1 /* 2 * QEMU System Emulator 3 * 4 * Copyright (c) 2003-2008 Fabrice Bellard 5 * Copyright (c) 2011-2015 Red Hat Inc 6 * 7 * Authors: 8 * Juan Quintela <quintela@redhat.com> 9 * 10 * Permission is hereby granted, free of charge, to any person obtaining a copy 11 * of this software and associated documentation files (the "Software"), to deal 12 * in the Software without restriction, including without limitation the rights 13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 14 * copies of the Software, and to permit persons to whom the Software is 15 * furnished to do so, subject to the following conditions: 16 * 17 * The above copyright notice and this permission notice shall be included in 18 * all copies or substantial portions of the Software. 19 * 20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 26 * THE SOFTWARE. 27 */ 28 29 #include "qemu/osdep.h" 30 #include "cpu.h" 31 #include <zlib.h> 32 #include "qemu/cutils.h" 33 #include "qemu/bitops.h" 34 #include "qemu/bitmap.h" 35 #include "qemu/main-loop.h" 36 #include "xbzrle.h" 37 #include "ram.h" 38 #include "migration.h" 39 #include "socket.h" 40 #include "migration/register.h" 41 #include "migration/misc.h" 42 #include "qemu-file.h" 43 #include "postcopy-ram.h" 44 #include "page_cache.h" 45 #include "qemu/error-report.h" 46 #include "qapi/error.h" 47 #include "qapi/qapi-events-migration.h" 48 #include "qapi/qmp/qerror.h" 49 #include "trace.h" 50 #include "exec/ram_addr.h" 51 #include "exec/target_page.h" 52 #include "qemu/rcu_queue.h" 53 #include "migration/colo.h" 54 #include "block.h" 55 #include "sysemu/sysemu.h" 56 #include "qemu/uuid.h" 57 #include "savevm.h" 58 #include "qemu/iov.h" 59 60 /***********************************************************/ 61 /* ram save/restore */ 62 63 /* RAM_SAVE_FLAG_ZERO used to be named RAM_SAVE_FLAG_COMPRESS, it 64 * worked for pages that where filled with the same char. We switched 65 * it to only search for the zero value. And to avoid confusion with 66 * RAM_SSAVE_FLAG_COMPRESS_PAGE just rename it. 67 */ 68 69 #define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */ 70 #define RAM_SAVE_FLAG_ZERO 0x02 71 #define RAM_SAVE_FLAG_MEM_SIZE 0x04 72 #define RAM_SAVE_FLAG_PAGE 0x08 73 #define RAM_SAVE_FLAG_EOS 0x10 74 #define RAM_SAVE_FLAG_CONTINUE 0x20 75 #define RAM_SAVE_FLAG_XBZRLE 0x40 76 /* 0x80 is reserved in migration.h start with 0x100 next */ 77 #define RAM_SAVE_FLAG_COMPRESS_PAGE 0x100 78 79 static inline bool is_zero_range(uint8_t *p, uint64_t size) 80 { 81 return buffer_is_zero(p, size); 82 } 83 84 XBZRLECacheStats xbzrle_counters; 85 86 /* struct contains XBZRLE cache and a static page 87 used by the compression */ 88 static struct { 89 /* buffer used for XBZRLE encoding */ 90 uint8_t *encoded_buf; 91 /* buffer for storing page content */ 92 uint8_t *current_buf; 93 /* Cache for XBZRLE, Protected by lock. */ 94 PageCache *cache; 95 QemuMutex lock; 96 /* it will store a page full of zeros */ 97 uint8_t *zero_target_page; 98 /* buffer used for XBZRLE decoding */ 99 uint8_t *decoded_buf; 100 } XBZRLE; 101 102 static void XBZRLE_cache_lock(void) 103 { 104 if (migrate_use_xbzrle()) 105 qemu_mutex_lock(&XBZRLE.lock); 106 } 107 108 static void XBZRLE_cache_unlock(void) 109 { 110 if (migrate_use_xbzrle()) 111 qemu_mutex_unlock(&XBZRLE.lock); 112 } 113 114 /** 115 * xbzrle_cache_resize: resize the xbzrle cache 116 * 117 * This function is called from qmp_migrate_set_cache_size in main 118 * thread, possibly while a migration is in progress. A running 119 * migration may be using the cache and might finish during this call, 120 * hence changes to the cache are protected by XBZRLE.lock(). 121 * 122 * Returns 0 for success or -1 for error 123 * 124 * @new_size: new cache size 125 * @errp: set *errp if the check failed, with reason 126 */ 127 int xbzrle_cache_resize(int64_t new_size, Error **errp) 128 { 129 PageCache *new_cache; 130 int64_t ret = 0; 131 132 /* Check for truncation */ 133 if (new_size != (size_t)new_size) { 134 error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cache size", 135 "exceeding address space"); 136 return -1; 137 } 138 139 if (new_size == migrate_xbzrle_cache_size()) { 140 /* nothing to do */ 141 return 0; 142 } 143 144 XBZRLE_cache_lock(); 145 146 if (XBZRLE.cache != NULL) { 147 new_cache = cache_init(new_size, TARGET_PAGE_SIZE, errp); 148 if (!new_cache) { 149 ret = -1; 150 goto out; 151 } 152 153 cache_fini(XBZRLE.cache); 154 XBZRLE.cache = new_cache; 155 } 156 out: 157 XBZRLE_cache_unlock(); 158 return ret; 159 } 160 161 /* Should be holding either ram_list.mutex, or the RCU lock. */ 162 #define RAMBLOCK_FOREACH_MIGRATABLE(block) \ 163 INTERNAL_RAMBLOCK_FOREACH(block) \ 164 if (!qemu_ram_is_migratable(block)) {} else 165 166 #undef RAMBLOCK_FOREACH 167 168 static void ramblock_recv_map_init(void) 169 { 170 RAMBlock *rb; 171 172 RAMBLOCK_FOREACH_MIGRATABLE(rb) { 173 assert(!rb->receivedmap); 174 rb->receivedmap = bitmap_new(rb->max_length >> qemu_target_page_bits()); 175 } 176 } 177 178 int ramblock_recv_bitmap_test(RAMBlock *rb, void *host_addr) 179 { 180 return test_bit(ramblock_recv_bitmap_offset(host_addr, rb), 181 rb->receivedmap); 182 } 183 184 bool ramblock_recv_bitmap_test_byte_offset(RAMBlock *rb, uint64_t byte_offset) 185 { 186 return test_bit(byte_offset >> TARGET_PAGE_BITS, rb->receivedmap); 187 } 188 189 void ramblock_recv_bitmap_set(RAMBlock *rb, void *host_addr) 190 { 191 set_bit_atomic(ramblock_recv_bitmap_offset(host_addr, rb), rb->receivedmap); 192 } 193 194 void ramblock_recv_bitmap_set_range(RAMBlock *rb, void *host_addr, 195 size_t nr) 196 { 197 bitmap_set_atomic(rb->receivedmap, 198 ramblock_recv_bitmap_offset(host_addr, rb), 199 nr); 200 } 201 202 #define RAMBLOCK_RECV_BITMAP_ENDING (0x0123456789abcdefULL) 203 204 /* 205 * Format: bitmap_size (8 bytes) + whole_bitmap (N bytes). 206 * 207 * Returns >0 if success with sent bytes, or <0 if error. 208 */ 209 int64_t ramblock_recv_bitmap_send(QEMUFile *file, 210 const char *block_name) 211 { 212 RAMBlock *block = qemu_ram_block_by_name(block_name); 213 unsigned long *le_bitmap, nbits; 214 uint64_t size; 215 216 if (!block) { 217 error_report("%s: invalid block name: %s", __func__, block_name); 218 return -1; 219 } 220 221 nbits = block->used_length >> TARGET_PAGE_BITS; 222 223 /* 224 * Make sure the tmp bitmap buffer is big enough, e.g., on 32bit 225 * machines we may need 4 more bytes for padding (see below 226 * comment). So extend it a bit before hand. 227 */ 228 le_bitmap = bitmap_new(nbits + BITS_PER_LONG); 229 230 /* 231 * Always use little endian when sending the bitmap. This is 232 * required that when source and destination VMs are not using the 233 * same endianess. (Note: big endian won't work.) 234 */ 235 bitmap_to_le(le_bitmap, block->receivedmap, nbits); 236 237 /* Size of the bitmap, in bytes */ 238 size = nbits / 8; 239 240 /* 241 * size is always aligned to 8 bytes for 64bit machines, but it 242 * may not be true for 32bit machines. We need this padding to 243 * make sure the migration can survive even between 32bit and 244 * 64bit machines. 245 */ 246 size = ROUND_UP(size, 8); 247 248 qemu_put_be64(file, size); 249 qemu_put_buffer(file, (const uint8_t *)le_bitmap, size); 250 /* 251 * Mark as an end, in case the middle part is screwed up due to 252 * some "misterious" reason. 253 */ 254 qemu_put_be64(file, RAMBLOCK_RECV_BITMAP_ENDING); 255 qemu_fflush(file); 256 257 g_free(le_bitmap); 258 259 if (qemu_file_get_error(file)) { 260 return qemu_file_get_error(file); 261 } 262 263 return size + sizeof(size); 264 } 265 266 /* 267 * An outstanding page request, on the source, having been received 268 * and queued 269 */ 270 struct RAMSrcPageRequest { 271 RAMBlock *rb; 272 hwaddr offset; 273 hwaddr len; 274 275 QSIMPLEQ_ENTRY(RAMSrcPageRequest) next_req; 276 }; 277 278 /* State of RAM for migration */ 279 struct RAMState { 280 /* QEMUFile used for this migration */ 281 QEMUFile *f; 282 /* Last block that we have visited searching for dirty pages */ 283 RAMBlock *last_seen_block; 284 /* Last block from where we have sent data */ 285 RAMBlock *last_sent_block; 286 /* Last dirty target page we have sent */ 287 ram_addr_t last_page; 288 /* last ram version we have seen */ 289 uint32_t last_version; 290 /* We are in the first round */ 291 bool ram_bulk_stage; 292 /* How many times we have dirty too many pages */ 293 int dirty_rate_high_cnt; 294 /* these variables are used for bitmap sync */ 295 /* last time we did a full bitmap_sync */ 296 int64_t time_last_bitmap_sync; 297 /* bytes transferred at start_time */ 298 uint64_t bytes_xfer_prev; 299 /* number of dirty pages since start_time */ 300 uint64_t num_dirty_pages_period; 301 /* xbzrle misses since the beginning of the period */ 302 uint64_t xbzrle_cache_miss_prev; 303 /* number of iterations at the beginning of period */ 304 uint64_t iterations_prev; 305 /* Iterations since start */ 306 uint64_t iterations; 307 /* number of dirty bits in the bitmap */ 308 uint64_t migration_dirty_pages; 309 /* protects modification of the bitmap */ 310 QemuMutex bitmap_mutex; 311 /* The RAMBlock used in the last src_page_requests */ 312 RAMBlock *last_req_rb; 313 /* Queue of outstanding page requests from the destination */ 314 QemuMutex src_page_req_mutex; 315 QSIMPLEQ_HEAD(src_page_requests, RAMSrcPageRequest) src_page_requests; 316 }; 317 typedef struct RAMState RAMState; 318 319 static RAMState *ram_state; 320 321 uint64_t ram_bytes_remaining(void) 322 { 323 return ram_state ? (ram_state->migration_dirty_pages * TARGET_PAGE_SIZE) : 324 0; 325 } 326 327 MigrationStats ram_counters; 328 329 /* used by the search for pages to send */ 330 struct PageSearchStatus { 331 /* Current block being searched */ 332 RAMBlock *block; 333 /* Current page to search from */ 334 unsigned long page; 335 /* Set once we wrap around */ 336 bool complete_round; 337 }; 338 typedef struct PageSearchStatus PageSearchStatus; 339 340 struct CompressParam { 341 bool done; 342 bool quit; 343 QEMUFile *file; 344 QemuMutex mutex; 345 QemuCond cond; 346 RAMBlock *block; 347 ram_addr_t offset; 348 349 /* internally used fields */ 350 z_stream stream; 351 uint8_t *originbuf; 352 }; 353 typedef struct CompressParam CompressParam; 354 355 struct DecompressParam { 356 bool done; 357 bool quit; 358 QemuMutex mutex; 359 QemuCond cond; 360 void *des; 361 uint8_t *compbuf; 362 int len; 363 z_stream stream; 364 }; 365 typedef struct DecompressParam DecompressParam; 366 367 static CompressParam *comp_param; 368 static QemuThread *compress_threads; 369 /* comp_done_cond is used to wake up the migration thread when 370 * one of the compression threads has finished the compression. 371 * comp_done_lock is used to co-work with comp_done_cond. 372 */ 373 static QemuMutex comp_done_lock; 374 static QemuCond comp_done_cond; 375 /* The empty QEMUFileOps will be used by file in CompressParam */ 376 static const QEMUFileOps empty_ops = { }; 377 378 static QEMUFile *decomp_file; 379 static DecompressParam *decomp_param; 380 static QemuThread *decompress_threads; 381 static QemuMutex decomp_done_lock; 382 static QemuCond decomp_done_cond; 383 384 static int do_compress_ram_page(QEMUFile *f, z_stream *stream, RAMBlock *block, 385 ram_addr_t offset, uint8_t *source_buf); 386 387 static void *do_data_compress(void *opaque) 388 { 389 CompressParam *param = opaque; 390 RAMBlock *block; 391 ram_addr_t offset; 392 393 qemu_mutex_lock(¶m->mutex); 394 while (!param->quit) { 395 if (param->block) { 396 block = param->block; 397 offset = param->offset; 398 param->block = NULL; 399 qemu_mutex_unlock(¶m->mutex); 400 401 do_compress_ram_page(param->file, ¶m->stream, block, offset, 402 param->originbuf); 403 404 qemu_mutex_lock(&comp_done_lock); 405 param->done = true; 406 qemu_cond_signal(&comp_done_cond); 407 qemu_mutex_unlock(&comp_done_lock); 408 409 qemu_mutex_lock(¶m->mutex); 410 } else { 411 qemu_cond_wait(¶m->cond, ¶m->mutex); 412 } 413 } 414 qemu_mutex_unlock(¶m->mutex); 415 416 return NULL; 417 } 418 419 static inline void terminate_compression_threads(void) 420 { 421 int idx, thread_count; 422 423 thread_count = migrate_compress_threads(); 424 425 for (idx = 0; idx < thread_count; idx++) { 426 qemu_mutex_lock(&comp_param[idx].mutex); 427 comp_param[idx].quit = true; 428 qemu_cond_signal(&comp_param[idx].cond); 429 qemu_mutex_unlock(&comp_param[idx].mutex); 430 } 431 } 432 433 static void compress_threads_save_cleanup(void) 434 { 435 int i, thread_count; 436 437 if (!migrate_use_compression()) { 438 return; 439 } 440 terminate_compression_threads(); 441 thread_count = migrate_compress_threads(); 442 for (i = 0; i < thread_count; i++) { 443 /* 444 * we use it as a indicator which shows if the thread is 445 * properly init'd or not 446 */ 447 if (!comp_param[i].file) { 448 break; 449 } 450 qemu_thread_join(compress_threads + i); 451 qemu_mutex_destroy(&comp_param[i].mutex); 452 qemu_cond_destroy(&comp_param[i].cond); 453 deflateEnd(&comp_param[i].stream); 454 g_free(comp_param[i].originbuf); 455 qemu_fclose(comp_param[i].file); 456 comp_param[i].file = NULL; 457 } 458 qemu_mutex_destroy(&comp_done_lock); 459 qemu_cond_destroy(&comp_done_cond); 460 g_free(compress_threads); 461 g_free(comp_param); 462 compress_threads = NULL; 463 comp_param = NULL; 464 } 465 466 static int compress_threads_save_setup(void) 467 { 468 int i, thread_count; 469 470 if (!migrate_use_compression()) { 471 return 0; 472 } 473 thread_count = migrate_compress_threads(); 474 compress_threads = g_new0(QemuThread, thread_count); 475 comp_param = g_new0(CompressParam, thread_count); 476 qemu_cond_init(&comp_done_cond); 477 qemu_mutex_init(&comp_done_lock); 478 for (i = 0; i < thread_count; i++) { 479 comp_param[i].originbuf = g_try_malloc(TARGET_PAGE_SIZE); 480 if (!comp_param[i].originbuf) { 481 goto exit; 482 } 483 484 if (deflateInit(&comp_param[i].stream, 485 migrate_compress_level()) != Z_OK) { 486 g_free(comp_param[i].originbuf); 487 goto exit; 488 } 489 490 /* comp_param[i].file is just used as a dummy buffer to save data, 491 * set its ops to empty. 492 */ 493 comp_param[i].file = qemu_fopen_ops(NULL, &empty_ops); 494 comp_param[i].done = true; 495 comp_param[i].quit = false; 496 qemu_mutex_init(&comp_param[i].mutex); 497 qemu_cond_init(&comp_param[i].cond); 498 qemu_thread_create(compress_threads + i, "compress", 499 do_data_compress, comp_param + i, 500 QEMU_THREAD_JOINABLE); 501 } 502 return 0; 503 504 exit: 505 compress_threads_save_cleanup(); 506 return -1; 507 } 508 509 /* Multiple fd's */ 510 511 #define MULTIFD_MAGIC 0x11223344U 512 #define MULTIFD_VERSION 1 513 514 #define MULTIFD_FLAG_SYNC (1 << 0) 515 516 typedef struct { 517 uint32_t magic; 518 uint32_t version; 519 unsigned char uuid[16]; /* QemuUUID */ 520 uint8_t id; 521 } __attribute__((packed)) MultiFDInit_t; 522 523 typedef struct { 524 uint32_t magic; 525 uint32_t version; 526 uint32_t flags; 527 uint32_t size; 528 uint32_t used; 529 uint64_t packet_num; 530 char ramblock[256]; 531 uint64_t offset[]; 532 } __attribute__((packed)) MultiFDPacket_t; 533 534 typedef struct { 535 /* number of used pages */ 536 uint32_t used; 537 /* number of allocated pages */ 538 uint32_t allocated; 539 /* global number of generated multifd packets */ 540 uint64_t packet_num; 541 /* offset of each page */ 542 ram_addr_t *offset; 543 /* pointer to each page */ 544 struct iovec *iov; 545 RAMBlock *block; 546 } MultiFDPages_t; 547 548 typedef struct { 549 /* this fields are not changed once the thread is created */ 550 /* channel number */ 551 uint8_t id; 552 /* channel thread name */ 553 char *name; 554 /* channel thread id */ 555 QemuThread thread; 556 /* communication channel */ 557 QIOChannel *c; 558 /* sem where to wait for more work */ 559 QemuSemaphore sem; 560 /* this mutex protects the following parameters */ 561 QemuMutex mutex; 562 /* is this channel thread running */ 563 bool running; 564 /* should this thread finish */ 565 bool quit; 566 /* thread has work to do */ 567 int pending_job; 568 /* array of pages to sent */ 569 MultiFDPages_t *pages; 570 /* packet allocated len */ 571 uint32_t packet_len; 572 /* pointer to the packet */ 573 MultiFDPacket_t *packet; 574 /* multifd flags for each packet */ 575 uint32_t flags; 576 /* global number of generated multifd packets */ 577 uint64_t packet_num; 578 /* thread local variables */ 579 /* packets sent through this channel */ 580 uint64_t num_packets; 581 /* pages sent through this channel */ 582 uint64_t num_pages; 583 /* syncs main thread and channels */ 584 QemuSemaphore sem_sync; 585 } MultiFDSendParams; 586 587 typedef struct { 588 /* this fields are not changed once the thread is created */ 589 /* channel number */ 590 uint8_t id; 591 /* channel thread name */ 592 char *name; 593 /* channel thread id */ 594 QemuThread thread; 595 /* communication channel */ 596 QIOChannel *c; 597 /* this mutex protects the following parameters */ 598 QemuMutex mutex; 599 /* is this channel thread running */ 600 bool running; 601 /* array of pages to receive */ 602 MultiFDPages_t *pages; 603 /* packet allocated len */ 604 uint32_t packet_len; 605 /* pointer to the packet */ 606 MultiFDPacket_t *packet; 607 /* multifd flags for each packet */ 608 uint32_t flags; 609 /* global number of generated multifd packets */ 610 uint64_t packet_num; 611 /* thread local variables */ 612 /* packets sent through this channel */ 613 uint64_t num_packets; 614 /* pages sent through this channel */ 615 uint64_t num_pages; 616 /* syncs main thread and channels */ 617 QemuSemaphore sem_sync; 618 } MultiFDRecvParams; 619 620 static int multifd_send_initial_packet(MultiFDSendParams *p, Error **errp) 621 { 622 MultiFDInit_t msg; 623 int ret; 624 625 msg.magic = cpu_to_be32(MULTIFD_MAGIC); 626 msg.version = cpu_to_be32(MULTIFD_VERSION); 627 msg.id = p->id; 628 memcpy(msg.uuid, &qemu_uuid.data, sizeof(msg.uuid)); 629 630 ret = qio_channel_write_all(p->c, (char *)&msg, sizeof(msg), errp); 631 if (ret != 0) { 632 return -1; 633 } 634 return 0; 635 } 636 637 static int multifd_recv_initial_packet(QIOChannel *c, Error **errp) 638 { 639 MultiFDInit_t msg; 640 int ret; 641 642 ret = qio_channel_read_all(c, (char *)&msg, sizeof(msg), errp); 643 if (ret != 0) { 644 return -1; 645 } 646 647 be32_to_cpus(&msg.magic); 648 be32_to_cpus(&msg.version); 649 650 if (msg.magic != MULTIFD_MAGIC) { 651 error_setg(errp, "multifd: received packet magic %x " 652 "expected %x", msg.magic, MULTIFD_MAGIC); 653 return -1; 654 } 655 656 if (msg.version != MULTIFD_VERSION) { 657 error_setg(errp, "multifd: received packet version %d " 658 "expected %d", msg.version, MULTIFD_VERSION); 659 return -1; 660 } 661 662 if (memcmp(msg.uuid, &qemu_uuid, sizeof(qemu_uuid))) { 663 char *uuid = qemu_uuid_unparse_strdup(&qemu_uuid); 664 char *msg_uuid = qemu_uuid_unparse_strdup((const QemuUUID *)msg.uuid); 665 666 error_setg(errp, "multifd: received uuid '%s' and expected " 667 "uuid '%s' for channel %hhd", msg_uuid, uuid, msg.id); 668 g_free(uuid); 669 g_free(msg_uuid); 670 return -1; 671 } 672 673 if (msg.id > migrate_multifd_channels()) { 674 error_setg(errp, "multifd: received channel version %d " 675 "expected %d", msg.version, MULTIFD_VERSION); 676 return -1; 677 } 678 679 return msg.id; 680 } 681 682 static MultiFDPages_t *multifd_pages_init(size_t size) 683 { 684 MultiFDPages_t *pages = g_new0(MultiFDPages_t, 1); 685 686 pages->allocated = size; 687 pages->iov = g_new0(struct iovec, size); 688 pages->offset = g_new0(ram_addr_t, size); 689 690 return pages; 691 } 692 693 static void multifd_pages_clear(MultiFDPages_t *pages) 694 { 695 pages->used = 0; 696 pages->allocated = 0; 697 pages->packet_num = 0; 698 pages->block = NULL; 699 g_free(pages->iov); 700 pages->iov = NULL; 701 g_free(pages->offset); 702 pages->offset = NULL; 703 g_free(pages); 704 } 705 706 static void multifd_send_fill_packet(MultiFDSendParams *p) 707 { 708 MultiFDPacket_t *packet = p->packet; 709 int i; 710 711 packet->magic = cpu_to_be32(MULTIFD_MAGIC); 712 packet->version = cpu_to_be32(MULTIFD_VERSION); 713 packet->flags = cpu_to_be32(p->flags); 714 packet->size = cpu_to_be32(migrate_multifd_page_count()); 715 packet->used = cpu_to_be32(p->pages->used); 716 packet->packet_num = cpu_to_be64(p->packet_num); 717 718 if (p->pages->block) { 719 strncpy(packet->ramblock, p->pages->block->idstr, 256); 720 } 721 722 for (i = 0; i < p->pages->used; i++) { 723 packet->offset[i] = cpu_to_be64(p->pages->offset[i]); 724 } 725 } 726 727 static int multifd_recv_unfill_packet(MultiFDRecvParams *p, Error **errp) 728 { 729 MultiFDPacket_t *packet = p->packet; 730 RAMBlock *block; 731 int i; 732 733 be32_to_cpus(&packet->magic); 734 if (packet->magic != MULTIFD_MAGIC) { 735 error_setg(errp, "multifd: received packet " 736 "magic %x and expected magic %x", 737 packet->magic, MULTIFD_MAGIC); 738 return -1; 739 } 740 741 be32_to_cpus(&packet->version); 742 if (packet->version != MULTIFD_VERSION) { 743 error_setg(errp, "multifd: received packet " 744 "version %d and expected version %d", 745 packet->version, MULTIFD_VERSION); 746 return -1; 747 } 748 749 p->flags = be32_to_cpu(packet->flags); 750 751 be32_to_cpus(&packet->size); 752 if (packet->size > migrate_multifd_page_count()) { 753 error_setg(errp, "multifd: received packet " 754 "with size %d and expected maximum size %d", 755 packet->size, migrate_multifd_page_count()) ; 756 return -1; 757 } 758 759 p->pages->used = be32_to_cpu(packet->used); 760 if (p->pages->used > packet->size) { 761 error_setg(errp, "multifd: received packet " 762 "with size %d and expected maximum size %d", 763 p->pages->used, packet->size) ; 764 return -1; 765 } 766 767 p->packet_num = be64_to_cpu(packet->packet_num); 768 769 if (p->pages->used) { 770 /* make sure that ramblock is 0 terminated */ 771 packet->ramblock[255] = 0; 772 block = qemu_ram_block_by_name(packet->ramblock); 773 if (!block) { 774 error_setg(errp, "multifd: unknown ram block %s", 775 packet->ramblock); 776 return -1; 777 } 778 } 779 780 for (i = 0; i < p->pages->used; i++) { 781 ram_addr_t offset = be64_to_cpu(packet->offset[i]); 782 783 if (offset > (block->used_length - TARGET_PAGE_SIZE)) { 784 error_setg(errp, "multifd: offset too long " RAM_ADDR_FMT 785 " (max " RAM_ADDR_FMT ")", 786 offset, block->max_length); 787 return -1; 788 } 789 p->pages->iov[i].iov_base = block->host + offset; 790 p->pages->iov[i].iov_len = TARGET_PAGE_SIZE; 791 } 792 793 return 0; 794 } 795 796 struct { 797 MultiFDSendParams *params; 798 /* number of created threads */ 799 int count; 800 /* array of pages to sent */ 801 MultiFDPages_t *pages; 802 /* syncs main thread and channels */ 803 QemuSemaphore sem_sync; 804 /* global number of generated multifd packets */ 805 uint64_t packet_num; 806 /* send channels ready */ 807 QemuSemaphore channels_ready; 808 } *multifd_send_state; 809 810 /* 811 * How we use multifd_send_state->pages and channel->pages? 812 * 813 * We create a pages for each channel, and a main one. Each time that 814 * we need to send a batch of pages we interchange the ones between 815 * multifd_send_state and the channel that is sending it. There are 816 * two reasons for that: 817 * - to not have to do so many mallocs during migration 818 * - to make easier to know what to free at the end of migration 819 * 820 * This way we always know who is the owner of each "pages" struct, 821 * and we don't need any loocking. It belongs to the migration thread 822 * or to the channel thread. Switching is safe because the migration 823 * thread is using the channel mutex when changing it, and the channel 824 * have to had finish with its own, otherwise pending_job can't be 825 * false. 826 */ 827 828 static void multifd_send_pages(void) 829 { 830 int i; 831 static int next_channel; 832 MultiFDSendParams *p = NULL; /* make happy gcc */ 833 MultiFDPages_t *pages = multifd_send_state->pages; 834 uint64_t transferred; 835 836 qemu_sem_wait(&multifd_send_state->channels_ready); 837 for (i = next_channel;; i = (i + 1) % migrate_multifd_channels()) { 838 p = &multifd_send_state->params[i]; 839 840 qemu_mutex_lock(&p->mutex); 841 if (!p->pending_job) { 842 p->pending_job++; 843 next_channel = (i + 1) % migrate_multifd_channels(); 844 break; 845 } 846 qemu_mutex_unlock(&p->mutex); 847 } 848 p->pages->used = 0; 849 850 p->packet_num = multifd_send_state->packet_num++; 851 p->pages->block = NULL; 852 multifd_send_state->pages = p->pages; 853 p->pages = pages; 854 transferred = pages->used * TARGET_PAGE_SIZE + p->packet_len; 855 ram_counters.multifd_bytes += transferred; 856 ram_counters.transferred += transferred;; 857 qemu_mutex_unlock(&p->mutex); 858 qemu_sem_post(&p->sem); 859 } 860 861 static void multifd_queue_page(RAMBlock *block, ram_addr_t offset) 862 { 863 MultiFDPages_t *pages = multifd_send_state->pages; 864 865 if (!pages->block) { 866 pages->block = block; 867 } 868 869 if (pages->block == block) { 870 pages->offset[pages->used] = offset; 871 pages->iov[pages->used].iov_base = block->host + offset; 872 pages->iov[pages->used].iov_len = TARGET_PAGE_SIZE; 873 pages->used++; 874 875 if (pages->used < pages->allocated) { 876 return; 877 } 878 } 879 880 multifd_send_pages(); 881 882 if (pages->block != block) { 883 multifd_queue_page(block, offset); 884 } 885 } 886 887 static void multifd_send_terminate_threads(Error *err) 888 { 889 int i; 890 891 if (err) { 892 MigrationState *s = migrate_get_current(); 893 migrate_set_error(s, err); 894 if (s->state == MIGRATION_STATUS_SETUP || 895 s->state == MIGRATION_STATUS_PRE_SWITCHOVER || 896 s->state == MIGRATION_STATUS_DEVICE || 897 s->state == MIGRATION_STATUS_ACTIVE) { 898 migrate_set_state(&s->state, s->state, 899 MIGRATION_STATUS_FAILED); 900 } 901 } 902 903 for (i = 0; i < migrate_multifd_channels(); i++) { 904 MultiFDSendParams *p = &multifd_send_state->params[i]; 905 906 qemu_mutex_lock(&p->mutex); 907 p->quit = true; 908 qemu_sem_post(&p->sem); 909 qemu_mutex_unlock(&p->mutex); 910 } 911 } 912 913 int multifd_save_cleanup(Error **errp) 914 { 915 int i; 916 int ret = 0; 917 918 if (!migrate_use_multifd()) { 919 return 0; 920 } 921 multifd_send_terminate_threads(NULL); 922 for (i = 0; i < migrate_multifd_channels(); i++) { 923 MultiFDSendParams *p = &multifd_send_state->params[i]; 924 925 if (p->running) { 926 qemu_thread_join(&p->thread); 927 } 928 socket_send_channel_destroy(p->c); 929 p->c = NULL; 930 qemu_mutex_destroy(&p->mutex); 931 qemu_sem_destroy(&p->sem); 932 qemu_sem_destroy(&p->sem_sync); 933 g_free(p->name); 934 p->name = NULL; 935 multifd_pages_clear(p->pages); 936 p->pages = NULL; 937 p->packet_len = 0; 938 g_free(p->packet); 939 p->packet = NULL; 940 } 941 qemu_sem_destroy(&multifd_send_state->channels_ready); 942 qemu_sem_destroy(&multifd_send_state->sem_sync); 943 g_free(multifd_send_state->params); 944 multifd_send_state->params = NULL; 945 multifd_pages_clear(multifd_send_state->pages); 946 multifd_send_state->pages = NULL; 947 g_free(multifd_send_state); 948 multifd_send_state = NULL; 949 return ret; 950 } 951 952 static void multifd_send_sync_main(void) 953 { 954 int i; 955 956 if (!migrate_use_multifd()) { 957 return; 958 } 959 if (multifd_send_state->pages->used) { 960 multifd_send_pages(); 961 } 962 for (i = 0; i < migrate_multifd_channels(); i++) { 963 MultiFDSendParams *p = &multifd_send_state->params[i]; 964 965 trace_multifd_send_sync_main_signal(p->id); 966 967 qemu_mutex_lock(&p->mutex); 968 969 p->packet_num = multifd_send_state->packet_num++; 970 p->flags |= MULTIFD_FLAG_SYNC; 971 p->pending_job++; 972 qemu_mutex_unlock(&p->mutex); 973 qemu_sem_post(&p->sem); 974 } 975 for (i = 0; i < migrate_multifd_channels(); i++) { 976 MultiFDSendParams *p = &multifd_send_state->params[i]; 977 978 trace_multifd_send_sync_main_wait(p->id); 979 qemu_sem_wait(&multifd_send_state->sem_sync); 980 } 981 trace_multifd_send_sync_main(multifd_send_state->packet_num); 982 } 983 984 static void *multifd_send_thread(void *opaque) 985 { 986 MultiFDSendParams *p = opaque; 987 Error *local_err = NULL; 988 int ret; 989 990 trace_multifd_send_thread_start(p->id); 991 992 if (multifd_send_initial_packet(p, &local_err) < 0) { 993 goto out; 994 } 995 /* initial packet */ 996 p->num_packets = 1; 997 998 while (true) { 999 qemu_sem_wait(&p->sem); 1000 qemu_mutex_lock(&p->mutex); 1001 1002 if (p->pending_job) { 1003 uint32_t used = p->pages->used; 1004 uint64_t packet_num = p->packet_num; 1005 uint32_t flags = p->flags; 1006 1007 multifd_send_fill_packet(p); 1008 p->flags = 0; 1009 p->num_packets++; 1010 p->num_pages += used; 1011 p->pages->used = 0; 1012 qemu_mutex_unlock(&p->mutex); 1013 1014 trace_multifd_send(p->id, packet_num, used, flags); 1015 1016 ret = qio_channel_write_all(p->c, (void *)p->packet, 1017 p->packet_len, &local_err); 1018 if (ret != 0) { 1019 break; 1020 } 1021 1022 ret = qio_channel_writev_all(p->c, p->pages->iov, used, &local_err); 1023 if (ret != 0) { 1024 break; 1025 } 1026 1027 qemu_mutex_lock(&p->mutex); 1028 p->pending_job--; 1029 qemu_mutex_unlock(&p->mutex); 1030 1031 if (flags & MULTIFD_FLAG_SYNC) { 1032 qemu_sem_post(&multifd_send_state->sem_sync); 1033 } 1034 qemu_sem_post(&multifd_send_state->channels_ready); 1035 } else if (p->quit) { 1036 qemu_mutex_unlock(&p->mutex); 1037 break; 1038 } else { 1039 qemu_mutex_unlock(&p->mutex); 1040 /* sometimes there are spurious wakeups */ 1041 } 1042 } 1043 1044 out: 1045 if (local_err) { 1046 multifd_send_terminate_threads(local_err); 1047 } 1048 1049 qemu_mutex_lock(&p->mutex); 1050 p->running = false; 1051 qemu_mutex_unlock(&p->mutex); 1052 1053 trace_multifd_send_thread_end(p->id, p->num_packets, p->num_pages); 1054 1055 return NULL; 1056 } 1057 1058 static void multifd_new_send_channel_async(QIOTask *task, gpointer opaque) 1059 { 1060 MultiFDSendParams *p = opaque; 1061 QIOChannel *sioc = QIO_CHANNEL(qio_task_get_source(task)); 1062 Error *local_err = NULL; 1063 1064 if (qio_task_propagate_error(task, &local_err)) { 1065 if (multifd_save_cleanup(&local_err) != 0) { 1066 migrate_set_error(migrate_get_current(), local_err); 1067 } 1068 } else { 1069 p->c = QIO_CHANNEL(sioc); 1070 qio_channel_set_delay(p->c, false); 1071 p->running = true; 1072 qemu_thread_create(&p->thread, p->name, multifd_send_thread, p, 1073 QEMU_THREAD_JOINABLE); 1074 1075 atomic_inc(&multifd_send_state->count); 1076 } 1077 } 1078 1079 int multifd_save_setup(void) 1080 { 1081 int thread_count; 1082 uint32_t page_count = migrate_multifd_page_count(); 1083 uint8_t i; 1084 1085 if (!migrate_use_multifd()) { 1086 return 0; 1087 } 1088 thread_count = migrate_multifd_channels(); 1089 multifd_send_state = g_malloc0(sizeof(*multifd_send_state)); 1090 multifd_send_state->params = g_new0(MultiFDSendParams, thread_count); 1091 atomic_set(&multifd_send_state->count, 0); 1092 multifd_send_state->pages = multifd_pages_init(page_count); 1093 qemu_sem_init(&multifd_send_state->sem_sync, 0); 1094 qemu_sem_init(&multifd_send_state->channels_ready, 0); 1095 1096 for (i = 0; i < thread_count; i++) { 1097 MultiFDSendParams *p = &multifd_send_state->params[i]; 1098 1099 qemu_mutex_init(&p->mutex); 1100 qemu_sem_init(&p->sem, 0); 1101 qemu_sem_init(&p->sem_sync, 0); 1102 p->quit = false; 1103 p->pending_job = 0; 1104 p->id = i; 1105 p->pages = multifd_pages_init(page_count); 1106 p->packet_len = sizeof(MultiFDPacket_t) 1107 + sizeof(ram_addr_t) * page_count; 1108 p->packet = g_malloc0(p->packet_len); 1109 p->name = g_strdup_printf("multifdsend_%d", i); 1110 socket_send_channel_create(multifd_new_send_channel_async, p); 1111 } 1112 return 0; 1113 } 1114 1115 struct { 1116 MultiFDRecvParams *params; 1117 /* number of created threads */ 1118 int count; 1119 /* syncs main thread and channels */ 1120 QemuSemaphore sem_sync; 1121 /* global number of generated multifd packets */ 1122 uint64_t packet_num; 1123 } *multifd_recv_state; 1124 1125 static void multifd_recv_terminate_threads(Error *err) 1126 { 1127 int i; 1128 1129 if (err) { 1130 MigrationState *s = migrate_get_current(); 1131 migrate_set_error(s, err); 1132 if (s->state == MIGRATION_STATUS_SETUP || 1133 s->state == MIGRATION_STATUS_ACTIVE) { 1134 migrate_set_state(&s->state, s->state, 1135 MIGRATION_STATUS_FAILED); 1136 } 1137 } 1138 1139 for (i = 0; i < migrate_multifd_channels(); i++) { 1140 MultiFDRecvParams *p = &multifd_recv_state->params[i]; 1141 1142 qemu_mutex_lock(&p->mutex); 1143 /* We could arrive here for two reasons: 1144 - normal quit, i.e. everything went fine, just finished 1145 - error quit: We close the channels so the channel threads 1146 finish the qio_channel_read_all_eof() */ 1147 qio_channel_shutdown(p->c, QIO_CHANNEL_SHUTDOWN_BOTH, NULL); 1148 qemu_mutex_unlock(&p->mutex); 1149 } 1150 } 1151 1152 int multifd_load_cleanup(Error **errp) 1153 { 1154 int i; 1155 int ret = 0; 1156 1157 if (!migrate_use_multifd()) { 1158 return 0; 1159 } 1160 multifd_recv_terminate_threads(NULL); 1161 for (i = 0; i < migrate_multifd_channels(); i++) { 1162 MultiFDRecvParams *p = &multifd_recv_state->params[i]; 1163 1164 if (p->running) { 1165 qemu_thread_join(&p->thread); 1166 } 1167 object_unref(OBJECT(p->c)); 1168 p->c = NULL; 1169 qemu_mutex_destroy(&p->mutex); 1170 qemu_sem_destroy(&p->sem_sync); 1171 g_free(p->name); 1172 p->name = NULL; 1173 multifd_pages_clear(p->pages); 1174 p->pages = NULL; 1175 p->packet_len = 0; 1176 g_free(p->packet); 1177 p->packet = NULL; 1178 } 1179 qemu_sem_destroy(&multifd_recv_state->sem_sync); 1180 g_free(multifd_recv_state->params); 1181 multifd_recv_state->params = NULL; 1182 g_free(multifd_recv_state); 1183 multifd_recv_state = NULL; 1184 1185 return ret; 1186 } 1187 1188 static void multifd_recv_sync_main(void) 1189 { 1190 int i; 1191 1192 if (!migrate_use_multifd()) { 1193 return; 1194 } 1195 for (i = 0; i < migrate_multifd_channels(); i++) { 1196 MultiFDRecvParams *p = &multifd_recv_state->params[i]; 1197 1198 trace_multifd_recv_sync_main_wait(p->id); 1199 qemu_sem_wait(&multifd_recv_state->sem_sync); 1200 qemu_mutex_lock(&p->mutex); 1201 if (multifd_recv_state->packet_num < p->packet_num) { 1202 multifd_recv_state->packet_num = p->packet_num; 1203 } 1204 qemu_mutex_unlock(&p->mutex); 1205 } 1206 for (i = 0; i < migrate_multifd_channels(); i++) { 1207 MultiFDRecvParams *p = &multifd_recv_state->params[i]; 1208 1209 trace_multifd_recv_sync_main_signal(p->id); 1210 qemu_sem_post(&p->sem_sync); 1211 } 1212 trace_multifd_recv_sync_main(multifd_recv_state->packet_num); 1213 } 1214 1215 static void *multifd_recv_thread(void *opaque) 1216 { 1217 MultiFDRecvParams *p = opaque; 1218 Error *local_err = NULL; 1219 int ret; 1220 1221 trace_multifd_recv_thread_start(p->id); 1222 1223 while (true) { 1224 uint32_t used; 1225 uint32_t flags; 1226 1227 ret = qio_channel_read_all_eof(p->c, (void *)p->packet, 1228 p->packet_len, &local_err); 1229 if (ret == 0) { /* EOF */ 1230 break; 1231 } 1232 if (ret == -1) { /* Error */ 1233 break; 1234 } 1235 1236 qemu_mutex_lock(&p->mutex); 1237 ret = multifd_recv_unfill_packet(p, &local_err); 1238 if (ret) { 1239 qemu_mutex_unlock(&p->mutex); 1240 break; 1241 } 1242 1243 used = p->pages->used; 1244 flags = p->flags; 1245 trace_multifd_recv(p->id, p->packet_num, used, flags); 1246 p->num_packets++; 1247 p->num_pages += used; 1248 qemu_mutex_unlock(&p->mutex); 1249 1250 ret = qio_channel_readv_all(p->c, p->pages->iov, used, &local_err); 1251 if (ret != 0) { 1252 break; 1253 } 1254 1255 if (flags & MULTIFD_FLAG_SYNC) { 1256 qemu_sem_post(&multifd_recv_state->sem_sync); 1257 qemu_sem_wait(&p->sem_sync); 1258 } 1259 } 1260 1261 if (local_err) { 1262 multifd_recv_terminate_threads(local_err); 1263 } 1264 qemu_mutex_lock(&p->mutex); 1265 p->running = false; 1266 qemu_mutex_unlock(&p->mutex); 1267 1268 trace_multifd_recv_thread_end(p->id, p->num_packets, p->num_pages); 1269 1270 return NULL; 1271 } 1272 1273 int multifd_load_setup(void) 1274 { 1275 int thread_count; 1276 uint32_t page_count = migrate_multifd_page_count(); 1277 uint8_t i; 1278 1279 if (!migrate_use_multifd()) { 1280 return 0; 1281 } 1282 thread_count = migrate_multifd_channels(); 1283 multifd_recv_state = g_malloc0(sizeof(*multifd_recv_state)); 1284 multifd_recv_state->params = g_new0(MultiFDRecvParams, thread_count); 1285 atomic_set(&multifd_recv_state->count, 0); 1286 qemu_sem_init(&multifd_recv_state->sem_sync, 0); 1287 1288 for (i = 0; i < thread_count; i++) { 1289 MultiFDRecvParams *p = &multifd_recv_state->params[i]; 1290 1291 qemu_mutex_init(&p->mutex); 1292 qemu_sem_init(&p->sem_sync, 0); 1293 p->id = i; 1294 p->pages = multifd_pages_init(page_count); 1295 p->packet_len = sizeof(MultiFDPacket_t) 1296 + sizeof(ram_addr_t) * page_count; 1297 p->packet = g_malloc0(p->packet_len); 1298 p->name = g_strdup_printf("multifdrecv_%d", i); 1299 } 1300 return 0; 1301 } 1302 1303 bool multifd_recv_all_channels_created(void) 1304 { 1305 int thread_count = migrate_multifd_channels(); 1306 1307 if (!migrate_use_multifd()) { 1308 return true; 1309 } 1310 1311 return thread_count == atomic_read(&multifd_recv_state->count); 1312 } 1313 1314 void multifd_recv_new_channel(QIOChannel *ioc) 1315 { 1316 MultiFDRecvParams *p; 1317 Error *local_err = NULL; 1318 int id; 1319 1320 id = multifd_recv_initial_packet(ioc, &local_err); 1321 if (id < 0) { 1322 multifd_recv_terminate_threads(local_err); 1323 return; 1324 } 1325 1326 p = &multifd_recv_state->params[id]; 1327 if (p->c != NULL) { 1328 error_setg(&local_err, "multifd: received id '%d' already setup'", 1329 id); 1330 multifd_recv_terminate_threads(local_err); 1331 return; 1332 } 1333 p->c = ioc; 1334 object_ref(OBJECT(ioc)); 1335 /* initial packet */ 1336 p->num_packets = 1; 1337 1338 p->running = true; 1339 qemu_thread_create(&p->thread, p->name, multifd_recv_thread, p, 1340 QEMU_THREAD_JOINABLE); 1341 atomic_inc(&multifd_recv_state->count); 1342 if (multifd_recv_state->count == migrate_multifd_channels()) { 1343 migration_incoming_process(); 1344 } 1345 } 1346 1347 /** 1348 * save_page_header: write page header to wire 1349 * 1350 * If this is the 1st block, it also writes the block identification 1351 * 1352 * Returns the number of bytes written 1353 * 1354 * @f: QEMUFile where to send the data 1355 * @block: block that contains the page we want to send 1356 * @offset: offset inside the block for the page 1357 * in the lower bits, it contains flags 1358 */ 1359 static size_t save_page_header(RAMState *rs, QEMUFile *f, RAMBlock *block, 1360 ram_addr_t offset) 1361 { 1362 size_t size, len; 1363 1364 if (block == rs->last_sent_block) { 1365 offset |= RAM_SAVE_FLAG_CONTINUE; 1366 } 1367 qemu_put_be64(f, offset); 1368 size = 8; 1369 1370 if (!(offset & RAM_SAVE_FLAG_CONTINUE)) { 1371 len = strlen(block->idstr); 1372 qemu_put_byte(f, len); 1373 qemu_put_buffer(f, (uint8_t *)block->idstr, len); 1374 size += 1 + len; 1375 rs->last_sent_block = block; 1376 } 1377 return size; 1378 } 1379 1380 /** 1381 * mig_throttle_guest_down: throotle down the guest 1382 * 1383 * Reduce amount of guest cpu execution to hopefully slow down memory 1384 * writes. If guest dirty memory rate is reduced below the rate at 1385 * which we can transfer pages to the destination then we should be 1386 * able to complete migration. Some workloads dirty memory way too 1387 * fast and will not effectively converge, even with auto-converge. 1388 */ 1389 static void mig_throttle_guest_down(void) 1390 { 1391 MigrationState *s = migrate_get_current(); 1392 uint64_t pct_initial = s->parameters.cpu_throttle_initial; 1393 uint64_t pct_icrement = s->parameters.cpu_throttle_increment; 1394 1395 /* We have not started throttling yet. Let's start it. */ 1396 if (!cpu_throttle_active()) { 1397 cpu_throttle_set(pct_initial); 1398 } else { 1399 /* Throttling already on, just increase the rate */ 1400 cpu_throttle_set(cpu_throttle_get_percentage() + pct_icrement); 1401 } 1402 } 1403 1404 /** 1405 * xbzrle_cache_zero_page: insert a zero page in the XBZRLE cache 1406 * 1407 * @rs: current RAM state 1408 * @current_addr: address for the zero page 1409 * 1410 * Update the xbzrle cache to reflect a page that's been sent as all 0. 1411 * The important thing is that a stale (not-yet-0'd) page be replaced 1412 * by the new data. 1413 * As a bonus, if the page wasn't in the cache it gets added so that 1414 * when a small write is made into the 0'd page it gets XBZRLE sent. 1415 */ 1416 static void xbzrle_cache_zero_page(RAMState *rs, ram_addr_t current_addr) 1417 { 1418 if (rs->ram_bulk_stage || !migrate_use_xbzrle()) { 1419 return; 1420 } 1421 1422 /* We don't care if this fails to allocate a new cache page 1423 * as long as it updated an old one */ 1424 cache_insert(XBZRLE.cache, current_addr, XBZRLE.zero_target_page, 1425 ram_counters.dirty_sync_count); 1426 } 1427 1428 #define ENCODING_FLAG_XBZRLE 0x1 1429 1430 /** 1431 * save_xbzrle_page: compress and send current page 1432 * 1433 * Returns: 1 means that we wrote the page 1434 * 0 means that page is identical to the one already sent 1435 * -1 means that xbzrle would be longer than normal 1436 * 1437 * @rs: current RAM state 1438 * @current_data: pointer to the address of the page contents 1439 * @current_addr: addr of the page 1440 * @block: block that contains the page we want to send 1441 * @offset: offset inside the block for the page 1442 * @last_stage: if we are at the completion stage 1443 */ 1444 static int save_xbzrle_page(RAMState *rs, uint8_t **current_data, 1445 ram_addr_t current_addr, RAMBlock *block, 1446 ram_addr_t offset, bool last_stage) 1447 { 1448 int encoded_len = 0, bytes_xbzrle; 1449 uint8_t *prev_cached_page; 1450 1451 if (!cache_is_cached(XBZRLE.cache, current_addr, 1452 ram_counters.dirty_sync_count)) { 1453 xbzrle_counters.cache_miss++; 1454 if (!last_stage) { 1455 if (cache_insert(XBZRLE.cache, current_addr, *current_data, 1456 ram_counters.dirty_sync_count) == -1) { 1457 return -1; 1458 } else { 1459 /* update *current_data when the page has been 1460 inserted into cache */ 1461 *current_data = get_cached_data(XBZRLE.cache, current_addr); 1462 } 1463 } 1464 return -1; 1465 } 1466 1467 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr); 1468 1469 /* save current buffer into memory */ 1470 memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE); 1471 1472 /* XBZRLE encoding (if there is no overflow) */ 1473 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf, 1474 TARGET_PAGE_SIZE, XBZRLE.encoded_buf, 1475 TARGET_PAGE_SIZE); 1476 if (encoded_len == 0) { 1477 trace_save_xbzrle_page_skipping(); 1478 return 0; 1479 } else if (encoded_len == -1) { 1480 trace_save_xbzrle_page_overflow(); 1481 xbzrle_counters.overflow++; 1482 /* update data in the cache */ 1483 if (!last_stage) { 1484 memcpy(prev_cached_page, *current_data, TARGET_PAGE_SIZE); 1485 *current_data = prev_cached_page; 1486 } 1487 return -1; 1488 } 1489 1490 /* we need to update the data in the cache, in order to get the same data */ 1491 if (!last_stage) { 1492 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE); 1493 } 1494 1495 /* Send XBZRLE based compressed page */ 1496 bytes_xbzrle = save_page_header(rs, rs->f, block, 1497 offset | RAM_SAVE_FLAG_XBZRLE); 1498 qemu_put_byte(rs->f, ENCODING_FLAG_XBZRLE); 1499 qemu_put_be16(rs->f, encoded_len); 1500 qemu_put_buffer(rs->f, XBZRLE.encoded_buf, encoded_len); 1501 bytes_xbzrle += encoded_len + 1 + 2; 1502 xbzrle_counters.pages++; 1503 xbzrle_counters.bytes += bytes_xbzrle; 1504 ram_counters.transferred += bytes_xbzrle; 1505 1506 return 1; 1507 } 1508 1509 /** 1510 * migration_bitmap_find_dirty: find the next dirty page from start 1511 * 1512 * Called with rcu_read_lock() to protect migration_bitmap 1513 * 1514 * Returns the byte offset within memory region of the start of a dirty page 1515 * 1516 * @rs: current RAM state 1517 * @rb: RAMBlock where to search for dirty pages 1518 * @start: page where we start the search 1519 */ 1520 static inline 1521 unsigned long migration_bitmap_find_dirty(RAMState *rs, RAMBlock *rb, 1522 unsigned long start) 1523 { 1524 unsigned long size = rb->used_length >> TARGET_PAGE_BITS; 1525 unsigned long *bitmap = rb->bmap; 1526 unsigned long next; 1527 1528 if (!qemu_ram_is_migratable(rb)) { 1529 return size; 1530 } 1531 1532 if (rs->ram_bulk_stage && start > 0) { 1533 next = start + 1; 1534 } else { 1535 next = find_next_bit(bitmap, size, start); 1536 } 1537 1538 return next; 1539 } 1540 1541 static inline bool migration_bitmap_clear_dirty(RAMState *rs, 1542 RAMBlock *rb, 1543 unsigned long page) 1544 { 1545 bool ret; 1546 1547 ret = test_and_clear_bit(page, rb->bmap); 1548 1549 if (ret) { 1550 rs->migration_dirty_pages--; 1551 } 1552 return ret; 1553 } 1554 1555 static void migration_bitmap_sync_range(RAMState *rs, RAMBlock *rb, 1556 ram_addr_t start, ram_addr_t length) 1557 { 1558 rs->migration_dirty_pages += 1559 cpu_physical_memory_sync_dirty_bitmap(rb, start, length, 1560 &rs->num_dirty_pages_period); 1561 } 1562 1563 /** 1564 * ram_pagesize_summary: calculate all the pagesizes of a VM 1565 * 1566 * Returns a summary bitmap of the page sizes of all RAMBlocks 1567 * 1568 * For VMs with just normal pages this is equivalent to the host page 1569 * size. If it's got some huge pages then it's the OR of all the 1570 * different page sizes. 1571 */ 1572 uint64_t ram_pagesize_summary(void) 1573 { 1574 RAMBlock *block; 1575 uint64_t summary = 0; 1576 1577 RAMBLOCK_FOREACH_MIGRATABLE(block) { 1578 summary |= block->page_size; 1579 } 1580 1581 return summary; 1582 } 1583 1584 static void migration_update_rates(RAMState *rs, int64_t end_time) 1585 { 1586 uint64_t iter_count = rs->iterations - rs->iterations_prev; 1587 1588 /* calculate period counters */ 1589 ram_counters.dirty_pages_rate = rs->num_dirty_pages_period * 1000 1590 / (end_time - rs->time_last_bitmap_sync); 1591 1592 if (!iter_count) { 1593 return; 1594 } 1595 1596 if (migrate_use_xbzrle()) { 1597 xbzrle_counters.cache_miss_rate = (double)(xbzrle_counters.cache_miss - 1598 rs->xbzrle_cache_miss_prev) / iter_count; 1599 rs->xbzrle_cache_miss_prev = xbzrle_counters.cache_miss; 1600 } 1601 } 1602 1603 static void migration_bitmap_sync(RAMState *rs) 1604 { 1605 RAMBlock *block; 1606 int64_t end_time; 1607 uint64_t bytes_xfer_now; 1608 1609 ram_counters.dirty_sync_count++; 1610 1611 if (!rs->time_last_bitmap_sync) { 1612 rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); 1613 } 1614 1615 trace_migration_bitmap_sync_start(); 1616 memory_global_dirty_log_sync(); 1617 1618 qemu_mutex_lock(&rs->bitmap_mutex); 1619 rcu_read_lock(); 1620 RAMBLOCK_FOREACH_MIGRATABLE(block) { 1621 migration_bitmap_sync_range(rs, block, 0, block->used_length); 1622 } 1623 ram_counters.remaining = ram_bytes_remaining(); 1624 rcu_read_unlock(); 1625 qemu_mutex_unlock(&rs->bitmap_mutex); 1626 1627 trace_migration_bitmap_sync_end(rs->num_dirty_pages_period); 1628 1629 end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); 1630 1631 /* more than 1 second = 1000 millisecons */ 1632 if (end_time > rs->time_last_bitmap_sync + 1000) { 1633 bytes_xfer_now = ram_counters.transferred; 1634 1635 /* During block migration the auto-converge logic incorrectly detects 1636 * that ram migration makes no progress. Avoid this by disabling the 1637 * throttling logic during the bulk phase of block migration. */ 1638 if (migrate_auto_converge() && !blk_mig_bulk_active()) { 1639 /* The following detection logic can be refined later. For now: 1640 Check to see if the dirtied bytes is 50% more than the approx. 1641 amount of bytes that just got transferred since the last time we 1642 were in this routine. If that happens twice, start or increase 1643 throttling */ 1644 1645 if ((rs->num_dirty_pages_period * TARGET_PAGE_SIZE > 1646 (bytes_xfer_now - rs->bytes_xfer_prev) / 2) && 1647 (++rs->dirty_rate_high_cnt >= 2)) { 1648 trace_migration_throttle(); 1649 rs->dirty_rate_high_cnt = 0; 1650 mig_throttle_guest_down(); 1651 } 1652 } 1653 1654 migration_update_rates(rs, end_time); 1655 1656 rs->iterations_prev = rs->iterations; 1657 1658 /* reset period counters */ 1659 rs->time_last_bitmap_sync = end_time; 1660 rs->num_dirty_pages_period = 0; 1661 rs->bytes_xfer_prev = bytes_xfer_now; 1662 } 1663 if (migrate_use_events()) { 1664 qapi_event_send_migration_pass(ram_counters.dirty_sync_count, NULL); 1665 } 1666 } 1667 1668 /** 1669 * save_zero_page: send the zero page to the stream 1670 * 1671 * Returns the number of pages written. 1672 * 1673 * @rs: current RAM state 1674 * @block: block that contains the page we want to send 1675 * @offset: offset inside the block for the page 1676 */ 1677 static int save_zero_page(RAMState *rs, RAMBlock *block, ram_addr_t offset) 1678 { 1679 uint8_t *p = block->host + offset; 1680 int pages = -1; 1681 1682 if (is_zero_range(p, TARGET_PAGE_SIZE)) { 1683 ram_counters.duplicate++; 1684 ram_counters.transferred += 1685 save_page_header(rs, rs->f, block, offset | RAM_SAVE_FLAG_ZERO); 1686 qemu_put_byte(rs->f, 0); 1687 ram_counters.transferred += 1; 1688 pages = 1; 1689 } 1690 1691 return pages; 1692 } 1693 1694 static void ram_release_pages(const char *rbname, uint64_t offset, int pages) 1695 { 1696 if (!migrate_release_ram() || !migration_in_postcopy()) { 1697 return; 1698 } 1699 1700 ram_discard_range(rbname, offset, pages << TARGET_PAGE_BITS); 1701 } 1702 1703 /* 1704 * @pages: the number of pages written by the control path, 1705 * < 0 - error 1706 * > 0 - number of pages written 1707 * 1708 * Return true if the pages has been saved, otherwise false is returned. 1709 */ 1710 static bool control_save_page(RAMState *rs, RAMBlock *block, ram_addr_t offset, 1711 int *pages) 1712 { 1713 uint64_t bytes_xmit = 0; 1714 int ret; 1715 1716 *pages = -1; 1717 ret = ram_control_save_page(rs->f, block->offset, offset, TARGET_PAGE_SIZE, 1718 &bytes_xmit); 1719 if (ret == RAM_SAVE_CONTROL_NOT_SUPP) { 1720 return false; 1721 } 1722 1723 if (bytes_xmit) { 1724 ram_counters.transferred += bytes_xmit; 1725 *pages = 1; 1726 } 1727 1728 if (ret == RAM_SAVE_CONTROL_DELAYED) { 1729 return true; 1730 } 1731 1732 if (bytes_xmit > 0) { 1733 ram_counters.normal++; 1734 } else if (bytes_xmit == 0) { 1735 ram_counters.duplicate++; 1736 } 1737 1738 return true; 1739 } 1740 1741 /* 1742 * directly send the page to the stream 1743 * 1744 * Returns the number of pages written. 1745 * 1746 * @rs: current RAM state 1747 * @block: block that contains the page we want to send 1748 * @offset: offset inside the block for the page 1749 * @buf: the page to be sent 1750 * @async: send to page asyncly 1751 */ 1752 static int save_normal_page(RAMState *rs, RAMBlock *block, ram_addr_t offset, 1753 uint8_t *buf, bool async) 1754 { 1755 ram_counters.transferred += save_page_header(rs, rs->f, block, 1756 offset | RAM_SAVE_FLAG_PAGE); 1757 if (async) { 1758 qemu_put_buffer_async(rs->f, buf, TARGET_PAGE_SIZE, 1759 migrate_release_ram() & 1760 migration_in_postcopy()); 1761 } else { 1762 qemu_put_buffer(rs->f, buf, TARGET_PAGE_SIZE); 1763 } 1764 ram_counters.transferred += TARGET_PAGE_SIZE; 1765 ram_counters.normal++; 1766 return 1; 1767 } 1768 1769 /** 1770 * ram_save_page: send the given page to the stream 1771 * 1772 * Returns the number of pages written. 1773 * < 0 - error 1774 * >=0 - Number of pages written - this might legally be 0 1775 * if xbzrle noticed the page was the same. 1776 * 1777 * @rs: current RAM state 1778 * @block: block that contains the page we want to send 1779 * @offset: offset inside the block for the page 1780 * @last_stage: if we are at the completion stage 1781 */ 1782 static int ram_save_page(RAMState *rs, PageSearchStatus *pss, bool last_stage) 1783 { 1784 int pages = -1; 1785 uint8_t *p; 1786 bool send_async = true; 1787 RAMBlock *block = pss->block; 1788 ram_addr_t offset = pss->page << TARGET_PAGE_BITS; 1789 ram_addr_t current_addr = block->offset + offset; 1790 1791 p = block->host + offset; 1792 trace_ram_save_page(block->idstr, (uint64_t)offset, p); 1793 1794 XBZRLE_cache_lock(); 1795 if (!rs->ram_bulk_stage && !migration_in_postcopy() && 1796 migrate_use_xbzrle()) { 1797 pages = save_xbzrle_page(rs, &p, current_addr, block, 1798 offset, last_stage); 1799 if (!last_stage) { 1800 /* Can't send this cached data async, since the cache page 1801 * might get updated before it gets to the wire 1802 */ 1803 send_async = false; 1804 } 1805 } 1806 1807 /* XBZRLE overflow or normal page */ 1808 if (pages == -1) { 1809 pages = save_normal_page(rs, block, offset, p, send_async); 1810 } 1811 1812 XBZRLE_cache_unlock(); 1813 1814 return pages; 1815 } 1816 1817 static int ram_save_multifd_page(RAMState *rs, RAMBlock *block, 1818 ram_addr_t offset) 1819 { 1820 multifd_queue_page(block, offset); 1821 ram_counters.normal++; 1822 1823 return 1; 1824 } 1825 1826 static int do_compress_ram_page(QEMUFile *f, z_stream *stream, RAMBlock *block, 1827 ram_addr_t offset, uint8_t *source_buf) 1828 { 1829 RAMState *rs = ram_state; 1830 int bytes_sent, blen; 1831 uint8_t *p = block->host + (offset & TARGET_PAGE_MASK); 1832 1833 bytes_sent = save_page_header(rs, f, block, offset | 1834 RAM_SAVE_FLAG_COMPRESS_PAGE); 1835 1836 /* 1837 * copy it to a internal buffer to avoid it being modified by VM 1838 * so that we can catch up the error during compression and 1839 * decompression 1840 */ 1841 memcpy(source_buf, p, TARGET_PAGE_SIZE); 1842 blen = qemu_put_compression_data(f, stream, source_buf, TARGET_PAGE_SIZE); 1843 if (blen < 0) { 1844 bytes_sent = 0; 1845 qemu_file_set_error(migrate_get_current()->to_dst_file, blen); 1846 error_report("compressed data failed!"); 1847 } else { 1848 bytes_sent += blen; 1849 ram_release_pages(block->idstr, offset & TARGET_PAGE_MASK, 1); 1850 } 1851 1852 return bytes_sent; 1853 } 1854 1855 static void flush_compressed_data(RAMState *rs) 1856 { 1857 int idx, len, thread_count; 1858 1859 if (!migrate_use_compression()) { 1860 return; 1861 } 1862 thread_count = migrate_compress_threads(); 1863 1864 qemu_mutex_lock(&comp_done_lock); 1865 for (idx = 0; idx < thread_count; idx++) { 1866 while (!comp_param[idx].done) { 1867 qemu_cond_wait(&comp_done_cond, &comp_done_lock); 1868 } 1869 } 1870 qemu_mutex_unlock(&comp_done_lock); 1871 1872 for (idx = 0; idx < thread_count; idx++) { 1873 qemu_mutex_lock(&comp_param[idx].mutex); 1874 if (!comp_param[idx].quit) { 1875 len = qemu_put_qemu_file(rs->f, comp_param[idx].file); 1876 ram_counters.transferred += len; 1877 } 1878 qemu_mutex_unlock(&comp_param[idx].mutex); 1879 } 1880 } 1881 1882 static inline void set_compress_params(CompressParam *param, RAMBlock *block, 1883 ram_addr_t offset) 1884 { 1885 param->block = block; 1886 param->offset = offset; 1887 } 1888 1889 static int compress_page_with_multi_thread(RAMState *rs, RAMBlock *block, 1890 ram_addr_t offset) 1891 { 1892 int idx, thread_count, bytes_xmit = -1, pages = -1; 1893 1894 thread_count = migrate_compress_threads(); 1895 qemu_mutex_lock(&comp_done_lock); 1896 while (true) { 1897 for (idx = 0; idx < thread_count; idx++) { 1898 if (comp_param[idx].done) { 1899 comp_param[idx].done = false; 1900 bytes_xmit = qemu_put_qemu_file(rs->f, comp_param[idx].file); 1901 qemu_mutex_lock(&comp_param[idx].mutex); 1902 set_compress_params(&comp_param[idx], block, offset); 1903 qemu_cond_signal(&comp_param[idx].cond); 1904 qemu_mutex_unlock(&comp_param[idx].mutex); 1905 pages = 1; 1906 ram_counters.normal++; 1907 ram_counters.transferred += bytes_xmit; 1908 break; 1909 } 1910 } 1911 if (pages > 0) { 1912 break; 1913 } else { 1914 qemu_cond_wait(&comp_done_cond, &comp_done_lock); 1915 } 1916 } 1917 qemu_mutex_unlock(&comp_done_lock); 1918 1919 return pages; 1920 } 1921 1922 /** 1923 * find_dirty_block: find the next dirty page and update any state 1924 * associated with the search process. 1925 * 1926 * Returns if a page is found 1927 * 1928 * @rs: current RAM state 1929 * @pss: data about the state of the current dirty page scan 1930 * @again: set to false if the search has scanned the whole of RAM 1931 */ 1932 static bool find_dirty_block(RAMState *rs, PageSearchStatus *pss, bool *again) 1933 { 1934 pss->page = migration_bitmap_find_dirty(rs, pss->block, pss->page); 1935 if (pss->complete_round && pss->block == rs->last_seen_block && 1936 pss->page >= rs->last_page) { 1937 /* 1938 * We've been once around the RAM and haven't found anything. 1939 * Give up. 1940 */ 1941 *again = false; 1942 return false; 1943 } 1944 if ((pss->page << TARGET_PAGE_BITS) >= pss->block->used_length) { 1945 /* Didn't find anything in this RAM Block */ 1946 pss->page = 0; 1947 pss->block = QLIST_NEXT_RCU(pss->block, next); 1948 if (!pss->block) { 1949 /* Hit the end of the list */ 1950 pss->block = QLIST_FIRST_RCU(&ram_list.blocks); 1951 /* Flag that we've looped */ 1952 pss->complete_round = true; 1953 rs->ram_bulk_stage = false; 1954 if (migrate_use_xbzrle()) { 1955 /* If xbzrle is on, stop using the data compression at this 1956 * point. In theory, xbzrle can do better than compression. 1957 */ 1958 flush_compressed_data(rs); 1959 } 1960 } 1961 /* Didn't find anything this time, but try again on the new block */ 1962 *again = true; 1963 return false; 1964 } else { 1965 /* Can go around again, but... */ 1966 *again = true; 1967 /* We've found something so probably don't need to */ 1968 return true; 1969 } 1970 } 1971 1972 /** 1973 * unqueue_page: gets a page of the queue 1974 * 1975 * Helper for 'get_queued_page' - gets a page off the queue 1976 * 1977 * Returns the block of the page (or NULL if none available) 1978 * 1979 * @rs: current RAM state 1980 * @offset: used to return the offset within the RAMBlock 1981 */ 1982 static RAMBlock *unqueue_page(RAMState *rs, ram_addr_t *offset) 1983 { 1984 RAMBlock *block = NULL; 1985 1986 qemu_mutex_lock(&rs->src_page_req_mutex); 1987 if (!QSIMPLEQ_EMPTY(&rs->src_page_requests)) { 1988 struct RAMSrcPageRequest *entry = 1989 QSIMPLEQ_FIRST(&rs->src_page_requests); 1990 block = entry->rb; 1991 *offset = entry->offset; 1992 1993 if (entry->len > TARGET_PAGE_SIZE) { 1994 entry->len -= TARGET_PAGE_SIZE; 1995 entry->offset += TARGET_PAGE_SIZE; 1996 } else { 1997 memory_region_unref(block->mr); 1998 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req); 1999 g_free(entry); 2000 migration_consume_urgent_request(); 2001 } 2002 } 2003 qemu_mutex_unlock(&rs->src_page_req_mutex); 2004 2005 return block; 2006 } 2007 2008 /** 2009 * get_queued_page: unqueue a page from the postocpy requests 2010 * 2011 * Skips pages that are already sent (!dirty) 2012 * 2013 * Returns if a queued page is found 2014 * 2015 * @rs: current RAM state 2016 * @pss: data about the state of the current dirty page scan 2017 */ 2018 static bool get_queued_page(RAMState *rs, PageSearchStatus *pss) 2019 { 2020 RAMBlock *block; 2021 ram_addr_t offset; 2022 bool dirty; 2023 2024 do { 2025 block = unqueue_page(rs, &offset); 2026 /* 2027 * We're sending this page, and since it's postcopy nothing else 2028 * will dirty it, and we must make sure it doesn't get sent again 2029 * even if this queue request was received after the background 2030 * search already sent it. 2031 */ 2032 if (block) { 2033 unsigned long page; 2034 2035 page = offset >> TARGET_PAGE_BITS; 2036 dirty = test_bit(page, block->bmap); 2037 if (!dirty) { 2038 trace_get_queued_page_not_dirty(block->idstr, (uint64_t)offset, 2039 page, test_bit(page, block->unsentmap)); 2040 } else { 2041 trace_get_queued_page(block->idstr, (uint64_t)offset, page); 2042 } 2043 } 2044 2045 } while (block && !dirty); 2046 2047 if (block) { 2048 /* 2049 * As soon as we start servicing pages out of order, then we have 2050 * to kill the bulk stage, since the bulk stage assumes 2051 * in (migration_bitmap_find_and_reset_dirty) that every page is 2052 * dirty, that's no longer true. 2053 */ 2054 rs->ram_bulk_stage = false; 2055 2056 /* 2057 * We want the background search to continue from the queued page 2058 * since the guest is likely to want other pages near to the page 2059 * it just requested. 2060 */ 2061 pss->block = block; 2062 pss->page = offset >> TARGET_PAGE_BITS; 2063 } 2064 2065 return !!block; 2066 } 2067 2068 /** 2069 * migration_page_queue_free: drop any remaining pages in the ram 2070 * request queue 2071 * 2072 * It should be empty at the end anyway, but in error cases there may 2073 * be some left. in case that there is any page left, we drop it. 2074 * 2075 */ 2076 static void migration_page_queue_free(RAMState *rs) 2077 { 2078 struct RAMSrcPageRequest *mspr, *next_mspr; 2079 /* This queue generally should be empty - but in the case of a failed 2080 * migration might have some droppings in. 2081 */ 2082 rcu_read_lock(); 2083 QSIMPLEQ_FOREACH_SAFE(mspr, &rs->src_page_requests, next_req, next_mspr) { 2084 memory_region_unref(mspr->rb->mr); 2085 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req); 2086 g_free(mspr); 2087 } 2088 rcu_read_unlock(); 2089 } 2090 2091 /** 2092 * ram_save_queue_pages: queue the page for transmission 2093 * 2094 * A request from postcopy destination for example. 2095 * 2096 * Returns zero on success or negative on error 2097 * 2098 * @rbname: Name of the RAMBLock of the request. NULL means the 2099 * same that last one. 2100 * @start: starting address from the start of the RAMBlock 2101 * @len: length (in bytes) to send 2102 */ 2103 int ram_save_queue_pages(const char *rbname, ram_addr_t start, ram_addr_t len) 2104 { 2105 RAMBlock *ramblock; 2106 RAMState *rs = ram_state; 2107 2108 ram_counters.postcopy_requests++; 2109 rcu_read_lock(); 2110 if (!rbname) { 2111 /* Reuse last RAMBlock */ 2112 ramblock = rs->last_req_rb; 2113 2114 if (!ramblock) { 2115 /* 2116 * Shouldn't happen, we can't reuse the last RAMBlock if 2117 * it's the 1st request. 2118 */ 2119 error_report("ram_save_queue_pages no previous block"); 2120 goto err; 2121 } 2122 } else { 2123 ramblock = qemu_ram_block_by_name(rbname); 2124 2125 if (!ramblock) { 2126 /* We shouldn't be asked for a non-existent RAMBlock */ 2127 error_report("ram_save_queue_pages no block '%s'", rbname); 2128 goto err; 2129 } 2130 rs->last_req_rb = ramblock; 2131 } 2132 trace_ram_save_queue_pages(ramblock->idstr, start, len); 2133 if (start+len > ramblock->used_length) { 2134 error_report("%s request overrun start=" RAM_ADDR_FMT " len=" 2135 RAM_ADDR_FMT " blocklen=" RAM_ADDR_FMT, 2136 __func__, start, len, ramblock->used_length); 2137 goto err; 2138 } 2139 2140 struct RAMSrcPageRequest *new_entry = 2141 g_malloc0(sizeof(struct RAMSrcPageRequest)); 2142 new_entry->rb = ramblock; 2143 new_entry->offset = start; 2144 new_entry->len = len; 2145 2146 memory_region_ref(ramblock->mr); 2147 qemu_mutex_lock(&rs->src_page_req_mutex); 2148 QSIMPLEQ_INSERT_TAIL(&rs->src_page_requests, new_entry, next_req); 2149 migration_make_urgent_request(); 2150 qemu_mutex_unlock(&rs->src_page_req_mutex); 2151 rcu_read_unlock(); 2152 2153 return 0; 2154 2155 err: 2156 rcu_read_unlock(); 2157 return -1; 2158 } 2159 2160 static bool save_page_use_compression(RAMState *rs) 2161 { 2162 if (!migrate_use_compression()) { 2163 return false; 2164 } 2165 2166 /* 2167 * If xbzrle is on, stop using the data compression after first 2168 * round of migration even if compression is enabled. In theory, 2169 * xbzrle can do better than compression. 2170 */ 2171 if (rs->ram_bulk_stage || !migrate_use_xbzrle()) { 2172 return true; 2173 } 2174 2175 return false; 2176 } 2177 2178 /** 2179 * ram_save_target_page: save one target page 2180 * 2181 * Returns the number of pages written 2182 * 2183 * @rs: current RAM state 2184 * @pss: data about the page we want to send 2185 * @last_stage: if we are at the completion stage 2186 */ 2187 static int ram_save_target_page(RAMState *rs, PageSearchStatus *pss, 2188 bool last_stage) 2189 { 2190 RAMBlock *block = pss->block; 2191 ram_addr_t offset = pss->page << TARGET_PAGE_BITS; 2192 int res; 2193 2194 if (control_save_page(rs, block, offset, &res)) { 2195 return res; 2196 } 2197 2198 /* 2199 * When starting the process of a new block, the first page of 2200 * the block should be sent out before other pages in the same 2201 * block, and all the pages in last block should have been sent 2202 * out, keeping this order is important, because the 'cont' flag 2203 * is used to avoid resending the block name. 2204 */ 2205 if (block != rs->last_sent_block && save_page_use_compression(rs)) { 2206 flush_compressed_data(rs); 2207 } 2208 2209 res = save_zero_page(rs, block, offset); 2210 if (res > 0) { 2211 /* Must let xbzrle know, otherwise a previous (now 0'd) cached 2212 * page would be stale 2213 */ 2214 if (!save_page_use_compression(rs)) { 2215 XBZRLE_cache_lock(); 2216 xbzrle_cache_zero_page(rs, block->offset + offset); 2217 XBZRLE_cache_unlock(); 2218 } 2219 ram_release_pages(block->idstr, offset, res); 2220 return res; 2221 } 2222 2223 /* 2224 * Make sure the first page is sent out before other pages. 2225 * 2226 * we post it as normal page as compression will take much 2227 * CPU resource. 2228 */ 2229 if (block == rs->last_sent_block && save_page_use_compression(rs)) { 2230 return compress_page_with_multi_thread(rs, block, offset); 2231 } else if (migrate_use_multifd()) { 2232 return ram_save_multifd_page(rs, block, offset); 2233 } 2234 2235 return ram_save_page(rs, pss, last_stage); 2236 } 2237 2238 /** 2239 * ram_save_host_page: save a whole host page 2240 * 2241 * Starting at *offset send pages up to the end of the current host 2242 * page. It's valid for the initial offset to point into the middle of 2243 * a host page in which case the remainder of the hostpage is sent. 2244 * Only dirty target pages are sent. Note that the host page size may 2245 * be a huge page for this block. 2246 * The saving stops at the boundary of the used_length of the block 2247 * if the RAMBlock isn't a multiple of the host page size. 2248 * 2249 * Returns the number of pages written or negative on error 2250 * 2251 * @rs: current RAM state 2252 * @ms: current migration state 2253 * @pss: data about the page we want to send 2254 * @last_stage: if we are at the completion stage 2255 */ 2256 static int ram_save_host_page(RAMState *rs, PageSearchStatus *pss, 2257 bool last_stage) 2258 { 2259 int tmppages, pages = 0; 2260 size_t pagesize_bits = 2261 qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS; 2262 2263 if (!qemu_ram_is_migratable(pss->block)) { 2264 error_report("block %s should not be migrated !", pss->block->idstr); 2265 return 0; 2266 } 2267 2268 do { 2269 /* Check the pages is dirty and if it is send it */ 2270 if (!migration_bitmap_clear_dirty(rs, pss->block, pss->page)) { 2271 pss->page++; 2272 continue; 2273 } 2274 2275 tmppages = ram_save_target_page(rs, pss, last_stage); 2276 if (tmppages < 0) { 2277 return tmppages; 2278 } 2279 2280 pages += tmppages; 2281 if (pss->block->unsentmap) { 2282 clear_bit(pss->page, pss->block->unsentmap); 2283 } 2284 2285 pss->page++; 2286 } while ((pss->page & (pagesize_bits - 1)) && 2287 offset_in_ramblock(pss->block, pss->page << TARGET_PAGE_BITS)); 2288 2289 /* The offset we leave with is the last one we looked at */ 2290 pss->page--; 2291 return pages; 2292 } 2293 2294 /** 2295 * ram_find_and_save_block: finds a dirty page and sends it to f 2296 * 2297 * Called within an RCU critical section. 2298 * 2299 * Returns the number of pages written where zero means no dirty pages 2300 * 2301 * @rs: current RAM state 2302 * @last_stage: if we are at the completion stage 2303 * 2304 * On systems where host-page-size > target-page-size it will send all the 2305 * pages in a host page that are dirty. 2306 */ 2307 2308 static int ram_find_and_save_block(RAMState *rs, bool last_stage) 2309 { 2310 PageSearchStatus pss; 2311 int pages = 0; 2312 bool again, found; 2313 2314 /* No dirty page as there is zero RAM */ 2315 if (!ram_bytes_total()) { 2316 return pages; 2317 } 2318 2319 pss.block = rs->last_seen_block; 2320 pss.page = rs->last_page; 2321 pss.complete_round = false; 2322 2323 if (!pss.block) { 2324 pss.block = QLIST_FIRST_RCU(&ram_list.blocks); 2325 } 2326 2327 do { 2328 again = true; 2329 found = get_queued_page(rs, &pss); 2330 2331 if (!found) { 2332 /* priority queue empty, so just search for something dirty */ 2333 found = find_dirty_block(rs, &pss, &again); 2334 } 2335 2336 if (found) { 2337 pages = ram_save_host_page(rs, &pss, last_stage); 2338 } 2339 } while (!pages && again); 2340 2341 rs->last_seen_block = pss.block; 2342 rs->last_page = pss.page; 2343 2344 return pages; 2345 } 2346 2347 void acct_update_position(QEMUFile *f, size_t size, bool zero) 2348 { 2349 uint64_t pages = size / TARGET_PAGE_SIZE; 2350 2351 if (zero) { 2352 ram_counters.duplicate += pages; 2353 } else { 2354 ram_counters.normal += pages; 2355 ram_counters.transferred += size; 2356 qemu_update_position(f, size); 2357 } 2358 } 2359 2360 uint64_t ram_bytes_total(void) 2361 { 2362 RAMBlock *block; 2363 uint64_t total = 0; 2364 2365 rcu_read_lock(); 2366 RAMBLOCK_FOREACH_MIGRATABLE(block) { 2367 total += block->used_length; 2368 } 2369 rcu_read_unlock(); 2370 return total; 2371 } 2372 2373 static void xbzrle_load_setup(void) 2374 { 2375 XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE); 2376 } 2377 2378 static void xbzrle_load_cleanup(void) 2379 { 2380 g_free(XBZRLE.decoded_buf); 2381 XBZRLE.decoded_buf = NULL; 2382 } 2383 2384 static void ram_state_cleanup(RAMState **rsp) 2385 { 2386 if (*rsp) { 2387 migration_page_queue_free(*rsp); 2388 qemu_mutex_destroy(&(*rsp)->bitmap_mutex); 2389 qemu_mutex_destroy(&(*rsp)->src_page_req_mutex); 2390 g_free(*rsp); 2391 *rsp = NULL; 2392 } 2393 } 2394 2395 static void xbzrle_cleanup(void) 2396 { 2397 XBZRLE_cache_lock(); 2398 if (XBZRLE.cache) { 2399 cache_fini(XBZRLE.cache); 2400 g_free(XBZRLE.encoded_buf); 2401 g_free(XBZRLE.current_buf); 2402 g_free(XBZRLE.zero_target_page); 2403 XBZRLE.cache = NULL; 2404 XBZRLE.encoded_buf = NULL; 2405 XBZRLE.current_buf = NULL; 2406 XBZRLE.zero_target_page = NULL; 2407 } 2408 XBZRLE_cache_unlock(); 2409 } 2410 2411 static void ram_save_cleanup(void *opaque) 2412 { 2413 RAMState **rsp = opaque; 2414 RAMBlock *block; 2415 2416 /* caller have hold iothread lock or is in a bh, so there is 2417 * no writing race against this migration_bitmap 2418 */ 2419 memory_global_dirty_log_stop(); 2420 2421 RAMBLOCK_FOREACH_MIGRATABLE(block) { 2422 g_free(block->bmap); 2423 block->bmap = NULL; 2424 g_free(block->unsentmap); 2425 block->unsentmap = NULL; 2426 } 2427 2428 xbzrle_cleanup(); 2429 compress_threads_save_cleanup(); 2430 ram_state_cleanup(rsp); 2431 } 2432 2433 static void ram_state_reset(RAMState *rs) 2434 { 2435 rs->last_seen_block = NULL; 2436 rs->last_sent_block = NULL; 2437 rs->last_page = 0; 2438 rs->last_version = ram_list.version; 2439 rs->ram_bulk_stage = true; 2440 } 2441 2442 #define MAX_WAIT 50 /* ms, half buffered_file limit */ 2443 2444 /* 2445 * 'expected' is the value you expect the bitmap mostly to be full 2446 * of; it won't bother printing lines that are all this value. 2447 * If 'todump' is null the migration bitmap is dumped. 2448 */ 2449 void ram_debug_dump_bitmap(unsigned long *todump, bool expected, 2450 unsigned long pages) 2451 { 2452 int64_t cur; 2453 int64_t linelen = 128; 2454 char linebuf[129]; 2455 2456 for (cur = 0; cur < pages; cur += linelen) { 2457 int64_t curb; 2458 bool found = false; 2459 /* 2460 * Last line; catch the case where the line length 2461 * is longer than remaining ram 2462 */ 2463 if (cur + linelen > pages) { 2464 linelen = pages - cur; 2465 } 2466 for (curb = 0; curb < linelen; curb++) { 2467 bool thisbit = test_bit(cur + curb, todump); 2468 linebuf[curb] = thisbit ? '1' : '.'; 2469 found = found || (thisbit != expected); 2470 } 2471 if (found) { 2472 linebuf[curb] = '\0'; 2473 fprintf(stderr, "0x%08" PRIx64 " : %s\n", cur, linebuf); 2474 } 2475 } 2476 } 2477 2478 /* **** functions for postcopy ***** */ 2479 2480 void ram_postcopy_migrated_memory_release(MigrationState *ms) 2481 { 2482 struct RAMBlock *block; 2483 2484 RAMBLOCK_FOREACH_MIGRATABLE(block) { 2485 unsigned long *bitmap = block->bmap; 2486 unsigned long range = block->used_length >> TARGET_PAGE_BITS; 2487 unsigned long run_start = find_next_zero_bit(bitmap, range, 0); 2488 2489 while (run_start < range) { 2490 unsigned long run_end = find_next_bit(bitmap, range, run_start + 1); 2491 ram_discard_range(block->idstr, run_start << TARGET_PAGE_BITS, 2492 (run_end - run_start) << TARGET_PAGE_BITS); 2493 run_start = find_next_zero_bit(bitmap, range, run_end + 1); 2494 } 2495 } 2496 } 2497 2498 /** 2499 * postcopy_send_discard_bm_ram: discard a RAMBlock 2500 * 2501 * Returns zero on success 2502 * 2503 * Callback from postcopy_each_ram_send_discard for each RAMBlock 2504 * Note: At this point the 'unsentmap' is the processed bitmap combined 2505 * with the dirtymap; so a '1' means it's either dirty or unsent. 2506 * 2507 * @ms: current migration state 2508 * @pds: state for postcopy 2509 * @start: RAMBlock starting page 2510 * @length: RAMBlock size 2511 */ 2512 static int postcopy_send_discard_bm_ram(MigrationState *ms, 2513 PostcopyDiscardState *pds, 2514 RAMBlock *block) 2515 { 2516 unsigned long end = block->used_length >> TARGET_PAGE_BITS; 2517 unsigned long current; 2518 unsigned long *unsentmap = block->unsentmap; 2519 2520 for (current = 0; current < end; ) { 2521 unsigned long one = find_next_bit(unsentmap, end, current); 2522 2523 if (one <= end) { 2524 unsigned long zero = find_next_zero_bit(unsentmap, end, one + 1); 2525 unsigned long discard_length; 2526 2527 if (zero >= end) { 2528 discard_length = end - one; 2529 } else { 2530 discard_length = zero - one; 2531 } 2532 if (discard_length) { 2533 postcopy_discard_send_range(ms, pds, one, discard_length); 2534 } 2535 current = one + discard_length; 2536 } else { 2537 current = one; 2538 } 2539 } 2540 2541 return 0; 2542 } 2543 2544 /** 2545 * postcopy_each_ram_send_discard: discard all RAMBlocks 2546 * 2547 * Returns 0 for success or negative for error 2548 * 2549 * Utility for the outgoing postcopy code. 2550 * Calls postcopy_send_discard_bm_ram for each RAMBlock 2551 * passing it bitmap indexes and name. 2552 * (qemu_ram_foreach_block ends up passing unscaled lengths 2553 * which would mean postcopy code would have to deal with target page) 2554 * 2555 * @ms: current migration state 2556 */ 2557 static int postcopy_each_ram_send_discard(MigrationState *ms) 2558 { 2559 struct RAMBlock *block; 2560 int ret; 2561 2562 RAMBLOCK_FOREACH_MIGRATABLE(block) { 2563 PostcopyDiscardState *pds = 2564 postcopy_discard_send_init(ms, block->idstr); 2565 2566 /* 2567 * Postcopy sends chunks of bitmap over the wire, but it 2568 * just needs indexes at this point, avoids it having 2569 * target page specific code. 2570 */ 2571 ret = postcopy_send_discard_bm_ram(ms, pds, block); 2572 postcopy_discard_send_finish(ms, pds); 2573 if (ret) { 2574 return ret; 2575 } 2576 } 2577 2578 return 0; 2579 } 2580 2581 /** 2582 * postcopy_chunk_hostpages_pass: canocalize bitmap in hostpages 2583 * 2584 * Helper for postcopy_chunk_hostpages; it's called twice to 2585 * canonicalize the two bitmaps, that are similar, but one is 2586 * inverted. 2587 * 2588 * Postcopy requires that all target pages in a hostpage are dirty or 2589 * clean, not a mix. This function canonicalizes the bitmaps. 2590 * 2591 * @ms: current migration state 2592 * @unsent_pass: if true we need to canonicalize partially unsent host pages 2593 * otherwise we need to canonicalize partially dirty host pages 2594 * @block: block that contains the page we want to canonicalize 2595 * @pds: state for postcopy 2596 */ 2597 static void postcopy_chunk_hostpages_pass(MigrationState *ms, bool unsent_pass, 2598 RAMBlock *block, 2599 PostcopyDiscardState *pds) 2600 { 2601 RAMState *rs = ram_state; 2602 unsigned long *bitmap = block->bmap; 2603 unsigned long *unsentmap = block->unsentmap; 2604 unsigned int host_ratio = block->page_size / TARGET_PAGE_SIZE; 2605 unsigned long pages = block->used_length >> TARGET_PAGE_BITS; 2606 unsigned long run_start; 2607 2608 if (block->page_size == TARGET_PAGE_SIZE) { 2609 /* Easy case - TPS==HPS for a non-huge page RAMBlock */ 2610 return; 2611 } 2612 2613 if (unsent_pass) { 2614 /* Find a sent page */ 2615 run_start = find_next_zero_bit(unsentmap, pages, 0); 2616 } else { 2617 /* Find a dirty page */ 2618 run_start = find_next_bit(bitmap, pages, 0); 2619 } 2620 2621 while (run_start < pages) { 2622 bool do_fixup = false; 2623 unsigned long fixup_start_addr; 2624 unsigned long host_offset; 2625 2626 /* 2627 * If the start of this run of pages is in the middle of a host 2628 * page, then we need to fixup this host page. 2629 */ 2630 host_offset = run_start % host_ratio; 2631 if (host_offset) { 2632 do_fixup = true; 2633 run_start -= host_offset; 2634 fixup_start_addr = run_start; 2635 /* For the next pass */ 2636 run_start = run_start + host_ratio; 2637 } else { 2638 /* Find the end of this run */ 2639 unsigned long run_end; 2640 if (unsent_pass) { 2641 run_end = find_next_bit(unsentmap, pages, run_start + 1); 2642 } else { 2643 run_end = find_next_zero_bit(bitmap, pages, run_start + 1); 2644 } 2645 /* 2646 * If the end isn't at the start of a host page, then the 2647 * run doesn't finish at the end of a host page 2648 * and we need to discard. 2649 */ 2650 host_offset = run_end % host_ratio; 2651 if (host_offset) { 2652 do_fixup = true; 2653 fixup_start_addr = run_end - host_offset; 2654 /* 2655 * This host page has gone, the next loop iteration starts 2656 * from after the fixup 2657 */ 2658 run_start = fixup_start_addr + host_ratio; 2659 } else { 2660 /* 2661 * No discards on this iteration, next loop starts from 2662 * next sent/dirty page 2663 */ 2664 run_start = run_end + 1; 2665 } 2666 } 2667 2668 if (do_fixup) { 2669 unsigned long page; 2670 2671 /* Tell the destination to discard this page */ 2672 if (unsent_pass || !test_bit(fixup_start_addr, unsentmap)) { 2673 /* For the unsent_pass we: 2674 * discard partially sent pages 2675 * For the !unsent_pass (dirty) we: 2676 * discard partially dirty pages that were sent 2677 * (any partially sent pages were already discarded 2678 * by the previous unsent_pass) 2679 */ 2680 postcopy_discard_send_range(ms, pds, fixup_start_addr, 2681 host_ratio); 2682 } 2683 2684 /* Clean up the bitmap */ 2685 for (page = fixup_start_addr; 2686 page < fixup_start_addr + host_ratio; page++) { 2687 /* All pages in this host page are now not sent */ 2688 set_bit(page, unsentmap); 2689 2690 /* 2691 * Remark them as dirty, updating the count for any pages 2692 * that weren't previously dirty. 2693 */ 2694 rs->migration_dirty_pages += !test_and_set_bit(page, bitmap); 2695 } 2696 } 2697 2698 if (unsent_pass) { 2699 /* Find the next sent page for the next iteration */ 2700 run_start = find_next_zero_bit(unsentmap, pages, run_start); 2701 } else { 2702 /* Find the next dirty page for the next iteration */ 2703 run_start = find_next_bit(bitmap, pages, run_start); 2704 } 2705 } 2706 } 2707 2708 /** 2709 * postcopy_chuck_hostpages: discrad any partially sent host page 2710 * 2711 * Utility for the outgoing postcopy code. 2712 * 2713 * Discard any partially sent host-page size chunks, mark any partially 2714 * dirty host-page size chunks as all dirty. In this case the host-page 2715 * is the host-page for the particular RAMBlock, i.e. it might be a huge page 2716 * 2717 * Returns zero on success 2718 * 2719 * @ms: current migration state 2720 * @block: block we want to work with 2721 */ 2722 static int postcopy_chunk_hostpages(MigrationState *ms, RAMBlock *block) 2723 { 2724 PostcopyDiscardState *pds = 2725 postcopy_discard_send_init(ms, block->idstr); 2726 2727 /* First pass: Discard all partially sent host pages */ 2728 postcopy_chunk_hostpages_pass(ms, true, block, pds); 2729 /* 2730 * Second pass: Ensure that all partially dirty host pages are made 2731 * fully dirty. 2732 */ 2733 postcopy_chunk_hostpages_pass(ms, false, block, pds); 2734 2735 postcopy_discard_send_finish(ms, pds); 2736 return 0; 2737 } 2738 2739 /** 2740 * ram_postcopy_send_discard_bitmap: transmit the discard bitmap 2741 * 2742 * Returns zero on success 2743 * 2744 * Transmit the set of pages to be discarded after precopy to the target 2745 * these are pages that: 2746 * a) Have been previously transmitted but are now dirty again 2747 * b) Pages that have never been transmitted, this ensures that 2748 * any pages on the destination that have been mapped by background 2749 * tasks get discarded (transparent huge pages is the specific concern) 2750 * Hopefully this is pretty sparse 2751 * 2752 * @ms: current migration state 2753 */ 2754 int ram_postcopy_send_discard_bitmap(MigrationState *ms) 2755 { 2756 RAMState *rs = ram_state; 2757 RAMBlock *block; 2758 int ret; 2759 2760 rcu_read_lock(); 2761 2762 /* This should be our last sync, the src is now paused */ 2763 migration_bitmap_sync(rs); 2764 2765 /* Easiest way to make sure we don't resume in the middle of a host-page */ 2766 rs->last_seen_block = NULL; 2767 rs->last_sent_block = NULL; 2768 rs->last_page = 0; 2769 2770 RAMBLOCK_FOREACH_MIGRATABLE(block) { 2771 unsigned long pages = block->used_length >> TARGET_PAGE_BITS; 2772 unsigned long *bitmap = block->bmap; 2773 unsigned long *unsentmap = block->unsentmap; 2774 2775 if (!unsentmap) { 2776 /* We don't have a safe way to resize the sentmap, so 2777 * if the bitmap was resized it will be NULL at this 2778 * point. 2779 */ 2780 error_report("migration ram resized during precopy phase"); 2781 rcu_read_unlock(); 2782 return -EINVAL; 2783 } 2784 /* Deal with TPS != HPS and huge pages */ 2785 ret = postcopy_chunk_hostpages(ms, block); 2786 if (ret) { 2787 rcu_read_unlock(); 2788 return ret; 2789 } 2790 2791 /* 2792 * Update the unsentmap to be unsentmap = unsentmap | dirty 2793 */ 2794 bitmap_or(unsentmap, unsentmap, bitmap, pages); 2795 #ifdef DEBUG_POSTCOPY 2796 ram_debug_dump_bitmap(unsentmap, true, pages); 2797 #endif 2798 } 2799 trace_ram_postcopy_send_discard_bitmap(); 2800 2801 ret = postcopy_each_ram_send_discard(ms); 2802 rcu_read_unlock(); 2803 2804 return ret; 2805 } 2806 2807 /** 2808 * ram_discard_range: discard dirtied pages at the beginning of postcopy 2809 * 2810 * Returns zero on success 2811 * 2812 * @rbname: name of the RAMBlock of the request. NULL means the 2813 * same that last one. 2814 * @start: RAMBlock starting page 2815 * @length: RAMBlock size 2816 */ 2817 int ram_discard_range(const char *rbname, uint64_t start, size_t length) 2818 { 2819 int ret = -1; 2820 2821 trace_ram_discard_range(rbname, start, length); 2822 2823 rcu_read_lock(); 2824 RAMBlock *rb = qemu_ram_block_by_name(rbname); 2825 2826 if (!rb) { 2827 error_report("ram_discard_range: Failed to find block '%s'", rbname); 2828 goto err; 2829 } 2830 2831 bitmap_clear(rb->receivedmap, start >> qemu_target_page_bits(), 2832 length >> qemu_target_page_bits()); 2833 ret = ram_block_discard_range(rb, start, length); 2834 2835 err: 2836 rcu_read_unlock(); 2837 2838 return ret; 2839 } 2840 2841 /* 2842 * For every allocation, we will try not to crash the VM if the 2843 * allocation failed. 2844 */ 2845 static int xbzrle_init(void) 2846 { 2847 Error *local_err = NULL; 2848 2849 if (!migrate_use_xbzrle()) { 2850 return 0; 2851 } 2852 2853 XBZRLE_cache_lock(); 2854 2855 XBZRLE.zero_target_page = g_try_malloc0(TARGET_PAGE_SIZE); 2856 if (!XBZRLE.zero_target_page) { 2857 error_report("%s: Error allocating zero page", __func__); 2858 goto err_out; 2859 } 2860 2861 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size(), 2862 TARGET_PAGE_SIZE, &local_err); 2863 if (!XBZRLE.cache) { 2864 error_report_err(local_err); 2865 goto free_zero_page; 2866 } 2867 2868 XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE); 2869 if (!XBZRLE.encoded_buf) { 2870 error_report("%s: Error allocating encoded_buf", __func__); 2871 goto free_cache; 2872 } 2873 2874 XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE); 2875 if (!XBZRLE.current_buf) { 2876 error_report("%s: Error allocating current_buf", __func__); 2877 goto free_encoded_buf; 2878 } 2879 2880 /* We are all good */ 2881 XBZRLE_cache_unlock(); 2882 return 0; 2883 2884 free_encoded_buf: 2885 g_free(XBZRLE.encoded_buf); 2886 XBZRLE.encoded_buf = NULL; 2887 free_cache: 2888 cache_fini(XBZRLE.cache); 2889 XBZRLE.cache = NULL; 2890 free_zero_page: 2891 g_free(XBZRLE.zero_target_page); 2892 XBZRLE.zero_target_page = NULL; 2893 err_out: 2894 XBZRLE_cache_unlock(); 2895 return -ENOMEM; 2896 } 2897 2898 static int ram_state_init(RAMState **rsp) 2899 { 2900 *rsp = g_try_new0(RAMState, 1); 2901 2902 if (!*rsp) { 2903 error_report("%s: Init ramstate fail", __func__); 2904 return -1; 2905 } 2906 2907 qemu_mutex_init(&(*rsp)->bitmap_mutex); 2908 qemu_mutex_init(&(*rsp)->src_page_req_mutex); 2909 QSIMPLEQ_INIT(&(*rsp)->src_page_requests); 2910 2911 /* 2912 * Count the total number of pages used by ram blocks not including any 2913 * gaps due to alignment or unplugs. 2914 */ 2915 (*rsp)->migration_dirty_pages = ram_bytes_total() >> TARGET_PAGE_BITS; 2916 2917 ram_state_reset(*rsp); 2918 2919 return 0; 2920 } 2921 2922 static void ram_list_init_bitmaps(void) 2923 { 2924 RAMBlock *block; 2925 unsigned long pages; 2926 2927 /* Skip setting bitmap if there is no RAM */ 2928 if (ram_bytes_total()) { 2929 RAMBLOCK_FOREACH_MIGRATABLE(block) { 2930 pages = block->max_length >> TARGET_PAGE_BITS; 2931 block->bmap = bitmap_new(pages); 2932 bitmap_set(block->bmap, 0, pages); 2933 if (migrate_postcopy_ram()) { 2934 block->unsentmap = bitmap_new(pages); 2935 bitmap_set(block->unsentmap, 0, pages); 2936 } 2937 } 2938 } 2939 } 2940 2941 static void ram_init_bitmaps(RAMState *rs) 2942 { 2943 /* For memory_global_dirty_log_start below. */ 2944 qemu_mutex_lock_iothread(); 2945 qemu_mutex_lock_ramlist(); 2946 rcu_read_lock(); 2947 2948 ram_list_init_bitmaps(); 2949 memory_global_dirty_log_start(); 2950 migration_bitmap_sync(rs); 2951 2952 rcu_read_unlock(); 2953 qemu_mutex_unlock_ramlist(); 2954 qemu_mutex_unlock_iothread(); 2955 } 2956 2957 static int ram_init_all(RAMState **rsp) 2958 { 2959 if (ram_state_init(rsp)) { 2960 return -1; 2961 } 2962 2963 if (xbzrle_init()) { 2964 ram_state_cleanup(rsp); 2965 return -1; 2966 } 2967 2968 ram_init_bitmaps(*rsp); 2969 2970 return 0; 2971 } 2972 2973 static void ram_state_resume_prepare(RAMState *rs, QEMUFile *out) 2974 { 2975 RAMBlock *block; 2976 uint64_t pages = 0; 2977 2978 /* 2979 * Postcopy is not using xbzrle/compression, so no need for that. 2980 * Also, since source are already halted, we don't need to care 2981 * about dirty page logging as well. 2982 */ 2983 2984 RAMBLOCK_FOREACH_MIGRATABLE(block) { 2985 pages += bitmap_count_one(block->bmap, 2986 block->used_length >> TARGET_PAGE_BITS); 2987 } 2988 2989 /* This may not be aligned with current bitmaps. Recalculate. */ 2990 rs->migration_dirty_pages = pages; 2991 2992 rs->last_seen_block = NULL; 2993 rs->last_sent_block = NULL; 2994 rs->last_page = 0; 2995 rs->last_version = ram_list.version; 2996 /* 2997 * Disable the bulk stage, otherwise we'll resend the whole RAM no 2998 * matter what we have sent. 2999 */ 3000 rs->ram_bulk_stage = false; 3001 3002 /* Update RAMState cache of output QEMUFile */ 3003 rs->f = out; 3004 3005 trace_ram_state_resume_prepare(pages); 3006 } 3007 3008 /* 3009 * Each of ram_save_setup, ram_save_iterate and ram_save_complete has 3010 * long-running RCU critical section. When rcu-reclaims in the code 3011 * start to become numerous it will be necessary to reduce the 3012 * granularity of these critical sections. 3013 */ 3014 3015 /** 3016 * ram_save_setup: Setup RAM for migration 3017 * 3018 * Returns zero to indicate success and negative for error 3019 * 3020 * @f: QEMUFile where to send the data 3021 * @opaque: RAMState pointer 3022 */ 3023 static int ram_save_setup(QEMUFile *f, void *opaque) 3024 { 3025 RAMState **rsp = opaque; 3026 RAMBlock *block; 3027 3028 if (compress_threads_save_setup()) { 3029 return -1; 3030 } 3031 3032 /* migration has already setup the bitmap, reuse it. */ 3033 if (!migration_in_colo_state()) { 3034 if (ram_init_all(rsp) != 0) { 3035 compress_threads_save_cleanup(); 3036 return -1; 3037 } 3038 } 3039 (*rsp)->f = f; 3040 3041 rcu_read_lock(); 3042 3043 qemu_put_be64(f, ram_bytes_total() | RAM_SAVE_FLAG_MEM_SIZE); 3044 3045 RAMBLOCK_FOREACH_MIGRATABLE(block) { 3046 qemu_put_byte(f, strlen(block->idstr)); 3047 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr)); 3048 qemu_put_be64(f, block->used_length); 3049 if (migrate_postcopy_ram() && block->page_size != qemu_host_page_size) { 3050 qemu_put_be64(f, block->page_size); 3051 } 3052 } 3053 3054 rcu_read_unlock(); 3055 3056 ram_control_before_iterate(f, RAM_CONTROL_SETUP); 3057 ram_control_after_iterate(f, RAM_CONTROL_SETUP); 3058 3059 multifd_send_sync_main(); 3060 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 3061 qemu_fflush(f); 3062 3063 return 0; 3064 } 3065 3066 /** 3067 * ram_save_iterate: iterative stage for migration 3068 * 3069 * Returns zero to indicate success and negative for error 3070 * 3071 * @f: QEMUFile where to send the data 3072 * @opaque: RAMState pointer 3073 */ 3074 static int ram_save_iterate(QEMUFile *f, void *opaque) 3075 { 3076 RAMState **temp = opaque; 3077 RAMState *rs = *temp; 3078 int ret; 3079 int i; 3080 int64_t t0; 3081 int done = 0; 3082 3083 if (blk_mig_bulk_active()) { 3084 /* Avoid transferring ram during bulk phase of block migration as 3085 * the bulk phase will usually take a long time and transferring 3086 * ram updates during that time is pointless. */ 3087 goto out; 3088 } 3089 3090 rcu_read_lock(); 3091 if (ram_list.version != rs->last_version) { 3092 ram_state_reset(rs); 3093 } 3094 3095 /* Read version before ram_list.blocks */ 3096 smp_rmb(); 3097 3098 ram_control_before_iterate(f, RAM_CONTROL_ROUND); 3099 3100 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 3101 i = 0; 3102 while ((ret = qemu_file_rate_limit(f)) == 0 || 3103 !QSIMPLEQ_EMPTY(&rs->src_page_requests)) { 3104 int pages; 3105 3106 if (qemu_file_get_error(f)) { 3107 break; 3108 } 3109 3110 pages = ram_find_and_save_block(rs, false); 3111 /* no more pages to sent */ 3112 if (pages == 0) { 3113 done = 1; 3114 break; 3115 } 3116 rs->iterations++; 3117 3118 /* we want to check in the 1st loop, just in case it was the 1st time 3119 and we had to sync the dirty bitmap. 3120 qemu_get_clock_ns() is a bit expensive, so we only check each some 3121 iterations 3122 */ 3123 if ((i & 63) == 0) { 3124 uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) / 1000000; 3125 if (t1 > MAX_WAIT) { 3126 trace_ram_save_iterate_big_wait(t1, i); 3127 break; 3128 } 3129 } 3130 i++; 3131 } 3132 flush_compressed_data(rs); 3133 rcu_read_unlock(); 3134 3135 /* 3136 * Must occur before EOS (or any QEMUFile operation) 3137 * because of RDMA protocol. 3138 */ 3139 ram_control_after_iterate(f, RAM_CONTROL_ROUND); 3140 3141 multifd_send_sync_main(); 3142 out: 3143 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 3144 qemu_fflush(f); 3145 ram_counters.transferred += 8; 3146 3147 ret = qemu_file_get_error(f); 3148 if (ret < 0) { 3149 return ret; 3150 } 3151 3152 return done; 3153 } 3154 3155 /** 3156 * ram_save_complete: function called to send the remaining amount of ram 3157 * 3158 * Returns zero to indicate success 3159 * 3160 * Called with iothread lock 3161 * 3162 * @f: QEMUFile where to send the data 3163 * @opaque: RAMState pointer 3164 */ 3165 static int ram_save_complete(QEMUFile *f, void *opaque) 3166 { 3167 RAMState **temp = opaque; 3168 RAMState *rs = *temp; 3169 3170 rcu_read_lock(); 3171 3172 if (!migration_in_postcopy()) { 3173 migration_bitmap_sync(rs); 3174 } 3175 3176 ram_control_before_iterate(f, RAM_CONTROL_FINISH); 3177 3178 /* try transferring iterative blocks of memory */ 3179 3180 /* flush all remaining blocks regardless of rate limiting */ 3181 while (true) { 3182 int pages; 3183 3184 pages = ram_find_and_save_block(rs, !migration_in_colo_state()); 3185 /* no more blocks to sent */ 3186 if (pages == 0) { 3187 break; 3188 } 3189 } 3190 3191 flush_compressed_data(rs); 3192 ram_control_after_iterate(f, RAM_CONTROL_FINISH); 3193 3194 rcu_read_unlock(); 3195 3196 multifd_send_sync_main(); 3197 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 3198 qemu_fflush(f); 3199 3200 return 0; 3201 } 3202 3203 static void ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size, 3204 uint64_t *res_precopy_only, 3205 uint64_t *res_compatible, 3206 uint64_t *res_postcopy_only) 3207 { 3208 RAMState **temp = opaque; 3209 RAMState *rs = *temp; 3210 uint64_t remaining_size; 3211 3212 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE; 3213 3214 if (!migration_in_postcopy() && 3215 remaining_size < max_size) { 3216 qemu_mutex_lock_iothread(); 3217 rcu_read_lock(); 3218 migration_bitmap_sync(rs); 3219 rcu_read_unlock(); 3220 qemu_mutex_unlock_iothread(); 3221 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE; 3222 } 3223 3224 if (migrate_postcopy_ram()) { 3225 /* We can do postcopy, and all the data is postcopiable */ 3226 *res_compatible += remaining_size; 3227 } else { 3228 *res_precopy_only += remaining_size; 3229 } 3230 } 3231 3232 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host) 3233 { 3234 unsigned int xh_len; 3235 int xh_flags; 3236 uint8_t *loaded_data; 3237 3238 /* extract RLE header */ 3239 xh_flags = qemu_get_byte(f); 3240 xh_len = qemu_get_be16(f); 3241 3242 if (xh_flags != ENCODING_FLAG_XBZRLE) { 3243 error_report("Failed to load XBZRLE page - wrong compression!"); 3244 return -1; 3245 } 3246 3247 if (xh_len > TARGET_PAGE_SIZE) { 3248 error_report("Failed to load XBZRLE page - len overflow!"); 3249 return -1; 3250 } 3251 loaded_data = XBZRLE.decoded_buf; 3252 /* load data and decode */ 3253 /* it can change loaded_data to point to an internal buffer */ 3254 qemu_get_buffer_in_place(f, &loaded_data, xh_len); 3255 3256 /* decode RLE */ 3257 if (xbzrle_decode_buffer(loaded_data, xh_len, host, 3258 TARGET_PAGE_SIZE) == -1) { 3259 error_report("Failed to load XBZRLE page - decode error!"); 3260 return -1; 3261 } 3262 3263 return 0; 3264 } 3265 3266 /** 3267 * ram_block_from_stream: read a RAMBlock id from the migration stream 3268 * 3269 * Must be called from within a rcu critical section. 3270 * 3271 * Returns a pointer from within the RCU-protected ram_list. 3272 * 3273 * @f: QEMUFile where to read the data from 3274 * @flags: Page flags (mostly to see if it's a continuation of previous block) 3275 */ 3276 static inline RAMBlock *ram_block_from_stream(QEMUFile *f, int flags) 3277 { 3278 static RAMBlock *block = NULL; 3279 char id[256]; 3280 uint8_t len; 3281 3282 if (flags & RAM_SAVE_FLAG_CONTINUE) { 3283 if (!block) { 3284 error_report("Ack, bad migration stream!"); 3285 return NULL; 3286 } 3287 return block; 3288 } 3289 3290 len = qemu_get_byte(f); 3291 qemu_get_buffer(f, (uint8_t *)id, len); 3292 id[len] = 0; 3293 3294 block = qemu_ram_block_by_name(id); 3295 if (!block) { 3296 error_report("Can't find block %s", id); 3297 return NULL; 3298 } 3299 3300 if (!qemu_ram_is_migratable(block)) { 3301 error_report("block %s should not be migrated !", id); 3302 return NULL; 3303 } 3304 3305 return block; 3306 } 3307 3308 static inline void *host_from_ram_block_offset(RAMBlock *block, 3309 ram_addr_t offset) 3310 { 3311 if (!offset_in_ramblock(block, offset)) { 3312 return NULL; 3313 } 3314 3315 return block->host + offset; 3316 } 3317 3318 /** 3319 * ram_handle_compressed: handle the zero page case 3320 * 3321 * If a page (or a whole RDMA chunk) has been 3322 * determined to be zero, then zap it. 3323 * 3324 * @host: host address for the zero page 3325 * @ch: what the page is filled from. We only support zero 3326 * @size: size of the zero page 3327 */ 3328 void ram_handle_compressed(void *host, uint8_t ch, uint64_t size) 3329 { 3330 if (ch != 0 || !is_zero_range(host, size)) { 3331 memset(host, ch, size); 3332 } 3333 } 3334 3335 /* return the size after decompression, or negative value on error */ 3336 static int 3337 qemu_uncompress_data(z_stream *stream, uint8_t *dest, size_t dest_len, 3338 const uint8_t *source, size_t source_len) 3339 { 3340 int err; 3341 3342 err = inflateReset(stream); 3343 if (err != Z_OK) { 3344 return -1; 3345 } 3346 3347 stream->avail_in = source_len; 3348 stream->next_in = (uint8_t *)source; 3349 stream->avail_out = dest_len; 3350 stream->next_out = dest; 3351 3352 err = inflate(stream, Z_NO_FLUSH); 3353 if (err != Z_STREAM_END) { 3354 return -1; 3355 } 3356 3357 return stream->total_out; 3358 } 3359 3360 static void *do_data_decompress(void *opaque) 3361 { 3362 DecompressParam *param = opaque; 3363 unsigned long pagesize; 3364 uint8_t *des; 3365 int len, ret; 3366 3367 qemu_mutex_lock(¶m->mutex); 3368 while (!param->quit) { 3369 if (param->des) { 3370 des = param->des; 3371 len = param->len; 3372 param->des = 0; 3373 qemu_mutex_unlock(¶m->mutex); 3374 3375 pagesize = TARGET_PAGE_SIZE; 3376 3377 ret = qemu_uncompress_data(¶m->stream, des, pagesize, 3378 param->compbuf, len); 3379 if (ret < 0 && migrate_get_current()->decompress_error_check) { 3380 error_report("decompress data failed"); 3381 qemu_file_set_error(decomp_file, ret); 3382 } 3383 3384 qemu_mutex_lock(&decomp_done_lock); 3385 param->done = true; 3386 qemu_cond_signal(&decomp_done_cond); 3387 qemu_mutex_unlock(&decomp_done_lock); 3388 3389 qemu_mutex_lock(¶m->mutex); 3390 } else { 3391 qemu_cond_wait(¶m->cond, ¶m->mutex); 3392 } 3393 } 3394 qemu_mutex_unlock(¶m->mutex); 3395 3396 return NULL; 3397 } 3398 3399 static int wait_for_decompress_done(void) 3400 { 3401 int idx, thread_count; 3402 3403 if (!migrate_use_compression()) { 3404 return 0; 3405 } 3406 3407 thread_count = migrate_decompress_threads(); 3408 qemu_mutex_lock(&decomp_done_lock); 3409 for (idx = 0; idx < thread_count; idx++) { 3410 while (!decomp_param[idx].done) { 3411 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock); 3412 } 3413 } 3414 qemu_mutex_unlock(&decomp_done_lock); 3415 return qemu_file_get_error(decomp_file); 3416 } 3417 3418 static void compress_threads_load_cleanup(void) 3419 { 3420 int i, thread_count; 3421 3422 if (!migrate_use_compression()) { 3423 return; 3424 } 3425 thread_count = migrate_decompress_threads(); 3426 for (i = 0; i < thread_count; i++) { 3427 /* 3428 * we use it as a indicator which shows if the thread is 3429 * properly init'd or not 3430 */ 3431 if (!decomp_param[i].compbuf) { 3432 break; 3433 } 3434 3435 qemu_mutex_lock(&decomp_param[i].mutex); 3436 decomp_param[i].quit = true; 3437 qemu_cond_signal(&decomp_param[i].cond); 3438 qemu_mutex_unlock(&decomp_param[i].mutex); 3439 } 3440 for (i = 0; i < thread_count; i++) { 3441 if (!decomp_param[i].compbuf) { 3442 break; 3443 } 3444 3445 qemu_thread_join(decompress_threads + i); 3446 qemu_mutex_destroy(&decomp_param[i].mutex); 3447 qemu_cond_destroy(&decomp_param[i].cond); 3448 inflateEnd(&decomp_param[i].stream); 3449 g_free(decomp_param[i].compbuf); 3450 decomp_param[i].compbuf = NULL; 3451 } 3452 g_free(decompress_threads); 3453 g_free(decomp_param); 3454 decompress_threads = NULL; 3455 decomp_param = NULL; 3456 decomp_file = NULL; 3457 } 3458 3459 static int compress_threads_load_setup(QEMUFile *f) 3460 { 3461 int i, thread_count; 3462 3463 if (!migrate_use_compression()) { 3464 return 0; 3465 } 3466 3467 thread_count = migrate_decompress_threads(); 3468 decompress_threads = g_new0(QemuThread, thread_count); 3469 decomp_param = g_new0(DecompressParam, thread_count); 3470 qemu_mutex_init(&decomp_done_lock); 3471 qemu_cond_init(&decomp_done_cond); 3472 decomp_file = f; 3473 for (i = 0; i < thread_count; i++) { 3474 if (inflateInit(&decomp_param[i].stream) != Z_OK) { 3475 goto exit; 3476 } 3477 3478 decomp_param[i].compbuf = g_malloc0(compressBound(TARGET_PAGE_SIZE)); 3479 qemu_mutex_init(&decomp_param[i].mutex); 3480 qemu_cond_init(&decomp_param[i].cond); 3481 decomp_param[i].done = true; 3482 decomp_param[i].quit = false; 3483 qemu_thread_create(decompress_threads + i, "decompress", 3484 do_data_decompress, decomp_param + i, 3485 QEMU_THREAD_JOINABLE); 3486 } 3487 return 0; 3488 exit: 3489 compress_threads_load_cleanup(); 3490 return -1; 3491 } 3492 3493 static void decompress_data_with_multi_threads(QEMUFile *f, 3494 void *host, int len) 3495 { 3496 int idx, thread_count; 3497 3498 thread_count = migrate_decompress_threads(); 3499 qemu_mutex_lock(&decomp_done_lock); 3500 while (true) { 3501 for (idx = 0; idx < thread_count; idx++) { 3502 if (decomp_param[idx].done) { 3503 decomp_param[idx].done = false; 3504 qemu_mutex_lock(&decomp_param[idx].mutex); 3505 qemu_get_buffer(f, decomp_param[idx].compbuf, len); 3506 decomp_param[idx].des = host; 3507 decomp_param[idx].len = len; 3508 qemu_cond_signal(&decomp_param[idx].cond); 3509 qemu_mutex_unlock(&decomp_param[idx].mutex); 3510 break; 3511 } 3512 } 3513 if (idx < thread_count) { 3514 break; 3515 } else { 3516 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock); 3517 } 3518 } 3519 qemu_mutex_unlock(&decomp_done_lock); 3520 } 3521 3522 /** 3523 * ram_load_setup: Setup RAM for migration incoming side 3524 * 3525 * Returns zero to indicate success and negative for error 3526 * 3527 * @f: QEMUFile where to receive the data 3528 * @opaque: RAMState pointer 3529 */ 3530 static int ram_load_setup(QEMUFile *f, void *opaque) 3531 { 3532 if (compress_threads_load_setup(f)) { 3533 return -1; 3534 } 3535 3536 xbzrle_load_setup(); 3537 ramblock_recv_map_init(); 3538 return 0; 3539 } 3540 3541 static int ram_load_cleanup(void *opaque) 3542 { 3543 RAMBlock *rb; 3544 xbzrle_load_cleanup(); 3545 compress_threads_load_cleanup(); 3546 3547 RAMBLOCK_FOREACH_MIGRATABLE(rb) { 3548 g_free(rb->receivedmap); 3549 rb->receivedmap = NULL; 3550 } 3551 return 0; 3552 } 3553 3554 /** 3555 * ram_postcopy_incoming_init: allocate postcopy data structures 3556 * 3557 * Returns 0 for success and negative if there was one error 3558 * 3559 * @mis: current migration incoming state 3560 * 3561 * Allocate data structures etc needed by incoming migration with 3562 * postcopy-ram. postcopy-ram's similarly names 3563 * postcopy_ram_incoming_init does the work. 3564 */ 3565 int ram_postcopy_incoming_init(MigrationIncomingState *mis) 3566 { 3567 return postcopy_ram_incoming_init(mis); 3568 } 3569 3570 /** 3571 * ram_load_postcopy: load a page in postcopy case 3572 * 3573 * Returns 0 for success or -errno in case of error 3574 * 3575 * Called in postcopy mode by ram_load(). 3576 * rcu_read_lock is taken prior to this being called. 3577 * 3578 * @f: QEMUFile where to send the data 3579 */ 3580 static int ram_load_postcopy(QEMUFile *f) 3581 { 3582 int flags = 0, ret = 0; 3583 bool place_needed = false; 3584 bool matching_page_sizes = false; 3585 MigrationIncomingState *mis = migration_incoming_get_current(); 3586 /* Temporary page that is later 'placed' */ 3587 void *postcopy_host_page = postcopy_get_tmp_page(mis); 3588 void *last_host = NULL; 3589 bool all_zero = false; 3590 3591 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) { 3592 ram_addr_t addr; 3593 void *host = NULL; 3594 void *page_buffer = NULL; 3595 void *place_source = NULL; 3596 RAMBlock *block = NULL; 3597 uint8_t ch; 3598 3599 addr = qemu_get_be64(f); 3600 3601 /* 3602 * If qemu file error, we should stop here, and then "addr" 3603 * may be invalid 3604 */ 3605 ret = qemu_file_get_error(f); 3606 if (ret) { 3607 break; 3608 } 3609 3610 flags = addr & ~TARGET_PAGE_MASK; 3611 addr &= TARGET_PAGE_MASK; 3612 3613 trace_ram_load_postcopy_loop((uint64_t)addr, flags); 3614 place_needed = false; 3615 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE)) { 3616 block = ram_block_from_stream(f, flags); 3617 3618 host = host_from_ram_block_offset(block, addr); 3619 if (!host) { 3620 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr); 3621 ret = -EINVAL; 3622 break; 3623 } 3624 matching_page_sizes = block->page_size == TARGET_PAGE_SIZE; 3625 /* 3626 * Postcopy requires that we place whole host pages atomically; 3627 * these may be huge pages for RAMBlocks that are backed by 3628 * hugetlbfs. 3629 * To make it atomic, the data is read into a temporary page 3630 * that's moved into place later. 3631 * The migration protocol uses, possibly smaller, target-pages 3632 * however the source ensures it always sends all the components 3633 * of a host page in order. 3634 */ 3635 page_buffer = postcopy_host_page + 3636 ((uintptr_t)host & (block->page_size - 1)); 3637 /* If all TP are zero then we can optimise the place */ 3638 if (!((uintptr_t)host & (block->page_size - 1))) { 3639 all_zero = true; 3640 } else { 3641 /* not the 1st TP within the HP */ 3642 if (host != (last_host + TARGET_PAGE_SIZE)) { 3643 error_report("Non-sequential target page %p/%p", 3644 host, last_host); 3645 ret = -EINVAL; 3646 break; 3647 } 3648 } 3649 3650 3651 /* 3652 * If it's the last part of a host page then we place the host 3653 * page 3654 */ 3655 place_needed = (((uintptr_t)host + TARGET_PAGE_SIZE) & 3656 (block->page_size - 1)) == 0; 3657 place_source = postcopy_host_page; 3658 } 3659 last_host = host; 3660 3661 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) { 3662 case RAM_SAVE_FLAG_ZERO: 3663 ch = qemu_get_byte(f); 3664 memset(page_buffer, ch, TARGET_PAGE_SIZE); 3665 if (ch) { 3666 all_zero = false; 3667 } 3668 break; 3669 3670 case RAM_SAVE_FLAG_PAGE: 3671 all_zero = false; 3672 if (!place_needed || !matching_page_sizes) { 3673 qemu_get_buffer(f, page_buffer, TARGET_PAGE_SIZE); 3674 } else { 3675 /* Avoids the qemu_file copy during postcopy, which is 3676 * going to do a copy later; can only do it when we 3677 * do this read in one go (matching page sizes) 3678 */ 3679 qemu_get_buffer_in_place(f, (uint8_t **)&place_source, 3680 TARGET_PAGE_SIZE); 3681 } 3682 break; 3683 case RAM_SAVE_FLAG_EOS: 3684 /* normal exit */ 3685 multifd_recv_sync_main(); 3686 break; 3687 default: 3688 error_report("Unknown combination of migration flags: %#x" 3689 " (postcopy mode)", flags); 3690 ret = -EINVAL; 3691 break; 3692 } 3693 3694 /* Detect for any possible file errors */ 3695 if (!ret && qemu_file_get_error(f)) { 3696 ret = qemu_file_get_error(f); 3697 } 3698 3699 if (!ret && place_needed) { 3700 /* This gets called at the last target page in the host page */ 3701 void *place_dest = host + TARGET_PAGE_SIZE - block->page_size; 3702 3703 if (all_zero) { 3704 ret = postcopy_place_page_zero(mis, place_dest, 3705 block); 3706 } else { 3707 ret = postcopy_place_page(mis, place_dest, 3708 place_source, block); 3709 } 3710 } 3711 } 3712 3713 return ret; 3714 } 3715 3716 static bool postcopy_is_advised(void) 3717 { 3718 PostcopyState ps = postcopy_state_get(); 3719 return ps >= POSTCOPY_INCOMING_ADVISE && ps < POSTCOPY_INCOMING_END; 3720 } 3721 3722 static bool postcopy_is_running(void) 3723 { 3724 PostcopyState ps = postcopy_state_get(); 3725 return ps >= POSTCOPY_INCOMING_LISTENING && ps < POSTCOPY_INCOMING_END; 3726 } 3727 3728 static int ram_load(QEMUFile *f, void *opaque, int version_id) 3729 { 3730 int flags = 0, ret = 0, invalid_flags = 0; 3731 static uint64_t seq_iter; 3732 int len = 0; 3733 /* 3734 * If system is running in postcopy mode, page inserts to host memory must 3735 * be atomic 3736 */ 3737 bool postcopy_running = postcopy_is_running(); 3738 /* ADVISE is earlier, it shows the source has the postcopy capability on */ 3739 bool postcopy_advised = postcopy_is_advised(); 3740 3741 seq_iter++; 3742 3743 if (version_id != 4) { 3744 ret = -EINVAL; 3745 } 3746 3747 if (!migrate_use_compression()) { 3748 invalid_flags |= RAM_SAVE_FLAG_COMPRESS_PAGE; 3749 } 3750 /* This RCU critical section can be very long running. 3751 * When RCU reclaims in the code start to become numerous, 3752 * it will be necessary to reduce the granularity of this 3753 * critical section. 3754 */ 3755 rcu_read_lock(); 3756 3757 if (postcopy_running) { 3758 ret = ram_load_postcopy(f); 3759 } 3760 3761 while (!postcopy_running && !ret && !(flags & RAM_SAVE_FLAG_EOS)) { 3762 ram_addr_t addr, total_ram_bytes; 3763 void *host = NULL; 3764 uint8_t ch; 3765 3766 addr = qemu_get_be64(f); 3767 flags = addr & ~TARGET_PAGE_MASK; 3768 addr &= TARGET_PAGE_MASK; 3769 3770 if (flags & invalid_flags) { 3771 if (flags & invalid_flags & RAM_SAVE_FLAG_COMPRESS_PAGE) { 3772 error_report("Received an unexpected compressed page"); 3773 } 3774 3775 ret = -EINVAL; 3776 break; 3777 } 3778 3779 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE | 3780 RAM_SAVE_FLAG_COMPRESS_PAGE | RAM_SAVE_FLAG_XBZRLE)) { 3781 RAMBlock *block = ram_block_from_stream(f, flags); 3782 3783 host = host_from_ram_block_offset(block, addr); 3784 if (!host) { 3785 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr); 3786 ret = -EINVAL; 3787 break; 3788 } 3789 ramblock_recv_bitmap_set(block, host); 3790 trace_ram_load_loop(block->idstr, (uint64_t)addr, flags, host); 3791 } 3792 3793 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) { 3794 case RAM_SAVE_FLAG_MEM_SIZE: 3795 /* Synchronize RAM block list */ 3796 total_ram_bytes = addr; 3797 while (!ret && total_ram_bytes) { 3798 RAMBlock *block; 3799 char id[256]; 3800 ram_addr_t length; 3801 3802 len = qemu_get_byte(f); 3803 qemu_get_buffer(f, (uint8_t *)id, len); 3804 id[len] = 0; 3805 length = qemu_get_be64(f); 3806 3807 block = qemu_ram_block_by_name(id); 3808 if (block && !qemu_ram_is_migratable(block)) { 3809 error_report("block %s should not be migrated !", id); 3810 ret = -EINVAL; 3811 } else if (block) { 3812 if (length != block->used_length) { 3813 Error *local_err = NULL; 3814 3815 ret = qemu_ram_resize(block, length, 3816 &local_err); 3817 if (local_err) { 3818 error_report_err(local_err); 3819 } 3820 } 3821 /* For postcopy we need to check hugepage sizes match */ 3822 if (postcopy_advised && 3823 block->page_size != qemu_host_page_size) { 3824 uint64_t remote_page_size = qemu_get_be64(f); 3825 if (remote_page_size != block->page_size) { 3826 error_report("Mismatched RAM page size %s " 3827 "(local) %zd != %" PRId64, 3828 id, block->page_size, 3829 remote_page_size); 3830 ret = -EINVAL; 3831 } 3832 } 3833 ram_control_load_hook(f, RAM_CONTROL_BLOCK_REG, 3834 block->idstr); 3835 } else { 3836 error_report("Unknown ramblock \"%s\", cannot " 3837 "accept migration", id); 3838 ret = -EINVAL; 3839 } 3840 3841 total_ram_bytes -= length; 3842 } 3843 break; 3844 3845 case RAM_SAVE_FLAG_ZERO: 3846 ch = qemu_get_byte(f); 3847 ram_handle_compressed(host, ch, TARGET_PAGE_SIZE); 3848 break; 3849 3850 case RAM_SAVE_FLAG_PAGE: 3851 qemu_get_buffer(f, host, TARGET_PAGE_SIZE); 3852 break; 3853 3854 case RAM_SAVE_FLAG_COMPRESS_PAGE: 3855 len = qemu_get_be32(f); 3856 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) { 3857 error_report("Invalid compressed data length: %d", len); 3858 ret = -EINVAL; 3859 break; 3860 } 3861 decompress_data_with_multi_threads(f, host, len); 3862 break; 3863 3864 case RAM_SAVE_FLAG_XBZRLE: 3865 if (load_xbzrle(f, addr, host) < 0) { 3866 error_report("Failed to decompress XBZRLE page at " 3867 RAM_ADDR_FMT, addr); 3868 ret = -EINVAL; 3869 break; 3870 } 3871 break; 3872 case RAM_SAVE_FLAG_EOS: 3873 /* normal exit */ 3874 multifd_recv_sync_main(); 3875 break; 3876 default: 3877 if (flags & RAM_SAVE_FLAG_HOOK) { 3878 ram_control_load_hook(f, RAM_CONTROL_HOOK, NULL); 3879 } else { 3880 error_report("Unknown combination of migration flags: %#x", 3881 flags); 3882 ret = -EINVAL; 3883 } 3884 } 3885 if (!ret) { 3886 ret = qemu_file_get_error(f); 3887 } 3888 } 3889 3890 ret |= wait_for_decompress_done(); 3891 rcu_read_unlock(); 3892 trace_ram_load_complete(ret, seq_iter); 3893 return ret; 3894 } 3895 3896 static bool ram_has_postcopy(void *opaque) 3897 { 3898 return migrate_postcopy_ram(); 3899 } 3900 3901 /* Sync all the dirty bitmap with destination VM. */ 3902 static int ram_dirty_bitmap_sync_all(MigrationState *s, RAMState *rs) 3903 { 3904 RAMBlock *block; 3905 QEMUFile *file = s->to_dst_file; 3906 int ramblock_count = 0; 3907 3908 trace_ram_dirty_bitmap_sync_start(); 3909 3910 RAMBLOCK_FOREACH_MIGRATABLE(block) { 3911 qemu_savevm_send_recv_bitmap(file, block->idstr); 3912 trace_ram_dirty_bitmap_request(block->idstr); 3913 ramblock_count++; 3914 } 3915 3916 trace_ram_dirty_bitmap_sync_wait(); 3917 3918 /* Wait until all the ramblocks' dirty bitmap synced */ 3919 while (ramblock_count--) { 3920 qemu_sem_wait(&s->rp_state.rp_sem); 3921 } 3922 3923 trace_ram_dirty_bitmap_sync_complete(); 3924 3925 return 0; 3926 } 3927 3928 static void ram_dirty_bitmap_reload_notify(MigrationState *s) 3929 { 3930 qemu_sem_post(&s->rp_state.rp_sem); 3931 } 3932 3933 /* 3934 * Read the received bitmap, revert it as the initial dirty bitmap. 3935 * This is only used when the postcopy migration is paused but wants 3936 * to resume from a middle point. 3937 */ 3938 int ram_dirty_bitmap_reload(MigrationState *s, RAMBlock *block) 3939 { 3940 int ret = -EINVAL; 3941 QEMUFile *file = s->rp_state.from_dst_file; 3942 unsigned long *le_bitmap, nbits = block->used_length >> TARGET_PAGE_BITS; 3943 uint64_t local_size = nbits / 8; 3944 uint64_t size, end_mark; 3945 3946 trace_ram_dirty_bitmap_reload_begin(block->idstr); 3947 3948 if (s->state != MIGRATION_STATUS_POSTCOPY_RECOVER) { 3949 error_report("%s: incorrect state %s", __func__, 3950 MigrationStatus_str(s->state)); 3951 return -EINVAL; 3952 } 3953 3954 /* 3955 * Note: see comments in ramblock_recv_bitmap_send() on why we 3956 * need the endianess convertion, and the paddings. 3957 */ 3958 local_size = ROUND_UP(local_size, 8); 3959 3960 /* Add paddings */ 3961 le_bitmap = bitmap_new(nbits + BITS_PER_LONG); 3962 3963 size = qemu_get_be64(file); 3964 3965 /* The size of the bitmap should match with our ramblock */ 3966 if (size != local_size) { 3967 error_report("%s: ramblock '%s' bitmap size mismatch " 3968 "(0x%"PRIx64" != 0x%"PRIx64")", __func__, 3969 block->idstr, size, local_size); 3970 ret = -EINVAL; 3971 goto out; 3972 } 3973 3974 size = qemu_get_buffer(file, (uint8_t *)le_bitmap, local_size); 3975 end_mark = qemu_get_be64(file); 3976 3977 ret = qemu_file_get_error(file); 3978 if (ret || size != local_size) { 3979 error_report("%s: read bitmap failed for ramblock '%s': %d" 3980 " (size 0x%"PRIx64", got: 0x%"PRIx64")", 3981 __func__, block->idstr, ret, local_size, size); 3982 ret = -EIO; 3983 goto out; 3984 } 3985 3986 if (end_mark != RAMBLOCK_RECV_BITMAP_ENDING) { 3987 error_report("%s: ramblock '%s' end mark incorrect: 0x%"PRIu64, 3988 __func__, block->idstr, end_mark); 3989 ret = -EINVAL; 3990 goto out; 3991 } 3992 3993 /* 3994 * Endianess convertion. We are during postcopy (though paused). 3995 * The dirty bitmap won't change. We can directly modify it. 3996 */ 3997 bitmap_from_le(block->bmap, le_bitmap, nbits); 3998 3999 /* 4000 * What we received is "received bitmap". Revert it as the initial 4001 * dirty bitmap for this ramblock. 4002 */ 4003 bitmap_complement(block->bmap, block->bmap, nbits); 4004 4005 trace_ram_dirty_bitmap_reload_complete(block->idstr); 4006 4007 /* 4008 * We succeeded to sync bitmap for current ramblock. If this is 4009 * the last one to sync, we need to notify the main send thread. 4010 */ 4011 ram_dirty_bitmap_reload_notify(s); 4012 4013 ret = 0; 4014 out: 4015 g_free(le_bitmap); 4016 return ret; 4017 } 4018 4019 static int ram_resume_prepare(MigrationState *s, void *opaque) 4020 { 4021 RAMState *rs = *(RAMState **)opaque; 4022 int ret; 4023 4024 ret = ram_dirty_bitmap_sync_all(s, rs); 4025 if (ret) { 4026 return ret; 4027 } 4028 4029 ram_state_resume_prepare(rs, s->to_dst_file); 4030 4031 return 0; 4032 } 4033 4034 static SaveVMHandlers savevm_ram_handlers = { 4035 .save_setup = ram_save_setup, 4036 .save_live_iterate = ram_save_iterate, 4037 .save_live_complete_postcopy = ram_save_complete, 4038 .save_live_complete_precopy = ram_save_complete, 4039 .has_postcopy = ram_has_postcopy, 4040 .save_live_pending = ram_save_pending, 4041 .load_state = ram_load, 4042 .save_cleanup = ram_save_cleanup, 4043 .load_setup = ram_load_setup, 4044 .load_cleanup = ram_load_cleanup, 4045 .resume_prepare = ram_resume_prepare, 4046 }; 4047 4048 void ram_mig_init(void) 4049 { 4050 qemu_mutex_init(&XBZRLE.lock); 4051 register_savevm_live(NULL, "ram", 0, 4, &savevm_ram_handlers, &ram_state); 4052 } 4053