1 /* 2 * QEMU System Emulator 3 * 4 * Copyright (c) 2003-2008 Fabrice Bellard 5 * Copyright (c) 2011-2015 Red Hat Inc 6 * 7 * Authors: 8 * Juan Quintela <quintela@redhat.com> 9 * 10 * Permission is hereby granted, free of charge, to any person obtaining a copy 11 * of this software and associated documentation files (the "Software"), to deal 12 * in the Software without restriction, including without limitation the rights 13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 14 * copies of the Software, and to permit persons to whom the Software is 15 * furnished to do so, subject to the following conditions: 16 * 17 * The above copyright notice and this permission notice shall be included in 18 * all copies or substantial portions of the Software. 19 * 20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 26 * THE SOFTWARE. 27 */ 28 29 #include "qemu/osdep.h" 30 #include "qemu/cutils.h" 31 #include "qemu/bitops.h" 32 #include "qemu/bitmap.h" 33 #include "qemu/madvise.h" 34 #include "qemu/main-loop.h" 35 #include "xbzrle.h" 36 #include "ram.h" 37 #include "migration.h" 38 #include "migration-stats.h" 39 #include "migration/register.h" 40 #include "migration/misc.h" 41 #include "qemu-file.h" 42 #include "postcopy-ram.h" 43 #include "page_cache.h" 44 #include "qemu/error-report.h" 45 #include "qapi/error.h" 46 #include "qapi/qapi-types-migration.h" 47 #include "qapi/qapi-events-migration.h" 48 #include "qapi/qapi-commands-migration.h" 49 #include "qapi/qmp/qerror.h" 50 #include "trace.h" 51 #include "system/ram_addr.h" 52 #include "exec/target_page.h" 53 #include "qemu/rcu_queue.h" 54 #include "migration/colo.h" 55 #include "system/cpu-throttle.h" 56 #include "savevm.h" 57 #include "qemu/iov.h" 58 #include "multifd.h" 59 #include "system/runstate.h" 60 #include "rdma.h" 61 #include "options.h" 62 #include "system/dirtylimit.h" 63 #include "system/kvm.h" 64 65 #include "hw/boards.h" /* for machine_dump_guest_core() */ 66 67 #if defined(__linux__) 68 #include "qemu/userfaultfd.h" 69 #endif /* defined(__linux__) */ 70 71 /***********************************************************/ 72 /* ram save/restore */ 73 74 /* 75 * mapped-ram migration supports O_DIRECT, so we need to make sure the 76 * userspace buffer, the IO operation size and the file offset are 77 * aligned according to the underlying device's block size. The first 78 * two are already aligned to page size, but we need to add padding to 79 * the file to align the offset. We cannot read the block size 80 * dynamically because the migration file can be moved between 81 * different systems, so use 1M to cover most block sizes and to keep 82 * the file offset aligned at page size as well. 83 */ 84 #define MAPPED_RAM_FILE_OFFSET_ALIGNMENT 0x100000 85 86 /* 87 * When doing mapped-ram migration, this is the amount we read from 88 * the pages region in the migration file at a time. 89 */ 90 #define MAPPED_RAM_LOAD_BUF_SIZE 0x100000 91 92 XBZRLECacheStats xbzrle_counters; 93 94 /* 95 * This structure locates a specific location of a guest page. In QEMU, 96 * it's described in a tuple of (ramblock, offset). 97 */ 98 struct PageLocation { 99 RAMBlock *block; 100 unsigned long offset; 101 }; 102 typedef struct PageLocation PageLocation; 103 104 /** 105 * PageLocationHint: describes a hint to a page location 106 * 107 * @valid set if the hint is vaild and to be consumed 108 * @location: the hint content 109 * 110 * In postcopy preempt mode, the urgent channel may provide hints to the 111 * background channel, so that QEMU source can try to migrate whatever is 112 * right after the requested urgent pages. 113 * 114 * This is based on the assumption that the VM (already running on the 115 * destination side) tends to access the memory with spatial locality. 116 * This is also the default behavior of vanilla postcopy (preempt off). 117 */ 118 struct PageLocationHint { 119 bool valid; 120 PageLocation location; 121 }; 122 typedef struct PageLocationHint PageLocationHint; 123 124 /* used by the search for pages to send */ 125 struct PageSearchStatus { 126 /* The migration channel used for a specific host page */ 127 QEMUFile *pss_channel; 128 /* Last block from where we have sent data */ 129 RAMBlock *last_sent_block; 130 /* Current block being searched */ 131 RAMBlock *block; 132 /* Current page to search from */ 133 unsigned long page; 134 /* Set once we wrap around */ 135 bool complete_round; 136 /* Whether we're sending a host page */ 137 bool host_page_sending; 138 /* The start/end of current host page. Invalid if host_page_sending==false */ 139 unsigned long host_page_start; 140 unsigned long host_page_end; 141 }; 142 typedef struct PageSearchStatus PageSearchStatus; 143 144 /* struct contains XBZRLE cache and a static page 145 used by the compression */ 146 static struct { 147 /* buffer used for XBZRLE encoding */ 148 uint8_t *encoded_buf; 149 /* buffer for storing page content */ 150 uint8_t *current_buf; 151 /* Cache for XBZRLE, Protected by lock. */ 152 PageCache *cache; 153 QemuMutex lock; 154 /* it will store a page full of zeros */ 155 uint8_t *zero_target_page; 156 /* buffer used for XBZRLE decoding */ 157 uint8_t *decoded_buf; 158 } XBZRLE; 159 160 static void XBZRLE_cache_lock(void) 161 { 162 if (migrate_xbzrle()) { 163 qemu_mutex_lock(&XBZRLE.lock); 164 } 165 } 166 167 static void XBZRLE_cache_unlock(void) 168 { 169 if (migrate_xbzrle()) { 170 qemu_mutex_unlock(&XBZRLE.lock); 171 } 172 } 173 174 /** 175 * xbzrle_cache_resize: resize the xbzrle cache 176 * 177 * This function is called from migrate_params_apply in main 178 * thread, possibly while a migration is in progress. A running 179 * migration may be using the cache and might finish during this call, 180 * hence changes to the cache are protected by XBZRLE.lock(). 181 * 182 * Returns 0 for success or -1 for error 183 * 184 * @new_size: new cache size 185 * @errp: set *errp if the check failed, with reason 186 */ 187 int xbzrle_cache_resize(uint64_t new_size, Error **errp) 188 { 189 PageCache *new_cache; 190 int64_t ret = 0; 191 192 /* Check for truncation */ 193 if (new_size != (size_t)new_size) { 194 error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cache size", 195 "exceeding address space"); 196 return -1; 197 } 198 199 if (new_size == migrate_xbzrle_cache_size()) { 200 /* nothing to do */ 201 return 0; 202 } 203 204 XBZRLE_cache_lock(); 205 206 if (XBZRLE.cache != NULL) { 207 new_cache = cache_init(new_size, TARGET_PAGE_SIZE, errp); 208 if (!new_cache) { 209 ret = -1; 210 goto out; 211 } 212 213 cache_fini(XBZRLE.cache); 214 XBZRLE.cache = new_cache; 215 } 216 out: 217 XBZRLE_cache_unlock(); 218 return ret; 219 } 220 221 static bool postcopy_preempt_active(void) 222 { 223 return migrate_postcopy_preempt() && migration_in_postcopy(); 224 } 225 226 bool migrate_ram_is_ignored(RAMBlock *block) 227 { 228 MigMode mode = migrate_mode(); 229 return !qemu_ram_is_migratable(block) || 230 mode == MIG_MODE_CPR_TRANSFER || 231 (migrate_ignore_shared() && qemu_ram_is_shared(block) 232 && qemu_ram_is_named_file(block)); 233 } 234 235 #undef RAMBLOCK_FOREACH 236 237 int foreach_not_ignored_block(RAMBlockIterFunc func, void *opaque) 238 { 239 RAMBlock *block; 240 int ret = 0; 241 242 RCU_READ_LOCK_GUARD(); 243 244 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 245 ret = func(block, opaque); 246 if (ret) { 247 break; 248 } 249 } 250 return ret; 251 } 252 253 static void ramblock_recv_map_init(void) 254 { 255 RAMBlock *rb; 256 257 RAMBLOCK_FOREACH_NOT_IGNORED(rb) { 258 assert(!rb->receivedmap); 259 rb->receivedmap = bitmap_new(rb->max_length >> qemu_target_page_bits()); 260 } 261 } 262 263 int ramblock_recv_bitmap_test(RAMBlock *rb, void *host_addr) 264 { 265 return test_bit(ramblock_recv_bitmap_offset(host_addr, rb), 266 rb->receivedmap); 267 } 268 269 bool ramblock_recv_bitmap_test_byte_offset(RAMBlock *rb, uint64_t byte_offset) 270 { 271 return test_bit(byte_offset >> TARGET_PAGE_BITS, rb->receivedmap); 272 } 273 274 void ramblock_recv_bitmap_set(RAMBlock *rb, void *host_addr) 275 { 276 set_bit_atomic(ramblock_recv_bitmap_offset(host_addr, rb), rb->receivedmap); 277 } 278 279 void ramblock_recv_bitmap_set_range(RAMBlock *rb, void *host_addr, 280 size_t nr) 281 { 282 bitmap_set_atomic(rb->receivedmap, 283 ramblock_recv_bitmap_offset(host_addr, rb), 284 nr); 285 } 286 287 void ramblock_recv_bitmap_set_offset(RAMBlock *rb, uint64_t byte_offset) 288 { 289 set_bit_atomic(byte_offset >> TARGET_PAGE_BITS, rb->receivedmap); 290 } 291 #define RAMBLOCK_RECV_BITMAP_ENDING (0x0123456789abcdefULL) 292 293 /* 294 * Format: bitmap_size (8 bytes) + whole_bitmap (N bytes). 295 * 296 * Returns >0 if success with sent bytes, or <0 if error. 297 */ 298 int64_t ramblock_recv_bitmap_send(QEMUFile *file, 299 const char *block_name) 300 { 301 RAMBlock *block = qemu_ram_block_by_name(block_name); 302 unsigned long *le_bitmap, nbits; 303 uint64_t size; 304 305 if (!block) { 306 error_report("%s: invalid block name: %s", __func__, block_name); 307 return -1; 308 } 309 310 nbits = block->postcopy_length >> TARGET_PAGE_BITS; 311 312 /* 313 * Make sure the tmp bitmap buffer is big enough, e.g., on 32bit 314 * machines we may need 4 more bytes for padding (see below 315 * comment). So extend it a bit before hand. 316 */ 317 le_bitmap = bitmap_new(nbits + BITS_PER_LONG); 318 319 /* 320 * Always use little endian when sending the bitmap. This is 321 * required that when source and destination VMs are not using the 322 * same endianness. (Note: big endian won't work.) 323 */ 324 bitmap_to_le(le_bitmap, block->receivedmap, nbits); 325 326 /* Size of the bitmap, in bytes */ 327 size = DIV_ROUND_UP(nbits, 8); 328 329 /* 330 * size is always aligned to 8 bytes for 64bit machines, but it 331 * may not be true for 32bit machines. We need this padding to 332 * make sure the migration can survive even between 32bit and 333 * 64bit machines. 334 */ 335 size = ROUND_UP(size, 8); 336 337 qemu_put_be64(file, size); 338 qemu_put_buffer(file, (const uint8_t *)le_bitmap, size); 339 g_free(le_bitmap); 340 /* 341 * Mark as an end, in case the middle part is screwed up due to 342 * some "mysterious" reason. 343 */ 344 qemu_put_be64(file, RAMBLOCK_RECV_BITMAP_ENDING); 345 int ret = qemu_fflush(file); 346 if (ret) { 347 return ret; 348 } 349 350 return size + sizeof(size); 351 } 352 353 /* 354 * An outstanding page request, on the source, having been received 355 * and queued 356 */ 357 struct RAMSrcPageRequest { 358 RAMBlock *rb; 359 hwaddr offset; 360 hwaddr len; 361 362 QSIMPLEQ_ENTRY(RAMSrcPageRequest) next_req; 363 }; 364 365 /* State of RAM for migration */ 366 struct RAMState { 367 /* 368 * PageSearchStatus structures for the channels when send pages. 369 * Protected by the bitmap_mutex. 370 */ 371 PageSearchStatus pss[RAM_CHANNEL_MAX]; 372 /* UFFD file descriptor, used in 'write-tracking' migration */ 373 int uffdio_fd; 374 /* total ram size in bytes */ 375 uint64_t ram_bytes_total; 376 /* Last block that we have visited searching for dirty pages */ 377 RAMBlock *last_seen_block; 378 /* Last dirty target page we have sent */ 379 ram_addr_t last_page; 380 /* last ram version we have seen */ 381 uint32_t last_version; 382 /* How many times we have dirty too many pages */ 383 int dirty_rate_high_cnt; 384 /* these variables are used for bitmap sync */ 385 /* last time we did a full bitmap_sync */ 386 int64_t time_last_bitmap_sync; 387 /* bytes transferred at start_time */ 388 uint64_t bytes_xfer_prev; 389 /* number of dirty pages since start_time */ 390 uint64_t num_dirty_pages_period; 391 /* xbzrle misses since the beginning of the period */ 392 uint64_t xbzrle_cache_miss_prev; 393 /* Amount of xbzrle pages since the beginning of the period */ 394 uint64_t xbzrle_pages_prev; 395 /* Amount of xbzrle encoded bytes since the beginning of the period */ 396 uint64_t xbzrle_bytes_prev; 397 /* Are we really using XBZRLE (e.g., after the first round). */ 398 bool xbzrle_started; 399 /* Are we on the last stage of migration */ 400 bool last_stage; 401 402 /* total handled target pages at the beginning of period */ 403 uint64_t target_page_count_prev; 404 /* total handled target pages since start */ 405 uint64_t target_page_count; 406 /* number of dirty bits in the bitmap */ 407 uint64_t migration_dirty_pages; 408 /* 409 * Protects: 410 * - dirty/clear bitmap 411 * - migration_dirty_pages 412 * - pss structures 413 */ 414 QemuMutex bitmap_mutex; 415 /* The RAMBlock used in the last src_page_requests */ 416 RAMBlock *last_req_rb; 417 /* Queue of outstanding page requests from the destination */ 418 QemuMutex src_page_req_mutex; 419 QSIMPLEQ_HEAD(, RAMSrcPageRequest) src_page_requests; 420 421 /* 422 * This is only used when postcopy is in recovery phase, to communicate 423 * between the migration thread and the return path thread on dirty 424 * bitmap synchronizations. This field is unused in other stages of 425 * RAM migration. 426 */ 427 unsigned int postcopy_bmap_sync_requested; 428 /* 429 * Page hint during postcopy when preempt mode is on. Return path 430 * thread sets it, while background migration thread consumes it. 431 * 432 * Protected by @bitmap_mutex. 433 */ 434 PageLocationHint page_hint; 435 }; 436 typedef struct RAMState RAMState; 437 438 static RAMState *ram_state; 439 440 static NotifierWithReturnList precopy_notifier_list; 441 442 /* Whether postcopy has queued requests? */ 443 static bool postcopy_has_request(RAMState *rs) 444 { 445 return !QSIMPLEQ_EMPTY_ATOMIC(&rs->src_page_requests); 446 } 447 448 void precopy_infrastructure_init(void) 449 { 450 notifier_with_return_list_init(&precopy_notifier_list); 451 } 452 453 void precopy_add_notifier(NotifierWithReturn *n) 454 { 455 notifier_with_return_list_add(&precopy_notifier_list, n); 456 } 457 458 void precopy_remove_notifier(NotifierWithReturn *n) 459 { 460 notifier_with_return_remove(n); 461 } 462 463 int precopy_notify(PrecopyNotifyReason reason, Error **errp) 464 { 465 PrecopyNotifyData pnd; 466 pnd.reason = reason; 467 468 return notifier_with_return_list_notify(&precopy_notifier_list, &pnd, errp); 469 } 470 471 uint64_t ram_bytes_remaining(void) 472 { 473 return ram_state ? (ram_state->migration_dirty_pages * TARGET_PAGE_SIZE) : 474 0; 475 } 476 477 void ram_transferred_add(uint64_t bytes) 478 { 479 if (runstate_is_running()) { 480 stat64_add(&mig_stats.precopy_bytes, bytes); 481 } else if (migration_in_postcopy()) { 482 stat64_add(&mig_stats.postcopy_bytes, bytes); 483 } else { 484 stat64_add(&mig_stats.downtime_bytes, bytes); 485 } 486 } 487 488 static int ram_save_host_page_urgent(PageSearchStatus *pss); 489 490 /* NOTE: page is the PFN not real ram_addr_t. */ 491 static void pss_init(PageSearchStatus *pss, RAMBlock *rb, ram_addr_t page) 492 { 493 pss->block = rb; 494 pss->page = page; 495 pss->complete_round = false; 496 } 497 498 /* 499 * Check whether two PSSs are actively sending the same page. Return true 500 * if it is, false otherwise. 501 */ 502 static bool pss_overlap(PageSearchStatus *pss1, PageSearchStatus *pss2) 503 { 504 return pss1->host_page_sending && pss2->host_page_sending && 505 (pss1->host_page_start == pss2->host_page_start); 506 } 507 508 /** 509 * save_page_header: write page header to wire 510 * 511 * If this is the 1st block, it also writes the block identification 512 * 513 * Returns the number of bytes written 514 * 515 * @pss: current PSS channel status 516 * @block: block that contains the page we want to send 517 * @offset: offset inside the block for the page 518 * in the lower bits, it contains flags 519 */ 520 static size_t save_page_header(PageSearchStatus *pss, QEMUFile *f, 521 RAMBlock *block, ram_addr_t offset) 522 { 523 size_t size, len; 524 bool same_block = (block == pss->last_sent_block); 525 526 if (same_block) { 527 offset |= RAM_SAVE_FLAG_CONTINUE; 528 } 529 qemu_put_be64(f, offset); 530 size = 8; 531 532 if (!same_block) { 533 len = strlen(block->idstr); 534 qemu_put_byte(f, len); 535 qemu_put_buffer(f, (uint8_t *)block->idstr, len); 536 size += 1 + len; 537 pss->last_sent_block = block; 538 } 539 return size; 540 } 541 542 /** 543 * mig_throttle_guest_down: throttle down the guest 544 * 545 * Reduce amount of guest cpu execution to hopefully slow down memory 546 * writes. If guest dirty memory rate is reduced below the rate at 547 * which we can transfer pages to the destination then we should be 548 * able to complete migration. Some workloads dirty memory way too 549 * fast and will not effectively converge, even with auto-converge. 550 */ 551 static void mig_throttle_guest_down(uint64_t bytes_dirty_period, 552 uint64_t bytes_dirty_threshold) 553 { 554 uint64_t pct_initial = migrate_cpu_throttle_initial(); 555 uint64_t pct_increment = migrate_cpu_throttle_increment(); 556 bool pct_tailslow = migrate_cpu_throttle_tailslow(); 557 int pct_max = migrate_max_cpu_throttle(); 558 559 uint64_t throttle_now = cpu_throttle_get_percentage(); 560 uint64_t cpu_now, cpu_ideal, throttle_inc; 561 562 /* We have not started throttling yet. Let's start it. */ 563 if (!cpu_throttle_active()) { 564 cpu_throttle_set(pct_initial); 565 } else { 566 /* Throttling already on, just increase the rate */ 567 if (!pct_tailslow) { 568 throttle_inc = pct_increment; 569 } else { 570 /* Compute the ideal CPU percentage used by Guest, which may 571 * make the dirty rate match the dirty rate threshold. */ 572 cpu_now = 100 - throttle_now; 573 cpu_ideal = cpu_now * (bytes_dirty_threshold * 1.0 / 574 bytes_dirty_period); 575 throttle_inc = MIN(cpu_now - cpu_ideal, pct_increment); 576 } 577 cpu_throttle_set(MIN(throttle_now + throttle_inc, pct_max)); 578 } 579 } 580 581 void mig_throttle_counter_reset(void) 582 { 583 RAMState *rs = ram_state; 584 585 rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); 586 rs->num_dirty_pages_period = 0; 587 rs->bytes_xfer_prev = migration_transferred_bytes(); 588 } 589 590 /** 591 * xbzrle_cache_zero_page: insert a zero page in the XBZRLE cache 592 * 593 * @current_addr: address for the zero page 594 * 595 * Update the xbzrle cache to reflect a page that's been sent as all 0. 596 * The important thing is that a stale (not-yet-0'd) page be replaced 597 * by the new data. 598 * As a bonus, if the page wasn't in the cache it gets added so that 599 * when a small write is made into the 0'd page it gets XBZRLE sent. 600 */ 601 static void xbzrle_cache_zero_page(ram_addr_t current_addr) 602 { 603 /* We don't care if this fails to allocate a new cache page 604 * as long as it updated an old one */ 605 cache_insert(XBZRLE.cache, current_addr, XBZRLE.zero_target_page, 606 stat64_get(&mig_stats.dirty_sync_count)); 607 } 608 609 #define ENCODING_FLAG_XBZRLE 0x1 610 611 /** 612 * save_xbzrle_page: compress and send current page 613 * 614 * Returns: 1 means that we wrote the page 615 * 0 means that page is identical to the one already sent 616 * -1 means that xbzrle would be longer than normal 617 * 618 * @rs: current RAM state 619 * @pss: current PSS channel 620 * @current_data: pointer to the address of the page contents 621 * @current_addr: addr of the page 622 * @block: block that contains the page we want to send 623 * @offset: offset inside the block for the page 624 */ 625 static int save_xbzrle_page(RAMState *rs, PageSearchStatus *pss, 626 uint8_t **current_data, ram_addr_t current_addr, 627 RAMBlock *block, ram_addr_t offset) 628 { 629 int encoded_len = 0, bytes_xbzrle; 630 uint8_t *prev_cached_page; 631 QEMUFile *file = pss->pss_channel; 632 uint64_t generation = stat64_get(&mig_stats.dirty_sync_count); 633 634 if (!cache_is_cached(XBZRLE.cache, current_addr, generation)) { 635 xbzrle_counters.cache_miss++; 636 if (!rs->last_stage) { 637 if (cache_insert(XBZRLE.cache, current_addr, *current_data, 638 generation) == -1) { 639 return -1; 640 } else { 641 /* update *current_data when the page has been 642 inserted into cache */ 643 *current_data = get_cached_data(XBZRLE.cache, current_addr); 644 } 645 } 646 return -1; 647 } 648 649 /* 650 * Reaching here means the page has hit the xbzrle cache, no matter what 651 * encoding result it is (normal encoding, overflow or skipping the page), 652 * count the page as encoded. This is used to calculate the encoding rate. 653 * 654 * Example: 2 pages (8KB) being encoded, first page encoding generates 2KB, 655 * 2nd page turns out to be skipped (i.e. no new bytes written to the 656 * page), the overall encoding rate will be 8KB / 2KB = 4, which has the 657 * skipped page included. In this way, the encoding rate can tell if the 658 * guest page is good for xbzrle encoding. 659 */ 660 xbzrle_counters.pages++; 661 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr); 662 663 /* save current buffer into memory */ 664 memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE); 665 666 /* XBZRLE encoding (if there is no overflow) */ 667 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf, 668 TARGET_PAGE_SIZE, XBZRLE.encoded_buf, 669 TARGET_PAGE_SIZE); 670 671 /* 672 * Update the cache contents, so that it corresponds to the data 673 * sent, in all cases except where we skip the page. 674 */ 675 if (!rs->last_stage && encoded_len != 0) { 676 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE); 677 /* 678 * In the case where we couldn't compress, ensure that the caller 679 * sends the data from the cache, since the guest might have 680 * changed the RAM since we copied it. 681 */ 682 *current_data = prev_cached_page; 683 } 684 685 if (encoded_len == 0) { 686 trace_save_xbzrle_page_skipping(); 687 return 0; 688 } else if (encoded_len == -1) { 689 trace_save_xbzrle_page_overflow(); 690 xbzrle_counters.overflow++; 691 xbzrle_counters.bytes += TARGET_PAGE_SIZE; 692 return -1; 693 } 694 695 /* Send XBZRLE based compressed page */ 696 bytes_xbzrle = save_page_header(pss, pss->pss_channel, block, 697 offset | RAM_SAVE_FLAG_XBZRLE); 698 qemu_put_byte(file, ENCODING_FLAG_XBZRLE); 699 qemu_put_be16(file, encoded_len); 700 qemu_put_buffer(file, XBZRLE.encoded_buf, encoded_len); 701 bytes_xbzrle += encoded_len + 1 + 2; 702 /* 703 * The xbzrle encoded bytes don't count the 8 byte header with 704 * RAM_SAVE_FLAG_CONTINUE. 705 */ 706 xbzrle_counters.bytes += bytes_xbzrle - 8; 707 ram_transferred_add(bytes_xbzrle); 708 709 return 1; 710 } 711 712 /** 713 * pss_find_next_dirty: find the next dirty page of current ramblock 714 * 715 * This function updates pss->page to point to the next dirty page index 716 * within the ramblock to migrate, or the end of ramblock when nothing 717 * found. Note that when pss->host_page_sending==true it means we're 718 * during sending a host page, so we won't look for dirty page that is 719 * outside the host page boundary. 720 * 721 * @pss: the current page search status 722 */ 723 static void pss_find_next_dirty(PageSearchStatus *pss) 724 { 725 RAMBlock *rb = pss->block; 726 unsigned long size = rb->used_length >> TARGET_PAGE_BITS; 727 unsigned long *bitmap = rb->bmap; 728 729 if (migrate_ram_is_ignored(rb)) { 730 /* Points directly to the end, so we know no dirty page */ 731 pss->page = size; 732 return; 733 } 734 735 /* 736 * If during sending a host page, only look for dirty pages within the 737 * current host page being send. 738 */ 739 if (pss->host_page_sending) { 740 assert(pss->host_page_end); 741 size = MIN(size, pss->host_page_end); 742 } 743 744 pss->page = find_next_bit(bitmap, size, pss->page); 745 } 746 747 static void migration_clear_memory_region_dirty_bitmap(RAMBlock *rb, 748 unsigned long page) 749 { 750 uint8_t shift; 751 hwaddr size, start; 752 753 if (!rb->clear_bmap || !clear_bmap_test_and_clear(rb, page)) { 754 return; 755 } 756 757 shift = rb->clear_bmap_shift; 758 /* 759 * CLEAR_BITMAP_SHIFT_MIN should always guarantee this... this 760 * can make things easier sometimes since then start address 761 * of the small chunk will always be 64 pages aligned so the 762 * bitmap will always be aligned to unsigned long. We should 763 * even be able to remove this restriction but I'm simply 764 * keeping it. 765 */ 766 assert(shift >= 6); 767 768 size = 1ULL << (TARGET_PAGE_BITS + shift); 769 start = QEMU_ALIGN_DOWN((ram_addr_t)page << TARGET_PAGE_BITS, size); 770 trace_migration_bitmap_clear_dirty(rb->idstr, start, size, page); 771 memory_region_clear_dirty_bitmap(rb->mr, start, size); 772 } 773 774 static void 775 migration_clear_memory_region_dirty_bitmap_range(RAMBlock *rb, 776 unsigned long start, 777 unsigned long npages) 778 { 779 unsigned long i, chunk_pages = 1UL << rb->clear_bmap_shift; 780 unsigned long chunk_start = QEMU_ALIGN_DOWN(start, chunk_pages); 781 unsigned long chunk_end = QEMU_ALIGN_UP(start + npages, chunk_pages); 782 783 /* 784 * Clear pages from start to start + npages - 1, so the end boundary is 785 * exclusive. 786 */ 787 for (i = chunk_start; i < chunk_end; i += chunk_pages) { 788 migration_clear_memory_region_dirty_bitmap(rb, i); 789 } 790 } 791 792 /* 793 * colo_bitmap_find_diry:find contiguous dirty pages from start 794 * 795 * Returns the page offset within memory region of the start of the contiguout 796 * dirty page 797 * 798 * @rs: current RAM state 799 * @rb: RAMBlock where to search for dirty pages 800 * @start: page where we start the search 801 * @num: the number of contiguous dirty pages 802 */ 803 static inline 804 unsigned long colo_bitmap_find_dirty(RAMState *rs, RAMBlock *rb, 805 unsigned long start, unsigned long *num) 806 { 807 unsigned long size = rb->used_length >> TARGET_PAGE_BITS; 808 unsigned long *bitmap = rb->bmap; 809 unsigned long first, next; 810 811 *num = 0; 812 813 if (migrate_ram_is_ignored(rb)) { 814 return size; 815 } 816 817 first = find_next_bit(bitmap, size, start); 818 if (first >= size) { 819 return first; 820 } 821 next = find_next_zero_bit(bitmap, size, first + 1); 822 assert(next >= first); 823 *num = next - first; 824 return first; 825 } 826 827 static inline bool migration_bitmap_clear_dirty(RAMState *rs, 828 RAMBlock *rb, 829 unsigned long page) 830 { 831 bool ret; 832 833 /* 834 * During the last stage (after source VM stopped), resetting the write 835 * protections isn't needed as we know there will be either (1) no 836 * further writes if migration will complete, or (2) migration fails 837 * at last then tracking isn't needed either. 838 */ 839 if (!rs->last_stage) { 840 /* 841 * Clear dirty bitmap if needed. This _must_ be called before we 842 * send any of the page in the chunk because we need to make sure 843 * we can capture further page content changes when we sync dirty 844 * log the next time. So as long as we are going to send any of 845 * the page in the chunk we clear the remote dirty bitmap for all. 846 * Clearing it earlier won't be a problem, but too late will. 847 */ 848 migration_clear_memory_region_dirty_bitmap(rb, page); 849 } 850 851 ret = test_and_clear_bit(page, rb->bmap); 852 if (ret) { 853 rs->migration_dirty_pages--; 854 } 855 856 return ret; 857 } 858 859 static int dirty_bitmap_clear_section(MemoryRegionSection *section, 860 void *opaque) 861 { 862 const hwaddr offset = section->offset_within_region; 863 const hwaddr size = int128_get64(section->size); 864 const unsigned long start = offset >> TARGET_PAGE_BITS; 865 const unsigned long npages = size >> TARGET_PAGE_BITS; 866 RAMBlock *rb = section->mr->ram_block; 867 uint64_t *cleared_bits = opaque; 868 869 /* 870 * We don't grab ram_state->bitmap_mutex because we expect to run 871 * only when starting migration or during postcopy recovery where 872 * we don't have concurrent access. 873 */ 874 if (!migration_in_postcopy() && !migrate_background_snapshot()) { 875 migration_clear_memory_region_dirty_bitmap_range(rb, start, npages); 876 } 877 *cleared_bits += bitmap_count_one_with_offset(rb->bmap, start, npages); 878 bitmap_clear(rb->bmap, start, npages); 879 return 0; 880 } 881 882 /* 883 * Exclude all dirty pages from migration that fall into a discarded range as 884 * managed by a RamDiscardManager responsible for the mapped memory region of 885 * the RAMBlock. Clear the corresponding bits in the dirty bitmaps. 886 * 887 * Discarded pages ("logically unplugged") have undefined content and must 888 * not get migrated, because even reading these pages for migration might 889 * result in undesired behavior. 890 * 891 * Returns the number of cleared bits in the RAMBlock dirty bitmap. 892 * 893 * Note: The result is only stable while migrating (precopy/postcopy). 894 */ 895 static uint64_t ramblock_dirty_bitmap_clear_discarded_pages(RAMBlock *rb) 896 { 897 uint64_t cleared_bits = 0; 898 899 if (rb->mr && rb->bmap && memory_region_has_ram_discard_manager(rb->mr)) { 900 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr); 901 MemoryRegionSection section = { 902 .mr = rb->mr, 903 .offset_within_region = 0, 904 .size = int128_make64(qemu_ram_get_used_length(rb)), 905 }; 906 907 ram_discard_manager_replay_discarded(rdm, §ion, 908 dirty_bitmap_clear_section, 909 &cleared_bits); 910 } 911 return cleared_bits; 912 } 913 914 /* 915 * Check if a host-page aligned page falls into a discarded range as managed by 916 * a RamDiscardManager responsible for the mapped memory region of the RAMBlock. 917 * 918 * Note: The result is only stable while migrating (precopy/postcopy). 919 */ 920 bool ramblock_page_is_discarded(RAMBlock *rb, ram_addr_t start) 921 { 922 if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) { 923 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr); 924 MemoryRegionSection section = { 925 .mr = rb->mr, 926 .offset_within_region = start, 927 .size = int128_make64(qemu_ram_pagesize(rb)), 928 }; 929 930 return !ram_discard_manager_is_populated(rdm, §ion); 931 } 932 return false; 933 } 934 935 /* Called with RCU critical section */ 936 static void ramblock_sync_dirty_bitmap(RAMState *rs, RAMBlock *rb) 937 { 938 uint64_t new_dirty_pages = 939 cpu_physical_memory_sync_dirty_bitmap(rb, 0, rb->used_length); 940 941 rs->migration_dirty_pages += new_dirty_pages; 942 rs->num_dirty_pages_period += new_dirty_pages; 943 } 944 945 /** 946 * ram_pagesize_summary: calculate all the pagesizes of a VM 947 * 948 * Returns a summary bitmap of the page sizes of all RAMBlocks 949 * 950 * For VMs with just normal pages this is equivalent to the host page 951 * size. If it's got some huge pages then it's the OR of all the 952 * different page sizes. 953 */ 954 uint64_t ram_pagesize_summary(void) 955 { 956 RAMBlock *block; 957 uint64_t summary = 0; 958 959 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 960 summary |= block->page_size; 961 } 962 963 return summary; 964 } 965 966 uint64_t ram_get_total_transferred_pages(void) 967 { 968 return stat64_get(&mig_stats.normal_pages) + 969 stat64_get(&mig_stats.zero_pages) + 970 xbzrle_counters.pages; 971 } 972 973 static void migration_update_rates(RAMState *rs, int64_t end_time) 974 { 975 uint64_t page_count = rs->target_page_count - rs->target_page_count_prev; 976 977 /* calculate period counters */ 978 stat64_set(&mig_stats.dirty_pages_rate, 979 rs->num_dirty_pages_period * 1000 / 980 (end_time - rs->time_last_bitmap_sync)); 981 982 if (!page_count) { 983 return; 984 } 985 986 if (migrate_xbzrle()) { 987 double encoded_size, unencoded_size; 988 989 xbzrle_counters.cache_miss_rate = (double)(xbzrle_counters.cache_miss - 990 rs->xbzrle_cache_miss_prev) / page_count; 991 rs->xbzrle_cache_miss_prev = xbzrle_counters.cache_miss; 992 unencoded_size = (xbzrle_counters.pages - rs->xbzrle_pages_prev) * 993 TARGET_PAGE_SIZE; 994 encoded_size = xbzrle_counters.bytes - rs->xbzrle_bytes_prev; 995 if (xbzrle_counters.pages == rs->xbzrle_pages_prev || !encoded_size) { 996 xbzrle_counters.encoding_rate = 0; 997 } else { 998 xbzrle_counters.encoding_rate = unencoded_size / encoded_size; 999 } 1000 rs->xbzrle_pages_prev = xbzrle_counters.pages; 1001 rs->xbzrle_bytes_prev = xbzrle_counters.bytes; 1002 } 1003 } 1004 1005 /* 1006 * Enable dirty-limit to throttle down the guest 1007 */ 1008 static void migration_dirty_limit_guest(void) 1009 { 1010 /* 1011 * dirty page rate quota for all vCPUs fetched from 1012 * migration parameter 'vcpu_dirty_limit' 1013 */ 1014 static int64_t quota_dirtyrate; 1015 MigrationState *s = migrate_get_current(); 1016 1017 /* 1018 * If dirty limit already enabled and migration parameter 1019 * vcpu-dirty-limit untouched. 1020 */ 1021 if (dirtylimit_in_service() && 1022 quota_dirtyrate == s->parameters.vcpu_dirty_limit) { 1023 return; 1024 } 1025 1026 quota_dirtyrate = s->parameters.vcpu_dirty_limit; 1027 1028 /* 1029 * Set all vCPU a quota dirtyrate, note that the second 1030 * parameter will be ignored if setting all vCPU for the vm 1031 */ 1032 qmp_set_vcpu_dirty_limit(false, -1, quota_dirtyrate, NULL); 1033 trace_migration_dirty_limit_guest(quota_dirtyrate); 1034 } 1035 1036 static void migration_trigger_throttle(RAMState *rs) 1037 { 1038 uint64_t threshold = migrate_throttle_trigger_threshold(); 1039 uint64_t bytes_xfer_period = 1040 migration_transferred_bytes() - rs->bytes_xfer_prev; 1041 uint64_t bytes_dirty_period = rs->num_dirty_pages_period * TARGET_PAGE_SIZE; 1042 uint64_t bytes_dirty_threshold = bytes_xfer_period * threshold / 100; 1043 1044 /* 1045 * The following detection logic can be refined later. For now: 1046 * Check to see if the ratio between dirtied bytes and the approx. 1047 * amount of bytes that just got transferred since the last time 1048 * we were in this routine reaches the threshold. If that happens 1049 * twice, start or increase throttling. 1050 */ 1051 if ((bytes_dirty_period > bytes_dirty_threshold) && 1052 (++rs->dirty_rate_high_cnt >= 2)) { 1053 rs->dirty_rate_high_cnt = 0; 1054 if (migrate_auto_converge()) { 1055 trace_migration_throttle(); 1056 mig_throttle_guest_down(bytes_dirty_period, 1057 bytes_dirty_threshold); 1058 } else if (migrate_dirty_limit()) { 1059 migration_dirty_limit_guest(); 1060 } 1061 } 1062 } 1063 1064 static void migration_bitmap_sync(RAMState *rs, bool last_stage) 1065 { 1066 RAMBlock *block; 1067 int64_t end_time; 1068 1069 stat64_add(&mig_stats.dirty_sync_count, 1); 1070 1071 if (!rs->time_last_bitmap_sync) { 1072 rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); 1073 } 1074 1075 trace_migration_bitmap_sync_start(); 1076 memory_global_dirty_log_sync(last_stage); 1077 1078 WITH_QEMU_LOCK_GUARD(&rs->bitmap_mutex) { 1079 WITH_RCU_READ_LOCK_GUARD() { 1080 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 1081 ramblock_sync_dirty_bitmap(rs, block); 1082 } 1083 stat64_set(&mig_stats.dirty_bytes_last_sync, ram_bytes_remaining()); 1084 } 1085 } 1086 1087 memory_global_after_dirty_log_sync(); 1088 trace_migration_bitmap_sync_end(rs->num_dirty_pages_period); 1089 1090 end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); 1091 1092 /* more than 1 second = 1000 millisecons */ 1093 if (end_time > rs->time_last_bitmap_sync + 1000) { 1094 migration_trigger_throttle(rs); 1095 1096 migration_update_rates(rs, end_time); 1097 1098 rs->target_page_count_prev = rs->target_page_count; 1099 1100 /* reset period counters */ 1101 rs->time_last_bitmap_sync = end_time; 1102 rs->num_dirty_pages_period = 0; 1103 rs->bytes_xfer_prev = migration_transferred_bytes(); 1104 } 1105 if (migrate_events()) { 1106 uint64_t generation = stat64_get(&mig_stats.dirty_sync_count); 1107 qapi_event_send_migration_pass(generation); 1108 } 1109 } 1110 1111 void migration_bitmap_sync_precopy(bool last_stage) 1112 { 1113 Error *local_err = NULL; 1114 assert(ram_state); 1115 1116 /* 1117 * The current notifier usage is just an optimization to migration, so we 1118 * don't stop the normal migration process in the error case. 1119 */ 1120 if (precopy_notify(PRECOPY_NOTIFY_BEFORE_BITMAP_SYNC, &local_err)) { 1121 error_report_err(local_err); 1122 local_err = NULL; 1123 } 1124 1125 migration_bitmap_sync(ram_state, last_stage); 1126 1127 if (precopy_notify(PRECOPY_NOTIFY_AFTER_BITMAP_SYNC, &local_err)) { 1128 error_report_err(local_err); 1129 } 1130 } 1131 1132 void ram_release_page(const char *rbname, uint64_t offset) 1133 { 1134 if (!migrate_release_ram() || !migration_in_postcopy()) { 1135 return; 1136 } 1137 1138 ram_discard_range(rbname, offset, TARGET_PAGE_SIZE); 1139 } 1140 1141 /** 1142 * save_zero_page: send the zero page to the stream 1143 * 1144 * Returns the number of pages written. 1145 * 1146 * @rs: current RAM state 1147 * @pss: current PSS channel 1148 * @offset: offset inside the block for the page 1149 */ 1150 static int save_zero_page(RAMState *rs, PageSearchStatus *pss, 1151 ram_addr_t offset) 1152 { 1153 uint8_t *p = pss->block->host + offset; 1154 QEMUFile *file = pss->pss_channel; 1155 int len = 0; 1156 1157 if (migrate_zero_page_detection() == ZERO_PAGE_DETECTION_NONE) { 1158 return 0; 1159 } 1160 1161 if (!buffer_is_zero(p, TARGET_PAGE_SIZE)) { 1162 return 0; 1163 } 1164 1165 stat64_add(&mig_stats.zero_pages, 1); 1166 1167 if (migrate_mapped_ram()) { 1168 /* zero pages are not transferred with mapped-ram */ 1169 clear_bit_atomic(offset >> TARGET_PAGE_BITS, pss->block->file_bmap); 1170 return 1; 1171 } 1172 1173 len += save_page_header(pss, file, pss->block, offset | RAM_SAVE_FLAG_ZERO); 1174 qemu_put_byte(file, 0); 1175 len += 1; 1176 ram_release_page(pss->block->idstr, offset); 1177 ram_transferred_add(len); 1178 1179 /* 1180 * Must let xbzrle know, otherwise a previous (now 0'd) cached 1181 * page would be stale. 1182 */ 1183 if (rs->xbzrle_started) { 1184 XBZRLE_cache_lock(); 1185 xbzrle_cache_zero_page(pss->block->offset + offset); 1186 XBZRLE_cache_unlock(); 1187 } 1188 1189 return len; 1190 } 1191 1192 /* 1193 * directly send the page to the stream 1194 * 1195 * Returns the number of pages written. 1196 * 1197 * @pss: current PSS channel 1198 * @block: block that contains the page we want to send 1199 * @offset: offset inside the block for the page 1200 * @buf: the page to be sent 1201 * @async: send to page asyncly 1202 */ 1203 static int save_normal_page(PageSearchStatus *pss, RAMBlock *block, 1204 ram_addr_t offset, uint8_t *buf, bool async) 1205 { 1206 QEMUFile *file = pss->pss_channel; 1207 1208 if (migrate_mapped_ram()) { 1209 qemu_put_buffer_at(file, buf, TARGET_PAGE_SIZE, 1210 block->pages_offset + offset); 1211 set_bit(offset >> TARGET_PAGE_BITS, block->file_bmap); 1212 } else { 1213 ram_transferred_add(save_page_header(pss, pss->pss_channel, block, 1214 offset | RAM_SAVE_FLAG_PAGE)); 1215 if (async) { 1216 qemu_put_buffer_async(file, buf, TARGET_PAGE_SIZE, 1217 migrate_release_ram() && 1218 migration_in_postcopy()); 1219 } else { 1220 qemu_put_buffer(file, buf, TARGET_PAGE_SIZE); 1221 } 1222 } 1223 ram_transferred_add(TARGET_PAGE_SIZE); 1224 stat64_add(&mig_stats.normal_pages, 1); 1225 return 1; 1226 } 1227 1228 /** 1229 * ram_save_page: send the given page to the stream 1230 * 1231 * Returns the number of pages written. 1232 * < 0 - error 1233 * >=0 - Number of pages written - this might legally be 0 1234 * if xbzrle noticed the page was the same. 1235 * 1236 * @rs: current RAM state 1237 * @block: block that contains the page we want to send 1238 * @offset: offset inside the block for the page 1239 */ 1240 static int ram_save_page(RAMState *rs, PageSearchStatus *pss) 1241 { 1242 int pages = -1; 1243 uint8_t *p; 1244 bool send_async = true; 1245 RAMBlock *block = pss->block; 1246 ram_addr_t offset = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS; 1247 ram_addr_t current_addr = block->offset + offset; 1248 1249 p = block->host + offset; 1250 trace_ram_save_page(block->idstr, (uint64_t)offset, p); 1251 1252 XBZRLE_cache_lock(); 1253 if (rs->xbzrle_started && !migration_in_postcopy()) { 1254 pages = save_xbzrle_page(rs, pss, &p, current_addr, 1255 block, offset); 1256 if (!rs->last_stage) { 1257 /* Can't send this cached data async, since the cache page 1258 * might get updated before it gets to the wire 1259 */ 1260 send_async = false; 1261 } 1262 } 1263 1264 /* XBZRLE overflow or normal page */ 1265 if (pages == -1) { 1266 pages = save_normal_page(pss, block, offset, p, send_async); 1267 } 1268 1269 XBZRLE_cache_unlock(); 1270 1271 return pages; 1272 } 1273 1274 static int ram_save_multifd_page(RAMBlock *block, ram_addr_t offset) 1275 { 1276 if (!multifd_queue_page(block, offset)) { 1277 return -1; 1278 } 1279 1280 return 1; 1281 } 1282 1283 1284 #define PAGE_ALL_CLEAN 0 1285 #define PAGE_TRY_AGAIN 1 1286 #define PAGE_DIRTY_FOUND 2 1287 /** 1288 * find_dirty_block: find the next dirty page and update any state 1289 * associated with the search process. 1290 * 1291 * Returns: 1292 * <0: An error happened 1293 * PAGE_ALL_CLEAN: no dirty page found, give up 1294 * PAGE_TRY_AGAIN: no dirty page found, retry for next block 1295 * PAGE_DIRTY_FOUND: dirty page found 1296 * 1297 * @rs: current RAM state 1298 * @pss: data about the state of the current dirty page scan 1299 * @again: set to false if the search has scanned the whole of RAM 1300 */ 1301 static int find_dirty_block(RAMState *rs, PageSearchStatus *pss) 1302 { 1303 /* Update pss->page for the next dirty bit in ramblock */ 1304 pss_find_next_dirty(pss); 1305 1306 if (pss->complete_round && pss->block == rs->last_seen_block && 1307 pss->page >= rs->last_page) { 1308 /* 1309 * We've been once around the RAM and haven't found anything. 1310 * Give up. 1311 */ 1312 return PAGE_ALL_CLEAN; 1313 } 1314 if (!offset_in_ramblock(pss->block, 1315 ((ram_addr_t)pss->page) << TARGET_PAGE_BITS)) { 1316 /* Didn't find anything in this RAM Block */ 1317 pss->page = 0; 1318 pss->block = QLIST_NEXT_RCU(pss->block, next); 1319 if (!pss->block) { 1320 if (multifd_ram_sync_per_round()) { 1321 QEMUFile *f = rs->pss[RAM_CHANNEL_PRECOPY].pss_channel; 1322 int ret = multifd_ram_flush_and_sync(f); 1323 if (ret < 0) { 1324 return ret; 1325 } 1326 } 1327 1328 /* Hit the end of the list */ 1329 pss->block = QLIST_FIRST_RCU(&ram_list.blocks); 1330 /* Flag that we've looped */ 1331 pss->complete_round = true; 1332 /* After the first round, enable XBZRLE. */ 1333 if (migrate_xbzrle()) { 1334 rs->xbzrle_started = true; 1335 } 1336 } 1337 /* Didn't find anything this time, but try again on the new block */ 1338 return PAGE_TRY_AGAIN; 1339 } else { 1340 /* We've found something */ 1341 return PAGE_DIRTY_FOUND; 1342 } 1343 } 1344 1345 /** 1346 * unqueue_page: gets a page of the queue 1347 * 1348 * Helper for 'get_queued_page' - gets a page off the queue 1349 * 1350 * Returns the block of the page (or NULL if none available) 1351 * 1352 * @rs: current RAM state 1353 * @offset: used to return the offset within the RAMBlock 1354 */ 1355 static RAMBlock *unqueue_page(RAMState *rs, ram_addr_t *offset) 1356 { 1357 struct RAMSrcPageRequest *entry; 1358 RAMBlock *block = NULL; 1359 1360 if (!postcopy_has_request(rs)) { 1361 return NULL; 1362 } 1363 1364 QEMU_LOCK_GUARD(&rs->src_page_req_mutex); 1365 1366 /* 1367 * This should _never_ change even after we take the lock, because no one 1368 * should be taking anything off the request list other than us. 1369 */ 1370 assert(postcopy_has_request(rs)); 1371 1372 entry = QSIMPLEQ_FIRST(&rs->src_page_requests); 1373 block = entry->rb; 1374 *offset = entry->offset; 1375 1376 if (entry->len > TARGET_PAGE_SIZE) { 1377 entry->len -= TARGET_PAGE_SIZE; 1378 entry->offset += TARGET_PAGE_SIZE; 1379 } else { 1380 memory_region_unref(block->mr); 1381 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req); 1382 g_free(entry); 1383 migration_consume_urgent_request(); 1384 } 1385 1386 return block; 1387 } 1388 1389 #if defined(__linux__) 1390 /** 1391 * poll_fault_page: try to get next UFFD write fault page and, if pending fault 1392 * is found, return RAM block pointer and page offset 1393 * 1394 * Returns pointer to the RAMBlock containing faulting page, 1395 * NULL if no write faults are pending 1396 * 1397 * @rs: current RAM state 1398 * @offset: page offset from the beginning of the block 1399 */ 1400 static RAMBlock *poll_fault_page(RAMState *rs, ram_addr_t *offset) 1401 { 1402 struct uffd_msg uffd_msg; 1403 void *page_address; 1404 RAMBlock *block; 1405 int res; 1406 1407 if (!migrate_background_snapshot()) { 1408 return NULL; 1409 } 1410 1411 res = uffd_read_events(rs->uffdio_fd, &uffd_msg, 1); 1412 if (res <= 0) { 1413 return NULL; 1414 } 1415 1416 page_address = (void *)(uintptr_t) uffd_msg.arg.pagefault.address; 1417 block = qemu_ram_block_from_host(page_address, false, offset); 1418 assert(block && (block->flags & RAM_UF_WRITEPROTECT) != 0); 1419 return block; 1420 } 1421 1422 /** 1423 * ram_save_release_protection: release UFFD write protection after 1424 * a range of pages has been saved 1425 * 1426 * @rs: current RAM state 1427 * @pss: page-search-status structure 1428 * @start_page: index of the first page in the range relative to pss->block 1429 * 1430 * Returns 0 on success, negative value in case of an error 1431 */ 1432 static int ram_save_release_protection(RAMState *rs, PageSearchStatus *pss, 1433 unsigned long start_page) 1434 { 1435 int res = 0; 1436 1437 /* Check if page is from UFFD-managed region. */ 1438 if (pss->block->flags & RAM_UF_WRITEPROTECT) { 1439 void *page_address = pss->block->host + (start_page << TARGET_PAGE_BITS); 1440 uint64_t run_length = (pss->page - start_page) << TARGET_PAGE_BITS; 1441 1442 /* Flush async buffers before un-protect. */ 1443 qemu_fflush(pss->pss_channel); 1444 /* Un-protect memory range. */ 1445 res = uffd_change_protection(rs->uffdio_fd, page_address, run_length, 1446 false, false); 1447 } 1448 1449 return res; 1450 } 1451 1452 /* ram_write_tracking_available: check if kernel supports required UFFD features 1453 * 1454 * Returns true if supports, false otherwise 1455 */ 1456 bool ram_write_tracking_available(void) 1457 { 1458 uint64_t uffd_features; 1459 int res; 1460 1461 res = uffd_query_features(&uffd_features); 1462 return (res == 0 && 1463 (uffd_features & UFFD_FEATURE_PAGEFAULT_FLAG_WP) != 0); 1464 } 1465 1466 /* ram_write_tracking_compatible: check if guest configuration is 1467 * compatible with 'write-tracking' 1468 * 1469 * Returns true if compatible, false otherwise 1470 */ 1471 bool ram_write_tracking_compatible(void) 1472 { 1473 const uint64_t uffd_ioctls_mask = BIT(_UFFDIO_WRITEPROTECT); 1474 int uffd_fd; 1475 RAMBlock *block; 1476 bool ret = false; 1477 1478 /* Open UFFD file descriptor */ 1479 uffd_fd = uffd_create_fd(UFFD_FEATURE_PAGEFAULT_FLAG_WP, false); 1480 if (uffd_fd < 0) { 1481 return false; 1482 } 1483 1484 RCU_READ_LOCK_GUARD(); 1485 1486 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 1487 uint64_t uffd_ioctls; 1488 1489 /* Nothing to do with read-only and MMIO-writable regions */ 1490 if (block->mr->readonly || block->mr->rom_device) { 1491 continue; 1492 } 1493 /* Try to register block memory via UFFD-IO to track writes */ 1494 if (uffd_register_memory(uffd_fd, block->host, block->max_length, 1495 UFFDIO_REGISTER_MODE_WP, &uffd_ioctls)) { 1496 goto out; 1497 } 1498 if ((uffd_ioctls & uffd_ioctls_mask) != uffd_ioctls_mask) { 1499 goto out; 1500 } 1501 } 1502 ret = true; 1503 1504 out: 1505 uffd_close_fd(uffd_fd); 1506 return ret; 1507 } 1508 1509 static inline void populate_read_range(RAMBlock *block, ram_addr_t offset, 1510 ram_addr_t size) 1511 { 1512 const ram_addr_t end = offset + size; 1513 1514 /* 1515 * We read one byte of each page; this will preallocate page tables if 1516 * required and populate the shared zeropage on MAP_PRIVATE anonymous memory 1517 * where no page was populated yet. This might require adaption when 1518 * supporting other mappings, like shmem. 1519 */ 1520 for (; offset < end; offset += block->page_size) { 1521 char tmp = *((char *)block->host + offset); 1522 1523 /* Don't optimize the read out */ 1524 asm volatile("" : "+r" (tmp)); 1525 } 1526 } 1527 1528 static inline int populate_read_section(MemoryRegionSection *section, 1529 void *opaque) 1530 { 1531 const hwaddr size = int128_get64(section->size); 1532 hwaddr offset = section->offset_within_region; 1533 RAMBlock *block = section->mr->ram_block; 1534 1535 populate_read_range(block, offset, size); 1536 return 0; 1537 } 1538 1539 /* 1540 * ram_block_populate_read: preallocate page tables and populate pages in the 1541 * RAM block by reading a byte of each page. 1542 * 1543 * Since it's solely used for userfault_fd WP feature, here we just 1544 * hardcode page size to qemu_real_host_page_size. 1545 * 1546 * @block: RAM block to populate 1547 */ 1548 static void ram_block_populate_read(RAMBlock *rb) 1549 { 1550 /* 1551 * Skip populating all pages that fall into a discarded range as managed by 1552 * a RamDiscardManager responsible for the mapped memory region of the 1553 * RAMBlock. Such discarded ("logically unplugged") parts of a RAMBlock 1554 * must not get populated automatically. We don't have to track 1555 * modifications via userfaultfd WP reliably, because these pages will 1556 * not be part of the migration stream either way -- see 1557 * ramblock_dirty_bitmap_exclude_discarded_pages(). 1558 * 1559 * Note: The result is only stable while migrating (precopy/postcopy). 1560 */ 1561 if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) { 1562 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr); 1563 MemoryRegionSection section = { 1564 .mr = rb->mr, 1565 .offset_within_region = 0, 1566 .size = rb->mr->size, 1567 }; 1568 1569 ram_discard_manager_replay_populated(rdm, §ion, 1570 populate_read_section, NULL); 1571 } else { 1572 populate_read_range(rb, 0, rb->used_length); 1573 } 1574 } 1575 1576 /* 1577 * ram_write_tracking_prepare: prepare for UFFD-WP memory tracking 1578 */ 1579 void ram_write_tracking_prepare(void) 1580 { 1581 RAMBlock *block; 1582 1583 RCU_READ_LOCK_GUARD(); 1584 1585 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 1586 /* Nothing to do with read-only and MMIO-writable regions */ 1587 if (block->mr->readonly || block->mr->rom_device) { 1588 continue; 1589 } 1590 1591 /* 1592 * Populate pages of the RAM block before enabling userfault_fd 1593 * write protection. 1594 * 1595 * This stage is required since ioctl(UFFDIO_WRITEPROTECT) with 1596 * UFFDIO_WRITEPROTECT_MODE_WP mode setting would silently skip 1597 * pages with pte_none() entries in page table. 1598 */ 1599 ram_block_populate_read(block); 1600 } 1601 } 1602 1603 static inline int uffd_protect_section(MemoryRegionSection *section, 1604 void *opaque) 1605 { 1606 const hwaddr size = int128_get64(section->size); 1607 const hwaddr offset = section->offset_within_region; 1608 RAMBlock *rb = section->mr->ram_block; 1609 int uffd_fd = (uintptr_t)opaque; 1610 1611 return uffd_change_protection(uffd_fd, rb->host + offset, size, true, 1612 false); 1613 } 1614 1615 static int ram_block_uffd_protect(RAMBlock *rb, int uffd_fd) 1616 { 1617 assert(rb->flags & RAM_UF_WRITEPROTECT); 1618 1619 /* See ram_block_populate_read() */ 1620 if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) { 1621 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr); 1622 MemoryRegionSection section = { 1623 .mr = rb->mr, 1624 .offset_within_region = 0, 1625 .size = rb->mr->size, 1626 }; 1627 1628 return ram_discard_manager_replay_populated(rdm, §ion, 1629 uffd_protect_section, 1630 (void *)(uintptr_t)uffd_fd); 1631 } 1632 return uffd_change_protection(uffd_fd, rb->host, 1633 rb->used_length, true, false); 1634 } 1635 1636 /* 1637 * ram_write_tracking_start: start UFFD-WP memory tracking 1638 * 1639 * Returns 0 for success or negative value in case of error 1640 */ 1641 int ram_write_tracking_start(void) 1642 { 1643 int uffd_fd; 1644 RAMState *rs = ram_state; 1645 RAMBlock *block; 1646 1647 /* Open UFFD file descriptor */ 1648 uffd_fd = uffd_create_fd(UFFD_FEATURE_PAGEFAULT_FLAG_WP, true); 1649 if (uffd_fd < 0) { 1650 return uffd_fd; 1651 } 1652 rs->uffdio_fd = uffd_fd; 1653 1654 RCU_READ_LOCK_GUARD(); 1655 1656 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 1657 /* Nothing to do with read-only and MMIO-writable regions */ 1658 if (block->mr->readonly || block->mr->rom_device) { 1659 continue; 1660 } 1661 1662 /* Register block memory with UFFD to track writes */ 1663 if (uffd_register_memory(rs->uffdio_fd, block->host, 1664 block->max_length, UFFDIO_REGISTER_MODE_WP, NULL)) { 1665 goto fail; 1666 } 1667 block->flags |= RAM_UF_WRITEPROTECT; 1668 memory_region_ref(block->mr); 1669 1670 /* Apply UFFD write protection to the block memory range */ 1671 if (ram_block_uffd_protect(block, uffd_fd)) { 1672 goto fail; 1673 } 1674 1675 trace_ram_write_tracking_ramblock_start(block->idstr, block->page_size, 1676 block->host, block->max_length); 1677 } 1678 1679 return 0; 1680 1681 fail: 1682 error_report("ram_write_tracking_start() failed: restoring initial memory state"); 1683 1684 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 1685 if ((block->flags & RAM_UF_WRITEPROTECT) == 0) { 1686 continue; 1687 } 1688 uffd_unregister_memory(rs->uffdio_fd, block->host, block->max_length); 1689 /* Cleanup flags and remove reference */ 1690 block->flags &= ~RAM_UF_WRITEPROTECT; 1691 memory_region_unref(block->mr); 1692 } 1693 1694 uffd_close_fd(uffd_fd); 1695 rs->uffdio_fd = -1; 1696 return -1; 1697 } 1698 1699 /** 1700 * ram_write_tracking_stop: stop UFFD-WP memory tracking and remove protection 1701 */ 1702 void ram_write_tracking_stop(void) 1703 { 1704 RAMState *rs = ram_state; 1705 RAMBlock *block; 1706 1707 RCU_READ_LOCK_GUARD(); 1708 1709 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 1710 if ((block->flags & RAM_UF_WRITEPROTECT) == 0) { 1711 continue; 1712 } 1713 uffd_unregister_memory(rs->uffdio_fd, block->host, block->max_length); 1714 1715 trace_ram_write_tracking_ramblock_stop(block->idstr, block->page_size, 1716 block->host, block->max_length); 1717 1718 /* Cleanup flags and remove reference */ 1719 block->flags &= ~RAM_UF_WRITEPROTECT; 1720 memory_region_unref(block->mr); 1721 } 1722 1723 /* Finally close UFFD file descriptor */ 1724 uffd_close_fd(rs->uffdio_fd); 1725 rs->uffdio_fd = -1; 1726 } 1727 1728 #else 1729 /* No target OS support, stubs just fail or ignore */ 1730 1731 static RAMBlock *poll_fault_page(RAMState *rs, ram_addr_t *offset) 1732 { 1733 (void) rs; 1734 (void) offset; 1735 1736 return NULL; 1737 } 1738 1739 static int ram_save_release_protection(RAMState *rs, PageSearchStatus *pss, 1740 unsigned long start_page) 1741 { 1742 (void) rs; 1743 (void) pss; 1744 (void) start_page; 1745 1746 return 0; 1747 } 1748 1749 bool ram_write_tracking_available(void) 1750 { 1751 return false; 1752 } 1753 1754 bool ram_write_tracking_compatible(void) 1755 { 1756 g_assert_not_reached(); 1757 } 1758 1759 int ram_write_tracking_start(void) 1760 { 1761 g_assert_not_reached(); 1762 } 1763 1764 void ram_write_tracking_stop(void) 1765 { 1766 g_assert_not_reached(); 1767 } 1768 #endif /* defined(__linux__) */ 1769 1770 /** 1771 * get_queued_page: unqueue a page from the postcopy requests 1772 * 1773 * Skips pages that are already sent (!dirty) 1774 * 1775 * Returns true if a queued page is found 1776 * 1777 * @rs: current RAM state 1778 * @pss: data about the state of the current dirty page scan 1779 */ 1780 static bool get_queued_page(RAMState *rs, PageSearchStatus *pss) 1781 { 1782 RAMBlock *block; 1783 ram_addr_t offset; 1784 bool dirty = false; 1785 1786 do { 1787 block = unqueue_page(rs, &offset); 1788 /* 1789 * We're sending this page, and since it's postcopy nothing else 1790 * will dirty it, and we must make sure it doesn't get sent again 1791 * even if this queue request was received after the background 1792 * search already sent it. 1793 */ 1794 if (block) { 1795 unsigned long page; 1796 1797 page = offset >> TARGET_PAGE_BITS; 1798 dirty = test_bit(page, block->bmap); 1799 if (!dirty) { 1800 trace_get_queued_page_not_dirty(block->idstr, (uint64_t)offset, 1801 page); 1802 } else { 1803 trace_get_queued_page(block->idstr, (uint64_t)offset, page); 1804 } 1805 } 1806 1807 } while (block && !dirty); 1808 1809 if (!block) { 1810 /* 1811 * Poll write faults too if background snapshot is enabled; that's 1812 * when we have vcpus got blocked by the write protected pages. 1813 */ 1814 block = poll_fault_page(rs, &offset); 1815 } 1816 1817 if (block) { 1818 /* 1819 * We want the background search to continue from the queued page 1820 * since the guest is likely to want other pages near to the page 1821 * it just requested. 1822 */ 1823 pss->block = block; 1824 pss->page = offset >> TARGET_PAGE_BITS; 1825 1826 /* 1827 * This unqueued page would break the "one round" check, even is 1828 * really rare. 1829 */ 1830 pss->complete_round = false; 1831 } 1832 1833 return !!block; 1834 } 1835 1836 /** 1837 * migration_page_queue_free: drop any remaining pages in the ram 1838 * request queue 1839 * 1840 * It should be empty at the end anyway, but in error cases there may 1841 * be some left. in case that there is any page left, we drop it. 1842 * 1843 */ 1844 static void migration_page_queue_free(RAMState *rs) 1845 { 1846 struct RAMSrcPageRequest *mspr, *next_mspr; 1847 /* This queue generally should be empty - but in the case of a failed 1848 * migration might have some droppings in. 1849 */ 1850 RCU_READ_LOCK_GUARD(); 1851 QSIMPLEQ_FOREACH_SAFE(mspr, &rs->src_page_requests, next_req, next_mspr) { 1852 memory_region_unref(mspr->rb->mr); 1853 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req); 1854 g_free(mspr); 1855 } 1856 } 1857 1858 /** 1859 * ram_save_queue_pages: queue the page for transmission 1860 * 1861 * A request from postcopy destination for example. 1862 * 1863 * Returns zero on success or negative on error 1864 * 1865 * @rbname: Name of the RAMBLock of the request. NULL means the 1866 * same that last one. 1867 * @start: starting address from the start of the RAMBlock 1868 * @len: length (in bytes) to send 1869 */ 1870 int ram_save_queue_pages(const char *rbname, ram_addr_t start, ram_addr_t len, 1871 Error **errp) 1872 { 1873 RAMBlock *ramblock; 1874 RAMState *rs = ram_state; 1875 1876 stat64_add(&mig_stats.postcopy_requests, 1); 1877 RCU_READ_LOCK_GUARD(); 1878 1879 if (!rbname) { 1880 /* Reuse last RAMBlock */ 1881 ramblock = rs->last_req_rb; 1882 1883 if (!ramblock) { 1884 /* 1885 * Shouldn't happen, we can't reuse the last RAMBlock if 1886 * it's the 1st request. 1887 */ 1888 error_setg(errp, "MIG_RP_MSG_REQ_PAGES has no previous block"); 1889 return -1; 1890 } 1891 } else { 1892 ramblock = qemu_ram_block_by_name(rbname); 1893 1894 if (!ramblock) { 1895 /* We shouldn't be asked for a non-existent RAMBlock */ 1896 error_setg(errp, "MIG_RP_MSG_REQ_PAGES has no block '%s'", rbname); 1897 return -1; 1898 } 1899 rs->last_req_rb = ramblock; 1900 } 1901 trace_ram_save_queue_pages(ramblock->idstr, start, len); 1902 if (!offset_in_ramblock(ramblock, start + len - 1)) { 1903 error_setg(errp, "MIG_RP_MSG_REQ_PAGES request overrun, " 1904 "start=" RAM_ADDR_FMT " len=" 1905 RAM_ADDR_FMT " blocklen=" RAM_ADDR_FMT, 1906 start, len, ramblock->used_length); 1907 return -1; 1908 } 1909 1910 /* 1911 * When with postcopy preempt, we send back the page directly in the 1912 * rp-return thread. 1913 */ 1914 if (postcopy_preempt_active()) { 1915 ram_addr_t page_start = start >> TARGET_PAGE_BITS; 1916 size_t page_size = qemu_ram_pagesize(ramblock); 1917 PageSearchStatus *pss = &ram_state->pss[RAM_CHANNEL_POSTCOPY]; 1918 int ret = 0; 1919 1920 qemu_mutex_lock(&rs->bitmap_mutex); 1921 1922 pss_init(pss, ramblock, page_start); 1923 /* 1924 * Always use the preempt channel, and make sure it's there. It's 1925 * safe to access without lock, because when rp-thread is running 1926 * we should be the only one who operates on the qemufile 1927 */ 1928 pss->pss_channel = migrate_get_current()->postcopy_qemufile_src; 1929 assert(pss->pss_channel); 1930 1931 /* 1932 * It must be either one or multiple of host page size. Just 1933 * assert; if something wrong we're mostly split brain anyway. 1934 */ 1935 assert(len % page_size == 0); 1936 while (len) { 1937 if (ram_save_host_page_urgent(pss)) { 1938 error_setg(errp, "ram_save_host_page_urgent() failed: " 1939 "ramblock=%s, start_addr=0x"RAM_ADDR_FMT, 1940 ramblock->idstr, start); 1941 ret = -1; 1942 break; 1943 } 1944 /* 1945 * NOTE: after ram_save_host_page_urgent() succeeded, pss->page 1946 * will automatically be moved and point to the next host page 1947 * we're going to send, so no need to update here. 1948 * 1949 * Normally QEMU never sends >1 host page in requests, so 1950 * logically we don't even need that as the loop should only 1951 * run once, but just to be consistent. 1952 */ 1953 len -= page_size; 1954 }; 1955 qemu_mutex_unlock(&rs->bitmap_mutex); 1956 1957 return ret; 1958 } 1959 1960 struct RAMSrcPageRequest *new_entry = 1961 g_new0(struct RAMSrcPageRequest, 1); 1962 new_entry->rb = ramblock; 1963 new_entry->offset = start; 1964 new_entry->len = len; 1965 1966 memory_region_ref(ramblock->mr); 1967 qemu_mutex_lock(&rs->src_page_req_mutex); 1968 QSIMPLEQ_INSERT_TAIL(&rs->src_page_requests, new_entry, next_req); 1969 migration_make_urgent_request(); 1970 qemu_mutex_unlock(&rs->src_page_req_mutex); 1971 1972 return 0; 1973 } 1974 1975 /** 1976 * ram_save_target_page: save one target page to the precopy thread 1977 * OR to multifd workers. 1978 * 1979 * @rs: current RAM state 1980 * @pss: data about the page we want to send 1981 */ 1982 static int ram_save_target_page(RAMState *rs, PageSearchStatus *pss) 1983 { 1984 ram_addr_t offset = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS; 1985 int res; 1986 1987 /* Hand over to RDMA first */ 1988 if (migrate_rdma()) { 1989 res = rdma_control_save_page(pss->pss_channel, pss->block->offset, 1990 offset, TARGET_PAGE_SIZE); 1991 1992 if (res == RAM_SAVE_CONTROL_DELAYED) { 1993 res = 1; 1994 } 1995 return res; 1996 } 1997 1998 if (!migrate_multifd() 1999 || migrate_zero_page_detection() == ZERO_PAGE_DETECTION_LEGACY) { 2000 if (save_zero_page(rs, pss, offset)) { 2001 return 1; 2002 } 2003 } 2004 2005 if (migrate_multifd() && !migration_in_postcopy()) { 2006 return ram_save_multifd_page(pss->block, offset); 2007 } 2008 2009 return ram_save_page(rs, pss); 2010 } 2011 2012 /* Should be called before sending a host page */ 2013 static void pss_host_page_prepare(PageSearchStatus *pss) 2014 { 2015 /* How many guest pages are there in one host page? */ 2016 size_t guest_pfns = qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS; 2017 2018 pss->host_page_sending = true; 2019 if (guest_pfns <= 1) { 2020 /* 2021 * This covers both when guest psize == host psize, or when guest 2022 * has larger psize than the host (guest_pfns==0). 2023 * 2024 * For the latter, we always send one whole guest page per 2025 * iteration of the host page (example: an Alpha VM on x86 host 2026 * will have guest psize 8K while host psize 4K). 2027 */ 2028 pss->host_page_start = pss->page; 2029 pss->host_page_end = pss->page + 1; 2030 } else { 2031 /* 2032 * The host page spans over multiple guest pages, we send them 2033 * within the same host page iteration. 2034 */ 2035 pss->host_page_start = ROUND_DOWN(pss->page, guest_pfns); 2036 pss->host_page_end = ROUND_UP(pss->page + 1, guest_pfns); 2037 } 2038 } 2039 2040 /* 2041 * Whether the page pointed by PSS is within the host page being sent. 2042 * Must be called after a previous pss_host_page_prepare(). 2043 */ 2044 static bool pss_within_range(PageSearchStatus *pss) 2045 { 2046 ram_addr_t ram_addr; 2047 2048 assert(pss->host_page_sending); 2049 2050 /* Over host-page boundary? */ 2051 if (pss->page >= pss->host_page_end) { 2052 return false; 2053 } 2054 2055 ram_addr = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS; 2056 2057 return offset_in_ramblock(pss->block, ram_addr); 2058 } 2059 2060 static void pss_host_page_finish(PageSearchStatus *pss) 2061 { 2062 pss->host_page_sending = false; 2063 /* This is not needed, but just to reset it */ 2064 pss->host_page_start = pss->host_page_end = 0; 2065 } 2066 2067 static void ram_page_hint_update(RAMState *rs, PageSearchStatus *pss) 2068 { 2069 PageLocationHint *hint = &rs->page_hint; 2070 2071 /* If there's a pending hint not consumed, don't bother */ 2072 if (hint->valid) { 2073 return; 2074 } 2075 2076 /* Provide a hint to the background stream otherwise */ 2077 hint->location.block = pss->block; 2078 hint->location.offset = pss->page; 2079 hint->valid = true; 2080 } 2081 2082 /* 2083 * Send an urgent host page specified by `pss'. Need to be called with 2084 * bitmap_mutex held. 2085 * 2086 * Returns 0 if save host page succeeded, false otherwise. 2087 */ 2088 static int ram_save_host_page_urgent(PageSearchStatus *pss) 2089 { 2090 bool page_dirty, sent = false; 2091 RAMState *rs = ram_state; 2092 int ret = 0; 2093 2094 trace_postcopy_preempt_send_host_page(pss->block->idstr, pss->page); 2095 pss_host_page_prepare(pss); 2096 2097 /* 2098 * If precopy is sending the same page, let it be done in precopy, or 2099 * we could send the same page in two channels and none of them will 2100 * receive the whole page. 2101 */ 2102 if (pss_overlap(pss, &ram_state->pss[RAM_CHANNEL_PRECOPY])) { 2103 trace_postcopy_preempt_hit(pss->block->idstr, 2104 pss->page << TARGET_PAGE_BITS); 2105 return 0; 2106 } 2107 2108 do { 2109 page_dirty = migration_bitmap_clear_dirty(rs, pss->block, pss->page); 2110 2111 if (page_dirty) { 2112 /* Be strict to return code; it must be 1, or what else? */ 2113 if (ram_save_target_page(rs, pss) != 1) { 2114 error_report_once("%s: ram_save_target_page failed", __func__); 2115 ret = -1; 2116 goto out; 2117 } 2118 sent = true; 2119 } 2120 pss_find_next_dirty(pss); 2121 } while (pss_within_range(pss)); 2122 out: 2123 pss_host_page_finish(pss); 2124 /* For urgent requests, flush immediately if sent */ 2125 if (sent) { 2126 qemu_fflush(pss->pss_channel); 2127 ram_page_hint_update(rs, pss); 2128 } 2129 return ret; 2130 } 2131 2132 /** 2133 * ram_save_host_page: save a whole host page 2134 * 2135 * Starting at *offset send pages up to the end of the current host 2136 * page. It's valid for the initial offset to point into the middle of 2137 * a host page in which case the remainder of the hostpage is sent. 2138 * Only dirty target pages are sent. Note that the host page size may 2139 * be a huge page for this block. 2140 * 2141 * The saving stops at the boundary of the used_length of the block 2142 * if the RAMBlock isn't a multiple of the host page size. 2143 * 2144 * The caller must be with ram_state.bitmap_mutex held to call this 2145 * function. Note that this function can temporarily release the lock, but 2146 * when the function is returned it'll make sure the lock is still held. 2147 * 2148 * Returns the number of pages written or negative on error 2149 * 2150 * @rs: current RAM state 2151 * @pss: data about the page we want to send 2152 */ 2153 static int ram_save_host_page(RAMState *rs, PageSearchStatus *pss) 2154 { 2155 bool page_dirty, preempt_active = postcopy_preempt_active(); 2156 int tmppages, pages = 0; 2157 size_t pagesize_bits = 2158 qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS; 2159 unsigned long start_page = pss->page; 2160 int res; 2161 2162 if (migrate_ram_is_ignored(pss->block)) { 2163 error_report("block %s should not be migrated !", pss->block->idstr); 2164 return 0; 2165 } 2166 2167 /* Update host page boundary information */ 2168 pss_host_page_prepare(pss); 2169 2170 do { 2171 page_dirty = migration_bitmap_clear_dirty(rs, pss->block, pss->page); 2172 2173 /* Check the pages is dirty and if it is send it */ 2174 if (page_dirty) { 2175 /* 2176 * Properly yield the lock only in postcopy preempt mode 2177 * because both migration thread and rp-return thread can 2178 * operate on the bitmaps. 2179 */ 2180 if (preempt_active) { 2181 qemu_mutex_unlock(&rs->bitmap_mutex); 2182 } 2183 tmppages = ram_save_target_page(rs, pss); 2184 if (tmppages >= 0) { 2185 pages += tmppages; 2186 /* 2187 * Allow rate limiting to happen in the middle of huge pages if 2188 * something is sent in the current iteration. 2189 */ 2190 if (pagesize_bits > 1 && tmppages > 0) { 2191 migration_rate_limit(); 2192 } 2193 } 2194 if (preempt_active) { 2195 qemu_mutex_lock(&rs->bitmap_mutex); 2196 } 2197 } else { 2198 tmppages = 0; 2199 } 2200 2201 if (tmppages < 0) { 2202 pss_host_page_finish(pss); 2203 return tmppages; 2204 } 2205 2206 pss_find_next_dirty(pss); 2207 } while (pss_within_range(pss)); 2208 2209 pss_host_page_finish(pss); 2210 2211 res = ram_save_release_protection(rs, pss, start_page); 2212 return (res < 0 ? res : pages); 2213 } 2214 2215 static bool ram_page_hint_valid(RAMState *rs) 2216 { 2217 /* There's only page hint during postcopy preempt mode */ 2218 if (!postcopy_preempt_active()) { 2219 return false; 2220 } 2221 2222 return rs->page_hint.valid; 2223 } 2224 2225 static void ram_page_hint_collect(RAMState *rs, RAMBlock **block, 2226 unsigned long *page) 2227 { 2228 PageLocationHint *hint = &rs->page_hint; 2229 2230 assert(hint->valid); 2231 2232 *block = hint->location.block; 2233 *page = hint->location.offset; 2234 2235 /* Mark the hint consumed */ 2236 hint->valid = false; 2237 } 2238 2239 /** 2240 * ram_find_and_save_block: finds a dirty page and sends it to f 2241 * 2242 * Called within an RCU critical section. 2243 * 2244 * Returns the number of pages written where zero means no dirty pages, 2245 * or negative on error 2246 * 2247 * @rs: current RAM state 2248 * 2249 * On systems where host-page-size > target-page-size it will send all the 2250 * pages in a host page that are dirty. 2251 */ 2252 static int ram_find_and_save_block(RAMState *rs) 2253 { 2254 PageSearchStatus *pss = &rs->pss[RAM_CHANNEL_PRECOPY]; 2255 unsigned long next_page; 2256 RAMBlock *next_block; 2257 int pages = 0; 2258 2259 /* No dirty page as there is zero RAM */ 2260 if (!rs->ram_bytes_total) { 2261 return pages; 2262 } 2263 2264 /* 2265 * Always keep last_seen_block/last_page valid during this procedure, 2266 * because find_dirty_block() relies on these values (e.g., we compare 2267 * last_seen_block with pss.block to see whether we searched all the 2268 * ramblocks) to detect the completion of migration. Having NULL value 2269 * of last_seen_block can conditionally cause below loop to run forever. 2270 */ 2271 if (!rs->last_seen_block) { 2272 rs->last_seen_block = QLIST_FIRST_RCU(&ram_list.blocks); 2273 rs->last_page = 0; 2274 } 2275 2276 if (ram_page_hint_valid(rs)) { 2277 ram_page_hint_collect(rs, &next_block, &next_page); 2278 } else { 2279 next_block = rs->last_seen_block; 2280 next_page = rs->last_page; 2281 } 2282 2283 pss_init(pss, next_block, next_page); 2284 2285 while (true){ 2286 if (!get_queued_page(rs, pss)) { 2287 /* priority queue empty, so just search for something dirty */ 2288 int res = find_dirty_block(rs, pss); 2289 if (res != PAGE_DIRTY_FOUND) { 2290 if (res == PAGE_ALL_CLEAN) { 2291 break; 2292 } else if (res == PAGE_TRY_AGAIN) { 2293 continue; 2294 } else if (res < 0) { 2295 pages = res; 2296 break; 2297 } 2298 } 2299 } 2300 pages = ram_save_host_page(rs, pss); 2301 if (pages) { 2302 break; 2303 } 2304 } 2305 2306 rs->last_seen_block = pss->block; 2307 rs->last_page = pss->page; 2308 2309 return pages; 2310 } 2311 2312 static uint64_t ram_bytes_total_with_ignored(void) 2313 { 2314 RAMBlock *block; 2315 uint64_t total = 0; 2316 2317 RCU_READ_LOCK_GUARD(); 2318 2319 RAMBLOCK_FOREACH_MIGRATABLE(block) { 2320 total += block->used_length; 2321 } 2322 return total; 2323 } 2324 2325 uint64_t ram_bytes_total(void) 2326 { 2327 RAMBlock *block; 2328 uint64_t total = 0; 2329 2330 RCU_READ_LOCK_GUARD(); 2331 2332 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 2333 total += block->used_length; 2334 } 2335 return total; 2336 } 2337 2338 static void xbzrle_load_setup(void) 2339 { 2340 XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE); 2341 } 2342 2343 static void xbzrle_load_cleanup(void) 2344 { 2345 g_free(XBZRLE.decoded_buf); 2346 XBZRLE.decoded_buf = NULL; 2347 } 2348 2349 static void ram_state_cleanup(RAMState **rsp) 2350 { 2351 if (*rsp) { 2352 migration_page_queue_free(*rsp); 2353 qemu_mutex_destroy(&(*rsp)->bitmap_mutex); 2354 qemu_mutex_destroy(&(*rsp)->src_page_req_mutex); 2355 g_free(*rsp); 2356 *rsp = NULL; 2357 } 2358 } 2359 2360 static void xbzrle_cleanup(void) 2361 { 2362 XBZRLE_cache_lock(); 2363 if (XBZRLE.cache) { 2364 cache_fini(XBZRLE.cache); 2365 g_free(XBZRLE.encoded_buf); 2366 g_free(XBZRLE.current_buf); 2367 g_free(XBZRLE.zero_target_page); 2368 XBZRLE.cache = NULL; 2369 XBZRLE.encoded_buf = NULL; 2370 XBZRLE.current_buf = NULL; 2371 XBZRLE.zero_target_page = NULL; 2372 } 2373 XBZRLE_cache_unlock(); 2374 } 2375 2376 static void ram_bitmaps_destroy(void) 2377 { 2378 RAMBlock *block; 2379 2380 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 2381 g_free(block->clear_bmap); 2382 block->clear_bmap = NULL; 2383 g_free(block->bmap); 2384 block->bmap = NULL; 2385 g_free(block->file_bmap); 2386 block->file_bmap = NULL; 2387 } 2388 } 2389 2390 static void ram_save_cleanup(void *opaque) 2391 { 2392 RAMState **rsp = opaque; 2393 2394 /* We don't use dirty log with background snapshots */ 2395 if (!migrate_background_snapshot()) { 2396 /* caller have hold BQL or is in a bh, so there is 2397 * no writing race against the migration bitmap 2398 */ 2399 if (global_dirty_tracking & GLOBAL_DIRTY_MIGRATION) { 2400 /* 2401 * do not stop dirty log without starting it, since 2402 * memory_global_dirty_log_stop will assert that 2403 * memory_global_dirty_log_start/stop used in pairs 2404 */ 2405 memory_global_dirty_log_stop(GLOBAL_DIRTY_MIGRATION); 2406 } 2407 } 2408 2409 ram_bitmaps_destroy(); 2410 2411 xbzrle_cleanup(); 2412 multifd_ram_save_cleanup(); 2413 ram_state_cleanup(rsp); 2414 } 2415 2416 static void ram_page_hint_reset(PageLocationHint *hint) 2417 { 2418 hint->location.block = NULL; 2419 hint->location.offset = 0; 2420 hint->valid = false; 2421 } 2422 2423 static void ram_state_reset(RAMState *rs) 2424 { 2425 int i; 2426 2427 for (i = 0; i < RAM_CHANNEL_MAX; i++) { 2428 rs->pss[i].last_sent_block = NULL; 2429 } 2430 2431 rs->last_seen_block = NULL; 2432 rs->last_page = 0; 2433 rs->last_version = ram_list.version; 2434 rs->xbzrle_started = false; 2435 2436 ram_page_hint_reset(&rs->page_hint); 2437 } 2438 2439 #define MAX_WAIT 50 /* ms, half buffered_file limit */ 2440 2441 /* **** functions for postcopy ***** */ 2442 2443 void ram_postcopy_migrated_memory_release(MigrationState *ms) 2444 { 2445 struct RAMBlock *block; 2446 2447 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 2448 unsigned long *bitmap = block->bmap; 2449 unsigned long range = block->used_length >> TARGET_PAGE_BITS; 2450 unsigned long run_start = find_next_zero_bit(bitmap, range, 0); 2451 2452 while (run_start < range) { 2453 unsigned long run_end = find_next_bit(bitmap, range, run_start + 1); 2454 ram_discard_range(block->idstr, 2455 ((ram_addr_t)run_start) << TARGET_PAGE_BITS, 2456 ((ram_addr_t)(run_end - run_start)) 2457 << TARGET_PAGE_BITS); 2458 run_start = find_next_zero_bit(bitmap, range, run_end + 1); 2459 } 2460 } 2461 } 2462 2463 /** 2464 * postcopy_send_discard_bm_ram: discard a RAMBlock 2465 * 2466 * Callback from postcopy_each_ram_send_discard for each RAMBlock 2467 * 2468 * @ms: current migration state 2469 * @block: RAMBlock to discard 2470 */ 2471 static void postcopy_send_discard_bm_ram(MigrationState *ms, RAMBlock *block) 2472 { 2473 unsigned long end = block->used_length >> TARGET_PAGE_BITS; 2474 unsigned long current; 2475 unsigned long *bitmap = block->bmap; 2476 2477 for (current = 0; current < end; ) { 2478 unsigned long one = find_next_bit(bitmap, end, current); 2479 unsigned long zero, discard_length; 2480 2481 if (one >= end) { 2482 break; 2483 } 2484 2485 zero = find_next_zero_bit(bitmap, end, one + 1); 2486 2487 if (zero >= end) { 2488 discard_length = end - one; 2489 } else { 2490 discard_length = zero - one; 2491 } 2492 postcopy_discard_send_range(ms, one, discard_length); 2493 current = one + discard_length; 2494 } 2495 } 2496 2497 static void postcopy_chunk_hostpages_pass(MigrationState *ms, RAMBlock *block); 2498 2499 /** 2500 * postcopy_each_ram_send_discard: discard all RAMBlocks 2501 * 2502 * Utility for the outgoing postcopy code. 2503 * Calls postcopy_send_discard_bm_ram for each RAMBlock 2504 * passing it bitmap indexes and name. 2505 * (qemu_ram_foreach_block ends up passing unscaled lengths 2506 * which would mean postcopy code would have to deal with target page) 2507 * 2508 * @ms: current migration state 2509 */ 2510 static void postcopy_each_ram_send_discard(MigrationState *ms) 2511 { 2512 struct RAMBlock *block; 2513 2514 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 2515 postcopy_discard_send_init(ms, block->idstr); 2516 2517 /* 2518 * Deal with TPS != HPS and huge pages. It discard any partially sent 2519 * host-page size chunks, mark any partially dirty host-page size 2520 * chunks as all dirty. In this case the host-page is the host-page 2521 * for the particular RAMBlock, i.e. it might be a huge page. 2522 */ 2523 postcopy_chunk_hostpages_pass(ms, block); 2524 2525 /* 2526 * Postcopy sends chunks of bitmap over the wire, but it 2527 * just needs indexes at this point, avoids it having 2528 * target page specific code. 2529 */ 2530 postcopy_send_discard_bm_ram(ms, block); 2531 postcopy_discard_send_finish(ms); 2532 } 2533 } 2534 2535 /** 2536 * postcopy_chunk_hostpages_pass: canonicalize bitmap in hostpages 2537 * 2538 * Helper for postcopy_chunk_hostpages; it's called twice to 2539 * canonicalize the two bitmaps, that are similar, but one is 2540 * inverted. 2541 * 2542 * Postcopy requires that all target pages in a hostpage are dirty or 2543 * clean, not a mix. This function canonicalizes the bitmaps. 2544 * 2545 * @ms: current migration state 2546 * @block: block that contains the page we want to canonicalize 2547 */ 2548 static void postcopy_chunk_hostpages_pass(MigrationState *ms, RAMBlock *block) 2549 { 2550 RAMState *rs = ram_state; 2551 unsigned long *bitmap = block->bmap; 2552 unsigned int host_ratio = block->page_size / TARGET_PAGE_SIZE; 2553 unsigned long pages = block->used_length >> TARGET_PAGE_BITS; 2554 unsigned long run_start; 2555 2556 if (block->page_size == TARGET_PAGE_SIZE) { 2557 /* Easy case - TPS==HPS for a non-huge page RAMBlock */ 2558 return; 2559 } 2560 2561 /* Find a dirty page */ 2562 run_start = find_next_bit(bitmap, pages, 0); 2563 2564 while (run_start < pages) { 2565 2566 /* 2567 * If the start of this run of pages is in the middle of a host 2568 * page, then we need to fixup this host page. 2569 */ 2570 if (QEMU_IS_ALIGNED(run_start, host_ratio)) { 2571 /* Find the end of this run */ 2572 run_start = find_next_zero_bit(bitmap, pages, run_start + 1); 2573 /* 2574 * If the end isn't at the start of a host page, then the 2575 * run doesn't finish at the end of a host page 2576 * and we need to discard. 2577 */ 2578 } 2579 2580 if (!QEMU_IS_ALIGNED(run_start, host_ratio)) { 2581 unsigned long page; 2582 unsigned long fixup_start_addr = QEMU_ALIGN_DOWN(run_start, 2583 host_ratio); 2584 run_start = QEMU_ALIGN_UP(run_start, host_ratio); 2585 2586 /* Clean up the bitmap */ 2587 for (page = fixup_start_addr; 2588 page < fixup_start_addr + host_ratio; page++) { 2589 /* 2590 * Remark them as dirty, updating the count for any pages 2591 * that weren't previously dirty. 2592 */ 2593 rs->migration_dirty_pages += !test_and_set_bit(page, bitmap); 2594 } 2595 } 2596 2597 /* Find the next dirty page for the next iteration */ 2598 run_start = find_next_bit(bitmap, pages, run_start); 2599 } 2600 } 2601 2602 /** 2603 * ram_postcopy_send_discard_bitmap: transmit the discard bitmap 2604 * 2605 * Transmit the set of pages to be discarded after precopy to the target 2606 * these are pages that: 2607 * a) Have been previously transmitted but are now dirty again 2608 * b) Pages that have never been transmitted, this ensures that 2609 * any pages on the destination that have been mapped by background 2610 * tasks get discarded (transparent huge pages is the specific concern) 2611 * Hopefully this is pretty sparse 2612 * 2613 * @ms: current migration state 2614 */ 2615 void ram_postcopy_send_discard_bitmap(MigrationState *ms) 2616 { 2617 RAMState *rs = ram_state; 2618 2619 RCU_READ_LOCK_GUARD(); 2620 2621 /* This should be our last sync, the src is now paused */ 2622 migration_bitmap_sync(rs, false); 2623 2624 /* Easiest way to make sure we don't resume in the middle of a host-page */ 2625 rs->pss[RAM_CHANNEL_PRECOPY].last_sent_block = NULL; 2626 rs->last_seen_block = NULL; 2627 rs->last_page = 0; 2628 2629 postcopy_each_ram_send_discard(ms); 2630 2631 trace_ram_postcopy_send_discard_bitmap(); 2632 } 2633 2634 /** 2635 * ram_discard_range: discard dirtied pages at the beginning of postcopy 2636 * 2637 * Returns zero on success 2638 * 2639 * @rbname: name of the RAMBlock of the request. NULL means the 2640 * same that last one. 2641 * @start: RAMBlock starting page 2642 * @length: RAMBlock size 2643 */ 2644 int ram_discard_range(const char *rbname, uint64_t start, size_t length) 2645 { 2646 trace_ram_discard_range(rbname, start, length); 2647 2648 RCU_READ_LOCK_GUARD(); 2649 RAMBlock *rb = qemu_ram_block_by_name(rbname); 2650 2651 if (!rb) { 2652 error_report("ram_discard_range: Failed to find block '%s'", rbname); 2653 return -1; 2654 } 2655 2656 /* 2657 * On source VM, we don't need to update the received bitmap since 2658 * we don't even have one. 2659 */ 2660 if (rb->receivedmap) { 2661 bitmap_clear(rb->receivedmap, start >> qemu_target_page_bits(), 2662 length >> qemu_target_page_bits()); 2663 } 2664 2665 return ram_block_discard_range(rb, start, length); 2666 } 2667 2668 /* 2669 * For every allocation, we will try not to crash the VM if the 2670 * allocation failed. 2671 */ 2672 static bool xbzrle_init(Error **errp) 2673 { 2674 if (!migrate_xbzrle()) { 2675 return true; 2676 } 2677 2678 XBZRLE_cache_lock(); 2679 2680 XBZRLE.zero_target_page = g_try_malloc0(TARGET_PAGE_SIZE); 2681 if (!XBZRLE.zero_target_page) { 2682 error_setg(errp, "%s: Error allocating zero page", __func__); 2683 goto err_out; 2684 } 2685 2686 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size(), 2687 TARGET_PAGE_SIZE, errp); 2688 if (!XBZRLE.cache) { 2689 goto free_zero_page; 2690 } 2691 2692 XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE); 2693 if (!XBZRLE.encoded_buf) { 2694 error_setg(errp, "%s: Error allocating encoded_buf", __func__); 2695 goto free_cache; 2696 } 2697 2698 XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE); 2699 if (!XBZRLE.current_buf) { 2700 error_setg(errp, "%s: Error allocating current_buf", __func__); 2701 goto free_encoded_buf; 2702 } 2703 2704 /* We are all good */ 2705 XBZRLE_cache_unlock(); 2706 return true; 2707 2708 free_encoded_buf: 2709 g_free(XBZRLE.encoded_buf); 2710 XBZRLE.encoded_buf = NULL; 2711 free_cache: 2712 cache_fini(XBZRLE.cache); 2713 XBZRLE.cache = NULL; 2714 free_zero_page: 2715 g_free(XBZRLE.zero_target_page); 2716 XBZRLE.zero_target_page = NULL; 2717 err_out: 2718 XBZRLE_cache_unlock(); 2719 return false; 2720 } 2721 2722 static bool ram_state_init(RAMState **rsp, Error **errp) 2723 { 2724 *rsp = g_try_new0(RAMState, 1); 2725 2726 if (!*rsp) { 2727 error_setg(errp, "%s: Init ramstate fail", __func__); 2728 return false; 2729 } 2730 2731 qemu_mutex_init(&(*rsp)->bitmap_mutex); 2732 qemu_mutex_init(&(*rsp)->src_page_req_mutex); 2733 QSIMPLEQ_INIT(&(*rsp)->src_page_requests); 2734 (*rsp)->ram_bytes_total = ram_bytes_total(); 2735 2736 /* 2737 * Count the total number of pages used by ram blocks not including any 2738 * gaps due to alignment or unplugs. 2739 * This must match with the initial values of dirty bitmap. 2740 */ 2741 (*rsp)->migration_dirty_pages = (*rsp)->ram_bytes_total >> TARGET_PAGE_BITS; 2742 ram_state_reset(*rsp); 2743 2744 return true; 2745 } 2746 2747 static void ram_list_init_bitmaps(void) 2748 { 2749 MigrationState *ms = migrate_get_current(); 2750 RAMBlock *block; 2751 unsigned long pages; 2752 uint8_t shift; 2753 2754 /* Skip setting bitmap if there is no RAM */ 2755 if (ram_bytes_total()) { 2756 shift = ms->clear_bitmap_shift; 2757 if (shift > CLEAR_BITMAP_SHIFT_MAX) { 2758 error_report("clear_bitmap_shift (%u) too big, using " 2759 "max value (%u)", shift, CLEAR_BITMAP_SHIFT_MAX); 2760 shift = CLEAR_BITMAP_SHIFT_MAX; 2761 } else if (shift < CLEAR_BITMAP_SHIFT_MIN) { 2762 error_report("clear_bitmap_shift (%u) too small, using " 2763 "min value (%u)", shift, CLEAR_BITMAP_SHIFT_MIN); 2764 shift = CLEAR_BITMAP_SHIFT_MIN; 2765 } 2766 2767 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 2768 pages = block->max_length >> TARGET_PAGE_BITS; 2769 /* 2770 * The initial dirty bitmap for migration must be set with all 2771 * ones to make sure we'll migrate every guest RAM page to 2772 * destination. 2773 * Here we set RAMBlock.bmap all to 1 because when rebegin a 2774 * new migration after a failed migration, ram_list. 2775 * dirty_memory[DIRTY_MEMORY_MIGRATION] don't include the whole 2776 * guest memory. 2777 */ 2778 block->bmap = bitmap_new(pages); 2779 bitmap_set(block->bmap, 0, pages); 2780 if (migrate_mapped_ram()) { 2781 block->file_bmap = bitmap_new(pages); 2782 } 2783 block->clear_bmap_shift = shift; 2784 block->clear_bmap = bitmap_new(clear_bmap_size(pages, shift)); 2785 } 2786 } 2787 } 2788 2789 static void migration_bitmap_clear_discarded_pages(RAMState *rs) 2790 { 2791 unsigned long pages; 2792 RAMBlock *rb; 2793 2794 RCU_READ_LOCK_GUARD(); 2795 2796 RAMBLOCK_FOREACH_NOT_IGNORED(rb) { 2797 pages = ramblock_dirty_bitmap_clear_discarded_pages(rb); 2798 rs->migration_dirty_pages -= pages; 2799 } 2800 } 2801 2802 static bool ram_init_bitmaps(RAMState *rs, Error **errp) 2803 { 2804 bool ret = true; 2805 2806 qemu_mutex_lock_ramlist(); 2807 2808 WITH_RCU_READ_LOCK_GUARD() { 2809 ram_list_init_bitmaps(); 2810 /* We don't use dirty log with background snapshots */ 2811 if (!migrate_background_snapshot()) { 2812 ret = memory_global_dirty_log_start(GLOBAL_DIRTY_MIGRATION, errp); 2813 if (!ret) { 2814 goto out_unlock; 2815 } 2816 migration_bitmap_sync_precopy(false); 2817 } 2818 } 2819 out_unlock: 2820 qemu_mutex_unlock_ramlist(); 2821 2822 if (!ret) { 2823 ram_bitmaps_destroy(); 2824 return false; 2825 } 2826 2827 /* 2828 * After an eventual first bitmap sync, fixup the initial bitmap 2829 * containing all 1s to exclude any discarded pages from migration. 2830 */ 2831 migration_bitmap_clear_discarded_pages(rs); 2832 return true; 2833 } 2834 2835 static int ram_init_all(RAMState **rsp, Error **errp) 2836 { 2837 if (!ram_state_init(rsp, errp)) { 2838 return -1; 2839 } 2840 2841 if (!xbzrle_init(errp)) { 2842 ram_state_cleanup(rsp); 2843 return -1; 2844 } 2845 2846 if (!ram_init_bitmaps(*rsp, errp)) { 2847 return -1; 2848 } 2849 2850 return 0; 2851 } 2852 2853 static void ram_state_resume_prepare(RAMState *rs, QEMUFile *out) 2854 { 2855 RAMBlock *block; 2856 uint64_t pages = 0; 2857 2858 /* 2859 * Postcopy is not using xbzrle/compression, so no need for that. 2860 * Also, since source are already halted, we don't need to care 2861 * about dirty page logging as well. 2862 */ 2863 2864 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 2865 pages += bitmap_count_one(block->bmap, 2866 block->used_length >> TARGET_PAGE_BITS); 2867 } 2868 2869 /* This may not be aligned with current bitmaps. Recalculate. */ 2870 rs->migration_dirty_pages = pages; 2871 2872 ram_state_reset(rs); 2873 2874 /* Update RAMState cache of output QEMUFile */ 2875 rs->pss[RAM_CHANNEL_PRECOPY].pss_channel = out; 2876 2877 trace_ram_state_resume_prepare(pages); 2878 } 2879 2880 /* 2881 * This function clears bits of the free pages reported by the caller from the 2882 * migration dirty bitmap. @addr is the host address corresponding to the 2883 * start of the continuous guest free pages, and @len is the total bytes of 2884 * those pages. 2885 */ 2886 void qemu_guest_free_page_hint(void *addr, size_t len) 2887 { 2888 RAMBlock *block; 2889 ram_addr_t offset; 2890 size_t used_len, start, npages; 2891 2892 /* This function is currently expected to be used during live migration */ 2893 if (!migration_is_running()) { 2894 return; 2895 } 2896 2897 for (; len > 0; len -= used_len, addr += used_len) { 2898 block = qemu_ram_block_from_host(addr, false, &offset); 2899 if (unlikely(!block || offset >= block->used_length)) { 2900 /* 2901 * The implementation might not support RAMBlock resize during 2902 * live migration, but it could happen in theory with future 2903 * updates. So we add a check here to capture that case. 2904 */ 2905 error_report_once("%s unexpected error", __func__); 2906 return; 2907 } 2908 2909 if (len <= block->used_length - offset) { 2910 used_len = len; 2911 } else { 2912 used_len = block->used_length - offset; 2913 } 2914 2915 start = offset >> TARGET_PAGE_BITS; 2916 npages = used_len >> TARGET_PAGE_BITS; 2917 2918 qemu_mutex_lock(&ram_state->bitmap_mutex); 2919 /* 2920 * The skipped free pages are equavalent to be sent from clear_bmap's 2921 * perspective, so clear the bits from the memory region bitmap which 2922 * are initially set. Otherwise those skipped pages will be sent in 2923 * the next round after syncing from the memory region bitmap. 2924 */ 2925 migration_clear_memory_region_dirty_bitmap_range(block, start, npages); 2926 ram_state->migration_dirty_pages -= 2927 bitmap_count_one_with_offset(block->bmap, start, npages); 2928 bitmap_clear(block->bmap, start, npages); 2929 qemu_mutex_unlock(&ram_state->bitmap_mutex); 2930 } 2931 } 2932 2933 #define MAPPED_RAM_HDR_VERSION 1 2934 struct MappedRamHeader { 2935 uint32_t version; 2936 /* 2937 * The target's page size, so we know how many pages are in the 2938 * bitmap. 2939 */ 2940 uint64_t page_size; 2941 /* 2942 * The offset in the migration file where the pages bitmap is 2943 * stored. 2944 */ 2945 uint64_t bitmap_offset; 2946 /* 2947 * The offset in the migration file where the actual pages (data) 2948 * are stored. 2949 */ 2950 uint64_t pages_offset; 2951 } QEMU_PACKED; 2952 typedef struct MappedRamHeader MappedRamHeader; 2953 2954 static void mapped_ram_setup_ramblock(QEMUFile *file, RAMBlock *block) 2955 { 2956 g_autofree MappedRamHeader *header = NULL; 2957 size_t header_size, bitmap_size; 2958 long num_pages; 2959 2960 header = g_new0(MappedRamHeader, 1); 2961 header_size = sizeof(MappedRamHeader); 2962 2963 num_pages = block->used_length >> TARGET_PAGE_BITS; 2964 bitmap_size = BITS_TO_LONGS(num_pages) * sizeof(unsigned long); 2965 2966 /* 2967 * Save the file offsets of where the bitmap and the pages should 2968 * go as they are written at the end of migration and during the 2969 * iterative phase, respectively. 2970 */ 2971 block->bitmap_offset = qemu_get_offset(file) + header_size; 2972 block->pages_offset = ROUND_UP(block->bitmap_offset + 2973 bitmap_size, 2974 MAPPED_RAM_FILE_OFFSET_ALIGNMENT); 2975 2976 header->version = cpu_to_be32(MAPPED_RAM_HDR_VERSION); 2977 header->page_size = cpu_to_be64(TARGET_PAGE_SIZE); 2978 header->bitmap_offset = cpu_to_be64(block->bitmap_offset); 2979 header->pages_offset = cpu_to_be64(block->pages_offset); 2980 2981 qemu_put_buffer(file, (uint8_t *) header, header_size); 2982 2983 /* prepare offset for next ramblock */ 2984 qemu_set_offset(file, block->pages_offset + block->used_length, SEEK_SET); 2985 } 2986 2987 static bool mapped_ram_read_header(QEMUFile *file, MappedRamHeader *header, 2988 Error **errp) 2989 { 2990 size_t ret, header_size = sizeof(MappedRamHeader); 2991 2992 ret = qemu_get_buffer(file, (uint8_t *)header, header_size); 2993 if (ret != header_size) { 2994 error_setg(errp, "Could not read whole mapped-ram migration header " 2995 "(expected %zd, got %zd bytes)", header_size, ret); 2996 return false; 2997 } 2998 2999 /* migration stream is big-endian */ 3000 header->version = be32_to_cpu(header->version); 3001 3002 if (header->version > MAPPED_RAM_HDR_VERSION) { 3003 error_setg(errp, "Migration mapped-ram capability version not " 3004 "supported (expected <= %d, got %d)", MAPPED_RAM_HDR_VERSION, 3005 header->version); 3006 return false; 3007 } 3008 3009 header->page_size = be64_to_cpu(header->page_size); 3010 header->bitmap_offset = be64_to_cpu(header->bitmap_offset); 3011 header->pages_offset = be64_to_cpu(header->pages_offset); 3012 3013 return true; 3014 } 3015 3016 /* 3017 * Each of ram_save_setup, ram_save_iterate and ram_save_complete has 3018 * long-running RCU critical section. When rcu-reclaims in the code 3019 * start to become numerous it will be necessary to reduce the 3020 * granularity of these critical sections. 3021 */ 3022 3023 /** 3024 * ram_save_setup: Setup RAM for migration 3025 * 3026 * Returns zero to indicate success and negative for error 3027 * 3028 * @f: QEMUFile where to send the data 3029 * @opaque: RAMState pointer 3030 * @errp: pointer to Error*, to store an error if it happens. 3031 */ 3032 static int ram_save_setup(QEMUFile *f, void *opaque, Error **errp) 3033 { 3034 RAMState **rsp = opaque; 3035 RAMBlock *block; 3036 int ret, max_hg_page_size; 3037 3038 /* migration has already setup the bitmap, reuse it. */ 3039 if (!migration_in_colo_state()) { 3040 if (ram_init_all(rsp, errp) != 0) { 3041 return -1; 3042 } 3043 } 3044 (*rsp)->pss[RAM_CHANNEL_PRECOPY].pss_channel = f; 3045 3046 /* 3047 * ??? Mirrors the previous value of qemu_host_page_size, 3048 * but is this really what was intended for the migration? 3049 */ 3050 max_hg_page_size = MAX(qemu_real_host_page_size(), TARGET_PAGE_SIZE); 3051 3052 WITH_RCU_READ_LOCK_GUARD() { 3053 qemu_put_be64(f, ram_bytes_total_with_ignored() 3054 | RAM_SAVE_FLAG_MEM_SIZE); 3055 3056 RAMBLOCK_FOREACH_MIGRATABLE(block) { 3057 qemu_put_byte(f, strlen(block->idstr)); 3058 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr)); 3059 qemu_put_be64(f, block->used_length); 3060 if (migrate_postcopy_ram() && 3061 block->page_size != max_hg_page_size) { 3062 qemu_put_be64(f, block->page_size); 3063 } 3064 if (migrate_ignore_shared()) { 3065 qemu_put_be64(f, block->mr->addr); 3066 } 3067 3068 if (migrate_mapped_ram()) { 3069 mapped_ram_setup_ramblock(f, block); 3070 } 3071 } 3072 } 3073 3074 ret = rdma_registration_start(f, RAM_CONTROL_SETUP); 3075 if (ret < 0) { 3076 error_setg(errp, "%s: failed to start RDMA registration", __func__); 3077 qemu_file_set_error(f, ret); 3078 return ret; 3079 } 3080 3081 ret = rdma_registration_stop(f, RAM_CONTROL_SETUP); 3082 if (ret < 0) { 3083 error_setg(errp, "%s: failed to stop RDMA registration", __func__); 3084 qemu_file_set_error(f, ret); 3085 return ret; 3086 } 3087 3088 if (migrate_multifd()) { 3089 multifd_ram_save_setup(); 3090 } 3091 3092 /* 3093 * This operation is unfortunate.. 3094 * 3095 * For legacy QEMUs using per-section sync 3096 * ======================================= 3097 * 3098 * This must exist because the EOS below requires the SYNC messages 3099 * per-channel to work. 3100 * 3101 * For modern QEMUs using per-round sync 3102 * ===================================== 3103 * 3104 * Logically such sync is not needed, and recv threads should not run 3105 * until setup ready (using things like channels_ready on src). Then 3106 * we should be all fine. 3107 * 3108 * However even if we add channels_ready to recv side in new QEMUs, old 3109 * QEMU won't have them so this sync will still be needed to make sure 3110 * multifd recv threads won't start processing guest pages early before 3111 * ram_load_setup() is properly done. 3112 * 3113 * Let's stick with this. Fortunately the overhead is low to sync 3114 * during setup because the VM is running, so at least it's not 3115 * accounted as part of downtime. 3116 */ 3117 bql_unlock(); 3118 ret = multifd_ram_flush_and_sync(f); 3119 bql_lock(); 3120 if (ret < 0) { 3121 error_setg(errp, "%s: multifd synchronization failed", __func__); 3122 return ret; 3123 } 3124 3125 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 3126 ret = qemu_fflush(f); 3127 if (ret < 0) { 3128 error_setg_errno(errp, -ret, "%s failed", __func__); 3129 } 3130 return ret; 3131 } 3132 3133 static void ram_save_file_bmap(QEMUFile *f) 3134 { 3135 RAMBlock *block; 3136 3137 RAMBLOCK_FOREACH_MIGRATABLE(block) { 3138 long num_pages = block->used_length >> TARGET_PAGE_BITS; 3139 long bitmap_size = BITS_TO_LONGS(num_pages) * sizeof(unsigned long); 3140 3141 qemu_put_buffer_at(f, (uint8_t *)block->file_bmap, bitmap_size, 3142 block->bitmap_offset); 3143 ram_transferred_add(bitmap_size); 3144 3145 /* 3146 * Free the bitmap here to catch any synchronization issues 3147 * with multifd channels. No channels should be sending pages 3148 * after we've written the bitmap to file. 3149 */ 3150 g_free(block->file_bmap); 3151 block->file_bmap = NULL; 3152 } 3153 } 3154 3155 void ramblock_set_file_bmap_atomic(RAMBlock *block, ram_addr_t offset, bool set) 3156 { 3157 if (set) { 3158 set_bit_atomic(offset >> TARGET_PAGE_BITS, block->file_bmap); 3159 } else { 3160 clear_bit_atomic(offset >> TARGET_PAGE_BITS, block->file_bmap); 3161 } 3162 } 3163 3164 /** 3165 * ram_save_iterate: iterative stage for migration 3166 * 3167 * Returns zero to indicate success and negative for error 3168 * 3169 * @f: QEMUFile where to send the data 3170 * @opaque: RAMState pointer 3171 */ 3172 static int ram_save_iterate(QEMUFile *f, void *opaque) 3173 { 3174 RAMState **temp = opaque; 3175 RAMState *rs = *temp; 3176 int ret = 0; 3177 int i; 3178 int64_t t0; 3179 int done = 0; 3180 3181 /* 3182 * We'll take this lock a little bit long, but it's okay for two reasons. 3183 * Firstly, the only possible other thread to take it is who calls 3184 * qemu_guest_free_page_hint(), which should be rare; secondly, see 3185 * MAX_WAIT (if curious, further see commit 4508bd9ed8053ce) below, which 3186 * guarantees that we'll at least released it in a regular basis. 3187 */ 3188 WITH_QEMU_LOCK_GUARD(&rs->bitmap_mutex) { 3189 WITH_RCU_READ_LOCK_GUARD() { 3190 if (ram_list.version != rs->last_version) { 3191 ram_state_reset(rs); 3192 } 3193 3194 /* Read version before ram_list.blocks */ 3195 smp_rmb(); 3196 3197 ret = rdma_registration_start(f, RAM_CONTROL_ROUND); 3198 if (ret < 0) { 3199 qemu_file_set_error(f, ret); 3200 goto out; 3201 } 3202 3203 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 3204 i = 0; 3205 while ((ret = migration_rate_exceeded(f)) == 0 || 3206 postcopy_has_request(rs)) { 3207 int pages; 3208 3209 if (qemu_file_get_error(f)) { 3210 break; 3211 } 3212 3213 pages = ram_find_and_save_block(rs); 3214 /* no more pages to sent */ 3215 if (pages == 0) { 3216 done = 1; 3217 break; 3218 } 3219 3220 if (pages < 0) { 3221 qemu_file_set_error(f, pages); 3222 break; 3223 } 3224 3225 rs->target_page_count += pages; 3226 3227 /* 3228 * we want to check in the 1st loop, just in case it was the 1st 3229 * time and we had to sync the dirty bitmap. 3230 * qemu_clock_get_ns() is a bit expensive, so we only check each 3231 * some iterations 3232 */ 3233 if ((i & 63) == 0) { 3234 uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) / 3235 1000000; 3236 if (t1 > MAX_WAIT) { 3237 trace_ram_save_iterate_big_wait(t1, i); 3238 break; 3239 } 3240 } 3241 i++; 3242 } 3243 } 3244 } 3245 3246 /* 3247 * Must occur before EOS (or any QEMUFile operation) 3248 * because of RDMA protocol. 3249 */ 3250 ret = rdma_registration_stop(f, RAM_CONTROL_ROUND); 3251 if (ret < 0) { 3252 qemu_file_set_error(f, ret); 3253 } 3254 3255 out: 3256 if (ret >= 0 && migration_is_running()) { 3257 if (multifd_ram_sync_per_section()) { 3258 ret = multifd_ram_flush_and_sync(f); 3259 if (ret < 0) { 3260 return ret; 3261 } 3262 } 3263 3264 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 3265 ram_transferred_add(8); 3266 ret = qemu_fflush(f); 3267 } 3268 if (ret < 0) { 3269 return ret; 3270 } 3271 3272 return done; 3273 } 3274 3275 /** 3276 * ram_save_complete: function called to send the remaining amount of ram 3277 * 3278 * Returns zero to indicate success or negative on error 3279 * 3280 * Called with the BQL 3281 * 3282 * @f: QEMUFile where to send the data 3283 * @opaque: RAMState pointer 3284 */ 3285 static int ram_save_complete(QEMUFile *f, void *opaque) 3286 { 3287 RAMState **temp = opaque; 3288 RAMState *rs = *temp; 3289 int ret = 0; 3290 3291 rs->last_stage = !migration_in_colo_state(); 3292 3293 WITH_RCU_READ_LOCK_GUARD() { 3294 if (!migration_in_postcopy()) { 3295 migration_bitmap_sync_precopy(true); 3296 } 3297 3298 ret = rdma_registration_start(f, RAM_CONTROL_FINISH); 3299 if (ret < 0) { 3300 qemu_file_set_error(f, ret); 3301 return ret; 3302 } 3303 3304 /* try transferring iterative blocks of memory */ 3305 3306 /* flush all remaining blocks regardless of rate limiting */ 3307 qemu_mutex_lock(&rs->bitmap_mutex); 3308 while (true) { 3309 int pages; 3310 3311 pages = ram_find_and_save_block(rs); 3312 /* no more blocks to sent */ 3313 if (pages == 0) { 3314 break; 3315 } 3316 if (pages < 0) { 3317 qemu_mutex_unlock(&rs->bitmap_mutex); 3318 return pages; 3319 } 3320 } 3321 qemu_mutex_unlock(&rs->bitmap_mutex); 3322 3323 ret = rdma_registration_stop(f, RAM_CONTROL_FINISH); 3324 if (ret < 0) { 3325 qemu_file_set_error(f, ret); 3326 return ret; 3327 } 3328 } 3329 3330 if (multifd_ram_sync_per_section()) { 3331 /* 3332 * Only the old dest QEMU will need this sync, because each EOS 3333 * will require one SYNC message on each channel. 3334 */ 3335 ret = multifd_ram_flush_and_sync(f); 3336 if (ret < 0) { 3337 return ret; 3338 } 3339 } 3340 3341 if (migrate_mapped_ram()) { 3342 ram_save_file_bmap(f); 3343 3344 if (qemu_file_get_error(f)) { 3345 Error *local_err = NULL; 3346 int err = qemu_file_get_error_obj(f, &local_err); 3347 3348 error_reportf_err(local_err, "Failed to write bitmap to file: "); 3349 return -err; 3350 } 3351 } 3352 3353 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 3354 return qemu_fflush(f); 3355 } 3356 3357 static void ram_state_pending_estimate(void *opaque, uint64_t *must_precopy, 3358 uint64_t *can_postcopy) 3359 { 3360 RAMState **temp = opaque; 3361 RAMState *rs = *temp; 3362 3363 uint64_t remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE; 3364 3365 if (migrate_postcopy_ram()) { 3366 /* We can do postcopy, and all the data is postcopiable */ 3367 *can_postcopy += remaining_size; 3368 } else { 3369 *must_precopy += remaining_size; 3370 } 3371 } 3372 3373 static void ram_state_pending_exact(void *opaque, uint64_t *must_precopy, 3374 uint64_t *can_postcopy) 3375 { 3376 RAMState **temp = opaque; 3377 RAMState *rs = *temp; 3378 uint64_t remaining_size; 3379 3380 if (!migration_in_postcopy()) { 3381 bql_lock(); 3382 WITH_RCU_READ_LOCK_GUARD() { 3383 migration_bitmap_sync_precopy(false); 3384 } 3385 bql_unlock(); 3386 } 3387 3388 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE; 3389 3390 if (migrate_postcopy_ram()) { 3391 /* We can do postcopy, and all the data is postcopiable */ 3392 *can_postcopy += remaining_size; 3393 } else { 3394 *must_precopy += remaining_size; 3395 } 3396 } 3397 3398 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host) 3399 { 3400 unsigned int xh_len; 3401 int xh_flags; 3402 uint8_t *loaded_data; 3403 3404 /* extract RLE header */ 3405 xh_flags = qemu_get_byte(f); 3406 xh_len = qemu_get_be16(f); 3407 3408 if (xh_flags != ENCODING_FLAG_XBZRLE) { 3409 error_report("Failed to load XBZRLE page - wrong compression!"); 3410 return -1; 3411 } 3412 3413 if (xh_len > TARGET_PAGE_SIZE) { 3414 error_report("Failed to load XBZRLE page - len overflow!"); 3415 return -1; 3416 } 3417 loaded_data = XBZRLE.decoded_buf; 3418 /* load data and decode */ 3419 /* it can change loaded_data to point to an internal buffer */ 3420 qemu_get_buffer_in_place(f, &loaded_data, xh_len); 3421 3422 /* decode RLE */ 3423 if (xbzrle_decode_buffer(loaded_data, xh_len, host, 3424 TARGET_PAGE_SIZE) == -1) { 3425 error_report("Failed to load XBZRLE page - decode error!"); 3426 return -1; 3427 } 3428 3429 return 0; 3430 } 3431 3432 /** 3433 * ram_block_from_stream: read a RAMBlock id from the migration stream 3434 * 3435 * Must be called from within a rcu critical section. 3436 * 3437 * Returns a pointer from within the RCU-protected ram_list. 3438 * 3439 * @mis: the migration incoming state pointer 3440 * @f: QEMUFile where to read the data from 3441 * @flags: Page flags (mostly to see if it's a continuation of previous block) 3442 * @channel: the channel we're using 3443 */ 3444 static inline RAMBlock *ram_block_from_stream(MigrationIncomingState *mis, 3445 QEMUFile *f, int flags, 3446 int channel) 3447 { 3448 RAMBlock *block = mis->last_recv_block[channel]; 3449 char id[256]; 3450 uint8_t len; 3451 3452 if (flags & RAM_SAVE_FLAG_CONTINUE) { 3453 if (!block) { 3454 error_report("Ack, bad migration stream!"); 3455 return NULL; 3456 } 3457 return block; 3458 } 3459 3460 len = qemu_get_byte(f); 3461 qemu_get_buffer(f, (uint8_t *)id, len); 3462 id[len] = 0; 3463 3464 block = qemu_ram_block_by_name(id); 3465 if (!block) { 3466 error_report("Can't find block %s", id); 3467 return NULL; 3468 } 3469 3470 if (migrate_ram_is_ignored(block)) { 3471 error_report("block %s should not be migrated !", id); 3472 return NULL; 3473 } 3474 3475 mis->last_recv_block[channel] = block; 3476 3477 return block; 3478 } 3479 3480 static inline void *host_from_ram_block_offset(RAMBlock *block, 3481 ram_addr_t offset) 3482 { 3483 if (!offset_in_ramblock(block, offset)) { 3484 return NULL; 3485 } 3486 3487 return block->host + offset; 3488 } 3489 3490 static void *host_page_from_ram_block_offset(RAMBlock *block, 3491 ram_addr_t offset) 3492 { 3493 /* Note: Explicitly no check against offset_in_ramblock(). */ 3494 return (void *)QEMU_ALIGN_DOWN((uintptr_t)(block->host + offset), 3495 block->page_size); 3496 } 3497 3498 static ram_addr_t host_page_offset_from_ram_block_offset(RAMBlock *block, 3499 ram_addr_t offset) 3500 { 3501 return ((uintptr_t)block->host + offset) & (block->page_size - 1); 3502 } 3503 3504 void colo_record_bitmap(RAMBlock *block, ram_addr_t *normal, uint32_t pages) 3505 { 3506 qemu_mutex_lock(&ram_state->bitmap_mutex); 3507 for (int i = 0; i < pages; i++) { 3508 ram_addr_t offset = normal[i]; 3509 ram_state->migration_dirty_pages += !test_and_set_bit( 3510 offset >> TARGET_PAGE_BITS, 3511 block->bmap); 3512 } 3513 qemu_mutex_unlock(&ram_state->bitmap_mutex); 3514 } 3515 3516 static inline void *colo_cache_from_block_offset(RAMBlock *block, 3517 ram_addr_t offset, bool record_bitmap) 3518 { 3519 if (!offset_in_ramblock(block, offset)) { 3520 return NULL; 3521 } 3522 if (!block->colo_cache) { 3523 error_report("%s: colo_cache is NULL in block :%s", 3524 __func__, block->idstr); 3525 return NULL; 3526 } 3527 3528 /* 3529 * During colo checkpoint, we need bitmap of these migrated pages. 3530 * It help us to decide which pages in ram cache should be flushed 3531 * into VM's RAM later. 3532 */ 3533 if (record_bitmap) { 3534 colo_record_bitmap(block, &offset, 1); 3535 } 3536 return block->colo_cache + offset; 3537 } 3538 3539 /** 3540 * ram_handle_zero: handle the zero page case 3541 * 3542 * If a page (or a whole RDMA chunk) has been 3543 * determined to be zero, then zap it. 3544 * 3545 * @host: host address for the zero page 3546 * @ch: what the page is filled from. We only support zero 3547 * @size: size of the zero page 3548 */ 3549 void ram_handle_zero(void *host, uint64_t size) 3550 { 3551 if (!buffer_is_zero(host, size)) { 3552 memset(host, 0, size); 3553 } 3554 } 3555 3556 static void colo_init_ram_state(void) 3557 { 3558 Error *local_err = NULL; 3559 3560 if (!ram_state_init(&ram_state, &local_err)) { 3561 error_report_err(local_err); 3562 } 3563 } 3564 3565 /* 3566 * colo cache: this is for secondary VM, we cache the whole 3567 * memory of the secondary VM, it is need to hold the global lock 3568 * to call this helper. 3569 */ 3570 int colo_init_ram_cache(void) 3571 { 3572 RAMBlock *block; 3573 3574 WITH_RCU_READ_LOCK_GUARD() { 3575 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3576 block->colo_cache = qemu_anon_ram_alloc(block->used_length, 3577 NULL, false, false); 3578 if (!block->colo_cache) { 3579 error_report("%s: Can't alloc memory for COLO cache of block %s," 3580 "size 0x" RAM_ADDR_FMT, __func__, block->idstr, 3581 block->used_length); 3582 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3583 if (block->colo_cache) { 3584 qemu_anon_ram_free(block->colo_cache, block->used_length); 3585 block->colo_cache = NULL; 3586 } 3587 } 3588 return -errno; 3589 } 3590 if (!machine_dump_guest_core(current_machine)) { 3591 qemu_madvise(block->colo_cache, block->used_length, 3592 QEMU_MADV_DONTDUMP); 3593 } 3594 } 3595 } 3596 3597 /* 3598 * Record the dirty pages that sent by PVM, we use this dirty bitmap together 3599 * with to decide which page in cache should be flushed into SVM's RAM. Here 3600 * we use the same name 'ram_bitmap' as for migration. 3601 */ 3602 if (ram_bytes_total()) { 3603 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3604 unsigned long pages = block->max_length >> TARGET_PAGE_BITS; 3605 block->bmap = bitmap_new(pages); 3606 } 3607 } 3608 3609 colo_init_ram_state(); 3610 return 0; 3611 } 3612 3613 /* TODO: duplicated with ram_init_bitmaps */ 3614 void colo_incoming_start_dirty_log(void) 3615 { 3616 RAMBlock *block = NULL; 3617 Error *local_err = NULL; 3618 3619 /* For memory_global_dirty_log_start below. */ 3620 bql_lock(); 3621 qemu_mutex_lock_ramlist(); 3622 3623 memory_global_dirty_log_sync(false); 3624 WITH_RCU_READ_LOCK_GUARD() { 3625 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3626 ramblock_sync_dirty_bitmap(ram_state, block); 3627 /* Discard this dirty bitmap record */ 3628 bitmap_zero(block->bmap, block->max_length >> TARGET_PAGE_BITS); 3629 } 3630 if (!memory_global_dirty_log_start(GLOBAL_DIRTY_MIGRATION, 3631 &local_err)) { 3632 error_report_err(local_err); 3633 } 3634 } 3635 ram_state->migration_dirty_pages = 0; 3636 qemu_mutex_unlock_ramlist(); 3637 bql_unlock(); 3638 } 3639 3640 /* It is need to hold the global lock to call this helper */ 3641 void colo_release_ram_cache(void) 3642 { 3643 RAMBlock *block; 3644 3645 memory_global_dirty_log_stop(GLOBAL_DIRTY_MIGRATION); 3646 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3647 g_free(block->bmap); 3648 block->bmap = NULL; 3649 } 3650 3651 WITH_RCU_READ_LOCK_GUARD() { 3652 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3653 if (block->colo_cache) { 3654 qemu_anon_ram_free(block->colo_cache, block->used_length); 3655 block->colo_cache = NULL; 3656 } 3657 } 3658 } 3659 ram_state_cleanup(&ram_state); 3660 } 3661 3662 /** 3663 * ram_load_setup: Setup RAM for migration incoming side 3664 * 3665 * Returns zero to indicate success and negative for error 3666 * 3667 * @f: QEMUFile where to receive the data 3668 * @opaque: RAMState pointer 3669 * @errp: pointer to Error*, to store an error if it happens. 3670 */ 3671 static int ram_load_setup(QEMUFile *f, void *opaque, Error **errp) 3672 { 3673 xbzrle_load_setup(); 3674 ramblock_recv_map_init(); 3675 3676 return 0; 3677 } 3678 3679 static int ram_load_cleanup(void *opaque) 3680 { 3681 RAMBlock *rb; 3682 3683 RAMBLOCK_FOREACH_NOT_IGNORED(rb) { 3684 if (memory_region_is_nonvolatile(rb->mr)) { 3685 qemu_ram_block_writeback(rb); 3686 } 3687 } 3688 3689 xbzrle_load_cleanup(); 3690 3691 RAMBLOCK_FOREACH_NOT_IGNORED(rb) { 3692 g_free(rb->receivedmap); 3693 rb->receivedmap = NULL; 3694 } 3695 3696 return 0; 3697 } 3698 3699 /** 3700 * ram_postcopy_incoming_init: allocate postcopy data structures 3701 * 3702 * Returns 0 for success and negative if there was one error 3703 * 3704 * @mis: current migration incoming state 3705 * 3706 * Allocate data structures etc needed by incoming migration with 3707 * postcopy-ram. postcopy-ram's similarly names 3708 * postcopy_ram_incoming_init does the work. 3709 */ 3710 int ram_postcopy_incoming_init(MigrationIncomingState *mis) 3711 { 3712 return postcopy_ram_incoming_init(mis); 3713 } 3714 3715 /** 3716 * ram_load_postcopy: load a page in postcopy case 3717 * 3718 * Returns 0 for success or -errno in case of error 3719 * 3720 * Called in postcopy mode by ram_load(). 3721 * rcu_read_lock is taken prior to this being called. 3722 * 3723 * @f: QEMUFile where to send the data 3724 * @channel: the channel to use for loading 3725 */ 3726 int ram_load_postcopy(QEMUFile *f, int channel) 3727 { 3728 int flags = 0, ret = 0; 3729 bool place_needed = false; 3730 bool matches_target_page_size = false; 3731 MigrationIncomingState *mis = migration_incoming_get_current(); 3732 PostcopyTmpPage *tmp_page = &mis->postcopy_tmp_pages[channel]; 3733 3734 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) { 3735 ram_addr_t addr; 3736 void *page_buffer = NULL; 3737 void *place_source = NULL; 3738 RAMBlock *block = NULL; 3739 uint8_t ch; 3740 3741 addr = qemu_get_be64(f); 3742 3743 /* 3744 * If qemu file error, we should stop here, and then "addr" 3745 * may be invalid 3746 */ 3747 ret = qemu_file_get_error(f); 3748 if (ret) { 3749 break; 3750 } 3751 3752 flags = addr & ~TARGET_PAGE_MASK; 3753 addr &= TARGET_PAGE_MASK; 3754 3755 trace_ram_load_postcopy_loop(channel, (uint64_t)addr, flags); 3756 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE)) { 3757 block = ram_block_from_stream(mis, f, flags, channel); 3758 if (!block) { 3759 ret = -EINVAL; 3760 break; 3761 } 3762 3763 /* 3764 * Relying on used_length is racy and can result in false positives. 3765 * We might place pages beyond used_length in case RAM was shrunk 3766 * while in postcopy, which is fine - trying to place via 3767 * UFFDIO_COPY/UFFDIO_ZEROPAGE will never segfault. 3768 */ 3769 if (!block->host || addr >= block->postcopy_length) { 3770 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr); 3771 ret = -EINVAL; 3772 break; 3773 } 3774 tmp_page->target_pages++; 3775 matches_target_page_size = block->page_size == TARGET_PAGE_SIZE; 3776 /* 3777 * Postcopy requires that we place whole host pages atomically; 3778 * these may be huge pages for RAMBlocks that are backed by 3779 * hugetlbfs. 3780 * To make it atomic, the data is read into a temporary page 3781 * that's moved into place later. 3782 * The migration protocol uses, possibly smaller, target-pages 3783 * however the source ensures it always sends all the components 3784 * of a host page in one chunk. 3785 */ 3786 page_buffer = tmp_page->tmp_huge_page + 3787 host_page_offset_from_ram_block_offset(block, addr); 3788 /* If all TP are zero then we can optimise the place */ 3789 if (tmp_page->target_pages == 1) { 3790 tmp_page->host_addr = 3791 host_page_from_ram_block_offset(block, addr); 3792 } else if (tmp_page->host_addr != 3793 host_page_from_ram_block_offset(block, addr)) { 3794 /* not the 1st TP within the HP */ 3795 error_report("Non-same host page detected on channel %d: " 3796 "Target host page %p, received host page %p " 3797 "(rb %s offset 0x"RAM_ADDR_FMT" target_pages %d)", 3798 channel, tmp_page->host_addr, 3799 host_page_from_ram_block_offset(block, addr), 3800 block->idstr, addr, tmp_page->target_pages); 3801 ret = -EINVAL; 3802 break; 3803 } 3804 3805 /* 3806 * If it's the last part of a host page then we place the host 3807 * page 3808 */ 3809 if (tmp_page->target_pages == 3810 (block->page_size / TARGET_PAGE_SIZE)) { 3811 place_needed = true; 3812 } 3813 place_source = tmp_page->tmp_huge_page; 3814 } 3815 3816 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) { 3817 case RAM_SAVE_FLAG_ZERO: 3818 ch = qemu_get_byte(f); 3819 if (ch != 0) { 3820 error_report("Found a zero page with value %d", ch); 3821 ret = -EINVAL; 3822 break; 3823 } 3824 /* 3825 * Can skip to set page_buffer when 3826 * this is a zero page and (block->page_size == TARGET_PAGE_SIZE). 3827 */ 3828 if (!matches_target_page_size) { 3829 memset(page_buffer, ch, TARGET_PAGE_SIZE); 3830 } 3831 break; 3832 3833 case RAM_SAVE_FLAG_PAGE: 3834 tmp_page->all_zero = false; 3835 if (!matches_target_page_size) { 3836 /* For huge pages, we always use temporary buffer */ 3837 qemu_get_buffer(f, page_buffer, TARGET_PAGE_SIZE); 3838 } else { 3839 /* 3840 * For small pages that matches target page size, we 3841 * avoid the qemu_file copy. Instead we directly use 3842 * the buffer of QEMUFile to place the page. Note: we 3843 * cannot do any QEMUFile operation before using that 3844 * buffer to make sure the buffer is valid when 3845 * placing the page. 3846 */ 3847 qemu_get_buffer_in_place(f, (uint8_t **)&place_source, 3848 TARGET_PAGE_SIZE); 3849 } 3850 break; 3851 case RAM_SAVE_FLAG_EOS: 3852 break; 3853 default: 3854 error_report("Unknown combination of migration flags: 0x%x" 3855 " (postcopy mode)", flags); 3856 ret = -EINVAL; 3857 break; 3858 } 3859 3860 /* Detect for any possible file errors */ 3861 if (!ret && qemu_file_get_error(f)) { 3862 ret = qemu_file_get_error(f); 3863 } 3864 3865 if (!ret && place_needed) { 3866 if (tmp_page->all_zero) { 3867 ret = postcopy_place_page_zero(mis, tmp_page->host_addr, block); 3868 } else { 3869 ret = postcopy_place_page(mis, tmp_page->host_addr, 3870 place_source, block); 3871 } 3872 place_needed = false; 3873 postcopy_temp_page_reset(tmp_page); 3874 } 3875 } 3876 3877 return ret; 3878 } 3879 3880 static bool postcopy_is_running(void) 3881 { 3882 PostcopyState ps = postcopy_state_get(); 3883 return ps >= POSTCOPY_INCOMING_LISTENING && ps < POSTCOPY_INCOMING_END; 3884 } 3885 3886 /* 3887 * Flush content of RAM cache into SVM's memory. 3888 * Only flush the pages that be dirtied by PVM or SVM or both. 3889 */ 3890 void colo_flush_ram_cache(void) 3891 { 3892 RAMBlock *block = NULL; 3893 void *dst_host; 3894 void *src_host; 3895 unsigned long offset = 0; 3896 3897 memory_global_dirty_log_sync(false); 3898 qemu_mutex_lock(&ram_state->bitmap_mutex); 3899 WITH_RCU_READ_LOCK_GUARD() { 3900 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3901 ramblock_sync_dirty_bitmap(ram_state, block); 3902 } 3903 } 3904 3905 trace_colo_flush_ram_cache_begin(ram_state->migration_dirty_pages); 3906 WITH_RCU_READ_LOCK_GUARD() { 3907 block = QLIST_FIRST_RCU(&ram_list.blocks); 3908 3909 while (block) { 3910 unsigned long num = 0; 3911 3912 offset = colo_bitmap_find_dirty(ram_state, block, offset, &num); 3913 if (!offset_in_ramblock(block, 3914 ((ram_addr_t)offset) << TARGET_PAGE_BITS)) { 3915 offset = 0; 3916 num = 0; 3917 block = QLIST_NEXT_RCU(block, next); 3918 } else { 3919 unsigned long i = 0; 3920 3921 for (i = 0; i < num; i++) { 3922 migration_bitmap_clear_dirty(ram_state, block, offset + i); 3923 } 3924 dst_host = block->host 3925 + (((ram_addr_t)offset) << TARGET_PAGE_BITS); 3926 src_host = block->colo_cache 3927 + (((ram_addr_t)offset) << TARGET_PAGE_BITS); 3928 memcpy(dst_host, src_host, TARGET_PAGE_SIZE * num); 3929 offset += num; 3930 } 3931 } 3932 } 3933 qemu_mutex_unlock(&ram_state->bitmap_mutex); 3934 trace_colo_flush_ram_cache_end(); 3935 } 3936 3937 static size_t ram_load_multifd_pages(void *host_addr, size_t size, 3938 uint64_t offset) 3939 { 3940 MultiFDRecvData *data = multifd_get_recv_data(); 3941 3942 data->opaque = host_addr; 3943 data->file_offset = offset; 3944 data->size = size; 3945 3946 if (!multifd_recv()) { 3947 return 0; 3948 } 3949 3950 return size; 3951 } 3952 3953 static bool read_ramblock_mapped_ram(QEMUFile *f, RAMBlock *block, 3954 long num_pages, unsigned long *bitmap, 3955 Error **errp) 3956 { 3957 ERRP_GUARD(); 3958 unsigned long set_bit_idx, clear_bit_idx; 3959 ram_addr_t offset; 3960 void *host; 3961 size_t read, unread, size; 3962 3963 for (set_bit_idx = find_first_bit(bitmap, num_pages); 3964 set_bit_idx < num_pages; 3965 set_bit_idx = find_next_bit(bitmap, num_pages, clear_bit_idx + 1)) { 3966 3967 clear_bit_idx = find_next_zero_bit(bitmap, num_pages, set_bit_idx + 1); 3968 3969 unread = TARGET_PAGE_SIZE * (clear_bit_idx - set_bit_idx); 3970 offset = set_bit_idx << TARGET_PAGE_BITS; 3971 3972 while (unread > 0) { 3973 host = host_from_ram_block_offset(block, offset); 3974 if (!host) { 3975 error_setg(errp, "page outside of ramblock %s range", 3976 block->idstr); 3977 return false; 3978 } 3979 3980 size = MIN(unread, MAPPED_RAM_LOAD_BUF_SIZE); 3981 3982 if (migrate_multifd()) { 3983 read = ram_load_multifd_pages(host, size, 3984 block->pages_offset + offset); 3985 } else { 3986 read = qemu_get_buffer_at(f, host, size, 3987 block->pages_offset + offset); 3988 } 3989 3990 if (!read) { 3991 goto err; 3992 } 3993 offset += read; 3994 unread -= read; 3995 } 3996 } 3997 3998 return true; 3999 4000 err: 4001 qemu_file_get_error_obj(f, errp); 4002 error_prepend(errp, "(%s) failed to read page " RAM_ADDR_FMT 4003 "from file offset %" PRIx64 ": ", block->idstr, offset, 4004 block->pages_offset + offset); 4005 return false; 4006 } 4007 4008 static void parse_ramblock_mapped_ram(QEMUFile *f, RAMBlock *block, 4009 ram_addr_t length, Error **errp) 4010 { 4011 g_autofree unsigned long *bitmap = NULL; 4012 MappedRamHeader header; 4013 size_t bitmap_size; 4014 long num_pages; 4015 4016 if (!mapped_ram_read_header(f, &header, errp)) { 4017 return; 4018 } 4019 4020 block->pages_offset = header.pages_offset; 4021 4022 /* 4023 * Check the alignment of the file region that contains pages. We 4024 * don't enforce MAPPED_RAM_FILE_OFFSET_ALIGNMENT to allow that 4025 * value to change in the future. Do only a sanity check with page 4026 * size alignment. 4027 */ 4028 if (!QEMU_IS_ALIGNED(block->pages_offset, TARGET_PAGE_SIZE)) { 4029 error_setg(errp, 4030 "Error reading ramblock %s pages, region has bad alignment", 4031 block->idstr); 4032 return; 4033 } 4034 4035 num_pages = length / header.page_size; 4036 bitmap_size = BITS_TO_LONGS(num_pages) * sizeof(unsigned long); 4037 4038 bitmap = g_malloc0(bitmap_size); 4039 if (qemu_get_buffer_at(f, (uint8_t *)bitmap, bitmap_size, 4040 header.bitmap_offset) != bitmap_size) { 4041 error_setg(errp, "Error reading dirty bitmap"); 4042 return; 4043 } 4044 4045 if (!read_ramblock_mapped_ram(f, block, num_pages, bitmap, errp)) { 4046 return; 4047 } 4048 4049 /* Skip pages array */ 4050 qemu_set_offset(f, block->pages_offset + length, SEEK_SET); 4051 } 4052 4053 static int parse_ramblock(QEMUFile *f, RAMBlock *block, ram_addr_t length) 4054 { 4055 int ret = 0; 4056 /* ADVISE is earlier, it shows the source has the postcopy capability on */ 4057 bool postcopy_advised = migration_incoming_postcopy_advised(); 4058 int max_hg_page_size; 4059 Error *local_err = NULL; 4060 4061 assert(block); 4062 4063 if (migrate_mapped_ram()) { 4064 parse_ramblock_mapped_ram(f, block, length, &local_err); 4065 if (local_err) { 4066 error_report_err(local_err); 4067 return -EINVAL; 4068 } 4069 return 0; 4070 } 4071 4072 if (!qemu_ram_is_migratable(block)) { 4073 error_report("block %s should not be migrated !", block->idstr); 4074 return -EINVAL; 4075 } 4076 4077 if (length != block->used_length) { 4078 ret = qemu_ram_resize(block, length, &local_err); 4079 if (local_err) { 4080 error_report_err(local_err); 4081 return ret; 4082 } 4083 } 4084 4085 /* 4086 * ??? Mirrors the previous value of qemu_host_page_size, 4087 * but is this really what was intended for the migration? 4088 */ 4089 max_hg_page_size = MAX(qemu_real_host_page_size(), TARGET_PAGE_SIZE); 4090 4091 /* For postcopy we need to check hugepage sizes match */ 4092 if (postcopy_advised && migrate_postcopy_ram() && 4093 block->page_size != max_hg_page_size) { 4094 uint64_t remote_page_size = qemu_get_be64(f); 4095 if (remote_page_size != block->page_size) { 4096 error_report("Mismatched RAM page size %s " 4097 "(local) %zd != %" PRId64, block->idstr, 4098 block->page_size, remote_page_size); 4099 return -EINVAL; 4100 } 4101 } 4102 if (migrate_ignore_shared()) { 4103 hwaddr addr = qemu_get_be64(f); 4104 if (migrate_ram_is_ignored(block) && 4105 block->mr->addr != addr) { 4106 error_report("Mismatched GPAs for block %s " 4107 "%" PRId64 "!= %" PRId64, block->idstr, 4108 (uint64_t)addr, (uint64_t)block->mr->addr); 4109 return -EINVAL; 4110 } 4111 } 4112 ret = rdma_block_notification_handle(f, block->idstr); 4113 if (ret < 0) { 4114 qemu_file_set_error(f, ret); 4115 } 4116 4117 return ret; 4118 } 4119 4120 static int parse_ramblocks(QEMUFile *f, ram_addr_t total_ram_bytes) 4121 { 4122 int ret = 0; 4123 4124 /* Synchronize RAM block list */ 4125 while (!ret && total_ram_bytes) { 4126 RAMBlock *block; 4127 char id[256]; 4128 ram_addr_t length; 4129 int len = qemu_get_byte(f); 4130 4131 qemu_get_buffer(f, (uint8_t *)id, len); 4132 id[len] = 0; 4133 length = qemu_get_be64(f); 4134 4135 block = qemu_ram_block_by_name(id); 4136 if (block) { 4137 ret = parse_ramblock(f, block, length); 4138 } else { 4139 error_report("Unknown ramblock \"%s\", cannot accept " 4140 "migration", id); 4141 ret = -EINVAL; 4142 } 4143 total_ram_bytes -= length; 4144 } 4145 4146 return ret; 4147 } 4148 4149 /** 4150 * ram_load_precopy: load pages in precopy case 4151 * 4152 * Returns 0 for success or -errno in case of error 4153 * 4154 * Called in precopy mode by ram_load(). 4155 * rcu_read_lock is taken prior to this being called. 4156 * 4157 * @f: QEMUFile where to send the data 4158 */ 4159 static int ram_load_precopy(QEMUFile *f) 4160 { 4161 MigrationIncomingState *mis = migration_incoming_get_current(); 4162 int flags = 0, ret = 0, invalid_flags = 0, i = 0; 4163 4164 if (migrate_mapped_ram()) { 4165 invalid_flags |= (RAM_SAVE_FLAG_HOOK | RAM_SAVE_FLAG_MULTIFD_FLUSH | 4166 RAM_SAVE_FLAG_PAGE | RAM_SAVE_FLAG_XBZRLE | 4167 RAM_SAVE_FLAG_ZERO); 4168 } 4169 4170 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) { 4171 ram_addr_t addr; 4172 void *host = NULL, *host_bak = NULL; 4173 uint8_t ch; 4174 4175 /* 4176 * Yield periodically to let main loop run, but an iteration of 4177 * the main loop is expensive, so do it each some iterations 4178 */ 4179 if ((i & 32767) == 0 && qemu_in_coroutine()) { 4180 aio_co_schedule(qemu_get_current_aio_context(), 4181 qemu_coroutine_self()); 4182 qemu_coroutine_yield(); 4183 } 4184 i++; 4185 4186 addr = qemu_get_be64(f); 4187 ret = qemu_file_get_error(f); 4188 if (ret) { 4189 error_report("Getting RAM address failed"); 4190 break; 4191 } 4192 4193 flags = addr & ~TARGET_PAGE_MASK; 4194 addr &= TARGET_PAGE_MASK; 4195 4196 if (flags & invalid_flags) { 4197 error_report("Unexpected RAM flags: %d", flags & invalid_flags); 4198 4199 ret = -EINVAL; 4200 break; 4201 } 4202 4203 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE | 4204 RAM_SAVE_FLAG_XBZRLE)) { 4205 RAMBlock *block = ram_block_from_stream(mis, f, flags, 4206 RAM_CHANNEL_PRECOPY); 4207 4208 host = host_from_ram_block_offset(block, addr); 4209 /* 4210 * After going into COLO stage, we should not load the page 4211 * into SVM's memory directly, we put them into colo_cache firstly. 4212 * NOTE: We need to keep a copy of SVM's ram in colo_cache. 4213 * Previously, we copied all these memory in preparing stage of COLO 4214 * while we need to stop VM, which is a time-consuming process. 4215 * Here we optimize it by a trick, back-up every page while in 4216 * migration process while COLO is enabled, though it affects the 4217 * speed of the migration, but it obviously reduce the downtime of 4218 * back-up all SVM'S memory in COLO preparing stage. 4219 */ 4220 if (migration_incoming_colo_enabled()) { 4221 if (migration_incoming_in_colo_state()) { 4222 /* In COLO stage, put all pages into cache temporarily */ 4223 host = colo_cache_from_block_offset(block, addr, true); 4224 } else { 4225 /* 4226 * In migration stage but before COLO stage, 4227 * Put all pages into both cache and SVM's memory. 4228 */ 4229 host_bak = colo_cache_from_block_offset(block, addr, false); 4230 } 4231 } 4232 if (!host) { 4233 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr); 4234 ret = -EINVAL; 4235 break; 4236 } 4237 if (!migration_incoming_in_colo_state()) { 4238 ramblock_recv_bitmap_set(block, host); 4239 } 4240 4241 trace_ram_load_loop(block->idstr, (uint64_t)addr, flags, host); 4242 } 4243 4244 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) { 4245 case RAM_SAVE_FLAG_MEM_SIZE: 4246 ret = parse_ramblocks(f, addr); 4247 /* 4248 * For mapped-ram migration (to a file) using multifd, we sync 4249 * once and for all here to make sure all tasks we queued to 4250 * multifd threads are completed, so that all the ramblocks 4251 * (including all the guest memory pages within) are fully 4252 * loaded after this sync returns. 4253 */ 4254 if (migrate_mapped_ram()) { 4255 multifd_recv_sync_main(); 4256 } 4257 break; 4258 4259 case RAM_SAVE_FLAG_ZERO: 4260 ch = qemu_get_byte(f); 4261 if (ch != 0) { 4262 error_report("Found a zero page with value %d", ch); 4263 ret = -EINVAL; 4264 break; 4265 } 4266 ram_handle_zero(host, TARGET_PAGE_SIZE); 4267 break; 4268 4269 case RAM_SAVE_FLAG_PAGE: 4270 qemu_get_buffer(f, host, TARGET_PAGE_SIZE); 4271 break; 4272 4273 case RAM_SAVE_FLAG_XBZRLE: 4274 if (load_xbzrle(f, addr, host) < 0) { 4275 error_report("Failed to decompress XBZRLE page at " 4276 RAM_ADDR_FMT, addr); 4277 ret = -EINVAL; 4278 break; 4279 } 4280 break; 4281 case RAM_SAVE_FLAG_MULTIFD_FLUSH: 4282 multifd_recv_sync_main(); 4283 break; 4284 case RAM_SAVE_FLAG_EOS: 4285 /* normal exit */ 4286 if (migrate_multifd() && 4287 migrate_multifd_flush_after_each_section() && 4288 /* 4289 * Mapped-ram migration flushes once and for all after 4290 * parsing ramblocks. Always ignore EOS for it. 4291 */ 4292 !migrate_mapped_ram()) { 4293 multifd_recv_sync_main(); 4294 } 4295 break; 4296 case RAM_SAVE_FLAG_HOOK: 4297 ret = rdma_registration_handle(f); 4298 if (ret < 0) { 4299 qemu_file_set_error(f, ret); 4300 } 4301 break; 4302 default: 4303 error_report("Unknown combination of migration flags: 0x%x", flags); 4304 ret = -EINVAL; 4305 } 4306 if (!ret) { 4307 ret = qemu_file_get_error(f); 4308 } 4309 if (!ret && host_bak) { 4310 memcpy(host_bak, host, TARGET_PAGE_SIZE); 4311 } 4312 } 4313 4314 return ret; 4315 } 4316 4317 static int ram_load(QEMUFile *f, void *opaque, int version_id) 4318 { 4319 int ret = 0; 4320 static uint64_t seq_iter; 4321 /* 4322 * If system is running in postcopy mode, page inserts to host memory must 4323 * be atomic 4324 */ 4325 bool postcopy_running = postcopy_is_running(); 4326 4327 seq_iter++; 4328 4329 if (version_id != 4) { 4330 return -EINVAL; 4331 } 4332 4333 /* 4334 * This RCU critical section can be very long running. 4335 * When RCU reclaims in the code start to become numerous, 4336 * it will be necessary to reduce the granularity of this 4337 * critical section. 4338 */ 4339 trace_ram_load_start(); 4340 WITH_RCU_READ_LOCK_GUARD() { 4341 if (postcopy_running) { 4342 /* 4343 * Note! Here RAM_CHANNEL_PRECOPY is the precopy channel of 4344 * postcopy migration, we have another RAM_CHANNEL_POSTCOPY to 4345 * service fast page faults. 4346 */ 4347 ret = ram_load_postcopy(f, RAM_CHANNEL_PRECOPY); 4348 } else { 4349 ret = ram_load_precopy(f); 4350 } 4351 } 4352 trace_ram_load_complete(ret, seq_iter); 4353 4354 return ret; 4355 } 4356 4357 static bool ram_has_postcopy(void *opaque) 4358 { 4359 RAMBlock *rb; 4360 RAMBLOCK_FOREACH_NOT_IGNORED(rb) { 4361 if (ramblock_is_pmem(rb)) { 4362 info_report("Block: %s, host: %p is a nvdimm memory, postcopy" 4363 "is not supported now!", rb->idstr, rb->host); 4364 return false; 4365 } 4366 } 4367 4368 return migrate_postcopy_ram(); 4369 } 4370 4371 /* Sync all the dirty bitmap with destination VM. */ 4372 static int ram_dirty_bitmap_sync_all(MigrationState *s, RAMState *rs) 4373 { 4374 RAMBlock *block; 4375 QEMUFile *file = s->to_dst_file; 4376 4377 trace_ram_dirty_bitmap_sync_start(); 4378 4379 qatomic_set(&rs->postcopy_bmap_sync_requested, 0); 4380 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 4381 qemu_savevm_send_recv_bitmap(file, block->idstr); 4382 trace_ram_dirty_bitmap_request(block->idstr); 4383 qatomic_inc(&rs->postcopy_bmap_sync_requested); 4384 } 4385 4386 trace_ram_dirty_bitmap_sync_wait(); 4387 4388 /* Wait until all the ramblocks' dirty bitmap synced */ 4389 while (qatomic_read(&rs->postcopy_bmap_sync_requested)) { 4390 if (migration_rp_wait(s)) { 4391 return -1; 4392 } 4393 } 4394 4395 trace_ram_dirty_bitmap_sync_complete(); 4396 4397 return 0; 4398 } 4399 4400 /* 4401 * Read the received bitmap, revert it as the initial dirty bitmap. 4402 * This is only used when the postcopy migration is paused but wants 4403 * to resume from a middle point. 4404 * 4405 * Returns true if succeeded, false for errors. 4406 */ 4407 bool ram_dirty_bitmap_reload(MigrationState *s, RAMBlock *block, Error **errp) 4408 { 4409 /* from_dst_file is always valid because we're within rp_thread */ 4410 QEMUFile *file = s->rp_state.from_dst_file; 4411 g_autofree unsigned long *le_bitmap = NULL; 4412 unsigned long nbits = block->used_length >> TARGET_PAGE_BITS; 4413 uint64_t local_size = DIV_ROUND_UP(nbits, 8); 4414 uint64_t size, end_mark; 4415 RAMState *rs = ram_state; 4416 4417 trace_ram_dirty_bitmap_reload_begin(block->idstr); 4418 4419 if (s->state != MIGRATION_STATUS_POSTCOPY_RECOVER) { 4420 error_setg(errp, "Reload bitmap in incorrect state %s", 4421 MigrationStatus_str(s->state)); 4422 return false; 4423 } 4424 4425 /* 4426 * Note: see comments in ramblock_recv_bitmap_send() on why we 4427 * need the endianness conversion, and the paddings. 4428 */ 4429 local_size = ROUND_UP(local_size, 8); 4430 4431 /* Add paddings */ 4432 le_bitmap = bitmap_new(nbits + BITS_PER_LONG); 4433 4434 size = qemu_get_be64(file); 4435 4436 /* The size of the bitmap should match with our ramblock */ 4437 if (size != local_size) { 4438 error_setg(errp, "ramblock '%s' bitmap size mismatch (0x%"PRIx64 4439 " != 0x%"PRIx64")", block->idstr, size, local_size); 4440 return false; 4441 } 4442 4443 size = qemu_get_buffer(file, (uint8_t *)le_bitmap, local_size); 4444 end_mark = qemu_get_be64(file); 4445 4446 if (qemu_file_get_error(file) || size != local_size) { 4447 error_setg(errp, "read bitmap failed for ramblock '%s': " 4448 "(size 0x%"PRIx64", got: 0x%"PRIx64")", 4449 block->idstr, local_size, size); 4450 return false; 4451 } 4452 4453 if (end_mark != RAMBLOCK_RECV_BITMAP_ENDING) { 4454 error_setg(errp, "ramblock '%s' end mark incorrect: 0x%"PRIx64, 4455 block->idstr, end_mark); 4456 return false; 4457 } 4458 4459 /* 4460 * Endianness conversion. We are during postcopy (though paused). 4461 * The dirty bitmap won't change. We can directly modify it. 4462 */ 4463 bitmap_from_le(block->bmap, le_bitmap, nbits); 4464 4465 /* 4466 * What we received is "received bitmap". Revert it as the initial 4467 * dirty bitmap for this ramblock. 4468 */ 4469 bitmap_complement(block->bmap, block->bmap, nbits); 4470 4471 /* Clear dirty bits of discarded ranges that we don't want to migrate. */ 4472 ramblock_dirty_bitmap_clear_discarded_pages(block); 4473 4474 /* We'll recalculate migration_dirty_pages in ram_state_resume_prepare(). */ 4475 trace_ram_dirty_bitmap_reload_complete(block->idstr); 4476 4477 qatomic_dec(&rs->postcopy_bmap_sync_requested); 4478 4479 /* 4480 * We succeeded to sync bitmap for current ramblock. Always kick the 4481 * migration thread to check whether all requested bitmaps are 4482 * reloaded. NOTE: it's racy to only kick when requested==0, because 4483 * we don't know whether the migration thread may still be increasing 4484 * it. 4485 */ 4486 migration_rp_kick(s); 4487 4488 return true; 4489 } 4490 4491 static int ram_resume_prepare(MigrationState *s, void *opaque) 4492 { 4493 RAMState *rs = *(RAMState **)opaque; 4494 int ret; 4495 4496 ret = ram_dirty_bitmap_sync_all(s, rs); 4497 if (ret) { 4498 return ret; 4499 } 4500 4501 ram_state_resume_prepare(rs, s->to_dst_file); 4502 4503 return 0; 4504 } 4505 4506 static bool ram_save_postcopy_prepare(QEMUFile *f, void *opaque, Error **errp) 4507 { 4508 int ret; 4509 4510 if (migrate_multifd()) { 4511 /* 4512 * When multifd is enabled, source QEMU needs to make sure all the 4513 * pages queued before postcopy starts have been flushed. 4514 * 4515 * The load of these pages must happen before switching to postcopy. 4516 * It's because loading of guest pages (so far) in multifd recv 4517 * threads is still non-atomic, so the load cannot happen with vCPUs 4518 * running on the destination side. 4519 * 4520 * This flush and sync will guarantee that those pages are loaded 4521 * _before_ postcopy starts on the destination. The rationale is, 4522 * this happens before VM stops (and before source QEMU sends all 4523 * the rest of the postcopy messages). So when the destination QEMU 4524 * receives the postcopy messages, it must have received the sync 4525 * message on the main channel (either RAM_SAVE_FLAG_MULTIFD_FLUSH, 4526 * or RAM_SAVE_FLAG_EOS), and such message would guarantee that 4527 * all previous guest pages queued in the multifd channels are 4528 * completely loaded. 4529 */ 4530 ret = multifd_ram_flush_and_sync(f); 4531 if (ret < 0) { 4532 error_setg(errp, "%s: multifd flush and sync failed", __func__); 4533 return false; 4534 } 4535 } 4536 4537 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 4538 4539 return true; 4540 } 4541 4542 void postcopy_preempt_shutdown_file(MigrationState *s) 4543 { 4544 qemu_put_be64(s->postcopy_qemufile_src, RAM_SAVE_FLAG_EOS); 4545 qemu_fflush(s->postcopy_qemufile_src); 4546 } 4547 4548 static SaveVMHandlers savevm_ram_handlers = { 4549 .save_setup = ram_save_setup, 4550 .save_live_iterate = ram_save_iterate, 4551 .save_live_complete_postcopy = ram_save_complete, 4552 .save_live_complete_precopy = ram_save_complete, 4553 .has_postcopy = ram_has_postcopy, 4554 .state_pending_exact = ram_state_pending_exact, 4555 .state_pending_estimate = ram_state_pending_estimate, 4556 .load_state = ram_load, 4557 .save_cleanup = ram_save_cleanup, 4558 .load_setup = ram_load_setup, 4559 .load_cleanup = ram_load_cleanup, 4560 .resume_prepare = ram_resume_prepare, 4561 .save_postcopy_prepare = ram_save_postcopy_prepare, 4562 }; 4563 4564 static void ram_mig_ram_block_resized(RAMBlockNotifier *n, void *host, 4565 size_t old_size, size_t new_size) 4566 { 4567 PostcopyState ps = postcopy_state_get(); 4568 ram_addr_t offset; 4569 RAMBlock *rb = qemu_ram_block_from_host(host, false, &offset); 4570 Error *err = NULL; 4571 4572 if (!rb) { 4573 error_report("RAM block not found"); 4574 return; 4575 } 4576 4577 if (migrate_ram_is_ignored(rb)) { 4578 return; 4579 } 4580 4581 if (migration_is_running()) { 4582 /* 4583 * Precopy code on the source cannot deal with the size of RAM blocks 4584 * changing at random points in time - especially after sending the 4585 * RAM block sizes in the migration stream, they must no longer change. 4586 * Abort and indicate a proper reason. 4587 */ 4588 error_setg(&err, "RAM block '%s' resized during precopy.", rb->idstr); 4589 migrate_set_error(migrate_get_current(), err); 4590 error_free(err); 4591 4592 migration_cancel(); 4593 } 4594 4595 switch (ps) { 4596 case POSTCOPY_INCOMING_ADVISE: 4597 /* 4598 * Update what ram_postcopy_incoming_init()->init_range() does at the 4599 * time postcopy was advised. Syncing RAM blocks with the source will 4600 * result in RAM resizes. 4601 */ 4602 if (old_size < new_size) { 4603 if (ram_discard_range(rb->idstr, old_size, new_size - old_size)) { 4604 error_report("RAM block '%s' discard of resized RAM failed", 4605 rb->idstr); 4606 } 4607 } 4608 rb->postcopy_length = new_size; 4609 break; 4610 case POSTCOPY_INCOMING_NONE: 4611 case POSTCOPY_INCOMING_RUNNING: 4612 case POSTCOPY_INCOMING_END: 4613 /* 4614 * Once our guest is running, postcopy does no longer care about 4615 * resizes. When growing, the new memory was not available on the 4616 * source, no handler needed. 4617 */ 4618 break; 4619 default: 4620 error_report("RAM block '%s' resized during postcopy state: %d", 4621 rb->idstr, ps); 4622 exit(-1); 4623 } 4624 } 4625 4626 static RAMBlockNotifier ram_mig_ram_notifier = { 4627 .ram_block_resized = ram_mig_ram_block_resized, 4628 }; 4629 4630 void ram_mig_init(void) 4631 { 4632 qemu_mutex_init(&XBZRLE.lock); 4633 register_savevm_live("ram", 0, 4, &savevm_ram_handlers, &ram_state); 4634 ram_block_notifier_add(&ram_mig_ram_notifier); 4635 } 4636