xref: /openbmc/qemu/migration/ram.c (revision 7e6055c9)
1 /*
2  * QEMU System Emulator
3  *
4  * Copyright (c) 2003-2008 Fabrice Bellard
5  * Copyright (c) 2011-2015 Red Hat Inc
6  *
7  * Authors:
8  *  Juan Quintela <quintela@redhat.com>
9  *
10  * Permission is hereby granted, free of charge, to any person obtaining a copy
11  * of this software and associated documentation files (the "Software"), to deal
12  * in the Software without restriction, including without limitation the rights
13  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
14  * copies of the Software, and to permit persons to whom the Software is
15  * furnished to do so, subject to the following conditions:
16  *
17  * The above copyright notice and this permission notice shall be included in
18  * all copies or substantial portions of the Software.
19  *
20  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
25  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26  * THE SOFTWARE.
27  */
28 
29 #include "qemu/osdep.h"
30 #include "qemu/cutils.h"
31 #include "qemu/bitops.h"
32 #include "qemu/bitmap.h"
33 #include "qemu/main-loop.h"
34 #include "xbzrle.h"
35 #include "ram.h"
36 #include "migration.h"
37 #include "migration/register.h"
38 #include "migration/misc.h"
39 #include "qemu-file.h"
40 #include "postcopy-ram.h"
41 #include "page_cache.h"
42 #include "qemu/error-report.h"
43 #include "qapi/error.h"
44 #include "qapi/qapi-types-migration.h"
45 #include "qapi/qapi-events-migration.h"
46 #include "qapi/qmp/qerror.h"
47 #include "trace.h"
48 #include "exec/ram_addr.h"
49 #include "exec/target_page.h"
50 #include "qemu/rcu_queue.h"
51 #include "migration/colo.h"
52 #include "block.h"
53 #include "sysemu/cpu-throttle.h"
54 #include "savevm.h"
55 #include "qemu/iov.h"
56 #include "multifd.h"
57 #include "sysemu/runstate.h"
58 
59 #include "hw/boards.h" /* for machine_dump_guest_core() */
60 
61 #if defined(__linux__)
62 #include "qemu/userfaultfd.h"
63 #endif /* defined(__linux__) */
64 
65 /***********************************************************/
66 /* ram save/restore */
67 
68 /* RAM_SAVE_FLAG_ZERO used to be named RAM_SAVE_FLAG_COMPRESS, it
69  * worked for pages that where filled with the same char.  We switched
70  * it to only search for the zero value.  And to avoid confusion with
71  * RAM_SSAVE_FLAG_COMPRESS_PAGE just rename it.
72  */
73 
74 #define RAM_SAVE_FLAG_FULL     0x01 /* Obsolete, not used anymore */
75 #define RAM_SAVE_FLAG_ZERO     0x02
76 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
77 #define RAM_SAVE_FLAG_PAGE     0x08
78 #define RAM_SAVE_FLAG_EOS      0x10
79 #define RAM_SAVE_FLAG_CONTINUE 0x20
80 #define RAM_SAVE_FLAG_XBZRLE   0x40
81 /* 0x80 is reserved in migration.h start with 0x100 next */
82 #define RAM_SAVE_FLAG_COMPRESS_PAGE    0x100
83 
84 static inline bool is_zero_range(uint8_t *p, uint64_t size)
85 {
86     return buffer_is_zero(p, size);
87 }
88 
89 XBZRLECacheStats xbzrle_counters;
90 
91 /* struct contains XBZRLE cache and a static page
92    used by the compression */
93 static struct {
94     /* buffer used for XBZRLE encoding */
95     uint8_t *encoded_buf;
96     /* buffer for storing page content */
97     uint8_t *current_buf;
98     /* Cache for XBZRLE, Protected by lock. */
99     PageCache *cache;
100     QemuMutex lock;
101     /* it will store a page full of zeros */
102     uint8_t *zero_target_page;
103     /* buffer used for XBZRLE decoding */
104     uint8_t *decoded_buf;
105 } XBZRLE;
106 
107 static void XBZRLE_cache_lock(void)
108 {
109     if (migrate_use_xbzrle()) {
110         qemu_mutex_lock(&XBZRLE.lock);
111     }
112 }
113 
114 static void XBZRLE_cache_unlock(void)
115 {
116     if (migrate_use_xbzrle()) {
117         qemu_mutex_unlock(&XBZRLE.lock);
118     }
119 }
120 
121 /**
122  * xbzrle_cache_resize: resize the xbzrle cache
123  *
124  * This function is called from migrate_params_apply in main
125  * thread, possibly while a migration is in progress.  A running
126  * migration may be using the cache and might finish during this call,
127  * hence changes to the cache are protected by XBZRLE.lock().
128  *
129  * Returns 0 for success or -1 for error
130  *
131  * @new_size: new cache size
132  * @errp: set *errp if the check failed, with reason
133  */
134 int xbzrle_cache_resize(uint64_t new_size, Error **errp)
135 {
136     PageCache *new_cache;
137     int64_t ret = 0;
138 
139     /* Check for truncation */
140     if (new_size != (size_t)new_size) {
141         error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cache size",
142                    "exceeding address space");
143         return -1;
144     }
145 
146     if (new_size == migrate_xbzrle_cache_size()) {
147         /* nothing to do */
148         return 0;
149     }
150 
151     XBZRLE_cache_lock();
152 
153     if (XBZRLE.cache != NULL) {
154         new_cache = cache_init(new_size, TARGET_PAGE_SIZE, errp);
155         if (!new_cache) {
156             ret = -1;
157             goto out;
158         }
159 
160         cache_fini(XBZRLE.cache);
161         XBZRLE.cache = new_cache;
162     }
163 out:
164     XBZRLE_cache_unlock();
165     return ret;
166 }
167 
168 bool ramblock_is_ignored(RAMBlock *block)
169 {
170     return !qemu_ram_is_migratable(block) ||
171            (migrate_ignore_shared() && qemu_ram_is_shared(block));
172 }
173 
174 #undef RAMBLOCK_FOREACH
175 
176 int foreach_not_ignored_block(RAMBlockIterFunc func, void *opaque)
177 {
178     RAMBlock *block;
179     int ret = 0;
180 
181     RCU_READ_LOCK_GUARD();
182 
183     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
184         ret = func(block, opaque);
185         if (ret) {
186             break;
187         }
188     }
189     return ret;
190 }
191 
192 static void ramblock_recv_map_init(void)
193 {
194     RAMBlock *rb;
195 
196     RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
197         assert(!rb->receivedmap);
198         rb->receivedmap = bitmap_new(rb->max_length >> qemu_target_page_bits());
199     }
200 }
201 
202 int ramblock_recv_bitmap_test(RAMBlock *rb, void *host_addr)
203 {
204     return test_bit(ramblock_recv_bitmap_offset(host_addr, rb),
205                     rb->receivedmap);
206 }
207 
208 bool ramblock_recv_bitmap_test_byte_offset(RAMBlock *rb, uint64_t byte_offset)
209 {
210     return test_bit(byte_offset >> TARGET_PAGE_BITS, rb->receivedmap);
211 }
212 
213 void ramblock_recv_bitmap_set(RAMBlock *rb, void *host_addr)
214 {
215     set_bit_atomic(ramblock_recv_bitmap_offset(host_addr, rb), rb->receivedmap);
216 }
217 
218 void ramblock_recv_bitmap_set_range(RAMBlock *rb, void *host_addr,
219                                     size_t nr)
220 {
221     bitmap_set_atomic(rb->receivedmap,
222                       ramblock_recv_bitmap_offset(host_addr, rb),
223                       nr);
224 }
225 
226 #define  RAMBLOCK_RECV_BITMAP_ENDING  (0x0123456789abcdefULL)
227 
228 /*
229  * Format: bitmap_size (8 bytes) + whole_bitmap (N bytes).
230  *
231  * Returns >0 if success with sent bytes, or <0 if error.
232  */
233 int64_t ramblock_recv_bitmap_send(QEMUFile *file,
234                                   const char *block_name)
235 {
236     RAMBlock *block = qemu_ram_block_by_name(block_name);
237     unsigned long *le_bitmap, nbits;
238     uint64_t size;
239 
240     if (!block) {
241         error_report("%s: invalid block name: %s", __func__, block_name);
242         return -1;
243     }
244 
245     nbits = block->postcopy_length >> TARGET_PAGE_BITS;
246 
247     /*
248      * Make sure the tmp bitmap buffer is big enough, e.g., on 32bit
249      * machines we may need 4 more bytes for padding (see below
250      * comment). So extend it a bit before hand.
251      */
252     le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
253 
254     /*
255      * Always use little endian when sending the bitmap. This is
256      * required that when source and destination VMs are not using the
257      * same endianness. (Note: big endian won't work.)
258      */
259     bitmap_to_le(le_bitmap, block->receivedmap, nbits);
260 
261     /* Size of the bitmap, in bytes */
262     size = DIV_ROUND_UP(nbits, 8);
263 
264     /*
265      * size is always aligned to 8 bytes for 64bit machines, but it
266      * may not be true for 32bit machines. We need this padding to
267      * make sure the migration can survive even between 32bit and
268      * 64bit machines.
269      */
270     size = ROUND_UP(size, 8);
271 
272     qemu_put_be64(file, size);
273     qemu_put_buffer(file, (const uint8_t *)le_bitmap, size);
274     /*
275      * Mark as an end, in case the middle part is screwed up due to
276      * some "mysterious" reason.
277      */
278     qemu_put_be64(file, RAMBLOCK_RECV_BITMAP_ENDING);
279     qemu_fflush(file);
280 
281     g_free(le_bitmap);
282 
283     if (qemu_file_get_error(file)) {
284         return qemu_file_get_error(file);
285     }
286 
287     return size + sizeof(size);
288 }
289 
290 /*
291  * An outstanding page request, on the source, having been received
292  * and queued
293  */
294 struct RAMSrcPageRequest {
295     RAMBlock *rb;
296     hwaddr    offset;
297     hwaddr    len;
298 
299     QSIMPLEQ_ENTRY(RAMSrcPageRequest) next_req;
300 };
301 
302 /* State of RAM for migration */
303 struct RAMState {
304     /* QEMUFile used for this migration */
305     QEMUFile *f;
306     /* UFFD file descriptor, used in 'write-tracking' migration */
307     int uffdio_fd;
308     /* Last block that we have visited searching for dirty pages */
309     RAMBlock *last_seen_block;
310     /* Last block from where we have sent data */
311     RAMBlock *last_sent_block;
312     /* Last dirty target page we have sent */
313     ram_addr_t last_page;
314     /* last ram version we have seen */
315     uint32_t last_version;
316     /* How many times we have dirty too many pages */
317     int dirty_rate_high_cnt;
318     /* these variables are used for bitmap sync */
319     /* last time we did a full bitmap_sync */
320     int64_t time_last_bitmap_sync;
321     /* bytes transferred at start_time */
322     uint64_t bytes_xfer_prev;
323     /* number of dirty pages since start_time */
324     uint64_t num_dirty_pages_period;
325     /* xbzrle misses since the beginning of the period */
326     uint64_t xbzrle_cache_miss_prev;
327     /* Amount of xbzrle pages since the beginning of the period */
328     uint64_t xbzrle_pages_prev;
329     /* Amount of xbzrle encoded bytes since the beginning of the period */
330     uint64_t xbzrle_bytes_prev;
331     /* Start using XBZRLE (e.g., after the first round). */
332     bool xbzrle_enabled;
333 
334     /* compression statistics since the beginning of the period */
335     /* amount of count that no free thread to compress data */
336     uint64_t compress_thread_busy_prev;
337     /* amount bytes after compression */
338     uint64_t compressed_size_prev;
339     /* amount of compressed pages */
340     uint64_t compress_pages_prev;
341 
342     /* total handled target pages at the beginning of period */
343     uint64_t target_page_count_prev;
344     /* total handled target pages since start */
345     uint64_t target_page_count;
346     /* number of dirty bits in the bitmap */
347     uint64_t migration_dirty_pages;
348     /* Protects modification of the bitmap and migration dirty pages */
349     QemuMutex bitmap_mutex;
350     /* The RAMBlock used in the last src_page_requests */
351     RAMBlock *last_req_rb;
352     /* Queue of outstanding page requests from the destination */
353     QemuMutex src_page_req_mutex;
354     QSIMPLEQ_HEAD(, RAMSrcPageRequest) src_page_requests;
355 };
356 typedef struct RAMState RAMState;
357 
358 static RAMState *ram_state;
359 
360 static NotifierWithReturnList precopy_notifier_list;
361 
362 void precopy_infrastructure_init(void)
363 {
364     notifier_with_return_list_init(&precopy_notifier_list);
365 }
366 
367 void precopy_add_notifier(NotifierWithReturn *n)
368 {
369     notifier_with_return_list_add(&precopy_notifier_list, n);
370 }
371 
372 void precopy_remove_notifier(NotifierWithReturn *n)
373 {
374     notifier_with_return_remove(n);
375 }
376 
377 int precopy_notify(PrecopyNotifyReason reason, Error **errp)
378 {
379     PrecopyNotifyData pnd;
380     pnd.reason = reason;
381     pnd.errp = errp;
382 
383     return notifier_with_return_list_notify(&precopy_notifier_list, &pnd);
384 }
385 
386 uint64_t ram_bytes_remaining(void)
387 {
388     return ram_state ? (ram_state->migration_dirty_pages * TARGET_PAGE_SIZE) :
389                        0;
390 }
391 
392 MigrationStats ram_counters;
393 
394 /* used by the search for pages to send */
395 struct PageSearchStatus {
396     /* Current block being searched */
397     RAMBlock    *block;
398     /* Current page to search from */
399     unsigned long page;
400     /* Set once we wrap around */
401     bool         complete_round;
402 };
403 typedef struct PageSearchStatus PageSearchStatus;
404 
405 CompressionStats compression_counters;
406 
407 struct CompressParam {
408     bool done;
409     bool quit;
410     bool zero_page;
411     QEMUFile *file;
412     QemuMutex mutex;
413     QemuCond cond;
414     RAMBlock *block;
415     ram_addr_t offset;
416 
417     /* internally used fields */
418     z_stream stream;
419     uint8_t *originbuf;
420 };
421 typedef struct CompressParam CompressParam;
422 
423 struct DecompressParam {
424     bool done;
425     bool quit;
426     QemuMutex mutex;
427     QemuCond cond;
428     void *des;
429     uint8_t *compbuf;
430     int len;
431     z_stream stream;
432 };
433 typedef struct DecompressParam DecompressParam;
434 
435 static CompressParam *comp_param;
436 static QemuThread *compress_threads;
437 /* comp_done_cond is used to wake up the migration thread when
438  * one of the compression threads has finished the compression.
439  * comp_done_lock is used to co-work with comp_done_cond.
440  */
441 static QemuMutex comp_done_lock;
442 static QemuCond comp_done_cond;
443 /* The empty QEMUFileOps will be used by file in CompressParam */
444 static const QEMUFileOps empty_ops = { };
445 
446 static QEMUFile *decomp_file;
447 static DecompressParam *decomp_param;
448 static QemuThread *decompress_threads;
449 static QemuMutex decomp_done_lock;
450 static QemuCond decomp_done_cond;
451 
452 static bool do_compress_ram_page(QEMUFile *f, z_stream *stream, RAMBlock *block,
453                                  ram_addr_t offset, uint8_t *source_buf);
454 
455 static void *do_data_compress(void *opaque)
456 {
457     CompressParam *param = opaque;
458     RAMBlock *block;
459     ram_addr_t offset;
460     bool zero_page;
461 
462     qemu_mutex_lock(&param->mutex);
463     while (!param->quit) {
464         if (param->block) {
465             block = param->block;
466             offset = param->offset;
467             param->block = NULL;
468             qemu_mutex_unlock(&param->mutex);
469 
470             zero_page = do_compress_ram_page(param->file, &param->stream,
471                                              block, offset, param->originbuf);
472 
473             qemu_mutex_lock(&comp_done_lock);
474             param->done = true;
475             param->zero_page = zero_page;
476             qemu_cond_signal(&comp_done_cond);
477             qemu_mutex_unlock(&comp_done_lock);
478 
479             qemu_mutex_lock(&param->mutex);
480         } else {
481             qemu_cond_wait(&param->cond, &param->mutex);
482         }
483     }
484     qemu_mutex_unlock(&param->mutex);
485 
486     return NULL;
487 }
488 
489 static void compress_threads_save_cleanup(void)
490 {
491     int i, thread_count;
492 
493     if (!migrate_use_compression() || !comp_param) {
494         return;
495     }
496 
497     thread_count = migrate_compress_threads();
498     for (i = 0; i < thread_count; i++) {
499         /*
500          * we use it as a indicator which shows if the thread is
501          * properly init'd or not
502          */
503         if (!comp_param[i].file) {
504             break;
505         }
506 
507         qemu_mutex_lock(&comp_param[i].mutex);
508         comp_param[i].quit = true;
509         qemu_cond_signal(&comp_param[i].cond);
510         qemu_mutex_unlock(&comp_param[i].mutex);
511 
512         qemu_thread_join(compress_threads + i);
513         qemu_mutex_destroy(&comp_param[i].mutex);
514         qemu_cond_destroy(&comp_param[i].cond);
515         deflateEnd(&comp_param[i].stream);
516         g_free(comp_param[i].originbuf);
517         qemu_fclose(comp_param[i].file);
518         comp_param[i].file = NULL;
519     }
520     qemu_mutex_destroy(&comp_done_lock);
521     qemu_cond_destroy(&comp_done_cond);
522     g_free(compress_threads);
523     g_free(comp_param);
524     compress_threads = NULL;
525     comp_param = NULL;
526 }
527 
528 static int compress_threads_save_setup(void)
529 {
530     int i, thread_count;
531 
532     if (!migrate_use_compression()) {
533         return 0;
534     }
535     thread_count = migrate_compress_threads();
536     compress_threads = g_new0(QemuThread, thread_count);
537     comp_param = g_new0(CompressParam, thread_count);
538     qemu_cond_init(&comp_done_cond);
539     qemu_mutex_init(&comp_done_lock);
540     for (i = 0; i < thread_count; i++) {
541         comp_param[i].originbuf = g_try_malloc(TARGET_PAGE_SIZE);
542         if (!comp_param[i].originbuf) {
543             goto exit;
544         }
545 
546         if (deflateInit(&comp_param[i].stream,
547                         migrate_compress_level()) != Z_OK) {
548             g_free(comp_param[i].originbuf);
549             goto exit;
550         }
551 
552         /* comp_param[i].file is just used as a dummy buffer to save data,
553          * set its ops to empty.
554          */
555         comp_param[i].file = qemu_fopen_ops(NULL, &empty_ops, false);
556         comp_param[i].done = true;
557         comp_param[i].quit = false;
558         qemu_mutex_init(&comp_param[i].mutex);
559         qemu_cond_init(&comp_param[i].cond);
560         qemu_thread_create(compress_threads + i, "compress",
561                            do_data_compress, comp_param + i,
562                            QEMU_THREAD_JOINABLE);
563     }
564     return 0;
565 
566 exit:
567     compress_threads_save_cleanup();
568     return -1;
569 }
570 
571 /**
572  * save_page_header: write page header to wire
573  *
574  * If this is the 1st block, it also writes the block identification
575  *
576  * Returns the number of bytes written
577  *
578  * @f: QEMUFile where to send the data
579  * @block: block that contains the page we want to send
580  * @offset: offset inside the block for the page
581  *          in the lower bits, it contains flags
582  */
583 static size_t save_page_header(RAMState *rs, QEMUFile *f,  RAMBlock *block,
584                                ram_addr_t offset)
585 {
586     size_t size, len;
587 
588     if (block == rs->last_sent_block) {
589         offset |= RAM_SAVE_FLAG_CONTINUE;
590     }
591     qemu_put_be64(f, offset);
592     size = 8;
593 
594     if (!(offset & RAM_SAVE_FLAG_CONTINUE)) {
595         len = strlen(block->idstr);
596         qemu_put_byte(f, len);
597         qemu_put_buffer(f, (uint8_t *)block->idstr, len);
598         size += 1 + len;
599         rs->last_sent_block = block;
600     }
601     return size;
602 }
603 
604 /**
605  * mig_throttle_guest_down: throttle down the guest
606  *
607  * Reduce amount of guest cpu execution to hopefully slow down memory
608  * writes. If guest dirty memory rate is reduced below the rate at
609  * which we can transfer pages to the destination then we should be
610  * able to complete migration. Some workloads dirty memory way too
611  * fast and will not effectively converge, even with auto-converge.
612  */
613 static void mig_throttle_guest_down(uint64_t bytes_dirty_period,
614                                     uint64_t bytes_dirty_threshold)
615 {
616     MigrationState *s = migrate_get_current();
617     uint64_t pct_initial = s->parameters.cpu_throttle_initial;
618     uint64_t pct_increment = s->parameters.cpu_throttle_increment;
619     bool pct_tailslow = s->parameters.cpu_throttle_tailslow;
620     int pct_max = s->parameters.max_cpu_throttle;
621 
622     uint64_t throttle_now = cpu_throttle_get_percentage();
623     uint64_t cpu_now, cpu_ideal, throttle_inc;
624 
625     /* We have not started throttling yet. Let's start it. */
626     if (!cpu_throttle_active()) {
627         cpu_throttle_set(pct_initial);
628     } else {
629         /* Throttling already on, just increase the rate */
630         if (!pct_tailslow) {
631             throttle_inc = pct_increment;
632         } else {
633             /* Compute the ideal CPU percentage used by Guest, which may
634              * make the dirty rate match the dirty rate threshold. */
635             cpu_now = 100 - throttle_now;
636             cpu_ideal = cpu_now * (bytes_dirty_threshold * 1.0 /
637                         bytes_dirty_period);
638             throttle_inc = MIN(cpu_now - cpu_ideal, pct_increment);
639         }
640         cpu_throttle_set(MIN(throttle_now + throttle_inc, pct_max));
641     }
642 }
643 
644 void mig_throttle_counter_reset(void)
645 {
646     RAMState *rs = ram_state;
647 
648     rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
649     rs->num_dirty_pages_period = 0;
650     rs->bytes_xfer_prev = ram_counters.transferred;
651 }
652 
653 /**
654  * xbzrle_cache_zero_page: insert a zero page in the XBZRLE cache
655  *
656  * @rs: current RAM state
657  * @current_addr: address for the zero page
658  *
659  * Update the xbzrle cache to reflect a page that's been sent as all 0.
660  * The important thing is that a stale (not-yet-0'd) page be replaced
661  * by the new data.
662  * As a bonus, if the page wasn't in the cache it gets added so that
663  * when a small write is made into the 0'd page it gets XBZRLE sent.
664  */
665 static void xbzrle_cache_zero_page(RAMState *rs, ram_addr_t current_addr)
666 {
667     if (!rs->xbzrle_enabled) {
668         return;
669     }
670 
671     /* We don't care if this fails to allocate a new cache page
672      * as long as it updated an old one */
673     cache_insert(XBZRLE.cache, current_addr, XBZRLE.zero_target_page,
674                  ram_counters.dirty_sync_count);
675 }
676 
677 #define ENCODING_FLAG_XBZRLE 0x1
678 
679 /**
680  * save_xbzrle_page: compress and send current page
681  *
682  * Returns: 1 means that we wrote the page
683  *          0 means that page is identical to the one already sent
684  *          -1 means that xbzrle would be longer than normal
685  *
686  * @rs: current RAM state
687  * @current_data: pointer to the address of the page contents
688  * @current_addr: addr of the page
689  * @block: block that contains the page we want to send
690  * @offset: offset inside the block for the page
691  * @last_stage: if we are at the completion stage
692  */
693 static int save_xbzrle_page(RAMState *rs, uint8_t **current_data,
694                             ram_addr_t current_addr, RAMBlock *block,
695                             ram_addr_t offset, bool last_stage)
696 {
697     int encoded_len = 0, bytes_xbzrle;
698     uint8_t *prev_cached_page;
699 
700     if (!cache_is_cached(XBZRLE.cache, current_addr,
701                          ram_counters.dirty_sync_count)) {
702         xbzrle_counters.cache_miss++;
703         if (!last_stage) {
704             if (cache_insert(XBZRLE.cache, current_addr, *current_data,
705                              ram_counters.dirty_sync_count) == -1) {
706                 return -1;
707             } else {
708                 /* update *current_data when the page has been
709                    inserted into cache */
710                 *current_data = get_cached_data(XBZRLE.cache, current_addr);
711             }
712         }
713         return -1;
714     }
715 
716     /*
717      * Reaching here means the page has hit the xbzrle cache, no matter what
718      * encoding result it is (normal encoding, overflow or skipping the page),
719      * count the page as encoded. This is used to calculate the encoding rate.
720      *
721      * Example: 2 pages (8KB) being encoded, first page encoding generates 2KB,
722      * 2nd page turns out to be skipped (i.e. no new bytes written to the
723      * page), the overall encoding rate will be 8KB / 2KB = 4, which has the
724      * skipped page included. In this way, the encoding rate can tell if the
725      * guest page is good for xbzrle encoding.
726      */
727     xbzrle_counters.pages++;
728     prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
729 
730     /* save current buffer into memory */
731     memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE);
732 
733     /* XBZRLE encoding (if there is no overflow) */
734     encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
735                                        TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
736                                        TARGET_PAGE_SIZE);
737 
738     /*
739      * Update the cache contents, so that it corresponds to the data
740      * sent, in all cases except where we skip the page.
741      */
742     if (!last_stage && encoded_len != 0) {
743         memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
744         /*
745          * In the case where we couldn't compress, ensure that the caller
746          * sends the data from the cache, since the guest might have
747          * changed the RAM since we copied it.
748          */
749         *current_data = prev_cached_page;
750     }
751 
752     if (encoded_len == 0) {
753         trace_save_xbzrle_page_skipping();
754         return 0;
755     } else if (encoded_len == -1) {
756         trace_save_xbzrle_page_overflow();
757         xbzrle_counters.overflow++;
758         xbzrle_counters.bytes += TARGET_PAGE_SIZE;
759         return -1;
760     }
761 
762     /* Send XBZRLE based compressed page */
763     bytes_xbzrle = save_page_header(rs, rs->f, block,
764                                     offset | RAM_SAVE_FLAG_XBZRLE);
765     qemu_put_byte(rs->f, ENCODING_FLAG_XBZRLE);
766     qemu_put_be16(rs->f, encoded_len);
767     qemu_put_buffer(rs->f, XBZRLE.encoded_buf, encoded_len);
768     bytes_xbzrle += encoded_len + 1 + 2;
769     /*
770      * Like compressed_size (please see update_compress_thread_counts),
771      * the xbzrle encoded bytes don't count the 8 byte header with
772      * RAM_SAVE_FLAG_CONTINUE.
773      */
774     xbzrle_counters.bytes += bytes_xbzrle - 8;
775     ram_counters.transferred += bytes_xbzrle;
776 
777     return 1;
778 }
779 
780 /**
781  * migration_bitmap_find_dirty: find the next dirty page from start
782  *
783  * Returns the page offset within memory region of the start of a dirty page
784  *
785  * @rs: current RAM state
786  * @rb: RAMBlock where to search for dirty pages
787  * @start: page where we start the search
788  */
789 static inline
790 unsigned long migration_bitmap_find_dirty(RAMState *rs, RAMBlock *rb,
791                                           unsigned long start)
792 {
793     unsigned long size = rb->used_length >> TARGET_PAGE_BITS;
794     unsigned long *bitmap = rb->bmap;
795 
796     if (ramblock_is_ignored(rb)) {
797         return size;
798     }
799 
800     return find_next_bit(bitmap, size, start);
801 }
802 
803 static void migration_clear_memory_region_dirty_bitmap(RAMBlock *rb,
804                                                        unsigned long page)
805 {
806     uint8_t shift;
807     hwaddr size, start;
808 
809     if (!rb->clear_bmap || !clear_bmap_test_and_clear(rb, page)) {
810         return;
811     }
812 
813     shift = rb->clear_bmap_shift;
814     /*
815      * CLEAR_BITMAP_SHIFT_MIN should always guarantee this... this
816      * can make things easier sometimes since then start address
817      * of the small chunk will always be 64 pages aligned so the
818      * bitmap will always be aligned to unsigned long. We should
819      * even be able to remove this restriction but I'm simply
820      * keeping it.
821      */
822     assert(shift >= 6);
823 
824     size = 1ULL << (TARGET_PAGE_BITS + shift);
825     start = QEMU_ALIGN_DOWN((ram_addr_t)page << TARGET_PAGE_BITS, size);
826     trace_migration_bitmap_clear_dirty(rb->idstr, start, size, page);
827     memory_region_clear_dirty_bitmap(rb->mr, start, size);
828 }
829 
830 static void
831 migration_clear_memory_region_dirty_bitmap_range(RAMBlock *rb,
832                                                  unsigned long start,
833                                                  unsigned long npages)
834 {
835     unsigned long i, chunk_pages = 1UL << rb->clear_bmap_shift;
836     unsigned long chunk_start = QEMU_ALIGN_DOWN(start, chunk_pages);
837     unsigned long chunk_end = QEMU_ALIGN_UP(start + npages, chunk_pages);
838 
839     /*
840      * Clear pages from start to start + npages - 1, so the end boundary is
841      * exclusive.
842      */
843     for (i = chunk_start; i < chunk_end; i += chunk_pages) {
844         migration_clear_memory_region_dirty_bitmap(rb, i);
845     }
846 }
847 
848 /*
849  * colo_bitmap_find_diry:find contiguous dirty pages from start
850  *
851  * Returns the page offset within memory region of the start of the contiguout
852  * dirty page
853  *
854  * @rs: current RAM state
855  * @rb: RAMBlock where to search for dirty pages
856  * @start: page where we start the search
857  * @num: the number of contiguous dirty pages
858  */
859 static inline
860 unsigned long colo_bitmap_find_dirty(RAMState *rs, RAMBlock *rb,
861                                      unsigned long start, unsigned long *num)
862 {
863     unsigned long size = rb->used_length >> TARGET_PAGE_BITS;
864     unsigned long *bitmap = rb->bmap;
865     unsigned long first, next;
866 
867     *num = 0;
868 
869     if (ramblock_is_ignored(rb)) {
870         return size;
871     }
872 
873     first = find_next_bit(bitmap, size, start);
874     if (first >= size) {
875         return first;
876     }
877     next = find_next_zero_bit(bitmap, size, first + 1);
878     assert(next >= first);
879     *num = next - first;
880     return first;
881 }
882 
883 static inline bool migration_bitmap_clear_dirty(RAMState *rs,
884                                                 RAMBlock *rb,
885                                                 unsigned long page)
886 {
887     bool ret;
888 
889     /*
890      * Clear dirty bitmap if needed.  This _must_ be called before we
891      * send any of the page in the chunk because we need to make sure
892      * we can capture further page content changes when we sync dirty
893      * log the next time.  So as long as we are going to send any of
894      * the page in the chunk we clear the remote dirty bitmap for all.
895      * Clearing it earlier won't be a problem, but too late will.
896      */
897     migration_clear_memory_region_dirty_bitmap(rb, page);
898 
899     ret = test_and_clear_bit(page, rb->bmap);
900     if (ret) {
901         rs->migration_dirty_pages--;
902     }
903 
904     return ret;
905 }
906 
907 static void dirty_bitmap_clear_section(MemoryRegionSection *section,
908                                        void *opaque)
909 {
910     const hwaddr offset = section->offset_within_region;
911     const hwaddr size = int128_get64(section->size);
912     const unsigned long start = offset >> TARGET_PAGE_BITS;
913     const unsigned long npages = size >> TARGET_PAGE_BITS;
914     RAMBlock *rb = section->mr->ram_block;
915     uint64_t *cleared_bits = opaque;
916 
917     /*
918      * We don't grab ram_state->bitmap_mutex because we expect to run
919      * only when starting migration or during postcopy recovery where
920      * we don't have concurrent access.
921      */
922     if (!migration_in_postcopy() && !migrate_background_snapshot()) {
923         migration_clear_memory_region_dirty_bitmap_range(rb, start, npages);
924     }
925     *cleared_bits += bitmap_count_one_with_offset(rb->bmap, start, npages);
926     bitmap_clear(rb->bmap, start, npages);
927 }
928 
929 /*
930  * Exclude all dirty pages from migration that fall into a discarded range as
931  * managed by a RamDiscardManager responsible for the mapped memory region of
932  * the RAMBlock. Clear the corresponding bits in the dirty bitmaps.
933  *
934  * Discarded pages ("logically unplugged") have undefined content and must
935  * not get migrated, because even reading these pages for migration might
936  * result in undesired behavior.
937  *
938  * Returns the number of cleared bits in the RAMBlock dirty bitmap.
939  *
940  * Note: The result is only stable while migrating (precopy/postcopy).
941  */
942 static uint64_t ramblock_dirty_bitmap_clear_discarded_pages(RAMBlock *rb)
943 {
944     uint64_t cleared_bits = 0;
945 
946     if (rb->mr && rb->bmap && memory_region_has_ram_discard_manager(rb->mr)) {
947         RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr);
948         MemoryRegionSection section = {
949             .mr = rb->mr,
950             .offset_within_region = 0,
951             .size = int128_make64(qemu_ram_get_used_length(rb)),
952         };
953 
954         ram_discard_manager_replay_discarded(rdm, &section,
955                                              dirty_bitmap_clear_section,
956                                              &cleared_bits);
957     }
958     return cleared_bits;
959 }
960 
961 /*
962  * Check if a host-page aligned page falls into a discarded range as managed by
963  * a RamDiscardManager responsible for the mapped memory region of the RAMBlock.
964  *
965  * Note: The result is only stable while migrating (precopy/postcopy).
966  */
967 bool ramblock_page_is_discarded(RAMBlock *rb, ram_addr_t start)
968 {
969     if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) {
970         RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr);
971         MemoryRegionSection section = {
972             .mr = rb->mr,
973             .offset_within_region = start,
974             .size = int128_make64(qemu_ram_pagesize(rb)),
975         };
976 
977         return !ram_discard_manager_is_populated(rdm, &section);
978     }
979     return false;
980 }
981 
982 /* Called with RCU critical section */
983 static void ramblock_sync_dirty_bitmap(RAMState *rs, RAMBlock *rb)
984 {
985     uint64_t new_dirty_pages =
986         cpu_physical_memory_sync_dirty_bitmap(rb, 0, rb->used_length);
987 
988     rs->migration_dirty_pages += new_dirty_pages;
989     rs->num_dirty_pages_period += new_dirty_pages;
990 }
991 
992 /**
993  * ram_pagesize_summary: calculate all the pagesizes of a VM
994  *
995  * Returns a summary bitmap of the page sizes of all RAMBlocks
996  *
997  * For VMs with just normal pages this is equivalent to the host page
998  * size. If it's got some huge pages then it's the OR of all the
999  * different page sizes.
1000  */
1001 uint64_t ram_pagesize_summary(void)
1002 {
1003     RAMBlock *block;
1004     uint64_t summary = 0;
1005 
1006     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1007         summary |= block->page_size;
1008     }
1009 
1010     return summary;
1011 }
1012 
1013 uint64_t ram_get_total_transferred_pages(void)
1014 {
1015     return  ram_counters.normal + ram_counters.duplicate +
1016                 compression_counters.pages + xbzrle_counters.pages;
1017 }
1018 
1019 static void migration_update_rates(RAMState *rs, int64_t end_time)
1020 {
1021     uint64_t page_count = rs->target_page_count - rs->target_page_count_prev;
1022     double compressed_size;
1023 
1024     /* calculate period counters */
1025     ram_counters.dirty_pages_rate = rs->num_dirty_pages_period * 1000
1026                 / (end_time - rs->time_last_bitmap_sync);
1027 
1028     if (!page_count) {
1029         return;
1030     }
1031 
1032     if (migrate_use_xbzrle()) {
1033         double encoded_size, unencoded_size;
1034 
1035         xbzrle_counters.cache_miss_rate = (double)(xbzrle_counters.cache_miss -
1036             rs->xbzrle_cache_miss_prev) / page_count;
1037         rs->xbzrle_cache_miss_prev = xbzrle_counters.cache_miss;
1038         unencoded_size = (xbzrle_counters.pages - rs->xbzrle_pages_prev) *
1039                          TARGET_PAGE_SIZE;
1040         encoded_size = xbzrle_counters.bytes - rs->xbzrle_bytes_prev;
1041         if (xbzrle_counters.pages == rs->xbzrle_pages_prev || !encoded_size) {
1042             xbzrle_counters.encoding_rate = 0;
1043         } else {
1044             xbzrle_counters.encoding_rate = unencoded_size / encoded_size;
1045         }
1046         rs->xbzrle_pages_prev = xbzrle_counters.pages;
1047         rs->xbzrle_bytes_prev = xbzrle_counters.bytes;
1048     }
1049 
1050     if (migrate_use_compression()) {
1051         compression_counters.busy_rate = (double)(compression_counters.busy -
1052             rs->compress_thread_busy_prev) / page_count;
1053         rs->compress_thread_busy_prev = compression_counters.busy;
1054 
1055         compressed_size = compression_counters.compressed_size -
1056                           rs->compressed_size_prev;
1057         if (compressed_size) {
1058             double uncompressed_size = (compression_counters.pages -
1059                                     rs->compress_pages_prev) * TARGET_PAGE_SIZE;
1060 
1061             /* Compression-Ratio = Uncompressed-size / Compressed-size */
1062             compression_counters.compression_rate =
1063                                         uncompressed_size / compressed_size;
1064 
1065             rs->compress_pages_prev = compression_counters.pages;
1066             rs->compressed_size_prev = compression_counters.compressed_size;
1067         }
1068     }
1069 }
1070 
1071 static void migration_trigger_throttle(RAMState *rs)
1072 {
1073     MigrationState *s = migrate_get_current();
1074     uint64_t threshold = s->parameters.throttle_trigger_threshold;
1075 
1076     uint64_t bytes_xfer_period = ram_counters.transferred - rs->bytes_xfer_prev;
1077     uint64_t bytes_dirty_period = rs->num_dirty_pages_period * TARGET_PAGE_SIZE;
1078     uint64_t bytes_dirty_threshold = bytes_xfer_period * threshold / 100;
1079 
1080     /* During block migration the auto-converge logic incorrectly detects
1081      * that ram migration makes no progress. Avoid this by disabling the
1082      * throttling logic during the bulk phase of block migration. */
1083     if (migrate_auto_converge() && !blk_mig_bulk_active()) {
1084         /* The following detection logic can be refined later. For now:
1085            Check to see if the ratio between dirtied bytes and the approx.
1086            amount of bytes that just got transferred since the last time
1087            we were in this routine reaches the threshold. If that happens
1088            twice, start or increase throttling. */
1089 
1090         if ((bytes_dirty_period > bytes_dirty_threshold) &&
1091             (++rs->dirty_rate_high_cnt >= 2)) {
1092             trace_migration_throttle();
1093             rs->dirty_rate_high_cnt = 0;
1094             mig_throttle_guest_down(bytes_dirty_period,
1095                                     bytes_dirty_threshold);
1096         }
1097     }
1098 }
1099 
1100 static void migration_bitmap_sync(RAMState *rs)
1101 {
1102     RAMBlock *block;
1103     int64_t end_time;
1104 
1105     ram_counters.dirty_sync_count++;
1106 
1107     if (!rs->time_last_bitmap_sync) {
1108         rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
1109     }
1110 
1111     trace_migration_bitmap_sync_start();
1112     memory_global_dirty_log_sync();
1113 
1114     qemu_mutex_lock(&rs->bitmap_mutex);
1115     WITH_RCU_READ_LOCK_GUARD() {
1116         RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1117             ramblock_sync_dirty_bitmap(rs, block);
1118         }
1119         ram_counters.remaining = ram_bytes_remaining();
1120     }
1121     qemu_mutex_unlock(&rs->bitmap_mutex);
1122 
1123     memory_global_after_dirty_log_sync();
1124     trace_migration_bitmap_sync_end(rs->num_dirty_pages_period);
1125 
1126     end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
1127 
1128     /* more than 1 second = 1000 millisecons */
1129     if (end_time > rs->time_last_bitmap_sync + 1000) {
1130         migration_trigger_throttle(rs);
1131 
1132         migration_update_rates(rs, end_time);
1133 
1134         rs->target_page_count_prev = rs->target_page_count;
1135 
1136         /* reset period counters */
1137         rs->time_last_bitmap_sync = end_time;
1138         rs->num_dirty_pages_period = 0;
1139         rs->bytes_xfer_prev = ram_counters.transferred;
1140     }
1141     if (migrate_use_events()) {
1142         qapi_event_send_migration_pass(ram_counters.dirty_sync_count);
1143     }
1144 }
1145 
1146 static void migration_bitmap_sync_precopy(RAMState *rs)
1147 {
1148     Error *local_err = NULL;
1149 
1150     /*
1151      * The current notifier usage is just an optimization to migration, so we
1152      * don't stop the normal migration process in the error case.
1153      */
1154     if (precopy_notify(PRECOPY_NOTIFY_BEFORE_BITMAP_SYNC, &local_err)) {
1155         error_report_err(local_err);
1156         local_err = NULL;
1157     }
1158 
1159     migration_bitmap_sync(rs);
1160 
1161     if (precopy_notify(PRECOPY_NOTIFY_AFTER_BITMAP_SYNC, &local_err)) {
1162         error_report_err(local_err);
1163     }
1164 }
1165 
1166 /**
1167  * save_zero_page_to_file: send the zero page to the file
1168  *
1169  * Returns the size of data written to the file, 0 means the page is not
1170  * a zero page
1171  *
1172  * @rs: current RAM state
1173  * @file: the file where the data is saved
1174  * @block: block that contains the page we want to send
1175  * @offset: offset inside the block for the page
1176  */
1177 static int save_zero_page_to_file(RAMState *rs, QEMUFile *file,
1178                                   RAMBlock *block, ram_addr_t offset)
1179 {
1180     uint8_t *p = block->host + offset;
1181     int len = 0;
1182 
1183     if (is_zero_range(p, TARGET_PAGE_SIZE)) {
1184         len += save_page_header(rs, file, block, offset | RAM_SAVE_FLAG_ZERO);
1185         qemu_put_byte(file, 0);
1186         len += 1;
1187     }
1188     return len;
1189 }
1190 
1191 /**
1192  * save_zero_page: send the zero page to the stream
1193  *
1194  * Returns the number of pages written.
1195  *
1196  * @rs: current RAM state
1197  * @block: block that contains the page we want to send
1198  * @offset: offset inside the block for the page
1199  */
1200 static int save_zero_page(RAMState *rs, RAMBlock *block, ram_addr_t offset)
1201 {
1202     int len = save_zero_page_to_file(rs, rs->f, block, offset);
1203 
1204     if (len) {
1205         ram_counters.duplicate++;
1206         ram_counters.transferred += len;
1207         return 1;
1208     }
1209     return -1;
1210 }
1211 
1212 static void ram_release_pages(const char *rbname, uint64_t offset, int pages)
1213 {
1214     if (!migrate_release_ram() || !migration_in_postcopy()) {
1215         return;
1216     }
1217 
1218     ram_discard_range(rbname, offset, ((ram_addr_t)pages) << TARGET_PAGE_BITS);
1219 }
1220 
1221 /*
1222  * @pages: the number of pages written by the control path,
1223  *        < 0 - error
1224  *        > 0 - number of pages written
1225  *
1226  * Return true if the pages has been saved, otherwise false is returned.
1227  */
1228 static bool control_save_page(RAMState *rs, RAMBlock *block, ram_addr_t offset,
1229                               int *pages)
1230 {
1231     uint64_t bytes_xmit = 0;
1232     int ret;
1233 
1234     *pages = -1;
1235     ret = ram_control_save_page(rs->f, block->offset, offset, TARGET_PAGE_SIZE,
1236                                 &bytes_xmit);
1237     if (ret == RAM_SAVE_CONTROL_NOT_SUPP) {
1238         return false;
1239     }
1240 
1241     if (bytes_xmit) {
1242         ram_counters.transferred += bytes_xmit;
1243         *pages = 1;
1244     }
1245 
1246     if (ret == RAM_SAVE_CONTROL_DELAYED) {
1247         return true;
1248     }
1249 
1250     if (bytes_xmit > 0) {
1251         ram_counters.normal++;
1252     } else if (bytes_xmit == 0) {
1253         ram_counters.duplicate++;
1254     }
1255 
1256     return true;
1257 }
1258 
1259 /*
1260  * directly send the page to the stream
1261  *
1262  * Returns the number of pages written.
1263  *
1264  * @rs: current RAM state
1265  * @block: block that contains the page we want to send
1266  * @offset: offset inside the block for the page
1267  * @buf: the page to be sent
1268  * @async: send to page asyncly
1269  */
1270 static int save_normal_page(RAMState *rs, RAMBlock *block, ram_addr_t offset,
1271                             uint8_t *buf, bool async)
1272 {
1273     ram_counters.transferred += save_page_header(rs, rs->f, block,
1274                                                  offset | RAM_SAVE_FLAG_PAGE);
1275     if (async) {
1276         qemu_put_buffer_async(rs->f, buf, TARGET_PAGE_SIZE,
1277                               migrate_release_ram() &
1278                               migration_in_postcopy());
1279     } else {
1280         qemu_put_buffer(rs->f, buf, TARGET_PAGE_SIZE);
1281     }
1282     ram_counters.transferred += TARGET_PAGE_SIZE;
1283     ram_counters.normal++;
1284     return 1;
1285 }
1286 
1287 /**
1288  * ram_save_page: send the given page to the stream
1289  *
1290  * Returns the number of pages written.
1291  *          < 0 - error
1292  *          >=0 - Number of pages written - this might legally be 0
1293  *                if xbzrle noticed the page was the same.
1294  *
1295  * @rs: current RAM state
1296  * @block: block that contains the page we want to send
1297  * @offset: offset inside the block for the page
1298  * @last_stage: if we are at the completion stage
1299  */
1300 static int ram_save_page(RAMState *rs, PageSearchStatus *pss, bool last_stage)
1301 {
1302     int pages = -1;
1303     uint8_t *p;
1304     bool send_async = true;
1305     RAMBlock *block = pss->block;
1306     ram_addr_t offset = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS;
1307     ram_addr_t current_addr = block->offset + offset;
1308 
1309     p = block->host + offset;
1310     trace_ram_save_page(block->idstr, (uint64_t)offset, p);
1311 
1312     XBZRLE_cache_lock();
1313     if (rs->xbzrle_enabled && !migration_in_postcopy()) {
1314         pages = save_xbzrle_page(rs, &p, current_addr, block,
1315                                  offset, last_stage);
1316         if (!last_stage) {
1317             /* Can't send this cached data async, since the cache page
1318              * might get updated before it gets to the wire
1319              */
1320             send_async = false;
1321         }
1322     }
1323 
1324     /* XBZRLE overflow or normal page */
1325     if (pages == -1) {
1326         pages = save_normal_page(rs, block, offset, p, send_async);
1327     }
1328 
1329     XBZRLE_cache_unlock();
1330 
1331     return pages;
1332 }
1333 
1334 static int ram_save_multifd_page(RAMState *rs, RAMBlock *block,
1335                                  ram_addr_t offset)
1336 {
1337     if (multifd_queue_page(rs->f, block, offset) < 0) {
1338         return -1;
1339     }
1340     ram_counters.normal++;
1341 
1342     return 1;
1343 }
1344 
1345 static bool do_compress_ram_page(QEMUFile *f, z_stream *stream, RAMBlock *block,
1346                                  ram_addr_t offset, uint8_t *source_buf)
1347 {
1348     RAMState *rs = ram_state;
1349     uint8_t *p = block->host + (offset & TARGET_PAGE_MASK);
1350     bool zero_page = false;
1351     int ret;
1352 
1353     if (save_zero_page_to_file(rs, f, block, offset)) {
1354         zero_page = true;
1355         goto exit;
1356     }
1357 
1358     save_page_header(rs, f, block, offset | RAM_SAVE_FLAG_COMPRESS_PAGE);
1359 
1360     /*
1361      * copy it to a internal buffer to avoid it being modified by VM
1362      * so that we can catch up the error during compression and
1363      * decompression
1364      */
1365     memcpy(source_buf, p, TARGET_PAGE_SIZE);
1366     ret = qemu_put_compression_data(f, stream, source_buf, TARGET_PAGE_SIZE);
1367     if (ret < 0) {
1368         qemu_file_set_error(migrate_get_current()->to_dst_file, ret);
1369         error_report("compressed data failed!");
1370         return false;
1371     }
1372 
1373 exit:
1374     ram_release_pages(block->idstr, offset & TARGET_PAGE_MASK, 1);
1375     return zero_page;
1376 }
1377 
1378 static void
1379 update_compress_thread_counts(const CompressParam *param, int bytes_xmit)
1380 {
1381     ram_counters.transferred += bytes_xmit;
1382 
1383     if (param->zero_page) {
1384         ram_counters.duplicate++;
1385         return;
1386     }
1387 
1388     /* 8 means a header with RAM_SAVE_FLAG_CONTINUE. */
1389     compression_counters.compressed_size += bytes_xmit - 8;
1390     compression_counters.pages++;
1391 }
1392 
1393 static bool save_page_use_compression(RAMState *rs);
1394 
1395 static void flush_compressed_data(RAMState *rs)
1396 {
1397     int idx, len, thread_count;
1398 
1399     if (!save_page_use_compression(rs)) {
1400         return;
1401     }
1402     thread_count = migrate_compress_threads();
1403 
1404     qemu_mutex_lock(&comp_done_lock);
1405     for (idx = 0; idx < thread_count; idx++) {
1406         while (!comp_param[idx].done) {
1407             qemu_cond_wait(&comp_done_cond, &comp_done_lock);
1408         }
1409     }
1410     qemu_mutex_unlock(&comp_done_lock);
1411 
1412     for (idx = 0; idx < thread_count; idx++) {
1413         qemu_mutex_lock(&comp_param[idx].mutex);
1414         if (!comp_param[idx].quit) {
1415             len = qemu_put_qemu_file(rs->f, comp_param[idx].file);
1416             /*
1417              * it's safe to fetch zero_page without holding comp_done_lock
1418              * as there is no further request submitted to the thread,
1419              * i.e, the thread should be waiting for a request at this point.
1420              */
1421             update_compress_thread_counts(&comp_param[idx], len);
1422         }
1423         qemu_mutex_unlock(&comp_param[idx].mutex);
1424     }
1425 }
1426 
1427 static inline void set_compress_params(CompressParam *param, RAMBlock *block,
1428                                        ram_addr_t offset)
1429 {
1430     param->block = block;
1431     param->offset = offset;
1432 }
1433 
1434 static int compress_page_with_multi_thread(RAMState *rs, RAMBlock *block,
1435                                            ram_addr_t offset)
1436 {
1437     int idx, thread_count, bytes_xmit = -1, pages = -1;
1438     bool wait = migrate_compress_wait_thread();
1439 
1440     thread_count = migrate_compress_threads();
1441     qemu_mutex_lock(&comp_done_lock);
1442 retry:
1443     for (idx = 0; idx < thread_count; idx++) {
1444         if (comp_param[idx].done) {
1445             comp_param[idx].done = false;
1446             bytes_xmit = qemu_put_qemu_file(rs->f, comp_param[idx].file);
1447             qemu_mutex_lock(&comp_param[idx].mutex);
1448             set_compress_params(&comp_param[idx], block, offset);
1449             qemu_cond_signal(&comp_param[idx].cond);
1450             qemu_mutex_unlock(&comp_param[idx].mutex);
1451             pages = 1;
1452             update_compress_thread_counts(&comp_param[idx], bytes_xmit);
1453             break;
1454         }
1455     }
1456 
1457     /*
1458      * wait for the free thread if the user specifies 'compress-wait-thread',
1459      * otherwise we will post the page out in the main thread as normal page.
1460      */
1461     if (pages < 0 && wait) {
1462         qemu_cond_wait(&comp_done_cond, &comp_done_lock);
1463         goto retry;
1464     }
1465     qemu_mutex_unlock(&comp_done_lock);
1466 
1467     return pages;
1468 }
1469 
1470 /**
1471  * find_dirty_block: find the next dirty page and update any state
1472  * associated with the search process.
1473  *
1474  * Returns true if a page is found
1475  *
1476  * @rs: current RAM state
1477  * @pss: data about the state of the current dirty page scan
1478  * @again: set to false if the search has scanned the whole of RAM
1479  */
1480 static bool find_dirty_block(RAMState *rs, PageSearchStatus *pss, bool *again)
1481 {
1482     pss->page = migration_bitmap_find_dirty(rs, pss->block, pss->page);
1483     if (pss->complete_round && pss->block == rs->last_seen_block &&
1484         pss->page >= rs->last_page) {
1485         /*
1486          * We've been once around the RAM and haven't found anything.
1487          * Give up.
1488          */
1489         *again = false;
1490         return false;
1491     }
1492     if (!offset_in_ramblock(pss->block,
1493                             ((ram_addr_t)pss->page) << TARGET_PAGE_BITS)) {
1494         /* Didn't find anything in this RAM Block */
1495         pss->page = 0;
1496         pss->block = QLIST_NEXT_RCU(pss->block, next);
1497         if (!pss->block) {
1498             /*
1499              * If memory migration starts over, we will meet a dirtied page
1500              * which may still exists in compression threads's ring, so we
1501              * should flush the compressed data to make sure the new page
1502              * is not overwritten by the old one in the destination.
1503              *
1504              * Also If xbzrle is on, stop using the data compression at this
1505              * point. In theory, xbzrle can do better than compression.
1506              */
1507             flush_compressed_data(rs);
1508 
1509             /* Hit the end of the list */
1510             pss->block = QLIST_FIRST_RCU(&ram_list.blocks);
1511             /* Flag that we've looped */
1512             pss->complete_round = true;
1513             /* After the first round, enable XBZRLE. */
1514             if (migrate_use_xbzrle()) {
1515                 rs->xbzrle_enabled = true;
1516             }
1517         }
1518         /* Didn't find anything this time, but try again on the new block */
1519         *again = true;
1520         return false;
1521     } else {
1522         /* Can go around again, but... */
1523         *again = true;
1524         /* We've found something so probably don't need to */
1525         return true;
1526     }
1527 }
1528 
1529 /**
1530  * unqueue_page: gets a page of the queue
1531  *
1532  * Helper for 'get_queued_page' - gets a page off the queue
1533  *
1534  * Returns the block of the page (or NULL if none available)
1535  *
1536  * @rs: current RAM state
1537  * @offset: used to return the offset within the RAMBlock
1538  */
1539 static RAMBlock *unqueue_page(RAMState *rs, ram_addr_t *offset)
1540 {
1541     RAMBlock *block = NULL;
1542 
1543     if (QSIMPLEQ_EMPTY_ATOMIC(&rs->src_page_requests)) {
1544         return NULL;
1545     }
1546 
1547     QEMU_LOCK_GUARD(&rs->src_page_req_mutex);
1548     if (!QSIMPLEQ_EMPTY(&rs->src_page_requests)) {
1549         struct RAMSrcPageRequest *entry =
1550                                 QSIMPLEQ_FIRST(&rs->src_page_requests);
1551         block = entry->rb;
1552         *offset = entry->offset;
1553 
1554         if (entry->len > TARGET_PAGE_SIZE) {
1555             entry->len -= TARGET_PAGE_SIZE;
1556             entry->offset += TARGET_PAGE_SIZE;
1557         } else {
1558             memory_region_unref(block->mr);
1559             QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
1560             g_free(entry);
1561             migration_consume_urgent_request();
1562         }
1563     }
1564 
1565     return block;
1566 }
1567 
1568 #if defined(__linux__)
1569 /**
1570  * poll_fault_page: try to get next UFFD write fault page and, if pending fault
1571  *   is found, return RAM block pointer and page offset
1572  *
1573  * Returns pointer to the RAMBlock containing faulting page,
1574  *   NULL if no write faults are pending
1575  *
1576  * @rs: current RAM state
1577  * @offset: page offset from the beginning of the block
1578  */
1579 static RAMBlock *poll_fault_page(RAMState *rs, ram_addr_t *offset)
1580 {
1581     struct uffd_msg uffd_msg;
1582     void *page_address;
1583     RAMBlock *block;
1584     int res;
1585 
1586     if (!migrate_background_snapshot()) {
1587         return NULL;
1588     }
1589 
1590     res = uffd_read_events(rs->uffdio_fd, &uffd_msg, 1);
1591     if (res <= 0) {
1592         return NULL;
1593     }
1594 
1595     page_address = (void *)(uintptr_t) uffd_msg.arg.pagefault.address;
1596     block = qemu_ram_block_from_host(page_address, false, offset);
1597     assert(block && (block->flags & RAM_UF_WRITEPROTECT) != 0);
1598     return block;
1599 }
1600 
1601 /**
1602  * ram_save_release_protection: release UFFD write protection after
1603  *   a range of pages has been saved
1604  *
1605  * @rs: current RAM state
1606  * @pss: page-search-status structure
1607  * @start_page: index of the first page in the range relative to pss->block
1608  *
1609  * Returns 0 on success, negative value in case of an error
1610 */
1611 static int ram_save_release_protection(RAMState *rs, PageSearchStatus *pss,
1612         unsigned long start_page)
1613 {
1614     int res = 0;
1615 
1616     /* Check if page is from UFFD-managed region. */
1617     if (pss->block->flags & RAM_UF_WRITEPROTECT) {
1618         void *page_address = pss->block->host + (start_page << TARGET_PAGE_BITS);
1619         uint64_t run_length = (pss->page - start_page + 1) << TARGET_PAGE_BITS;
1620 
1621         /* Flush async buffers before un-protect. */
1622         qemu_fflush(rs->f);
1623         /* Un-protect memory range. */
1624         res = uffd_change_protection(rs->uffdio_fd, page_address, run_length,
1625                 false, false);
1626     }
1627 
1628     return res;
1629 }
1630 
1631 /* ram_write_tracking_available: check if kernel supports required UFFD features
1632  *
1633  * Returns true if supports, false otherwise
1634  */
1635 bool ram_write_tracking_available(void)
1636 {
1637     uint64_t uffd_features;
1638     int res;
1639 
1640     res = uffd_query_features(&uffd_features);
1641     return (res == 0 &&
1642             (uffd_features & UFFD_FEATURE_PAGEFAULT_FLAG_WP) != 0);
1643 }
1644 
1645 /* ram_write_tracking_compatible: check if guest configuration is
1646  *   compatible with 'write-tracking'
1647  *
1648  * Returns true if compatible, false otherwise
1649  */
1650 bool ram_write_tracking_compatible(void)
1651 {
1652     const uint64_t uffd_ioctls_mask = BIT(_UFFDIO_WRITEPROTECT);
1653     int uffd_fd;
1654     RAMBlock *block;
1655     bool ret = false;
1656 
1657     /* Open UFFD file descriptor */
1658     uffd_fd = uffd_create_fd(UFFD_FEATURE_PAGEFAULT_FLAG_WP, false);
1659     if (uffd_fd < 0) {
1660         return false;
1661     }
1662 
1663     RCU_READ_LOCK_GUARD();
1664 
1665     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1666         uint64_t uffd_ioctls;
1667 
1668         /* Nothing to do with read-only and MMIO-writable regions */
1669         if (block->mr->readonly || block->mr->rom_device) {
1670             continue;
1671         }
1672         /* Try to register block memory via UFFD-IO to track writes */
1673         if (uffd_register_memory(uffd_fd, block->host, block->max_length,
1674                 UFFDIO_REGISTER_MODE_WP, &uffd_ioctls)) {
1675             goto out;
1676         }
1677         if ((uffd_ioctls & uffd_ioctls_mask) != uffd_ioctls_mask) {
1678             goto out;
1679         }
1680     }
1681     ret = true;
1682 
1683 out:
1684     uffd_close_fd(uffd_fd);
1685     return ret;
1686 }
1687 
1688 static inline void populate_read_range(RAMBlock *block, ram_addr_t offset,
1689                                        ram_addr_t size)
1690 {
1691     /*
1692      * We read one byte of each page; this will preallocate page tables if
1693      * required and populate the shared zeropage on MAP_PRIVATE anonymous memory
1694      * where no page was populated yet. This might require adaption when
1695      * supporting other mappings, like shmem.
1696      */
1697     for (; offset < size; offset += block->page_size) {
1698         char tmp = *((char *)block->host + offset);
1699 
1700         /* Don't optimize the read out */
1701         asm volatile("" : "+r" (tmp));
1702     }
1703 }
1704 
1705 static inline int populate_read_section(MemoryRegionSection *section,
1706                                         void *opaque)
1707 {
1708     const hwaddr size = int128_get64(section->size);
1709     hwaddr offset = section->offset_within_region;
1710     RAMBlock *block = section->mr->ram_block;
1711 
1712     populate_read_range(block, offset, size);
1713     return 0;
1714 }
1715 
1716 /*
1717  * ram_block_populate_read: preallocate page tables and populate pages in the
1718  *   RAM block by reading a byte of each page.
1719  *
1720  * Since it's solely used for userfault_fd WP feature, here we just
1721  *   hardcode page size to qemu_real_host_page_size.
1722  *
1723  * @block: RAM block to populate
1724  */
1725 static void ram_block_populate_read(RAMBlock *rb)
1726 {
1727     /*
1728      * Skip populating all pages that fall into a discarded range as managed by
1729      * a RamDiscardManager responsible for the mapped memory region of the
1730      * RAMBlock. Such discarded ("logically unplugged") parts of a RAMBlock
1731      * must not get populated automatically. We don't have to track
1732      * modifications via userfaultfd WP reliably, because these pages will
1733      * not be part of the migration stream either way -- see
1734      * ramblock_dirty_bitmap_exclude_discarded_pages().
1735      *
1736      * Note: The result is only stable while migrating (precopy/postcopy).
1737      */
1738     if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) {
1739         RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr);
1740         MemoryRegionSection section = {
1741             .mr = rb->mr,
1742             .offset_within_region = 0,
1743             .size = rb->mr->size,
1744         };
1745 
1746         ram_discard_manager_replay_populated(rdm, &section,
1747                                              populate_read_section, NULL);
1748     } else {
1749         populate_read_range(rb, 0, rb->used_length);
1750     }
1751 }
1752 
1753 /*
1754  * ram_write_tracking_prepare: prepare for UFFD-WP memory tracking
1755  */
1756 void ram_write_tracking_prepare(void)
1757 {
1758     RAMBlock *block;
1759 
1760     RCU_READ_LOCK_GUARD();
1761 
1762     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1763         /* Nothing to do with read-only and MMIO-writable regions */
1764         if (block->mr->readonly || block->mr->rom_device) {
1765             continue;
1766         }
1767 
1768         /*
1769          * Populate pages of the RAM block before enabling userfault_fd
1770          * write protection.
1771          *
1772          * This stage is required since ioctl(UFFDIO_WRITEPROTECT) with
1773          * UFFDIO_WRITEPROTECT_MODE_WP mode setting would silently skip
1774          * pages with pte_none() entries in page table.
1775          */
1776         ram_block_populate_read(block);
1777     }
1778 }
1779 
1780 /*
1781  * ram_write_tracking_start: start UFFD-WP memory tracking
1782  *
1783  * Returns 0 for success or negative value in case of error
1784  */
1785 int ram_write_tracking_start(void)
1786 {
1787     int uffd_fd;
1788     RAMState *rs = ram_state;
1789     RAMBlock *block;
1790 
1791     /* Open UFFD file descriptor */
1792     uffd_fd = uffd_create_fd(UFFD_FEATURE_PAGEFAULT_FLAG_WP, true);
1793     if (uffd_fd < 0) {
1794         return uffd_fd;
1795     }
1796     rs->uffdio_fd = uffd_fd;
1797 
1798     RCU_READ_LOCK_GUARD();
1799 
1800     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1801         /* Nothing to do with read-only and MMIO-writable regions */
1802         if (block->mr->readonly || block->mr->rom_device) {
1803             continue;
1804         }
1805 
1806         /* Register block memory with UFFD to track writes */
1807         if (uffd_register_memory(rs->uffdio_fd, block->host,
1808                 block->max_length, UFFDIO_REGISTER_MODE_WP, NULL)) {
1809             goto fail;
1810         }
1811         /* Apply UFFD write protection to the block memory range */
1812         if (uffd_change_protection(rs->uffdio_fd, block->host,
1813                 block->max_length, true, false)) {
1814             goto fail;
1815         }
1816         block->flags |= RAM_UF_WRITEPROTECT;
1817         memory_region_ref(block->mr);
1818 
1819         trace_ram_write_tracking_ramblock_start(block->idstr, block->page_size,
1820                 block->host, block->max_length);
1821     }
1822 
1823     return 0;
1824 
1825 fail:
1826     error_report("ram_write_tracking_start() failed: restoring initial memory state");
1827 
1828     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1829         if ((block->flags & RAM_UF_WRITEPROTECT) == 0) {
1830             continue;
1831         }
1832         /*
1833          * In case some memory block failed to be write-protected
1834          * remove protection and unregister all succeeded RAM blocks
1835          */
1836         uffd_change_protection(rs->uffdio_fd, block->host, block->max_length,
1837                 false, false);
1838         uffd_unregister_memory(rs->uffdio_fd, block->host, block->max_length);
1839         /* Cleanup flags and remove reference */
1840         block->flags &= ~RAM_UF_WRITEPROTECT;
1841         memory_region_unref(block->mr);
1842     }
1843 
1844     uffd_close_fd(uffd_fd);
1845     rs->uffdio_fd = -1;
1846     return -1;
1847 }
1848 
1849 /**
1850  * ram_write_tracking_stop: stop UFFD-WP memory tracking and remove protection
1851  */
1852 void ram_write_tracking_stop(void)
1853 {
1854     RAMState *rs = ram_state;
1855     RAMBlock *block;
1856 
1857     RCU_READ_LOCK_GUARD();
1858 
1859     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1860         if ((block->flags & RAM_UF_WRITEPROTECT) == 0) {
1861             continue;
1862         }
1863         /* Remove protection and unregister all affected RAM blocks */
1864         uffd_change_protection(rs->uffdio_fd, block->host, block->max_length,
1865                 false, false);
1866         uffd_unregister_memory(rs->uffdio_fd, block->host, block->max_length);
1867 
1868         trace_ram_write_tracking_ramblock_stop(block->idstr, block->page_size,
1869                 block->host, block->max_length);
1870 
1871         /* Cleanup flags and remove reference */
1872         block->flags &= ~RAM_UF_WRITEPROTECT;
1873         memory_region_unref(block->mr);
1874     }
1875 
1876     /* Finally close UFFD file descriptor */
1877     uffd_close_fd(rs->uffdio_fd);
1878     rs->uffdio_fd = -1;
1879 }
1880 
1881 #else
1882 /* No target OS support, stubs just fail or ignore */
1883 
1884 static RAMBlock *poll_fault_page(RAMState *rs, ram_addr_t *offset)
1885 {
1886     (void) rs;
1887     (void) offset;
1888 
1889     return NULL;
1890 }
1891 
1892 static int ram_save_release_protection(RAMState *rs, PageSearchStatus *pss,
1893         unsigned long start_page)
1894 {
1895     (void) rs;
1896     (void) pss;
1897     (void) start_page;
1898 
1899     return 0;
1900 }
1901 
1902 bool ram_write_tracking_available(void)
1903 {
1904     return false;
1905 }
1906 
1907 bool ram_write_tracking_compatible(void)
1908 {
1909     assert(0);
1910     return false;
1911 }
1912 
1913 int ram_write_tracking_start(void)
1914 {
1915     assert(0);
1916     return -1;
1917 }
1918 
1919 void ram_write_tracking_stop(void)
1920 {
1921     assert(0);
1922 }
1923 #endif /* defined(__linux__) */
1924 
1925 /**
1926  * get_queued_page: unqueue a page from the postcopy requests
1927  *
1928  * Skips pages that are already sent (!dirty)
1929  *
1930  * Returns true if a queued page is found
1931  *
1932  * @rs: current RAM state
1933  * @pss: data about the state of the current dirty page scan
1934  */
1935 static bool get_queued_page(RAMState *rs, PageSearchStatus *pss)
1936 {
1937     RAMBlock  *block;
1938     ram_addr_t offset;
1939     bool dirty;
1940 
1941     do {
1942         block = unqueue_page(rs, &offset);
1943         /*
1944          * We're sending this page, and since it's postcopy nothing else
1945          * will dirty it, and we must make sure it doesn't get sent again
1946          * even if this queue request was received after the background
1947          * search already sent it.
1948          */
1949         if (block) {
1950             unsigned long page;
1951 
1952             page = offset >> TARGET_PAGE_BITS;
1953             dirty = test_bit(page, block->bmap);
1954             if (!dirty) {
1955                 trace_get_queued_page_not_dirty(block->idstr, (uint64_t)offset,
1956                                                 page);
1957             } else {
1958                 trace_get_queued_page(block->idstr, (uint64_t)offset, page);
1959             }
1960         }
1961 
1962     } while (block && !dirty);
1963 
1964     if (!block) {
1965         /*
1966          * Poll write faults too if background snapshot is enabled; that's
1967          * when we have vcpus got blocked by the write protected pages.
1968          */
1969         block = poll_fault_page(rs, &offset);
1970     }
1971 
1972     if (block) {
1973         /*
1974          * We want the background search to continue from the queued page
1975          * since the guest is likely to want other pages near to the page
1976          * it just requested.
1977          */
1978         pss->block = block;
1979         pss->page = offset >> TARGET_PAGE_BITS;
1980 
1981         /*
1982          * This unqueued page would break the "one round" check, even is
1983          * really rare.
1984          */
1985         pss->complete_round = false;
1986     }
1987 
1988     return !!block;
1989 }
1990 
1991 /**
1992  * migration_page_queue_free: drop any remaining pages in the ram
1993  * request queue
1994  *
1995  * It should be empty at the end anyway, but in error cases there may
1996  * be some left.  in case that there is any page left, we drop it.
1997  *
1998  */
1999 static void migration_page_queue_free(RAMState *rs)
2000 {
2001     struct RAMSrcPageRequest *mspr, *next_mspr;
2002     /* This queue generally should be empty - but in the case of a failed
2003      * migration might have some droppings in.
2004      */
2005     RCU_READ_LOCK_GUARD();
2006     QSIMPLEQ_FOREACH_SAFE(mspr, &rs->src_page_requests, next_req, next_mspr) {
2007         memory_region_unref(mspr->rb->mr);
2008         QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
2009         g_free(mspr);
2010     }
2011 }
2012 
2013 /**
2014  * ram_save_queue_pages: queue the page for transmission
2015  *
2016  * A request from postcopy destination for example.
2017  *
2018  * Returns zero on success or negative on error
2019  *
2020  * @rbname: Name of the RAMBLock of the request. NULL means the
2021  *          same that last one.
2022  * @start: starting address from the start of the RAMBlock
2023  * @len: length (in bytes) to send
2024  */
2025 int ram_save_queue_pages(const char *rbname, ram_addr_t start, ram_addr_t len)
2026 {
2027     RAMBlock *ramblock;
2028     RAMState *rs = ram_state;
2029 
2030     ram_counters.postcopy_requests++;
2031     RCU_READ_LOCK_GUARD();
2032 
2033     if (!rbname) {
2034         /* Reuse last RAMBlock */
2035         ramblock = rs->last_req_rb;
2036 
2037         if (!ramblock) {
2038             /*
2039              * Shouldn't happen, we can't reuse the last RAMBlock if
2040              * it's the 1st request.
2041              */
2042             error_report("ram_save_queue_pages no previous block");
2043             return -1;
2044         }
2045     } else {
2046         ramblock = qemu_ram_block_by_name(rbname);
2047 
2048         if (!ramblock) {
2049             /* We shouldn't be asked for a non-existent RAMBlock */
2050             error_report("ram_save_queue_pages no block '%s'", rbname);
2051             return -1;
2052         }
2053         rs->last_req_rb = ramblock;
2054     }
2055     trace_ram_save_queue_pages(ramblock->idstr, start, len);
2056     if (!offset_in_ramblock(ramblock, start + len - 1)) {
2057         error_report("%s request overrun start=" RAM_ADDR_FMT " len="
2058                      RAM_ADDR_FMT " blocklen=" RAM_ADDR_FMT,
2059                      __func__, start, len, ramblock->used_length);
2060         return -1;
2061     }
2062 
2063     struct RAMSrcPageRequest *new_entry =
2064         g_malloc0(sizeof(struct RAMSrcPageRequest));
2065     new_entry->rb = ramblock;
2066     new_entry->offset = start;
2067     new_entry->len = len;
2068 
2069     memory_region_ref(ramblock->mr);
2070     qemu_mutex_lock(&rs->src_page_req_mutex);
2071     QSIMPLEQ_INSERT_TAIL(&rs->src_page_requests, new_entry, next_req);
2072     migration_make_urgent_request();
2073     qemu_mutex_unlock(&rs->src_page_req_mutex);
2074 
2075     return 0;
2076 }
2077 
2078 static bool save_page_use_compression(RAMState *rs)
2079 {
2080     if (!migrate_use_compression()) {
2081         return false;
2082     }
2083 
2084     /*
2085      * If xbzrle is enabled (e.g., after first round of migration), stop
2086      * using the data compression. In theory, xbzrle can do better than
2087      * compression.
2088      */
2089     if (rs->xbzrle_enabled) {
2090         return false;
2091     }
2092 
2093     return true;
2094 }
2095 
2096 /*
2097  * try to compress the page before posting it out, return true if the page
2098  * has been properly handled by compression, otherwise needs other
2099  * paths to handle it
2100  */
2101 static bool save_compress_page(RAMState *rs, RAMBlock *block, ram_addr_t offset)
2102 {
2103     if (!save_page_use_compression(rs)) {
2104         return false;
2105     }
2106 
2107     /*
2108      * When starting the process of a new block, the first page of
2109      * the block should be sent out before other pages in the same
2110      * block, and all the pages in last block should have been sent
2111      * out, keeping this order is important, because the 'cont' flag
2112      * is used to avoid resending the block name.
2113      *
2114      * We post the fist page as normal page as compression will take
2115      * much CPU resource.
2116      */
2117     if (block != rs->last_sent_block) {
2118         flush_compressed_data(rs);
2119         return false;
2120     }
2121 
2122     if (compress_page_with_multi_thread(rs, block, offset) > 0) {
2123         return true;
2124     }
2125 
2126     compression_counters.busy++;
2127     return false;
2128 }
2129 
2130 /**
2131  * ram_save_target_page: save one target page
2132  *
2133  * Returns the number of pages written
2134  *
2135  * @rs: current RAM state
2136  * @pss: data about the page we want to send
2137  * @last_stage: if we are at the completion stage
2138  */
2139 static int ram_save_target_page(RAMState *rs, PageSearchStatus *pss,
2140                                 bool last_stage)
2141 {
2142     RAMBlock *block = pss->block;
2143     ram_addr_t offset = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS;
2144     int res;
2145 
2146     if (control_save_page(rs, block, offset, &res)) {
2147         return res;
2148     }
2149 
2150     if (save_compress_page(rs, block, offset)) {
2151         return 1;
2152     }
2153 
2154     res = save_zero_page(rs, block, offset);
2155     if (res > 0) {
2156         /* Must let xbzrle know, otherwise a previous (now 0'd) cached
2157          * page would be stale
2158          */
2159         if (!save_page_use_compression(rs)) {
2160             XBZRLE_cache_lock();
2161             xbzrle_cache_zero_page(rs, block->offset + offset);
2162             XBZRLE_cache_unlock();
2163         }
2164         ram_release_pages(block->idstr, offset, res);
2165         return res;
2166     }
2167 
2168     /*
2169      * Do not use multifd for:
2170      * 1. Compression as the first page in the new block should be posted out
2171      *    before sending the compressed page
2172      * 2. In postcopy as one whole host page should be placed
2173      */
2174     if (!save_page_use_compression(rs) && migrate_use_multifd()
2175         && !migration_in_postcopy()) {
2176         return ram_save_multifd_page(rs, block, offset);
2177     }
2178 
2179     return ram_save_page(rs, pss, last_stage);
2180 }
2181 
2182 /**
2183  * ram_save_host_page: save a whole host page
2184  *
2185  * Starting at *offset send pages up to the end of the current host
2186  * page. It's valid for the initial offset to point into the middle of
2187  * a host page in which case the remainder of the hostpage is sent.
2188  * Only dirty target pages are sent. Note that the host page size may
2189  * be a huge page for this block.
2190  * The saving stops at the boundary of the used_length of the block
2191  * if the RAMBlock isn't a multiple of the host page size.
2192  *
2193  * Returns the number of pages written or negative on error
2194  *
2195  * @rs: current RAM state
2196  * @ms: current migration state
2197  * @pss: data about the page we want to send
2198  * @last_stage: if we are at the completion stage
2199  */
2200 static int ram_save_host_page(RAMState *rs, PageSearchStatus *pss,
2201                               bool last_stage)
2202 {
2203     int tmppages, pages = 0;
2204     size_t pagesize_bits =
2205         qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS;
2206     unsigned long hostpage_boundary =
2207         QEMU_ALIGN_UP(pss->page + 1, pagesize_bits);
2208     unsigned long start_page = pss->page;
2209     int res;
2210 
2211     if (ramblock_is_ignored(pss->block)) {
2212         error_report("block %s should not be migrated !", pss->block->idstr);
2213         return 0;
2214     }
2215 
2216     do {
2217         /* Check the pages is dirty and if it is send it */
2218         if (migration_bitmap_clear_dirty(rs, pss->block, pss->page)) {
2219             tmppages = ram_save_target_page(rs, pss, last_stage);
2220             if (tmppages < 0) {
2221                 return tmppages;
2222             }
2223 
2224             pages += tmppages;
2225             /*
2226              * Allow rate limiting to happen in the middle of huge pages if
2227              * something is sent in the current iteration.
2228              */
2229             if (pagesize_bits > 1 && tmppages > 0) {
2230                 migration_rate_limit();
2231             }
2232         }
2233         pss->page = migration_bitmap_find_dirty(rs, pss->block, pss->page);
2234     } while ((pss->page < hostpage_boundary) &&
2235              offset_in_ramblock(pss->block,
2236                                 ((ram_addr_t)pss->page) << TARGET_PAGE_BITS));
2237     /* The offset we leave with is the min boundary of host page and block */
2238     pss->page = MIN(pss->page, hostpage_boundary) - 1;
2239 
2240     res = ram_save_release_protection(rs, pss, start_page);
2241     return (res < 0 ? res : pages);
2242 }
2243 
2244 /**
2245  * ram_find_and_save_block: finds a dirty page and sends it to f
2246  *
2247  * Called within an RCU critical section.
2248  *
2249  * Returns the number of pages written where zero means no dirty pages,
2250  * or negative on error
2251  *
2252  * @rs: current RAM state
2253  * @last_stage: if we are at the completion stage
2254  *
2255  * On systems where host-page-size > target-page-size it will send all the
2256  * pages in a host page that are dirty.
2257  */
2258 
2259 static int ram_find_and_save_block(RAMState *rs, bool last_stage)
2260 {
2261     PageSearchStatus pss;
2262     int pages = 0;
2263     bool again, found;
2264 
2265     /* No dirty page as there is zero RAM */
2266     if (!ram_bytes_total()) {
2267         return pages;
2268     }
2269 
2270     pss.block = rs->last_seen_block;
2271     pss.page = rs->last_page;
2272     pss.complete_round = false;
2273 
2274     if (!pss.block) {
2275         pss.block = QLIST_FIRST_RCU(&ram_list.blocks);
2276     }
2277 
2278     do {
2279         again = true;
2280         found = get_queued_page(rs, &pss);
2281 
2282         if (!found) {
2283             /* priority queue empty, so just search for something dirty */
2284             found = find_dirty_block(rs, &pss, &again);
2285         }
2286 
2287         if (found) {
2288             pages = ram_save_host_page(rs, &pss, last_stage);
2289         }
2290     } while (!pages && again);
2291 
2292     rs->last_seen_block = pss.block;
2293     rs->last_page = pss.page;
2294 
2295     return pages;
2296 }
2297 
2298 void acct_update_position(QEMUFile *f, size_t size, bool zero)
2299 {
2300     uint64_t pages = size / TARGET_PAGE_SIZE;
2301 
2302     if (zero) {
2303         ram_counters.duplicate += pages;
2304     } else {
2305         ram_counters.normal += pages;
2306         ram_counters.transferred += size;
2307         qemu_update_position(f, size);
2308     }
2309 }
2310 
2311 static uint64_t ram_bytes_total_common(bool count_ignored)
2312 {
2313     RAMBlock *block;
2314     uint64_t total = 0;
2315 
2316     RCU_READ_LOCK_GUARD();
2317 
2318     if (count_ignored) {
2319         RAMBLOCK_FOREACH_MIGRATABLE(block) {
2320             total += block->used_length;
2321         }
2322     } else {
2323         RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2324             total += block->used_length;
2325         }
2326     }
2327     return total;
2328 }
2329 
2330 uint64_t ram_bytes_total(void)
2331 {
2332     return ram_bytes_total_common(false);
2333 }
2334 
2335 static void xbzrle_load_setup(void)
2336 {
2337     XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE);
2338 }
2339 
2340 static void xbzrle_load_cleanup(void)
2341 {
2342     g_free(XBZRLE.decoded_buf);
2343     XBZRLE.decoded_buf = NULL;
2344 }
2345 
2346 static void ram_state_cleanup(RAMState **rsp)
2347 {
2348     if (*rsp) {
2349         migration_page_queue_free(*rsp);
2350         qemu_mutex_destroy(&(*rsp)->bitmap_mutex);
2351         qemu_mutex_destroy(&(*rsp)->src_page_req_mutex);
2352         g_free(*rsp);
2353         *rsp = NULL;
2354     }
2355 }
2356 
2357 static void xbzrle_cleanup(void)
2358 {
2359     XBZRLE_cache_lock();
2360     if (XBZRLE.cache) {
2361         cache_fini(XBZRLE.cache);
2362         g_free(XBZRLE.encoded_buf);
2363         g_free(XBZRLE.current_buf);
2364         g_free(XBZRLE.zero_target_page);
2365         XBZRLE.cache = NULL;
2366         XBZRLE.encoded_buf = NULL;
2367         XBZRLE.current_buf = NULL;
2368         XBZRLE.zero_target_page = NULL;
2369     }
2370     XBZRLE_cache_unlock();
2371 }
2372 
2373 static void ram_save_cleanup(void *opaque)
2374 {
2375     RAMState **rsp = opaque;
2376     RAMBlock *block;
2377 
2378     /* We don't use dirty log with background snapshots */
2379     if (!migrate_background_snapshot()) {
2380         /* caller have hold iothread lock or is in a bh, so there is
2381          * no writing race against the migration bitmap
2382          */
2383         if (global_dirty_tracking & GLOBAL_DIRTY_MIGRATION) {
2384             /*
2385              * do not stop dirty log without starting it, since
2386              * memory_global_dirty_log_stop will assert that
2387              * memory_global_dirty_log_start/stop used in pairs
2388              */
2389             memory_global_dirty_log_stop(GLOBAL_DIRTY_MIGRATION);
2390         }
2391     }
2392 
2393     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2394         g_free(block->clear_bmap);
2395         block->clear_bmap = NULL;
2396         g_free(block->bmap);
2397         block->bmap = NULL;
2398     }
2399 
2400     xbzrle_cleanup();
2401     compress_threads_save_cleanup();
2402     ram_state_cleanup(rsp);
2403 }
2404 
2405 static void ram_state_reset(RAMState *rs)
2406 {
2407     rs->last_seen_block = NULL;
2408     rs->last_sent_block = NULL;
2409     rs->last_page = 0;
2410     rs->last_version = ram_list.version;
2411     rs->xbzrle_enabled = false;
2412 }
2413 
2414 #define MAX_WAIT 50 /* ms, half buffered_file limit */
2415 
2416 /*
2417  * 'expected' is the value you expect the bitmap mostly to be full
2418  * of; it won't bother printing lines that are all this value.
2419  * If 'todump' is null the migration bitmap is dumped.
2420  */
2421 void ram_debug_dump_bitmap(unsigned long *todump, bool expected,
2422                            unsigned long pages)
2423 {
2424     int64_t cur;
2425     int64_t linelen = 128;
2426     char linebuf[129];
2427 
2428     for (cur = 0; cur < pages; cur += linelen) {
2429         int64_t curb;
2430         bool found = false;
2431         /*
2432          * Last line; catch the case where the line length
2433          * is longer than remaining ram
2434          */
2435         if (cur + linelen > pages) {
2436             linelen = pages - cur;
2437         }
2438         for (curb = 0; curb < linelen; curb++) {
2439             bool thisbit = test_bit(cur + curb, todump);
2440             linebuf[curb] = thisbit ? '1' : '.';
2441             found = found || (thisbit != expected);
2442         }
2443         if (found) {
2444             linebuf[curb] = '\0';
2445             fprintf(stderr,  "0x%08" PRIx64 " : %s\n", cur, linebuf);
2446         }
2447     }
2448 }
2449 
2450 /* **** functions for postcopy ***** */
2451 
2452 void ram_postcopy_migrated_memory_release(MigrationState *ms)
2453 {
2454     struct RAMBlock *block;
2455 
2456     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2457         unsigned long *bitmap = block->bmap;
2458         unsigned long range = block->used_length >> TARGET_PAGE_BITS;
2459         unsigned long run_start = find_next_zero_bit(bitmap, range, 0);
2460 
2461         while (run_start < range) {
2462             unsigned long run_end = find_next_bit(bitmap, range, run_start + 1);
2463             ram_discard_range(block->idstr,
2464                               ((ram_addr_t)run_start) << TARGET_PAGE_BITS,
2465                               ((ram_addr_t)(run_end - run_start))
2466                                 << TARGET_PAGE_BITS);
2467             run_start = find_next_zero_bit(bitmap, range, run_end + 1);
2468         }
2469     }
2470 }
2471 
2472 /**
2473  * postcopy_send_discard_bm_ram: discard a RAMBlock
2474  *
2475  * Returns zero on success
2476  *
2477  * Callback from postcopy_each_ram_send_discard for each RAMBlock
2478  *
2479  * @ms: current migration state
2480  * @block: RAMBlock to discard
2481  */
2482 static int postcopy_send_discard_bm_ram(MigrationState *ms, RAMBlock *block)
2483 {
2484     unsigned long end = block->used_length >> TARGET_PAGE_BITS;
2485     unsigned long current;
2486     unsigned long *bitmap = block->bmap;
2487 
2488     for (current = 0; current < end; ) {
2489         unsigned long one = find_next_bit(bitmap, end, current);
2490         unsigned long zero, discard_length;
2491 
2492         if (one >= end) {
2493             break;
2494         }
2495 
2496         zero = find_next_zero_bit(bitmap, end, one + 1);
2497 
2498         if (zero >= end) {
2499             discard_length = end - one;
2500         } else {
2501             discard_length = zero - one;
2502         }
2503         postcopy_discard_send_range(ms, one, discard_length);
2504         current = one + discard_length;
2505     }
2506 
2507     return 0;
2508 }
2509 
2510 /**
2511  * postcopy_each_ram_send_discard: discard all RAMBlocks
2512  *
2513  * Returns 0 for success or negative for error
2514  *
2515  * Utility for the outgoing postcopy code.
2516  *   Calls postcopy_send_discard_bm_ram for each RAMBlock
2517  *   passing it bitmap indexes and name.
2518  * (qemu_ram_foreach_block ends up passing unscaled lengths
2519  *  which would mean postcopy code would have to deal with target page)
2520  *
2521  * @ms: current migration state
2522  */
2523 static int postcopy_each_ram_send_discard(MigrationState *ms)
2524 {
2525     struct RAMBlock *block;
2526     int ret;
2527 
2528     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2529         postcopy_discard_send_init(ms, block->idstr);
2530 
2531         /*
2532          * Postcopy sends chunks of bitmap over the wire, but it
2533          * just needs indexes at this point, avoids it having
2534          * target page specific code.
2535          */
2536         ret = postcopy_send_discard_bm_ram(ms, block);
2537         postcopy_discard_send_finish(ms);
2538         if (ret) {
2539             return ret;
2540         }
2541     }
2542 
2543     return 0;
2544 }
2545 
2546 /**
2547  * postcopy_chunk_hostpages_pass: canonicalize bitmap in hostpages
2548  *
2549  * Helper for postcopy_chunk_hostpages; it's called twice to
2550  * canonicalize the two bitmaps, that are similar, but one is
2551  * inverted.
2552  *
2553  * Postcopy requires that all target pages in a hostpage are dirty or
2554  * clean, not a mix.  This function canonicalizes the bitmaps.
2555  *
2556  * @ms: current migration state
2557  * @block: block that contains the page we want to canonicalize
2558  */
2559 static void postcopy_chunk_hostpages_pass(MigrationState *ms, RAMBlock *block)
2560 {
2561     RAMState *rs = ram_state;
2562     unsigned long *bitmap = block->bmap;
2563     unsigned int host_ratio = block->page_size / TARGET_PAGE_SIZE;
2564     unsigned long pages = block->used_length >> TARGET_PAGE_BITS;
2565     unsigned long run_start;
2566 
2567     if (block->page_size == TARGET_PAGE_SIZE) {
2568         /* Easy case - TPS==HPS for a non-huge page RAMBlock */
2569         return;
2570     }
2571 
2572     /* Find a dirty page */
2573     run_start = find_next_bit(bitmap, pages, 0);
2574 
2575     while (run_start < pages) {
2576 
2577         /*
2578          * If the start of this run of pages is in the middle of a host
2579          * page, then we need to fixup this host page.
2580          */
2581         if (QEMU_IS_ALIGNED(run_start, host_ratio)) {
2582             /* Find the end of this run */
2583             run_start = find_next_zero_bit(bitmap, pages, run_start + 1);
2584             /*
2585              * If the end isn't at the start of a host page, then the
2586              * run doesn't finish at the end of a host page
2587              * and we need to discard.
2588              */
2589         }
2590 
2591         if (!QEMU_IS_ALIGNED(run_start, host_ratio)) {
2592             unsigned long page;
2593             unsigned long fixup_start_addr = QEMU_ALIGN_DOWN(run_start,
2594                                                              host_ratio);
2595             run_start = QEMU_ALIGN_UP(run_start, host_ratio);
2596 
2597             /* Clean up the bitmap */
2598             for (page = fixup_start_addr;
2599                  page < fixup_start_addr + host_ratio; page++) {
2600                 /*
2601                  * Remark them as dirty, updating the count for any pages
2602                  * that weren't previously dirty.
2603                  */
2604                 rs->migration_dirty_pages += !test_and_set_bit(page, bitmap);
2605             }
2606         }
2607 
2608         /* Find the next dirty page for the next iteration */
2609         run_start = find_next_bit(bitmap, pages, run_start);
2610     }
2611 }
2612 
2613 /**
2614  * postcopy_chunk_hostpages: discard any partially sent host page
2615  *
2616  * Utility for the outgoing postcopy code.
2617  *
2618  * Discard any partially sent host-page size chunks, mark any partially
2619  * dirty host-page size chunks as all dirty.  In this case the host-page
2620  * is the host-page for the particular RAMBlock, i.e. it might be a huge page
2621  *
2622  * Returns zero on success
2623  *
2624  * @ms: current migration state
2625  * @block: block we want to work with
2626  */
2627 static int postcopy_chunk_hostpages(MigrationState *ms, RAMBlock *block)
2628 {
2629     postcopy_discard_send_init(ms, block->idstr);
2630 
2631     /*
2632      * Ensure that all partially dirty host pages are made fully dirty.
2633      */
2634     postcopy_chunk_hostpages_pass(ms, block);
2635 
2636     postcopy_discard_send_finish(ms);
2637     return 0;
2638 }
2639 
2640 /**
2641  * ram_postcopy_send_discard_bitmap: transmit the discard bitmap
2642  *
2643  * Returns zero on success
2644  *
2645  * Transmit the set of pages to be discarded after precopy to the target
2646  * these are pages that:
2647  *     a) Have been previously transmitted but are now dirty again
2648  *     b) Pages that have never been transmitted, this ensures that
2649  *        any pages on the destination that have been mapped by background
2650  *        tasks get discarded (transparent huge pages is the specific concern)
2651  * Hopefully this is pretty sparse
2652  *
2653  * @ms: current migration state
2654  */
2655 int ram_postcopy_send_discard_bitmap(MigrationState *ms)
2656 {
2657     RAMState *rs = ram_state;
2658     RAMBlock *block;
2659     int ret;
2660 
2661     RCU_READ_LOCK_GUARD();
2662 
2663     /* This should be our last sync, the src is now paused */
2664     migration_bitmap_sync(rs);
2665 
2666     /* Easiest way to make sure we don't resume in the middle of a host-page */
2667     rs->last_seen_block = NULL;
2668     rs->last_sent_block = NULL;
2669     rs->last_page = 0;
2670 
2671     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2672         /* Deal with TPS != HPS and huge pages */
2673         ret = postcopy_chunk_hostpages(ms, block);
2674         if (ret) {
2675             return ret;
2676         }
2677 
2678 #ifdef DEBUG_POSTCOPY
2679         ram_debug_dump_bitmap(block->bmap, true,
2680                               block->used_length >> TARGET_PAGE_BITS);
2681 #endif
2682     }
2683     trace_ram_postcopy_send_discard_bitmap();
2684 
2685     return postcopy_each_ram_send_discard(ms);
2686 }
2687 
2688 /**
2689  * ram_discard_range: discard dirtied pages at the beginning of postcopy
2690  *
2691  * Returns zero on success
2692  *
2693  * @rbname: name of the RAMBlock of the request. NULL means the
2694  *          same that last one.
2695  * @start: RAMBlock starting page
2696  * @length: RAMBlock size
2697  */
2698 int ram_discard_range(const char *rbname, uint64_t start, size_t length)
2699 {
2700     trace_ram_discard_range(rbname, start, length);
2701 
2702     RCU_READ_LOCK_GUARD();
2703     RAMBlock *rb = qemu_ram_block_by_name(rbname);
2704 
2705     if (!rb) {
2706         error_report("ram_discard_range: Failed to find block '%s'", rbname);
2707         return -1;
2708     }
2709 
2710     /*
2711      * On source VM, we don't need to update the received bitmap since
2712      * we don't even have one.
2713      */
2714     if (rb->receivedmap) {
2715         bitmap_clear(rb->receivedmap, start >> qemu_target_page_bits(),
2716                      length >> qemu_target_page_bits());
2717     }
2718 
2719     return ram_block_discard_range(rb, start, length);
2720 }
2721 
2722 /*
2723  * For every allocation, we will try not to crash the VM if the
2724  * allocation failed.
2725  */
2726 static int xbzrle_init(void)
2727 {
2728     Error *local_err = NULL;
2729 
2730     if (!migrate_use_xbzrle()) {
2731         return 0;
2732     }
2733 
2734     XBZRLE_cache_lock();
2735 
2736     XBZRLE.zero_target_page = g_try_malloc0(TARGET_PAGE_SIZE);
2737     if (!XBZRLE.zero_target_page) {
2738         error_report("%s: Error allocating zero page", __func__);
2739         goto err_out;
2740     }
2741 
2742     XBZRLE.cache = cache_init(migrate_xbzrle_cache_size(),
2743                               TARGET_PAGE_SIZE, &local_err);
2744     if (!XBZRLE.cache) {
2745         error_report_err(local_err);
2746         goto free_zero_page;
2747     }
2748 
2749     XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE);
2750     if (!XBZRLE.encoded_buf) {
2751         error_report("%s: Error allocating encoded_buf", __func__);
2752         goto free_cache;
2753     }
2754 
2755     XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE);
2756     if (!XBZRLE.current_buf) {
2757         error_report("%s: Error allocating current_buf", __func__);
2758         goto free_encoded_buf;
2759     }
2760 
2761     /* We are all good */
2762     XBZRLE_cache_unlock();
2763     return 0;
2764 
2765 free_encoded_buf:
2766     g_free(XBZRLE.encoded_buf);
2767     XBZRLE.encoded_buf = NULL;
2768 free_cache:
2769     cache_fini(XBZRLE.cache);
2770     XBZRLE.cache = NULL;
2771 free_zero_page:
2772     g_free(XBZRLE.zero_target_page);
2773     XBZRLE.zero_target_page = NULL;
2774 err_out:
2775     XBZRLE_cache_unlock();
2776     return -ENOMEM;
2777 }
2778 
2779 static int ram_state_init(RAMState **rsp)
2780 {
2781     *rsp = g_try_new0(RAMState, 1);
2782 
2783     if (!*rsp) {
2784         error_report("%s: Init ramstate fail", __func__);
2785         return -1;
2786     }
2787 
2788     qemu_mutex_init(&(*rsp)->bitmap_mutex);
2789     qemu_mutex_init(&(*rsp)->src_page_req_mutex);
2790     QSIMPLEQ_INIT(&(*rsp)->src_page_requests);
2791 
2792     /*
2793      * Count the total number of pages used by ram blocks not including any
2794      * gaps due to alignment or unplugs.
2795      * This must match with the initial values of dirty bitmap.
2796      */
2797     (*rsp)->migration_dirty_pages = ram_bytes_total() >> TARGET_PAGE_BITS;
2798     ram_state_reset(*rsp);
2799 
2800     return 0;
2801 }
2802 
2803 static void ram_list_init_bitmaps(void)
2804 {
2805     MigrationState *ms = migrate_get_current();
2806     RAMBlock *block;
2807     unsigned long pages;
2808     uint8_t shift;
2809 
2810     /* Skip setting bitmap if there is no RAM */
2811     if (ram_bytes_total()) {
2812         shift = ms->clear_bitmap_shift;
2813         if (shift > CLEAR_BITMAP_SHIFT_MAX) {
2814             error_report("clear_bitmap_shift (%u) too big, using "
2815                          "max value (%u)", shift, CLEAR_BITMAP_SHIFT_MAX);
2816             shift = CLEAR_BITMAP_SHIFT_MAX;
2817         } else if (shift < CLEAR_BITMAP_SHIFT_MIN) {
2818             error_report("clear_bitmap_shift (%u) too small, using "
2819                          "min value (%u)", shift, CLEAR_BITMAP_SHIFT_MIN);
2820             shift = CLEAR_BITMAP_SHIFT_MIN;
2821         }
2822 
2823         RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2824             pages = block->max_length >> TARGET_PAGE_BITS;
2825             /*
2826              * The initial dirty bitmap for migration must be set with all
2827              * ones to make sure we'll migrate every guest RAM page to
2828              * destination.
2829              * Here we set RAMBlock.bmap all to 1 because when rebegin a
2830              * new migration after a failed migration, ram_list.
2831              * dirty_memory[DIRTY_MEMORY_MIGRATION] don't include the whole
2832              * guest memory.
2833              */
2834             block->bmap = bitmap_new(pages);
2835             bitmap_set(block->bmap, 0, pages);
2836             block->clear_bmap_shift = shift;
2837             block->clear_bmap = bitmap_new(clear_bmap_size(pages, shift));
2838         }
2839     }
2840 }
2841 
2842 static void migration_bitmap_clear_discarded_pages(RAMState *rs)
2843 {
2844     unsigned long pages;
2845     RAMBlock *rb;
2846 
2847     RCU_READ_LOCK_GUARD();
2848 
2849     RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
2850             pages = ramblock_dirty_bitmap_clear_discarded_pages(rb);
2851             rs->migration_dirty_pages -= pages;
2852     }
2853 }
2854 
2855 static void ram_init_bitmaps(RAMState *rs)
2856 {
2857     /* For memory_global_dirty_log_start below.  */
2858     qemu_mutex_lock_iothread();
2859     qemu_mutex_lock_ramlist();
2860 
2861     WITH_RCU_READ_LOCK_GUARD() {
2862         ram_list_init_bitmaps();
2863         /* We don't use dirty log with background snapshots */
2864         if (!migrate_background_snapshot()) {
2865             memory_global_dirty_log_start(GLOBAL_DIRTY_MIGRATION);
2866             migration_bitmap_sync_precopy(rs);
2867         }
2868     }
2869     qemu_mutex_unlock_ramlist();
2870     qemu_mutex_unlock_iothread();
2871 
2872     /*
2873      * After an eventual first bitmap sync, fixup the initial bitmap
2874      * containing all 1s to exclude any discarded pages from migration.
2875      */
2876     migration_bitmap_clear_discarded_pages(rs);
2877 }
2878 
2879 static int ram_init_all(RAMState **rsp)
2880 {
2881     if (ram_state_init(rsp)) {
2882         return -1;
2883     }
2884 
2885     if (xbzrle_init()) {
2886         ram_state_cleanup(rsp);
2887         return -1;
2888     }
2889 
2890     ram_init_bitmaps(*rsp);
2891 
2892     return 0;
2893 }
2894 
2895 static void ram_state_resume_prepare(RAMState *rs, QEMUFile *out)
2896 {
2897     RAMBlock *block;
2898     uint64_t pages = 0;
2899 
2900     /*
2901      * Postcopy is not using xbzrle/compression, so no need for that.
2902      * Also, since source are already halted, we don't need to care
2903      * about dirty page logging as well.
2904      */
2905 
2906     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2907         pages += bitmap_count_one(block->bmap,
2908                                   block->used_length >> TARGET_PAGE_BITS);
2909     }
2910 
2911     /* This may not be aligned with current bitmaps. Recalculate. */
2912     rs->migration_dirty_pages = pages;
2913 
2914     ram_state_reset(rs);
2915 
2916     /* Update RAMState cache of output QEMUFile */
2917     rs->f = out;
2918 
2919     trace_ram_state_resume_prepare(pages);
2920 }
2921 
2922 /*
2923  * This function clears bits of the free pages reported by the caller from the
2924  * migration dirty bitmap. @addr is the host address corresponding to the
2925  * start of the continuous guest free pages, and @len is the total bytes of
2926  * those pages.
2927  */
2928 void qemu_guest_free_page_hint(void *addr, size_t len)
2929 {
2930     RAMBlock *block;
2931     ram_addr_t offset;
2932     size_t used_len, start, npages;
2933     MigrationState *s = migrate_get_current();
2934 
2935     /* This function is currently expected to be used during live migration */
2936     if (!migration_is_setup_or_active(s->state)) {
2937         return;
2938     }
2939 
2940     for (; len > 0; len -= used_len, addr += used_len) {
2941         block = qemu_ram_block_from_host(addr, false, &offset);
2942         if (unlikely(!block || offset >= block->used_length)) {
2943             /*
2944              * The implementation might not support RAMBlock resize during
2945              * live migration, but it could happen in theory with future
2946              * updates. So we add a check here to capture that case.
2947              */
2948             error_report_once("%s unexpected error", __func__);
2949             return;
2950         }
2951 
2952         if (len <= block->used_length - offset) {
2953             used_len = len;
2954         } else {
2955             used_len = block->used_length - offset;
2956         }
2957 
2958         start = offset >> TARGET_PAGE_BITS;
2959         npages = used_len >> TARGET_PAGE_BITS;
2960 
2961         qemu_mutex_lock(&ram_state->bitmap_mutex);
2962         /*
2963          * The skipped free pages are equavalent to be sent from clear_bmap's
2964          * perspective, so clear the bits from the memory region bitmap which
2965          * are initially set. Otherwise those skipped pages will be sent in
2966          * the next round after syncing from the memory region bitmap.
2967          */
2968         migration_clear_memory_region_dirty_bitmap_range(block, start, npages);
2969         ram_state->migration_dirty_pages -=
2970                       bitmap_count_one_with_offset(block->bmap, start, npages);
2971         bitmap_clear(block->bmap, start, npages);
2972         qemu_mutex_unlock(&ram_state->bitmap_mutex);
2973     }
2974 }
2975 
2976 /*
2977  * Each of ram_save_setup, ram_save_iterate and ram_save_complete has
2978  * long-running RCU critical section.  When rcu-reclaims in the code
2979  * start to become numerous it will be necessary to reduce the
2980  * granularity of these critical sections.
2981  */
2982 
2983 /**
2984  * ram_save_setup: Setup RAM for migration
2985  *
2986  * Returns zero to indicate success and negative for error
2987  *
2988  * @f: QEMUFile where to send the data
2989  * @opaque: RAMState pointer
2990  */
2991 static int ram_save_setup(QEMUFile *f, void *opaque)
2992 {
2993     RAMState **rsp = opaque;
2994     RAMBlock *block;
2995 
2996     if (compress_threads_save_setup()) {
2997         return -1;
2998     }
2999 
3000     /* migration has already setup the bitmap, reuse it. */
3001     if (!migration_in_colo_state()) {
3002         if (ram_init_all(rsp) != 0) {
3003             compress_threads_save_cleanup();
3004             return -1;
3005         }
3006     }
3007     (*rsp)->f = f;
3008 
3009     WITH_RCU_READ_LOCK_GUARD() {
3010         qemu_put_be64(f, ram_bytes_total_common(true) | RAM_SAVE_FLAG_MEM_SIZE);
3011 
3012         RAMBLOCK_FOREACH_MIGRATABLE(block) {
3013             qemu_put_byte(f, strlen(block->idstr));
3014             qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
3015             qemu_put_be64(f, block->used_length);
3016             if (migrate_postcopy_ram() && block->page_size !=
3017                                           qemu_host_page_size) {
3018                 qemu_put_be64(f, block->page_size);
3019             }
3020             if (migrate_ignore_shared()) {
3021                 qemu_put_be64(f, block->mr->addr);
3022             }
3023         }
3024     }
3025 
3026     ram_control_before_iterate(f, RAM_CONTROL_SETUP);
3027     ram_control_after_iterate(f, RAM_CONTROL_SETUP);
3028 
3029     multifd_send_sync_main(f);
3030     qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3031     qemu_fflush(f);
3032 
3033     return 0;
3034 }
3035 
3036 /**
3037  * ram_save_iterate: iterative stage for migration
3038  *
3039  * Returns zero to indicate success and negative for error
3040  *
3041  * @f: QEMUFile where to send the data
3042  * @opaque: RAMState pointer
3043  */
3044 static int ram_save_iterate(QEMUFile *f, void *opaque)
3045 {
3046     RAMState **temp = opaque;
3047     RAMState *rs = *temp;
3048     int ret = 0;
3049     int i;
3050     int64_t t0;
3051     int done = 0;
3052 
3053     if (blk_mig_bulk_active()) {
3054         /* Avoid transferring ram during bulk phase of block migration as
3055          * the bulk phase will usually take a long time and transferring
3056          * ram updates during that time is pointless. */
3057         goto out;
3058     }
3059 
3060     /*
3061      * We'll take this lock a little bit long, but it's okay for two reasons.
3062      * Firstly, the only possible other thread to take it is who calls
3063      * qemu_guest_free_page_hint(), which should be rare; secondly, see
3064      * MAX_WAIT (if curious, further see commit 4508bd9ed8053ce) below, which
3065      * guarantees that we'll at least released it in a regular basis.
3066      */
3067     qemu_mutex_lock(&rs->bitmap_mutex);
3068     WITH_RCU_READ_LOCK_GUARD() {
3069         if (ram_list.version != rs->last_version) {
3070             ram_state_reset(rs);
3071         }
3072 
3073         /* Read version before ram_list.blocks */
3074         smp_rmb();
3075 
3076         ram_control_before_iterate(f, RAM_CONTROL_ROUND);
3077 
3078         t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
3079         i = 0;
3080         while ((ret = qemu_file_rate_limit(f)) == 0 ||
3081                 !QSIMPLEQ_EMPTY(&rs->src_page_requests)) {
3082             int pages;
3083 
3084             if (qemu_file_get_error(f)) {
3085                 break;
3086             }
3087 
3088             pages = ram_find_and_save_block(rs, false);
3089             /* no more pages to sent */
3090             if (pages == 0) {
3091                 done = 1;
3092                 break;
3093             }
3094 
3095             if (pages < 0) {
3096                 qemu_file_set_error(f, pages);
3097                 break;
3098             }
3099 
3100             rs->target_page_count += pages;
3101 
3102             /*
3103              * During postcopy, it is necessary to make sure one whole host
3104              * page is sent in one chunk.
3105              */
3106             if (migrate_postcopy_ram()) {
3107                 flush_compressed_data(rs);
3108             }
3109 
3110             /*
3111              * we want to check in the 1st loop, just in case it was the 1st
3112              * time and we had to sync the dirty bitmap.
3113              * qemu_clock_get_ns() is a bit expensive, so we only check each
3114              * some iterations
3115              */
3116             if ((i & 63) == 0) {
3117                 uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) /
3118                               1000000;
3119                 if (t1 > MAX_WAIT) {
3120                     trace_ram_save_iterate_big_wait(t1, i);
3121                     break;
3122                 }
3123             }
3124             i++;
3125         }
3126     }
3127     qemu_mutex_unlock(&rs->bitmap_mutex);
3128 
3129     /*
3130      * Must occur before EOS (or any QEMUFile operation)
3131      * because of RDMA protocol.
3132      */
3133     ram_control_after_iterate(f, RAM_CONTROL_ROUND);
3134 
3135 out:
3136     if (ret >= 0
3137         && migration_is_setup_or_active(migrate_get_current()->state)) {
3138         multifd_send_sync_main(rs->f);
3139         qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3140         qemu_fflush(f);
3141         ram_counters.transferred += 8;
3142 
3143         ret = qemu_file_get_error(f);
3144     }
3145     if (ret < 0) {
3146         return ret;
3147     }
3148 
3149     return done;
3150 }
3151 
3152 /**
3153  * ram_save_complete: function called to send the remaining amount of ram
3154  *
3155  * Returns zero to indicate success or negative on error
3156  *
3157  * Called with iothread lock
3158  *
3159  * @f: QEMUFile where to send the data
3160  * @opaque: RAMState pointer
3161  */
3162 static int ram_save_complete(QEMUFile *f, void *opaque)
3163 {
3164     RAMState **temp = opaque;
3165     RAMState *rs = *temp;
3166     int ret = 0;
3167 
3168     WITH_RCU_READ_LOCK_GUARD() {
3169         if (!migration_in_postcopy()) {
3170             migration_bitmap_sync_precopy(rs);
3171         }
3172 
3173         ram_control_before_iterate(f, RAM_CONTROL_FINISH);
3174 
3175         /* try transferring iterative blocks of memory */
3176 
3177         /* flush all remaining blocks regardless of rate limiting */
3178         while (true) {
3179             int pages;
3180 
3181             pages = ram_find_and_save_block(rs, !migration_in_colo_state());
3182             /* no more blocks to sent */
3183             if (pages == 0) {
3184                 break;
3185             }
3186             if (pages < 0) {
3187                 ret = pages;
3188                 break;
3189             }
3190         }
3191 
3192         flush_compressed_data(rs);
3193         ram_control_after_iterate(f, RAM_CONTROL_FINISH);
3194     }
3195 
3196     if (ret >= 0) {
3197         multifd_send_sync_main(rs->f);
3198         qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3199         qemu_fflush(f);
3200     }
3201 
3202     return ret;
3203 }
3204 
3205 static void ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size,
3206                              uint64_t *res_precopy_only,
3207                              uint64_t *res_compatible,
3208                              uint64_t *res_postcopy_only)
3209 {
3210     RAMState **temp = opaque;
3211     RAMState *rs = *temp;
3212     uint64_t remaining_size;
3213 
3214     remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
3215 
3216     if (!migration_in_postcopy() &&
3217         remaining_size < max_size) {
3218         qemu_mutex_lock_iothread();
3219         WITH_RCU_READ_LOCK_GUARD() {
3220             migration_bitmap_sync_precopy(rs);
3221         }
3222         qemu_mutex_unlock_iothread();
3223         remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
3224     }
3225 
3226     if (migrate_postcopy_ram()) {
3227         /* We can do postcopy, and all the data is postcopiable */
3228         *res_compatible += remaining_size;
3229     } else {
3230         *res_precopy_only += remaining_size;
3231     }
3232 }
3233 
3234 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
3235 {
3236     unsigned int xh_len;
3237     int xh_flags;
3238     uint8_t *loaded_data;
3239 
3240     /* extract RLE header */
3241     xh_flags = qemu_get_byte(f);
3242     xh_len = qemu_get_be16(f);
3243 
3244     if (xh_flags != ENCODING_FLAG_XBZRLE) {
3245         error_report("Failed to load XBZRLE page - wrong compression!");
3246         return -1;
3247     }
3248 
3249     if (xh_len > TARGET_PAGE_SIZE) {
3250         error_report("Failed to load XBZRLE page - len overflow!");
3251         return -1;
3252     }
3253     loaded_data = XBZRLE.decoded_buf;
3254     /* load data and decode */
3255     /* it can change loaded_data to point to an internal buffer */
3256     qemu_get_buffer_in_place(f, &loaded_data, xh_len);
3257 
3258     /* decode RLE */
3259     if (xbzrle_decode_buffer(loaded_data, xh_len, host,
3260                              TARGET_PAGE_SIZE) == -1) {
3261         error_report("Failed to load XBZRLE page - decode error!");
3262         return -1;
3263     }
3264 
3265     return 0;
3266 }
3267 
3268 /**
3269  * ram_block_from_stream: read a RAMBlock id from the migration stream
3270  *
3271  * Must be called from within a rcu critical section.
3272  *
3273  * Returns a pointer from within the RCU-protected ram_list.
3274  *
3275  * @f: QEMUFile where to read the data from
3276  * @flags: Page flags (mostly to see if it's a continuation of previous block)
3277  */
3278 static inline RAMBlock *ram_block_from_stream(QEMUFile *f, int flags)
3279 {
3280     static RAMBlock *block;
3281     char id[256];
3282     uint8_t len;
3283 
3284     if (flags & RAM_SAVE_FLAG_CONTINUE) {
3285         if (!block) {
3286             error_report("Ack, bad migration stream!");
3287             return NULL;
3288         }
3289         return block;
3290     }
3291 
3292     len = qemu_get_byte(f);
3293     qemu_get_buffer(f, (uint8_t *)id, len);
3294     id[len] = 0;
3295 
3296     block = qemu_ram_block_by_name(id);
3297     if (!block) {
3298         error_report("Can't find block %s", id);
3299         return NULL;
3300     }
3301 
3302     if (ramblock_is_ignored(block)) {
3303         error_report("block %s should not be migrated !", id);
3304         return NULL;
3305     }
3306 
3307     return block;
3308 }
3309 
3310 static inline void *host_from_ram_block_offset(RAMBlock *block,
3311                                                ram_addr_t offset)
3312 {
3313     if (!offset_in_ramblock(block, offset)) {
3314         return NULL;
3315     }
3316 
3317     return block->host + offset;
3318 }
3319 
3320 static void *host_page_from_ram_block_offset(RAMBlock *block,
3321                                              ram_addr_t offset)
3322 {
3323     /* Note: Explicitly no check against offset_in_ramblock(). */
3324     return (void *)QEMU_ALIGN_DOWN((uintptr_t)(block->host + offset),
3325                                    block->page_size);
3326 }
3327 
3328 static ram_addr_t host_page_offset_from_ram_block_offset(RAMBlock *block,
3329                                                          ram_addr_t offset)
3330 {
3331     return ((uintptr_t)block->host + offset) & (block->page_size - 1);
3332 }
3333 
3334 static inline void *colo_cache_from_block_offset(RAMBlock *block,
3335                              ram_addr_t offset, bool record_bitmap)
3336 {
3337     if (!offset_in_ramblock(block, offset)) {
3338         return NULL;
3339     }
3340     if (!block->colo_cache) {
3341         error_report("%s: colo_cache is NULL in block :%s",
3342                      __func__, block->idstr);
3343         return NULL;
3344     }
3345 
3346     /*
3347     * During colo checkpoint, we need bitmap of these migrated pages.
3348     * It help us to decide which pages in ram cache should be flushed
3349     * into VM's RAM later.
3350     */
3351     if (record_bitmap &&
3352         !test_and_set_bit(offset >> TARGET_PAGE_BITS, block->bmap)) {
3353         ram_state->migration_dirty_pages++;
3354     }
3355     return block->colo_cache + offset;
3356 }
3357 
3358 /**
3359  * ram_handle_compressed: handle the zero page case
3360  *
3361  * If a page (or a whole RDMA chunk) has been
3362  * determined to be zero, then zap it.
3363  *
3364  * @host: host address for the zero page
3365  * @ch: what the page is filled from.  We only support zero
3366  * @size: size of the zero page
3367  */
3368 void ram_handle_compressed(void *host, uint8_t ch, uint64_t size)
3369 {
3370     if (ch != 0 || !is_zero_range(host, size)) {
3371         memset(host, ch, size);
3372     }
3373 }
3374 
3375 /* return the size after decompression, or negative value on error */
3376 static int
3377 qemu_uncompress_data(z_stream *stream, uint8_t *dest, size_t dest_len,
3378                      const uint8_t *source, size_t source_len)
3379 {
3380     int err;
3381 
3382     err = inflateReset(stream);
3383     if (err != Z_OK) {
3384         return -1;
3385     }
3386 
3387     stream->avail_in = source_len;
3388     stream->next_in = (uint8_t *)source;
3389     stream->avail_out = dest_len;
3390     stream->next_out = dest;
3391 
3392     err = inflate(stream, Z_NO_FLUSH);
3393     if (err != Z_STREAM_END) {
3394         return -1;
3395     }
3396 
3397     return stream->total_out;
3398 }
3399 
3400 static void *do_data_decompress(void *opaque)
3401 {
3402     DecompressParam *param = opaque;
3403     unsigned long pagesize;
3404     uint8_t *des;
3405     int len, ret;
3406 
3407     qemu_mutex_lock(&param->mutex);
3408     while (!param->quit) {
3409         if (param->des) {
3410             des = param->des;
3411             len = param->len;
3412             param->des = 0;
3413             qemu_mutex_unlock(&param->mutex);
3414 
3415             pagesize = TARGET_PAGE_SIZE;
3416 
3417             ret = qemu_uncompress_data(&param->stream, des, pagesize,
3418                                        param->compbuf, len);
3419             if (ret < 0 && migrate_get_current()->decompress_error_check) {
3420                 error_report("decompress data failed");
3421                 qemu_file_set_error(decomp_file, ret);
3422             }
3423 
3424             qemu_mutex_lock(&decomp_done_lock);
3425             param->done = true;
3426             qemu_cond_signal(&decomp_done_cond);
3427             qemu_mutex_unlock(&decomp_done_lock);
3428 
3429             qemu_mutex_lock(&param->mutex);
3430         } else {
3431             qemu_cond_wait(&param->cond, &param->mutex);
3432         }
3433     }
3434     qemu_mutex_unlock(&param->mutex);
3435 
3436     return NULL;
3437 }
3438 
3439 static int wait_for_decompress_done(void)
3440 {
3441     int idx, thread_count;
3442 
3443     if (!migrate_use_compression()) {
3444         return 0;
3445     }
3446 
3447     thread_count = migrate_decompress_threads();
3448     qemu_mutex_lock(&decomp_done_lock);
3449     for (idx = 0; idx < thread_count; idx++) {
3450         while (!decomp_param[idx].done) {
3451             qemu_cond_wait(&decomp_done_cond, &decomp_done_lock);
3452         }
3453     }
3454     qemu_mutex_unlock(&decomp_done_lock);
3455     return qemu_file_get_error(decomp_file);
3456 }
3457 
3458 static void compress_threads_load_cleanup(void)
3459 {
3460     int i, thread_count;
3461 
3462     if (!migrate_use_compression()) {
3463         return;
3464     }
3465     thread_count = migrate_decompress_threads();
3466     for (i = 0; i < thread_count; i++) {
3467         /*
3468          * we use it as a indicator which shows if the thread is
3469          * properly init'd or not
3470          */
3471         if (!decomp_param[i].compbuf) {
3472             break;
3473         }
3474 
3475         qemu_mutex_lock(&decomp_param[i].mutex);
3476         decomp_param[i].quit = true;
3477         qemu_cond_signal(&decomp_param[i].cond);
3478         qemu_mutex_unlock(&decomp_param[i].mutex);
3479     }
3480     for (i = 0; i < thread_count; i++) {
3481         if (!decomp_param[i].compbuf) {
3482             break;
3483         }
3484 
3485         qemu_thread_join(decompress_threads + i);
3486         qemu_mutex_destroy(&decomp_param[i].mutex);
3487         qemu_cond_destroy(&decomp_param[i].cond);
3488         inflateEnd(&decomp_param[i].stream);
3489         g_free(decomp_param[i].compbuf);
3490         decomp_param[i].compbuf = NULL;
3491     }
3492     g_free(decompress_threads);
3493     g_free(decomp_param);
3494     decompress_threads = NULL;
3495     decomp_param = NULL;
3496     decomp_file = NULL;
3497 }
3498 
3499 static int compress_threads_load_setup(QEMUFile *f)
3500 {
3501     int i, thread_count;
3502 
3503     if (!migrate_use_compression()) {
3504         return 0;
3505     }
3506 
3507     thread_count = migrate_decompress_threads();
3508     decompress_threads = g_new0(QemuThread, thread_count);
3509     decomp_param = g_new0(DecompressParam, thread_count);
3510     qemu_mutex_init(&decomp_done_lock);
3511     qemu_cond_init(&decomp_done_cond);
3512     decomp_file = f;
3513     for (i = 0; i < thread_count; i++) {
3514         if (inflateInit(&decomp_param[i].stream) != Z_OK) {
3515             goto exit;
3516         }
3517 
3518         decomp_param[i].compbuf = g_malloc0(compressBound(TARGET_PAGE_SIZE));
3519         qemu_mutex_init(&decomp_param[i].mutex);
3520         qemu_cond_init(&decomp_param[i].cond);
3521         decomp_param[i].done = true;
3522         decomp_param[i].quit = false;
3523         qemu_thread_create(decompress_threads + i, "decompress",
3524                            do_data_decompress, decomp_param + i,
3525                            QEMU_THREAD_JOINABLE);
3526     }
3527     return 0;
3528 exit:
3529     compress_threads_load_cleanup();
3530     return -1;
3531 }
3532 
3533 static void decompress_data_with_multi_threads(QEMUFile *f,
3534                                                void *host, int len)
3535 {
3536     int idx, thread_count;
3537 
3538     thread_count = migrate_decompress_threads();
3539     QEMU_LOCK_GUARD(&decomp_done_lock);
3540     while (true) {
3541         for (idx = 0; idx < thread_count; idx++) {
3542             if (decomp_param[idx].done) {
3543                 decomp_param[idx].done = false;
3544                 qemu_mutex_lock(&decomp_param[idx].mutex);
3545                 qemu_get_buffer(f, decomp_param[idx].compbuf, len);
3546                 decomp_param[idx].des = host;
3547                 decomp_param[idx].len = len;
3548                 qemu_cond_signal(&decomp_param[idx].cond);
3549                 qemu_mutex_unlock(&decomp_param[idx].mutex);
3550                 break;
3551             }
3552         }
3553         if (idx < thread_count) {
3554             break;
3555         } else {
3556             qemu_cond_wait(&decomp_done_cond, &decomp_done_lock);
3557         }
3558     }
3559 }
3560 
3561 static void colo_init_ram_state(void)
3562 {
3563     ram_state_init(&ram_state);
3564 }
3565 
3566 /*
3567  * colo cache: this is for secondary VM, we cache the whole
3568  * memory of the secondary VM, it is need to hold the global lock
3569  * to call this helper.
3570  */
3571 int colo_init_ram_cache(void)
3572 {
3573     RAMBlock *block;
3574 
3575     WITH_RCU_READ_LOCK_GUARD() {
3576         RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3577             block->colo_cache = qemu_anon_ram_alloc(block->used_length,
3578                                                     NULL, false, false);
3579             if (!block->colo_cache) {
3580                 error_report("%s: Can't alloc memory for COLO cache of block %s,"
3581                              "size 0x" RAM_ADDR_FMT, __func__, block->idstr,
3582                              block->used_length);
3583                 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3584                     if (block->colo_cache) {
3585                         qemu_anon_ram_free(block->colo_cache, block->used_length);
3586                         block->colo_cache = NULL;
3587                     }
3588                 }
3589                 return -errno;
3590             }
3591             if (!machine_dump_guest_core(current_machine)) {
3592                 qemu_madvise(block->colo_cache, block->used_length,
3593                              QEMU_MADV_DONTDUMP);
3594             }
3595         }
3596     }
3597 
3598     /*
3599     * Record the dirty pages that sent by PVM, we use this dirty bitmap together
3600     * with to decide which page in cache should be flushed into SVM's RAM. Here
3601     * we use the same name 'ram_bitmap' as for migration.
3602     */
3603     if (ram_bytes_total()) {
3604         RAMBlock *block;
3605 
3606         RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3607             unsigned long pages = block->max_length >> TARGET_PAGE_BITS;
3608             block->bmap = bitmap_new(pages);
3609         }
3610     }
3611 
3612     colo_init_ram_state();
3613     return 0;
3614 }
3615 
3616 /* TODO: duplicated with ram_init_bitmaps */
3617 void colo_incoming_start_dirty_log(void)
3618 {
3619     RAMBlock *block = NULL;
3620     /* For memory_global_dirty_log_start below. */
3621     qemu_mutex_lock_iothread();
3622     qemu_mutex_lock_ramlist();
3623 
3624     memory_global_dirty_log_sync();
3625     WITH_RCU_READ_LOCK_GUARD() {
3626         RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3627             ramblock_sync_dirty_bitmap(ram_state, block);
3628             /* Discard this dirty bitmap record */
3629             bitmap_zero(block->bmap, block->max_length >> TARGET_PAGE_BITS);
3630         }
3631         memory_global_dirty_log_start(GLOBAL_DIRTY_MIGRATION);
3632     }
3633     ram_state->migration_dirty_pages = 0;
3634     qemu_mutex_unlock_ramlist();
3635     qemu_mutex_unlock_iothread();
3636 }
3637 
3638 /* It is need to hold the global lock to call this helper */
3639 void colo_release_ram_cache(void)
3640 {
3641     RAMBlock *block;
3642 
3643     memory_global_dirty_log_stop(GLOBAL_DIRTY_MIGRATION);
3644     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3645         g_free(block->bmap);
3646         block->bmap = NULL;
3647     }
3648 
3649     WITH_RCU_READ_LOCK_GUARD() {
3650         RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3651             if (block->colo_cache) {
3652                 qemu_anon_ram_free(block->colo_cache, block->used_length);
3653                 block->colo_cache = NULL;
3654             }
3655         }
3656     }
3657     ram_state_cleanup(&ram_state);
3658 }
3659 
3660 /**
3661  * ram_load_setup: Setup RAM for migration incoming side
3662  *
3663  * Returns zero to indicate success and negative for error
3664  *
3665  * @f: QEMUFile where to receive the data
3666  * @opaque: RAMState pointer
3667  */
3668 static int ram_load_setup(QEMUFile *f, void *opaque)
3669 {
3670     if (compress_threads_load_setup(f)) {
3671         return -1;
3672     }
3673 
3674     xbzrle_load_setup();
3675     ramblock_recv_map_init();
3676 
3677     return 0;
3678 }
3679 
3680 static int ram_load_cleanup(void *opaque)
3681 {
3682     RAMBlock *rb;
3683 
3684     RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
3685         qemu_ram_block_writeback(rb);
3686     }
3687 
3688     xbzrle_load_cleanup();
3689     compress_threads_load_cleanup();
3690 
3691     RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
3692         g_free(rb->receivedmap);
3693         rb->receivedmap = NULL;
3694     }
3695 
3696     return 0;
3697 }
3698 
3699 /**
3700  * ram_postcopy_incoming_init: allocate postcopy data structures
3701  *
3702  * Returns 0 for success and negative if there was one error
3703  *
3704  * @mis: current migration incoming state
3705  *
3706  * Allocate data structures etc needed by incoming migration with
3707  * postcopy-ram. postcopy-ram's similarly names
3708  * postcopy_ram_incoming_init does the work.
3709  */
3710 int ram_postcopy_incoming_init(MigrationIncomingState *mis)
3711 {
3712     return postcopy_ram_incoming_init(mis);
3713 }
3714 
3715 /**
3716  * ram_load_postcopy: load a page in postcopy case
3717  *
3718  * Returns 0 for success or -errno in case of error
3719  *
3720  * Called in postcopy mode by ram_load().
3721  * rcu_read_lock is taken prior to this being called.
3722  *
3723  * @f: QEMUFile where to send the data
3724  */
3725 static int ram_load_postcopy(QEMUFile *f)
3726 {
3727     int flags = 0, ret = 0;
3728     bool place_needed = false;
3729     bool matches_target_page_size = false;
3730     MigrationIncomingState *mis = migration_incoming_get_current();
3731     /* Temporary page that is later 'placed' */
3732     void *postcopy_host_page = mis->postcopy_tmp_page;
3733     void *host_page = NULL;
3734     bool all_zero = true;
3735     int target_pages = 0;
3736 
3737     while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
3738         ram_addr_t addr;
3739         void *page_buffer = NULL;
3740         void *place_source = NULL;
3741         RAMBlock *block = NULL;
3742         uint8_t ch;
3743         int len;
3744 
3745         addr = qemu_get_be64(f);
3746 
3747         /*
3748          * If qemu file error, we should stop here, and then "addr"
3749          * may be invalid
3750          */
3751         ret = qemu_file_get_error(f);
3752         if (ret) {
3753             break;
3754         }
3755 
3756         flags = addr & ~TARGET_PAGE_MASK;
3757         addr &= TARGET_PAGE_MASK;
3758 
3759         trace_ram_load_postcopy_loop((uint64_t)addr, flags);
3760         if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE |
3761                      RAM_SAVE_FLAG_COMPRESS_PAGE)) {
3762             block = ram_block_from_stream(f, flags);
3763             if (!block) {
3764                 ret = -EINVAL;
3765                 break;
3766             }
3767 
3768             /*
3769              * Relying on used_length is racy and can result in false positives.
3770              * We might place pages beyond used_length in case RAM was shrunk
3771              * while in postcopy, which is fine - trying to place via
3772              * UFFDIO_COPY/UFFDIO_ZEROPAGE will never segfault.
3773              */
3774             if (!block->host || addr >= block->postcopy_length) {
3775                 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
3776                 ret = -EINVAL;
3777                 break;
3778             }
3779             target_pages++;
3780             matches_target_page_size = block->page_size == TARGET_PAGE_SIZE;
3781             /*
3782              * Postcopy requires that we place whole host pages atomically;
3783              * these may be huge pages for RAMBlocks that are backed by
3784              * hugetlbfs.
3785              * To make it atomic, the data is read into a temporary page
3786              * that's moved into place later.
3787              * The migration protocol uses,  possibly smaller, target-pages
3788              * however the source ensures it always sends all the components
3789              * of a host page in one chunk.
3790              */
3791             page_buffer = postcopy_host_page +
3792                           host_page_offset_from_ram_block_offset(block, addr);
3793             /* If all TP are zero then we can optimise the place */
3794             if (target_pages == 1) {
3795                 host_page = host_page_from_ram_block_offset(block, addr);
3796             } else if (host_page != host_page_from_ram_block_offset(block,
3797                                                                     addr)) {
3798                 /* not the 1st TP within the HP */
3799                 error_report("Non-same host page %p/%p", host_page,
3800                              host_page_from_ram_block_offset(block, addr));
3801                 ret = -EINVAL;
3802                 break;
3803             }
3804 
3805             /*
3806              * If it's the last part of a host page then we place the host
3807              * page
3808              */
3809             if (target_pages == (block->page_size / TARGET_PAGE_SIZE)) {
3810                 place_needed = true;
3811             }
3812             place_source = postcopy_host_page;
3813         }
3814 
3815         switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
3816         case RAM_SAVE_FLAG_ZERO:
3817             ch = qemu_get_byte(f);
3818             /*
3819              * Can skip to set page_buffer when
3820              * this is a zero page and (block->page_size == TARGET_PAGE_SIZE).
3821              */
3822             if (ch || !matches_target_page_size) {
3823                 memset(page_buffer, ch, TARGET_PAGE_SIZE);
3824             }
3825             if (ch) {
3826                 all_zero = false;
3827             }
3828             break;
3829 
3830         case RAM_SAVE_FLAG_PAGE:
3831             all_zero = false;
3832             if (!matches_target_page_size) {
3833                 /* For huge pages, we always use temporary buffer */
3834                 qemu_get_buffer(f, page_buffer, TARGET_PAGE_SIZE);
3835             } else {
3836                 /*
3837                  * For small pages that matches target page size, we
3838                  * avoid the qemu_file copy.  Instead we directly use
3839                  * the buffer of QEMUFile to place the page.  Note: we
3840                  * cannot do any QEMUFile operation before using that
3841                  * buffer to make sure the buffer is valid when
3842                  * placing the page.
3843                  */
3844                 qemu_get_buffer_in_place(f, (uint8_t **)&place_source,
3845                                          TARGET_PAGE_SIZE);
3846             }
3847             break;
3848         case RAM_SAVE_FLAG_COMPRESS_PAGE:
3849             all_zero = false;
3850             len = qemu_get_be32(f);
3851             if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) {
3852                 error_report("Invalid compressed data length: %d", len);
3853                 ret = -EINVAL;
3854                 break;
3855             }
3856             decompress_data_with_multi_threads(f, page_buffer, len);
3857             break;
3858 
3859         case RAM_SAVE_FLAG_EOS:
3860             /* normal exit */
3861             multifd_recv_sync_main();
3862             break;
3863         default:
3864             error_report("Unknown combination of migration flags: 0x%x"
3865                          " (postcopy mode)", flags);
3866             ret = -EINVAL;
3867             break;
3868         }
3869 
3870         /* Got the whole host page, wait for decompress before placing. */
3871         if (place_needed) {
3872             ret |= wait_for_decompress_done();
3873         }
3874 
3875         /* Detect for any possible file errors */
3876         if (!ret && qemu_file_get_error(f)) {
3877             ret = qemu_file_get_error(f);
3878         }
3879 
3880         if (!ret && place_needed) {
3881             if (all_zero) {
3882                 ret = postcopy_place_page_zero(mis, host_page, block);
3883             } else {
3884                 ret = postcopy_place_page(mis, host_page, place_source,
3885                                           block);
3886             }
3887             place_needed = false;
3888             target_pages = 0;
3889             /* Assume we have a zero page until we detect something different */
3890             all_zero = true;
3891         }
3892     }
3893 
3894     return ret;
3895 }
3896 
3897 static bool postcopy_is_advised(void)
3898 {
3899     PostcopyState ps = postcopy_state_get();
3900     return ps >= POSTCOPY_INCOMING_ADVISE && ps < POSTCOPY_INCOMING_END;
3901 }
3902 
3903 static bool postcopy_is_running(void)
3904 {
3905     PostcopyState ps = postcopy_state_get();
3906     return ps >= POSTCOPY_INCOMING_LISTENING && ps < POSTCOPY_INCOMING_END;
3907 }
3908 
3909 /*
3910  * Flush content of RAM cache into SVM's memory.
3911  * Only flush the pages that be dirtied by PVM or SVM or both.
3912  */
3913 void colo_flush_ram_cache(void)
3914 {
3915     RAMBlock *block = NULL;
3916     void *dst_host;
3917     void *src_host;
3918     unsigned long offset = 0;
3919 
3920     memory_global_dirty_log_sync();
3921     qemu_mutex_lock(&ram_state->bitmap_mutex);
3922     WITH_RCU_READ_LOCK_GUARD() {
3923         RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3924             ramblock_sync_dirty_bitmap(ram_state, block);
3925         }
3926     }
3927 
3928     trace_colo_flush_ram_cache_begin(ram_state->migration_dirty_pages);
3929     WITH_RCU_READ_LOCK_GUARD() {
3930         block = QLIST_FIRST_RCU(&ram_list.blocks);
3931 
3932         while (block) {
3933             unsigned long num = 0;
3934 
3935             offset = colo_bitmap_find_dirty(ram_state, block, offset, &num);
3936             if (!offset_in_ramblock(block,
3937                                     ((ram_addr_t)offset) << TARGET_PAGE_BITS)) {
3938                 offset = 0;
3939                 num = 0;
3940                 block = QLIST_NEXT_RCU(block, next);
3941             } else {
3942                 unsigned long i = 0;
3943 
3944                 for (i = 0; i < num; i++) {
3945                     migration_bitmap_clear_dirty(ram_state, block, offset + i);
3946                 }
3947                 dst_host = block->host
3948                          + (((ram_addr_t)offset) << TARGET_PAGE_BITS);
3949                 src_host = block->colo_cache
3950                          + (((ram_addr_t)offset) << TARGET_PAGE_BITS);
3951                 memcpy(dst_host, src_host, TARGET_PAGE_SIZE * num);
3952                 offset += num;
3953             }
3954         }
3955     }
3956     trace_colo_flush_ram_cache_end();
3957     qemu_mutex_unlock(&ram_state->bitmap_mutex);
3958 }
3959 
3960 /**
3961  * ram_load_precopy: load pages in precopy case
3962  *
3963  * Returns 0 for success or -errno in case of error
3964  *
3965  * Called in precopy mode by ram_load().
3966  * rcu_read_lock is taken prior to this being called.
3967  *
3968  * @f: QEMUFile where to send the data
3969  */
3970 static int ram_load_precopy(QEMUFile *f)
3971 {
3972     int flags = 0, ret = 0, invalid_flags = 0, len = 0, i = 0;
3973     /* ADVISE is earlier, it shows the source has the postcopy capability on */
3974     bool postcopy_advised = postcopy_is_advised();
3975     if (!migrate_use_compression()) {
3976         invalid_flags |= RAM_SAVE_FLAG_COMPRESS_PAGE;
3977     }
3978 
3979     while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
3980         ram_addr_t addr, total_ram_bytes;
3981         void *host = NULL, *host_bak = NULL;
3982         uint8_t ch;
3983 
3984         /*
3985          * Yield periodically to let main loop run, but an iteration of
3986          * the main loop is expensive, so do it each some iterations
3987          */
3988         if ((i & 32767) == 0 && qemu_in_coroutine()) {
3989             aio_co_schedule(qemu_get_current_aio_context(),
3990                             qemu_coroutine_self());
3991             qemu_coroutine_yield();
3992         }
3993         i++;
3994 
3995         addr = qemu_get_be64(f);
3996         flags = addr & ~TARGET_PAGE_MASK;
3997         addr &= TARGET_PAGE_MASK;
3998 
3999         if (flags & invalid_flags) {
4000             if (flags & invalid_flags & RAM_SAVE_FLAG_COMPRESS_PAGE) {
4001                 error_report("Received an unexpected compressed page");
4002             }
4003 
4004             ret = -EINVAL;
4005             break;
4006         }
4007 
4008         if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE |
4009                      RAM_SAVE_FLAG_COMPRESS_PAGE | RAM_SAVE_FLAG_XBZRLE)) {
4010             RAMBlock *block = ram_block_from_stream(f, flags);
4011 
4012             host = host_from_ram_block_offset(block, addr);
4013             /*
4014              * After going into COLO stage, we should not load the page
4015              * into SVM's memory directly, we put them into colo_cache firstly.
4016              * NOTE: We need to keep a copy of SVM's ram in colo_cache.
4017              * Previously, we copied all these memory in preparing stage of COLO
4018              * while we need to stop VM, which is a time-consuming process.
4019              * Here we optimize it by a trick, back-up every page while in
4020              * migration process while COLO is enabled, though it affects the
4021              * speed of the migration, but it obviously reduce the downtime of
4022              * back-up all SVM'S memory in COLO preparing stage.
4023              */
4024             if (migration_incoming_colo_enabled()) {
4025                 if (migration_incoming_in_colo_state()) {
4026                     /* In COLO stage, put all pages into cache temporarily */
4027                     host = colo_cache_from_block_offset(block, addr, true);
4028                 } else {
4029                    /*
4030                     * In migration stage but before COLO stage,
4031                     * Put all pages into both cache and SVM's memory.
4032                     */
4033                     host_bak = colo_cache_from_block_offset(block, addr, false);
4034                 }
4035             }
4036             if (!host) {
4037                 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
4038                 ret = -EINVAL;
4039                 break;
4040             }
4041             if (!migration_incoming_in_colo_state()) {
4042                 ramblock_recv_bitmap_set(block, host);
4043             }
4044 
4045             trace_ram_load_loop(block->idstr, (uint64_t)addr, flags, host);
4046         }
4047 
4048         switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
4049         case RAM_SAVE_FLAG_MEM_SIZE:
4050             /* Synchronize RAM block list */
4051             total_ram_bytes = addr;
4052             while (!ret && total_ram_bytes) {
4053                 RAMBlock *block;
4054                 char id[256];
4055                 ram_addr_t length;
4056 
4057                 len = qemu_get_byte(f);
4058                 qemu_get_buffer(f, (uint8_t *)id, len);
4059                 id[len] = 0;
4060                 length = qemu_get_be64(f);
4061 
4062                 block = qemu_ram_block_by_name(id);
4063                 if (block && !qemu_ram_is_migratable(block)) {
4064                     error_report("block %s should not be migrated !", id);
4065                     ret = -EINVAL;
4066                 } else if (block) {
4067                     if (length != block->used_length) {
4068                         Error *local_err = NULL;
4069 
4070                         ret = qemu_ram_resize(block, length,
4071                                               &local_err);
4072                         if (local_err) {
4073                             error_report_err(local_err);
4074                         }
4075                     }
4076                     /* For postcopy we need to check hugepage sizes match */
4077                     if (postcopy_advised && migrate_postcopy_ram() &&
4078                         block->page_size != qemu_host_page_size) {
4079                         uint64_t remote_page_size = qemu_get_be64(f);
4080                         if (remote_page_size != block->page_size) {
4081                             error_report("Mismatched RAM page size %s "
4082                                          "(local) %zd != %" PRId64,
4083                                          id, block->page_size,
4084                                          remote_page_size);
4085                             ret = -EINVAL;
4086                         }
4087                     }
4088                     if (migrate_ignore_shared()) {
4089                         hwaddr addr = qemu_get_be64(f);
4090                         if (ramblock_is_ignored(block) &&
4091                             block->mr->addr != addr) {
4092                             error_report("Mismatched GPAs for block %s "
4093                                          "%" PRId64 "!= %" PRId64,
4094                                          id, (uint64_t)addr,
4095                                          (uint64_t)block->mr->addr);
4096                             ret = -EINVAL;
4097                         }
4098                     }
4099                     ram_control_load_hook(f, RAM_CONTROL_BLOCK_REG,
4100                                           block->idstr);
4101                 } else {
4102                     error_report("Unknown ramblock \"%s\", cannot "
4103                                  "accept migration", id);
4104                     ret = -EINVAL;
4105                 }
4106 
4107                 total_ram_bytes -= length;
4108             }
4109             break;
4110 
4111         case RAM_SAVE_FLAG_ZERO:
4112             ch = qemu_get_byte(f);
4113             ram_handle_compressed(host, ch, TARGET_PAGE_SIZE);
4114             break;
4115 
4116         case RAM_SAVE_FLAG_PAGE:
4117             qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
4118             break;
4119 
4120         case RAM_SAVE_FLAG_COMPRESS_PAGE:
4121             len = qemu_get_be32(f);
4122             if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) {
4123                 error_report("Invalid compressed data length: %d", len);
4124                 ret = -EINVAL;
4125                 break;
4126             }
4127             decompress_data_with_multi_threads(f, host, len);
4128             break;
4129 
4130         case RAM_SAVE_FLAG_XBZRLE:
4131             if (load_xbzrle(f, addr, host) < 0) {
4132                 error_report("Failed to decompress XBZRLE page at "
4133                              RAM_ADDR_FMT, addr);
4134                 ret = -EINVAL;
4135                 break;
4136             }
4137             break;
4138         case RAM_SAVE_FLAG_EOS:
4139             /* normal exit */
4140             multifd_recv_sync_main();
4141             break;
4142         default:
4143             if (flags & RAM_SAVE_FLAG_HOOK) {
4144                 ram_control_load_hook(f, RAM_CONTROL_HOOK, NULL);
4145             } else {
4146                 error_report("Unknown combination of migration flags: 0x%x",
4147                              flags);
4148                 ret = -EINVAL;
4149             }
4150         }
4151         if (!ret) {
4152             ret = qemu_file_get_error(f);
4153         }
4154         if (!ret && host_bak) {
4155             memcpy(host_bak, host, TARGET_PAGE_SIZE);
4156         }
4157     }
4158 
4159     ret |= wait_for_decompress_done();
4160     return ret;
4161 }
4162 
4163 static int ram_load(QEMUFile *f, void *opaque, int version_id)
4164 {
4165     int ret = 0;
4166     static uint64_t seq_iter;
4167     /*
4168      * If system is running in postcopy mode, page inserts to host memory must
4169      * be atomic
4170      */
4171     bool postcopy_running = postcopy_is_running();
4172 
4173     seq_iter++;
4174 
4175     if (version_id != 4) {
4176         return -EINVAL;
4177     }
4178 
4179     /*
4180      * This RCU critical section can be very long running.
4181      * When RCU reclaims in the code start to become numerous,
4182      * it will be necessary to reduce the granularity of this
4183      * critical section.
4184      */
4185     WITH_RCU_READ_LOCK_GUARD() {
4186         if (postcopy_running) {
4187             ret = ram_load_postcopy(f);
4188         } else {
4189             ret = ram_load_precopy(f);
4190         }
4191     }
4192     trace_ram_load_complete(ret, seq_iter);
4193 
4194     return ret;
4195 }
4196 
4197 static bool ram_has_postcopy(void *opaque)
4198 {
4199     RAMBlock *rb;
4200     RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
4201         if (ramblock_is_pmem(rb)) {
4202             info_report("Block: %s, host: %p is a nvdimm memory, postcopy"
4203                          "is not supported now!", rb->idstr, rb->host);
4204             return false;
4205         }
4206     }
4207 
4208     return migrate_postcopy_ram();
4209 }
4210 
4211 /* Sync all the dirty bitmap with destination VM.  */
4212 static int ram_dirty_bitmap_sync_all(MigrationState *s, RAMState *rs)
4213 {
4214     RAMBlock *block;
4215     QEMUFile *file = s->to_dst_file;
4216     int ramblock_count = 0;
4217 
4218     trace_ram_dirty_bitmap_sync_start();
4219 
4220     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
4221         qemu_savevm_send_recv_bitmap(file, block->idstr);
4222         trace_ram_dirty_bitmap_request(block->idstr);
4223         ramblock_count++;
4224     }
4225 
4226     trace_ram_dirty_bitmap_sync_wait();
4227 
4228     /* Wait until all the ramblocks' dirty bitmap synced */
4229     while (ramblock_count--) {
4230         qemu_sem_wait(&s->rp_state.rp_sem);
4231     }
4232 
4233     trace_ram_dirty_bitmap_sync_complete();
4234 
4235     return 0;
4236 }
4237 
4238 static void ram_dirty_bitmap_reload_notify(MigrationState *s)
4239 {
4240     qemu_sem_post(&s->rp_state.rp_sem);
4241 }
4242 
4243 /*
4244  * Read the received bitmap, revert it as the initial dirty bitmap.
4245  * This is only used when the postcopy migration is paused but wants
4246  * to resume from a middle point.
4247  */
4248 int ram_dirty_bitmap_reload(MigrationState *s, RAMBlock *block)
4249 {
4250     int ret = -EINVAL;
4251     /* from_dst_file is always valid because we're within rp_thread */
4252     QEMUFile *file = s->rp_state.from_dst_file;
4253     unsigned long *le_bitmap, nbits = block->used_length >> TARGET_PAGE_BITS;
4254     uint64_t local_size = DIV_ROUND_UP(nbits, 8);
4255     uint64_t size, end_mark;
4256 
4257     trace_ram_dirty_bitmap_reload_begin(block->idstr);
4258 
4259     if (s->state != MIGRATION_STATUS_POSTCOPY_RECOVER) {
4260         error_report("%s: incorrect state %s", __func__,
4261                      MigrationStatus_str(s->state));
4262         return -EINVAL;
4263     }
4264 
4265     /*
4266      * Note: see comments in ramblock_recv_bitmap_send() on why we
4267      * need the endianness conversion, and the paddings.
4268      */
4269     local_size = ROUND_UP(local_size, 8);
4270 
4271     /* Add paddings */
4272     le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
4273 
4274     size = qemu_get_be64(file);
4275 
4276     /* The size of the bitmap should match with our ramblock */
4277     if (size != local_size) {
4278         error_report("%s: ramblock '%s' bitmap size mismatch "
4279                      "(0x%"PRIx64" != 0x%"PRIx64")", __func__,
4280                      block->idstr, size, local_size);
4281         ret = -EINVAL;
4282         goto out;
4283     }
4284 
4285     size = qemu_get_buffer(file, (uint8_t *)le_bitmap, local_size);
4286     end_mark = qemu_get_be64(file);
4287 
4288     ret = qemu_file_get_error(file);
4289     if (ret || size != local_size) {
4290         error_report("%s: read bitmap failed for ramblock '%s': %d"
4291                      " (size 0x%"PRIx64", got: 0x%"PRIx64")",
4292                      __func__, block->idstr, ret, local_size, size);
4293         ret = -EIO;
4294         goto out;
4295     }
4296 
4297     if (end_mark != RAMBLOCK_RECV_BITMAP_ENDING) {
4298         error_report("%s: ramblock '%s' end mark incorrect: 0x%"PRIx64,
4299                      __func__, block->idstr, end_mark);
4300         ret = -EINVAL;
4301         goto out;
4302     }
4303 
4304     /*
4305      * Endianness conversion. We are during postcopy (though paused).
4306      * The dirty bitmap won't change. We can directly modify it.
4307      */
4308     bitmap_from_le(block->bmap, le_bitmap, nbits);
4309 
4310     /*
4311      * What we received is "received bitmap". Revert it as the initial
4312      * dirty bitmap for this ramblock.
4313      */
4314     bitmap_complement(block->bmap, block->bmap, nbits);
4315 
4316     /* Clear dirty bits of discarded ranges that we don't want to migrate. */
4317     ramblock_dirty_bitmap_clear_discarded_pages(block);
4318 
4319     /* We'll recalculate migration_dirty_pages in ram_state_resume_prepare(). */
4320     trace_ram_dirty_bitmap_reload_complete(block->idstr);
4321 
4322     /*
4323      * We succeeded to sync bitmap for current ramblock. If this is
4324      * the last one to sync, we need to notify the main send thread.
4325      */
4326     ram_dirty_bitmap_reload_notify(s);
4327 
4328     ret = 0;
4329 out:
4330     g_free(le_bitmap);
4331     return ret;
4332 }
4333 
4334 static int ram_resume_prepare(MigrationState *s, void *opaque)
4335 {
4336     RAMState *rs = *(RAMState **)opaque;
4337     int ret;
4338 
4339     ret = ram_dirty_bitmap_sync_all(s, rs);
4340     if (ret) {
4341         return ret;
4342     }
4343 
4344     ram_state_resume_prepare(rs, s->to_dst_file);
4345 
4346     return 0;
4347 }
4348 
4349 static SaveVMHandlers savevm_ram_handlers = {
4350     .save_setup = ram_save_setup,
4351     .save_live_iterate = ram_save_iterate,
4352     .save_live_complete_postcopy = ram_save_complete,
4353     .save_live_complete_precopy = ram_save_complete,
4354     .has_postcopy = ram_has_postcopy,
4355     .save_live_pending = ram_save_pending,
4356     .load_state = ram_load,
4357     .save_cleanup = ram_save_cleanup,
4358     .load_setup = ram_load_setup,
4359     .load_cleanup = ram_load_cleanup,
4360     .resume_prepare = ram_resume_prepare,
4361 };
4362 
4363 static void ram_mig_ram_block_resized(RAMBlockNotifier *n, void *host,
4364                                       size_t old_size, size_t new_size)
4365 {
4366     PostcopyState ps = postcopy_state_get();
4367     ram_addr_t offset;
4368     RAMBlock *rb = qemu_ram_block_from_host(host, false, &offset);
4369     Error *err = NULL;
4370 
4371     if (ramblock_is_ignored(rb)) {
4372         return;
4373     }
4374 
4375     if (!migration_is_idle()) {
4376         /*
4377          * Precopy code on the source cannot deal with the size of RAM blocks
4378          * changing at random points in time - especially after sending the
4379          * RAM block sizes in the migration stream, they must no longer change.
4380          * Abort and indicate a proper reason.
4381          */
4382         error_setg(&err, "RAM block '%s' resized during precopy.", rb->idstr);
4383         migration_cancel(err);
4384         error_free(err);
4385     }
4386 
4387     switch (ps) {
4388     case POSTCOPY_INCOMING_ADVISE:
4389         /*
4390          * Update what ram_postcopy_incoming_init()->init_range() does at the
4391          * time postcopy was advised. Syncing RAM blocks with the source will
4392          * result in RAM resizes.
4393          */
4394         if (old_size < new_size) {
4395             if (ram_discard_range(rb->idstr, old_size, new_size - old_size)) {
4396                 error_report("RAM block '%s' discard of resized RAM failed",
4397                              rb->idstr);
4398             }
4399         }
4400         rb->postcopy_length = new_size;
4401         break;
4402     case POSTCOPY_INCOMING_NONE:
4403     case POSTCOPY_INCOMING_RUNNING:
4404     case POSTCOPY_INCOMING_END:
4405         /*
4406          * Once our guest is running, postcopy does no longer care about
4407          * resizes. When growing, the new memory was not available on the
4408          * source, no handler needed.
4409          */
4410         break;
4411     default:
4412         error_report("RAM block '%s' resized during postcopy state: %d",
4413                      rb->idstr, ps);
4414         exit(-1);
4415     }
4416 }
4417 
4418 static RAMBlockNotifier ram_mig_ram_notifier = {
4419     .ram_block_resized = ram_mig_ram_block_resized,
4420 };
4421 
4422 void ram_mig_init(void)
4423 {
4424     qemu_mutex_init(&XBZRLE.lock);
4425     register_savevm_live("ram", 0, 4, &savevm_ram_handlers, &ram_state);
4426     ram_block_notifier_add(&ram_mig_ram_notifier);
4427 }
4428