1 /* 2 * QEMU System Emulator 3 * 4 * Copyright (c) 2003-2008 Fabrice Bellard 5 * Copyright (c) 2011-2015 Red Hat Inc 6 * 7 * Authors: 8 * Juan Quintela <quintela@redhat.com> 9 * 10 * Permission is hereby granted, free of charge, to any person obtaining a copy 11 * of this software and associated documentation files (the "Software"), to deal 12 * in the Software without restriction, including without limitation the rights 13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 14 * copies of the Software, and to permit persons to whom the Software is 15 * furnished to do so, subject to the following conditions: 16 * 17 * The above copyright notice and this permission notice shall be included in 18 * all copies or substantial portions of the Software. 19 * 20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 26 * THE SOFTWARE. 27 */ 28 29 #include "qemu/osdep.h" 30 #include "cpu.h" 31 #include <zlib.h> 32 #include "qemu/cutils.h" 33 #include "qemu/bitops.h" 34 #include "qemu/bitmap.h" 35 #include "qemu/main-loop.h" 36 #include "qemu/pmem.h" 37 #include "xbzrle.h" 38 #include "ram.h" 39 #include "migration.h" 40 #include "socket.h" 41 #include "migration/register.h" 42 #include "migration/misc.h" 43 #include "qemu-file.h" 44 #include "postcopy-ram.h" 45 #include "page_cache.h" 46 #include "qemu/error-report.h" 47 #include "qapi/error.h" 48 #include "qapi/qapi-events-migration.h" 49 #include "qapi/qmp/qerror.h" 50 #include "trace.h" 51 #include "exec/ram_addr.h" 52 #include "exec/target_page.h" 53 #include "qemu/rcu_queue.h" 54 #include "migration/colo.h" 55 #include "block.h" 56 #include "sysemu/sysemu.h" 57 #include "qemu/uuid.h" 58 #include "savevm.h" 59 #include "qemu/iov.h" 60 61 /***********************************************************/ 62 /* ram save/restore */ 63 64 /* RAM_SAVE_FLAG_ZERO used to be named RAM_SAVE_FLAG_COMPRESS, it 65 * worked for pages that where filled with the same char. We switched 66 * it to only search for the zero value. And to avoid confusion with 67 * RAM_SSAVE_FLAG_COMPRESS_PAGE just rename it. 68 */ 69 70 #define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */ 71 #define RAM_SAVE_FLAG_ZERO 0x02 72 #define RAM_SAVE_FLAG_MEM_SIZE 0x04 73 #define RAM_SAVE_FLAG_PAGE 0x08 74 #define RAM_SAVE_FLAG_EOS 0x10 75 #define RAM_SAVE_FLAG_CONTINUE 0x20 76 #define RAM_SAVE_FLAG_XBZRLE 0x40 77 /* 0x80 is reserved in migration.h start with 0x100 next */ 78 #define RAM_SAVE_FLAG_COMPRESS_PAGE 0x100 79 80 static inline bool is_zero_range(uint8_t *p, uint64_t size) 81 { 82 return buffer_is_zero(p, size); 83 } 84 85 XBZRLECacheStats xbzrle_counters; 86 87 /* struct contains XBZRLE cache and a static page 88 used by the compression */ 89 static struct { 90 /* buffer used for XBZRLE encoding */ 91 uint8_t *encoded_buf; 92 /* buffer for storing page content */ 93 uint8_t *current_buf; 94 /* Cache for XBZRLE, Protected by lock. */ 95 PageCache *cache; 96 QemuMutex lock; 97 /* it will store a page full of zeros */ 98 uint8_t *zero_target_page; 99 /* buffer used for XBZRLE decoding */ 100 uint8_t *decoded_buf; 101 } XBZRLE; 102 103 static void XBZRLE_cache_lock(void) 104 { 105 if (migrate_use_xbzrle()) 106 qemu_mutex_lock(&XBZRLE.lock); 107 } 108 109 static void XBZRLE_cache_unlock(void) 110 { 111 if (migrate_use_xbzrle()) 112 qemu_mutex_unlock(&XBZRLE.lock); 113 } 114 115 /** 116 * xbzrle_cache_resize: resize the xbzrle cache 117 * 118 * This function is called from qmp_migrate_set_cache_size in main 119 * thread, possibly while a migration is in progress. A running 120 * migration may be using the cache and might finish during this call, 121 * hence changes to the cache are protected by XBZRLE.lock(). 122 * 123 * Returns 0 for success or -1 for error 124 * 125 * @new_size: new cache size 126 * @errp: set *errp if the check failed, with reason 127 */ 128 int xbzrle_cache_resize(int64_t new_size, Error **errp) 129 { 130 PageCache *new_cache; 131 int64_t ret = 0; 132 133 /* Check for truncation */ 134 if (new_size != (size_t)new_size) { 135 error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cache size", 136 "exceeding address space"); 137 return -1; 138 } 139 140 if (new_size == migrate_xbzrle_cache_size()) { 141 /* nothing to do */ 142 return 0; 143 } 144 145 XBZRLE_cache_lock(); 146 147 if (XBZRLE.cache != NULL) { 148 new_cache = cache_init(new_size, TARGET_PAGE_SIZE, errp); 149 if (!new_cache) { 150 ret = -1; 151 goto out; 152 } 153 154 cache_fini(XBZRLE.cache); 155 XBZRLE.cache = new_cache; 156 } 157 out: 158 XBZRLE_cache_unlock(); 159 return ret; 160 } 161 162 static bool ramblock_is_ignored(RAMBlock *block) 163 { 164 return !qemu_ram_is_migratable(block) || 165 (migrate_ignore_shared() && qemu_ram_is_shared(block)); 166 } 167 168 /* Should be holding either ram_list.mutex, or the RCU lock. */ 169 #define RAMBLOCK_FOREACH_NOT_IGNORED(block) \ 170 INTERNAL_RAMBLOCK_FOREACH(block) \ 171 if (ramblock_is_ignored(block)) {} else 172 173 #define RAMBLOCK_FOREACH_MIGRATABLE(block) \ 174 INTERNAL_RAMBLOCK_FOREACH(block) \ 175 if (!qemu_ram_is_migratable(block)) {} else 176 177 #undef RAMBLOCK_FOREACH 178 179 int foreach_not_ignored_block(RAMBlockIterFunc func, void *opaque) 180 { 181 RAMBlock *block; 182 int ret = 0; 183 184 rcu_read_lock(); 185 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 186 ret = func(block, opaque); 187 if (ret) { 188 break; 189 } 190 } 191 rcu_read_unlock(); 192 return ret; 193 } 194 195 static void ramblock_recv_map_init(void) 196 { 197 RAMBlock *rb; 198 199 RAMBLOCK_FOREACH_NOT_IGNORED(rb) { 200 assert(!rb->receivedmap); 201 rb->receivedmap = bitmap_new(rb->max_length >> qemu_target_page_bits()); 202 } 203 } 204 205 int ramblock_recv_bitmap_test(RAMBlock *rb, void *host_addr) 206 { 207 return test_bit(ramblock_recv_bitmap_offset(host_addr, rb), 208 rb->receivedmap); 209 } 210 211 bool ramblock_recv_bitmap_test_byte_offset(RAMBlock *rb, uint64_t byte_offset) 212 { 213 return test_bit(byte_offset >> TARGET_PAGE_BITS, rb->receivedmap); 214 } 215 216 void ramblock_recv_bitmap_set(RAMBlock *rb, void *host_addr) 217 { 218 set_bit_atomic(ramblock_recv_bitmap_offset(host_addr, rb), rb->receivedmap); 219 } 220 221 void ramblock_recv_bitmap_set_range(RAMBlock *rb, void *host_addr, 222 size_t nr) 223 { 224 bitmap_set_atomic(rb->receivedmap, 225 ramblock_recv_bitmap_offset(host_addr, rb), 226 nr); 227 } 228 229 #define RAMBLOCK_RECV_BITMAP_ENDING (0x0123456789abcdefULL) 230 231 /* 232 * Format: bitmap_size (8 bytes) + whole_bitmap (N bytes). 233 * 234 * Returns >0 if success with sent bytes, or <0 if error. 235 */ 236 int64_t ramblock_recv_bitmap_send(QEMUFile *file, 237 const char *block_name) 238 { 239 RAMBlock *block = qemu_ram_block_by_name(block_name); 240 unsigned long *le_bitmap, nbits; 241 uint64_t size; 242 243 if (!block) { 244 error_report("%s: invalid block name: %s", __func__, block_name); 245 return -1; 246 } 247 248 nbits = block->used_length >> TARGET_PAGE_BITS; 249 250 /* 251 * Make sure the tmp bitmap buffer is big enough, e.g., on 32bit 252 * machines we may need 4 more bytes for padding (see below 253 * comment). So extend it a bit before hand. 254 */ 255 le_bitmap = bitmap_new(nbits + BITS_PER_LONG); 256 257 /* 258 * Always use little endian when sending the bitmap. This is 259 * required that when source and destination VMs are not using the 260 * same endianess. (Note: big endian won't work.) 261 */ 262 bitmap_to_le(le_bitmap, block->receivedmap, nbits); 263 264 /* Size of the bitmap, in bytes */ 265 size = DIV_ROUND_UP(nbits, 8); 266 267 /* 268 * size is always aligned to 8 bytes for 64bit machines, but it 269 * may not be true for 32bit machines. We need this padding to 270 * make sure the migration can survive even between 32bit and 271 * 64bit machines. 272 */ 273 size = ROUND_UP(size, 8); 274 275 qemu_put_be64(file, size); 276 qemu_put_buffer(file, (const uint8_t *)le_bitmap, size); 277 /* 278 * Mark as an end, in case the middle part is screwed up due to 279 * some "misterious" reason. 280 */ 281 qemu_put_be64(file, RAMBLOCK_RECV_BITMAP_ENDING); 282 qemu_fflush(file); 283 284 g_free(le_bitmap); 285 286 if (qemu_file_get_error(file)) { 287 return qemu_file_get_error(file); 288 } 289 290 return size + sizeof(size); 291 } 292 293 /* 294 * An outstanding page request, on the source, having been received 295 * and queued 296 */ 297 struct RAMSrcPageRequest { 298 RAMBlock *rb; 299 hwaddr offset; 300 hwaddr len; 301 302 QSIMPLEQ_ENTRY(RAMSrcPageRequest) next_req; 303 }; 304 305 /* State of RAM for migration */ 306 struct RAMState { 307 /* QEMUFile used for this migration */ 308 QEMUFile *f; 309 /* Last block that we have visited searching for dirty pages */ 310 RAMBlock *last_seen_block; 311 /* Last block from where we have sent data */ 312 RAMBlock *last_sent_block; 313 /* Last dirty target page we have sent */ 314 ram_addr_t last_page; 315 /* last ram version we have seen */ 316 uint32_t last_version; 317 /* We are in the first round */ 318 bool ram_bulk_stage; 319 /* The free page optimization is enabled */ 320 bool fpo_enabled; 321 /* How many times we have dirty too many pages */ 322 int dirty_rate_high_cnt; 323 /* these variables are used for bitmap sync */ 324 /* last time we did a full bitmap_sync */ 325 int64_t time_last_bitmap_sync; 326 /* bytes transferred at start_time */ 327 uint64_t bytes_xfer_prev; 328 /* number of dirty pages since start_time */ 329 uint64_t num_dirty_pages_period; 330 /* xbzrle misses since the beginning of the period */ 331 uint64_t xbzrle_cache_miss_prev; 332 333 /* compression statistics since the beginning of the period */ 334 /* amount of count that no free thread to compress data */ 335 uint64_t compress_thread_busy_prev; 336 /* amount bytes after compression */ 337 uint64_t compressed_size_prev; 338 /* amount of compressed pages */ 339 uint64_t compress_pages_prev; 340 341 /* total handled target pages at the beginning of period */ 342 uint64_t target_page_count_prev; 343 /* total handled target pages since start */ 344 uint64_t target_page_count; 345 /* number of dirty bits in the bitmap */ 346 uint64_t migration_dirty_pages; 347 /* Protects modification of the bitmap and migration dirty pages */ 348 QemuMutex bitmap_mutex; 349 /* The RAMBlock used in the last src_page_requests */ 350 RAMBlock *last_req_rb; 351 /* Queue of outstanding page requests from the destination */ 352 QemuMutex src_page_req_mutex; 353 QSIMPLEQ_HEAD(, RAMSrcPageRequest) src_page_requests; 354 }; 355 typedef struct RAMState RAMState; 356 357 static RAMState *ram_state; 358 359 static NotifierWithReturnList precopy_notifier_list; 360 361 void precopy_infrastructure_init(void) 362 { 363 notifier_with_return_list_init(&precopy_notifier_list); 364 } 365 366 void precopy_add_notifier(NotifierWithReturn *n) 367 { 368 notifier_with_return_list_add(&precopy_notifier_list, n); 369 } 370 371 void precopy_remove_notifier(NotifierWithReturn *n) 372 { 373 notifier_with_return_remove(n); 374 } 375 376 int precopy_notify(PrecopyNotifyReason reason, Error **errp) 377 { 378 PrecopyNotifyData pnd; 379 pnd.reason = reason; 380 pnd.errp = errp; 381 382 return notifier_with_return_list_notify(&precopy_notifier_list, &pnd); 383 } 384 385 void precopy_enable_free_page_optimization(void) 386 { 387 if (!ram_state) { 388 return; 389 } 390 391 ram_state->fpo_enabled = true; 392 } 393 394 uint64_t ram_bytes_remaining(void) 395 { 396 return ram_state ? (ram_state->migration_dirty_pages * TARGET_PAGE_SIZE) : 397 0; 398 } 399 400 MigrationStats ram_counters; 401 402 /* used by the search for pages to send */ 403 struct PageSearchStatus { 404 /* Current block being searched */ 405 RAMBlock *block; 406 /* Current page to search from */ 407 unsigned long page; 408 /* Set once we wrap around */ 409 bool complete_round; 410 }; 411 typedef struct PageSearchStatus PageSearchStatus; 412 413 CompressionStats compression_counters; 414 415 struct CompressParam { 416 bool done; 417 bool quit; 418 bool zero_page; 419 QEMUFile *file; 420 QemuMutex mutex; 421 QemuCond cond; 422 RAMBlock *block; 423 ram_addr_t offset; 424 425 /* internally used fields */ 426 z_stream stream; 427 uint8_t *originbuf; 428 }; 429 typedef struct CompressParam CompressParam; 430 431 struct DecompressParam { 432 bool done; 433 bool quit; 434 QemuMutex mutex; 435 QemuCond cond; 436 void *des; 437 uint8_t *compbuf; 438 int len; 439 z_stream stream; 440 }; 441 typedef struct DecompressParam DecompressParam; 442 443 static CompressParam *comp_param; 444 static QemuThread *compress_threads; 445 /* comp_done_cond is used to wake up the migration thread when 446 * one of the compression threads has finished the compression. 447 * comp_done_lock is used to co-work with comp_done_cond. 448 */ 449 static QemuMutex comp_done_lock; 450 static QemuCond comp_done_cond; 451 /* The empty QEMUFileOps will be used by file in CompressParam */ 452 static const QEMUFileOps empty_ops = { }; 453 454 static QEMUFile *decomp_file; 455 static DecompressParam *decomp_param; 456 static QemuThread *decompress_threads; 457 static QemuMutex decomp_done_lock; 458 static QemuCond decomp_done_cond; 459 460 static bool do_compress_ram_page(QEMUFile *f, z_stream *stream, RAMBlock *block, 461 ram_addr_t offset, uint8_t *source_buf); 462 463 static void *do_data_compress(void *opaque) 464 { 465 CompressParam *param = opaque; 466 RAMBlock *block; 467 ram_addr_t offset; 468 bool zero_page; 469 470 qemu_mutex_lock(¶m->mutex); 471 while (!param->quit) { 472 if (param->block) { 473 block = param->block; 474 offset = param->offset; 475 param->block = NULL; 476 qemu_mutex_unlock(¶m->mutex); 477 478 zero_page = do_compress_ram_page(param->file, ¶m->stream, 479 block, offset, param->originbuf); 480 481 qemu_mutex_lock(&comp_done_lock); 482 param->done = true; 483 param->zero_page = zero_page; 484 qemu_cond_signal(&comp_done_cond); 485 qemu_mutex_unlock(&comp_done_lock); 486 487 qemu_mutex_lock(¶m->mutex); 488 } else { 489 qemu_cond_wait(¶m->cond, ¶m->mutex); 490 } 491 } 492 qemu_mutex_unlock(¶m->mutex); 493 494 return NULL; 495 } 496 497 static void compress_threads_save_cleanup(void) 498 { 499 int i, thread_count; 500 501 if (!migrate_use_compression() || !comp_param) { 502 return; 503 } 504 505 thread_count = migrate_compress_threads(); 506 for (i = 0; i < thread_count; i++) { 507 /* 508 * we use it as a indicator which shows if the thread is 509 * properly init'd or not 510 */ 511 if (!comp_param[i].file) { 512 break; 513 } 514 515 qemu_mutex_lock(&comp_param[i].mutex); 516 comp_param[i].quit = true; 517 qemu_cond_signal(&comp_param[i].cond); 518 qemu_mutex_unlock(&comp_param[i].mutex); 519 520 qemu_thread_join(compress_threads + i); 521 qemu_mutex_destroy(&comp_param[i].mutex); 522 qemu_cond_destroy(&comp_param[i].cond); 523 deflateEnd(&comp_param[i].stream); 524 g_free(comp_param[i].originbuf); 525 qemu_fclose(comp_param[i].file); 526 comp_param[i].file = NULL; 527 } 528 qemu_mutex_destroy(&comp_done_lock); 529 qemu_cond_destroy(&comp_done_cond); 530 g_free(compress_threads); 531 g_free(comp_param); 532 compress_threads = NULL; 533 comp_param = NULL; 534 } 535 536 static int compress_threads_save_setup(void) 537 { 538 int i, thread_count; 539 540 if (!migrate_use_compression()) { 541 return 0; 542 } 543 thread_count = migrate_compress_threads(); 544 compress_threads = g_new0(QemuThread, thread_count); 545 comp_param = g_new0(CompressParam, thread_count); 546 qemu_cond_init(&comp_done_cond); 547 qemu_mutex_init(&comp_done_lock); 548 for (i = 0; i < thread_count; i++) { 549 comp_param[i].originbuf = g_try_malloc(TARGET_PAGE_SIZE); 550 if (!comp_param[i].originbuf) { 551 goto exit; 552 } 553 554 if (deflateInit(&comp_param[i].stream, 555 migrate_compress_level()) != Z_OK) { 556 g_free(comp_param[i].originbuf); 557 goto exit; 558 } 559 560 /* comp_param[i].file is just used as a dummy buffer to save data, 561 * set its ops to empty. 562 */ 563 comp_param[i].file = qemu_fopen_ops(NULL, &empty_ops); 564 comp_param[i].done = true; 565 comp_param[i].quit = false; 566 qemu_mutex_init(&comp_param[i].mutex); 567 qemu_cond_init(&comp_param[i].cond); 568 qemu_thread_create(compress_threads + i, "compress", 569 do_data_compress, comp_param + i, 570 QEMU_THREAD_JOINABLE); 571 } 572 return 0; 573 574 exit: 575 compress_threads_save_cleanup(); 576 return -1; 577 } 578 579 /* Multiple fd's */ 580 581 #define MULTIFD_MAGIC 0x11223344U 582 #define MULTIFD_VERSION 1 583 584 #define MULTIFD_FLAG_SYNC (1 << 0) 585 586 /* This value needs to be a multiple of qemu_target_page_size() */ 587 #define MULTIFD_PACKET_SIZE (512 * 1024) 588 589 typedef struct { 590 uint32_t magic; 591 uint32_t version; 592 unsigned char uuid[16]; /* QemuUUID */ 593 uint8_t id; 594 uint8_t unused1[7]; /* Reserved for future use */ 595 uint64_t unused2[4]; /* Reserved for future use */ 596 } __attribute__((packed)) MultiFDInit_t; 597 598 typedef struct { 599 uint32_t magic; 600 uint32_t version; 601 uint32_t flags; 602 /* maximum number of allocated pages */ 603 uint32_t pages_alloc; 604 uint32_t pages_used; 605 /* size of the next packet that contains pages */ 606 uint32_t next_packet_size; 607 uint64_t packet_num; 608 uint64_t unused[4]; /* Reserved for future use */ 609 char ramblock[256]; 610 uint64_t offset[]; 611 } __attribute__((packed)) MultiFDPacket_t; 612 613 typedef struct { 614 /* number of used pages */ 615 uint32_t used; 616 /* number of allocated pages */ 617 uint32_t allocated; 618 /* global number of generated multifd packets */ 619 uint64_t packet_num; 620 /* offset of each page */ 621 ram_addr_t *offset; 622 /* pointer to each page */ 623 struct iovec *iov; 624 RAMBlock *block; 625 } MultiFDPages_t; 626 627 typedef struct { 628 /* this fields are not changed once the thread is created */ 629 /* channel number */ 630 uint8_t id; 631 /* channel thread name */ 632 char *name; 633 /* channel thread id */ 634 QemuThread thread; 635 /* communication channel */ 636 QIOChannel *c; 637 /* sem where to wait for more work */ 638 QemuSemaphore sem; 639 /* this mutex protects the following parameters */ 640 QemuMutex mutex; 641 /* is this channel thread running */ 642 bool running; 643 /* should this thread finish */ 644 bool quit; 645 /* thread has work to do */ 646 int pending_job; 647 /* array of pages to sent */ 648 MultiFDPages_t *pages; 649 /* packet allocated len */ 650 uint32_t packet_len; 651 /* pointer to the packet */ 652 MultiFDPacket_t *packet; 653 /* multifd flags for each packet */ 654 uint32_t flags; 655 /* size of the next packet that contains pages */ 656 uint32_t next_packet_size; 657 /* global number of generated multifd packets */ 658 uint64_t packet_num; 659 /* thread local variables */ 660 /* packets sent through this channel */ 661 uint64_t num_packets; 662 /* pages sent through this channel */ 663 uint64_t num_pages; 664 } MultiFDSendParams; 665 666 typedef struct { 667 /* this fields are not changed once the thread is created */ 668 /* channel number */ 669 uint8_t id; 670 /* channel thread name */ 671 char *name; 672 /* channel thread id */ 673 QemuThread thread; 674 /* communication channel */ 675 QIOChannel *c; 676 /* this mutex protects the following parameters */ 677 QemuMutex mutex; 678 /* is this channel thread running */ 679 bool running; 680 /* array of pages to receive */ 681 MultiFDPages_t *pages; 682 /* packet allocated len */ 683 uint32_t packet_len; 684 /* pointer to the packet */ 685 MultiFDPacket_t *packet; 686 /* multifd flags for each packet */ 687 uint32_t flags; 688 /* global number of generated multifd packets */ 689 uint64_t packet_num; 690 /* thread local variables */ 691 /* size of the next packet that contains pages */ 692 uint32_t next_packet_size; 693 /* packets sent through this channel */ 694 uint64_t num_packets; 695 /* pages sent through this channel */ 696 uint64_t num_pages; 697 /* syncs main thread and channels */ 698 QemuSemaphore sem_sync; 699 } MultiFDRecvParams; 700 701 static int multifd_send_initial_packet(MultiFDSendParams *p, Error **errp) 702 { 703 MultiFDInit_t msg; 704 int ret; 705 706 msg.magic = cpu_to_be32(MULTIFD_MAGIC); 707 msg.version = cpu_to_be32(MULTIFD_VERSION); 708 msg.id = p->id; 709 memcpy(msg.uuid, &qemu_uuid.data, sizeof(msg.uuid)); 710 711 ret = qio_channel_write_all(p->c, (char *)&msg, sizeof(msg), errp); 712 if (ret != 0) { 713 return -1; 714 } 715 return 0; 716 } 717 718 static int multifd_recv_initial_packet(QIOChannel *c, Error **errp) 719 { 720 MultiFDInit_t msg; 721 int ret; 722 723 ret = qio_channel_read_all(c, (char *)&msg, sizeof(msg), errp); 724 if (ret != 0) { 725 return -1; 726 } 727 728 msg.magic = be32_to_cpu(msg.magic); 729 msg.version = be32_to_cpu(msg.version); 730 731 if (msg.magic != MULTIFD_MAGIC) { 732 error_setg(errp, "multifd: received packet magic %x " 733 "expected %x", msg.magic, MULTIFD_MAGIC); 734 return -1; 735 } 736 737 if (msg.version != MULTIFD_VERSION) { 738 error_setg(errp, "multifd: received packet version %d " 739 "expected %d", msg.version, MULTIFD_VERSION); 740 return -1; 741 } 742 743 if (memcmp(msg.uuid, &qemu_uuid, sizeof(qemu_uuid))) { 744 char *uuid = qemu_uuid_unparse_strdup(&qemu_uuid); 745 char *msg_uuid = qemu_uuid_unparse_strdup((const QemuUUID *)msg.uuid); 746 747 error_setg(errp, "multifd: received uuid '%s' and expected " 748 "uuid '%s' for channel %hhd", msg_uuid, uuid, msg.id); 749 g_free(uuid); 750 g_free(msg_uuid); 751 return -1; 752 } 753 754 if (msg.id > migrate_multifd_channels()) { 755 error_setg(errp, "multifd: received channel version %d " 756 "expected %d", msg.version, MULTIFD_VERSION); 757 return -1; 758 } 759 760 return msg.id; 761 } 762 763 static MultiFDPages_t *multifd_pages_init(size_t size) 764 { 765 MultiFDPages_t *pages = g_new0(MultiFDPages_t, 1); 766 767 pages->allocated = size; 768 pages->iov = g_new0(struct iovec, size); 769 pages->offset = g_new0(ram_addr_t, size); 770 771 return pages; 772 } 773 774 static void multifd_pages_clear(MultiFDPages_t *pages) 775 { 776 pages->used = 0; 777 pages->allocated = 0; 778 pages->packet_num = 0; 779 pages->block = NULL; 780 g_free(pages->iov); 781 pages->iov = NULL; 782 g_free(pages->offset); 783 pages->offset = NULL; 784 g_free(pages); 785 } 786 787 static void multifd_send_fill_packet(MultiFDSendParams *p) 788 { 789 MultiFDPacket_t *packet = p->packet; 790 uint32_t page_max = MULTIFD_PACKET_SIZE / qemu_target_page_size(); 791 int i; 792 793 packet->magic = cpu_to_be32(MULTIFD_MAGIC); 794 packet->version = cpu_to_be32(MULTIFD_VERSION); 795 packet->flags = cpu_to_be32(p->flags); 796 packet->pages_alloc = cpu_to_be32(page_max); 797 packet->pages_used = cpu_to_be32(p->pages->used); 798 packet->next_packet_size = cpu_to_be32(p->next_packet_size); 799 packet->packet_num = cpu_to_be64(p->packet_num); 800 801 if (p->pages->block) { 802 strncpy(packet->ramblock, p->pages->block->idstr, 256); 803 } 804 805 for (i = 0; i < p->pages->used; i++) { 806 packet->offset[i] = cpu_to_be64(p->pages->offset[i]); 807 } 808 } 809 810 static int multifd_recv_unfill_packet(MultiFDRecvParams *p, Error **errp) 811 { 812 MultiFDPacket_t *packet = p->packet; 813 uint32_t pages_max = MULTIFD_PACKET_SIZE / qemu_target_page_size(); 814 RAMBlock *block; 815 int i; 816 817 packet->magic = be32_to_cpu(packet->magic); 818 if (packet->magic != MULTIFD_MAGIC) { 819 error_setg(errp, "multifd: received packet " 820 "magic %x and expected magic %x", 821 packet->magic, MULTIFD_MAGIC); 822 return -1; 823 } 824 825 packet->version = be32_to_cpu(packet->version); 826 if (packet->version != MULTIFD_VERSION) { 827 error_setg(errp, "multifd: received packet " 828 "version %d and expected version %d", 829 packet->version, MULTIFD_VERSION); 830 return -1; 831 } 832 833 p->flags = be32_to_cpu(packet->flags); 834 835 packet->pages_alloc = be32_to_cpu(packet->pages_alloc); 836 /* 837 * If we recevied a packet that is 100 times bigger than expected 838 * just stop migration. It is a magic number. 839 */ 840 if (packet->pages_alloc > pages_max * 100) { 841 error_setg(errp, "multifd: received packet " 842 "with size %d and expected a maximum size of %d", 843 packet->pages_alloc, pages_max * 100) ; 844 return -1; 845 } 846 /* 847 * We received a packet that is bigger than expected but inside 848 * reasonable limits (see previous comment). Just reallocate. 849 */ 850 if (packet->pages_alloc > p->pages->allocated) { 851 multifd_pages_clear(p->pages); 852 p->pages = multifd_pages_init(packet->pages_alloc); 853 } 854 855 p->pages->used = be32_to_cpu(packet->pages_used); 856 if (p->pages->used > packet->pages_alloc) { 857 error_setg(errp, "multifd: received packet " 858 "with %d pages and expected maximum pages are %d", 859 p->pages->used, packet->pages_alloc) ; 860 return -1; 861 } 862 863 p->next_packet_size = be32_to_cpu(packet->next_packet_size); 864 p->packet_num = be64_to_cpu(packet->packet_num); 865 866 if (p->pages->used) { 867 /* make sure that ramblock is 0 terminated */ 868 packet->ramblock[255] = 0; 869 block = qemu_ram_block_by_name(packet->ramblock); 870 if (!block) { 871 error_setg(errp, "multifd: unknown ram block %s", 872 packet->ramblock); 873 return -1; 874 } 875 } 876 877 for (i = 0; i < p->pages->used; i++) { 878 ram_addr_t offset = be64_to_cpu(packet->offset[i]); 879 880 if (offset > (block->used_length - TARGET_PAGE_SIZE)) { 881 error_setg(errp, "multifd: offset too long " RAM_ADDR_FMT 882 " (max " RAM_ADDR_FMT ")", 883 offset, block->max_length); 884 return -1; 885 } 886 p->pages->iov[i].iov_base = block->host + offset; 887 p->pages->iov[i].iov_len = TARGET_PAGE_SIZE; 888 } 889 890 return 0; 891 } 892 893 struct { 894 MultiFDSendParams *params; 895 /* array of pages to sent */ 896 MultiFDPages_t *pages; 897 /* syncs main thread and channels */ 898 QemuSemaphore sem_sync; 899 /* global number of generated multifd packets */ 900 uint64_t packet_num; 901 /* send channels ready */ 902 QemuSemaphore channels_ready; 903 } *multifd_send_state; 904 905 /* 906 * How we use multifd_send_state->pages and channel->pages? 907 * 908 * We create a pages for each channel, and a main one. Each time that 909 * we need to send a batch of pages we interchange the ones between 910 * multifd_send_state and the channel that is sending it. There are 911 * two reasons for that: 912 * - to not have to do so many mallocs during migration 913 * - to make easier to know what to free at the end of migration 914 * 915 * This way we always know who is the owner of each "pages" struct, 916 * and we don't need any locking. It belongs to the migration thread 917 * or to the channel thread. Switching is safe because the migration 918 * thread is using the channel mutex when changing it, and the channel 919 * have to had finish with its own, otherwise pending_job can't be 920 * false. 921 */ 922 923 static void multifd_send_pages(void) 924 { 925 int i; 926 static int next_channel; 927 MultiFDSendParams *p = NULL; /* make happy gcc */ 928 MultiFDPages_t *pages = multifd_send_state->pages; 929 uint64_t transferred; 930 931 qemu_sem_wait(&multifd_send_state->channels_ready); 932 for (i = next_channel;; i = (i + 1) % migrate_multifd_channels()) { 933 p = &multifd_send_state->params[i]; 934 935 qemu_mutex_lock(&p->mutex); 936 if (!p->pending_job) { 937 p->pending_job++; 938 next_channel = (i + 1) % migrate_multifd_channels(); 939 break; 940 } 941 qemu_mutex_unlock(&p->mutex); 942 } 943 p->pages->used = 0; 944 945 p->packet_num = multifd_send_state->packet_num++; 946 p->pages->block = NULL; 947 multifd_send_state->pages = p->pages; 948 p->pages = pages; 949 transferred = ((uint64_t) pages->used) * TARGET_PAGE_SIZE + p->packet_len; 950 ram_counters.multifd_bytes += transferred; 951 ram_counters.transferred += transferred;; 952 qemu_mutex_unlock(&p->mutex); 953 qemu_sem_post(&p->sem); 954 } 955 956 static void multifd_queue_page(RAMBlock *block, ram_addr_t offset) 957 { 958 MultiFDPages_t *pages = multifd_send_state->pages; 959 960 if (!pages->block) { 961 pages->block = block; 962 } 963 964 if (pages->block == block) { 965 pages->offset[pages->used] = offset; 966 pages->iov[pages->used].iov_base = block->host + offset; 967 pages->iov[pages->used].iov_len = TARGET_PAGE_SIZE; 968 pages->used++; 969 970 if (pages->used < pages->allocated) { 971 return; 972 } 973 } 974 975 multifd_send_pages(); 976 977 if (pages->block != block) { 978 multifd_queue_page(block, offset); 979 } 980 } 981 982 static void multifd_send_terminate_threads(Error *err) 983 { 984 int i; 985 986 if (err) { 987 MigrationState *s = migrate_get_current(); 988 migrate_set_error(s, err); 989 if (s->state == MIGRATION_STATUS_SETUP || 990 s->state == MIGRATION_STATUS_PRE_SWITCHOVER || 991 s->state == MIGRATION_STATUS_DEVICE || 992 s->state == MIGRATION_STATUS_ACTIVE) { 993 migrate_set_state(&s->state, s->state, 994 MIGRATION_STATUS_FAILED); 995 } 996 } 997 998 for (i = 0; i < migrate_multifd_channels(); i++) { 999 MultiFDSendParams *p = &multifd_send_state->params[i]; 1000 1001 qemu_mutex_lock(&p->mutex); 1002 p->quit = true; 1003 qemu_sem_post(&p->sem); 1004 qemu_mutex_unlock(&p->mutex); 1005 } 1006 } 1007 1008 void multifd_save_cleanup(void) 1009 { 1010 int i; 1011 1012 if (!migrate_use_multifd()) { 1013 return; 1014 } 1015 multifd_send_terminate_threads(NULL); 1016 for (i = 0; i < migrate_multifd_channels(); i++) { 1017 MultiFDSendParams *p = &multifd_send_state->params[i]; 1018 1019 if (p->running) { 1020 qemu_thread_join(&p->thread); 1021 } 1022 socket_send_channel_destroy(p->c); 1023 p->c = NULL; 1024 qemu_mutex_destroy(&p->mutex); 1025 qemu_sem_destroy(&p->sem); 1026 g_free(p->name); 1027 p->name = NULL; 1028 multifd_pages_clear(p->pages); 1029 p->pages = NULL; 1030 p->packet_len = 0; 1031 g_free(p->packet); 1032 p->packet = NULL; 1033 } 1034 qemu_sem_destroy(&multifd_send_state->channels_ready); 1035 qemu_sem_destroy(&multifd_send_state->sem_sync); 1036 g_free(multifd_send_state->params); 1037 multifd_send_state->params = NULL; 1038 multifd_pages_clear(multifd_send_state->pages); 1039 multifd_send_state->pages = NULL; 1040 g_free(multifd_send_state); 1041 multifd_send_state = NULL; 1042 } 1043 1044 static void multifd_send_sync_main(void) 1045 { 1046 int i; 1047 1048 if (!migrate_use_multifd()) { 1049 return; 1050 } 1051 if (multifd_send_state->pages->used) { 1052 multifd_send_pages(); 1053 } 1054 for (i = 0; i < migrate_multifd_channels(); i++) { 1055 MultiFDSendParams *p = &multifd_send_state->params[i]; 1056 1057 trace_multifd_send_sync_main_signal(p->id); 1058 1059 qemu_mutex_lock(&p->mutex); 1060 1061 p->packet_num = multifd_send_state->packet_num++; 1062 p->flags |= MULTIFD_FLAG_SYNC; 1063 p->pending_job++; 1064 qemu_mutex_unlock(&p->mutex); 1065 qemu_sem_post(&p->sem); 1066 } 1067 for (i = 0; i < migrate_multifd_channels(); i++) { 1068 MultiFDSendParams *p = &multifd_send_state->params[i]; 1069 1070 trace_multifd_send_sync_main_wait(p->id); 1071 qemu_sem_wait(&multifd_send_state->sem_sync); 1072 } 1073 trace_multifd_send_sync_main(multifd_send_state->packet_num); 1074 } 1075 1076 static void *multifd_send_thread(void *opaque) 1077 { 1078 MultiFDSendParams *p = opaque; 1079 Error *local_err = NULL; 1080 int ret; 1081 1082 trace_multifd_send_thread_start(p->id); 1083 rcu_register_thread(); 1084 1085 if (multifd_send_initial_packet(p, &local_err) < 0) { 1086 goto out; 1087 } 1088 /* initial packet */ 1089 p->num_packets = 1; 1090 1091 while (true) { 1092 qemu_sem_wait(&p->sem); 1093 qemu_mutex_lock(&p->mutex); 1094 1095 if (p->pending_job) { 1096 uint32_t used = p->pages->used; 1097 uint64_t packet_num = p->packet_num; 1098 uint32_t flags = p->flags; 1099 1100 p->next_packet_size = used * qemu_target_page_size(); 1101 multifd_send_fill_packet(p); 1102 p->flags = 0; 1103 p->num_packets++; 1104 p->num_pages += used; 1105 p->pages->used = 0; 1106 qemu_mutex_unlock(&p->mutex); 1107 1108 trace_multifd_send(p->id, packet_num, used, flags, 1109 p->next_packet_size); 1110 1111 ret = qio_channel_write_all(p->c, (void *)p->packet, 1112 p->packet_len, &local_err); 1113 if (ret != 0) { 1114 break; 1115 } 1116 1117 if (used) { 1118 ret = qio_channel_writev_all(p->c, p->pages->iov, 1119 used, &local_err); 1120 if (ret != 0) { 1121 break; 1122 } 1123 } 1124 1125 qemu_mutex_lock(&p->mutex); 1126 p->pending_job--; 1127 qemu_mutex_unlock(&p->mutex); 1128 1129 if (flags & MULTIFD_FLAG_SYNC) { 1130 qemu_sem_post(&multifd_send_state->sem_sync); 1131 } 1132 qemu_sem_post(&multifd_send_state->channels_ready); 1133 } else if (p->quit) { 1134 qemu_mutex_unlock(&p->mutex); 1135 break; 1136 } else { 1137 qemu_mutex_unlock(&p->mutex); 1138 /* sometimes there are spurious wakeups */ 1139 } 1140 } 1141 1142 out: 1143 if (local_err) { 1144 multifd_send_terminate_threads(local_err); 1145 } 1146 1147 qemu_mutex_lock(&p->mutex); 1148 p->running = false; 1149 qemu_mutex_unlock(&p->mutex); 1150 1151 rcu_unregister_thread(); 1152 trace_multifd_send_thread_end(p->id, p->num_packets, p->num_pages); 1153 1154 return NULL; 1155 } 1156 1157 static void multifd_new_send_channel_async(QIOTask *task, gpointer opaque) 1158 { 1159 MultiFDSendParams *p = opaque; 1160 QIOChannel *sioc = QIO_CHANNEL(qio_task_get_source(task)); 1161 Error *local_err = NULL; 1162 1163 if (qio_task_propagate_error(task, &local_err)) { 1164 migrate_set_error(migrate_get_current(), local_err); 1165 multifd_save_cleanup(); 1166 } else { 1167 p->c = QIO_CHANNEL(sioc); 1168 qio_channel_set_delay(p->c, false); 1169 p->running = true; 1170 qemu_thread_create(&p->thread, p->name, multifd_send_thread, p, 1171 QEMU_THREAD_JOINABLE); 1172 } 1173 } 1174 1175 int multifd_save_setup(void) 1176 { 1177 int thread_count; 1178 uint32_t page_count = MULTIFD_PACKET_SIZE / qemu_target_page_size(); 1179 uint8_t i; 1180 1181 if (!migrate_use_multifd()) { 1182 return 0; 1183 } 1184 thread_count = migrate_multifd_channels(); 1185 multifd_send_state = g_malloc0(sizeof(*multifd_send_state)); 1186 multifd_send_state->params = g_new0(MultiFDSendParams, thread_count); 1187 multifd_send_state->pages = multifd_pages_init(page_count); 1188 qemu_sem_init(&multifd_send_state->sem_sync, 0); 1189 qemu_sem_init(&multifd_send_state->channels_ready, 0); 1190 1191 for (i = 0; i < thread_count; i++) { 1192 MultiFDSendParams *p = &multifd_send_state->params[i]; 1193 1194 qemu_mutex_init(&p->mutex); 1195 qemu_sem_init(&p->sem, 0); 1196 p->quit = false; 1197 p->pending_job = 0; 1198 p->id = i; 1199 p->pages = multifd_pages_init(page_count); 1200 p->packet_len = sizeof(MultiFDPacket_t) 1201 + sizeof(ram_addr_t) * page_count; 1202 p->packet = g_malloc0(p->packet_len); 1203 p->name = g_strdup_printf("multifdsend_%d", i); 1204 socket_send_channel_create(multifd_new_send_channel_async, p); 1205 } 1206 return 0; 1207 } 1208 1209 struct { 1210 MultiFDRecvParams *params; 1211 /* number of created threads */ 1212 int count; 1213 /* syncs main thread and channels */ 1214 QemuSemaphore sem_sync; 1215 /* global number of generated multifd packets */ 1216 uint64_t packet_num; 1217 } *multifd_recv_state; 1218 1219 static void multifd_recv_terminate_threads(Error *err) 1220 { 1221 int i; 1222 1223 if (err) { 1224 MigrationState *s = migrate_get_current(); 1225 migrate_set_error(s, err); 1226 if (s->state == MIGRATION_STATUS_SETUP || 1227 s->state == MIGRATION_STATUS_ACTIVE) { 1228 migrate_set_state(&s->state, s->state, 1229 MIGRATION_STATUS_FAILED); 1230 } 1231 } 1232 1233 for (i = 0; i < migrate_multifd_channels(); i++) { 1234 MultiFDRecvParams *p = &multifd_recv_state->params[i]; 1235 1236 qemu_mutex_lock(&p->mutex); 1237 /* We could arrive here for two reasons: 1238 - normal quit, i.e. everything went fine, just finished 1239 - error quit: We close the channels so the channel threads 1240 finish the qio_channel_read_all_eof() */ 1241 qio_channel_shutdown(p->c, QIO_CHANNEL_SHUTDOWN_BOTH, NULL); 1242 qemu_mutex_unlock(&p->mutex); 1243 } 1244 } 1245 1246 int multifd_load_cleanup(Error **errp) 1247 { 1248 int i; 1249 int ret = 0; 1250 1251 if (!migrate_use_multifd()) { 1252 return 0; 1253 } 1254 multifd_recv_terminate_threads(NULL); 1255 for (i = 0; i < migrate_multifd_channels(); i++) { 1256 MultiFDRecvParams *p = &multifd_recv_state->params[i]; 1257 1258 if (p->running) { 1259 qemu_thread_join(&p->thread); 1260 } 1261 object_unref(OBJECT(p->c)); 1262 p->c = NULL; 1263 qemu_mutex_destroy(&p->mutex); 1264 qemu_sem_destroy(&p->sem_sync); 1265 g_free(p->name); 1266 p->name = NULL; 1267 multifd_pages_clear(p->pages); 1268 p->pages = NULL; 1269 p->packet_len = 0; 1270 g_free(p->packet); 1271 p->packet = NULL; 1272 } 1273 qemu_sem_destroy(&multifd_recv_state->sem_sync); 1274 g_free(multifd_recv_state->params); 1275 multifd_recv_state->params = NULL; 1276 g_free(multifd_recv_state); 1277 multifd_recv_state = NULL; 1278 1279 return ret; 1280 } 1281 1282 static void multifd_recv_sync_main(void) 1283 { 1284 int i; 1285 1286 if (!migrate_use_multifd()) { 1287 return; 1288 } 1289 for (i = 0; i < migrate_multifd_channels(); i++) { 1290 MultiFDRecvParams *p = &multifd_recv_state->params[i]; 1291 1292 trace_multifd_recv_sync_main_wait(p->id); 1293 qemu_sem_wait(&multifd_recv_state->sem_sync); 1294 qemu_mutex_lock(&p->mutex); 1295 if (multifd_recv_state->packet_num < p->packet_num) { 1296 multifd_recv_state->packet_num = p->packet_num; 1297 } 1298 qemu_mutex_unlock(&p->mutex); 1299 } 1300 for (i = 0; i < migrate_multifd_channels(); i++) { 1301 MultiFDRecvParams *p = &multifd_recv_state->params[i]; 1302 1303 trace_multifd_recv_sync_main_signal(p->id); 1304 qemu_sem_post(&p->sem_sync); 1305 } 1306 trace_multifd_recv_sync_main(multifd_recv_state->packet_num); 1307 } 1308 1309 static void *multifd_recv_thread(void *opaque) 1310 { 1311 MultiFDRecvParams *p = opaque; 1312 Error *local_err = NULL; 1313 int ret; 1314 1315 trace_multifd_recv_thread_start(p->id); 1316 rcu_register_thread(); 1317 1318 while (true) { 1319 uint32_t used; 1320 uint32_t flags; 1321 1322 ret = qio_channel_read_all_eof(p->c, (void *)p->packet, 1323 p->packet_len, &local_err); 1324 if (ret == 0) { /* EOF */ 1325 break; 1326 } 1327 if (ret == -1) { /* Error */ 1328 break; 1329 } 1330 1331 qemu_mutex_lock(&p->mutex); 1332 ret = multifd_recv_unfill_packet(p, &local_err); 1333 if (ret) { 1334 qemu_mutex_unlock(&p->mutex); 1335 break; 1336 } 1337 1338 used = p->pages->used; 1339 flags = p->flags; 1340 trace_multifd_recv(p->id, p->packet_num, used, flags, 1341 p->next_packet_size); 1342 p->num_packets++; 1343 p->num_pages += used; 1344 qemu_mutex_unlock(&p->mutex); 1345 1346 if (used) { 1347 ret = qio_channel_readv_all(p->c, p->pages->iov, 1348 used, &local_err); 1349 if (ret != 0) { 1350 break; 1351 } 1352 } 1353 1354 if (flags & MULTIFD_FLAG_SYNC) { 1355 qemu_sem_post(&multifd_recv_state->sem_sync); 1356 qemu_sem_wait(&p->sem_sync); 1357 } 1358 } 1359 1360 if (local_err) { 1361 multifd_recv_terminate_threads(local_err); 1362 } 1363 qemu_mutex_lock(&p->mutex); 1364 p->running = false; 1365 qemu_mutex_unlock(&p->mutex); 1366 1367 rcu_unregister_thread(); 1368 trace_multifd_recv_thread_end(p->id, p->num_packets, p->num_pages); 1369 1370 return NULL; 1371 } 1372 1373 int multifd_load_setup(void) 1374 { 1375 int thread_count; 1376 uint32_t page_count = MULTIFD_PACKET_SIZE / qemu_target_page_size(); 1377 uint8_t i; 1378 1379 if (!migrate_use_multifd()) { 1380 return 0; 1381 } 1382 thread_count = migrate_multifd_channels(); 1383 multifd_recv_state = g_malloc0(sizeof(*multifd_recv_state)); 1384 multifd_recv_state->params = g_new0(MultiFDRecvParams, thread_count); 1385 atomic_set(&multifd_recv_state->count, 0); 1386 qemu_sem_init(&multifd_recv_state->sem_sync, 0); 1387 1388 for (i = 0; i < thread_count; i++) { 1389 MultiFDRecvParams *p = &multifd_recv_state->params[i]; 1390 1391 qemu_mutex_init(&p->mutex); 1392 qemu_sem_init(&p->sem_sync, 0); 1393 p->id = i; 1394 p->pages = multifd_pages_init(page_count); 1395 p->packet_len = sizeof(MultiFDPacket_t) 1396 + sizeof(ram_addr_t) * page_count; 1397 p->packet = g_malloc0(p->packet_len); 1398 p->name = g_strdup_printf("multifdrecv_%d", i); 1399 } 1400 return 0; 1401 } 1402 1403 bool multifd_recv_all_channels_created(void) 1404 { 1405 int thread_count = migrate_multifd_channels(); 1406 1407 if (!migrate_use_multifd()) { 1408 return true; 1409 } 1410 1411 return thread_count == atomic_read(&multifd_recv_state->count); 1412 } 1413 1414 /* 1415 * Try to receive all multifd channels to get ready for the migration. 1416 * - Return true and do not set @errp when correctly receving all channels; 1417 * - Return false and do not set @errp when correctly receiving the current one; 1418 * - Return false and set @errp when failing to receive the current channel. 1419 */ 1420 bool multifd_recv_new_channel(QIOChannel *ioc, Error **errp) 1421 { 1422 MultiFDRecvParams *p; 1423 Error *local_err = NULL; 1424 int id; 1425 1426 id = multifd_recv_initial_packet(ioc, &local_err); 1427 if (id < 0) { 1428 multifd_recv_terminate_threads(local_err); 1429 error_propagate_prepend(errp, local_err, 1430 "failed to receive packet" 1431 " via multifd channel %d: ", 1432 atomic_read(&multifd_recv_state->count)); 1433 return false; 1434 } 1435 1436 p = &multifd_recv_state->params[id]; 1437 if (p->c != NULL) { 1438 error_setg(&local_err, "multifd: received id '%d' already setup'", 1439 id); 1440 multifd_recv_terminate_threads(local_err); 1441 error_propagate(errp, local_err); 1442 return false; 1443 } 1444 p->c = ioc; 1445 object_ref(OBJECT(ioc)); 1446 /* initial packet */ 1447 p->num_packets = 1; 1448 1449 p->running = true; 1450 qemu_thread_create(&p->thread, p->name, multifd_recv_thread, p, 1451 QEMU_THREAD_JOINABLE); 1452 atomic_inc(&multifd_recv_state->count); 1453 return atomic_read(&multifd_recv_state->count) == 1454 migrate_multifd_channels(); 1455 } 1456 1457 /** 1458 * save_page_header: write page header to wire 1459 * 1460 * If this is the 1st block, it also writes the block identification 1461 * 1462 * Returns the number of bytes written 1463 * 1464 * @f: QEMUFile where to send the data 1465 * @block: block that contains the page we want to send 1466 * @offset: offset inside the block for the page 1467 * in the lower bits, it contains flags 1468 */ 1469 static size_t save_page_header(RAMState *rs, QEMUFile *f, RAMBlock *block, 1470 ram_addr_t offset) 1471 { 1472 size_t size, len; 1473 1474 if (block == rs->last_sent_block) { 1475 offset |= RAM_SAVE_FLAG_CONTINUE; 1476 } 1477 qemu_put_be64(f, offset); 1478 size = 8; 1479 1480 if (!(offset & RAM_SAVE_FLAG_CONTINUE)) { 1481 len = strlen(block->idstr); 1482 qemu_put_byte(f, len); 1483 qemu_put_buffer(f, (uint8_t *)block->idstr, len); 1484 size += 1 + len; 1485 rs->last_sent_block = block; 1486 } 1487 return size; 1488 } 1489 1490 /** 1491 * mig_throttle_guest_down: throotle down the guest 1492 * 1493 * Reduce amount of guest cpu execution to hopefully slow down memory 1494 * writes. If guest dirty memory rate is reduced below the rate at 1495 * which we can transfer pages to the destination then we should be 1496 * able to complete migration. Some workloads dirty memory way too 1497 * fast and will not effectively converge, even with auto-converge. 1498 */ 1499 static void mig_throttle_guest_down(void) 1500 { 1501 MigrationState *s = migrate_get_current(); 1502 uint64_t pct_initial = s->parameters.cpu_throttle_initial; 1503 uint64_t pct_icrement = s->parameters.cpu_throttle_increment; 1504 int pct_max = s->parameters.max_cpu_throttle; 1505 1506 /* We have not started throttling yet. Let's start it. */ 1507 if (!cpu_throttle_active()) { 1508 cpu_throttle_set(pct_initial); 1509 } else { 1510 /* Throttling already on, just increase the rate */ 1511 cpu_throttle_set(MIN(cpu_throttle_get_percentage() + pct_icrement, 1512 pct_max)); 1513 } 1514 } 1515 1516 /** 1517 * xbzrle_cache_zero_page: insert a zero page in the XBZRLE cache 1518 * 1519 * @rs: current RAM state 1520 * @current_addr: address for the zero page 1521 * 1522 * Update the xbzrle cache to reflect a page that's been sent as all 0. 1523 * The important thing is that a stale (not-yet-0'd) page be replaced 1524 * by the new data. 1525 * As a bonus, if the page wasn't in the cache it gets added so that 1526 * when a small write is made into the 0'd page it gets XBZRLE sent. 1527 */ 1528 static void xbzrle_cache_zero_page(RAMState *rs, ram_addr_t current_addr) 1529 { 1530 if (rs->ram_bulk_stage || !migrate_use_xbzrle()) { 1531 return; 1532 } 1533 1534 /* We don't care if this fails to allocate a new cache page 1535 * as long as it updated an old one */ 1536 cache_insert(XBZRLE.cache, current_addr, XBZRLE.zero_target_page, 1537 ram_counters.dirty_sync_count); 1538 } 1539 1540 #define ENCODING_FLAG_XBZRLE 0x1 1541 1542 /** 1543 * save_xbzrle_page: compress and send current page 1544 * 1545 * Returns: 1 means that we wrote the page 1546 * 0 means that page is identical to the one already sent 1547 * -1 means that xbzrle would be longer than normal 1548 * 1549 * @rs: current RAM state 1550 * @current_data: pointer to the address of the page contents 1551 * @current_addr: addr of the page 1552 * @block: block that contains the page we want to send 1553 * @offset: offset inside the block for the page 1554 * @last_stage: if we are at the completion stage 1555 */ 1556 static int save_xbzrle_page(RAMState *rs, uint8_t **current_data, 1557 ram_addr_t current_addr, RAMBlock *block, 1558 ram_addr_t offset, bool last_stage) 1559 { 1560 int encoded_len = 0, bytes_xbzrle; 1561 uint8_t *prev_cached_page; 1562 1563 if (!cache_is_cached(XBZRLE.cache, current_addr, 1564 ram_counters.dirty_sync_count)) { 1565 xbzrle_counters.cache_miss++; 1566 if (!last_stage) { 1567 if (cache_insert(XBZRLE.cache, current_addr, *current_data, 1568 ram_counters.dirty_sync_count) == -1) { 1569 return -1; 1570 } else { 1571 /* update *current_data when the page has been 1572 inserted into cache */ 1573 *current_data = get_cached_data(XBZRLE.cache, current_addr); 1574 } 1575 } 1576 return -1; 1577 } 1578 1579 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr); 1580 1581 /* save current buffer into memory */ 1582 memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE); 1583 1584 /* XBZRLE encoding (if there is no overflow) */ 1585 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf, 1586 TARGET_PAGE_SIZE, XBZRLE.encoded_buf, 1587 TARGET_PAGE_SIZE); 1588 if (encoded_len == 0) { 1589 trace_save_xbzrle_page_skipping(); 1590 return 0; 1591 } else if (encoded_len == -1) { 1592 trace_save_xbzrle_page_overflow(); 1593 xbzrle_counters.overflow++; 1594 /* update data in the cache */ 1595 if (!last_stage) { 1596 memcpy(prev_cached_page, *current_data, TARGET_PAGE_SIZE); 1597 *current_data = prev_cached_page; 1598 } 1599 return -1; 1600 } 1601 1602 /* we need to update the data in the cache, in order to get the same data */ 1603 if (!last_stage) { 1604 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE); 1605 } 1606 1607 /* Send XBZRLE based compressed page */ 1608 bytes_xbzrle = save_page_header(rs, rs->f, block, 1609 offset | RAM_SAVE_FLAG_XBZRLE); 1610 qemu_put_byte(rs->f, ENCODING_FLAG_XBZRLE); 1611 qemu_put_be16(rs->f, encoded_len); 1612 qemu_put_buffer(rs->f, XBZRLE.encoded_buf, encoded_len); 1613 bytes_xbzrle += encoded_len + 1 + 2; 1614 xbzrle_counters.pages++; 1615 xbzrle_counters.bytes += bytes_xbzrle; 1616 ram_counters.transferred += bytes_xbzrle; 1617 1618 return 1; 1619 } 1620 1621 /** 1622 * migration_bitmap_find_dirty: find the next dirty page from start 1623 * 1624 * Returns the page offset within memory region of the start of a dirty page 1625 * 1626 * @rs: current RAM state 1627 * @rb: RAMBlock where to search for dirty pages 1628 * @start: page where we start the search 1629 */ 1630 static inline 1631 unsigned long migration_bitmap_find_dirty(RAMState *rs, RAMBlock *rb, 1632 unsigned long start) 1633 { 1634 unsigned long size = rb->used_length >> TARGET_PAGE_BITS; 1635 unsigned long *bitmap = rb->bmap; 1636 unsigned long next; 1637 1638 if (ramblock_is_ignored(rb)) { 1639 return size; 1640 } 1641 1642 /* 1643 * When the free page optimization is enabled, we need to check the bitmap 1644 * to send the non-free pages rather than all the pages in the bulk stage. 1645 */ 1646 if (!rs->fpo_enabled && rs->ram_bulk_stage && start > 0) { 1647 next = start + 1; 1648 } else { 1649 next = find_next_bit(bitmap, size, start); 1650 } 1651 1652 return next; 1653 } 1654 1655 static inline bool migration_bitmap_clear_dirty(RAMState *rs, 1656 RAMBlock *rb, 1657 unsigned long page) 1658 { 1659 bool ret; 1660 1661 qemu_mutex_lock(&rs->bitmap_mutex); 1662 ret = test_and_clear_bit(page, rb->bmap); 1663 1664 if (ret) { 1665 rs->migration_dirty_pages--; 1666 } 1667 qemu_mutex_unlock(&rs->bitmap_mutex); 1668 1669 return ret; 1670 } 1671 1672 static void migration_bitmap_sync_range(RAMState *rs, RAMBlock *rb, 1673 ram_addr_t length) 1674 { 1675 rs->migration_dirty_pages += 1676 cpu_physical_memory_sync_dirty_bitmap(rb, 0, length, 1677 &rs->num_dirty_pages_period); 1678 } 1679 1680 /** 1681 * ram_pagesize_summary: calculate all the pagesizes of a VM 1682 * 1683 * Returns a summary bitmap of the page sizes of all RAMBlocks 1684 * 1685 * For VMs with just normal pages this is equivalent to the host page 1686 * size. If it's got some huge pages then it's the OR of all the 1687 * different page sizes. 1688 */ 1689 uint64_t ram_pagesize_summary(void) 1690 { 1691 RAMBlock *block; 1692 uint64_t summary = 0; 1693 1694 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 1695 summary |= block->page_size; 1696 } 1697 1698 return summary; 1699 } 1700 1701 uint64_t ram_get_total_transferred_pages(void) 1702 { 1703 return ram_counters.normal + ram_counters.duplicate + 1704 compression_counters.pages + xbzrle_counters.pages; 1705 } 1706 1707 static void migration_update_rates(RAMState *rs, int64_t end_time) 1708 { 1709 uint64_t page_count = rs->target_page_count - rs->target_page_count_prev; 1710 double compressed_size; 1711 1712 /* calculate period counters */ 1713 ram_counters.dirty_pages_rate = rs->num_dirty_pages_period * 1000 1714 / (end_time - rs->time_last_bitmap_sync); 1715 1716 if (!page_count) { 1717 return; 1718 } 1719 1720 if (migrate_use_xbzrle()) { 1721 xbzrle_counters.cache_miss_rate = (double)(xbzrle_counters.cache_miss - 1722 rs->xbzrle_cache_miss_prev) / page_count; 1723 rs->xbzrle_cache_miss_prev = xbzrle_counters.cache_miss; 1724 } 1725 1726 if (migrate_use_compression()) { 1727 compression_counters.busy_rate = (double)(compression_counters.busy - 1728 rs->compress_thread_busy_prev) / page_count; 1729 rs->compress_thread_busy_prev = compression_counters.busy; 1730 1731 compressed_size = compression_counters.compressed_size - 1732 rs->compressed_size_prev; 1733 if (compressed_size) { 1734 double uncompressed_size = (compression_counters.pages - 1735 rs->compress_pages_prev) * TARGET_PAGE_SIZE; 1736 1737 /* Compression-Ratio = Uncompressed-size / Compressed-size */ 1738 compression_counters.compression_rate = 1739 uncompressed_size / compressed_size; 1740 1741 rs->compress_pages_prev = compression_counters.pages; 1742 rs->compressed_size_prev = compression_counters.compressed_size; 1743 } 1744 } 1745 } 1746 1747 static void migration_bitmap_sync(RAMState *rs) 1748 { 1749 RAMBlock *block; 1750 int64_t end_time; 1751 uint64_t bytes_xfer_now; 1752 1753 ram_counters.dirty_sync_count++; 1754 1755 if (!rs->time_last_bitmap_sync) { 1756 rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); 1757 } 1758 1759 trace_migration_bitmap_sync_start(); 1760 memory_global_dirty_log_sync(); 1761 1762 qemu_mutex_lock(&rs->bitmap_mutex); 1763 rcu_read_lock(); 1764 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 1765 migration_bitmap_sync_range(rs, block, block->used_length); 1766 } 1767 ram_counters.remaining = ram_bytes_remaining(); 1768 rcu_read_unlock(); 1769 qemu_mutex_unlock(&rs->bitmap_mutex); 1770 1771 trace_migration_bitmap_sync_end(rs->num_dirty_pages_period); 1772 1773 end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); 1774 1775 /* more than 1 second = 1000 millisecons */ 1776 if (end_time > rs->time_last_bitmap_sync + 1000) { 1777 bytes_xfer_now = ram_counters.transferred; 1778 1779 /* During block migration the auto-converge logic incorrectly detects 1780 * that ram migration makes no progress. Avoid this by disabling the 1781 * throttling logic during the bulk phase of block migration. */ 1782 if (migrate_auto_converge() && !blk_mig_bulk_active()) { 1783 /* The following detection logic can be refined later. For now: 1784 Check to see if the dirtied bytes is 50% more than the approx. 1785 amount of bytes that just got transferred since the last time we 1786 were in this routine. If that happens twice, start or increase 1787 throttling */ 1788 1789 if ((rs->num_dirty_pages_period * TARGET_PAGE_SIZE > 1790 (bytes_xfer_now - rs->bytes_xfer_prev) / 2) && 1791 (++rs->dirty_rate_high_cnt >= 2)) { 1792 trace_migration_throttle(); 1793 rs->dirty_rate_high_cnt = 0; 1794 mig_throttle_guest_down(); 1795 } 1796 } 1797 1798 migration_update_rates(rs, end_time); 1799 1800 rs->target_page_count_prev = rs->target_page_count; 1801 1802 /* reset period counters */ 1803 rs->time_last_bitmap_sync = end_time; 1804 rs->num_dirty_pages_period = 0; 1805 rs->bytes_xfer_prev = bytes_xfer_now; 1806 } 1807 if (migrate_use_events()) { 1808 qapi_event_send_migration_pass(ram_counters.dirty_sync_count); 1809 } 1810 } 1811 1812 static void migration_bitmap_sync_precopy(RAMState *rs) 1813 { 1814 Error *local_err = NULL; 1815 1816 /* 1817 * The current notifier usage is just an optimization to migration, so we 1818 * don't stop the normal migration process in the error case. 1819 */ 1820 if (precopy_notify(PRECOPY_NOTIFY_BEFORE_BITMAP_SYNC, &local_err)) { 1821 error_report_err(local_err); 1822 } 1823 1824 migration_bitmap_sync(rs); 1825 1826 if (precopy_notify(PRECOPY_NOTIFY_AFTER_BITMAP_SYNC, &local_err)) { 1827 error_report_err(local_err); 1828 } 1829 } 1830 1831 /** 1832 * save_zero_page_to_file: send the zero page to the file 1833 * 1834 * Returns the size of data written to the file, 0 means the page is not 1835 * a zero page 1836 * 1837 * @rs: current RAM state 1838 * @file: the file where the data is saved 1839 * @block: block that contains the page we want to send 1840 * @offset: offset inside the block for the page 1841 */ 1842 static int save_zero_page_to_file(RAMState *rs, QEMUFile *file, 1843 RAMBlock *block, ram_addr_t offset) 1844 { 1845 uint8_t *p = block->host + offset; 1846 int len = 0; 1847 1848 if (is_zero_range(p, TARGET_PAGE_SIZE)) { 1849 len += save_page_header(rs, file, block, offset | RAM_SAVE_FLAG_ZERO); 1850 qemu_put_byte(file, 0); 1851 len += 1; 1852 } 1853 return len; 1854 } 1855 1856 /** 1857 * save_zero_page: send the zero page to the stream 1858 * 1859 * Returns the number of pages written. 1860 * 1861 * @rs: current RAM state 1862 * @block: block that contains the page we want to send 1863 * @offset: offset inside the block for the page 1864 */ 1865 static int save_zero_page(RAMState *rs, RAMBlock *block, ram_addr_t offset) 1866 { 1867 int len = save_zero_page_to_file(rs, rs->f, block, offset); 1868 1869 if (len) { 1870 ram_counters.duplicate++; 1871 ram_counters.transferred += len; 1872 return 1; 1873 } 1874 return -1; 1875 } 1876 1877 static void ram_release_pages(const char *rbname, uint64_t offset, int pages) 1878 { 1879 if (!migrate_release_ram() || !migration_in_postcopy()) { 1880 return; 1881 } 1882 1883 ram_discard_range(rbname, offset, pages << TARGET_PAGE_BITS); 1884 } 1885 1886 /* 1887 * @pages: the number of pages written by the control path, 1888 * < 0 - error 1889 * > 0 - number of pages written 1890 * 1891 * Return true if the pages has been saved, otherwise false is returned. 1892 */ 1893 static bool control_save_page(RAMState *rs, RAMBlock *block, ram_addr_t offset, 1894 int *pages) 1895 { 1896 uint64_t bytes_xmit = 0; 1897 int ret; 1898 1899 *pages = -1; 1900 ret = ram_control_save_page(rs->f, block->offset, offset, TARGET_PAGE_SIZE, 1901 &bytes_xmit); 1902 if (ret == RAM_SAVE_CONTROL_NOT_SUPP) { 1903 return false; 1904 } 1905 1906 if (bytes_xmit) { 1907 ram_counters.transferred += bytes_xmit; 1908 *pages = 1; 1909 } 1910 1911 if (ret == RAM_SAVE_CONTROL_DELAYED) { 1912 return true; 1913 } 1914 1915 if (bytes_xmit > 0) { 1916 ram_counters.normal++; 1917 } else if (bytes_xmit == 0) { 1918 ram_counters.duplicate++; 1919 } 1920 1921 return true; 1922 } 1923 1924 /* 1925 * directly send the page to the stream 1926 * 1927 * Returns the number of pages written. 1928 * 1929 * @rs: current RAM state 1930 * @block: block that contains the page we want to send 1931 * @offset: offset inside the block for the page 1932 * @buf: the page to be sent 1933 * @async: send to page asyncly 1934 */ 1935 static int save_normal_page(RAMState *rs, RAMBlock *block, ram_addr_t offset, 1936 uint8_t *buf, bool async) 1937 { 1938 ram_counters.transferred += save_page_header(rs, rs->f, block, 1939 offset | RAM_SAVE_FLAG_PAGE); 1940 if (async) { 1941 qemu_put_buffer_async(rs->f, buf, TARGET_PAGE_SIZE, 1942 migrate_release_ram() & 1943 migration_in_postcopy()); 1944 } else { 1945 qemu_put_buffer(rs->f, buf, TARGET_PAGE_SIZE); 1946 } 1947 ram_counters.transferred += TARGET_PAGE_SIZE; 1948 ram_counters.normal++; 1949 return 1; 1950 } 1951 1952 /** 1953 * ram_save_page: send the given page to the stream 1954 * 1955 * Returns the number of pages written. 1956 * < 0 - error 1957 * >=0 - Number of pages written - this might legally be 0 1958 * if xbzrle noticed the page was the same. 1959 * 1960 * @rs: current RAM state 1961 * @block: block that contains the page we want to send 1962 * @offset: offset inside the block for the page 1963 * @last_stage: if we are at the completion stage 1964 */ 1965 static int ram_save_page(RAMState *rs, PageSearchStatus *pss, bool last_stage) 1966 { 1967 int pages = -1; 1968 uint8_t *p; 1969 bool send_async = true; 1970 RAMBlock *block = pss->block; 1971 ram_addr_t offset = pss->page << TARGET_PAGE_BITS; 1972 ram_addr_t current_addr = block->offset + offset; 1973 1974 p = block->host + offset; 1975 trace_ram_save_page(block->idstr, (uint64_t)offset, p); 1976 1977 XBZRLE_cache_lock(); 1978 if (!rs->ram_bulk_stage && !migration_in_postcopy() && 1979 migrate_use_xbzrle()) { 1980 pages = save_xbzrle_page(rs, &p, current_addr, block, 1981 offset, last_stage); 1982 if (!last_stage) { 1983 /* Can't send this cached data async, since the cache page 1984 * might get updated before it gets to the wire 1985 */ 1986 send_async = false; 1987 } 1988 } 1989 1990 /* XBZRLE overflow or normal page */ 1991 if (pages == -1) { 1992 pages = save_normal_page(rs, block, offset, p, send_async); 1993 } 1994 1995 XBZRLE_cache_unlock(); 1996 1997 return pages; 1998 } 1999 2000 static int ram_save_multifd_page(RAMState *rs, RAMBlock *block, 2001 ram_addr_t offset) 2002 { 2003 multifd_queue_page(block, offset); 2004 ram_counters.normal++; 2005 2006 return 1; 2007 } 2008 2009 static bool do_compress_ram_page(QEMUFile *f, z_stream *stream, RAMBlock *block, 2010 ram_addr_t offset, uint8_t *source_buf) 2011 { 2012 RAMState *rs = ram_state; 2013 uint8_t *p = block->host + (offset & TARGET_PAGE_MASK); 2014 bool zero_page = false; 2015 int ret; 2016 2017 if (save_zero_page_to_file(rs, f, block, offset)) { 2018 zero_page = true; 2019 goto exit; 2020 } 2021 2022 save_page_header(rs, f, block, offset | RAM_SAVE_FLAG_COMPRESS_PAGE); 2023 2024 /* 2025 * copy it to a internal buffer to avoid it being modified by VM 2026 * so that we can catch up the error during compression and 2027 * decompression 2028 */ 2029 memcpy(source_buf, p, TARGET_PAGE_SIZE); 2030 ret = qemu_put_compression_data(f, stream, source_buf, TARGET_PAGE_SIZE); 2031 if (ret < 0) { 2032 qemu_file_set_error(migrate_get_current()->to_dst_file, ret); 2033 error_report("compressed data failed!"); 2034 return false; 2035 } 2036 2037 exit: 2038 ram_release_pages(block->idstr, offset & TARGET_PAGE_MASK, 1); 2039 return zero_page; 2040 } 2041 2042 static void 2043 update_compress_thread_counts(const CompressParam *param, int bytes_xmit) 2044 { 2045 ram_counters.transferred += bytes_xmit; 2046 2047 if (param->zero_page) { 2048 ram_counters.duplicate++; 2049 return; 2050 } 2051 2052 /* 8 means a header with RAM_SAVE_FLAG_CONTINUE. */ 2053 compression_counters.compressed_size += bytes_xmit - 8; 2054 compression_counters.pages++; 2055 } 2056 2057 static bool save_page_use_compression(RAMState *rs); 2058 2059 static void flush_compressed_data(RAMState *rs) 2060 { 2061 int idx, len, thread_count; 2062 2063 if (!save_page_use_compression(rs)) { 2064 return; 2065 } 2066 thread_count = migrate_compress_threads(); 2067 2068 qemu_mutex_lock(&comp_done_lock); 2069 for (idx = 0; idx < thread_count; idx++) { 2070 while (!comp_param[idx].done) { 2071 qemu_cond_wait(&comp_done_cond, &comp_done_lock); 2072 } 2073 } 2074 qemu_mutex_unlock(&comp_done_lock); 2075 2076 for (idx = 0; idx < thread_count; idx++) { 2077 qemu_mutex_lock(&comp_param[idx].mutex); 2078 if (!comp_param[idx].quit) { 2079 len = qemu_put_qemu_file(rs->f, comp_param[idx].file); 2080 /* 2081 * it's safe to fetch zero_page without holding comp_done_lock 2082 * as there is no further request submitted to the thread, 2083 * i.e, the thread should be waiting for a request at this point. 2084 */ 2085 update_compress_thread_counts(&comp_param[idx], len); 2086 } 2087 qemu_mutex_unlock(&comp_param[idx].mutex); 2088 } 2089 } 2090 2091 static inline void set_compress_params(CompressParam *param, RAMBlock *block, 2092 ram_addr_t offset) 2093 { 2094 param->block = block; 2095 param->offset = offset; 2096 } 2097 2098 static int compress_page_with_multi_thread(RAMState *rs, RAMBlock *block, 2099 ram_addr_t offset) 2100 { 2101 int idx, thread_count, bytes_xmit = -1, pages = -1; 2102 bool wait = migrate_compress_wait_thread(); 2103 2104 thread_count = migrate_compress_threads(); 2105 qemu_mutex_lock(&comp_done_lock); 2106 retry: 2107 for (idx = 0; idx < thread_count; idx++) { 2108 if (comp_param[idx].done) { 2109 comp_param[idx].done = false; 2110 bytes_xmit = qemu_put_qemu_file(rs->f, comp_param[idx].file); 2111 qemu_mutex_lock(&comp_param[idx].mutex); 2112 set_compress_params(&comp_param[idx], block, offset); 2113 qemu_cond_signal(&comp_param[idx].cond); 2114 qemu_mutex_unlock(&comp_param[idx].mutex); 2115 pages = 1; 2116 update_compress_thread_counts(&comp_param[idx], bytes_xmit); 2117 break; 2118 } 2119 } 2120 2121 /* 2122 * wait for the free thread if the user specifies 'compress-wait-thread', 2123 * otherwise we will post the page out in the main thread as normal page. 2124 */ 2125 if (pages < 0 && wait) { 2126 qemu_cond_wait(&comp_done_cond, &comp_done_lock); 2127 goto retry; 2128 } 2129 qemu_mutex_unlock(&comp_done_lock); 2130 2131 return pages; 2132 } 2133 2134 /** 2135 * find_dirty_block: find the next dirty page and update any state 2136 * associated with the search process. 2137 * 2138 * Returns true if a page is found 2139 * 2140 * @rs: current RAM state 2141 * @pss: data about the state of the current dirty page scan 2142 * @again: set to false if the search has scanned the whole of RAM 2143 */ 2144 static bool find_dirty_block(RAMState *rs, PageSearchStatus *pss, bool *again) 2145 { 2146 pss->page = migration_bitmap_find_dirty(rs, pss->block, pss->page); 2147 if (pss->complete_round && pss->block == rs->last_seen_block && 2148 pss->page >= rs->last_page) { 2149 /* 2150 * We've been once around the RAM and haven't found anything. 2151 * Give up. 2152 */ 2153 *again = false; 2154 return false; 2155 } 2156 if ((pss->page << TARGET_PAGE_BITS) >= pss->block->used_length) { 2157 /* Didn't find anything in this RAM Block */ 2158 pss->page = 0; 2159 pss->block = QLIST_NEXT_RCU(pss->block, next); 2160 if (!pss->block) { 2161 /* 2162 * If memory migration starts over, we will meet a dirtied page 2163 * which may still exists in compression threads's ring, so we 2164 * should flush the compressed data to make sure the new page 2165 * is not overwritten by the old one in the destination. 2166 * 2167 * Also If xbzrle is on, stop using the data compression at this 2168 * point. In theory, xbzrle can do better than compression. 2169 */ 2170 flush_compressed_data(rs); 2171 2172 /* Hit the end of the list */ 2173 pss->block = QLIST_FIRST_RCU(&ram_list.blocks); 2174 /* Flag that we've looped */ 2175 pss->complete_round = true; 2176 rs->ram_bulk_stage = false; 2177 } 2178 /* Didn't find anything this time, but try again on the new block */ 2179 *again = true; 2180 return false; 2181 } else { 2182 /* Can go around again, but... */ 2183 *again = true; 2184 /* We've found something so probably don't need to */ 2185 return true; 2186 } 2187 } 2188 2189 /** 2190 * unqueue_page: gets a page of the queue 2191 * 2192 * Helper for 'get_queued_page' - gets a page off the queue 2193 * 2194 * Returns the block of the page (or NULL if none available) 2195 * 2196 * @rs: current RAM state 2197 * @offset: used to return the offset within the RAMBlock 2198 */ 2199 static RAMBlock *unqueue_page(RAMState *rs, ram_addr_t *offset) 2200 { 2201 RAMBlock *block = NULL; 2202 2203 if (QSIMPLEQ_EMPTY_ATOMIC(&rs->src_page_requests)) { 2204 return NULL; 2205 } 2206 2207 qemu_mutex_lock(&rs->src_page_req_mutex); 2208 if (!QSIMPLEQ_EMPTY(&rs->src_page_requests)) { 2209 struct RAMSrcPageRequest *entry = 2210 QSIMPLEQ_FIRST(&rs->src_page_requests); 2211 block = entry->rb; 2212 *offset = entry->offset; 2213 2214 if (entry->len > TARGET_PAGE_SIZE) { 2215 entry->len -= TARGET_PAGE_SIZE; 2216 entry->offset += TARGET_PAGE_SIZE; 2217 } else { 2218 memory_region_unref(block->mr); 2219 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req); 2220 g_free(entry); 2221 migration_consume_urgent_request(); 2222 } 2223 } 2224 qemu_mutex_unlock(&rs->src_page_req_mutex); 2225 2226 return block; 2227 } 2228 2229 /** 2230 * get_queued_page: unqueue a page from the postcopy requests 2231 * 2232 * Skips pages that are already sent (!dirty) 2233 * 2234 * Returns true if a queued page is found 2235 * 2236 * @rs: current RAM state 2237 * @pss: data about the state of the current dirty page scan 2238 */ 2239 static bool get_queued_page(RAMState *rs, PageSearchStatus *pss) 2240 { 2241 RAMBlock *block; 2242 ram_addr_t offset; 2243 bool dirty; 2244 2245 do { 2246 block = unqueue_page(rs, &offset); 2247 /* 2248 * We're sending this page, and since it's postcopy nothing else 2249 * will dirty it, and we must make sure it doesn't get sent again 2250 * even if this queue request was received after the background 2251 * search already sent it. 2252 */ 2253 if (block) { 2254 unsigned long page; 2255 2256 page = offset >> TARGET_PAGE_BITS; 2257 dirty = test_bit(page, block->bmap); 2258 if (!dirty) { 2259 trace_get_queued_page_not_dirty(block->idstr, (uint64_t)offset, 2260 page, test_bit(page, block->unsentmap)); 2261 } else { 2262 trace_get_queued_page(block->idstr, (uint64_t)offset, page); 2263 } 2264 } 2265 2266 } while (block && !dirty); 2267 2268 if (block) { 2269 /* 2270 * As soon as we start servicing pages out of order, then we have 2271 * to kill the bulk stage, since the bulk stage assumes 2272 * in (migration_bitmap_find_and_reset_dirty) that every page is 2273 * dirty, that's no longer true. 2274 */ 2275 rs->ram_bulk_stage = false; 2276 2277 /* 2278 * We want the background search to continue from the queued page 2279 * since the guest is likely to want other pages near to the page 2280 * it just requested. 2281 */ 2282 pss->block = block; 2283 pss->page = offset >> TARGET_PAGE_BITS; 2284 } 2285 2286 return !!block; 2287 } 2288 2289 /** 2290 * migration_page_queue_free: drop any remaining pages in the ram 2291 * request queue 2292 * 2293 * It should be empty at the end anyway, but in error cases there may 2294 * be some left. in case that there is any page left, we drop it. 2295 * 2296 */ 2297 static void migration_page_queue_free(RAMState *rs) 2298 { 2299 struct RAMSrcPageRequest *mspr, *next_mspr; 2300 /* This queue generally should be empty - but in the case of a failed 2301 * migration might have some droppings in. 2302 */ 2303 rcu_read_lock(); 2304 QSIMPLEQ_FOREACH_SAFE(mspr, &rs->src_page_requests, next_req, next_mspr) { 2305 memory_region_unref(mspr->rb->mr); 2306 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req); 2307 g_free(mspr); 2308 } 2309 rcu_read_unlock(); 2310 } 2311 2312 /** 2313 * ram_save_queue_pages: queue the page for transmission 2314 * 2315 * A request from postcopy destination for example. 2316 * 2317 * Returns zero on success or negative on error 2318 * 2319 * @rbname: Name of the RAMBLock of the request. NULL means the 2320 * same that last one. 2321 * @start: starting address from the start of the RAMBlock 2322 * @len: length (in bytes) to send 2323 */ 2324 int ram_save_queue_pages(const char *rbname, ram_addr_t start, ram_addr_t len) 2325 { 2326 RAMBlock *ramblock; 2327 RAMState *rs = ram_state; 2328 2329 ram_counters.postcopy_requests++; 2330 rcu_read_lock(); 2331 if (!rbname) { 2332 /* Reuse last RAMBlock */ 2333 ramblock = rs->last_req_rb; 2334 2335 if (!ramblock) { 2336 /* 2337 * Shouldn't happen, we can't reuse the last RAMBlock if 2338 * it's the 1st request. 2339 */ 2340 error_report("ram_save_queue_pages no previous block"); 2341 goto err; 2342 } 2343 } else { 2344 ramblock = qemu_ram_block_by_name(rbname); 2345 2346 if (!ramblock) { 2347 /* We shouldn't be asked for a non-existent RAMBlock */ 2348 error_report("ram_save_queue_pages no block '%s'", rbname); 2349 goto err; 2350 } 2351 rs->last_req_rb = ramblock; 2352 } 2353 trace_ram_save_queue_pages(ramblock->idstr, start, len); 2354 if (start+len > ramblock->used_length) { 2355 error_report("%s request overrun start=" RAM_ADDR_FMT " len=" 2356 RAM_ADDR_FMT " blocklen=" RAM_ADDR_FMT, 2357 __func__, start, len, ramblock->used_length); 2358 goto err; 2359 } 2360 2361 struct RAMSrcPageRequest *new_entry = 2362 g_malloc0(sizeof(struct RAMSrcPageRequest)); 2363 new_entry->rb = ramblock; 2364 new_entry->offset = start; 2365 new_entry->len = len; 2366 2367 memory_region_ref(ramblock->mr); 2368 qemu_mutex_lock(&rs->src_page_req_mutex); 2369 QSIMPLEQ_INSERT_TAIL(&rs->src_page_requests, new_entry, next_req); 2370 migration_make_urgent_request(); 2371 qemu_mutex_unlock(&rs->src_page_req_mutex); 2372 rcu_read_unlock(); 2373 2374 return 0; 2375 2376 err: 2377 rcu_read_unlock(); 2378 return -1; 2379 } 2380 2381 static bool save_page_use_compression(RAMState *rs) 2382 { 2383 if (!migrate_use_compression()) { 2384 return false; 2385 } 2386 2387 /* 2388 * If xbzrle is on, stop using the data compression after first 2389 * round of migration even if compression is enabled. In theory, 2390 * xbzrle can do better than compression. 2391 */ 2392 if (rs->ram_bulk_stage || !migrate_use_xbzrle()) { 2393 return true; 2394 } 2395 2396 return false; 2397 } 2398 2399 /* 2400 * try to compress the page before posting it out, return true if the page 2401 * has been properly handled by compression, otherwise needs other 2402 * paths to handle it 2403 */ 2404 static bool save_compress_page(RAMState *rs, RAMBlock *block, ram_addr_t offset) 2405 { 2406 if (!save_page_use_compression(rs)) { 2407 return false; 2408 } 2409 2410 /* 2411 * When starting the process of a new block, the first page of 2412 * the block should be sent out before other pages in the same 2413 * block, and all the pages in last block should have been sent 2414 * out, keeping this order is important, because the 'cont' flag 2415 * is used to avoid resending the block name. 2416 * 2417 * We post the fist page as normal page as compression will take 2418 * much CPU resource. 2419 */ 2420 if (block != rs->last_sent_block) { 2421 flush_compressed_data(rs); 2422 return false; 2423 } 2424 2425 if (compress_page_with_multi_thread(rs, block, offset) > 0) { 2426 return true; 2427 } 2428 2429 compression_counters.busy++; 2430 return false; 2431 } 2432 2433 /** 2434 * ram_save_target_page: save one target page 2435 * 2436 * Returns the number of pages written 2437 * 2438 * @rs: current RAM state 2439 * @pss: data about the page we want to send 2440 * @last_stage: if we are at the completion stage 2441 */ 2442 static int ram_save_target_page(RAMState *rs, PageSearchStatus *pss, 2443 bool last_stage) 2444 { 2445 RAMBlock *block = pss->block; 2446 ram_addr_t offset = pss->page << TARGET_PAGE_BITS; 2447 int res; 2448 2449 if (control_save_page(rs, block, offset, &res)) { 2450 return res; 2451 } 2452 2453 if (save_compress_page(rs, block, offset)) { 2454 return 1; 2455 } 2456 2457 res = save_zero_page(rs, block, offset); 2458 if (res > 0) { 2459 /* Must let xbzrle know, otherwise a previous (now 0'd) cached 2460 * page would be stale 2461 */ 2462 if (!save_page_use_compression(rs)) { 2463 XBZRLE_cache_lock(); 2464 xbzrle_cache_zero_page(rs, block->offset + offset); 2465 XBZRLE_cache_unlock(); 2466 } 2467 ram_release_pages(block->idstr, offset, res); 2468 return res; 2469 } 2470 2471 /* 2472 * do not use multifd for compression as the first page in the new 2473 * block should be posted out before sending the compressed page 2474 */ 2475 if (!save_page_use_compression(rs) && migrate_use_multifd()) { 2476 return ram_save_multifd_page(rs, block, offset); 2477 } 2478 2479 return ram_save_page(rs, pss, last_stage); 2480 } 2481 2482 /** 2483 * ram_save_host_page: save a whole host page 2484 * 2485 * Starting at *offset send pages up to the end of the current host 2486 * page. It's valid for the initial offset to point into the middle of 2487 * a host page in which case the remainder of the hostpage is sent. 2488 * Only dirty target pages are sent. Note that the host page size may 2489 * be a huge page for this block. 2490 * The saving stops at the boundary of the used_length of the block 2491 * if the RAMBlock isn't a multiple of the host page size. 2492 * 2493 * Returns the number of pages written or negative on error 2494 * 2495 * @rs: current RAM state 2496 * @ms: current migration state 2497 * @pss: data about the page we want to send 2498 * @last_stage: if we are at the completion stage 2499 */ 2500 static int ram_save_host_page(RAMState *rs, PageSearchStatus *pss, 2501 bool last_stage) 2502 { 2503 int tmppages, pages = 0; 2504 size_t pagesize_bits = 2505 qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS; 2506 2507 if (ramblock_is_ignored(pss->block)) { 2508 error_report("block %s should not be migrated !", pss->block->idstr); 2509 return 0; 2510 } 2511 2512 do { 2513 /* Check the pages is dirty and if it is send it */ 2514 if (!migration_bitmap_clear_dirty(rs, pss->block, pss->page)) { 2515 pss->page++; 2516 continue; 2517 } 2518 2519 tmppages = ram_save_target_page(rs, pss, last_stage); 2520 if (tmppages < 0) { 2521 return tmppages; 2522 } 2523 2524 pages += tmppages; 2525 if (pss->block->unsentmap) { 2526 clear_bit(pss->page, pss->block->unsentmap); 2527 } 2528 2529 pss->page++; 2530 } while ((pss->page & (pagesize_bits - 1)) && 2531 offset_in_ramblock(pss->block, pss->page << TARGET_PAGE_BITS)); 2532 2533 /* The offset we leave with is the last one we looked at */ 2534 pss->page--; 2535 return pages; 2536 } 2537 2538 /** 2539 * ram_find_and_save_block: finds a dirty page and sends it to f 2540 * 2541 * Called within an RCU critical section. 2542 * 2543 * Returns the number of pages written where zero means no dirty pages, 2544 * or negative on error 2545 * 2546 * @rs: current RAM state 2547 * @last_stage: if we are at the completion stage 2548 * 2549 * On systems where host-page-size > target-page-size it will send all the 2550 * pages in a host page that are dirty. 2551 */ 2552 2553 static int ram_find_and_save_block(RAMState *rs, bool last_stage) 2554 { 2555 PageSearchStatus pss; 2556 int pages = 0; 2557 bool again, found; 2558 2559 /* No dirty page as there is zero RAM */ 2560 if (!ram_bytes_total()) { 2561 return pages; 2562 } 2563 2564 pss.block = rs->last_seen_block; 2565 pss.page = rs->last_page; 2566 pss.complete_round = false; 2567 2568 if (!pss.block) { 2569 pss.block = QLIST_FIRST_RCU(&ram_list.blocks); 2570 } 2571 2572 do { 2573 again = true; 2574 found = get_queued_page(rs, &pss); 2575 2576 if (!found) { 2577 /* priority queue empty, so just search for something dirty */ 2578 found = find_dirty_block(rs, &pss, &again); 2579 } 2580 2581 if (found) { 2582 pages = ram_save_host_page(rs, &pss, last_stage); 2583 } 2584 } while (!pages && again); 2585 2586 rs->last_seen_block = pss.block; 2587 rs->last_page = pss.page; 2588 2589 return pages; 2590 } 2591 2592 void acct_update_position(QEMUFile *f, size_t size, bool zero) 2593 { 2594 uint64_t pages = size / TARGET_PAGE_SIZE; 2595 2596 if (zero) { 2597 ram_counters.duplicate += pages; 2598 } else { 2599 ram_counters.normal += pages; 2600 ram_counters.transferred += size; 2601 qemu_update_position(f, size); 2602 } 2603 } 2604 2605 static uint64_t ram_bytes_total_common(bool count_ignored) 2606 { 2607 RAMBlock *block; 2608 uint64_t total = 0; 2609 2610 rcu_read_lock(); 2611 if (count_ignored) { 2612 RAMBLOCK_FOREACH_MIGRATABLE(block) { 2613 total += block->used_length; 2614 } 2615 } else { 2616 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 2617 total += block->used_length; 2618 } 2619 } 2620 rcu_read_unlock(); 2621 return total; 2622 } 2623 2624 uint64_t ram_bytes_total(void) 2625 { 2626 return ram_bytes_total_common(false); 2627 } 2628 2629 static void xbzrle_load_setup(void) 2630 { 2631 XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE); 2632 } 2633 2634 static void xbzrle_load_cleanup(void) 2635 { 2636 g_free(XBZRLE.decoded_buf); 2637 XBZRLE.decoded_buf = NULL; 2638 } 2639 2640 static void ram_state_cleanup(RAMState **rsp) 2641 { 2642 if (*rsp) { 2643 migration_page_queue_free(*rsp); 2644 qemu_mutex_destroy(&(*rsp)->bitmap_mutex); 2645 qemu_mutex_destroy(&(*rsp)->src_page_req_mutex); 2646 g_free(*rsp); 2647 *rsp = NULL; 2648 } 2649 } 2650 2651 static void xbzrle_cleanup(void) 2652 { 2653 XBZRLE_cache_lock(); 2654 if (XBZRLE.cache) { 2655 cache_fini(XBZRLE.cache); 2656 g_free(XBZRLE.encoded_buf); 2657 g_free(XBZRLE.current_buf); 2658 g_free(XBZRLE.zero_target_page); 2659 XBZRLE.cache = NULL; 2660 XBZRLE.encoded_buf = NULL; 2661 XBZRLE.current_buf = NULL; 2662 XBZRLE.zero_target_page = NULL; 2663 } 2664 XBZRLE_cache_unlock(); 2665 } 2666 2667 static void ram_save_cleanup(void *opaque) 2668 { 2669 RAMState **rsp = opaque; 2670 RAMBlock *block; 2671 2672 /* caller have hold iothread lock or is in a bh, so there is 2673 * no writing race against the migration bitmap 2674 */ 2675 memory_global_dirty_log_stop(); 2676 2677 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 2678 g_free(block->bmap); 2679 block->bmap = NULL; 2680 g_free(block->unsentmap); 2681 block->unsentmap = NULL; 2682 } 2683 2684 xbzrle_cleanup(); 2685 compress_threads_save_cleanup(); 2686 ram_state_cleanup(rsp); 2687 } 2688 2689 static void ram_state_reset(RAMState *rs) 2690 { 2691 rs->last_seen_block = NULL; 2692 rs->last_sent_block = NULL; 2693 rs->last_page = 0; 2694 rs->last_version = ram_list.version; 2695 rs->ram_bulk_stage = true; 2696 rs->fpo_enabled = false; 2697 } 2698 2699 #define MAX_WAIT 50 /* ms, half buffered_file limit */ 2700 2701 /* 2702 * 'expected' is the value you expect the bitmap mostly to be full 2703 * of; it won't bother printing lines that are all this value. 2704 * If 'todump' is null the migration bitmap is dumped. 2705 */ 2706 void ram_debug_dump_bitmap(unsigned long *todump, bool expected, 2707 unsigned long pages) 2708 { 2709 int64_t cur; 2710 int64_t linelen = 128; 2711 char linebuf[129]; 2712 2713 for (cur = 0; cur < pages; cur += linelen) { 2714 int64_t curb; 2715 bool found = false; 2716 /* 2717 * Last line; catch the case where the line length 2718 * is longer than remaining ram 2719 */ 2720 if (cur + linelen > pages) { 2721 linelen = pages - cur; 2722 } 2723 for (curb = 0; curb < linelen; curb++) { 2724 bool thisbit = test_bit(cur + curb, todump); 2725 linebuf[curb] = thisbit ? '1' : '.'; 2726 found = found || (thisbit != expected); 2727 } 2728 if (found) { 2729 linebuf[curb] = '\0'; 2730 fprintf(stderr, "0x%08" PRIx64 " : %s\n", cur, linebuf); 2731 } 2732 } 2733 } 2734 2735 /* **** functions for postcopy ***** */ 2736 2737 void ram_postcopy_migrated_memory_release(MigrationState *ms) 2738 { 2739 struct RAMBlock *block; 2740 2741 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 2742 unsigned long *bitmap = block->bmap; 2743 unsigned long range = block->used_length >> TARGET_PAGE_BITS; 2744 unsigned long run_start = find_next_zero_bit(bitmap, range, 0); 2745 2746 while (run_start < range) { 2747 unsigned long run_end = find_next_bit(bitmap, range, run_start + 1); 2748 ram_discard_range(block->idstr, run_start << TARGET_PAGE_BITS, 2749 (run_end - run_start) << TARGET_PAGE_BITS); 2750 run_start = find_next_zero_bit(bitmap, range, run_end + 1); 2751 } 2752 } 2753 } 2754 2755 /** 2756 * postcopy_send_discard_bm_ram: discard a RAMBlock 2757 * 2758 * Returns zero on success 2759 * 2760 * Callback from postcopy_each_ram_send_discard for each RAMBlock 2761 * Note: At this point the 'unsentmap' is the processed bitmap combined 2762 * with the dirtymap; so a '1' means it's either dirty or unsent. 2763 * 2764 * @ms: current migration state 2765 * @pds: state for postcopy 2766 * @start: RAMBlock starting page 2767 * @length: RAMBlock size 2768 */ 2769 static int postcopy_send_discard_bm_ram(MigrationState *ms, 2770 PostcopyDiscardState *pds, 2771 RAMBlock *block) 2772 { 2773 unsigned long end = block->used_length >> TARGET_PAGE_BITS; 2774 unsigned long current; 2775 unsigned long *unsentmap = block->unsentmap; 2776 2777 for (current = 0; current < end; ) { 2778 unsigned long one = find_next_bit(unsentmap, end, current); 2779 2780 if (one <= end) { 2781 unsigned long zero = find_next_zero_bit(unsentmap, end, one + 1); 2782 unsigned long discard_length; 2783 2784 if (zero >= end) { 2785 discard_length = end - one; 2786 } else { 2787 discard_length = zero - one; 2788 } 2789 if (discard_length) { 2790 postcopy_discard_send_range(ms, pds, one, discard_length); 2791 } 2792 current = one + discard_length; 2793 } else { 2794 current = one; 2795 } 2796 } 2797 2798 return 0; 2799 } 2800 2801 /** 2802 * postcopy_each_ram_send_discard: discard all RAMBlocks 2803 * 2804 * Returns 0 for success or negative for error 2805 * 2806 * Utility for the outgoing postcopy code. 2807 * Calls postcopy_send_discard_bm_ram for each RAMBlock 2808 * passing it bitmap indexes and name. 2809 * (qemu_ram_foreach_block ends up passing unscaled lengths 2810 * which would mean postcopy code would have to deal with target page) 2811 * 2812 * @ms: current migration state 2813 */ 2814 static int postcopy_each_ram_send_discard(MigrationState *ms) 2815 { 2816 struct RAMBlock *block; 2817 int ret; 2818 2819 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 2820 PostcopyDiscardState *pds = 2821 postcopy_discard_send_init(ms, block->idstr); 2822 2823 /* 2824 * Postcopy sends chunks of bitmap over the wire, but it 2825 * just needs indexes at this point, avoids it having 2826 * target page specific code. 2827 */ 2828 ret = postcopy_send_discard_bm_ram(ms, pds, block); 2829 postcopy_discard_send_finish(ms, pds); 2830 if (ret) { 2831 return ret; 2832 } 2833 } 2834 2835 return 0; 2836 } 2837 2838 /** 2839 * postcopy_chunk_hostpages_pass: canocalize bitmap in hostpages 2840 * 2841 * Helper for postcopy_chunk_hostpages; it's called twice to 2842 * canonicalize the two bitmaps, that are similar, but one is 2843 * inverted. 2844 * 2845 * Postcopy requires that all target pages in a hostpage are dirty or 2846 * clean, not a mix. This function canonicalizes the bitmaps. 2847 * 2848 * @ms: current migration state 2849 * @unsent_pass: if true we need to canonicalize partially unsent host pages 2850 * otherwise we need to canonicalize partially dirty host pages 2851 * @block: block that contains the page we want to canonicalize 2852 * @pds: state for postcopy 2853 */ 2854 static void postcopy_chunk_hostpages_pass(MigrationState *ms, bool unsent_pass, 2855 RAMBlock *block, 2856 PostcopyDiscardState *pds) 2857 { 2858 RAMState *rs = ram_state; 2859 unsigned long *bitmap = block->bmap; 2860 unsigned long *unsentmap = block->unsentmap; 2861 unsigned int host_ratio = block->page_size / TARGET_PAGE_SIZE; 2862 unsigned long pages = block->used_length >> TARGET_PAGE_BITS; 2863 unsigned long run_start; 2864 2865 if (block->page_size == TARGET_PAGE_SIZE) { 2866 /* Easy case - TPS==HPS for a non-huge page RAMBlock */ 2867 return; 2868 } 2869 2870 if (unsent_pass) { 2871 /* Find a sent page */ 2872 run_start = find_next_zero_bit(unsentmap, pages, 0); 2873 } else { 2874 /* Find a dirty page */ 2875 run_start = find_next_bit(bitmap, pages, 0); 2876 } 2877 2878 while (run_start < pages) { 2879 bool do_fixup = false; 2880 unsigned long fixup_start_addr; 2881 unsigned long host_offset; 2882 2883 /* 2884 * If the start of this run of pages is in the middle of a host 2885 * page, then we need to fixup this host page. 2886 */ 2887 host_offset = run_start % host_ratio; 2888 if (host_offset) { 2889 do_fixup = true; 2890 run_start -= host_offset; 2891 fixup_start_addr = run_start; 2892 /* For the next pass */ 2893 run_start = run_start + host_ratio; 2894 } else { 2895 /* Find the end of this run */ 2896 unsigned long run_end; 2897 if (unsent_pass) { 2898 run_end = find_next_bit(unsentmap, pages, run_start + 1); 2899 } else { 2900 run_end = find_next_zero_bit(bitmap, pages, run_start + 1); 2901 } 2902 /* 2903 * If the end isn't at the start of a host page, then the 2904 * run doesn't finish at the end of a host page 2905 * and we need to discard. 2906 */ 2907 host_offset = run_end % host_ratio; 2908 if (host_offset) { 2909 do_fixup = true; 2910 fixup_start_addr = run_end - host_offset; 2911 /* 2912 * This host page has gone, the next loop iteration starts 2913 * from after the fixup 2914 */ 2915 run_start = fixup_start_addr + host_ratio; 2916 } else { 2917 /* 2918 * No discards on this iteration, next loop starts from 2919 * next sent/dirty page 2920 */ 2921 run_start = run_end + 1; 2922 } 2923 } 2924 2925 if (do_fixup) { 2926 unsigned long page; 2927 2928 /* Tell the destination to discard this page */ 2929 if (unsent_pass || !test_bit(fixup_start_addr, unsentmap)) { 2930 /* For the unsent_pass we: 2931 * discard partially sent pages 2932 * For the !unsent_pass (dirty) we: 2933 * discard partially dirty pages that were sent 2934 * (any partially sent pages were already discarded 2935 * by the previous unsent_pass) 2936 */ 2937 postcopy_discard_send_range(ms, pds, fixup_start_addr, 2938 host_ratio); 2939 } 2940 2941 /* Clean up the bitmap */ 2942 for (page = fixup_start_addr; 2943 page < fixup_start_addr + host_ratio; page++) { 2944 /* All pages in this host page are now not sent */ 2945 set_bit(page, unsentmap); 2946 2947 /* 2948 * Remark them as dirty, updating the count for any pages 2949 * that weren't previously dirty. 2950 */ 2951 rs->migration_dirty_pages += !test_and_set_bit(page, bitmap); 2952 } 2953 } 2954 2955 if (unsent_pass) { 2956 /* Find the next sent page for the next iteration */ 2957 run_start = find_next_zero_bit(unsentmap, pages, run_start); 2958 } else { 2959 /* Find the next dirty page for the next iteration */ 2960 run_start = find_next_bit(bitmap, pages, run_start); 2961 } 2962 } 2963 } 2964 2965 /** 2966 * postcopy_chuck_hostpages: discrad any partially sent host page 2967 * 2968 * Utility for the outgoing postcopy code. 2969 * 2970 * Discard any partially sent host-page size chunks, mark any partially 2971 * dirty host-page size chunks as all dirty. In this case the host-page 2972 * is the host-page for the particular RAMBlock, i.e. it might be a huge page 2973 * 2974 * Returns zero on success 2975 * 2976 * @ms: current migration state 2977 * @block: block we want to work with 2978 */ 2979 static int postcopy_chunk_hostpages(MigrationState *ms, RAMBlock *block) 2980 { 2981 PostcopyDiscardState *pds = 2982 postcopy_discard_send_init(ms, block->idstr); 2983 2984 /* First pass: Discard all partially sent host pages */ 2985 postcopy_chunk_hostpages_pass(ms, true, block, pds); 2986 /* 2987 * Second pass: Ensure that all partially dirty host pages are made 2988 * fully dirty. 2989 */ 2990 postcopy_chunk_hostpages_pass(ms, false, block, pds); 2991 2992 postcopy_discard_send_finish(ms, pds); 2993 return 0; 2994 } 2995 2996 /** 2997 * ram_postcopy_send_discard_bitmap: transmit the discard bitmap 2998 * 2999 * Returns zero on success 3000 * 3001 * Transmit the set of pages to be discarded after precopy to the target 3002 * these are pages that: 3003 * a) Have been previously transmitted but are now dirty again 3004 * b) Pages that have never been transmitted, this ensures that 3005 * any pages on the destination that have been mapped by background 3006 * tasks get discarded (transparent huge pages is the specific concern) 3007 * Hopefully this is pretty sparse 3008 * 3009 * @ms: current migration state 3010 */ 3011 int ram_postcopy_send_discard_bitmap(MigrationState *ms) 3012 { 3013 RAMState *rs = ram_state; 3014 RAMBlock *block; 3015 int ret; 3016 3017 rcu_read_lock(); 3018 3019 /* This should be our last sync, the src is now paused */ 3020 migration_bitmap_sync(rs); 3021 3022 /* Easiest way to make sure we don't resume in the middle of a host-page */ 3023 rs->last_seen_block = NULL; 3024 rs->last_sent_block = NULL; 3025 rs->last_page = 0; 3026 3027 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3028 unsigned long pages = block->used_length >> TARGET_PAGE_BITS; 3029 unsigned long *bitmap = block->bmap; 3030 unsigned long *unsentmap = block->unsentmap; 3031 3032 if (!unsentmap) { 3033 /* We don't have a safe way to resize the sentmap, so 3034 * if the bitmap was resized it will be NULL at this 3035 * point. 3036 */ 3037 error_report("migration ram resized during precopy phase"); 3038 rcu_read_unlock(); 3039 return -EINVAL; 3040 } 3041 /* Deal with TPS != HPS and huge pages */ 3042 ret = postcopy_chunk_hostpages(ms, block); 3043 if (ret) { 3044 rcu_read_unlock(); 3045 return ret; 3046 } 3047 3048 /* 3049 * Update the unsentmap to be unsentmap = unsentmap | dirty 3050 */ 3051 bitmap_or(unsentmap, unsentmap, bitmap, pages); 3052 #ifdef DEBUG_POSTCOPY 3053 ram_debug_dump_bitmap(unsentmap, true, pages); 3054 #endif 3055 } 3056 trace_ram_postcopy_send_discard_bitmap(); 3057 3058 ret = postcopy_each_ram_send_discard(ms); 3059 rcu_read_unlock(); 3060 3061 return ret; 3062 } 3063 3064 /** 3065 * ram_discard_range: discard dirtied pages at the beginning of postcopy 3066 * 3067 * Returns zero on success 3068 * 3069 * @rbname: name of the RAMBlock of the request. NULL means the 3070 * same that last one. 3071 * @start: RAMBlock starting page 3072 * @length: RAMBlock size 3073 */ 3074 int ram_discard_range(const char *rbname, uint64_t start, size_t length) 3075 { 3076 int ret = -1; 3077 3078 trace_ram_discard_range(rbname, start, length); 3079 3080 rcu_read_lock(); 3081 RAMBlock *rb = qemu_ram_block_by_name(rbname); 3082 3083 if (!rb) { 3084 error_report("ram_discard_range: Failed to find block '%s'", rbname); 3085 goto err; 3086 } 3087 3088 /* 3089 * On source VM, we don't need to update the received bitmap since 3090 * we don't even have one. 3091 */ 3092 if (rb->receivedmap) { 3093 bitmap_clear(rb->receivedmap, start >> qemu_target_page_bits(), 3094 length >> qemu_target_page_bits()); 3095 } 3096 3097 ret = ram_block_discard_range(rb, start, length); 3098 3099 err: 3100 rcu_read_unlock(); 3101 3102 return ret; 3103 } 3104 3105 /* 3106 * For every allocation, we will try not to crash the VM if the 3107 * allocation failed. 3108 */ 3109 static int xbzrle_init(void) 3110 { 3111 Error *local_err = NULL; 3112 3113 if (!migrate_use_xbzrle()) { 3114 return 0; 3115 } 3116 3117 XBZRLE_cache_lock(); 3118 3119 XBZRLE.zero_target_page = g_try_malloc0(TARGET_PAGE_SIZE); 3120 if (!XBZRLE.zero_target_page) { 3121 error_report("%s: Error allocating zero page", __func__); 3122 goto err_out; 3123 } 3124 3125 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size(), 3126 TARGET_PAGE_SIZE, &local_err); 3127 if (!XBZRLE.cache) { 3128 error_report_err(local_err); 3129 goto free_zero_page; 3130 } 3131 3132 XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE); 3133 if (!XBZRLE.encoded_buf) { 3134 error_report("%s: Error allocating encoded_buf", __func__); 3135 goto free_cache; 3136 } 3137 3138 XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE); 3139 if (!XBZRLE.current_buf) { 3140 error_report("%s: Error allocating current_buf", __func__); 3141 goto free_encoded_buf; 3142 } 3143 3144 /* We are all good */ 3145 XBZRLE_cache_unlock(); 3146 return 0; 3147 3148 free_encoded_buf: 3149 g_free(XBZRLE.encoded_buf); 3150 XBZRLE.encoded_buf = NULL; 3151 free_cache: 3152 cache_fini(XBZRLE.cache); 3153 XBZRLE.cache = NULL; 3154 free_zero_page: 3155 g_free(XBZRLE.zero_target_page); 3156 XBZRLE.zero_target_page = NULL; 3157 err_out: 3158 XBZRLE_cache_unlock(); 3159 return -ENOMEM; 3160 } 3161 3162 static int ram_state_init(RAMState **rsp) 3163 { 3164 *rsp = g_try_new0(RAMState, 1); 3165 3166 if (!*rsp) { 3167 error_report("%s: Init ramstate fail", __func__); 3168 return -1; 3169 } 3170 3171 qemu_mutex_init(&(*rsp)->bitmap_mutex); 3172 qemu_mutex_init(&(*rsp)->src_page_req_mutex); 3173 QSIMPLEQ_INIT(&(*rsp)->src_page_requests); 3174 3175 /* 3176 * This must match with the initial values of dirty bitmap. 3177 * Currently we initialize the dirty bitmap to all zeros so 3178 * here the total dirty page count is zero. 3179 */ 3180 (*rsp)->migration_dirty_pages = 0; 3181 ram_state_reset(*rsp); 3182 3183 return 0; 3184 } 3185 3186 static void ram_list_init_bitmaps(void) 3187 { 3188 RAMBlock *block; 3189 unsigned long pages; 3190 3191 /* Skip setting bitmap if there is no RAM */ 3192 if (ram_bytes_total()) { 3193 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3194 pages = block->max_length >> TARGET_PAGE_BITS; 3195 /* 3196 * The initial dirty bitmap for migration must be set with all 3197 * ones to make sure we'll migrate every guest RAM page to 3198 * destination. 3199 * Here we didn't set RAMBlock.bmap simply because it is already 3200 * set in ram_list.dirty_memory[DIRTY_MEMORY_MIGRATION] in 3201 * ram_block_add, and that's where we'll sync the dirty bitmaps. 3202 * Here setting RAMBlock.bmap would be fine too but not necessary. 3203 */ 3204 block->bmap = bitmap_new(pages); 3205 if (migrate_postcopy_ram()) { 3206 block->unsentmap = bitmap_new(pages); 3207 bitmap_set(block->unsentmap, 0, pages); 3208 } 3209 } 3210 } 3211 } 3212 3213 static void ram_init_bitmaps(RAMState *rs) 3214 { 3215 /* For memory_global_dirty_log_start below. */ 3216 qemu_mutex_lock_iothread(); 3217 qemu_mutex_lock_ramlist(); 3218 rcu_read_lock(); 3219 3220 ram_list_init_bitmaps(); 3221 memory_global_dirty_log_start(); 3222 migration_bitmap_sync_precopy(rs); 3223 3224 rcu_read_unlock(); 3225 qemu_mutex_unlock_ramlist(); 3226 qemu_mutex_unlock_iothread(); 3227 } 3228 3229 static int ram_init_all(RAMState **rsp) 3230 { 3231 if (ram_state_init(rsp)) { 3232 return -1; 3233 } 3234 3235 if (xbzrle_init()) { 3236 ram_state_cleanup(rsp); 3237 return -1; 3238 } 3239 3240 ram_init_bitmaps(*rsp); 3241 3242 return 0; 3243 } 3244 3245 static void ram_state_resume_prepare(RAMState *rs, QEMUFile *out) 3246 { 3247 RAMBlock *block; 3248 uint64_t pages = 0; 3249 3250 /* 3251 * Postcopy is not using xbzrle/compression, so no need for that. 3252 * Also, since source are already halted, we don't need to care 3253 * about dirty page logging as well. 3254 */ 3255 3256 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3257 pages += bitmap_count_one(block->bmap, 3258 block->used_length >> TARGET_PAGE_BITS); 3259 } 3260 3261 /* This may not be aligned with current bitmaps. Recalculate. */ 3262 rs->migration_dirty_pages = pages; 3263 3264 rs->last_seen_block = NULL; 3265 rs->last_sent_block = NULL; 3266 rs->last_page = 0; 3267 rs->last_version = ram_list.version; 3268 /* 3269 * Disable the bulk stage, otherwise we'll resend the whole RAM no 3270 * matter what we have sent. 3271 */ 3272 rs->ram_bulk_stage = false; 3273 3274 /* Update RAMState cache of output QEMUFile */ 3275 rs->f = out; 3276 3277 trace_ram_state_resume_prepare(pages); 3278 } 3279 3280 /* 3281 * This function clears bits of the free pages reported by the caller from the 3282 * migration dirty bitmap. @addr is the host address corresponding to the 3283 * start of the continuous guest free pages, and @len is the total bytes of 3284 * those pages. 3285 */ 3286 void qemu_guest_free_page_hint(void *addr, size_t len) 3287 { 3288 RAMBlock *block; 3289 ram_addr_t offset; 3290 size_t used_len, start, npages; 3291 MigrationState *s = migrate_get_current(); 3292 3293 /* This function is currently expected to be used during live migration */ 3294 if (!migration_is_setup_or_active(s->state)) { 3295 return; 3296 } 3297 3298 for (; len > 0; len -= used_len, addr += used_len) { 3299 block = qemu_ram_block_from_host(addr, false, &offset); 3300 if (unlikely(!block || offset >= block->used_length)) { 3301 /* 3302 * The implementation might not support RAMBlock resize during 3303 * live migration, but it could happen in theory with future 3304 * updates. So we add a check here to capture that case. 3305 */ 3306 error_report_once("%s unexpected error", __func__); 3307 return; 3308 } 3309 3310 if (len <= block->used_length - offset) { 3311 used_len = len; 3312 } else { 3313 used_len = block->used_length - offset; 3314 } 3315 3316 start = offset >> TARGET_PAGE_BITS; 3317 npages = used_len >> TARGET_PAGE_BITS; 3318 3319 qemu_mutex_lock(&ram_state->bitmap_mutex); 3320 ram_state->migration_dirty_pages -= 3321 bitmap_count_one_with_offset(block->bmap, start, npages); 3322 bitmap_clear(block->bmap, start, npages); 3323 qemu_mutex_unlock(&ram_state->bitmap_mutex); 3324 } 3325 } 3326 3327 /* 3328 * Each of ram_save_setup, ram_save_iterate and ram_save_complete has 3329 * long-running RCU critical section. When rcu-reclaims in the code 3330 * start to become numerous it will be necessary to reduce the 3331 * granularity of these critical sections. 3332 */ 3333 3334 /** 3335 * ram_save_setup: Setup RAM for migration 3336 * 3337 * Returns zero to indicate success and negative for error 3338 * 3339 * @f: QEMUFile where to send the data 3340 * @opaque: RAMState pointer 3341 */ 3342 static int ram_save_setup(QEMUFile *f, void *opaque) 3343 { 3344 RAMState **rsp = opaque; 3345 RAMBlock *block; 3346 3347 if (compress_threads_save_setup()) { 3348 return -1; 3349 } 3350 3351 /* migration has already setup the bitmap, reuse it. */ 3352 if (!migration_in_colo_state()) { 3353 if (ram_init_all(rsp) != 0) { 3354 compress_threads_save_cleanup(); 3355 return -1; 3356 } 3357 } 3358 (*rsp)->f = f; 3359 3360 rcu_read_lock(); 3361 3362 qemu_put_be64(f, ram_bytes_total_common(true) | RAM_SAVE_FLAG_MEM_SIZE); 3363 3364 RAMBLOCK_FOREACH_MIGRATABLE(block) { 3365 qemu_put_byte(f, strlen(block->idstr)); 3366 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr)); 3367 qemu_put_be64(f, block->used_length); 3368 if (migrate_postcopy_ram() && block->page_size != qemu_host_page_size) { 3369 qemu_put_be64(f, block->page_size); 3370 } 3371 if (migrate_ignore_shared()) { 3372 qemu_put_be64(f, block->mr->addr); 3373 qemu_put_byte(f, ramblock_is_ignored(block) ? 1 : 0); 3374 } 3375 } 3376 3377 rcu_read_unlock(); 3378 3379 ram_control_before_iterate(f, RAM_CONTROL_SETUP); 3380 ram_control_after_iterate(f, RAM_CONTROL_SETUP); 3381 3382 multifd_send_sync_main(); 3383 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 3384 qemu_fflush(f); 3385 3386 return 0; 3387 } 3388 3389 /** 3390 * ram_save_iterate: iterative stage for migration 3391 * 3392 * Returns zero to indicate success and negative for error 3393 * 3394 * @f: QEMUFile where to send the data 3395 * @opaque: RAMState pointer 3396 */ 3397 static int ram_save_iterate(QEMUFile *f, void *opaque) 3398 { 3399 RAMState **temp = opaque; 3400 RAMState *rs = *temp; 3401 int ret; 3402 int i; 3403 int64_t t0; 3404 int done = 0; 3405 3406 if (blk_mig_bulk_active()) { 3407 /* Avoid transferring ram during bulk phase of block migration as 3408 * the bulk phase will usually take a long time and transferring 3409 * ram updates during that time is pointless. */ 3410 goto out; 3411 } 3412 3413 rcu_read_lock(); 3414 if (ram_list.version != rs->last_version) { 3415 ram_state_reset(rs); 3416 } 3417 3418 /* Read version before ram_list.blocks */ 3419 smp_rmb(); 3420 3421 ram_control_before_iterate(f, RAM_CONTROL_ROUND); 3422 3423 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 3424 i = 0; 3425 while ((ret = qemu_file_rate_limit(f)) == 0 || 3426 !QSIMPLEQ_EMPTY(&rs->src_page_requests)) { 3427 int pages; 3428 3429 if (qemu_file_get_error(f)) { 3430 break; 3431 } 3432 3433 pages = ram_find_and_save_block(rs, false); 3434 /* no more pages to sent */ 3435 if (pages == 0) { 3436 done = 1; 3437 break; 3438 } 3439 3440 if (pages < 0) { 3441 qemu_file_set_error(f, pages); 3442 break; 3443 } 3444 3445 rs->target_page_count += pages; 3446 3447 /* we want to check in the 1st loop, just in case it was the 1st time 3448 and we had to sync the dirty bitmap. 3449 qemu_clock_get_ns() is a bit expensive, so we only check each some 3450 iterations 3451 */ 3452 if ((i & 63) == 0) { 3453 uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) / 1000000; 3454 if (t1 > MAX_WAIT) { 3455 trace_ram_save_iterate_big_wait(t1, i); 3456 break; 3457 } 3458 } 3459 i++; 3460 } 3461 rcu_read_unlock(); 3462 3463 /* 3464 * Must occur before EOS (or any QEMUFile operation) 3465 * because of RDMA protocol. 3466 */ 3467 ram_control_after_iterate(f, RAM_CONTROL_ROUND); 3468 3469 multifd_send_sync_main(); 3470 out: 3471 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 3472 qemu_fflush(f); 3473 ram_counters.transferred += 8; 3474 3475 ret = qemu_file_get_error(f); 3476 if (ret < 0) { 3477 return ret; 3478 } 3479 3480 return done; 3481 } 3482 3483 /** 3484 * ram_save_complete: function called to send the remaining amount of ram 3485 * 3486 * Returns zero to indicate success or negative on error 3487 * 3488 * Called with iothread lock 3489 * 3490 * @f: QEMUFile where to send the data 3491 * @opaque: RAMState pointer 3492 */ 3493 static int ram_save_complete(QEMUFile *f, void *opaque) 3494 { 3495 RAMState **temp = opaque; 3496 RAMState *rs = *temp; 3497 int ret = 0; 3498 3499 rcu_read_lock(); 3500 3501 if (!migration_in_postcopy()) { 3502 migration_bitmap_sync_precopy(rs); 3503 } 3504 3505 ram_control_before_iterate(f, RAM_CONTROL_FINISH); 3506 3507 /* try transferring iterative blocks of memory */ 3508 3509 /* flush all remaining blocks regardless of rate limiting */ 3510 while (true) { 3511 int pages; 3512 3513 pages = ram_find_and_save_block(rs, !migration_in_colo_state()); 3514 /* no more blocks to sent */ 3515 if (pages == 0) { 3516 break; 3517 } 3518 if (pages < 0) { 3519 ret = pages; 3520 break; 3521 } 3522 } 3523 3524 flush_compressed_data(rs); 3525 ram_control_after_iterate(f, RAM_CONTROL_FINISH); 3526 3527 rcu_read_unlock(); 3528 3529 multifd_send_sync_main(); 3530 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 3531 qemu_fflush(f); 3532 3533 return ret; 3534 } 3535 3536 static void ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size, 3537 uint64_t *res_precopy_only, 3538 uint64_t *res_compatible, 3539 uint64_t *res_postcopy_only) 3540 { 3541 RAMState **temp = opaque; 3542 RAMState *rs = *temp; 3543 uint64_t remaining_size; 3544 3545 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE; 3546 3547 if (!migration_in_postcopy() && 3548 remaining_size < max_size) { 3549 qemu_mutex_lock_iothread(); 3550 rcu_read_lock(); 3551 migration_bitmap_sync_precopy(rs); 3552 rcu_read_unlock(); 3553 qemu_mutex_unlock_iothread(); 3554 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE; 3555 } 3556 3557 if (migrate_postcopy_ram()) { 3558 /* We can do postcopy, and all the data is postcopiable */ 3559 *res_compatible += remaining_size; 3560 } else { 3561 *res_precopy_only += remaining_size; 3562 } 3563 } 3564 3565 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host) 3566 { 3567 unsigned int xh_len; 3568 int xh_flags; 3569 uint8_t *loaded_data; 3570 3571 /* extract RLE header */ 3572 xh_flags = qemu_get_byte(f); 3573 xh_len = qemu_get_be16(f); 3574 3575 if (xh_flags != ENCODING_FLAG_XBZRLE) { 3576 error_report("Failed to load XBZRLE page - wrong compression!"); 3577 return -1; 3578 } 3579 3580 if (xh_len > TARGET_PAGE_SIZE) { 3581 error_report("Failed to load XBZRLE page - len overflow!"); 3582 return -1; 3583 } 3584 loaded_data = XBZRLE.decoded_buf; 3585 /* load data and decode */ 3586 /* it can change loaded_data to point to an internal buffer */ 3587 qemu_get_buffer_in_place(f, &loaded_data, xh_len); 3588 3589 /* decode RLE */ 3590 if (xbzrle_decode_buffer(loaded_data, xh_len, host, 3591 TARGET_PAGE_SIZE) == -1) { 3592 error_report("Failed to load XBZRLE page - decode error!"); 3593 return -1; 3594 } 3595 3596 return 0; 3597 } 3598 3599 /** 3600 * ram_block_from_stream: read a RAMBlock id from the migration stream 3601 * 3602 * Must be called from within a rcu critical section. 3603 * 3604 * Returns a pointer from within the RCU-protected ram_list. 3605 * 3606 * @f: QEMUFile where to read the data from 3607 * @flags: Page flags (mostly to see if it's a continuation of previous block) 3608 */ 3609 static inline RAMBlock *ram_block_from_stream(QEMUFile *f, int flags) 3610 { 3611 static RAMBlock *block = NULL; 3612 char id[256]; 3613 uint8_t len; 3614 3615 if (flags & RAM_SAVE_FLAG_CONTINUE) { 3616 if (!block) { 3617 error_report("Ack, bad migration stream!"); 3618 return NULL; 3619 } 3620 return block; 3621 } 3622 3623 len = qemu_get_byte(f); 3624 qemu_get_buffer(f, (uint8_t *)id, len); 3625 id[len] = 0; 3626 3627 block = qemu_ram_block_by_name(id); 3628 if (!block) { 3629 error_report("Can't find block %s", id); 3630 return NULL; 3631 } 3632 3633 if (ramblock_is_ignored(block)) { 3634 error_report("block %s should not be migrated !", id); 3635 return NULL; 3636 } 3637 3638 return block; 3639 } 3640 3641 static inline void *host_from_ram_block_offset(RAMBlock *block, 3642 ram_addr_t offset) 3643 { 3644 if (!offset_in_ramblock(block, offset)) { 3645 return NULL; 3646 } 3647 3648 return block->host + offset; 3649 } 3650 3651 static inline void *colo_cache_from_block_offset(RAMBlock *block, 3652 ram_addr_t offset) 3653 { 3654 if (!offset_in_ramblock(block, offset)) { 3655 return NULL; 3656 } 3657 if (!block->colo_cache) { 3658 error_report("%s: colo_cache is NULL in block :%s", 3659 __func__, block->idstr); 3660 return NULL; 3661 } 3662 3663 /* 3664 * During colo checkpoint, we need bitmap of these migrated pages. 3665 * It help us to decide which pages in ram cache should be flushed 3666 * into VM's RAM later. 3667 */ 3668 if (!test_and_set_bit(offset >> TARGET_PAGE_BITS, block->bmap)) { 3669 ram_state->migration_dirty_pages++; 3670 } 3671 return block->colo_cache + offset; 3672 } 3673 3674 /** 3675 * ram_handle_compressed: handle the zero page case 3676 * 3677 * If a page (or a whole RDMA chunk) has been 3678 * determined to be zero, then zap it. 3679 * 3680 * @host: host address for the zero page 3681 * @ch: what the page is filled from. We only support zero 3682 * @size: size of the zero page 3683 */ 3684 void ram_handle_compressed(void *host, uint8_t ch, uint64_t size) 3685 { 3686 if (ch != 0 || !is_zero_range(host, size)) { 3687 memset(host, ch, size); 3688 } 3689 } 3690 3691 /* return the size after decompression, or negative value on error */ 3692 static int 3693 qemu_uncompress_data(z_stream *stream, uint8_t *dest, size_t dest_len, 3694 const uint8_t *source, size_t source_len) 3695 { 3696 int err; 3697 3698 err = inflateReset(stream); 3699 if (err != Z_OK) { 3700 return -1; 3701 } 3702 3703 stream->avail_in = source_len; 3704 stream->next_in = (uint8_t *)source; 3705 stream->avail_out = dest_len; 3706 stream->next_out = dest; 3707 3708 err = inflate(stream, Z_NO_FLUSH); 3709 if (err != Z_STREAM_END) { 3710 return -1; 3711 } 3712 3713 return stream->total_out; 3714 } 3715 3716 static void *do_data_decompress(void *opaque) 3717 { 3718 DecompressParam *param = opaque; 3719 unsigned long pagesize; 3720 uint8_t *des; 3721 int len, ret; 3722 3723 qemu_mutex_lock(¶m->mutex); 3724 while (!param->quit) { 3725 if (param->des) { 3726 des = param->des; 3727 len = param->len; 3728 param->des = 0; 3729 qemu_mutex_unlock(¶m->mutex); 3730 3731 pagesize = TARGET_PAGE_SIZE; 3732 3733 ret = qemu_uncompress_data(¶m->stream, des, pagesize, 3734 param->compbuf, len); 3735 if (ret < 0 && migrate_get_current()->decompress_error_check) { 3736 error_report("decompress data failed"); 3737 qemu_file_set_error(decomp_file, ret); 3738 } 3739 3740 qemu_mutex_lock(&decomp_done_lock); 3741 param->done = true; 3742 qemu_cond_signal(&decomp_done_cond); 3743 qemu_mutex_unlock(&decomp_done_lock); 3744 3745 qemu_mutex_lock(¶m->mutex); 3746 } else { 3747 qemu_cond_wait(¶m->cond, ¶m->mutex); 3748 } 3749 } 3750 qemu_mutex_unlock(¶m->mutex); 3751 3752 return NULL; 3753 } 3754 3755 static int wait_for_decompress_done(void) 3756 { 3757 int idx, thread_count; 3758 3759 if (!migrate_use_compression()) { 3760 return 0; 3761 } 3762 3763 thread_count = migrate_decompress_threads(); 3764 qemu_mutex_lock(&decomp_done_lock); 3765 for (idx = 0; idx < thread_count; idx++) { 3766 while (!decomp_param[idx].done) { 3767 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock); 3768 } 3769 } 3770 qemu_mutex_unlock(&decomp_done_lock); 3771 return qemu_file_get_error(decomp_file); 3772 } 3773 3774 static void compress_threads_load_cleanup(void) 3775 { 3776 int i, thread_count; 3777 3778 if (!migrate_use_compression()) { 3779 return; 3780 } 3781 thread_count = migrate_decompress_threads(); 3782 for (i = 0; i < thread_count; i++) { 3783 /* 3784 * we use it as a indicator which shows if the thread is 3785 * properly init'd or not 3786 */ 3787 if (!decomp_param[i].compbuf) { 3788 break; 3789 } 3790 3791 qemu_mutex_lock(&decomp_param[i].mutex); 3792 decomp_param[i].quit = true; 3793 qemu_cond_signal(&decomp_param[i].cond); 3794 qemu_mutex_unlock(&decomp_param[i].mutex); 3795 } 3796 for (i = 0; i < thread_count; i++) { 3797 if (!decomp_param[i].compbuf) { 3798 break; 3799 } 3800 3801 qemu_thread_join(decompress_threads + i); 3802 qemu_mutex_destroy(&decomp_param[i].mutex); 3803 qemu_cond_destroy(&decomp_param[i].cond); 3804 inflateEnd(&decomp_param[i].stream); 3805 g_free(decomp_param[i].compbuf); 3806 decomp_param[i].compbuf = NULL; 3807 } 3808 g_free(decompress_threads); 3809 g_free(decomp_param); 3810 decompress_threads = NULL; 3811 decomp_param = NULL; 3812 decomp_file = NULL; 3813 } 3814 3815 static int compress_threads_load_setup(QEMUFile *f) 3816 { 3817 int i, thread_count; 3818 3819 if (!migrate_use_compression()) { 3820 return 0; 3821 } 3822 3823 thread_count = migrate_decompress_threads(); 3824 decompress_threads = g_new0(QemuThread, thread_count); 3825 decomp_param = g_new0(DecompressParam, thread_count); 3826 qemu_mutex_init(&decomp_done_lock); 3827 qemu_cond_init(&decomp_done_cond); 3828 decomp_file = f; 3829 for (i = 0; i < thread_count; i++) { 3830 if (inflateInit(&decomp_param[i].stream) != Z_OK) { 3831 goto exit; 3832 } 3833 3834 decomp_param[i].compbuf = g_malloc0(compressBound(TARGET_PAGE_SIZE)); 3835 qemu_mutex_init(&decomp_param[i].mutex); 3836 qemu_cond_init(&decomp_param[i].cond); 3837 decomp_param[i].done = true; 3838 decomp_param[i].quit = false; 3839 qemu_thread_create(decompress_threads + i, "decompress", 3840 do_data_decompress, decomp_param + i, 3841 QEMU_THREAD_JOINABLE); 3842 } 3843 return 0; 3844 exit: 3845 compress_threads_load_cleanup(); 3846 return -1; 3847 } 3848 3849 static void decompress_data_with_multi_threads(QEMUFile *f, 3850 void *host, int len) 3851 { 3852 int idx, thread_count; 3853 3854 thread_count = migrate_decompress_threads(); 3855 qemu_mutex_lock(&decomp_done_lock); 3856 while (true) { 3857 for (idx = 0; idx < thread_count; idx++) { 3858 if (decomp_param[idx].done) { 3859 decomp_param[idx].done = false; 3860 qemu_mutex_lock(&decomp_param[idx].mutex); 3861 qemu_get_buffer(f, decomp_param[idx].compbuf, len); 3862 decomp_param[idx].des = host; 3863 decomp_param[idx].len = len; 3864 qemu_cond_signal(&decomp_param[idx].cond); 3865 qemu_mutex_unlock(&decomp_param[idx].mutex); 3866 break; 3867 } 3868 } 3869 if (idx < thread_count) { 3870 break; 3871 } else { 3872 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock); 3873 } 3874 } 3875 qemu_mutex_unlock(&decomp_done_lock); 3876 } 3877 3878 /* 3879 * colo cache: this is for secondary VM, we cache the whole 3880 * memory of the secondary VM, it is need to hold the global lock 3881 * to call this helper. 3882 */ 3883 int colo_init_ram_cache(void) 3884 { 3885 RAMBlock *block; 3886 3887 rcu_read_lock(); 3888 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3889 block->colo_cache = qemu_anon_ram_alloc(block->used_length, 3890 NULL, 3891 false); 3892 if (!block->colo_cache) { 3893 error_report("%s: Can't alloc memory for COLO cache of block %s," 3894 "size 0x" RAM_ADDR_FMT, __func__, block->idstr, 3895 block->used_length); 3896 goto out_locked; 3897 } 3898 memcpy(block->colo_cache, block->host, block->used_length); 3899 } 3900 rcu_read_unlock(); 3901 /* 3902 * Record the dirty pages that sent by PVM, we use this dirty bitmap together 3903 * with to decide which page in cache should be flushed into SVM's RAM. Here 3904 * we use the same name 'ram_bitmap' as for migration. 3905 */ 3906 if (ram_bytes_total()) { 3907 RAMBlock *block; 3908 3909 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3910 unsigned long pages = block->max_length >> TARGET_PAGE_BITS; 3911 3912 block->bmap = bitmap_new(pages); 3913 bitmap_set(block->bmap, 0, pages); 3914 } 3915 } 3916 ram_state = g_new0(RAMState, 1); 3917 ram_state->migration_dirty_pages = 0; 3918 qemu_mutex_init(&ram_state->bitmap_mutex); 3919 memory_global_dirty_log_start(); 3920 3921 return 0; 3922 3923 out_locked: 3924 3925 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3926 if (block->colo_cache) { 3927 qemu_anon_ram_free(block->colo_cache, block->used_length); 3928 block->colo_cache = NULL; 3929 } 3930 } 3931 3932 rcu_read_unlock(); 3933 return -errno; 3934 } 3935 3936 /* It is need to hold the global lock to call this helper */ 3937 void colo_release_ram_cache(void) 3938 { 3939 RAMBlock *block; 3940 3941 memory_global_dirty_log_stop(); 3942 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3943 g_free(block->bmap); 3944 block->bmap = NULL; 3945 } 3946 3947 rcu_read_lock(); 3948 3949 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3950 if (block->colo_cache) { 3951 qemu_anon_ram_free(block->colo_cache, block->used_length); 3952 block->colo_cache = NULL; 3953 } 3954 } 3955 3956 rcu_read_unlock(); 3957 qemu_mutex_destroy(&ram_state->bitmap_mutex); 3958 g_free(ram_state); 3959 ram_state = NULL; 3960 } 3961 3962 /** 3963 * ram_load_setup: Setup RAM for migration incoming side 3964 * 3965 * Returns zero to indicate success and negative for error 3966 * 3967 * @f: QEMUFile where to receive the data 3968 * @opaque: RAMState pointer 3969 */ 3970 static int ram_load_setup(QEMUFile *f, void *opaque) 3971 { 3972 if (compress_threads_load_setup(f)) { 3973 return -1; 3974 } 3975 3976 xbzrle_load_setup(); 3977 ramblock_recv_map_init(); 3978 3979 return 0; 3980 } 3981 3982 static int ram_load_cleanup(void *opaque) 3983 { 3984 RAMBlock *rb; 3985 3986 RAMBLOCK_FOREACH_NOT_IGNORED(rb) { 3987 if (ramblock_is_pmem(rb)) { 3988 pmem_persist(rb->host, rb->used_length); 3989 } 3990 } 3991 3992 xbzrle_load_cleanup(); 3993 compress_threads_load_cleanup(); 3994 3995 RAMBLOCK_FOREACH_NOT_IGNORED(rb) { 3996 g_free(rb->receivedmap); 3997 rb->receivedmap = NULL; 3998 } 3999 4000 return 0; 4001 } 4002 4003 /** 4004 * ram_postcopy_incoming_init: allocate postcopy data structures 4005 * 4006 * Returns 0 for success and negative if there was one error 4007 * 4008 * @mis: current migration incoming state 4009 * 4010 * Allocate data structures etc needed by incoming migration with 4011 * postcopy-ram. postcopy-ram's similarly names 4012 * postcopy_ram_incoming_init does the work. 4013 */ 4014 int ram_postcopy_incoming_init(MigrationIncomingState *mis) 4015 { 4016 return postcopy_ram_incoming_init(mis); 4017 } 4018 4019 /** 4020 * ram_load_postcopy: load a page in postcopy case 4021 * 4022 * Returns 0 for success or -errno in case of error 4023 * 4024 * Called in postcopy mode by ram_load(). 4025 * rcu_read_lock is taken prior to this being called. 4026 * 4027 * @f: QEMUFile where to send the data 4028 */ 4029 static int ram_load_postcopy(QEMUFile *f) 4030 { 4031 int flags = 0, ret = 0; 4032 bool place_needed = false; 4033 bool matches_target_page_size = false; 4034 MigrationIncomingState *mis = migration_incoming_get_current(); 4035 /* Temporary page that is later 'placed' */ 4036 void *postcopy_host_page = postcopy_get_tmp_page(mis); 4037 void *last_host = NULL; 4038 bool all_zero = false; 4039 4040 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) { 4041 ram_addr_t addr; 4042 void *host = NULL; 4043 void *page_buffer = NULL; 4044 void *place_source = NULL; 4045 RAMBlock *block = NULL; 4046 uint8_t ch; 4047 4048 addr = qemu_get_be64(f); 4049 4050 /* 4051 * If qemu file error, we should stop here, and then "addr" 4052 * may be invalid 4053 */ 4054 ret = qemu_file_get_error(f); 4055 if (ret) { 4056 break; 4057 } 4058 4059 flags = addr & ~TARGET_PAGE_MASK; 4060 addr &= TARGET_PAGE_MASK; 4061 4062 trace_ram_load_postcopy_loop((uint64_t)addr, flags); 4063 place_needed = false; 4064 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE)) { 4065 block = ram_block_from_stream(f, flags); 4066 4067 host = host_from_ram_block_offset(block, addr); 4068 if (!host) { 4069 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr); 4070 ret = -EINVAL; 4071 break; 4072 } 4073 matches_target_page_size = block->page_size == TARGET_PAGE_SIZE; 4074 /* 4075 * Postcopy requires that we place whole host pages atomically; 4076 * these may be huge pages for RAMBlocks that are backed by 4077 * hugetlbfs. 4078 * To make it atomic, the data is read into a temporary page 4079 * that's moved into place later. 4080 * The migration protocol uses, possibly smaller, target-pages 4081 * however the source ensures it always sends all the components 4082 * of a host page in order. 4083 */ 4084 page_buffer = postcopy_host_page + 4085 ((uintptr_t)host & (block->page_size - 1)); 4086 /* If all TP are zero then we can optimise the place */ 4087 if (!((uintptr_t)host & (block->page_size - 1))) { 4088 all_zero = true; 4089 } else { 4090 /* not the 1st TP within the HP */ 4091 if (host != (last_host + TARGET_PAGE_SIZE)) { 4092 error_report("Non-sequential target page %p/%p", 4093 host, last_host); 4094 ret = -EINVAL; 4095 break; 4096 } 4097 } 4098 4099 4100 /* 4101 * If it's the last part of a host page then we place the host 4102 * page 4103 */ 4104 place_needed = (((uintptr_t)host + TARGET_PAGE_SIZE) & 4105 (block->page_size - 1)) == 0; 4106 place_source = postcopy_host_page; 4107 } 4108 last_host = host; 4109 4110 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) { 4111 case RAM_SAVE_FLAG_ZERO: 4112 ch = qemu_get_byte(f); 4113 memset(page_buffer, ch, TARGET_PAGE_SIZE); 4114 if (ch) { 4115 all_zero = false; 4116 } 4117 break; 4118 4119 case RAM_SAVE_FLAG_PAGE: 4120 all_zero = false; 4121 if (!matches_target_page_size) { 4122 /* For huge pages, we always use temporary buffer */ 4123 qemu_get_buffer(f, page_buffer, TARGET_PAGE_SIZE); 4124 } else { 4125 /* 4126 * For small pages that matches target page size, we 4127 * avoid the qemu_file copy. Instead we directly use 4128 * the buffer of QEMUFile to place the page. Note: we 4129 * cannot do any QEMUFile operation before using that 4130 * buffer to make sure the buffer is valid when 4131 * placing the page. 4132 */ 4133 qemu_get_buffer_in_place(f, (uint8_t **)&place_source, 4134 TARGET_PAGE_SIZE); 4135 } 4136 break; 4137 case RAM_SAVE_FLAG_EOS: 4138 /* normal exit */ 4139 multifd_recv_sync_main(); 4140 break; 4141 default: 4142 error_report("Unknown combination of migration flags: %#x" 4143 " (postcopy mode)", flags); 4144 ret = -EINVAL; 4145 break; 4146 } 4147 4148 /* Detect for any possible file errors */ 4149 if (!ret && qemu_file_get_error(f)) { 4150 ret = qemu_file_get_error(f); 4151 } 4152 4153 if (!ret && place_needed) { 4154 /* This gets called at the last target page in the host page */ 4155 void *place_dest = host + TARGET_PAGE_SIZE - block->page_size; 4156 4157 if (all_zero) { 4158 ret = postcopy_place_page_zero(mis, place_dest, 4159 block); 4160 } else { 4161 ret = postcopy_place_page(mis, place_dest, 4162 place_source, block); 4163 } 4164 } 4165 } 4166 4167 return ret; 4168 } 4169 4170 static bool postcopy_is_advised(void) 4171 { 4172 PostcopyState ps = postcopy_state_get(); 4173 return ps >= POSTCOPY_INCOMING_ADVISE && ps < POSTCOPY_INCOMING_END; 4174 } 4175 4176 static bool postcopy_is_running(void) 4177 { 4178 PostcopyState ps = postcopy_state_get(); 4179 return ps >= POSTCOPY_INCOMING_LISTENING && ps < POSTCOPY_INCOMING_END; 4180 } 4181 4182 /* 4183 * Flush content of RAM cache into SVM's memory. 4184 * Only flush the pages that be dirtied by PVM or SVM or both. 4185 */ 4186 static void colo_flush_ram_cache(void) 4187 { 4188 RAMBlock *block = NULL; 4189 void *dst_host; 4190 void *src_host; 4191 unsigned long offset = 0; 4192 4193 memory_global_dirty_log_sync(); 4194 rcu_read_lock(); 4195 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 4196 migration_bitmap_sync_range(ram_state, block, block->used_length); 4197 } 4198 rcu_read_unlock(); 4199 4200 trace_colo_flush_ram_cache_begin(ram_state->migration_dirty_pages); 4201 rcu_read_lock(); 4202 block = QLIST_FIRST_RCU(&ram_list.blocks); 4203 4204 while (block) { 4205 offset = migration_bitmap_find_dirty(ram_state, block, offset); 4206 4207 if (offset << TARGET_PAGE_BITS >= block->used_length) { 4208 offset = 0; 4209 block = QLIST_NEXT_RCU(block, next); 4210 } else { 4211 migration_bitmap_clear_dirty(ram_state, block, offset); 4212 dst_host = block->host + (offset << TARGET_PAGE_BITS); 4213 src_host = block->colo_cache + (offset << TARGET_PAGE_BITS); 4214 memcpy(dst_host, src_host, TARGET_PAGE_SIZE); 4215 } 4216 } 4217 4218 rcu_read_unlock(); 4219 trace_colo_flush_ram_cache_end(); 4220 } 4221 4222 static int ram_load(QEMUFile *f, void *opaque, int version_id) 4223 { 4224 int flags = 0, ret = 0, invalid_flags = 0; 4225 static uint64_t seq_iter; 4226 int len = 0; 4227 /* 4228 * If system is running in postcopy mode, page inserts to host memory must 4229 * be atomic 4230 */ 4231 bool postcopy_running = postcopy_is_running(); 4232 /* ADVISE is earlier, it shows the source has the postcopy capability on */ 4233 bool postcopy_advised = postcopy_is_advised(); 4234 4235 seq_iter++; 4236 4237 if (version_id != 4) { 4238 ret = -EINVAL; 4239 } 4240 4241 if (!migrate_use_compression()) { 4242 invalid_flags |= RAM_SAVE_FLAG_COMPRESS_PAGE; 4243 } 4244 /* This RCU critical section can be very long running. 4245 * When RCU reclaims in the code start to become numerous, 4246 * it will be necessary to reduce the granularity of this 4247 * critical section. 4248 */ 4249 rcu_read_lock(); 4250 4251 if (postcopy_running) { 4252 ret = ram_load_postcopy(f); 4253 } 4254 4255 while (!postcopy_running && !ret && !(flags & RAM_SAVE_FLAG_EOS)) { 4256 ram_addr_t addr, total_ram_bytes; 4257 void *host = NULL; 4258 uint8_t ch; 4259 4260 addr = qemu_get_be64(f); 4261 flags = addr & ~TARGET_PAGE_MASK; 4262 addr &= TARGET_PAGE_MASK; 4263 4264 if (flags & invalid_flags) { 4265 if (flags & invalid_flags & RAM_SAVE_FLAG_COMPRESS_PAGE) { 4266 error_report("Received an unexpected compressed page"); 4267 } 4268 4269 ret = -EINVAL; 4270 break; 4271 } 4272 4273 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE | 4274 RAM_SAVE_FLAG_COMPRESS_PAGE | RAM_SAVE_FLAG_XBZRLE)) { 4275 RAMBlock *block = ram_block_from_stream(f, flags); 4276 4277 /* 4278 * After going into COLO, we should load the Page into colo_cache. 4279 */ 4280 if (migration_incoming_in_colo_state()) { 4281 host = colo_cache_from_block_offset(block, addr); 4282 } else { 4283 host = host_from_ram_block_offset(block, addr); 4284 } 4285 if (!host) { 4286 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr); 4287 ret = -EINVAL; 4288 break; 4289 } 4290 4291 if (!migration_incoming_in_colo_state()) { 4292 ramblock_recv_bitmap_set(block, host); 4293 } 4294 4295 trace_ram_load_loop(block->idstr, (uint64_t)addr, flags, host); 4296 } 4297 4298 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) { 4299 case RAM_SAVE_FLAG_MEM_SIZE: 4300 /* Synchronize RAM block list */ 4301 total_ram_bytes = addr; 4302 while (!ret && total_ram_bytes) { 4303 RAMBlock *block; 4304 char id[256]; 4305 ram_addr_t length; 4306 4307 len = qemu_get_byte(f); 4308 qemu_get_buffer(f, (uint8_t *)id, len); 4309 id[len] = 0; 4310 length = qemu_get_be64(f); 4311 4312 block = qemu_ram_block_by_name(id); 4313 if (block && !qemu_ram_is_migratable(block)) { 4314 error_report("block %s should not be migrated !", id); 4315 ret = -EINVAL; 4316 } else if (block) { 4317 if (length != block->used_length) { 4318 Error *local_err = NULL; 4319 4320 ret = qemu_ram_resize(block, length, 4321 &local_err); 4322 if (local_err) { 4323 error_report_err(local_err); 4324 } 4325 } 4326 /* For postcopy we need to check hugepage sizes match */ 4327 if (postcopy_advised && 4328 block->page_size != qemu_host_page_size) { 4329 uint64_t remote_page_size = qemu_get_be64(f); 4330 if (remote_page_size != block->page_size) { 4331 error_report("Mismatched RAM page size %s " 4332 "(local) %zd != %" PRId64, 4333 id, block->page_size, 4334 remote_page_size); 4335 ret = -EINVAL; 4336 } 4337 } 4338 if (migrate_ignore_shared()) { 4339 hwaddr addr = qemu_get_be64(f); 4340 bool ignored = qemu_get_byte(f); 4341 if (ignored != ramblock_is_ignored(block)) { 4342 error_report("RAM block %s should %s be migrated", 4343 id, ignored ? "" : "not"); 4344 ret = -EINVAL; 4345 } 4346 if (ramblock_is_ignored(block) && 4347 block->mr->addr != addr) { 4348 error_report("Mismatched GPAs for block %s " 4349 "%" PRId64 "!= %" PRId64, 4350 id, (uint64_t)addr, 4351 (uint64_t)block->mr->addr); 4352 ret = -EINVAL; 4353 } 4354 } 4355 ram_control_load_hook(f, RAM_CONTROL_BLOCK_REG, 4356 block->idstr); 4357 } else { 4358 error_report("Unknown ramblock \"%s\", cannot " 4359 "accept migration", id); 4360 ret = -EINVAL; 4361 } 4362 4363 total_ram_bytes -= length; 4364 } 4365 break; 4366 4367 case RAM_SAVE_FLAG_ZERO: 4368 ch = qemu_get_byte(f); 4369 ram_handle_compressed(host, ch, TARGET_PAGE_SIZE); 4370 break; 4371 4372 case RAM_SAVE_FLAG_PAGE: 4373 qemu_get_buffer(f, host, TARGET_PAGE_SIZE); 4374 break; 4375 4376 case RAM_SAVE_FLAG_COMPRESS_PAGE: 4377 len = qemu_get_be32(f); 4378 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) { 4379 error_report("Invalid compressed data length: %d", len); 4380 ret = -EINVAL; 4381 break; 4382 } 4383 decompress_data_with_multi_threads(f, host, len); 4384 break; 4385 4386 case RAM_SAVE_FLAG_XBZRLE: 4387 if (load_xbzrle(f, addr, host) < 0) { 4388 error_report("Failed to decompress XBZRLE page at " 4389 RAM_ADDR_FMT, addr); 4390 ret = -EINVAL; 4391 break; 4392 } 4393 break; 4394 case RAM_SAVE_FLAG_EOS: 4395 /* normal exit */ 4396 multifd_recv_sync_main(); 4397 break; 4398 default: 4399 if (flags & RAM_SAVE_FLAG_HOOK) { 4400 ram_control_load_hook(f, RAM_CONTROL_HOOK, NULL); 4401 } else { 4402 error_report("Unknown combination of migration flags: %#x", 4403 flags); 4404 ret = -EINVAL; 4405 } 4406 } 4407 if (!ret) { 4408 ret = qemu_file_get_error(f); 4409 } 4410 } 4411 4412 ret |= wait_for_decompress_done(); 4413 rcu_read_unlock(); 4414 trace_ram_load_complete(ret, seq_iter); 4415 4416 if (!ret && migration_incoming_in_colo_state()) { 4417 colo_flush_ram_cache(); 4418 } 4419 return ret; 4420 } 4421 4422 static bool ram_has_postcopy(void *opaque) 4423 { 4424 RAMBlock *rb; 4425 RAMBLOCK_FOREACH_NOT_IGNORED(rb) { 4426 if (ramblock_is_pmem(rb)) { 4427 info_report("Block: %s, host: %p is a nvdimm memory, postcopy" 4428 "is not supported now!", rb->idstr, rb->host); 4429 return false; 4430 } 4431 } 4432 4433 return migrate_postcopy_ram(); 4434 } 4435 4436 /* Sync all the dirty bitmap with destination VM. */ 4437 static int ram_dirty_bitmap_sync_all(MigrationState *s, RAMState *rs) 4438 { 4439 RAMBlock *block; 4440 QEMUFile *file = s->to_dst_file; 4441 int ramblock_count = 0; 4442 4443 trace_ram_dirty_bitmap_sync_start(); 4444 4445 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 4446 qemu_savevm_send_recv_bitmap(file, block->idstr); 4447 trace_ram_dirty_bitmap_request(block->idstr); 4448 ramblock_count++; 4449 } 4450 4451 trace_ram_dirty_bitmap_sync_wait(); 4452 4453 /* Wait until all the ramblocks' dirty bitmap synced */ 4454 while (ramblock_count--) { 4455 qemu_sem_wait(&s->rp_state.rp_sem); 4456 } 4457 4458 trace_ram_dirty_bitmap_sync_complete(); 4459 4460 return 0; 4461 } 4462 4463 static void ram_dirty_bitmap_reload_notify(MigrationState *s) 4464 { 4465 qemu_sem_post(&s->rp_state.rp_sem); 4466 } 4467 4468 /* 4469 * Read the received bitmap, revert it as the initial dirty bitmap. 4470 * This is only used when the postcopy migration is paused but wants 4471 * to resume from a middle point. 4472 */ 4473 int ram_dirty_bitmap_reload(MigrationState *s, RAMBlock *block) 4474 { 4475 int ret = -EINVAL; 4476 QEMUFile *file = s->rp_state.from_dst_file; 4477 unsigned long *le_bitmap, nbits = block->used_length >> TARGET_PAGE_BITS; 4478 uint64_t local_size = DIV_ROUND_UP(nbits, 8); 4479 uint64_t size, end_mark; 4480 4481 trace_ram_dirty_bitmap_reload_begin(block->idstr); 4482 4483 if (s->state != MIGRATION_STATUS_POSTCOPY_RECOVER) { 4484 error_report("%s: incorrect state %s", __func__, 4485 MigrationStatus_str(s->state)); 4486 return -EINVAL; 4487 } 4488 4489 /* 4490 * Note: see comments in ramblock_recv_bitmap_send() on why we 4491 * need the endianess convertion, and the paddings. 4492 */ 4493 local_size = ROUND_UP(local_size, 8); 4494 4495 /* Add paddings */ 4496 le_bitmap = bitmap_new(nbits + BITS_PER_LONG); 4497 4498 size = qemu_get_be64(file); 4499 4500 /* The size of the bitmap should match with our ramblock */ 4501 if (size != local_size) { 4502 error_report("%s: ramblock '%s' bitmap size mismatch " 4503 "(0x%"PRIx64" != 0x%"PRIx64")", __func__, 4504 block->idstr, size, local_size); 4505 ret = -EINVAL; 4506 goto out; 4507 } 4508 4509 size = qemu_get_buffer(file, (uint8_t *)le_bitmap, local_size); 4510 end_mark = qemu_get_be64(file); 4511 4512 ret = qemu_file_get_error(file); 4513 if (ret || size != local_size) { 4514 error_report("%s: read bitmap failed for ramblock '%s': %d" 4515 " (size 0x%"PRIx64", got: 0x%"PRIx64")", 4516 __func__, block->idstr, ret, local_size, size); 4517 ret = -EIO; 4518 goto out; 4519 } 4520 4521 if (end_mark != RAMBLOCK_RECV_BITMAP_ENDING) { 4522 error_report("%s: ramblock '%s' end mark incorrect: 0x%"PRIu64, 4523 __func__, block->idstr, end_mark); 4524 ret = -EINVAL; 4525 goto out; 4526 } 4527 4528 /* 4529 * Endianess convertion. We are during postcopy (though paused). 4530 * The dirty bitmap won't change. We can directly modify it. 4531 */ 4532 bitmap_from_le(block->bmap, le_bitmap, nbits); 4533 4534 /* 4535 * What we received is "received bitmap". Revert it as the initial 4536 * dirty bitmap for this ramblock. 4537 */ 4538 bitmap_complement(block->bmap, block->bmap, nbits); 4539 4540 trace_ram_dirty_bitmap_reload_complete(block->idstr); 4541 4542 /* 4543 * We succeeded to sync bitmap for current ramblock. If this is 4544 * the last one to sync, we need to notify the main send thread. 4545 */ 4546 ram_dirty_bitmap_reload_notify(s); 4547 4548 ret = 0; 4549 out: 4550 g_free(le_bitmap); 4551 return ret; 4552 } 4553 4554 static int ram_resume_prepare(MigrationState *s, void *opaque) 4555 { 4556 RAMState *rs = *(RAMState **)opaque; 4557 int ret; 4558 4559 ret = ram_dirty_bitmap_sync_all(s, rs); 4560 if (ret) { 4561 return ret; 4562 } 4563 4564 ram_state_resume_prepare(rs, s->to_dst_file); 4565 4566 return 0; 4567 } 4568 4569 static SaveVMHandlers savevm_ram_handlers = { 4570 .save_setup = ram_save_setup, 4571 .save_live_iterate = ram_save_iterate, 4572 .save_live_complete_postcopy = ram_save_complete, 4573 .save_live_complete_precopy = ram_save_complete, 4574 .has_postcopy = ram_has_postcopy, 4575 .save_live_pending = ram_save_pending, 4576 .load_state = ram_load, 4577 .save_cleanup = ram_save_cleanup, 4578 .load_setup = ram_load_setup, 4579 .load_cleanup = ram_load_cleanup, 4580 .resume_prepare = ram_resume_prepare, 4581 }; 4582 4583 void ram_mig_init(void) 4584 { 4585 qemu_mutex_init(&XBZRLE.lock); 4586 register_savevm_live(NULL, "ram", 0, 4, &savevm_ram_handlers, &ram_state); 4587 } 4588