); 559 break; 560 } 561 qemu_mutex_unlock(&p->mutex); 562 qemu_sem_wait(&p->sem); 563 } 564 565 return NULL; 566 } 567 568 int multifd_load_setup(void) 569 { 570 int thread_count; 571 uint8_t i; 572 573 if (!migrate_use_multifd()) { 574 return 0; 575 } 576 thread_count = migrate_multifd_channels(); 577 multifd_recv_state = g_malloc0(sizeof(*multifd_recv_state)); 578 multifd_recv_state->params = g_new0(MultiFDRecvParams, thread_count); 579 multifd_recv_state->count = 0; 580 for (i = 0; i < thread_count; i++) { 581 MultiFDRecvParams *p = &multifd_recv_state->params[i]; 582 583 qemu_mutex_init(&p->mutex); 584 qemu_sem_init(&p->sem, 0); 585 p->quit = false; 586 p->id = i; 587 p->name = g_strdup_printf("multifdrecv_%d", i); 588 qemu_thread_create(&p->thread, p->name, multifd_recv_thread, p, 589 QEMU_THREAD_JOINABLE); 590 multifd_recv_state->count++; 591 } 592 return 0; 593 } 594 595 /** 596 * save_page_header: write page header to wire 597 * 598 * If this is the 1st block, it also writes the block identification 599 * 600 * Returns the number of bytes written 601 * 602 * @f: QEMUFile where to send the data 603 * @block: block that contains the page we want to send 604 * @offset: offset inside the block for the page 605 * in the lower bits, it contains flags 606 */ 607 static size_t save_page_header(RAMState *rs, QEMUFile *f, RAMBlock *block, 608 ram_addr_t offset) 609 { 610 size_t size, len; 611 612 if (block == rs->last_sent_block) { 613 offset |= RAM_SAVE_FLAG_CONTINUE; 614 } 615 qemu_put_be64(f, offset); 616 size = 8; 617 618 if (!(offset & RAM_SAVE_FLAG_CONTINUE)) { 619 len = strlen(block->idstr); 620 qemu_put_byte(f, len); 621 qemu_put_buffer(f, (uint8_t *)block->idstr, len); 622 size += 1 + len; 623 rs->last_sent_block = block; 624 } 625 return size; 626 } 627 628 /** 629 * mig_throttle_guest_down: throotle down the guest 630 * 631 * Reduce amount of guest cpu execution to hopefully slow down memory 632 * writes. If guest dirty memory rate is reduced below the rate at 633 * which we can transfer pages to the destination then we should be 634 * able to complete migration. Some workloads dirty memory way too 635 * fast and will not effectively converge, even with auto-converge. 636 */ 637 static void mig_throttle_guest_down(void) 638 { 639 MigrationState *s = migrate_get_current(); 640 uint64_t pct_initial = s->parameters.cpu_throttle_initial; 641 uint64_t pct_icrement = s->parameters.cpu_throttle_increment; 642 643 /* We have not started throttling yet. Let's start it. */ 644 if (!cpu_throttle_active()) { 645 cpu_throttle_set(pct_initial); 646 } else { 647 /* Throttling already on, just increase the rate */ 648 cpu_throttle_set(cpu_throttle_get_percentage() + pct_icrement); 649 } 650 } 651 652 /** 653 * xbzrle_cache_zero_page: insert a zero page in the XBZRLE cache 654 * 655 * @rs: current RAM state 656 * @current_addr: address for the zero page 657 * 658 * Update the xbzrle cache to reflect a page that's been sent as all 0. 659 * The important thing is that a stale (not-yet-0'd) page be replaced 660 * by the new data. 661 * As a bonus, if the page wasn't in the cache it gets added so that 662 * when a small write is made into the 0'd page it gets XBZRLE sent. 663 */ 664 static void xbzrle_cache_zero_page(RAMState *rs, ram_addr_t current_addr) 665 { 666 if (rs->ram_bulk_stage || !migrate_use_xbzrle()) { 667 return; 668 } 669 670 /* We don't care if this fails to allocate a new cache page 671 * as long as it updated an old one */ 672 cache_insert(XBZRLE.cache, current_addr, XBZRLE.zero_target_page, 673 ram_counters.dirty_sync_count); 674 } 675 676 #define ENCODING_FLAG_XBZRLE 0x1 677 678 /** 679 * save_xbzrle_page: compress and send current page 680 * 681 * Returns: 1 means that we wrote the page 682 * 0 means that page is identical to the one already sent 683 * -1 means that xbzrle would be longer than normal 684 * 685 * @rs: current RAM state 686 * @current_data: pointer to the address of the page contents 687 * @current_addr: addr of the page 688 * @block: block that contains the page we want to send 689 * @offset: offset inside the block for the page 690 * @last_stage: if we are at the completion stage 691 */ 692 static int save_xbzrle_page(RAMState *rs, uint8_t **current_data, 693 ram_addr_t current_addr, RAMBlock *block, 694 ram_addr_t offset, bool last_stage) 695 { 696 int encoded_len = 0, bytes_xbzrle; 697 uint8_t *prev_cached_page; 698 699 if (!cache_is_cached(XBZRLE.cache, current_addr, 700 ram_counters.dirty_sync_count)) { 701 xbzrle_counters.cache_miss++; 702 if (!last_stage) { 703 if (cache_insert(XBZRLE.cache, current_addr, *current_data, 704 ram_counters.dirty_sync_count) == -1) { 705 return -1; 706 } else { 707 /* update *current_data when the page has been 708 inserted into cache */ 709 *current_data = get_cached_data(XBZRLE.cache, current_addr); 710 } 711 } 712 return -1; 713 } 714 715 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr); 716 717 /* save current buffer into memory */ 718 memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE); 719 720 /* XBZRLE encoding (if there is no overflow) */ 721 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf, 722 TARGET_PAGE_SIZE, XBZRLE.encoded_buf, 723 TARGET_PAGE_SIZE); 724 if (encoded_len == 0) { 725 trace_save_xbzrle_page_skipping(); 726 return 0; 727 } else if (encoded_len == -1) { 728 trace_save_xbzrle_page_overflow(); 729 xbzrle_counters.overflow++; 730 /* update data in the cache */ 731 if (!last_stage) { 732 memcpy(prev_cached_page, *current_data, TARGET_PAGE_SIZE); 733 *current_data = prev_cached_page; 734 } 735 return -1; 736 } 737 738 /* we need to update the data in the cache, in order to get the same data */ 739 if (!last_stage) { 740 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE); 741 } 742 743 /* Send XBZRLE based compressed page */ 744 bytes_xbzrle = save_page_header(rs, rs->f, block, 745 offset | RAM_SAVE_FLAG_XBZRLE); 746 qemu_put_byte(rs->f, ENCODING_FLAG_XBZRLE); 747 qemu_put_be16(rs->f, encoded_len); 748 qemu_put_buffer(rs->f, XBZRLE.encoded_buf, encoded_len); 749 bytes_xbzrle += encoded_len + 1 + 2; 750 xbzrle_counters.pages++; 751 xbzrle_counters.bytes += bytes_xbzrle; 752 ram_counters.transferred += bytes_xbzrle; 753 754 return 1; 755 } 756 757 /** 758 * migration_bitmap_find_dirty: find the next dirty page from start 759 * 760 * Called with rcu_read_lock() to protect migration_bitmap 761 * 762 * Returns the byte offset within memory region of the start of a dirty page 763 * 764 * @rs: current RAM state 765 * @rb: RAMBlock where to search for dirty pages 766 * @start: page where we start the search 767 */ 768 static inline 769 unsigned long migration_bitmap_find_dirty(RAMState *rs, RAMBlock *rb, 770 unsigned long start) 771 { 772 unsigned long size = rb->used_length >> TARGET_PAGE_BITS; 773 unsigned long *bitmap = rb->bmap; 774 unsigned long next; 775 776 if (rs->ram_bulk_stage && start > 0) { 777 next = start + 1; 778 } else { 779 next = find_next_bit(bitmap, size, start); 780 } 781 782 return next; 783 } 784 785 static inline bool migration_bitmap_clear_dirty(RAMState *rs, 786 RAMBlock *rb, 787 unsigned long page) 788 { 789 bool ret; 790 791 ret = test_and_clear_bit(page, rb->bmap); 792 793 if (ret) { 794 rs->migration_dirty_pages--; 795 } 796 return ret; 797 } 798 799 static void migration_bitmap_sync_range(RAMState *rs, RAMBlock *rb, 800 ram_addr_t start, ram_addr_t length) 801 { 802 rs->migration_dirty_pages += 803 cpu_physical_memory_sync_dirty_bitmap(rb, start, length, 804 &rs->num_dirty_pages_period); 805 } 806 807 /** 808 * ram_pagesize_summary: calculate all the pagesizes of a VM 809 * 810 * Returns a summary bitmap of the page sizes of all RAMBlocks 811 * 812 * For VMs with just normal pages this is equivalent to the host page 813 * size. If it's got some huge pages then it's the OR of all the 814 * different page sizes. 815 */ 816 uint64_t ram_pagesize_summary(void) 817 { 818 RAMBlock *block; 819 uint64_t summary = 0; 820 821 RAMBLOCK_FOREACH(block) { 822 summary |= block->page_size; 823 } 824 825 return summary; 826 } 827 828 static void migration_bitmap_sync(RAMState *rs) 829 { 830 RAMBlock *block; 831 int64_t end_time; 832 uint64_t bytes_xfer_now; 833 834 ram_counters.dirty_sync_count++; 835 836 if (!rs->time_last_bitmap_sync) { 837 rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); 838 } 839 840 trace_migration_bitmap_sync_start(); 841 memory_global_dirty_log_sync(); 842 843 qemu_mutex_lock(&rs->bitmap_mutex); 844 rcu_read_lock(); 845 RAMBLOCK_FOREACH(block) { 846 migration_bitmap_sync_range(rs, block, 0, block->used_length); 847 } 848 rcu_read_unlock(); 849 qemu_mutex_unlock(&rs->bitmap_mutex); 850 851 trace_migration_bitmap_sync_end(rs->num_dirty_pages_period); 852 853 end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); 854 855 /* more than 1 second = 1000 millisecons */ 856 if (end_time > rs->time_last_bitmap_sync + 1000) { 857 /* calculate period counters */ 858 ram_counters.dirty_pages_rate = rs->num_dirty_pages_period * 1000 859 / (end_time - rs->time_last_bitmap_sync); 860 bytes_xfer_now = ram_counters.transferred; 861 862 /* During block migration the auto-converge logic incorrectly detects 863 * that ram migration makes no progress. Avoid this by disabling the 864 * throttling logic during the bulk phase of block migration. */ 865 if (migrate_auto_converge() && !blk_mig_bulk_active()) { 866 /* The following detection logic can be refined later. For now: 867 Check to see if the dirtied bytes is 50% more than the approx. 868 amount of bytes that just got transferred since the last time we 869 were in this routine. If that happens twice, start or increase 870 throttling */ 871 872 if ((rs->num_dirty_pages_period * TARGET_PAGE_SIZE > 873 (bytes_xfer_now - rs->bytes_xfer_prev) / 2) && 874 (++rs->dirty_rate_high_cnt >= 2)) { 875 trace_migration_throttle(); 876 rs->dirty_rate_high_cnt = 0; 877 mig_throttle_guest_down(); 878 } 879 } 880 881 if (migrate_use_xbzrle()) { 882 if (rs->iterations_prev != rs->iterations) { 883 xbzrle_counters.cache_miss_rate = 884 (double)(xbzrle_counters.cache_miss - 885 rs->xbzrle_cache_miss_prev) / 886 (rs->iterations - rs->iterations_prev); 887 } 888 rs->iterations_prev = rs->iterations; 889 rs->xbzrle_cache_miss_prev = xbzrle_counters.cache_miss; 890 } 891 892 /* reset period counters */ 893 rs->time_last_bitmap_sync = end_time; 894 rs->num_dirty_pages_period = 0; 895 rs->bytes_xfer_prev = bytes_xfer_now; 896 } 897 if (migrate_use_events()) { 898 qapi_event_send_migration_pass(ram_counters.dirty_sync_count, NULL); 899 } 900 } 901 902 /** 903 * save_zero_page: send the zero page to the stream 904 * 905 * Returns the number of pages written. 906 * 907 * @rs: current RAM state 908 * @block: block that contains the page we want to send 909 * @offset: offset inside the block for the page 910 * @p: pointer to the page 911 */ 912 static int save_zero_page(RAMState *rs, RAMBlock *block, ram_addr_t offset, 913 uint8_t *p) 914 { 915 int pages = -1; 916 917 if (is_zero_range(p, TARGET_PAGE_SIZE)) { 918 ram_counters.duplicate++; 919 ram_counters.transferred += 920 save_page_header(rs, rs->f, block, offset | RAM_SAVE_FLAG_ZERO); 921 qemu_put_byte(rs->f, 0); 922 ram_counters.transferred += 1; 923 pages = 1; 924 } 925 926 return pages; 927 } 928 929 static void ram_release_pages(const char *rbname, uint64_t offset, int pages) 930 { 931 if (!migrate_release_ram() || !migration_in_postcopy()) { 932 return; 933 } 934 935 ram_discard_range(rbname, offset, pages << TARGET_PAGE_BITS); 936 } 937 938 /** 939 * ram_save_page: send the given page to the stream 940 * 941 * Returns the number of pages written. 942 * < 0 - error 943 * >=0 - Number of pages written - this might legally be 0 944 * if xbzrle noticed the page was the same. 945 * 946 * @rs: current RAM state 947 * @block: block that contains the page we want to send 948 * @offset: offset inside the block for the page 949 * @last_stage: if we are at the completion stage 950 */ 951 static int ram_save_page(RAMState *rs, PageSearchStatus *pss, bool last_stage) 952 { 953 int pages = -1; 954 uint64_t bytes_xmit; 955 ram_addr_t current_addr; 956 uint8_t *p; 957 int ret; 958 bool send_async = true; 959 RAMBlock *block = pss->block; 960 ram_addr_t offset = pss->page << TARGET_PAGE_BITS; 961 962 p = block->host + offset; 963 trace_ram_save_page(block->idstr, (uint64_t)offset, p); 964 965 /* In doubt sent page as normal */ 966 bytes_xmit = 0; 967 ret = ram_control_save_page(rs->f, block->offset, 968 offset, TARGET_PAGE_SIZE, &bytes_xmit); 969 if (bytes_xmit) { 970 ram_counters.transferred += bytes_xmit; 971 pages = 1; 972 } 973 974 XBZRLE_cache_lock(); 975 976 current_addr = block->offset + offset; 977 978 if (ret != RAM_SAVE_CONTROL_NOT_SUPP) { 979 if (ret != RAM_SAVE_CONTROL_DELAYED) { 980 if (bytes_xmit > 0) { 981 ram_counters.normal++; 982 } else if (bytes_xmit == 0) { 983 ram_counters.duplicate++; 984 } 985 } 986 } else { 987 pages = save_zero_page(rs, block, offset, p); 988 if (pages > 0) { 989 /* Must let xbzrle know, otherwise a previous (now 0'd) cached 990 * page would be stale 991 */ 992 xbzrle_cache_zero_page(rs, current_addr); 993 ram_release_pages(block->idstr, offset, pages); 994 } else if (!rs->ram_bulk_stage && 995 !migration_in_postcopy() && migrate_use_xbzrle()) { 996 pages = save_xbzrle_page(rs, &p, current_addr, block, 997 offset, last_stage); 998 if (!last_stage) { 999 /* Can't send this cached data async, since the cache page 1000 * might get updated before it gets to the wire 1001 */ 1002 send_async = false; 1003 } 1004 } 1005 } 1006 1007 /* XBZRLE overflow or normal page */ 1008 if (pages == -1) { 1009 ram_counters.transferred += 1010 save_page_header(rs, rs->f, block, offset | RAM_SAVE_FLAG_PAGE); 1011 if (send_async) { 1012 qemu_put_buffer_async(rs->f, p, TARGET_PAGE_SIZE, 1013 migrate_release_ram() & 1014 migration_in_postcopy()); 1015 } else { 1016 qemu_put_buffer(rs->f, p, TARGET_PAGE_SIZE); 1017 } 1018 ram_counters.transferred += TARGET_PAGE_SIZE; 1019 pages = 1; 1020 ram_counters.normal++; 1021 } 1022 1023 XBZRLE_cache_unlock(); 1024 1025 return pages; 1026 } 1027 1028 static int do_compress_ram_page(QEMUFile *f, RAMBlock *block, 1029 ram_addr_t offset) 1030 { 1031 RAMState *rs = ram_state; 1032 int bytes_sent, blen; 1033 uint8_t *p = block->host + (offset & TARGET_PAGE_MASK); 1034 1035 bytes_sent = save_page_header(rs, f, block, offset | 1036 RAM_SAVE_FLAG_COMPRESS_PAGE); 1037 blen = qemu_put_compression_data(f, p, TARGET_PAGE_SIZE, 1038 migrate_compress_level()); 1039 if (blen < 0) { 1040 bytes_sent = 0; 1041 qemu_file_set_error(migrate_get_current()->to_dst_file, blen); 1042 error_report("compressed data failed!"); 1043 } else { 1044 bytes_sent += blen; 1045 ram_release_pages(block->idstr, offset & TARGET_PAGE_MASK, 1); 1046 } 1047 1048 return bytes_sent; 1049 } 1050 1051 static void flush_compressed_data(RAMState *rs) 1052 { 1053 int idx, len, thread_count; 1054 1055 if (!migrate_use_compression()) { 1056 return; 1057 } 1058 thread_count = migrate_compress_threads(); 1059 1060 qemu_mutex_lock(&comp_done_lock); 1061 for (idx = 0; idx < thread_count; idx++) { 1062 while (!comp_param[idx].done) { 1063 qemu_cond_wait(&comp_done_cond, &comp_done_lock); 1064 } 1065 } 1066 qemu_mutex_unlock(&comp_done_lock); 1067 1068 for (idx = 0; idx < thread_count; idx++) { 1069 qemu_mutex_lock(&comp_param[idx].mutex); 1070 if (!comp_param[idx].quit) { 1071 len = qemu_put_qemu_file(rs->f, comp_param[idx].file); 1072 ram_counters.transferred += len; 1073 } 1074 qemu_mutex_unlock(&comp_param[idx].mutex); 1075 } 1076 } 1077 1078 static inline void set_compress_params(CompressParam *param, RAMBlock *block, 1079 ram_addr_t offset) 1080 { 1081 param->block = block; 1082 param->offset = offset; 1083 } 1084 1085 static int compress_page_with_multi_thread(RAMState *rs, RAMBlock *block, 1086 ram_addr_t offset) 1087 { 1088 int idx, thread_count, bytes_xmit = -1, pages = -1; 1089 1090 thread_count = migrate_compress_threads(); 1091 qemu_mutex_lock(&comp_done_lock); 1092 while (true) { 1093 for (idx = 0; idx < thread_count; idx++) { 1094 if (comp_param[idx].done) { 1095 comp_param[idx].done = false; 1096 bytes_xmit = qemu_put_qemu_file(rs->f, comp_param[idx].file); 1097 qemu_mutex_lock(&comp_param[idx].mutex); 1098 set_compress_params(&comp_param[idx], block, offset); 1099 qemu_cond_signal(&comp_param[idx].cond); 1100 qemu_mutex_unlock(&comp_param[idx].mutex); 1101 pages = 1; 1102 ram_counters.normal++; 1103 ram_counters.transferred += bytes_xmit; 1104 break; 1105 } 1106 } 1107 if (pages > 0) { 1108 break; 1109 } else { 1110 qemu_cond_wait(&comp_done_cond, &comp_done_lock); 1111 } 1112 } 1113 qemu_mutex_unlock(&comp_done_lock); 1114 1115 return pages; 1116 } 1117 1118 /** 1119 * ram_save_compressed_page: compress the given page and send it to the stream 1120 * 1121 * Returns the number of pages written. 1122 * 1123 * @rs: current RAM state 1124 * @block: block that contains the page we want to send 1125 * @offset: offset inside the block for the page 1126 * @last_stage: if we are at the completion stage 1127 */ 1128 static int ram_save_compressed_page(RAMState *rs, PageSearchStatus *pss, 1129 bool last_stage) 1130 { 1131 int pages = -1; 1132 uint64_t bytes_xmit = 0; 1133 uint8_t *p; 1134 int ret, blen; 1135 RAMBlock *block = pss->block; 1136 ram_addr_t offset = pss->page << TARGET_PAGE_BITS; 1137 1138 p = block->host + offset; 1139 1140 ret = ram_control_save_page(rs->f, block->offset, 1141 offset, TARGET_PAGE_SIZE, &bytes_xmit); 1142 if (bytes_xmit) { 1143 ram_counters.transferred += bytes_xmit; 1144 pages = 1; 1145 } 1146 if (ret != RAM_SAVE_CONTROL_NOT_SUPP) { 1147 if (ret != RAM_SAVE_CONTROL_DELAYED) { 1148 if (bytes_xmit > 0) { 1149 ram_counters.normal++; 1150 } else if (bytes_xmit == 0) { 1151 ram_counters.duplicate++; 1152 } 1153 } 1154 } else { 1155 /* When starting the process of a new block, the first page of 1156 * the block should be sent out before other pages in the same 1157 * block, and all the pages in last block should have been sent 1158 * out, keeping this order is important, because the 'cont' flag 1159 * is used to avoid resending the block name. 1160 */ 1161 if (block != rs->last_sent_block) { 1162 flush_compressed_data(rs); 1163 pages = save_zero_page(rs, block, offset, p); 1164 if (pages == -1) { 1165 /* Make sure the first page is sent out before other pages */ 1166 bytes_xmit = save_page_header(rs, rs->f, block, offset | 1167 RAM_SAVE_FLAG_COMPRESS_PAGE); 1168 blen = qemu_put_compression_data(rs->f, p, TARGET_PAGE_SIZE, 1169 migrate_compress_level()); 1170 if (blen > 0) { 1171 ram_counters.transferred += bytes_xmit + blen; 1172 ram_counters.normal++; 1173 pages = 1; 1174 } else { 1175 qemu_file_set_error(rs->f, blen); 1176 error_report("compressed data failed!"); 1177 } 1178 } 1179 if (pages > 0) { 1180 ram_release_pages(block->idstr, offset, pages); 1181 } 1182 } else { 1183 pages = save_zero_page(rs, block, offset, p); 1184 if (pages == -1) { 1185 pages = compress_page_with_multi_thread(rs, block, offset); 1186 } else { 1187 ram_release_pages(block->idstr, offset, pages); 1188 } 1189 } 1190 } 1191 1192 return pages; 1193 } 1194 1195 /** 1196 * find_dirty_block: find the next dirty page and update any state 1197 * associated with the search process. 1198 * 1199 * Returns if a page is found 1200 * 1201 * @rs: current RAM state 1202 * @pss: data about the state of the current dirty page scan 1203 * @again: set to false if the search has scanned the whole of RAM 1204 */ 1205 static bool find_dirty_block(RAMState *rs, PageSearchStatus *pss, bool *again) 1206 { 1207 pss->page = migration_bitmap_find_dirty(rs, pss->block, pss->page); 1208 if (pss->complete_round && pss->block == rs->last_seen_block && 1209 pss->page >= rs->last_page) { 1210 /* 1211 * We've been once around the RAM and haven't found anything. 1212 * Give up. 1213 */ 1214 *again = false; 1215 return false; 1216 } 1217 if ((pss->page << TARGET_PAGE_BITS) >= pss->block->used_length) { 1218 /* Didn't find anything in this RAM Block */ 1219 pss->page = 0; 1220 pss->block = QLIST_NEXT_RCU(pss->block, next); 1221 if (!pss->block) { 1222 /* Hit the end of the list */ 1223 pss->block = QLIST_FIRST_RCU(&ram_list.blocks); 1224 /* Flag that we've looped */ 1225 pss->complete_round = true; 1226 rs->ram_bulk_stage = false; 1227 if (migrate_use_xbzrle()) { 1228 /* If xbzrle is on, stop using the data compression at this 1229 * point. In theory, xbzrle can do better than compression. 1230 */ 1231 flush_compressed_data(rs); 1232 } 1233 } 1234 /* Didn't find anything this time, but try again on the new block */ 1235 *again = true; 1236 return false; 1237 } else { 1238 /* Can go around again, but... */ 1239 *again = true; 1240 /* We've found something so probably don't need to */ 1241 return true; 1242 } 1243 } 1244 1245 /** 1246 * unqueue_page: gets a page of the queue 1247 * 1248 * Helper for 'get_queued_page' - gets a page off the queue 1249 * 1250 * Returns the block of the page (or NULL if none available) 1251 * 1252 * @rs: current RAM state 1253 * @offset: used to return the offset within the RAMBlock 1254 */ 1255 static RAMBlock *unqueue_page(RAMState *rs, ram_addr_t *offset) 1256 { 1257 RAMBlock *block = NULL; 1258 1259 qemu_mutex_lock(&rs->src_page_req_mutex); 1260 if (!QSIMPLEQ_EMPTY(&rs->src_page_requests)) { 1261 struct RAMSrcPageRequest *entry = 1262 QSIMPLEQ_FIRST(&rs->src_page_requests); 1263 block = entry->rb; 1264 *offset = entry->offset; 1265 1266 if (entry->len > TARGET_PAGE_SIZE) { 1267 entry->len -= TARGET_PAGE_SIZE; 1268 entry->offset += TARGET_PAGE_SIZE; 1269 } else { 1270 memory_region_unref(block->mr); 1271 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req); 1272 g_free(entry); 1273 } 1274 } 1275 qemu_mutex_unlock(&rs->src_page_req_mutex); 1276 1277 return block; 1278 } 1279 1280 /** 1281 * get_queued_page: unqueue a page from the postocpy requests 1282 * 1283 * Skips pages that are already sent (!dirty) 1284 * 1285 * Returns if a queued page is found 1286 * 1287 * @rs: current RAM state 1288 * @pss: data about the state of the current dirty page scan 1289 */ 1290 static bool get_queued_page(RAMState *rs, PageSearchStatus *pss) 1291 { 1292 RAMBlock *block; 1293 ram_addr_t offset; 1294 bool dirty; 1295 1296 do { 1297 block = unqueue_page(rs, &offset); 1298 /* 1299 * We're sending this page, and since it's postcopy nothing else 1300 * will dirty it, and we must make sure it doesn't get sent again 1301 * even if this queue request was received after the background 1302 * search already sent it. 1303 */ 1304 if (block) { 1305 unsigned long page; 1306 1307 page = offset >> TARGET_PAGE_BITS; 1308 dirty = test_bit(page, block->bmap); 1309 if (!dirty) { 1310 trace_get_queued_page_not_dirty(block->idstr, (uint64_t)offset, 1311 page, test_bit(page, block->unsentmap)); 1312 } else { 1313 trace_get_queued_page(block->idstr, (uint64_t)offset, page); 1314 } 1315 } 1316 1317 } while (block && !dirty); 1318 1319 if (block) { 1320 /* 1321 * As soon as we start servicing pages out of order, then we have 1322 * to kill the bulk stage, since the bulk stage assumes 1323 * in (migration_bitmap_find_and_reset_dirty) that every page is 1324 * dirty, that's no longer true. 1325 */ 1326 rs->ram_bulk_stage = false; 1327 1328 /* 1329 * We want the background search to continue from the queued page 1330 * since the guest is likely to want other pages near to the page 1331 * it just requested. 1332 */ 1333 pss->block = block; 1334 pss->page = offset >> TARGET_PAGE_BITS; 1335 } 1336 1337 return !!block; 1338 } 1339 1340 /** 1341 * migration_page_queue_free: drop any remaining pages in the ram 1342 * request queue 1343 * 1344 * It should be empty at the end anyway, but in error cases there may 1345 * be some left. in case that there is any page left, we drop it. 1346 * 1347 */ 1348 static void migration_page_queue_free(RAMState *rs) 1349 { 1350 struct RAMSrcPageRequest *mspr, *next_mspr; 1351 /* This queue generally should be empty - but in the case of a failed 1352 * migration might have some droppings in. 1353 */ 1354 rcu_read_lock(); 1355 QSIMPLEQ_FOREACH_SAFE(mspr, &rs->src_page_requests, next_req, next_mspr) { 1356 memory_region_unref(mspr->rb->mr); 1357 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req); 1358 g_free(mspr); 1359 } 1360 rcu_read_unlock(); 1361 } 1362 1363 /** 1364 * ram_save_queue_pages: queue the page for transmission 1365 * 1366 * A request from postcopy destination for example. 1367 * 1368 * Returns zero on success or negative on error 1369 * 1370 * @rbname: Name of the RAMBLock of the request. NULL means the 1371 * same that last one. 1372 * @start: starting address from the start of the RAMBlock 1373 * @len: length (in bytes) to send 1374 */ 1375 int ram_save_queue_pages(const char *rbname, ram_addr_t start, ram_addr_t len) 1376 { 1377 RAMBlock *ramblock; 1378 RAMState *rs = ram_state; 1379 1380 ram_counters.postcopy_requests++; 1381 rcu_read_lock(); 1382 if (!rbname) { 1383 /* Reuse last RAMBlock */ 1384 ramblock = rs->last_req_rb; 1385 1386 if (!ramblock) { 1387 /* 1388 * Shouldn't happen, we can't reuse the last RAMBlock if 1389 * it's the 1st request. 1390 */ 1391 error_report("ram_save_queue_pages no previous block"); 1392 goto err; 1393 } 1394 } else { 1395 ramblock = qemu_ram_block_by_name(rbname); 1396 1397 if (!ramblock) { 1398 /* We shouldn't be asked for a non-existent RAMBlock */ 1399 error_report("ram_save_queue_pages no block '%s'", rbname); 1400 goto err; 1401 } 1402 rs->last_req_rb = ramblock; 1403 } 1404 trace_ram_save_queue_pages(ramblock->idstr, start, len); 1405 if (start+len > ramblock->used_length) { 1406 error_report("%s request overrun start=" RAM_ADDR_FMT " len=" 1407 RAM_ADDR_FMT " blocklen=" RAM_ADDR_FMT, 1408 __func__, start, len, ramblock->used_length); 1409 goto err; 1410 } 1411 1412 struct RAMSrcPageRequest *new_entry = 1413 g_malloc0(sizeof(struct RAMSrcPageRequest)); 1414 new_entry->rb = ramblock; 1415 new_entry->offset = start; 1416 new_entry->len = len; 1417 1418 memory_region_ref(ramblock->mr); 1419 qemu_mutex_lock(&rs->src_page_req_mutex); 1420 QSIMPLEQ_INSERT_TAIL(&rs->src_page_requests, new_entry, next_req); 1421 qemu_mutex_unlock(&rs->src_page_req_mutex); 1422 rcu_read_unlock(); 1423 1424 return 0; 1425 1426 err: 1427 rcu_read_unlock(); 1428 return -1; 1429 } 1430 1431 /** 1432 * ram_save_target_page: save one target page 1433 * 1434 * Returns the number of pages written 1435 * 1436 * @rs: current RAM state 1437 * @ms: current migration state 1438 * @pss: data about the page we want to send 1439 * @last_stage: if we are at the completion stage 1440 */ 1441 static int ram_save_target_page(RAMState *rs, PageSearchStatus *pss, 1442 bool last_stage) 1443 { 1444 int res = 0; 1445 1446 /* Check the pages is dirty and if it is send it */ 1447 if (migration_bitmap_clear_dirty(rs, pss->block, pss->page)) { 1448 /* 1449 * If xbzrle is on, stop using the data compression after first 1450 * round of migration even if compression is enabled. In theory, 1451 * xbzrle can do better than compression. 1452 */ 1453 if (migrate_use_compression() && 1454 (rs->ram_bulk_stage || !migrate_use_xbzrle())) { 1455 res = ram_save_compressed_page(rs, pss, last_stage); 1456 } else { 1457 res = ram_save_page(rs, pss, last_stage); 1458 } 1459 1460 if (res < 0) { 1461 return res; 1462 } 1463 if (pss->block->unsentmap) { 1464 clear_bit(pss->page, pss->block->unsentmap); 1465 } 1466 } 1467 1468 return res; 1469 } 1470 1471 /** 1472 * ram_save_host_page: save a whole host page 1473 * 1474 * Starting at *offset send pages up to the end of the current host 1475 * page. It's valid for the initial offset to point into the middle of 1476 * a host page in which case the remainder of the hostpage is sent. 1477 * Only dirty target pages are sent. Note that the host page size may 1478 * be a huge page for this block. 1479 * The saving stops at the boundary of the used_length of the block 1480 * if the RAMBlock isn't a multiple of the host page size. 1481 * 1482 * Returns the number of pages written or negative on error 1483 * 1484 * @rs: current RAM state 1485 * @ms: current migration state 1486 * @pss: data about the page we want to send 1487 * @last_stage: if we are at the completion stage 1488 */ 1489 static int ram_save_host_page(RAMState *rs, PageSearchStatus *pss, 1490 bool last_stage) 1491 { 1492 int tmppages, pages = 0; 1493 size_t pagesize_bits = 1494 qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS; 1495 1496 do { 1497 tmppages = ram_save_target_page(rs, pss, last_stage); 1498 if (tmppages < 0) { 1499 return tmppages; 1500 } 1501 1502 pages += tmppages; 1503 pss->page++; 1504 } while ((pss->page & (pagesize_bits - 1)) && 1505 offset_in_ramblock(pss->block, pss->page << TARGET_PAGE_BITS)); 1506 1507 /* The offset we leave with is the last one we looked at */ 1508 pss->page--; 1509 return pages; 1510 } 1511 1512 /** 1513 * ram_find_and_save_block: finds a dirty page and sends it to f 1514 * 1515 * Called within an RCU critical section. 1516 * 1517 * Returns the number of pages written where zero means no dirty pages 1518 * 1519 * @rs: current RAM state 1520 * @last_stage: if we are at the completion stage 1521 * 1522 * On systems where host-page-size > target-page-size it will send all the 1523 * pages in a host page that are dirty. 1524 */ 1525 1526 static int ram_find_and_save_block(RAMState *rs, bool last_stage) 1527 { 1528 PageSearchStatus pss; 1529 int pages = 0; 1530 bool again, found; 1531 1532 /* No dirty page as there is zero RAM */ 1533 if (!ram_bytes_total()) { 1534 return pages; 1535 } 1536 1537 pss.block = rs->last_seen_block; 1538 pss.page = rs->last_page; 1539 pss.complete_round = false; 1540 1541 if (!pss.block) { 1542 pss.block = QLIST_FIRST_RCU(&ram_list.blocks); 1543 } 1544 1545 do { 1546 again = true; 1547 found = get_queued_page(rs, &pss); 1548 1549 if (!found) { 1550 /* priority queue empty, so just search for something dirty */ 1551 found = find_dirty_block(rs, &pss, &again); 1552 } 1553 1554 if (found) { 1555 pages = ram_save_host_page(rs, &pss, last_stage); 1556 } 1557 } while (!pages && again); 1558 1559 rs->last_seen_block = pss.block; 1560 rs->last_page = pss.page; 1561 1562 return pages; 1563 } 1564 1565 void acct_update_position(QEMUFile *f, size_t size, bool zero) 1566 { 1567 uint64_t pages = size / TARGET_PAGE_SIZE; 1568 1569 if (zero) { 1570 ram_counters.duplicate += pages; 1571 } else { 1572 ram_counters.normal += pages; 1573 ram_counters.transferred += size; 1574 qemu_update_position(f, size); 1575 } 1576 } 1577 1578 uint64_t ram_bytes_total(void) 1579 { 1580 RAMBlock *block; 1581 uint64_t total = 0; 1582 1583 rcu_read_lock(); 1584 RAMBLOCK_FOREACH(block) { 1585 total += block->used_length; 1586 } 1587 rcu_read_unlock(); 1588 return total; 1589 } 1590 1591 static void xbzrle_load_setup(void) 1592 { 1593 XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE); 1594 } 1595 1596 static void xbzrle_load_cleanup(void) 1597 { 1598 g_free(XBZRLE.decoded_buf); 1599 XBZRLE.decoded_buf = NULL; 1600 } 1601 1602 static void ram_state_cleanup(RAMState **rsp) 1603 { 1604 migration_page_queue_free(*rsp); 1605 qemu_mutex_destroy(&(*rsp)->bitmap_mutex); 1606 qemu_mutex_destroy(&(*rsp)->src_page_req_mutex); 1607 g_free(*rsp); 1608 *rsp = NULL; 1609 } 1610 1611 static void xbzrle_cleanup(void) 1612 { 1613 XBZRLE_cache_lock(); 1614 if (XBZRLE.cache) { 1615 cache_fini(XBZRLE.cache); 1616 g_free(XBZRLE.encoded_buf); 1617 g_free(XBZRLE.current_buf); 1618 g_free(XBZRLE.zero_target_page); 1619 XBZRLE.cache = NULL; 1620 XBZRLE.encoded_buf = NULL; 1621 XBZRLE.current_buf = NULL; 1622 XBZRLE.zero_target_page = NULL; 1623 } 1624 XBZRLE_cache_unlock(); 1625 } 1626 1627 static void ram_save_cleanup(void *opaque) 1628 { 1629 RAMState **rsp = opaque; 1630 RAMBlock *block; 1631 1632 /* caller have hold iothread lock or is in a bh, so there is 1633 * no writing race against this migration_bitmap 1634 */ 1635 memory_global_dirty_log_stop(); 1636 1637 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { 1638 g_free(block->bmap); 1639 block->bmap = NULL; 1640 g_free(block->unsentmap); 1641 block->unsentmap = NULL; 1642 } 1643 1644 xbzrle_cleanup(); 1645 compress_threads_save_cleanup(); 1646 ram_state_cleanup(rsp); 1647 } 1648 1649 static void ram_state_reset(RAMState *rs) 1650 { 1651 rs->last_seen_block = NULL; 1652 rs->last_sent_block = NULL; 1653 rs->last_page = 0; 1654 rs->last_version = ram_list.version; 1655 rs->ram_bulk_stage = true; 1656 } 1657 1658 #define MAX_WAIT 50 /* ms, half buffered_file limit */ 1659 1660 /* 1661 * 'expected' is the value you expect the bitmap mostly to be full 1662 * of; it won't bother printing lines that are all this value. 1663 * If 'todump' is null the migration bitmap is dumped. 1664 */ 1665 void ram_debug_dump_bitmap(unsigned long *todump, bool expected, 1666 unsigned long pages) 1667 { 1668 int64_t cur; 1669 int64_t linelen = 128; 1670 char linebuf[129]; 1671 1672 for (cur = 0; cur < pages; cur += linelen) { 1673 int64_t curb; 1674 bool found = false; 1675 /* 1676 * Last line; catch the case where the line length 1677 * is longer than remaining ram 1678 */ 1679 if (cur + linelen > pages) { 1680 linelen = pages - cur; 1681 } 1682 for (curb = 0; curb < linelen; curb++) { 1683 bool thisbit = test_bit(cur + curb, todump); 1684 linebuf[curb] = thisbit ? '1' : '.'; 1685 found = found || (thisbit != expected); 1686 } 1687 if (found) { 1688 linebuf[curb] = '\0'; 1689 fprintf(stderr, "0x%08" PRIx64 " : %s\n", cur, linebuf); 1690 } 1691 } 1692 } 1693 1694 /* **** functions for postcopy ***** */ 1695 1696 void ram_postcopy_migrated_memory_release(MigrationState *ms) 1697 { 1698 struct RAMBlock *block; 1699 1700 RAMBLOCK_FOREACH(block) { 1701 unsigned long *bitmap = block->bmap; 1702 unsigned long range = block->used_length >> TARGET_PAGE_BITS; 1703 unsigned long run_start = find_next_zero_bit(bitmap, range, 0); 1704 1705 while (run_start < range) { 1706 unsigned long run_end = find_next_bit(bitmap, range, run_start + 1); 1707 ram_discard_range(block->idstr, run_start << TARGET_PAGE_BITS, 1708 (run_end - run_start) << TARGET_PAGE_BITS); 1709 run_start = find_next_zero_bit(bitmap, range, run_end + 1); 1710 } 1711 } 1712 } 1713 1714 /** 1715 * postcopy_send_discard_bm_ram: discard a RAMBlock 1716 * 1717 * Returns zero on success 1718 * 1719 * Callback from postcopy_each_ram_send_discard for each RAMBlock 1720 * Note: At this point the 'unsentmap' is the processed bitmap combined 1721 * with the dirtymap; so a '1' means it's either dirty or unsent. 1722 * 1723 * @ms: current migration state 1724 * @pds: state for postcopy 1725 * @start: RAMBlock starting page 1726 * @length: RAMBlock size 1727 */ 1728 static int postcopy_send_discard_bm_ram(MigrationState *ms, 1729 PostcopyDiscardState *pds, 1730 RAMBlock *block) 1731 { 1732 unsigned long end = block->used_length >> TARGET_PAGE_BITS; 1733 unsigned long current; 1734 unsigned long *unsentmap = block->unsentmap; 1735 1736 for (current = 0; current < end; ) { 1737 unsigned long one = find_next_bit(unsentmap, end, current); 1738 1739 if (one <= end) { 1740 unsigned long zero = find_next_zero_bit(unsentmap, end, one + 1); 1741 unsigned long discard_length; 1742 1743 if (zero >= end) { 1744 discard_length = end - one; 1745 } else { 1746 discard_length = zero - one; 1747 } 1748 if (discard_length) { 1749 postcopy_discard_send_range(ms, pds, one, discard_length); 1750 } 1751 current = one + discard_length; 1752 } else { 1753 current = one; 1754 } 1755 } 1756 1757 return 0; 1758 } 1759 1760 /** 1761 * postcopy_each_ram_send_discard: discard all RAMBlocks 1762 * 1763 * Returns 0 for success or negative for error 1764 * 1765 * Utility for the outgoing postcopy code. 1766 * Calls postcopy_send_discard_bm_ram for each RAMBlock 1767 * passing it bitmap indexes and name. 1768 * (qemu_ram_foreach_block ends up passing unscaled lengths 1769 * which would mean postcopy code would have to deal with target page) 1770 * 1771 * @ms: current migration state 1772 */ 1773 static int postcopy_each_ram_send_discard(MigrationState *ms) 1774 { 1775 struct RAMBlock *block; 1776 int ret; 1777 1778 RAMBLOCK_FOREACH(block) { 1779 PostcopyDiscardState *pds = 1780 postcopy_discard_send_init(ms, block->idstr); 1781 1782 /* 1783 * Postcopy sends chunks of bitmap over the wire, but it 1784 * just needs indexes at this point, avoids it having 1785 * target page specific code. 1786 */ 1787 ret = postcopy_send_discard_bm_ram(ms, pds, block); 1788 postcopy_discard_send_finish(ms, pds); 1789 if (ret) { 1790 return ret; 1791 } 1792 } 1793 1794 return 0; 1795 } 1796 1797 /** 1798 * postcopy_chunk_hostpages_pass: canocalize bitmap in hostpages 1799 * 1800 * Helper for postcopy_chunk_hostpages; it's called twice to 1801 * canonicalize the two bitmaps, that are similar, but one is 1802 * inverted. 1803 * 1804 * Postcopy requires that all target pages in a hostpage are dirty or 1805 * clean, not a mix. This function canonicalizes the bitmaps. 1806 * 1807 * @ms: current migration state 1808 * @unsent_pass: if true we need to canonicalize partially unsent host pages 1809 * otherwise we need to canonicalize partially dirty host pages 1810 * @block: block that contains the page we want to canonicalize 1811 * @pds: state for postcopy 1812 */ 1813 static void postcopy_chunk_hostpages_pass(MigrationState *ms, bool unsent_pass, 1814 RAMBlock *block, 1815 PostcopyDiscardState *pds) 1816 { 1817 RAMState *rs = ram_state; 1818 unsigned long *bitmap = block->bmap; 1819 unsigned long *unsentmap = block->unsentmap; 1820 unsigned int host_ratio = block->page_size / TARGET_PAGE_SIZE; 1821 unsigned long pages = block->used_length >> TARGET_PAGE_BITS; 1822 unsigned long run_start; 1823 1824 if (block->page_size == TARGET_PAGE_SIZE) { 1825 /* Easy case - TPS==HPS for a non-huge page RAMBlock */ 1826 return; 1827 } 1828 1829 if (unsent_pass) { 1830 /* Find a sent page */ 1831 run_start = find_next_zero_bit(unsentmap, pages, 0); 1832 } else { 1833 /* Find a dirty page */ 1834 run_start = find_next_bit(bitmap, pages, 0); 1835 } 1836 1837 while (run_start < pages) { 1838 bool do_fixup = false; 1839 unsigned long fixup_start_addr; 1840 unsigned long host_offset; 1841 1842 /* 1843 * If the start of this run of pages is in the middle of a host 1844 * page, then we need to fixup this host page. 1845 */ 1846 host_offset = run_start % host_ratio; 1847 if (host_offset) { 1848 do_fixup = true; 1849 run_start -= host_offset; 1850 fixup_start_addr = run_start; 1851 /* For the next pass */ 1852 run_start = run_start + host_ratio; 1853 } else { 1854 /* Find the end of this run */ 1855 unsigned long run_end; 1856 if (unsent_pass) { 1857 run_end = find_next_bit(unsentmap, pages, run_start + 1); 1858 } else { 1859 run_end = find_next_zero_bit(bitmap, pages, run_start + 1); 1860 } 1861 /* 1862 * If the end isn't at the start of a host page, then the 1863 * run doesn't finish at the end of a host page 1864 * and we need to discard. 1865 */ 1866 host_offset = run_end % host_ratio; 1867 if (host_offset) { 1868 do_fixup = true; 1869 fixup_start_addr = run_end - host_offset; 1870 /* 1871 * This host page has gone, the next loop iteration starts 1872 * from after the fixup 1873 */ 1874 run_start = fixup_start_addr + host_ratio; 1875 } else { 1876 /* 1877 * No discards on this iteration, next loop starts from 1878 * next sent/dirty page 1879 */ 1880 run_start = run_end + 1; 1881 } 1882 } 1883 1884 if (do_fixup) { 1885 unsigned long page; 1886 1887 /* Tell the destination to discard this page */ 1888 if (unsent_pass || !test_bit(fixup_start_addr, unsentmap)) { 1889 /* For the unsent_pass we: 1890 * discard partially sent pages 1891 * For the !unsent_pass (dirty) we: 1892 * discard partially dirty pages that were sent 1893 * (any partially sent pages were already discarded 1894 * by the previous unsent_pass) 1895 */ 1896 postcopy_discard_send_range(ms, pds, fixup_start_addr, 1897 host_ratio); 1898 } 1899 1900 /* Clean up the bitmap */ 1901 for (page = fixup_start_addr; 1902 page < fixup_start_addr + host_ratio; page++) { 1903 /* All pages in this host page are now not sent */ 1904 set_bit(page, unsentmap); 1905 1906 /* 1907 * Remark them as dirty, updating the count for any pages 1908 * that weren't previously dirty. 1909 */ 1910 rs->migration_dirty_pages += !test_and_set_bit(page, bitmap); 1911 } 1912 } 1913 1914 if (unsent_pass) { 1915 /* Find the next sent page for the next iteration */ 1916 run_start = find_next_zero_bit(unsentmap, pages, run_start); 1917 } else { 1918 /* Find the next dirty page for the next iteration */ 1919 run_start = find_next_bit(bitmap, pages, run_start); 1920 } 1921 } 1922 } 1923 1924 /** 1925 * postcopy_chuck_hostpages: discrad any partially sent host page 1926 * 1927 * Utility for the outgoing postcopy code. 1928 * 1929 * Discard any partially sent host-page size chunks, mark any partially 1930 * dirty host-page size chunks as all dirty. In this case the host-page 1931 * is the host-page for the particular RAMBlock, i.e. it might be a huge page 1932 * 1933 * Returns zero on success 1934 * 1935 * @ms: current migration state 1936 * @block: block we want to work with 1937 */ 1938 static int postcopy_chunk_hostpages(MigrationState *ms, RAMBlock *block) 1939 { 1940 PostcopyDiscardState *pds = 1941 postcopy_discard_send_init(ms, block->idstr); 1942 1943 /* First pass: Discard all partially sent host pages */ 1944 postcopy_chunk_hostpages_pass(ms, true, block, pds); 1945 /* 1946 * Second pass: Ensure that all partially dirty host pages are made 1947 * fully dirty. 1948 */ 1949 postcopy_chunk_hostpages_pass(ms, false, block, pds); 1950 1951 postcopy_discard_send_finish(ms, pds); 1952 return 0; 1953 } 1954 1955 /** 1956 * ram_postcopy_send_discard_bitmap: transmit the discard bitmap 1957 * 1958 * Returns zero on success 1959 * 1960 * Transmit the set of pages to be discarded after precopy to the target 1961 * these are pages that: 1962 * a) Have been previously transmitted but are now dirty again 1963 * b) Pages that have never been transmitted, this ensures that 1964 * any pages on the destination that have been mapped by background 1965 * tasks get discarded (transparent huge pages is the specific concern) 1966 * Hopefully this is pretty sparse 1967 * 1968 * @ms: current migration state 1969 */ 1970 int ram_postcopy_send_discard_bitmap(MigrationState *ms) 1971 { 1972 RAMState *rs = ram_state; 1973 RAMBlock *block; 1974 int ret; 1975 1976 rcu_read_lock(); 1977 1978 /* This should be our last sync, the src is now paused */ 1979 migration_bitmap_sync(rs); 1980 1981 /* Easiest way to make sure we don't resume in the middle of a host-page */ 1982 rs->last_seen_block = NULL; 1983 rs->last_sent_block = NULL; 1984 rs->last_page = 0; 1985 1986 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { 1987 unsigned long pages = block->used_length >> TARGET_PAGE_BITS; 1988 unsigned long *bitmap = block->bmap; 1989 unsigned long *unsentmap = block->unsentmap; 1990 1991 if (!unsentmap) { 1992 /* We don't have a safe way to resize the sentmap, so 1993 * if the bitmap was resized it will be NULL at this 1994 * point. 1995 */ 1996 error_report("migration ram resized during precopy phase"); 1997 rcu_read_unlock(); 1998 return -EINVAL; 1999 } 2000 /* Deal with TPS != HPS and huge pages */ 2001 ret = postcopy_chunk_hostpages(ms, block); 2002 if (ret) { 2003 rcu_read_unlock(); 2004 return ret; 2005 } 2006 2007 /* 2008 * Update the unsentmap to be unsentmap = unsentmap | dirty 2009 */ 2010 bitmap_or(unsentmap, unsentmap, bitmap, pages); 2011 #ifdef DEBUG_POSTCOPY 2012 ram_debug_dump_bitmap(unsentmap, true, pages); 2013 #endif 2014 } 2015 trace_ram_postcopy_send_discard_bitmap(); 2016 2017 ret = postcopy_each_ram_send_discard(ms); 2018 rcu_read_unlock(); 2019 2020 return ret; 2021 } 2022 2023 /** 2024 * ram_discard_range: discard dirtied pages at the beginning of postcopy 2025 * 2026 * Returns zero on success 2027 * 2028 * @rbname: name of the RAMBlock of the request. NULL means the 2029 * same that last one. 2030 * @start: RAMBlock starting page 2031 * @length: RAMBlock size 2032 */ 2033 int ram_discard_range(const char *rbname, uint64_t start, size_t length) 2034 { 2035 int ret = -1; 2036 2037 trace_ram_discard_range(rbname, start, length); 2038 2039 rcu_read_lock(); 2040 RAMBlock *rb = qemu_ram_block_by_name(rbname); 2041 2042 if (!rb) { 2043 error_report("ram_discard_range: Failed to find block '%s'", rbname); 2044 goto err; 2045 } 2046 2047 bitmap_clear(rb->receivedmap, start >> qemu_target_page_bits(), 2048 length >> qemu_target_page_bits()); 2049 ret = ram_block_discard_range(rb, start, length); 2050 2051 err: 2052 rcu_read_unlock(); 2053 2054 return ret; 2055 } 2056 2057 /* 2058 * For every allocation, we will try not to crash the VM if the 2059 * allocation failed. 2060 */ 2061 static int xbzrle_init(void) 2062 { 2063 Error *local_err = NULL; 2064 2065 if (!migrate_use_xbzrle()) { 2066 return 0; 2067 } 2068 2069 XBZRLE_cache_lock(); 2070 2071 XBZRLE.zero_target_page = g_try_malloc0(TARGET_PAGE_SIZE); 2072 if (!XBZRLE.zero_target_page) { 2073 error_report("%s: Error allocating zero page", __func__); 2074 goto err_out; 2075 } 2076 2077 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size(), 2078 TARGET_PAGE_SIZE, &local_err); 2079 if (!XBZRLE.cache) { 2080 error_report_err(local_err); 2081 goto free_zero_page; 2082 } 2083 2084 XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE); 2085 if (!XBZRLE.encoded_buf) { 2086 error_report("%s: Error allocating encoded_buf", __func__); 2087 goto free_cache; 2088 } 2089 2090 XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE); 2091 if (!XBZRLE.current_buf) { 2092 error_report("%s: Error allocating current_buf", __func__); 2093 goto free_encoded_buf; 2094 } 2095 2096 /* We are all good */ 2097 XBZRLE_cache_unlock(); 2098 return 0; 2099 2100 free_encoded_buf: 2101 g_free(XBZRLE.encoded_buf); 2102 XBZRLE.encoded_buf = NULL; 2103 free_cache: 2104 cache_fini(XBZRLE.cache); 2105 XBZRLE.cache = NULL; 2106 free_zero_page: 2107 g_free(XBZRLE.zero_target_page); 2108 XBZRLE.zero_target_page = NULL; 2109 err_out: 2110 XBZRLE_cache_unlock(); 2111 return -ENOMEM; 2112 } 2113 2114 static int ram_state_init(RAMState **rsp) 2115 { 2116 *rsp = g_try_new0(RAMState, 1); 2117 2118 if (!*rsp) { 2119 error_report("%s: Init ramstate fail", __func__); 2120 return -1; 2121 } 2122 2123 qemu_mutex_init(&(*rsp)->bitmap_mutex); 2124 qemu_mutex_init(&(*rsp)->src_page_req_mutex); 2125 QSIMPLEQ_INIT(&(*rsp)->src_page_requests); 2126 2127 /* 2128 * Count the total number of pages used by ram blocks not including any 2129 * gaps due to alignment or unplugs. 2130 */ 2131 (*rsp)->migration_dirty_pages = ram_bytes_total() >> TARGET_PAGE_BITS; 2132 2133 ram_state_reset(*rsp); 2134 2135 return 0; 2136 } 2137 2138 static void ram_list_init_bitmaps(void) 2139 { 2140 RAMBlock *block; 2141 unsigned long pages; 2142 2143 /* Skip setting bitmap if there is no RAM */ 2144 if (ram_bytes_total()) { 2145 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { 2146 pages = block->max_length >> TARGET_PAGE_BITS; 2147 block->bmap = bitmap_new(pages); 2148 bitmap_set(block->bmap, 0, pages); 2149 if (migrate_postcopy_ram()) { 2150 block->unsentmap = bitmap_new(pages); 2151 bitmap_set(block->unsentmap, 0, pages); 2152 } 2153 } 2154 } 2155 } 2156 2157 static void ram_init_bitmaps(RAMState *rs) 2158 { 2159 /* For memory_global_dirty_log_start below. */ 2160 qemu_mutex_lock_iothread(); 2161 qemu_mutex_lock_ramlist(); 2162 rcu_read_lock(); 2163 2164 ram_list_init_bitmaps(); 2165 memory_global_dirty_log_start(); 2166 migration_bitmap_sync(rs); 2167 2168 rcu_read_unlock(); 2169 qemu_mutex_unlock_ramlist(); 2170 qemu_mutex_unlock_iothread(); 2171 } 2172 2173 static int ram_init_all(RAMState **rsp) 2174 { 2175 if (ram_state_init(rsp)) { 2176 return -1; 2177 } 2178 2179 if (xbzrle_init()) { 2180 ram_state_cleanup(rsp); 2181 return -1; 2182 } 2183 2184 ram_init_bitmaps(*rsp); 2185 2186 return 0; 2187 } 2188 2189 /* 2190 * Each of ram_save_setup, ram_save_iterate and ram_save_complete has 2191 * long-running RCU critical section. When rcu-reclaims in the code 2192 * start to become numerous it will be necessary to reduce the 2193 * granularity of these critical sections. 2194 */ 2195 2196 /** 2197 * ram_save_setup: Setup RAM for migration 2198 * 2199 * Returns zero to indicate success and negative for error 2200 * 2201 * @f: QEMUFile where to send the data 2202 * @opaque: RAMState pointer 2203 */ 2204 static int ram_save_setup(QEMUFile *f, void *opaque) 2205 { 2206 RAMState **rsp = opaque; 2207 RAMBlock *block; 2208 2209 /* migration has already setup the bitmap, reuse it. */ 2210 if (!migration_in_colo_state()) { 2211 if (ram_init_all(rsp) != 0) { 2212 return -1; 2213 } 2214 } 2215 (*rsp)->f = f; 2216 2217 rcu_read_lock(); 2218 2219 qemu_put_be64(f, ram_bytes_total() | RAM_SAVE_FLAG_MEM_SIZE); 2220 2221 RAMBLOCK_FOREACH(block) { 2222 qemu_put_byte(f, strlen(block->idstr)); 2223 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr)); 2224 qemu_put_be64(f, block->used_length); 2225 if (migrate_postcopy_ram() && block->page_size != qemu_host_page_size) { 2226 qemu_put_be64(f, block->page_size); 2227 } 2228 } 2229 2230 rcu_read_unlock(); 2231 compress_threads_save_setup(); 2232 2233 ram_control_before_iterate(f, RAM_CONTROL_SETUP); 2234 ram_control_after_iterate(f, RAM_CONTROL_SETUP); 2235 2236 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 2237 2238 return 0; 2239 } 2240 2241 /** 2242 * ram_save_iterate: iterative stage for migration 2243 * 2244 * Returns zero to indicate success and negative for error 2245 * 2246 * @f: QEMUFile where to send the data 2247 * @opaque: RAMState pointer 2248 */ 2249 static int ram_save_iterate(QEMUFile *f, void *opaque) 2250 { 2251 RAMState **temp = opaque; 2252 RAMState *rs = *temp; 2253 int ret; 2254 int i; 2255 int64_t t0; 2256 int done = 0; 2257 2258 rcu_read_lock(); 2259 if (ram_list.version != rs->last_version) { 2260 ram_state_reset(rs); 2261 } 2262 2263 /* Read version before ram_list.blocks */ 2264 smp_rmb(); 2265 2266 ram_control_before_iterate(f, RAM_CONTROL_ROUND); 2267 2268 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 2269 i = 0; 2270 while ((ret = qemu_file_rate_limit(f)) == 0) { 2271 int pages; 2272 2273 pages = ram_find_and_save_block(rs, false); 2274 /* no more pages to sent */ 2275 if (pages == 0) { 2276 done = 1; 2277 break; 2278 } 2279 rs->iterations++; 2280 2281 /* we want to check in the 1st loop, just in case it was the 1st time 2282 and we had to sync the dirty bitmap. 2283 qemu_get_clock_ns() is a bit expensive, so we only check each some 2284 iterations 2285 */ 2286 if ((i & 63) == 0) { 2287 uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) / 1000000; 2288 if (t1 > MAX_WAIT) { 2289 trace_ram_save_iterate_big_wait(t1, i); 2290 break; 2291 } 2292 } 2293 i++; 2294 } 2295 flush_compressed_data(rs); 2296 rcu_read_unlock(); 2297 2298 /* 2299 * Must occur before EOS (or any QEMUFile operation) 2300 * because of RDMA protocol. 2301 */ 2302 ram_control_after_iterate(f, RAM_CONTROL_ROUND); 2303 2304 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 2305 ram_counters.transferred += 8; 2306 2307 ret = qemu_file_get_error(f); 2308 if (ret < 0) { 2309 return ret; 2310 } 2311 2312 return done; 2313 } 2314 2315 /** 2316 * ram_save_complete: function called to send the remaining amount of ram 2317 * 2318 * Returns zero to indicate success 2319 * 2320 * Called with iothread lock 2321 * 2322 * @f: QEMUFile where to send the data 2323 * @opaque: RAMState pointer 2324 */ 2325 static int ram_save_complete(QEMUFile *f, void *opaque) 2326 { 2327 RAMState **temp = opaque; 2328 RAMState *rs = *temp; 2329 2330 rcu_read_lock(); 2331 2332 if (!migration_in_postcopy()) { 2333 migration_bitmap_sync(rs); 2334 } 2335 2336 ram_control_before_iterate(f, RAM_CONTROL_FINISH); 2337 2338 /* try transferring iterative blocks of memory */ 2339 2340 /* flush all remaining blocks regardless of rate limiting */ 2341 while (true) { 2342 int pages; 2343 2344 pages = ram_find_and_save_block(rs, !migration_in_colo_state()); 2345 /* no more blocks to sent */ 2346 if (pages == 0) { 2347 break; 2348 } 2349 } 2350 2351 flush_compressed_data(rs); 2352 ram_control_after_iterate(f, RAM_CONTROL_FINISH); 2353 2354 rcu_read_unlock(); 2355 2356 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 2357 2358 return 0; 2359 } 2360 2361 static void ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size, 2362 uint64_t *non_postcopiable_pending, 2363 uint64_t *postcopiable_pending) 2364 { 2365 RAMState **temp = opaque; 2366 RAMState *rs = *temp; 2367 uint64_t remaining_size; 2368 2369 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE; 2370 2371 if (!migration_in_postcopy() && 2372 remaining_size < max_size) { 2373 qemu_mutex_lock_iothread(); 2374 rcu_read_lock(); 2375 migration_bitmap_sync(rs); 2376 rcu_read_unlock(); 2377 qemu_mutex_unlock_iothread(); 2378 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE; 2379 } 2380 2381 if (migrate_postcopy_ram()) { 2382 /* We can do postcopy, and all the data is postcopiable */ 2383 *postcopiable_pending += remaining_size; 2384 } else { 2385 *non_postcopiable_pending += remaining_size; 2386 } 2387 } 2388 2389 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host) 2390 { 2391 unsigned int xh_len; 2392 int xh_flags; 2393 uint8_t *loaded_data; 2394 2395 /* extract RLE header */ 2396 xh_flags = qemu_get_byte(f); 2397 xh_len = qemu_get_be16(f); 2398 2399 if (xh_flags != ENCODING_FLAG_XBZRLE) { 2400 error_report("Failed to load XBZRLE page - wrong compression!"); 2401 return -1; 2402 } 2403 2404 if (xh_len > TARGET_PAGE_SIZE) { 2405 error_report("Failed to load XBZRLE page - len overflow!"); 2406 return -1; 2407 } 2408 loaded_data = XBZRLE.decoded_buf; 2409 /* load data and decode */ 2410 /* it can change loaded_data to point to an internal buffer */ 2411 qemu_get_buffer_in_place(f, &loaded_data, xh_len); 2412 2413 /* decode RLE */ 2414 if (xbzrle_decode_buffer(loaded_data, xh_len, host, 2415 TARGET_PAGE_SIZE) == -1) { 2416 error_report("Failed to load XBZRLE page - decode error!"); 2417 return -1; 2418 } 2419 2420 return 0; 2421 } 2422 2423 /** 2424 * ram_block_from_stream: read a RAMBlock id from the migration stream 2425 * 2426 * Must be called from within a rcu critical section. 2427 * 2428 * Returns a pointer from within the RCU-protected ram_list. 2429 * 2430 * @f: QEMUFile where to read the data from 2431 * @flags: Page flags (mostly to see if it's a continuation of previous block) 2432 */ 2433 static inline RAMBlock *ram_block_from_stream(QEMUFile *f, int flags) 2434 { 2435 static RAMBlock *block = NULL; 2436 char id[256]; 2437 uint8_t len; 2438 2439 if (flags & RAM_SAVE_FLAG_CONTINUE) { 2440 if (!block) { 2441 error_report("Ack, bad migration stream!"); 2442 return NULL; 2443 } 2444 return block; 2445 } 2446 2447 len = qemu_get_byte(f); 2448 qemu_get_buffer(f, (uint8_t *)id, len); 2449 id[len] = 0; 2450 2451 block = qemu_ram_block_by_name(id); 2452 if (!block) { 2453 error_report("Can't find block %s", id); 2454 return NULL; 2455 } 2456 2457 return block; 2458 } 2459 2460 static inline void *host_from_ram_block_offset(RAMBlock *block, 2461 ram_addr_t offset) 2462 { 2463 if (!offset_in_ramblock(block, offset)) { 2464 return NULL; 2465 } 2466 2467 return block->host + offset; 2468 } 2469 2470 /** 2471 * ram_handle_compressed: handle the zero page case 2472 * 2473 * If a page (or a whole RDMA chunk) has been 2474 * determined to be zero, then zap it. 2475 * 2476 * @host: host address for the zero page 2477 * @ch: what the page is filled from. We only support zero 2478 * @size: size of the zero page 2479 */ 2480 void ram_handle_compressed(void *host, uint8_t ch, uint64_t size) 2481 { 2482 if (ch != 0 || !is_zero_range(host, size)) { 2483 memset(host, ch, size); 2484 } 2485 } 2486 2487 static void *do_data_decompress(void *opaque) 2488 { 2489 DecompressParam *param = opaque; 2490 unsigned long pagesize; 2491 uint8_t *des; 2492 int len; 2493 2494 qemu_mutex_lock(¶m->mutex); 2495 while (!param->quit) { 2496 if (param->des) { 2497 des = param->des; 2498 len = param->len; 2499 param->des = 0; 2500 qemu_mutex_unlock(¶m->mutex); 2501 2502 pagesize = TARGET_PAGE_SIZE; 2503 /* uncompress() will return failed in some case, especially 2504 * when the page is dirted when doing the compression, it's 2505 * not a problem because the dirty page will be retransferred 2506 * and uncompress() won't break the data in other pages. 2507 */ 2508 uncompress((Bytef *)des, &pagesize, 2509 (const Bytef *)param->compbuf, len); 2510 2511 qemu_mutex_lock(&decomp_done_lock); 2512 param->done = true; 2513 qemu_cond_signal(&decomp_done_cond); 2514 qemu_mutex_unlock(&decomp_done_lock); 2515 2516 qemu_mutex_lock(¶m->mutex); 2517 } else { 2518 qemu_cond_wait(¶m->cond, ¶m->mutex); 2519 } 2520 } 2521 qemu_mutex_unlock(¶m->mutex); 2522 2523 return NULL; 2524 } 2525 2526 static void wait_for_decompress_done(void) 2527 { 2528 int idx, thread_count; 2529 2530 if (!migrate_use_compression()) { 2531 return; 2532 } 2533 2534 thread_count = migrate_decompress_threads(); 2535 qemu_mutex_lock(&decomp_done_lock); 2536 for (idx = 0; idx < thread_count; idx++) { 2537 while (!decomp_param[idx].done) { 2538 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock); 2539 } 2540 } 2541 qemu_mutex_unlock(&decomp_done_lock); 2542 } 2543 2544 static void compress_threads_load_setup(void) 2545 { 2546 int i, thread_count; 2547 2548 if (!migrate_use_compression()) { 2549 return; 2550 } 2551 thread_count = migrate_decompress_threads(); 2552 decompress_threads = g_new0(QemuThread, thread_count); 2553 decomp_param = g_new0(DecompressParam, thread_count); 2554 qemu_mutex_init(&decomp_done_lock); 2555 qemu_cond_init(&decomp_done_cond); 2556 for (i = 0; i < thread_count; i++) { 2557 qemu_mutex_init(&decomp_param[i].mutex); 2558 qemu_cond_init(&decomp_param[i].cond); 2559 decomp_param[i].compbuf = g_malloc0(compressBound(TARGET_PAGE_SIZE)); 2560 decomp_param[i].done = true; 2561 decomp_param[i].quit = false; 2562 qemu_thread_create(decompress_threads + i, "decompress", 2563 do_data_decompress, decomp_param + i, 2564 QEMU_THREAD_JOINABLE); 2565 } 2566 } 2567 2568 static void compress_threads_load_cleanup(void) 2569 { 2570 int i, thread_count; 2571 2572 if (!migrate_use_compression()) { 2573 return; 2574 } 2575 thread_count = migrate_decompress_threads(); 2576 for (i = 0; i < thread_count; i++) { 2577 qemu_mutex_lock(&decomp_param[i].mutex); 2578 decomp_param[i].quit = true; 2579 qemu_cond_signal(&decomp_param[i].cond); 2580 qemu_mutex_unlock(&decomp_param[i].mutex); 2581 } 2582 for (i = 0; i < thread_count; i++) { 2583 qemu_thread_join(decompress_threads + i); 2584 qemu_mutex_destroy(&decomp_param[i].mutex); 2585 qemu_cond_destroy(&decomp_param[i].cond); 2586 g_free(decomp_param[i].compbuf); 2587 } 2588 g_free(decompress_threads); 2589 g_free(decomp_param); 2590 decompress_threads = NULL; 2591 decomp_param = NULL; 2592 } 2593 2594 static void decompress_data_with_multi_threads(QEMUFile *f, 2595 void *host, int len) 2596 { 2597 int idx, thread_count; 2598 2599 thread_count = migrate_decompress_threads(); 2600 qemu_mutex_lock(&decomp_done_lock); 2601 while (true) { 2602 for (idx = 0; idx < thread_count; idx++) { 2603 if (decomp_param[idx].done) { 2604 decomp_param[idx].done = false; 2605 qemu_mutex_lock(&decomp_param[idx].mutex); 2606 qemu_get_buffer(f, decomp_param[idx].compbuf, len); 2607 decomp_param[idx].des = host; 2608 decomp_param[idx].len = len; 2609 qemu_cond_signal(&decomp_param[idx].cond); 2610 qemu_mutex_unlock(&decomp_param[idx].mutex); 2611 break; 2612 } 2613 } 2614 if (idx < thread_count) { 2615 break; 2616 } else { 2617 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock); 2618 } 2619 } 2620 qemu_mutex_unlock(&decomp_done_lock); 2621 } 2622 2623 /** 2624 * ram_load_setup: Setup RAM for migration incoming side 2625 * 2626 * Returns zero to indicate success and negative for error 2627 * 2628 * @f: QEMUFile where to receive the data 2629 * @opaque: RAMState pointer 2630 */ 2631 static int ram_load_setup(QEMUFile *f, void *opaque) 2632 { 2633 xbzrle_load_setup(); 2634 compress_threads_load_setup(); 2635 ramblock_recv_map_init(); 2636 return 0; 2637 } 2638 2639 static int ram_load_cleanup(void *opaque) 2640 { 2641 RAMBlock *rb; 2642 xbzrle_load_cleanup(); 2643 compress_threads_load_cleanup(); 2644 2645 RAMBLOCK_FOREACH(rb) { 2646 g_free(rb->receivedmap); 2647 rb->receivedmap = NULL; 2648 } 2649 return 0; 2650 } 2651 2652 /** 2653 * ram_postcopy_incoming_init: allocate postcopy data structures 2654 * 2655 * Returns 0 for success and negative if there was one error 2656 * 2657 * @mis: current migration incoming state 2658 * 2659 * Allocate data structures etc needed by incoming migration with 2660 * postcopy-ram. postcopy-ram's similarly names 2661 * postcopy_ram_incoming_init does the work. 2662 */ 2663 int ram_postcopy_incoming_init(MigrationIncomingState *mis) 2664 { 2665 unsigned long ram_pages = last_ram_page(); 2666 2667 return postcopy_ram_incoming_init(mis, ram_pages); 2668 } 2669 2670 /** 2671 * ram_load_postcopy: load a page in postcopy case 2672 * 2673 * Returns 0 for success or -errno in case of error 2674 * 2675 * Called in postcopy mode by ram_load(). 2676 * rcu_read_lock is taken prior to this being called. 2677 * 2678 * @f: QEMUFile where to send the data 2679 */ 2680 static int ram_load_postcopy(QEMUFile *f) 2681 { 2682 int flags = 0, ret = 0; 2683 bool place_needed = false; 2684 bool matching_page_sizes = false; 2685 MigrationIncomingState *mis = migration_incoming_get_current(); 2686 /* Temporary page that is later 'placed' */ 2687 void *postcopy_host_page = postcopy_get_tmp_page(mis); 2688 void *last_host = NULL; 2689 bool all_zero = false; 2690 2691 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) { 2692 ram_addr_t addr; 2693 void *host = NULL; 2694 void *page_buffer = NULL; 2695 void *place_source = NULL; 2696 RAMBlock *block = NULL; 2697 uint8_t ch; 2698 2699 addr = qemu_get_be64(f); 2700 flags = addr & ~TARGET_PAGE_MASK; 2701 addr &= TARGET_PAGE_MASK; 2702 2703 trace_ram_load_postcopy_loop((uint64_t)addr, flags); 2704 place_needed = false; 2705 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE)) { 2706 block = ram_block_from_stream(f, flags); 2707 2708 host = host_from_ram_block_offset(block, addr); 2709 if (!host) { 2710 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr); 2711 ret = -EINVAL; 2712 break; 2713 } 2714 matching_page_sizes = block->page_size == TARGET_PAGE_SIZE; 2715 /* 2716 * Postcopy requires that we place whole host pages atomically; 2717 * these may be huge pages for RAMBlocks that are backed by 2718 * hugetlbfs. 2719 * To make it atomic, the data is read into a temporary page 2720 * that's moved into place later. 2721 * The migration protocol uses, possibly smaller, target-pages 2722 * however the source ensures it always sends all the components 2723 * of a host page in order. 2724 */ 2725 page_buffer = postcopy_host_page + 2726 ((uintptr_t)host & (block->page_size - 1)); 2727 /* If all TP are zero then we can optimise the place */ 2728 if (!((uintptr_t)host & (block->page_size - 1))) { 2729 all_zero = true; 2730 } else { 2731 /* not the 1st TP within the HP */ 2732 if (host != (last_host + TARGET_PAGE_SIZE)) { 2733 error_report("Non-sequential target page %p/%p", 2734 host, last_host); 2735 ret = -EINVAL; 2736 break; 2737 } 2738 } 2739 2740 2741 /* 2742 * If it's the last part of a host page then we place the host 2743 * page 2744 */ 2745 place_needed = (((uintptr_t)host + TARGET_PAGE_SIZE) & 2746 (block->page_size - 1)) == 0; 2747 place_source = postcopy_host_page; 2748 } 2749 last_host = host; 2750 2751 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) { 2752 case RAM_SAVE_FLAG_ZERO: 2753 ch = qemu_get_byte(f); 2754 memset(page_buffer, ch, TARGET_PAGE_SIZE); 2755 if (ch) { 2756 all_zero = false; 2757 } 2758 break; 2759 2760 case RAM_SAVE_FLAG_PAGE: 2761 all_zero = false; 2762 if (!place_needed || !matching_page_sizes) { 2763 qemu_get_buffer(f, page_buffer, TARGET_PAGE_SIZE); 2764 } else { 2765 /* Avoids the qemu_file copy during postcopy, which is 2766 * going to do a copy later; can only do it when we 2767 * do this read in one go (matching page sizes) 2768 */ 2769 qemu_get_buffer_in_place(f, (uint8_t **)&place_source, 2770 TARGET_PAGE_SIZE); 2771 } 2772 break; 2773 case RAM_SAVE_FLAG_EOS: 2774 /* normal exit */ 2775 break; 2776 default: 2777 error_report("Unknown combination of migration flags: %#x" 2778 " (postcopy mode)", flags); 2779 ret = -EINVAL; 2780 } 2781 2782 if (place_needed) { 2783 /* This gets called at the last target page in the host page */ 2784 void *place_dest = host + TARGET_PAGE_SIZE - block->page_size; 2785 2786 if (all_zero) { 2787 ret = postcopy_place_page_zero(mis, place_dest, 2788 block); 2789 } else { 2790 ret = postcopy_place_page(mis, place_dest, 2791 place_source, block); 2792 } 2793 } 2794 if (!ret) { 2795 ret = qemu_file_get_error(f); 2796 } 2797 } 2798 2799 return ret; 2800 } 2801 2802 static bool postcopy_is_advised(void) 2803 { 2804 PostcopyState ps = postcopy_state_get(); 2805 return ps >= POSTCOPY_INCOMING_ADVISE && ps < POSTCOPY_INCOMING_END; 2806 } 2807 2808 static bool postcopy_is_running(void) 2809 { 2810 PostcopyState ps = postcopy_state_get(); 2811 return ps >= POSTCOPY_INCOMING_LISTENING && ps < POSTCOPY_INCOMING_END; 2812 } 2813 2814 static int ram_load(QEMUFile *f, void *opaque, int version_id) 2815 { 2816 int flags = 0, ret = 0, invalid_flags = 0; 2817 static uint64_t seq_iter; 2818 int len = 0; 2819 /* 2820 * If system is running in postcopy mode, page inserts to host memory must 2821 * be atomic 2822 */ 2823 bool postcopy_running = postcopy_is_running(); 2824 /* ADVISE is earlier, it shows the source has the postcopy capability on */ 2825 bool postcopy_advised = postcopy_is_advised(); 2826 2827 seq_iter++; 2828 2829 if (version_id != 4) { 2830 ret = -EINVAL; 2831 } 2832 2833 if (!migrate_use_compression()) { 2834 invalid_flags |= RAM_SAVE_FLAG_COMPRESS_PAGE; 2835 } 2836 /* This RCU critical section can be very long running. 2837 * When RCU reclaims in the code start to become numerous, 2838 * it will be necessary to reduce the granularity of this 2839 * critical section. 2840 */ 2841 rcu_read_lock(); 2842 2843 if (postcopy_running) { 2844 ret = ram_load_postcopy(f); 2845 } 2846 2847 while (!postcopy_running && !ret && !(flags & RAM_SAVE_FLAG_EOS)) { 2848 ram_addr_t addr, total_ram_bytes; 2849 void *host = NULL; 2850 uint8_t ch; 2851 2852 addr = qemu_get_be64(f); 2853 flags = addr & ~TARGET_PAGE_MASK; 2854 addr &= TARGET_PAGE_MASK; 2855 2856 if (flags & invalid_flags) { 2857 if (flags & invalid_flags & RAM_SAVE_FLAG_COMPRESS_PAGE) { 2858 error_report("Received an unexpected compressed page"); 2859 } 2860 2861 ret = -EINVAL; 2862 break; 2863 } 2864 2865 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE | 2866 RAM_SAVE_FLAG_COMPRESS_PAGE | RAM_SAVE_FLAG_XBZRLE)) { 2867 RAMBlock *block = ram_block_from_stream(f, flags); 2868 2869 host = host_from_ram_block_offset(block, addr); 2870 if (!host) { 2871 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr); 2872 ret = -EINVAL; 2873 break; 2874 } 2875 ramblock_recv_bitmap_set(block, host); 2876 trace_ram_load_loop(block->idstr, (uint64_t)addr, flags, host); 2877 } 2878 2879 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) { 2880 case RAM_SAVE_FLAG_MEM_SIZE: 2881 /* Synchronize RAM block list */ 2882 total_ram_bytes = addr; 2883 while (!ret && total_ram_bytes) { 2884 RAMBlock *block; 2885 char id[256]; 2886 ram_addr_t length; 2887 2888 len = qemu_get_byte(f); 2889 qemu_get_buffer(f, (uint8_t *)id, len); 2890 id[len] = 0; 2891 length = qemu_get_be64(f); 2892 2893 block = qemu_ram_block_by_name(id); 2894 if (block) { 2895 if (length != block->used_length) { 2896 Error *local_err = NULL; 2897 2898 ret = qemu_ram_resize(block, length, 2899 &local_err); 2900 if (local_err) { 2901 error_report_err(local_err); 2902 } 2903 } 2904 /* For postcopy we need to check hugepage sizes match */ 2905 if (postcopy_advised && 2906 block->page_size != qemu_host_page_size) { 2907 uint64_t remote_page_size = qemu_get_be64(f); 2908 if (remote_page_size != block->page_size) { 2909 error_report("Mismatched RAM page size %s " 2910 "(local) %zd != %" PRId64, 2911 id, block->page_size, 2912 remote_page_size); 2913 ret = -EINVAL; 2914 } 2915 } 2916 ram_control_load_hook(f, RAM_CONTROL_BLOCK_REG, 2917 block->idstr); 2918 } else { 2919 error_report("Unknown ramblock \"%s\", cannot " 2920 "accept migration", id); 2921 ret = -EINVAL; 2922 } 2923 2924 total_ram_bytes -= length; 2925 } 2926 break; 2927 2928 case RAM_SAVE_FLAG_ZERO: 2929 ch = qemu_get_byte(f); 2930 ram_handle_compressed(host, ch, TARGET_PAGE_SIZE); 2931 break; 2932 2933 case RAM_SAVE_FLAG_PAGE: 2934 qemu_get_buffer(f, host, TARGET_PAGE_SIZE); 2935 break; 2936 2937 case RAM_SAVE_FLAG_COMPRESS_PAGE: 2938 len = qemu_get_be32(f); 2939 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) { 2940 error_report("Invalid compressed data length: %d", len); 2941 ret = -EINVAL; 2942 break; 2943 } 2944 decompress_data_with_multi_threads(f, host, len); 2945 break; 2946 2947 case RAM_SAVE_FLAG_XBZRLE: 2948 if (load_xbzrle(f, addr, host) < 0) { 2949 error_report("Failed to decompress XBZRLE page at " 2950 RAM_ADDR_FMT, addr); 2951 ret = -EINVAL; 2952 break; 2953 } 2954 break; 2955 case RAM_SAVE_FLAG_EOS: 2956 /* normal exit */ 2957 break; 2958 default: 2959 if (flags & RAM_SAVE_FLAG_HOOK) { 2960 ram_control_load_hook(f, RAM_CONTROL_HOOK, NULL); 2961 } else { 2962 error_report("Unknown combination of migration flags: %#x", 2963 flags); 2964 ret = -EINVAL; 2965 } 2966 } 2967 if (!ret) { 2968 ret = qemu_file_get_error(f); 2969 } 2970 } 2971 2972 wait_for_decompress_done(); 2973 rcu_read_unlock(); 2974 trace_ram_load_complete(ret, seq_iter); 2975 return ret; 2976 } 2977 2978 static bool ram_has_postcopy(void *opaque) 2979 { 2980 return migrate_postcopy_ram(); 2981 } 2982 2983 static SaveVMHandlers savevm_ram_handlers = { 2984 .save_setup = ram_save_setup, 2985 .save_live_iterate = ram_save_iterate, 2986 .save_live_complete_postcopy = ram_save_complete, 2987 .save_live_complete_precopy = ram_save_complete, 2988 .has_postcopy = ram_has_postcopy, 2989 .save_live_pending = ram_save_pending, 2990 .load_state = ram_load, 2991 .save_cleanup = ram_save_cleanup, 2992 .load_setup = ram_load_setup, 2993 .load_cleanup = ram_load_cleanup, 2994 }; 2995 2996 void ram_mig_init(void) 2997 { 2998 qemu_mutex_init(&XBZRLE.lock); 2999 register_savevm_live(NULL, "ram", 0, 4, &savevm_ram_handlers, &ram_state); 3000 } 3001