1 /* 2 * QEMU System Emulator 3 * 4 * Copyright (c) 2003-2008 Fabrice Bellard 5 * Copyright (c) 2011-2015 Red Hat Inc 6 * 7 * Authors: 8 * Juan Quintela <quintela@redhat.com> 9 * 10 * Permission is hereby granted, free of charge, to any person obtaining a copy 11 * of this software and associated documentation files (the "Software"), to deal 12 * in the Software without restriction, including without limitation the rights 13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 14 * copies of the Software, and to permit persons to whom the Software is 15 * furnished to do so, subject to the following conditions: 16 * 17 * The above copyright notice and this permission notice shall be included in 18 * all copies or substantial portions of the Software. 19 * 20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 26 * THE SOFTWARE. 27 */ 28 29 #include "qemu/osdep.h" 30 #include "cpu.h" 31 #include <zlib.h> 32 #include "qemu/cutils.h" 33 #include "qemu/bitops.h" 34 #include "qemu/bitmap.h" 35 #include "qemu/main-loop.h" 36 #include "xbzrle.h" 37 #include "ram.h" 38 #include "migration.h" 39 #include "socket.h" 40 #include "migration/register.h" 41 #include "migration/misc.h" 42 #include "qemu-file.h" 43 #include "postcopy-ram.h" 44 #include "page_cache.h" 45 #include "qemu/error-report.h" 46 #include "qapi/error.h" 47 #include "qapi/qapi-events-migration.h" 48 #include "qapi/qmp/qerror.h" 49 #include "trace.h" 50 #include "exec/ram_addr.h" 51 #include "exec/target_page.h" 52 #include "qemu/rcu_queue.h" 53 #include "migration/colo.h" 54 #include "block.h" 55 #include "sysemu/sysemu.h" 56 #include "qemu/uuid.h" 57 #include "savevm.h" 58 #include "qemu/iov.h" 59 60 /***********************************************************/ 61 /* ram save/restore */ 62 63 /* RAM_SAVE_FLAG_ZERO used to be named RAM_SAVE_FLAG_COMPRESS, it 64 * worked for pages that where filled with the same char. We switched 65 * it to only search for the zero value. And to avoid confusion with 66 * RAM_SSAVE_FLAG_COMPRESS_PAGE just rename it. 67 */ 68 69 #define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */ 70 #define RAM_SAVE_FLAG_ZERO 0x02 71 #define RAM_SAVE_FLAG_MEM_SIZE 0x04 72 #define RAM_SAVE_FLAG_PAGE 0x08 73 #define RAM_SAVE_FLAG_EOS 0x10 74 #define RAM_SAVE_FLAG_CONTINUE 0x20 75 #define RAM_SAVE_FLAG_XBZRLE 0x40 76 /* 0x80 is reserved in migration.h start with 0x100 next */ 77 #define RAM_SAVE_FLAG_COMPRESS_PAGE 0x100 78 79 static inline bool is_zero_range(uint8_t *p, uint64_t size) 80 { 81 return buffer_is_zero(p, size); 82 } 83 84 XBZRLECacheStats xbzrle_counters; 85 86 /* struct contains XBZRLE cache and a static page 87 used by the compression */ 88 static struct { 89 /* buffer used for XBZRLE encoding */ 90 uint8_t *encoded_buf; 91 /* buffer for storing page content */ 92 uint8_t *current_buf; 93 /* Cache for XBZRLE, Protected by lock. */ 94 PageCache *cache; 95 QemuMutex lock; 96 /* it will store a page full of zeros */ 97 uint8_t *zero_target_page; 98 /* buffer used for XBZRLE decoding */ 99 uint8_t *decoded_buf; 100 } XBZRLE; 101 102 static void XBZRLE_cache_lock(void) 103 { 104 if (migrate_use_xbzrle()) 105 qemu_mutex_lock(&XBZRLE.lock); 106 } 107 108 static void XBZRLE_cache_unlock(void) 109 { 110 if (migrate_use_xbzrle()) 111 qemu_mutex_unlock(&XBZRLE.lock); 112 } 113 114 /** 115 * xbzrle_cache_resize: resize the xbzrle cache 116 * 117 * This function is called from qmp_migrate_set_cache_size in main 118 * thread, possibly while a migration is in progress. A running 119 * migration may be using the cache and might finish during this call, 120 * hence changes to the cache are protected by XBZRLE.lock(). 121 * 122 * Returns 0 for success or -1 for error 123 * 124 * @new_size: new cache size 125 * @errp: set *errp if the check failed, with reason 126 */ 127 int xbzrle_cache_resize(int64_t new_size, Error **errp) 128 { 129 PageCache *new_cache; 130 int64_t ret = 0; 131 132 /* Check for truncation */ 133 if (new_size != (size_t)new_size) { 134 error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cache size", 135 "exceeding address space"); 136 return -1; 137 } 138 139 if (new_size == migrate_xbzrle_cache_size()) { 140 /* nothing to do */ 141 return 0; 142 } 143 144 XBZRLE_cache_lock(); 145 146 if (XBZRLE.cache != NULL) { 147 new_cache = cache_init(new_size, TARGET_PAGE_SIZE, errp); 148 if (!new_cache) { 149 ret = -1; 150 goto out; 151 } 152 153 cache_fini(XBZRLE.cache); 154 XBZRLE.cache = new_cache; 155 } 156 out: 157 XBZRLE_cache_unlock(); 158 return ret; 159 } 160 161 static bool ramblock_is_ignored(RAMBlock *block) 162 { 163 return !qemu_ram_is_migratable(block) || 164 (migrate_ignore_shared() && qemu_ram_is_shared(block)); 165 } 166 167 /* Should be holding either ram_list.mutex, or the RCU lock. */ 168 #define RAMBLOCK_FOREACH_NOT_IGNORED(block) \ 169 INTERNAL_RAMBLOCK_FOREACH(block) \ 170 if (ramblock_is_ignored(block)) {} else 171 172 #define RAMBLOCK_FOREACH_MIGRATABLE(block) \ 173 INTERNAL_RAMBLOCK_FOREACH(block) \ 174 if (!qemu_ram_is_migratable(block)) {} else 175 176 #undef RAMBLOCK_FOREACH 177 178 int foreach_not_ignored_block(RAMBlockIterFunc func, void *opaque) 179 { 180 RAMBlock *block; 181 int ret = 0; 182 183 RCU_READ_LOCK_GUARD(); 184 185 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 186 ret = func(block, opaque); 187 if (ret) { 188 break; 189 } 190 } 191 return ret; 192 } 193 194 static void ramblock_recv_map_init(void) 195 { 196 RAMBlock *rb; 197 198 RAMBLOCK_FOREACH_NOT_IGNORED(rb) { 199 assert(!rb->receivedmap); 200 rb->receivedmap = bitmap_new(rb->max_length >> qemu_target_page_bits()); 201 } 202 } 203 204 int ramblock_recv_bitmap_test(RAMBlock *rb, void *host_addr) 205 { 206 return test_bit(ramblock_recv_bitmap_offset(host_addr, rb), 207 rb->receivedmap); 208 } 209 210 bool ramblock_recv_bitmap_test_byte_offset(RAMBlock *rb, uint64_t byte_offset) 211 { 212 return test_bit(byte_offset >> TARGET_PAGE_BITS, rb->receivedmap); 213 } 214 215 void ramblock_recv_bitmap_set(RAMBlock *rb, void *host_addr) 216 { 217 set_bit_atomic(ramblock_recv_bitmap_offset(host_addr, rb), rb->receivedmap); 218 } 219 220 void ramblock_recv_bitmap_set_range(RAMBlock *rb, void *host_addr, 221 size_t nr) 222 { 223 bitmap_set_atomic(rb->receivedmap, 224 ramblock_recv_bitmap_offset(host_addr, rb), 225 nr); 226 } 227 228 #define RAMBLOCK_RECV_BITMAP_ENDING (0x0123456789abcdefULL) 229 230 /* 231 * Format: bitmap_size (8 bytes) + whole_bitmap (N bytes). 232 * 233 * Returns >0 if success with sent bytes, or <0 if error. 234 */ 235 int64_t ramblock_recv_bitmap_send(QEMUFile *file, 236 const char *block_name) 237 { 238 RAMBlock *block = qemu_ram_block_by_name(block_name); 239 unsigned long *le_bitmap, nbits; 240 uint64_t size; 241 242 if (!block) { 243 error_report("%s: invalid block name: %s", __func__, block_name); 244 return -1; 245 } 246 247 nbits = block->used_length >> TARGET_PAGE_BITS; 248 249 /* 250 * Make sure the tmp bitmap buffer is big enough, e.g., on 32bit 251 * machines we may need 4 more bytes for padding (see below 252 * comment). So extend it a bit before hand. 253 */ 254 le_bitmap = bitmap_new(nbits + BITS_PER_LONG); 255 256 /* 257 * Always use little endian when sending the bitmap. This is 258 * required that when source and destination VMs are not using the 259 * same endianess. (Note: big endian won't work.) 260 */ 261 bitmap_to_le(le_bitmap, block->receivedmap, nbits); 262 263 /* Size of the bitmap, in bytes */ 264 size = DIV_ROUND_UP(nbits, 8); 265 266 /* 267 * size is always aligned to 8 bytes for 64bit machines, but it 268 * may not be true for 32bit machines. We need this padding to 269 * make sure the migration can survive even between 32bit and 270 * 64bit machines. 271 */ 272 size = ROUND_UP(size, 8); 273 274 qemu_put_be64(file, size); 275 qemu_put_buffer(file, (const uint8_t *)le_bitmap, size); 276 /* 277 * Mark as an end, in case the middle part is screwed up due to 278 * some "misterious" reason. 279 */ 280 qemu_put_be64(file, RAMBLOCK_RECV_BITMAP_ENDING); 281 qemu_fflush(file); 282 283 g_free(le_bitmap); 284 285 if (qemu_file_get_error(file)) { 286 return qemu_file_get_error(file); 287 } 288 289 return size + sizeof(size); 290 } 291 292 /* 293 * An outstanding page request, on the source, having been received 294 * and queued 295 */ 296 struct RAMSrcPageRequest { 297 RAMBlock *rb; 298 hwaddr offset; 299 hwaddr len; 300 301 QSIMPLEQ_ENTRY(RAMSrcPageRequest) next_req; 302 }; 303 304 /* State of RAM for migration */ 305 struct RAMState { 306 /* QEMUFile used for this migration */ 307 QEMUFile *f; 308 /* Last block that we have visited searching for dirty pages */ 309 RAMBlock *last_seen_block; 310 /* Last block from where we have sent data */ 311 RAMBlock *last_sent_block; 312 /* Last dirty target page we have sent */ 313 ram_addr_t last_page; 314 /* last ram version we have seen */ 315 uint32_t last_version; 316 /* We are in the first round */ 317 bool ram_bulk_stage; 318 /* The free page optimization is enabled */ 319 bool fpo_enabled; 320 /* How many times we have dirty too many pages */ 321 int dirty_rate_high_cnt; 322 /* these variables are used for bitmap sync */ 323 /* last time we did a full bitmap_sync */ 324 int64_t time_last_bitmap_sync; 325 /* bytes transferred at start_time */ 326 uint64_t bytes_xfer_prev; 327 /* number of dirty pages since start_time */ 328 uint64_t num_dirty_pages_period; 329 /* xbzrle misses since the beginning of the period */ 330 uint64_t xbzrle_cache_miss_prev; 331 332 /* compression statistics since the beginning of the period */ 333 /* amount of count that no free thread to compress data */ 334 uint64_t compress_thread_busy_prev; 335 /* amount bytes after compression */ 336 uint64_t compressed_size_prev; 337 /* amount of compressed pages */ 338 uint64_t compress_pages_prev; 339 340 /* total handled target pages at the beginning of period */ 341 uint64_t target_page_count_prev; 342 /* total handled target pages since start */ 343 uint64_t target_page_count; 344 /* number of dirty bits in the bitmap */ 345 uint64_t migration_dirty_pages; 346 /* Protects modification of the bitmap and migration dirty pages */ 347 QemuMutex bitmap_mutex; 348 /* The RAMBlock used in the last src_page_requests */ 349 RAMBlock *last_req_rb; 350 /* Queue of outstanding page requests from the destination */ 351 QemuMutex src_page_req_mutex; 352 QSIMPLEQ_HEAD(, RAMSrcPageRequest) src_page_requests; 353 }; 354 typedef struct RAMState RAMState; 355 356 static RAMState *ram_state; 357 358 static NotifierWithReturnList precopy_notifier_list; 359 360 void precopy_infrastructure_init(void) 361 { 362 notifier_with_return_list_init(&precopy_notifier_list); 363 } 364 365 void precopy_add_notifier(NotifierWithReturn *n) 366 { 367 notifier_with_return_list_add(&precopy_notifier_list, n); 368 } 369 370 void precopy_remove_notifier(NotifierWithReturn *n) 371 { 372 notifier_with_return_remove(n); 373 } 374 375 int precopy_notify(PrecopyNotifyReason reason, Error **errp) 376 { 377 PrecopyNotifyData pnd; 378 pnd.reason = reason; 379 pnd.errp = errp; 380 381 return notifier_with_return_list_notify(&precopy_notifier_list, &pnd); 382 } 383 384 void precopy_enable_free_page_optimization(void) 385 { 386 if (!ram_state) { 387 return; 388 } 389 390 ram_state->fpo_enabled = true; 391 } 392 393 uint64_t ram_bytes_remaining(void) 394 { 395 return ram_state ? (ram_state->migration_dirty_pages * TARGET_PAGE_SIZE) : 396 0; 397 } 398 399 MigrationStats ram_counters; 400 401 /* used by the search for pages to send */ 402 struct PageSearchStatus { 403 /* Current block being searched */ 404 RAMBlock *block; 405 /* Current page to search from */ 406 unsigned long page; 407 /* Set once we wrap around */ 408 bool complete_round; 409 }; 410 typedef struct PageSearchStatus PageSearchStatus; 411 412 CompressionStats compression_counters; 413 414 struct CompressParam { 415 bool done; 416 bool quit; 417 bool zero_page; 418 QEMUFile *file; 419 QemuMutex mutex; 420 QemuCond cond; 421 RAMBlock *block; 422 ram_addr_t offset; 423 424 /* internally used fields */ 425 z_stream stream; 426 uint8_t *originbuf; 427 }; 428 typedef struct CompressParam CompressParam; 429 430 struct DecompressParam { 431 bool done; 432 bool quit; 433 QemuMutex mutex; 434 QemuCond cond; 435 void *des; 436 uint8_t *compbuf; 437 int len; 438 z_stream stream; 439 }; 440 typedef struct DecompressParam DecompressParam; 441 442 static CompressParam *comp_param; 443 static QemuThread *compress_threads; 444 /* comp_done_cond is used to wake up the migration thread when 445 * one of the compression threads has finished the compression. 446 * comp_done_lock is used to co-work with comp_done_cond. 447 */ 448 static QemuMutex comp_done_lock; 449 static QemuCond comp_done_cond; 450 /* The empty QEMUFileOps will be used by file in CompressParam */ 451 static const QEMUFileOps empty_ops = { }; 452 453 static QEMUFile *decomp_file; 454 static DecompressParam *decomp_param; 455 static QemuThread *decompress_threads; 456 static QemuMutex decomp_done_lock; 457 static QemuCond decomp_done_cond; 458 459 static bool do_compress_ram_page(QEMUFile *f, z_stream *stream, RAMBlock *block, 460 ram_addr_t offset, uint8_t *source_buf); 461 462 static void *do_data_compress(void *opaque) 463 { 464 CompressParam *param = opaque; 465 RAMBlock *block; 466 ram_addr_t offset; 467 bool zero_page; 468 469 qemu_mutex_lock(¶m->mutex); 470 while (!param->quit) { 471 if (param->block) { 472 block = param->block; 473 offset = param->offset; 474 param->block = NULL; 475 qemu_mutex_unlock(¶m->mutex); 476 477 zero_page = do_compress_ram_page(param->file, ¶m->stream, 478 block, offset, param->originbuf); 479 480 qemu_mutex_lock(&comp_done_lock); 481 param->done = true; 482 param->zero_page = zero_page; 483 qemu_cond_signal(&comp_done_cond); 484 qemu_mutex_unlock(&comp_done_lock); 485 486 qemu_mutex_lock(¶m->mutex); 487 } else { 488 qemu_cond_wait(¶m->cond, ¶m->mutex); 489 } 490 } 491 qemu_mutex_unlock(¶m->mutex); 492 493 return NULL; 494 } 495 496 static void compress_threads_save_cleanup(void) 497 { 498 int i, thread_count; 499 500 if (!migrate_use_compression() || !comp_param) { 501 return; 502 } 503 504 thread_count = migrate_compress_threads(); 505 for (i = 0; i < thread_count; i++) { 506 /* 507 * we use it as a indicator which shows if the thread is 508 * properly init'd or not 509 */ 510 if (!comp_param[i].file) { 511 break; 512 } 513 514 qemu_mutex_lock(&comp_param[i].mutex); 515 comp_param[i].quit = true; 516 qemu_cond_signal(&comp_param[i].cond); 517 qemu_mutex_unlock(&comp_param[i].mutex); 518 519 qemu_thread_join(compress_threads + i); 520 qemu_mutex_destroy(&comp_param[i].mutex); 521 qemu_cond_destroy(&comp_param[i].cond); 522 deflateEnd(&comp_param[i].stream); 523 g_free(comp_param[i].originbuf); 524 qemu_fclose(comp_param[i].file); 525 comp_param[i].file = NULL; 526 } 527 qemu_mutex_destroy(&comp_done_lock); 528 qemu_cond_destroy(&comp_done_cond); 529 g_free(compress_threads); 530 g_free(comp_param); 531 compress_threads = NULL; 532 comp_param = NULL; 533 } 534 535 static int compress_threads_save_setup(void) 536 { 537 int i, thread_count; 538 539 if (!migrate_use_compression()) { 540 return 0; 541 } 542 thread_count = migrate_compress_threads(); 543 compress_threads = g_new0(QemuThread, thread_count); 544 comp_param = g_new0(CompressParam, thread_count); 545 qemu_cond_init(&comp_done_cond); 546 qemu_mutex_init(&comp_done_lock); 547 for (i = 0; i < thread_count; i++) { 548 comp_param[i].originbuf = g_try_malloc(TARGET_PAGE_SIZE); 549 if (!comp_param[i].originbuf) { 550 goto exit; 551 } 552 553 if (deflateInit(&comp_param[i].stream, 554 migrate_compress_level()) != Z_OK) { 555 g_free(comp_param[i].originbuf); 556 goto exit; 557 } 558 559 /* comp_param[i].file is just used as a dummy buffer to save data, 560 * set its ops to empty. 561 */ 562 comp_param[i].file = qemu_fopen_ops(NULL, &empty_ops); 563 comp_param[i].done = true; 564 comp_param[i].quit = false; 565 qemu_mutex_init(&comp_param[i].mutex); 566 qemu_cond_init(&comp_param[i].cond); 567 qemu_thread_create(compress_threads + i, "compress", 568 do_data_compress, comp_param + i, 569 QEMU_THREAD_JOINABLE); 570 } 571 return 0; 572 573 exit: 574 compress_threads_save_cleanup(); 575 return -1; 576 } 577 578 /* Multiple fd's */ 579 580 #define MULTIFD_MAGIC 0x11223344U 581 #define MULTIFD_VERSION 1 582 583 #define MULTIFD_FLAG_SYNC (1 << 0) 584 585 /* This value needs to be a multiple of qemu_target_page_size() */ 586 #define MULTIFD_PACKET_SIZE (512 * 1024) 587 588 typedef struct { 589 uint32_t magic; 590 uint32_t version; 591 unsigned char uuid[16]; /* QemuUUID */ 592 uint8_t id; 593 uint8_t unused1[7]; /* Reserved for future use */ 594 uint64_t unused2[4]; /* Reserved for future use */ 595 } __attribute__((packed)) MultiFDInit_t; 596 597 typedef struct { 598 uint32_t magic; 599 uint32_t version; 600 uint32_t flags; 601 /* maximum number of allocated pages */ 602 uint32_t pages_alloc; 603 uint32_t pages_used; 604 /* size of the next packet that contains pages */ 605 uint32_t next_packet_size; 606 uint64_t packet_num; 607 uint64_t unused[4]; /* Reserved for future use */ 608 char ramblock[256]; 609 uint64_t offset[]; 610 } __attribute__((packed)) MultiFDPacket_t; 611 612 typedef struct { 613 /* number of used pages */ 614 uint32_t used; 615 /* number of allocated pages */ 616 uint32_t allocated; 617 /* global number of generated multifd packets */ 618 uint64_t packet_num; 619 /* offset of each page */ 620 ram_addr_t *offset; 621 /* pointer to each page */ 622 struct iovec *iov; 623 RAMBlock *block; 624 } MultiFDPages_t; 625 626 typedef struct { 627 /* this fields are not changed once the thread is created */ 628 /* channel number */ 629 uint8_t id; 630 /* channel thread name */ 631 char *name; 632 /* channel thread id */ 633 QemuThread thread; 634 /* communication channel */ 635 QIOChannel *c; 636 /* sem where to wait for more work */ 637 QemuSemaphore sem; 638 /* this mutex protects the following parameters */ 639 QemuMutex mutex; 640 /* is this channel thread running */ 641 bool running; 642 /* should this thread finish */ 643 bool quit; 644 /* thread has work to do */ 645 int pending_job; 646 /* array of pages to sent */ 647 MultiFDPages_t *pages; 648 /* packet allocated len */ 649 uint32_t packet_len; 650 /* pointer to the packet */ 651 MultiFDPacket_t *packet; 652 /* multifd flags for each packet */ 653 uint32_t flags; 654 /* size of the next packet that contains pages */ 655 uint32_t next_packet_size; 656 /* global number of generated multifd packets */ 657 uint64_t packet_num; 658 /* thread local variables */ 659 /* packets sent through this channel */ 660 uint64_t num_packets; 661 /* pages sent through this channel */ 662 uint64_t num_pages; 663 /* syncs main thread and channels */ 664 QemuSemaphore sem_sync; 665 } MultiFDSendParams; 666 667 typedef struct { 668 /* this fields are not changed once the thread is created */ 669 /* channel number */ 670 uint8_t id; 671 /* channel thread name */ 672 char *name; 673 /* channel thread id */ 674 QemuThread thread; 675 /* communication channel */ 676 QIOChannel *c; 677 /* this mutex protects the following parameters */ 678 QemuMutex mutex; 679 /* is this channel thread running */ 680 bool running; 681 /* should this thread finish */ 682 bool quit; 683 /* array of pages to receive */ 684 MultiFDPages_t *pages; 685 /* packet allocated len */ 686 uint32_t packet_len; 687 /* pointer to the packet */ 688 MultiFDPacket_t *packet; 689 /* multifd flags for each packet */ 690 uint32_t flags; 691 /* global number of generated multifd packets */ 692 uint64_t packet_num; 693 /* thread local variables */ 694 /* size of the next packet that contains pages */ 695 uint32_t next_packet_size; 696 /* packets sent through this channel */ 697 uint64_t num_packets; 698 /* pages sent through this channel */ 699 uint64_t num_pages; 700 /* syncs main thread and channels */ 701 QemuSemaphore sem_sync; 702 } MultiFDRecvParams; 703 704 static int multifd_send_initial_packet(MultiFDSendParams *p, Error **errp) 705 { 706 MultiFDInit_t msg; 707 int ret; 708 709 msg.magic = cpu_to_be32(MULTIFD_MAGIC); 710 msg.version = cpu_to_be32(MULTIFD_VERSION); 711 msg.id = p->id; 712 memcpy(msg.uuid, &qemu_uuid.data, sizeof(msg.uuid)); 713 714 ret = qio_channel_write_all(p->c, (char *)&msg, sizeof(msg), errp); 715 if (ret != 0) { 716 return -1; 717 } 718 return 0; 719 } 720 721 static int multifd_recv_initial_packet(QIOChannel *c, Error **errp) 722 { 723 MultiFDInit_t msg; 724 int ret; 725 726 ret = qio_channel_read_all(c, (char *)&msg, sizeof(msg), errp); 727 if (ret != 0) { 728 return -1; 729 } 730 731 msg.magic = be32_to_cpu(msg.magic); 732 msg.version = be32_to_cpu(msg.version); 733 734 if (msg.magic != MULTIFD_MAGIC) { 735 error_setg(errp, "multifd: received packet magic %x " 736 "expected %x", msg.magic, MULTIFD_MAGIC); 737 return -1; 738 } 739 740 if (msg.version != MULTIFD_VERSION) { 741 error_setg(errp, "multifd: received packet version %d " 742 "expected %d", msg.version, MULTIFD_VERSION); 743 return -1; 744 } 745 746 if (memcmp(msg.uuid, &qemu_uuid, sizeof(qemu_uuid))) { 747 char *uuid = qemu_uuid_unparse_strdup(&qemu_uuid); 748 char *msg_uuid = qemu_uuid_unparse_strdup((const QemuUUID *)msg.uuid); 749 750 error_setg(errp, "multifd: received uuid '%s' and expected " 751 "uuid '%s' for channel %hhd", msg_uuid, uuid, msg.id); 752 g_free(uuid); 753 g_free(msg_uuid); 754 return -1; 755 } 756 757 if (msg.id > migrate_multifd_channels()) { 758 error_setg(errp, "multifd: received channel version %d " 759 "expected %d", msg.version, MULTIFD_VERSION); 760 return -1; 761 } 762 763 return msg.id; 764 } 765 766 static MultiFDPages_t *multifd_pages_init(size_t size) 767 { 768 MultiFDPages_t *pages = g_new0(MultiFDPages_t, 1); 769 770 pages->allocated = size; 771 pages->iov = g_new0(struct iovec, size); 772 pages->offset = g_new0(ram_addr_t, size); 773 774 return pages; 775 } 776 777 static void multifd_pages_clear(MultiFDPages_t *pages) 778 { 779 pages->used = 0; 780 pages->allocated = 0; 781 pages->packet_num = 0; 782 pages->block = NULL; 783 g_free(pages->iov); 784 pages->iov = NULL; 785 g_free(pages->offset); 786 pages->offset = NULL; 787 g_free(pages); 788 } 789 790 static void multifd_send_fill_packet(MultiFDSendParams *p) 791 { 792 MultiFDPacket_t *packet = p->packet; 793 int i; 794 795 packet->flags = cpu_to_be32(p->flags); 796 packet->pages_alloc = cpu_to_be32(p->pages->allocated); 797 packet->pages_used = cpu_to_be32(p->pages->used); 798 packet->next_packet_size = cpu_to_be32(p->next_packet_size); 799 packet->packet_num = cpu_to_be64(p->packet_num); 800 801 if (p->pages->block) { 802 strncpy(packet->ramblock, p->pages->block->idstr, 256); 803 } 804 805 for (i = 0; i < p->pages->used; i++) { 806 packet->offset[i] = cpu_to_be64(p->pages->offset[i]); 807 } 808 } 809 810 static int multifd_recv_unfill_packet(MultiFDRecvParams *p, Error **errp) 811 { 812 MultiFDPacket_t *packet = p->packet; 813 uint32_t pages_max = MULTIFD_PACKET_SIZE / qemu_target_page_size(); 814 RAMBlock *block; 815 int i; 816 817 packet->magic = be32_to_cpu(packet->magic); 818 if (packet->magic != MULTIFD_MAGIC) { 819 error_setg(errp, "multifd: received packet " 820 "magic %x and expected magic %x", 821 packet->magic, MULTIFD_MAGIC); 822 return -1; 823 } 824 825 packet->version = be32_to_cpu(packet->version); 826 if (packet->version != MULTIFD_VERSION) { 827 error_setg(errp, "multifd: received packet " 828 "version %d and expected version %d", 829 packet->version, MULTIFD_VERSION); 830 return -1; 831 } 832 833 p->flags = be32_to_cpu(packet->flags); 834 835 packet->pages_alloc = be32_to_cpu(packet->pages_alloc); 836 /* 837 * If we received a packet that is 100 times bigger than expected 838 * just stop migration. It is a magic number. 839 */ 840 if (packet->pages_alloc > pages_max * 100) { 841 error_setg(errp, "multifd: received packet " 842 "with size %d and expected a maximum size of %d", 843 packet->pages_alloc, pages_max * 100) ; 844 return -1; 845 } 846 /* 847 * We received a packet that is bigger than expected but inside 848 * reasonable limits (see previous comment). Just reallocate. 849 */ 850 if (packet->pages_alloc > p->pages->allocated) { 851 multifd_pages_clear(p->pages); 852 p->pages = multifd_pages_init(packet->pages_alloc); 853 } 854 855 p->pages->used = be32_to_cpu(packet->pages_used); 856 if (p->pages->used > packet->pages_alloc) { 857 error_setg(errp, "multifd: received packet " 858 "with %d pages and expected maximum pages are %d", 859 p->pages->used, packet->pages_alloc) ; 860 return -1; 861 } 862 863 p->next_packet_size = be32_to_cpu(packet->next_packet_size); 864 p->packet_num = be64_to_cpu(packet->packet_num); 865 866 if (p->pages->used == 0) { 867 return 0; 868 } 869 870 /* make sure that ramblock is 0 terminated */ 871 packet->ramblock[255] = 0; 872 block = qemu_ram_block_by_name(packet->ramblock); 873 if (!block) { 874 error_setg(errp, "multifd: unknown ram block %s", 875 packet->ramblock); 876 return -1; 877 } 878 879 for (i = 0; i < p->pages->used; i++) { 880 ram_addr_t offset = be64_to_cpu(packet->offset[i]); 881 882 if (offset > (block->used_length - TARGET_PAGE_SIZE)) { 883 error_setg(errp, "multifd: offset too long " RAM_ADDR_FMT 884 " (max " RAM_ADDR_FMT ")", 885 offset, block->max_length); 886 return -1; 887 } 888 p->pages->iov[i].iov_base = block->host + offset; 889 p->pages->iov[i].iov_len = TARGET_PAGE_SIZE; 890 } 891 892 return 0; 893 } 894 895 struct { 896 MultiFDSendParams *params; 897 /* array of pages to sent */ 898 MultiFDPages_t *pages; 899 /* global number of generated multifd packets */ 900 uint64_t packet_num; 901 /* send channels ready */ 902 QemuSemaphore channels_ready; 903 } *multifd_send_state; 904 905 /* 906 * How we use multifd_send_state->pages and channel->pages? 907 * 908 * We create a pages for each channel, and a main one. Each time that 909 * we need to send a batch of pages we interchange the ones between 910 * multifd_send_state and the channel that is sending it. There are 911 * two reasons for that: 912 * - to not have to do so many mallocs during migration 913 * - to make easier to know what to free at the end of migration 914 * 915 * This way we always know who is the owner of each "pages" struct, 916 * and we don't need any locking. It belongs to the migration thread 917 * or to the channel thread. Switching is safe because the migration 918 * thread is using the channel mutex when changing it, and the channel 919 * have to had finish with its own, otherwise pending_job can't be 920 * false. 921 */ 922 923 static int multifd_send_pages(RAMState *rs) 924 { 925 int i; 926 static int next_channel; 927 MultiFDSendParams *p = NULL; /* make happy gcc */ 928 MultiFDPages_t *pages = multifd_send_state->pages; 929 uint64_t transferred; 930 931 qemu_sem_wait(&multifd_send_state->channels_ready); 932 for (i = next_channel;; i = (i + 1) % migrate_multifd_channels()) { 933 p = &multifd_send_state->params[i]; 934 935 qemu_mutex_lock(&p->mutex); 936 if (p->quit) { 937 error_report("%s: channel %d has already quit!", __func__, i); 938 qemu_mutex_unlock(&p->mutex); 939 return -1; 940 } 941 if (!p->pending_job) { 942 p->pending_job++; 943 next_channel = (i + 1) % migrate_multifd_channels(); 944 break; 945 } 946 qemu_mutex_unlock(&p->mutex); 947 } 948 p->pages->used = 0; 949 950 p->packet_num = multifd_send_state->packet_num++; 951 p->pages->block = NULL; 952 multifd_send_state->pages = p->pages; 953 p->pages = pages; 954 transferred = ((uint64_t) pages->used) * TARGET_PAGE_SIZE + p->packet_len; 955 qemu_file_update_transfer(rs->f, transferred); 956 ram_counters.multifd_bytes += transferred; 957 ram_counters.transferred += transferred;; 958 qemu_mutex_unlock(&p->mutex); 959 qemu_sem_post(&p->sem); 960 961 return 1; 962 } 963 964 static int multifd_queue_page(RAMState *rs, RAMBlock *block, ram_addr_t offset) 965 { 966 MultiFDPages_t *pages = multifd_send_state->pages; 967 968 if (!pages->block) { 969 pages->block = block; 970 } 971 972 if (pages->block == block) { 973 pages->offset[pages->used] = offset; 974 pages->iov[pages->used].iov_base = block->host + offset; 975 pages->iov[pages->used].iov_len = TARGET_PAGE_SIZE; 976 pages->used++; 977 978 if (pages->used < pages->allocated) { 979 return 1; 980 } 981 } 982 983 if (multifd_send_pages(rs) < 0) { 984 return -1; 985 } 986 987 if (pages->block != block) { 988 return multifd_queue_page(rs, block, offset); 989 } 990 991 return 1; 992 } 993 994 static void multifd_send_terminate_threads(Error *err) 995 { 996 int i; 997 998 trace_multifd_send_terminate_threads(err != NULL); 999 1000 if (err) { 1001 MigrationState *s = migrate_get_current(); 1002 migrate_set_error(s, err); 1003 if (s->state == MIGRATION_STATUS_SETUP || 1004 s->state == MIGRATION_STATUS_PRE_SWITCHOVER || 1005 s->state == MIGRATION_STATUS_DEVICE || 1006 s->state == MIGRATION_STATUS_ACTIVE) { 1007 migrate_set_state(&s->state, s->state, 1008 MIGRATION_STATUS_FAILED); 1009 } 1010 } 1011 1012 for (i = 0; i < migrate_multifd_channels(); i++) { 1013 MultiFDSendParams *p = &multifd_send_state->params[i]; 1014 1015 qemu_mutex_lock(&p->mutex); 1016 p->quit = true; 1017 qemu_sem_post(&p->sem); 1018 qemu_mutex_unlock(&p->mutex); 1019 } 1020 } 1021 1022 void multifd_save_cleanup(void) 1023 { 1024 int i; 1025 1026 if (!migrate_use_multifd()) { 1027 return; 1028 } 1029 multifd_send_terminate_threads(NULL); 1030 for (i = 0; i < migrate_multifd_channels(); i++) { 1031 MultiFDSendParams *p = &multifd_send_state->params[i]; 1032 1033 if (p->running) { 1034 qemu_thread_join(&p->thread); 1035 } 1036 socket_send_channel_destroy(p->c); 1037 p->c = NULL; 1038 qemu_mutex_destroy(&p->mutex); 1039 qemu_sem_destroy(&p->sem); 1040 qemu_sem_destroy(&p->sem_sync); 1041 g_free(p->name); 1042 p->name = NULL; 1043 multifd_pages_clear(p->pages); 1044 p->pages = NULL; 1045 p->packet_len = 0; 1046 g_free(p->packet); 1047 p->packet = NULL; 1048 } 1049 qemu_sem_destroy(&multifd_send_state->channels_ready); 1050 g_free(multifd_send_state->params); 1051 multifd_send_state->params = NULL; 1052 multifd_pages_clear(multifd_send_state->pages); 1053 multifd_send_state->pages = NULL; 1054 g_free(multifd_send_state); 1055 multifd_send_state = NULL; 1056 } 1057 1058 static void multifd_send_sync_main(RAMState *rs) 1059 { 1060 int i; 1061 1062 if (!migrate_use_multifd()) { 1063 return; 1064 } 1065 if (multifd_send_state->pages->used) { 1066 if (multifd_send_pages(rs) < 0) { 1067 error_report("%s: multifd_send_pages fail", __func__); 1068 return; 1069 } 1070 } 1071 for (i = 0; i < migrate_multifd_channels(); i++) { 1072 MultiFDSendParams *p = &multifd_send_state->params[i]; 1073 1074 trace_multifd_send_sync_main_signal(p->id); 1075 1076 qemu_mutex_lock(&p->mutex); 1077 1078 if (p->quit) { 1079 error_report("%s: channel %d has already quit", __func__, i); 1080 qemu_mutex_unlock(&p->mutex); 1081 return; 1082 } 1083 1084 p->packet_num = multifd_send_state->packet_num++; 1085 p->flags |= MULTIFD_FLAG_SYNC; 1086 p->pending_job++; 1087 qemu_file_update_transfer(rs->f, p->packet_len); 1088 ram_counters.multifd_bytes += p->packet_len; 1089 ram_counters.transferred += p->packet_len; 1090 qemu_mutex_unlock(&p->mutex); 1091 qemu_sem_post(&p->sem); 1092 } 1093 for (i = 0; i < migrate_multifd_channels(); i++) { 1094 MultiFDSendParams *p = &multifd_send_state->params[i]; 1095 1096 trace_multifd_send_sync_main_wait(p->id); 1097 qemu_sem_wait(&p->sem_sync); 1098 } 1099 trace_multifd_send_sync_main(multifd_send_state->packet_num); 1100 } 1101 1102 static void *multifd_send_thread(void *opaque) 1103 { 1104 MultiFDSendParams *p = opaque; 1105 Error *local_err = NULL; 1106 int ret = 0; 1107 uint32_t flags = 0; 1108 1109 trace_multifd_send_thread_start(p->id); 1110 rcu_register_thread(); 1111 1112 if (multifd_send_initial_packet(p, &local_err) < 0) { 1113 ret = -1; 1114 goto out; 1115 } 1116 /* initial packet */ 1117 p->num_packets = 1; 1118 1119 while (true) { 1120 qemu_sem_wait(&p->sem); 1121 qemu_mutex_lock(&p->mutex); 1122 1123 if (p->pending_job) { 1124 uint32_t used = p->pages->used; 1125 uint64_t packet_num = p->packet_num; 1126 flags = p->flags; 1127 1128 p->next_packet_size = used * qemu_target_page_size(); 1129 multifd_send_fill_packet(p); 1130 p->flags = 0; 1131 p->num_packets++; 1132 p->num_pages += used; 1133 qemu_mutex_unlock(&p->mutex); 1134 1135 trace_multifd_send(p->id, packet_num, used, flags, 1136 p->next_packet_size); 1137 1138 ret = qio_channel_write_all(p->c, (void *)p->packet, 1139 p->packet_len, &local_err); 1140 if (ret != 0) { 1141 break; 1142 } 1143 1144 if (used) { 1145 ret = qio_channel_writev_all(p->c, p->pages->iov, 1146 used, &local_err); 1147 if (ret != 0) { 1148 break; 1149 } 1150 } 1151 1152 qemu_mutex_lock(&p->mutex); 1153 p->pending_job--; 1154 qemu_mutex_unlock(&p->mutex); 1155 1156 if (flags & MULTIFD_FLAG_SYNC) { 1157 qemu_sem_post(&p->sem_sync); 1158 } 1159 qemu_sem_post(&multifd_send_state->channels_ready); 1160 } else if (p->quit) { 1161 qemu_mutex_unlock(&p->mutex); 1162 break; 1163 } else { 1164 qemu_mutex_unlock(&p->mutex); 1165 /* sometimes there are spurious wakeups */ 1166 } 1167 } 1168 1169 out: 1170 if (local_err) { 1171 trace_multifd_send_error(p->id); 1172 multifd_send_terminate_threads(local_err); 1173 } 1174 1175 /* 1176 * Error happen, I will exit, but I can't just leave, tell 1177 * who pay attention to me. 1178 */ 1179 if (ret != 0) { 1180 qemu_sem_post(&p->sem_sync); 1181 qemu_sem_post(&multifd_send_state->channels_ready); 1182 } 1183 1184 qemu_mutex_lock(&p->mutex); 1185 p->running = false; 1186 qemu_mutex_unlock(&p->mutex); 1187 1188 rcu_unregister_thread(); 1189 trace_multifd_send_thread_end(p->id, p->num_packets, p->num_pages); 1190 1191 return NULL; 1192 } 1193 1194 static void multifd_new_send_channel_async(QIOTask *task, gpointer opaque) 1195 { 1196 MultiFDSendParams *p = opaque; 1197 QIOChannel *sioc = QIO_CHANNEL(qio_task_get_source(task)); 1198 Error *local_err = NULL; 1199 1200 trace_multifd_new_send_channel_async(p->id); 1201 if (qio_task_propagate_error(task, &local_err)) { 1202 migrate_set_error(migrate_get_current(), local_err); 1203 multifd_save_cleanup(); 1204 } else { 1205 p->c = QIO_CHANNEL(sioc); 1206 qio_channel_set_delay(p->c, false); 1207 p->running = true; 1208 qemu_thread_create(&p->thread, p->name, multifd_send_thread, p, 1209 QEMU_THREAD_JOINABLE); 1210 } 1211 } 1212 1213 int multifd_save_setup(void) 1214 { 1215 int thread_count; 1216 uint32_t page_count = MULTIFD_PACKET_SIZE / qemu_target_page_size(); 1217 uint8_t i; 1218 1219 if (!migrate_use_multifd()) { 1220 return 0; 1221 } 1222 thread_count = migrate_multifd_channels(); 1223 multifd_send_state = g_malloc0(sizeof(*multifd_send_state)); 1224 multifd_send_state->params = g_new0(MultiFDSendParams, thread_count); 1225 multifd_send_state->pages = multifd_pages_init(page_count); 1226 qemu_sem_init(&multifd_send_state->channels_ready, 0); 1227 1228 for (i = 0; i < thread_count; i++) { 1229 MultiFDSendParams *p = &multifd_send_state->params[i]; 1230 1231 qemu_mutex_init(&p->mutex); 1232 qemu_sem_init(&p->sem, 0); 1233 qemu_sem_init(&p->sem_sync, 0); 1234 p->quit = false; 1235 p->pending_job = 0; 1236 p->id = i; 1237 p->pages = multifd_pages_init(page_count); 1238 p->packet_len = sizeof(MultiFDPacket_t) 1239 + sizeof(ram_addr_t) * page_count; 1240 p->packet = g_malloc0(p->packet_len); 1241 p->packet->magic = cpu_to_be32(MULTIFD_MAGIC); 1242 p->packet->version = cpu_to_be32(MULTIFD_VERSION); 1243 p->name = g_strdup_printf("multifdsend_%d", i); 1244 socket_send_channel_create(multifd_new_send_channel_async, p); 1245 } 1246 return 0; 1247 } 1248 1249 struct { 1250 MultiFDRecvParams *params; 1251 /* number of created threads */ 1252 int count; 1253 /* syncs main thread and channels */ 1254 QemuSemaphore sem_sync; 1255 /* global number of generated multifd packets */ 1256 uint64_t packet_num; 1257 } *multifd_recv_state; 1258 1259 static void multifd_recv_terminate_threads(Error *err) 1260 { 1261 int i; 1262 1263 trace_multifd_recv_terminate_threads(err != NULL); 1264 1265 if (err) { 1266 MigrationState *s = migrate_get_current(); 1267 migrate_set_error(s, err); 1268 if (s->state == MIGRATION_STATUS_SETUP || 1269 s->state == MIGRATION_STATUS_ACTIVE) { 1270 migrate_set_state(&s->state, s->state, 1271 MIGRATION_STATUS_FAILED); 1272 } 1273 } 1274 1275 for (i = 0; i < migrate_multifd_channels(); i++) { 1276 MultiFDRecvParams *p = &multifd_recv_state->params[i]; 1277 1278 qemu_mutex_lock(&p->mutex); 1279 p->quit = true; 1280 /* We could arrive here for two reasons: 1281 - normal quit, i.e. everything went fine, just finished 1282 - error quit: We close the channels so the channel threads 1283 finish the qio_channel_read_all_eof() */ 1284 qio_channel_shutdown(p->c, QIO_CHANNEL_SHUTDOWN_BOTH, NULL); 1285 qemu_mutex_unlock(&p->mutex); 1286 } 1287 } 1288 1289 int multifd_load_cleanup(Error **errp) 1290 { 1291 int i; 1292 int ret = 0; 1293 1294 if (!migrate_use_multifd()) { 1295 return 0; 1296 } 1297 multifd_recv_terminate_threads(NULL); 1298 for (i = 0; i < migrate_multifd_channels(); i++) { 1299 MultiFDRecvParams *p = &multifd_recv_state->params[i]; 1300 1301 if (p->running) { 1302 p->quit = true; 1303 /* 1304 * multifd_recv_thread may hung at MULTIFD_FLAG_SYNC handle code, 1305 * however try to wakeup it without harm in cleanup phase. 1306 */ 1307 qemu_sem_post(&p->sem_sync); 1308 qemu_thread_join(&p->thread); 1309 } 1310 object_unref(OBJECT(p->c)); 1311 p->c = NULL; 1312 qemu_mutex_destroy(&p->mutex); 1313 qemu_sem_destroy(&p->sem_sync); 1314 g_free(p->name); 1315 p->name = NULL; 1316 multifd_pages_clear(p->pages); 1317 p->pages = NULL; 1318 p->packet_len = 0; 1319 g_free(p->packet); 1320 p->packet = NULL; 1321 } 1322 qemu_sem_destroy(&multifd_recv_state->sem_sync); 1323 g_free(multifd_recv_state->params); 1324 multifd_recv_state->params = NULL; 1325 g_free(multifd_recv_state); 1326 multifd_recv_state = NULL; 1327 1328 return ret; 1329 } 1330 1331 static void multifd_recv_sync_main(void) 1332 { 1333 int i; 1334 1335 if (!migrate_use_multifd()) { 1336 return; 1337 } 1338 for (i = 0; i < migrate_multifd_channels(); i++) { 1339 MultiFDRecvParams *p = &multifd_recv_state->params[i]; 1340 1341 trace_multifd_recv_sync_main_wait(p->id); 1342 qemu_sem_wait(&multifd_recv_state->sem_sync); 1343 } 1344 for (i = 0; i < migrate_multifd_channels(); i++) { 1345 MultiFDRecvParams *p = &multifd_recv_state->params[i]; 1346 1347 qemu_mutex_lock(&p->mutex); 1348 if (multifd_recv_state->packet_num < p->packet_num) { 1349 multifd_recv_state->packet_num = p->packet_num; 1350 } 1351 qemu_mutex_unlock(&p->mutex); 1352 trace_multifd_recv_sync_main_signal(p->id); 1353 qemu_sem_post(&p->sem_sync); 1354 } 1355 trace_multifd_recv_sync_main(multifd_recv_state->packet_num); 1356 } 1357 1358 static void *multifd_recv_thread(void *opaque) 1359 { 1360 MultiFDRecvParams *p = opaque; 1361 Error *local_err = NULL; 1362 int ret; 1363 1364 trace_multifd_recv_thread_start(p->id); 1365 rcu_register_thread(); 1366 1367 while (true) { 1368 uint32_t used; 1369 uint32_t flags; 1370 1371 if (p->quit) { 1372 break; 1373 } 1374 1375 ret = qio_channel_read_all_eof(p->c, (void *)p->packet, 1376 p->packet_len, &local_err); 1377 if (ret == 0) { /* EOF */ 1378 break; 1379 } 1380 if (ret == -1) { /* Error */ 1381 break; 1382 } 1383 1384 qemu_mutex_lock(&p->mutex); 1385 ret = multifd_recv_unfill_packet(p, &local_err); 1386 if (ret) { 1387 qemu_mutex_unlock(&p->mutex); 1388 break; 1389 } 1390 1391 used = p->pages->used; 1392 flags = p->flags; 1393 trace_multifd_recv(p->id, p->packet_num, used, flags, 1394 p->next_packet_size); 1395 p->num_packets++; 1396 p->num_pages += used; 1397 qemu_mutex_unlock(&p->mutex); 1398 1399 if (used) { 1400 ret = qio_channel_readv_all(p->c, p->pages->iov, 1401 used, &local_err); 1402 if (ret != 0) { 1403 break; 1404 } 1405 } 1406 1407 if (flags & MULTIFD_FLAG_SYNC) { 1408 qemu_sem_post(&multifd_recv_state->sem_sync); 1409 qemu_sem_wait(&p->sem_sync); 1410 } 1411 } 1412 1413 if (local_err) { 1414 multifd_recv_terminate_threads(local_err); 1415 } 1416 qemu_mutex_lock(&p->mutex); 1417 p->running = false; 1418 qemu_mutex_unlock(&p->mutex); 1419 1420 rcu_unregister_thread(); 1421 trace_multifd_recv_thread_end(p->id, p->num_packets, p->num_pages); 1422 1423 return NULL; 1424 } 1425 1426 int multifd_load_setup(void) 1427 { 1428 int thread_count; 1429 uint32_t page_count = MULTIFD_PACKET_SIZE / qemu_target_page_size(); 1430 uint8_t i; 1431 1432 if (!migrate_use_multifd()) { 1433 return 0; 1434 } 1435 thread_count = migrate_multifd_channels(); 1436 multifd_recv_state = g_malloc0(sizeof(*multifd_recv_state)); 1437 multifd_recv_state->params = g_new0(MultiFDRecvParams, thread_count); 1438 atomic_set(&multifd_recv_state->count, 0); 1439 qemu_sem_init(&multifd_recv_state->sem_sync, 0); 1440 1441 for (i = 0; i < thread_count; i++) { 1442 MultiFDRecvParams *p = &multifd_recv_state->params[i]; 1443 1444 qemu_mutex_init(&p->mutex); 1445 qemu_sem_init(&p->sem_sync, 0); 1446 p->quit = false; 1447 p->id = i; 1448 p->pages = multifd_pages_init(page_count); 1449 p->packet_len = sizeof(MultiFDPacket_t) 1450 + sizeof(ram_addr_t) * page_count; 1451 p->packet = g_malloc0(p->packet_len); 1452 p->name = g_strdup_printf("multifdrecv_%d", i); 1453 } 1454 return 0; 1455 } 1456 1457 bool multifd_recv_all_channels_created(void) 1458 { 1459 int thread_count = migrate_multifd_channels(); 1460 1461 if (!migrate_use_multifd()) { 1462 return true; 1463 } 1464 1465 return thread_count == atomic_read(&multifd_recv_state->count); 1466 } 1467 1468 /* 1469 * Try to receive all multifd channels to get ready for the migration. 1470 * - Return true and do not set @errp when correctly receving all channels; 1471 * - Return false and do not set @errp when correctly receiving the current one; 1472 * - Return false and set @errp when failing to receive the current channel. 1473 */ 1474 bool multifd_recv_new_channel(QIOChannel *ioc, Error **errp) 1475 { 1476 MultiFDRecvParams *p; 1477 Error *local_err = NULL; 1478 int id; 1479 1480 id = multifd_recv_initial_packet(ioc, &local_err); 1481 if (id < 0) { 1482 multifd_recv_terminate_threads(local_err); 1483 error_propagate_prepend(errp, local_err, 1484 "failed to receive packet" 1485 " via multifd channel %d: ", 1486 atomic_read(&multifd_recv_state->count)); 1487 return false; 1488 } 1489 trace_multifd_recv_new_channel(id); 1490 1491 p = &multifd_recv_state->params[id]; 1492 if (p->c != NULL) { 1493 error_setg(&local_err, "multifd: received id '%d' already setup'", 1494 id); 1495 multifd_recv_terminate_threads(local_err); 1496 error_propagate(errp, local_err); 1497 return false; 1498 } 1499 p->c = ioc; 1500 object_ref(OBJECT(ioc)); 1501 /* initial packet */ 1502 p->num_packets = 1; 1503 1504 p->running = true; 1505 qemu_thread_create(&p->thread, p->name, multifd_recv_thread, p, 1506 QEMU_THREAD_JOINABLE); 1507 atomic_inc(&multifd_recv_state->count); 1508 return atomic_read(&multifd_recv_state->count) == 1509 migrate_multifd_channels(); 1510 } 1511 1512 /** 1513 * save_page_header: write page header to wire 1514 * 1515 * If this is the 1st block, it also writes the block identification 1516 * 1517 * Returns the number of bytes written 1518 * 1519 * @f: QEMUFile where to send the data 1520 * @block: block that contains the page we want to send 1521 * @offset: offset inside the block for the page 1522 * in the lower bits, it contains flags 1523 */ 1524 static size_t save_page_header(RAMState *rs, QEMUFile *f, RAMBlock *block, 1525 ram_addr_t offset) 1526 { 1527 size_t size, len; 1528 1529 if (block == rs->last_sent_block) { 1530 offset |= RAM_SAVE_FLAG_CONTINUE; 1531 } 1532 qemu_put_be64(f, offset); 1533 size = 8; 1534 1535 if (!(offset & RAM_SAVE_FLAG_CONTINUE)) { 1536 len = strlen(block->idstr); 1537 qemu_put_byte(f, len); 1538 qemu_put_buffer(f, (uint8_t *)block->idstr, len); 1539 size += 1 + len; 1540 rs->last_sent_block = block; 1541 } 1542 return size; 1543 } 1544 1545 /** 1546 * mig_throttle_guest_down: throotle down the guest 1547 * 1548 * Reduce amount of guest cpu execution to hopefully slow down memory 1549 * writes. If guest dirty memory rate is reduced below the rate at 1550 * which we can transfer pages to the destination then we should be 1551 * able to complete migration. Some workloads dirty memory way too 1552 * fast and will not effectively converge, even with auto-converge. 1553 */ 1554 static void mig_throttle_guest_down(void) 1555 { 1556 MigrationState *s = migrate_get_current(); 1557 uint64_t pct_initial = s->parameters.cpu_throttle_initial; 1558 uint64_t pct_icrement = s->parameters.cpu_throttle_increment; 1559 int pct_max = s->parameters.max_cpu_throttle; 1560 1561 /* We have not started throttling yet. Let's start it. */ 1562 if (!cpu_throttle_active()) { 1563 cpu_throttle_set(pct_initial); 1564 } else { 1565 /* Throttling already on, just increase the rate */ 1566 cpu_throttle_set(MIN(cpu_throttle_get_percentage() + pct_icrement, 1567 pct_max)); 1568 } 1569 } 1570 1571 /** 1572 * xbzrle_cache_zero_page: insert a zero page in the XBZRLE cache 1573 * 1574 * @rs: current RAM state 1575 * @current_addr: address for the zero page 1576 * 1577 * Update the xbzrle cache to reflect a page that's been sent as all 0. 1578 * The important thing is that a stale (not-yet-0'd) page be replaced 1579 * by the new data. 1580 * As a bonus, if the page wasn't in the cache it gets added so that 1581 * when a small write is made into the 0'd page it gets XBZRLE sent. 1582 */ 1583 static void xbzrle_cache_zero_page(RAMState *rs, ram_addr_t current_addr) 1584 { 1585 if (rs->ram_bulk_stage || !migrate_use_xbzrle()) { 1586 return; 1587 } 1588 1589 /* We don't care if this fails to allocate a new cache page 1590 * as long as it updated an old one */ 1591 cache_insert(XBZRLE.cache, current_addr, XBZRLE.zero_target_page, 1592 ram_counters.dirty_sync_count); 1593 } 1594 1595 #define ENCODING_FLAG_XBZRLE 0x1 1596 1597 /** 1598 * save_xbzrle_page: compress and send current page 1599 * 1600 * Returns: 1 means that we wrote the page 1601 * 0 means that page is identical to the one already sent 1602 * -1 means that xbzrle would be longer than normal 1603 * 1604 * @rs: current RAM state 1605 * @current_data: pointer to the address of the page contents 1606 * @current_addr: addr of the page 1607 * @block: block that contains the page we want to send 1608 * @offset: offset inside the block for the page 1609 * @last_stage: if we are at the completion stage 1610 */ 1611 static int save_xbzrle_page(RAMState *rs, uint8_t **current_data, 1612 ram_addr_t current_addr, RAMBlock *block, 1613 ram_addr_t offset, bool last_stage) 1614 { 1615 int encoded_len = 0, bytes_xbzrle; 1616 uint8_t *prev_cached_page; 1617 1618 if (!cache_is_cached(XBZRLE.cache, current_addr, 1619 ram_counters.dirty_sync_count)) { 1620 xbzrle_counters.cache_miss++; 1621 if (!last_stage) { 1622 if (cache_insert(XBZRLE.cache, current_addr, *current_data, 1623 ram_counters.dirty_sync_count) == -1) { 1624 return -1; 1625 } else { 1626 /* update *current_data when the page has been 1627 inserted into cache */ 1628 *current_data = get_cached_data(XBZRLE.cache, current_addr); 1629 } 1630 } 1631 return -1; 1632 } 1633 1634 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr); 1635 1636 /* save current buffer into memory */ 1637 memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE); 1638 1639 /* XBZRLE encoding (if there is no overflow) */ 1640 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf, 1641 TARGET_PAGE_SIZE, XBZRLE.encoded_buf, 1642 TARGET_PAGE_SIZE); 1643 1644 /* 1645 * Update the cache contents, so that it corresponds to the data 1646 * sent, in all cases except where we skip the page. 1647 */ 1648 if (!last_stage && encoded_len != 0) { 1649 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE); 1650 /* 1651 * In the case where we couldn't compress, ensure that the caller 1652 * sends the data from the cache, since the guest might have 1653 * changed the RAM since we copied it. 1654 */ 1655 *current_data = prev_cached_page; 1656 } 1657 1658 if (encoded_len == 0) { 1659 trace_save_xbzrle_page_skipping(); 1660 return 0; 1661 } else if (encoded_len == -1) { 1662 trace_save_xbzrle_page_overflow(); 1663 xbzrle_counters.overflow++; 1664 return -1; 1665 } 1666 1667 /* Send XBZRLE based compressed page */ 1668 bytes_xbzrle = save_page_header(rs, rs->f, block, 1669 offset | RAM_SAVE_FLAG_XBZRLE); 1670 qemu_put_byte(rs->f, ENCODING_FLAG_XBZRLE); 1671 qemu_put_be16(rs->f, encoded_len); 1672 qemu_put_buffer(rs->f, XBZRLE.encoded_buf, encoded_len); 1673 bytes_xbzrle += encoded_len + 1 + 2; 1674 xbzrle_counters.pages++; 1675 xbzrle_counters.bytes += bytes_xbzrle; 1676 ram_counters.transferred += bytes_xbzrle; 1677 1678 return 1; 1679 } 1680 1681 /** 1682 * migration_bitmap_find_dirty: find the next dirty page from start 1683 * 1684 * Returns the page offset within memory region of the start of a dirty page 1685 * 1686 * @rs: current RAM state 1687 * @rb: RAMBlock where to search for dirty pages 1688 * @start: page where we start the search 1689 */ 1690 static inline 1691 unsigned long migration_bitmap_find_dirty(RAMState *rs, RAMBlock *rb, 1692 unsigned long start) 1693 { 1694 unsigned long size = rb->used_length >> TARGET_PAGE_BITS; 1695 unsigned long *bitmap = rb->bmap; 1696 unsigned long next; 1697 1698 if (ramblock_is_ignored(rb)) { 1699 return size; 1700 } 1701 1702 /* 1703 * When the free page optimization is enabled, we need to check the bitmap 1704 * to send the non-free pages rather than all the pages in the bulk stage. 1705 */ 1706 if (!rs->fpo_enabled && rs->ram_bulk_stage && start > 0) { 1707 next = start + 1; 1708 } else { 1709 next = find_next_bit(bitmap, size, start); 1710 } 1711 1712 return next; 1713 } 1714 1715 static inline bool migration_bitmap_clear_dirty(RAMState *rs, 1716 RAMBlock *rb, 1717 unsigned long page) 1718 { 1719 bool ret; 1720 1721 qemu_mutex_lock(&rs->bitmap_mutex); 1722 1723 /* 1724 * Clear dirty bitmap if needed. This _must_ be called before we 1725 * send any of the page in the chunk because we need to make sure 1726 * we can capture further page content changes when we sync dirty 1727 * log the next time. So as long as we are going to send any of 1728 * the page in the chunk we clear the remote dirty bitmap for all. 1729 * Clearing it earlier won't be a problem, but too late will. 1730 */ 1731 if (rb->clear_bmap && clear_bmap_test_and_clear(rb, page)) { 1732 uint8_t shift = rb->clear_bmap_shift; 1733 hwaddr size = 1ULL << (TARGET_PAGE_BITS + shift); 1734 hwaddr start = (page << TARGET_PAGE_BITS) & (-size); 1735 1736 /* 1737 * CLEAR_BITMAP_SHIFT_MIN should always guarantee this... this 1738 * can make things easier sometimes since then start address 1739 * of the small chunk will always be 64 pages aligned so the 1740 * bitmap will always be aligned to unsigned long. We should 1741 * even be able to remove this restriction but I'm simply 1742 * keeping it. 1743 */ 1744 assert(shift >= 6); 1745 trace_migration_bitmap_clear_dirty(rb->idstr, start, size, page); 1746 memory_region_clear_dirty_bitmap(rb->mr, start, size); 1747 } 1748 1749 ret = test_and_clear_bit(page, rb->bmap); 1750 1751 if (ret) { 1752 rs->migration_dirty_pages--; 1753 } 1754 qemu_mutex_unlock(&rs->bitmap_mutex); 1755 1756 return ret; 1757 } 1758 1759 /* Called with RCU critical section */ 1760 static void ramblock_sync_dirty_bitmap(RAMState *rs, RAMBlock *rb) 1761 { 1762 rs->migration_dirty_pages += 1763 cpu_physical_memory_sync_dirty_bitmap(rb, 0, rb->used_length, 1764 &rs->num_dirty_pages_period); 1765 } 1766 1767 /** 1768 * ram_pagesize_summary: calculate all the pagesizes of a VM 1769 * 1770 * Returns a summary bitmap of the page sizes of all RAMBlocks 1771 * 1772 * For VMs with just normal pages this is equivalent to the host page 1773 * size. If it's got some huge pages then it's the OR of all the 1774 * different page sizes. 1775 */ 1776 uint64_t ram_pagesize_summary(void) 1777 { 1778 RAMBlock *block; 1779 uint64_t summary = 0; 1780 1781 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 1782 summary |= block->page_size; 1783 } 1784 1785 return summary; 1786 } 1787 1788 uint64_t ram_get_total_transferred_pages(void) 1789 { 1790 return ram_counters.normal + ram_counters.duplicate + 1791 compression_counters.pages + xbzrle_counters.pages; 1792 } 1793 1794 static void migration_update_rates(RAMState *rs, int64_t end_time) 1795 { 1796 uint64_t page_count = rs->target_page_count - rs->target_page_count_prev; 1797 double compressed_size; 1798 1799 /* calculate period counters */ 1800 ram_counters.dirty_pages_rate = rs->num_dirty_pages_period * 1000 1801 / (end_time - rs->time_last_bitmap_sync); 1802 1803 if (!page_count) { 1804 return; 1805 } 1806 1807 if (migrate_use_xbzrle()) { 1808 xbzrle_counters.cache_miss_rate = (double)(xbzrle_counters.cache_miss - 1809 rs->xbzrle_cache_miss_prev) / page_count; 1810 rs->xbzrle_cache_miss_prev = xbzrle_counters.cache_miss; 1811 } 1812 1813 if (migrate_use_compression()) { 1814 compression_counters.busy_rate = (double)(compression_counters.busy - 1815 rs->compress_thread_busy_prev) / page_count; 1816 rs->compress_thread_busy_prev = compression_counters.busy; 1817 1818 compressed_size = compression_counters.compressed_size - 1819 rs->compressed_size_prev; 1820 if (compressed_size) { 1821 double uncompressed_size = (compression_counters.pages - 1822 rs->compress_pages_prev) * TARGET_PAGE_SIZE; 1823 1824 /* Compression-Ratio = Uncompressed-size / Compressed-size */ 1825 compression_counters.compression_rate = 1826 uncompressed_size / compressed_size; 1827 1828 rs->compress_pages_prev = compression_counters.pages; 1829 rs->compressed_size_prev = compression_counters.compressed_size; 1830 } 1831 } 1832 } 1833 1834 static void migration_bitmap_sync(RAMState *rs) 1835 { 1836 RAMBlock *block; 1837 int64_t end_time; 1838 uint64_t bytes_xfer_now; 1839 1840 ram_counters.dirty_sync_count++; 1841 1842 if (!rs->time_last_bitmap_sync) { 1843 rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); 1844 } 1845 1846 trace_migration_bitmap_sync_start(); 1847 memory_global_dirty_log_sync(); 1848 1849 qemu_mutex_lock(&rs->bitmap_mutex); 1850 WITH_RCU_READ_LOCK_GUARD() { 1851 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 1852 ramblock_sync_dirty_bitmap(rs, block); 1853 } 1854 ram_counters.remaining = ram_bytes_remaining(); 1855 } 1856 qemu_mutex_unlock(&rs->bitmap_mutex); 1857 1858 memory_global_after_dirty_log_sync(); 1859 trace_migration_bitmap_sync_end(rs->num_dirty_pages_period); 1860 1861 end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); 1862 1863 /* more than 1 second = 1000 millisecons */ 1864 if (end_time > rs->time_last_bitmap_sync + 1000) { 1865 bytes_xfer_now = ram_counters.transferred; 1866 1867 /* During block migration the auto-converge logic incorrectly detects 1868 * that ram migration makes no progress. Avoid this by disabling the 1869 * throttling logic during the bulk phase of block migration. */ 1870 if (migrate_auto_converge() && !blk_mig_bulk_active()) { 1871 /* The following detection logic can be refined later. For now: 1872 Check to see if the dirtied bytes is 50% more than the approx. 1873 amount of bytes that just got transferred since the last time we 1874 were in this routine. If that happens twice, start or increase 1875 throttling */ 1876 1877 if ((rs->num_dirty_pages_period * TARGET_PAGE_SIZE > 1878 (bytes_xfer_now - rs->bytes_xfer_prev) / 2) && 1879 (++rs->dirty_rate_high_cnt >= 2)) { 1880 trace_migration_throttle(); 1881 rs->dirty_rate_high_cnt = 0; 1882 mig_throttle_guest_down(); 1883 } 1884 } 1885 1886 migration_update_rates(rs, end_time); 1887 1888 rs->target_page_count_prev = rs->target_page_count; 1889 1890 /* reset period counters */ 1891 rs->time_last_bitmap_sync = end_time; 1892 rs->num_dirty_pages_period = 0; 1893 rs->bytes_xfer_prev = bytes_xfer_now; 1894 } 1895 if (migrate_use_events()) { 1896 qapi_event_send_migration_pass(ram_counters.dirty_sync_count); 1897 } 1898 } 1899 1900 static void migration_bitmap_sync_precopy(RAMState *rs) 1901 { 1902 Error *local_err = NULL; 1903 1904 /* 1905 * The current notifier usage is just an optimization to migration, so we 1906 * don't stop the normal migration process in the error case. 1907 */ 1908 if (precopy_notify(PRECOPY_NOTIFY_BEFORE_BITMAP_SYNC, &local_err)) { 1909 error_report_err(local_err); 1910 } 1911 1912 migration_bitmap_sync(rs); 1913 1914 if (precopy_notify(PRECOPY_NOTIFY_AFTER_BITMAP_SYNC, &local_err)) { 1915 error_report_err(local_err); 1916 } 1917 } 1918 1919 /** 1920 * save_zero_page_to_file: send the zero page to the file 1921 * 1922 * Returns the size of data written to the file, 0 means the page is not 1923 * a zero page 1924 * 1925 * @rs: current RAM state 1926 * @file: the file where the data is saved 1927 * @block: block that contains the page we want to send 1928 * @offset: offset inside the block for the page 1929 */ 1930 static int save_zero_page_to_file(RAMState *rs, QEMUFile *file, 1931 RAMBlock *block, ram_addr_t offset) 1932 { 1933 uint8_t *p = block->host + offset; 1934 int len = 0; 1935 1936 if (is_zero_range(p, TARGET_PAGE_SIZE)) { 1937 len += save_page_header(rs, file, block, offset | RAM_SAVE_FLAG_ZERO); 1938 qemu_put_byte(file, 0); 1939 len += 1; 1940 } 1941 return len; 1942 } 1943 1944 /** 1945 * save_zero_page: send the zero page to the stream 1946 * 1947 * Returns the number of pages written. 1948 * 1949 * @rs: current RAM state 1950 * @block: block that contains the page we want to send 1951 * @offset: offset inside the block for the page 1952 */ 1953 static int save_zero_page(RAMState *rs, RAMBlock *block, ram_addr_t offset) 1954 { 1955 int len = save_zero_page_to_file(rs, rs->f, block, offset); 1956 1957 if (len) { 1958 ram_counters.duplicate++; 1959 ram_counters.transferred += len; 1960 return 1; 1961 } 1962 return -1; 1963 } 1964 1965 static void ram_release_pages(const char *rbname, uint64_t offset, int pages) 1966 { 1967 if (!migrate_release_ram() || !migration_in_postcopy()) { 1968 return; 1969 } 1970 1971 ram_discard_range(rbname, offset, pages << TARGET_PAGE_BITS); 1972 } 1973 1974 /* 1975 * @pages: the number of pages written by the control path, 1976 * < 0 - error 1977 * > 0 - number of pages written 1978 * 1979 * Return true if the pages has been saved, otherwise false is returned. 1980 */ 1981 static bool control_save_page(RAMState *rs, RAMBlock *block, ram_addr_t offset, 1982 int *pages) 1983 { 1984 uint64_t bytes_xmit = 0; 1985 int ret; 1986 1987 *pages = -1; 1988 ret = ram_control_save_page(rs->f, block->offset, offset, TARGET_PAGE_SIZE, 1989 &bytes_xmit); 1990 if (ret == RAM_SAVE_CONTROL_NOT_SUPP) { 1991 return false; 1992 } 1993 1994 if (bytes_xmit) { 1995 ram_counters.transferred += bytes_xmit; 1996 *pages = 1; 1997 } 1998 1999 if (ret == RAM_SAVE_CONTROL_DELAYED) { 2000 return true; 2001 } 2002 2003 if (bytes_xmit > 0) { 2004 ram_counters.normal++; 2005 } else if (bytes_xmit == 0) { 2006 ram_counters.duplicate++; 2007 } 2008 2009 return true; 2010 } 2011 2012 /* 2013 * directly send the page to the stream 2014 * 2015 * Returns the number of pages written. 2016 * 2017 * @rs: current RAM state 2018 * @block: block that contains the page we want to send 2019 * @offset: offset inside the block for the page 2020 * @buf: the page to be sent 2021 * @async: send to page asyncly 2022 */ 2023 static int save_normal_page(RAMState *rs, RAMBlock *block, ram_addr_t offset, 2024 uint8_t *buf, bool async) 2025 { 2026 ram_counters.transferred += save_page_header(rs, rs->f, block, 2027 offset | RAM_SAVE_FLAG_PAGE); 2028 if (async) { 2029 qemu_put_buffer_async(rs->f, buf, TARGET_PAGE_SIZE, 2030 migrate_release_ram() & 2031 migration_in_postcopy()); 2032 } else { 2033 qemu_put_buffer(rs->f, buf, TARGET_PAGE_SIZE); 2034 } 2035 ram_counters.transferred += TARGET_PAGE_SIZE; 2036 ram_counters.normal++; 2037 return 1; 2038 } 2039 2040 /** 2041 * ram_save_page: send the given page to the stream 2042 * 2043 * Returns the number of pages written. 2044 * < 0 - error 2045 * >=0 - Number of pages written - this might legally be 0 2046 * if xbzrle noticed the page was the same. 2047 * 2048 * @rs: current RAM state 2049 * @block: block that contains the page we want to send 2050 * @offset: offset inside the block for the page 2051 * @last_stage: if we are at the completion stage 2052 */ 2053 static int ram_save_page(RAMState *rs, PageSearchStatus *pss, bool last_stage) 2054 { 2055 int pages = -1; 2056 uint8_t *p; 2057 bool send_async = true; 2058 RAMBlock *block = pss->block; 2059 ram_addr_t offset = pss->page << TARGET_PAGE_BITS; 2060 ram_addr_t current_addr = block->offset + offset; 2061 2062 p = block->host + offset; 2063 trace_ram_save_page(block->idstr, (uint64_t)offset, p); 2064 2065 XBZRLE_cache_lock(); 2066 if (!rs->ram_bulk_stage && !migration_in_postcopy() && 2067 migrate_use_xbzrle()) { 2068 pages = save_xbzrle_page(rs, &p, current_addr, block, 2069 offset, last_stage); 2070 if (!last_stage) { 2071 /* Can't send this cached data async, since the cache page 2072 * might get updated before it gets to the wire 2073 */ 2074 send_async = false; 2075 } 2076 } 2077 2078 /* XBZRLE overflow or normal page */ 2079 if (pages == -1) { 2080 pages = save_normal_page(rs, block, offset, p, send_async); 2081 } 2082 2083 XBZRLE_cache_unlock(); 2084 2085 return pages; 2086 } 2087 2088 static int ram_save_multifd_page(RAMState *rs, RAMBlock *block, 2089 ram_addr_t offset) 2090 { 2091 if (multifd_queue_page(rs, block, offset) < 0) { 2092 return -1; 2093 } 2094 ram_counters.normal++; 2095 2096 return 1; 2097 } 2098 2099 static bool do_compress_ram_page(QEMUFile *f, z_stream *stream, RAMBlock *block, 2100 ram_addr_t offset, uint8_t *source_buf) 2101 { 2102 RAMState *rs = ram_state; 2103 uint8_t *p = block->host + (offset & TARGET_PAGE_MASK); 2104 bool zero_page = false; 2105 int ret; 2106 2107 if (save_zero_page_to_file(rs, f, block, offset)) { 2108 zero_page = true; 2109 goto exit; 2110 } 2111 2112 save_page_header(rs, f, block, offset | RAM_SAVE_FLAG_COMPRESS_PAGE); 2113 2114 /* 2115 * copy it to a internal buffer to avoid it being modified by VM 2116 * so that we can catch up the error during compression and 2117 * decompression 2118 */ 2119 memcpy(source_buf, p, TARGET_PAGE_SIZE); 2120 ret = qemu_put_compression_data(f, stream, source_buf, TARGET_PAGE_SIZE); 2121 if (ret < 0) { 2122 qemu_file_set_error(migrate_get_current()->to_dst_file, ret); 2123 error_report("compressed data failed!"); 2124 return false; 2125 } 2126 2127 exit: 2128 ram_release_pages(block->idstr, offset & TARGET_PAGE_MASK, 1); 2129 return zero_page; 2130 } 2131 2132 static void 2133 update_compress_thread_counts(const CompressParam *param, int bytes_xmit) 2134 { 2135 ram_counters.transferred += bytes_xmit; 2136 2137 if (param->zero_page) { 2138 ram_counters.duplicate++; 2139 return; 2140 } 2141 2142 /* 8 means a header with RAM_SAVE_FLAG_CONTINUE. */ 2143 compression_counters.compressed_size += bytes_xmit - 8; 2144 compression_counters.pages++; 2145 } 2146 2147 static bool save_page_use_compression(RAMState *rs); 2148 2149 static void flush_compressed_data(RAMState *rs) 2150 { 2151 int idx, len, thread_count; 2152 2153 if (!save_page_use_compression(rs)) { 2154 return; 2155 } 2156 thread_count = migrate_compress_threads(); 2157 2158 qemu_mutex_lock(&comp_done_lock); 2159 for (idx = 0; idx < thread_count; idx++) { 2160 while (!comp_param[idx].done) { 2161 qemu_cond_wait(&comp_done_cond, &comp_done_lock); 2162 } 2163 } 2164 qemu_mutex_unlock(&comp_done_lock); 2165 2166 for (idx = 0; idx < thread_count; idx++) { 2167 qemu_mutex_lock(&comp_param[idx].mutex); 2168 if (!comp_param[idx].quit) { 2169 len = qemu_put_qemu_file(rs->f, comp_param[idx].file); 2170 /* 2171 * it's safe to fetch zero_page without holding comp_done_lock 2172 * as there is no further request submitted to the thread, 2173 * i.e, the thread should be waiting for a request at this point. 2174 */ 2175 update_compress_thread_counts(&comp_param[idx], len); 2176 } 2177 qemu_mutex_unlock(&comp_param[idx].mutex); 2178 } 2179 } 2180 2181 static inline void set_compress_params(CompressParam *param, RAMBlock *block, 2182 ram_addr_t offset) 2183 { 2184 param->block = block; 2185 param->offset = offset; 2186 } 2187 2188 static int compress_page_with_multi_thread(RAMState *rs, RAMBlock *block, 2189 ram_addr_t offset) 2190 { 2191 int idx, thread_count, bytes_xmit = -1, pages = -1; 2192 bool wait = migrate_compress_wait_thread(); 2193 2194 thread_count = migrate_compress_threads(); 2195 qemu_mutex_lock(&comp_done_lock); 2196 retry: 2197 for (idx = 0; idx < thread_count; idx++) { 2198 if (comp_param[idx].done) { 2199 comp_param[idx].done = false; 2200 bytes_xmit = qemu_put_qemu_file(rs->f, comp_param[idx].file); 2201 qemu_mutex_lock(&comp_param[idx].mutex); 2202 set_compress_params(&comp_param[idx], block, offset); 2203 qemu_cond_signal(&comp_param[idx].cond); 2204 qemu_mutex_unlock(&comp_param[idx].mutex); 2205 pages = 1; 2206 update_compress_thread_counts(&comp_param[idx], bytes_xmit); 2207 break; 2208 } 2209 } 2210 2211 /* 2212 * wait for the free thread if the user specifies 'compress-wait-thread', 2213 * otherwise we will post the page out in the main thread as normal page. 2214 */ 2215 if (pages < 0 && wait) { 2216 qemu_cond_wait(&comp_done_cond, &comp_done_lock); 2217 goto retry; 2218 } 2219 qemu_mutex_unlock(&comp_done_lock); 2220 2221 return pages; 2222 } 2223 2224 /** 2225 * find_dirty_block: find the next dirty page and update any state 2226 * associated with the search process. 2227 * 2228 * Returns true if a page is found 2229 * 2230 * @rs: current RAM state 2231 * @pss: data about the state of the current dirty page scan 2232 * @again: set to false if the search has scanned the whole of RAM 2233 */ 2234 static bool find_dirty_block(RAMState *rs, PageSearchStatus *pss, bool *again) 2235 { 2236 pss->page = migration_bitmap_find_dirty(rs, pss->block, pss->page); 2237 if (pss->complete_round && pss->block == rs->last_seen_block && 2238 pss->page >= rs->last_page) { 2239 /* 2240 * We've been once around the RAM and haven't found anything. 2241 * Give up. 2242 */ 2243 *again = false; 2244 return false; 2245 } 2246 if ((pss->page << TARGET_PAGE_BITS) >= pss->block->used_length) { 2247 /* Didn't find anything in this RAM Block */ 2248 pss->page = 0; 2249 pss->block = QLIST_NEXT_RCU(pss->block, next); 2250 if (!pss->block) { 2251 /* 2252 * If memory migration starts over, we will meet a dirtied page 2253 * which may still exists in compression threads's ring, so we 2254 * should flush the compressed data to make sure the new page 2255 * is not overwritten by the old one in the destination. 2256 * 2257 * Also If xbzrle is on, stop using the data compression at this 2258 * point. In theory, xbzrle can do better than compression. 2259 */ 2260 flush_compressed_data(rs); 2261 2262 /* Hit the end of the list */ 2263 pss->block = QLIST_FIRST_RCU(&ram_list.blocks); 2264 /* Flag that we've looped */ 2265 pss->complete_round = true; 2266 rs->ram_bulk_stage = false; 2267 } 2268 /* Didn't find anything this time, but try again on the new block */ 2269 *again = true; 2270 return false; 2271 } else { 2272 /* Can go around again, but... */ 2273 *again = true; 2274 /* We've found something so probably don't need to */ 2275 return true; 2276 } 2277 } 2278 2279 /** 2280 * unqueue_page: gets a page of the queue 2281 * 2282 * Helper for 'get_queued_page' - gets a page off the queue 2283 * 2284 * Returns the block of the page (or NULL if none available) 2285 * 2286 * @rs: current RAM state 2287 * @offset: used to return the offset within the RAMBlock 2288 */ 2289 static RAMBlock *unqueue_page(RAMState *rs, ram_addr_t *offset) 2290 { 2291 RAMBlock *block = NULL; 2292 2293 if (QSIMPLEQ_EMPTY_ATOMIC(&rs->src_page_requests)) { 2294 return NULL; 2295 } 2296 2297 qemu_mutex_lock(&rs->src_page_req_mutex); 2298 if (!QSIMPLEQ_EMPTY(&rs->src_page_requests)) { 2299 struct RAMSrcPageRequest *entry = 2300 QSIMPLEQ_FIRST(&rs->src_page_requests); 2301 block = entry->rb; 2302 *offset = entry->offset; 2303 2304 if (entry->len > TARGET_PAGE_SIZE) { 2305 entry->len -= TARGET_PAGE_SIZE; 2306 entry->offset += TARGET_PAGE_SIZE; 2307 } else { 2308 memory_region_unref(block->mr); 2309 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req); 2310 g_free(entry); 2311 migration_consume_urgent_request(); 2312 } 2313 } 2314 qemu_mutex_unlock(&rs->src_page_req_mutex); 2315 2316 return block; 2317 } 2318 2319 /** 2320 * get_queued_page: unqueue a page from the postcopy requests 2321 * 2322 * Skips pages that are already sent (!dirty) 2323 * 2324 * Returns true if a queued page is found 2325 * 2326 * @rs: current RAM state 2327 * @pss: data about the state of the current dirty page scan 2328 */ 2329 static bool get_queued_page(RAMState *rs, PageSearchStatus *pss) 2330 { 2331 RAMBlock *block; 2332 ram_addr_t offset; 2333 bool dirty; 2334 2335 do { 2336 block = unqueue_page(rs, &offset); 2337 /* 2338 * We're sending this page, and since it's postcopy nothing else 2339 * will dirty it, and we must make sure it doesn't get sent again 2340 * even if this queue request was received after the background 2341 * search already sent it. 2342 */ 2343 if (block) { 2344 unsigned long page; 2345 2346 page = offset >> TARGET_PAGE_BITS; 2347 dirty = test_bit(page, block->bmap); 2348 if (!dirty) { 2349 trace_get_queued_page_not_dirty(block->idstr, (uint64_t)offset, 2350 page); 2351 } else { 2352 trace_get_queued_page(block->idstr, (uint64_t)offset, page); 2353 } 2354 } 2355 2356 } while (block && !dirty); 2357 2358 if (block) { 2359 /* 2360 * As soon as we start servicing pages out of order, then we have 2361 * to kill the bulk stage, since the bulk stage assumes 2362 * in (migration_bitmap_find_and_reset_dirty) that every page is 2363 * dirty, that's no longer true. 2364 */ 2365 rs->ram_bulk_stage = false; 2366 2367 /* 2368 * We want the background search to continue from the queued page 2369 * since the guest is likely to want other pages near to the page 2370 * it just requested. 2371 */ 2372 pss->block = block; 2373 pss->page = offset >> TARGET_PAGE_BITS; 2374 2375 /* 2376 * This unqueued page would break the "one round" check, even is 2377 * really rare. 2378 */ 2379 pss->complete_round = false; 2380 } 2381 2382 return !!block; 2383 } 2384 2385 /** 2386 * migration_page_queue_free: drop any remaining pages in the ram 2387 * request queue 2388 * 2389 * It should be empty at the end anyway, but in error cases there may 2390 * be some left. in case that there is any page left, we drop it. 2391 * 2392 */ 2393 static void migration_page_queue_free(RAMState *rs) 2394 { 2395 struct RAMSrcPageRequest *mspr, *next_mspr; 2396 /* This queue generally should be empty - but in the case of a failed 2397 * migration might have some droppings in. 2398 */ 2399 RCU_READ_LOCK_GUARD(); 2400 QSIMPLEQ_FOREACH_SAFE(mspr, &rs->src_page_requests, next_req, next_mspr) { 2401 memory_region_unref(mspr->rb->mr); 2402 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req); 2403 g_free(mspr); 2404 } 2405 } 2406 2407 /** 2408 * ram_save_queue_pages: queue the page for transmission 2409 * 2410 * A request from postcopy destination for example. 2411 * 2412 * Returns zero on success or negative on error 2413 * 2414 * @rbname: Name of the RAMBLock of the request. NULL means the 2415 * same that last one. 2416 * @start: starting address from the start of the RAMBlock 2417 * @len: length (in bytes) to send 2418 */ 2419 int ram_save_queue_pages(const char *rbname, ram_addr_t start, ram_addr_t len) 2420 { 2421 RAMBlock *ramblock; 2422 RAMState *rs = ram_state; 2423 2424 ram_counters.postcopy_requests++; 2425 RCU_READ_LOCK_GUARD(); 2426 2427 if (!rbname) { 2428 /* Reuse last RAMBlock */ 2429 ramblock = rs->last_req_rb; 2430 2431 if (!ramblock) { 2432 /* 2433 * Shouldn't happen, we can't reuse the last RAMBlock if 2434 * it's the 1st request. 2435 */ 2436 error_report("ram_save_queue_pages no previous block"); 2437 goto err; 2438 } 2439 } else { 2440 ramblock = qemu_ram_block_by_name(rbname); 2441 2442 if (!ramblock) { 2443 /* We shouldn't be asked for a non-existent RAMBlock */ 2444 error_report("ram_save_queue_pages no block '%s'", rbname); 2445 goto err; 2446 } 2447 rs->last_req_rb = ramblock; 2448 } 2449 trace_ram_save_queue_pages(ramblock->idstr, start, len); 2450 if (start+len > ramblock->used_length) { 2451 error_report("%s request overrun start=" RAM_ADDR_FMT " len=" 2452 RAM_ADDR_FMT " blocklen=" RAM_ADDR_FMT, 2453 __func__, start, len, ramblock->used_length); 2454 goto err; 2455 } 2456 2457 struct RAMSrcPageRequest *new_entry = 2458 g_malloc0(sizeof(struct RAMSrcPageRequest)); 2459 new_entry->rb = ramblock; 2460 new_entry->offset = start; 2461 new_entry->len = len; 2462 2463 memory_region_ref(ramblock->mr); 2464 qemu_mutex_lock(&rs->src_page_req_mutex); 2465 QSIMPLEQ_INSERT_TAIL(&rs->src_page_requests, new_entry, next_req); 2466 migration_make_urgent_request(); 2467 qemu_mutex_unlock(&rs->src_page_req_mutex); 2468 2469 return 0; 2470 2471 err: 2472 return -1; 2473 } 2474 2475 static bool save_page_use_compression(RAMState *rs) 2476 { 2477 if (!migrate_use_compression()) { 2478 return false; 2479 } 2480 2481 /* 2482 * If xbzrle is on, stop using the data compression after first 2483 * round of migration even if compression is enabled. In theory, 2484 * xbzrle can do better than compression. 2485 */ 2486 if (rs->ram_bulk_stage || !migrate_use_xbzrle()) { 2487 return true; 2488 } 2489 2490 return false; 2491 } 2492 2493 /* 2494 * try to compress the page before posting it out, return true if the page 2495 * has been properly handled by compression, otherwise needs other 2496 * paths to handle it 2497 */ 2498 static bool save_compress_page(RAMState *rs, RAMBlock *block, ram_addr_t offset) 2499 { 2500 if (!save_page_use_compression(rs)) { 2501 return false; 2502 } 2503 2504 /* 2505 * When starting the process of a new block, the first page of 2506 * the block should be sent out before other pages in the same 2507 * block, and all the pages in last block should have been sent 2508 * out, keeping this order is important, because the 'cont' flag 2509 * is used to avoid resending the block name. 2510 * 2511 * We post the fist page as normal page as compression will take 2512 * much CPU resource. 2513 */ 2514 if (block != rs->last_sent_block) { 2515 flush_compressed_data(rs); 2516 return false; 2517 } 2518 2519 if (compress_page_with_multi_thread(rs, block, offset) > 0) { 2520 return true; 2521 } 2522 2523 compression_counters.busy++; 2524 return false; 2525 } 2526 2527 /** 2528 * ram_save_target_page: save one target page 2529 * 2530 * Returns the number of pages written 2531 * 2532 * @rs: current RAM state 2533 * @pss: data about the page we want to send 2534 * @last_stage: if we are at the completion stage 2535 */ 2536 static int ram_save_target_page(RAMState *rs, PageSearchStatus *pss, 2537 bool last_stage) 2538 { 2539 RAMBlock *block = pss->block; 2540 ram_addr_t offset = pss->page << TARGET_PAGE_BITS; 2541 int res; 2542 2543 if (control_save_page(rs, block, offset, &res)) { 2544 return res; 2545 } 2546 2547 if (save_compress_page(rs, block, offset)) { 2548 return 1; 2549 } 2550 2551 res = save_zero_page(rs, block, offset); 2552 if (res > 0) { 2553 /* Must let xbzrle know, otherwise a previous (now 0'd) cached 2554 * page would be stale 2555 */ 2556 if (!save_page_use_compression(rs)) { 2557 XBZRLE_cache_lock(); 2558 xbzrle_cache_zero_page(rs, block->offset + offset); 2559 XBZRLE_cache_unlock(); 2560 } 2561 ram_release_pages(block->idstr, offset, res); 2562 return res; 2563 } 2564 2565 /* 2566 * do not use multifd for compression as the first page in the new 2567 * block should be posted out before sending the compressed page 2568 */ 2569 if (!save_page_use_compression(rs) && migrate_use_multifd()) { 2570 return ram_save_multifd_page(rs, block, offset); 2571 } 2572 2573 return ram_save_page(rs, pss, last_stage); 2574 } 2575 2576 /** 2577 * ram_save_host_page: save a whole host page 2578 * 2579 * Starting at *offset send pages up to the end of the current host 2580 * page. It's valid for the initial offset to point into the middle of 2581 * a host page in which case the remainder of the hostpage is sent. 2582 * Only dirty target pages are sent. Note that the host page size may 2583 * be a huge page for this block. 2584 * The saving stops at the boundary of the used_length of the block 2585 * if the RAMBlock isn't a multiple of the host page size. 2586 * 2587 * Returns the number of pages written or negative on error 2588 * 2589 * @rs: current RAM state 2590 * @ms: current migration state 2591 * @pss: data about the page we want to send 2592 * @last_stage: if we are at the completion stage 2593 */ 2594 static int ram_save_host_page(RAMState *rs, PageSearchStatus *pss, 2595 bool last_stage) 2596 { 2597 int tmppages, pages = 0; 2598 size_t pagesize_bits = 2599 qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS; 2600 2601 if (ramblock_is_ignored(pss->block)) { 2602 error_report("block %s should not be migrated !", pss->block->idstr); 2603 return 0; 2604 } 2605 2606 do { 2607 /* Check the pages is dirty and if it is send it */ 2608 if (!migration_bitmap_clear_dirty(rs, pss->block, pss->page)) { 2609 pss->page++; 2610 continue; 2611 } 2612 2613 tmppages = ram_save_target_page(rs, pss, last_stage); 2614 if (tmppages < 0) { 2615 return tmppages; 2616 } 2617 2618 pages += tmppages; 2619 pss->page++; 2620 } while ((pss->page & (pagesize_bits - 1)) && 2621 offset_in_ramblock(pss->block, pss->page << TARGET_PAGE_BITS)); 2622 2623 /* The offset we leave with is the last one we looked at */ 2624 pss->page--; 2625 return pages; 2626 } 2627 2628 /** 2629 * ram_find_and_save_block: finds a dirty page and sends it to f 2630 * 2631 * Called within an RCU critical section. 2632 * 2633 * Returns the number of pages written where zero means no dirty pages, 2634 * or negative on error 2635 * 2636 * @rs: current RAM state 2637 * @last_stage: if we are at the completion stage 2638 * 2639 * On systems where host-page-size > target-page-size it will send all the 2640 * pages in a host page that are dirty. 2641 */ 2642 2643 static int ram_find_and_save_block(RAMState *rs, bool last_stage) 2644 { 2645 PageSearchStatus pss; 2646 int pages = 0; 2647 bool again, found; 2648 2649 /* No dirty page as there is zero RAM */ 2650 if (!ram_bytes_total()) { 2651 return pages; 2652 } 2653 2654 pss.block = rs->last_seen_block; 2655 pss.page = rs->last_page; 2656 pss.complete_round = false; 2657 2658 if (!pss.block) { 2659 pss.block = QLIST_FIRST_RCU(&ram_list.blocks); 2660 } 2661 2662 do { 2663 again = true; 2664 found = get_queued_page(rs, &pss); 2665 2666 if (!found) { 2667 /* priority queue empty, so just search for something dirty */ 2668 found = find_dirty_block(rs, &pss, &again); 2669 } 2670 2671 if (found) { 2672 pages = ram_save_host_page(rs, &pss, last_stage); 2673 } 2674 } while (!pages && again); 2675 2676 rs->last_seen_block = pss.block; 2677 rs->last_page = pss.page; 2678 2679 return pages; 2680 } 2681 2682 void acct_update_position(QEMUFile *f, size_t size, bool zero) 2683 { 2684 uint64_t pages = size / TARGET_PAGE_SIZE; 2685 2686 if (zero) { 2687 ram_counters.duplicate += pages; 2688 } else { 2689 ram_counters.normal += pages; 2690 ram_counters.transferred += size; 2691 qemu_update_position(f, size); 2692 } 2693 } 2694 2695 static uint64_t ram_bytes_total_common(bool count_ignored) 2696 { 2697 RAMBlock *block; 2698 uint64_t total = 0; 2699 2700 RCU_READ_LOCK_GUARD(); 2701 2702 if (count_ignored) { 2703 RAMBLOCK_FOREACH_MIGRATABLE(block) { 2704 total += block->used_length; 2705 } 2706 } else { 2707 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 2708 total += block->used_length; 2709 } 2710 } 2711 return total; 2712 } 2713 2714 uint64_t ram_bytes_total(void) 2715 { 2716 return ram_bytes_total_common(false); 2717 } 2718 2719 static void xbzrle_load_setup(void) 2720 { 2721 XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE); 2722 } 2723 2724 static void xbzrle_load_cleanup(void) 2725 { 2726 g_free(XBZRLE.decoded_buf); 2727 XBZRLE.decoded_buf = NULL; 2728 } 2729 2730 static void ram_state_cleanup(RAMState **rsp) 2731 { 2732 if (*rsp) { 2733 migration_page_queue_free(*rsp); 2734 qemu_mutex_destroy(&(*rsp)->bitmap_mutex); 2735 qemu_mutex_destroy(&(*rsp)->src_page_req_mutex); 2736 g_free(*rsp); 2737 *rsp = NULL; 2738 } 2739 } 2740 2741 static void xbzrle_cleanup(void) 2742 { 2743 XBZRLE_cache_lock(); 2744 if (XBZRLE.cache) { 2745 cache_fini(XBZRLE.cache); 2746 g_free(XBZRLE.encoded_buf); 2747 g_free(XBZRLE.current_buf); 2748 g_free(XBZRLE.zero_target_page); 2749 XBZRLE.cache = NULL; 2750 XBZRLE.encoded_buf = NULL; 2751 XBZRLE.current_buf = NULL; 2752 XBZRLE.zero_target_page = NULL; 2753 } 2754 XBZRLE_cache_unlock(); 2755 } 2756 2757 static void ram_save_cleanup(void *opaque) 2758 { 2759 RAMState **rsp = opaque; 2760 RAMBlock *block; 2761 2762 /* caller have hold iothread lock or is in a bh, so there is 2763 * no writing race against the migration bitmap 2764 */ 2765 memory_global_dirty_log_stop(); 2766 2767 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 2768 g_free(block->clear_bmap); 2769 block->clear_bmap = NULL; 2770 g_free(block->bmap); 2771 block->bmap = NULL; 2772 } 2773 2774 xbzrle_cleanup(); 2775 compress_threads_save_cleanup(); 2776 ram_state_cleanup(rsp); 2777 } 2778 2779 static void ram_state_reset(RAMState *rs) 2780 { 2781 rs->last_seen_block = NULL; 2782 rs->last_sent_block = NULL; 2783 rs->last_page = 0; 2784 rs->last_version = ram_list.version; 2785 rs->ram_bulk_stage = true; 2786 rs->fpo_enabled = false; 2787 } 2788 2789 #define MAX_WAIT 50 /* ms, half buffered_file limit */ 2790 2791 /* 2792 * 'expected' is the value you expect the bitmap mostly to be full 2793 * of; it won't bother printing lines that are all this value. 2794 * If 'todump' is null the migration bitmap is dumped. 2795 */ 2796 void ram_debug_dump_bitmap(unsigned long *todump, bool expected, 2797 unsigned long pages) 2798 { 2799 int64_t cur; 2800 int64_t linelen = 128; 2801 char linebuf[129]; 2802 2803 for (cur = 0; cur < pages; cur += linelen) { 2804 int64_t curb; 2805 bool found = false; 2806 /* 2807 * Last line; catch the case where the line length 2808 * is longer than remaining ram 2809 */ 2810 if (cur + linelen > pages) { 2811 linelen = pages - cur; 2812 } 2813 for (curb = 0; curb < linelen; curb++) { 2814 bool thisbit = test_bit(cur + curb, todump); 2815 linebuf[curb] = thisbit ? '1' : '.'; 2816 found = found || (thisbit != expected); 2817 } 2818 if (found) { 2819 linebuf[curb] = '\0'; 2820 fprintf(stderr, "0x%08" PRIx64 " : %s\n", cur, linebuf); 2821 } 2822 } 2823 } 2824 2825 /* **** functions for postcopy ***** */ 2826 2827 void ram_postcopy_migrated_memory_release(MigrationState *ms) 2828 { 2829 struct RAMBlock *block; 2830 2831 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 2832 unsigned long *bitmap = block->bmap; 2833 unsigned long range = block->used_length >> TARGET_PAGE_BITS; 2834 unsigned long run_start = find_next_zero_bit(bitmap, range, 0); 2835 2836 while (run_start < range) { 2837 unsigned long run_end = find_next_bit(bitmap, range, run_start + 1); 2838 ram_discard_range(block->idstr, run_start << TARGET_PAGE_BITS, 2839 (run_end - run_start) << TARGET_PAGE_BITS); 2840 run_start = find_next_zero_bit(bitmap, range, run_end + 1); 2841 } 2842 } 2843 } 2844 2845 /** 2846 * postcopy_send_discard_bm_ram: discard a RAMBlock 2847 * 2848 * Returns zero on success 2849 * 2850 * Callback from postcopy_each_ram_send_discard for each RAMBlock 2851 * 2852 * @ms: current migration state 2853 * @block: RAMBlock to discard 2854 */ 2855 static int postcopy_send_discard_bm_ram(MigrationState *ms, RAMBlock *block) 2856 { 2857 unsigned long end = block->used_length >> TARGET_PAGE_BITS; 2858 unsigned long current; 2859 unsigned long *bitmap = block->bmap; 2860 2861 for (current = 0; current < end; ) { 2862 unsigned long one = find_next_bit(bitmap, end, current); 2863 unsigned long zero, discard_length; 2864 2865 if (one >= end) { 2866 break; 2867 } 2868 2869 zero = find_next_zero_bit(bitmap, end, one + 1); 2870 2871 if (zero >= end) { 2872 discard_length = end - one; 2873 } else { 2874 discard_length = zero - one; 2875 } 2876 postcopy_discard_send_range(ms, one, discard_length); 2877 current = one + discard_length; 2878 } 2879 2880 return 0; 2881 } 2882 2883 /** 2884 * postcopy_each_ram_send_discard: discard all RAMBlocks 2885 * 2886 * Returns 0 for success or negative for error 2887 * 2888 * Utility for the outgoing postcopy code. 2889 * Calls postcopy_send_discard_bm_ram for each RAMBlock 2890 * passing it bitmap indexes and name. 2891 * (qemu_ram_foreach_block ends up passing unscaled lengths 2892 * which would mean postcopy code would have to deal with target page) 2893 * 2894 * @ms: current migration state 2895 */ 2896 static int postcopy_each_ram_send_discard(MigrationState *ms) 2897 { 2898 struct RAMBlock *block; 2899 int ret; 2900 2901 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 2902 postcopy_discard_send_init(ms, block->idstr); 2903 2904 /* 2905 * Postcopy sends chunks of bitmap over the wire, but it 2906 * just needs indexes at this point, avoids it having 2907 * target page specific code. 2908 */ 2909 ret = postcopy_send_discard_bm_ram(ms, block); 2910 postcopy_discard_send_finish(ms); 2911 if (ret) { 2912 return ret; 2913 } 2914 } 2915 2916 return 0; 2917 } 2918 2919 /** 2920 * postcopy_chunk_hostpages_pass: canonicalize bitmap in hostpages 2921 * 2922 * Helper for postcopy_chunk_hostpages; it's called twice to 2923 * canonicalize the two bitmaps, that are similar, but one is 2924 * inverted. 2925 * 2926 * Postcopy requires that all target pages in a hostpage are dirty or 2927 * clean, not a mix. This function canonicalizes the bitmaps. 2928 * 2929 * @ms: current migration state 2930 * @block: block that contains the page we want to canonicalize 2931 */ 2932 static void postcopy_chunk_hostpages_pass(MigrationState *ms, RAMBlock *block) 2933 { 2934 RAMState *rs = ram_state; 2935 unsigned long *bitmap = block->bmap; 2936 unsigned int host_ratio = block->page_size / TARGET_PAGE_SIZE; 2937 unsigned long pages = block->used_length >> TARGET_PAGE_BITS; 2938 unsigned long run_start; 2939 2940 if (block->page_size == TARGET_PAGE_SIZE) { 2941 /* Easy case - TPS==HPS for a non-huge page RAMBlock */ 2942 return; 2943 } 2944 2945 /* Find a dirty page */ 2946 run_start = find_next_bit(bitmap, pages, 0); 2947 2948 while (run_start < pages) { 2949 2950 /* 2951 * If the start of this run of pages is in the middle of a host 2952 * page, then we need to fixup this host page. 2953 */ 2954 if (QEMU_IS_ALIGNED(run_start, host_ratio)) { 2955 /* Find the end of this run */ 2956 run_start = find_next_zero_bit(bitmap, pages, run_start + 1); 2957 /* 2958 * If the end isn't at the start of a host page, then the 2959 * run doesn't finish at the end of a host page 2960 * and we need to discard. 2961 */ 2962 } 2963 2964 if (!QEMU_IS_ALIGNED(run_start, host_ratio)) { 2965 unsigned long page; 2966 unsigned long fixup_start_addr = QEMU_ALIGN_DOWN(run_start, 2967 host_ratio); 2968 run_start = QEMU_ALIGN_UP(run_start, host_ratio); 2969 2970 /* Clean up the bitmap */ 2971 for (page = fixup_start_addr; 2972 page < fixup_start_addr + host_ratio; page++) { 2973 /* 2974 * Remark them as dirty, updating the count for any pages 2975 * that weren't previously dirty. 2976 */ 2977 rs->migration_dirty_pages += !test_and_set_bit(page, bitmap); 2978 } 2979 } 2980 2981 /* Find the next dirty page for the next iteration */ 2982 run_start = find_next_bit(bitmap, pages, run_start); 2983 } 2984 } 2985 2986 /** 2987 * postcopy_chunk_hostpages: discard any partially sent host page 2988 * 2989 * Utility for the outgoing postcopy code. 2990 * 2991 * Discard any partially sent host-page size chunks, mark any partially 2992 * dirty host-page size chunks as all dirty. In this case the host-page 2993 * is the host-page for the particular RAMBlock, i.e. it might be a huge page 2994 * 2995 * Returns zero on success 2996 * 2997 * @ms: current migration state 2998 * @block: block we want to work with 2999 */ 3000 static int postcopy_chunk_hostpages(MigrationState *ms, RAMBlock *block) 3001 { 3002 postcopy_discard_send_init(ms, block->idstr); 3003 3004 /* 3005 * Ensure that all partially dirty host pages are made fully dirty. 3006 */ 3007 postcopy_chunk_hostpages_pass(ms, block); 3008 3009 postcopy_discard_send_finish(ms); 3010 return 0; 3011 } 3012 3013 /** 3014 * ram_postcopy_send_discard_bitmap: transmit the discard bitmap 3015 * 3016 * Returns zero on success 3017 * 3018 * Transmit the set of pages to be discarded after precopy to the target 3019 * these are pages that: 3020 * a) Have been previously transmitted but are now dirty again 3021 * b) Pages that have never been transmitted, this ensures that 3022 * any pages on the destination that have been mapped by background 3023 * tasks get discarded (transparent huge pages is the specific concern) 3024 * Hopefully this is pretty sparse 3025 * 3026 * @ms: current migration state 3027 */ 3028 int ram_postcopy_send_discard_bitmap(MigrationState *ms) 3029 { 3030 RAMState *rs = ram_state; 3031 RAMBlock *block; 3032 int ret; 3033 3034 RCU_READ_LOCK_GUARD(); 3035 3036 /* This should be our last sync, the src is now paused */ 3037 migration_bitmap_sync(rs); 3038 3039 /* Easiest way to make sure we don't resume in the middle of a host-page */ 3040 rs->last_seen_block = NULL; 3041 rs->last_sent_block = NULL; 3042 rs->last_page = 0; 3043 3044 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3045 /* Deal with TPS != HPS and huge pages */ 3046 ret = postcopy_chunk_hostpages(ms, block); 3047 if (ret) { 3048 return ret; 3049 } 3050 3051 #ifdef DEBUG_POSTCOPY 3052 ram_debug_dump_bitmap(block->bmap, true, 3053 block->used_length >> TARGET_PAGE_BITS); 3054 #endif 3055 } 3056 trace_ram_postcopy_send_discard_bitmap(); 3057 3058 ret = postcopy_each_ram_send_discard(ms); 3059 3060 return ret; 3061 } 3062 3063 /** 3064 * ram_discard_range: discard dirtied pages at the beginning of postcopy 3065 * 3066 * Returns zero on success 3067 * 3068 * @rbname: name of the RAMBlock of the request. NULL means the 3069 * same that last one. 3070 * @start: RAMBlock starting page 3071 * @length: RAMBlock size 3072 */ 3073 int ram_discard_range(const char *rbname, uint64_t start, size_t length) 3074 { 3075 int ret = -1; 3076 3077 trace_ram_discard_range(rbname, start, length); 3078 3079 RCU_READ_LOCK_GUARD(); 3080 RAMBlock *rb = qemu_ram_block_by_name(rbname); 3081 3082 if (!rb) { 3083 error_report("ram_discard_range: Failed to find block '%s'", rbname); 3084 goto err; 3085 } 3086 3087 /* 3088 * On source VM, we don't need to update the received bitmap since 3089 * we don't even have one. 3090 */ 3091 if (rb->receivedmap) { 3092 bitmap_clear(rb->receivedmap, start >> qemu_target_page_bits(), 3093 length >> qemu_target_page_bits()); 3094 } 3095 3096 ret = ram_block_discard_range(rb, start, length); 3097 3098 err: 3099 return ret; 3100 } 3101 3102 /* 3103 * For every allocation, we will try not to crash the VM if the 3104 * allocation failed. 3105 */ 3106 static int xbzrle_init(void) 3107 { 3108 Error *local_err = NULL; 3109 3110 if (!migrate_use_xbzrle()) { 3111 return 0; 3112 } 3113 3114 XBZRLE_cache_lock(); 3115 3116 XBZRLE.zero_target_page = g_try_malloc0(TARGET_PAGE_SIZE); 3117 if (!XBZRLE.zero_target_page) { 3118 error_report("%s: Error allocating zero page", __func__); 3119 goto err_out; 3120 } 3121 3122 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size(), 3123 TARGET_PAGE_SIZE, &local_err); 3124 if (!XBZRLE.cache) { 3125 error_report_err(local_err); 3126 goto free_zero_page; 3127 } 3128 3129 XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE); 3130 if (!XBZRLE.encoded_buf) { 3131 error_report("%s: Error allocating encoded_buf", __func__); 3132 goto free_cache; 3133 } 3134 3135 XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE); 3136 if (!XBZRLE.current_buf) { 3137 error_report("%s: Error allocating current_buf", __func__); 3138 goto free_encoded_buf; 3139 } 3140 3141 /* We are all good */ 3142 XBZRLE_cache_unlock(); 3143 return 0; 3144 3145 free_encoded_buf: 3146 g_free(XBZRLE.encoded_buf); 3147 XBZRLE.encoded_buf = NULL; 3148 free_cache: 3149 cache_fini(XBZRLE.cache); 3150 XBZRLE.cache = NULL; 3151 free_zero_page: 3152 g_free(XBZRLE.zero_target_page); 3153 XBZRLE.zero_target_page = NULL; 3154 err_out: 3155 XBZRLE_cache_unlock(); 3156 return -ENOMEM; 3157 } 3158 3159 static int ram_state_init(RAMState **rsp) 3160 { 3161 *rsp = g_try_new0(RAMState, 1); 3162 3163 if (!*rsp) { 3164 error_report("%s: Init ramstate fail", __func__); 3165 return -1; 3166 } 3167 3168 qemu_mutex_init(&(*rsp)->bitmap_mutex); 3169 qemu_mutex_init(&(*rsp)->src_page_req_mutex); 3170 QSIMPLEQ_INIT(&(*rsp)->src_page_requests); 3171 3172 /* 3173 * Count the total number of pages used by ram blocks not including any 3174 * gaps due to alignment or unplugs. 3175 * This must match with the initial values of dirty bitmap. 3176 */ 3177 (*rsp)->migration_dirty_pages = ram_bytes_total() >> TARGET_PAGE_BITS; 3178 ram_state_reset(*rsp); 3179 3180 return 0; 3181 } 3182 3183 static void ram_list_init_bitmaps(void) 3184 { 3185 MigrationState *ms = migrate_get_current(); 3186 RAMBlock *block; 3187 unsigned long pages; 3188 uint8_t shift; 3189 3190 /* Skip setting bitmap if there is no RAM */ 3191 if (ram_bytes_total()) { 3192 shift = ms->clear_bitmap_shift; 3193 if (shift > CLEAR_BITMAP_SHIFT_MAX) { 3194 error_report("clear_bitmap_shift (%u) too big, using " 3195 "max value (%u)", shift, CLEAR_BITMAP_SHIFT_MAX); 3196 shift = CLEAR_BITMAP_SHIFT_MAX; 3197 } else if (shift < CLEAR_BITMAP_SHIFT_MIN) { 3198 error_report("clear_bitmap_shift (%u) too small, using " 3199 "min value (%u)", shift, CLEAR_BITMAP_SHIFT_MIN); 3200 shift = CLEAR_BITMAP_SHIFT_MIN; 3201 } 3202 3203 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3204 pages = block->max_length >> TARGET_PAGE_BITS; 3205 /* 3206 * The initial dirty bitmap for migration must be set with all 3207 * ones to make sure we'll migrate every guest RAM page to 3208 * destination. 3209 * Here we set RAMBlock.bmap all to 1 because when rebegin a 3210 * new migration after a failed migration, ram_list. 3211 * dirty_memory[DIRTY_MEMORY_MIGRATION] don't include the whole 3212 * guest memory. 3213 */ 3214 block->bmap = bitmap_new(pages); 3215 bitmap_set(block->bmap, 0, pages); 3216 block->clear_bmap_shift = shift; 3217 block->clear_bmap = bitmap_new(clear_bmap_size(pages, shift)); 3218 } 3219 } 3220 } 3221 3222 static void ram_init_bitmaps(RAMState *rs) 3223 { 3224 /* For memory_global_dirty_log_start below. */ 3225 qemu_mutex_lock_iothread(); 3226 qemu_mutex_lock_ramlist(); 3227 3228 WITH_RCU_READ_LOCK_GUARD() { 3229 ram_list_init_bitmaps(); 3230 memory_global_dirty_log_start(); 3231 migration_bitmap_sync_precopy(rs); 3232 } 3233 qemu_mutex_unlock_ramlist(); 3234 qemu_mutex_unlock_iothread(); 3235 } 3236 3237 static int ram_init_all(RAMState **rsp) 3238 { 3239 if (ram_state_init(rsp)) { 3240 return -1; 3241 } 3242 3243 if (xbzrle_init()) { 3244 ram_state_cleanup(rsp); 3245 return -1; 3246 } 3247 3248 ram_init_bitmaps(*rsp); 3249 3250 return 0; 3251 } 3252 3253 static void ram_state_resume_prepare(RAMState *rs, QEMUFile *out) 3254 { 3255 RAMBlock *block; 3256 uint64_t pages = 0; 3257 3258 /* 3259 * Postcopy is not using xbzrle/compression, so no need for that. 3260 * Also, since source are already halted, we don't need to care 3261 * about dirty page logging as well. 3262 */ 3263 3264 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3265 pages += bitmap_count_one(block->bmap, 3266 block->used_length >> TARGET_PAGE_BITS); 3267 } 3268 3269 /* This may not be aligned with current bitmaps. Recalculate. */ 3270 rs->migration_dirty_pages = pages; 3271 3272 rs->last_seen_block = NULL; 3273 rs->last_sent_block = NULL; 3274 rs->last_page = 0; 3275 rs->last_version = ram_list.version; 3276 /* 3277 * Disable the bulk stage, otherwise we'll resend the whole RAM no 3278 * matter what we have sent. 3279 */ 3280 rs->ram_bulk_stage = false; 3281 3282 /* Update RAMState cache of output QEMUFile */ 3283 rs->f = out; 3284 3285 trace_ram_state_resume_prepare(pages); 3286 } 3287 3288 /* 3289 * This function clears bits of the free pages reported by the caller from the 3290 * migration dirty bitmap. @addr is the host address corresponding to the 3291 * start of the continuous guest free pages, and @len is the total bytes of 3292 * those pages. 3293 */ 3294 void qemu_guest_free_page_hint(void *addr, size_t len) 3295 { 3296 RAMBlock *block; 3297 ram_addr_t offset; 3298 size_t used_len, start, npages; 3299 MigrationState *s = migrate_get_current(); 3300 3301 /* This function is currently expected to be used during live migration */ 3302 if (!migration_is_setup_or_active(s->state)) { 3303 return; 3304 } 3305 3306 for (; len > 0; len -= used_len, addr += used_len) { 3307 block = qemu_ram_block_from_host(addr, false, &offset); 3308 if (unlikely(!block || offset >= block->used_length)) { 3309 /* 3310 * The implementation might not support RAMBlock resize during 3311 * live migration, but it could happen in theory with future 3312 * updates. So we add a check here to capture that case. 3313 */ 3314 error_report_once("%s unexpected error", __func__); 3315 return; 3316 } 3317 3318 if (len <= block->used_length - offset) { 3319 used_len = len; 3320 } else { 3321 used_len = block->used_length - offset; 3322 } 3323 3324 start = offset >> TARGET_PAGE_BITS; 3325 npages = used_len >> TARGET_PAGE_BITS; 3326 3327 qemu_mutex_lock(&ram_state->bitmap_mutex); 3328 ram_state->migration_dirty_pages -= 3329 bitmap_count_one_with_offset(block->bmap, start, npages); 3330 bitmap_clear(block->bmap, start, npages); 3331 qemu_mutex_unlock(&ram_state->bitmap_mutex); 3332 } 3333 } 3334 3335 /* 3336 * Each of ram_save_setup, ram_save_iterate and ram_save_complete has 3337 * long-running RCU critical section. When rcu-reclaims in the code 3338 * start to become numerous it will be necessary to reduce the 3339 * granularity of these critical sections. 3340 */ 3341 3342 /** 3343 * ram_save_setup: Setup RAM for migration 3344 * 3345 * Returns zero to indicate success and negative for error 3346 * 3347 * @f: QEMUFile where to send the data 3348 * @opaque: RAMState pointer 3349 */ 3350 static int ram_save_setup(QEMUFile *f, void *opaque) 3351 { 3352 RAMState **rsp = opaque; 3353 RAMBlock *block; 3354 3355 if (compress_threads_save_setup()) { 3356 return -1; 3357 } 3358 3359 /* migration has already setup the bitmap, reuse it. */ 3360 if (!migration_in_colo_state()) { 3361 if (ram_init_all(rsp) != 0) { 3362 compress_threads_save_cleanup(); 3363 return -1; 3364 } 3365 } 3366 (*rsp)->f = f; 3367 3368 WITH_RCU_READ_LOCK_GUARD() { 3369 qemu_put_be64(f, ram_bytes_total_common(true) | RAM_SAVE_FLAG_MEM_SIZE); 3370 3371 RAMBLOCK_FOREACH_MIGRATABLE(block) { 3372 qemu_put_byte(f, strlen(block->idstr)); 3373 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr)); 3374 qemu_put_be64(f, block->used_length); 3375 if (migrate_postcopy_ram() && block->page_size != 3376 qemu_host_page_size) { 3377 qemu_put_be64(f, block->page_size); 3378 } 3379 if (migrate_ignore_shared()) { 3380 qemu_put_be64(f, block->mr->addr); 3381 } 3382 } 3383 } 3384 3385 ram_control_before_iterate(f, RAM_CONTROL_SETUP); 3386 ram_control_after_iterate(f, RAM_CONTROL_SETUP); 3387 3388 multifd_send_sync_main(*rsp); 3389 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 3390 qemu_fflush(f); 3391 3392 return 0; 3393 } 3394 3395 /** 3396 * ram_save_iterate: iterative stage for migration 3397 * 3398 * Returns zero to indicate success and negative for error 3399 * 3400 * @f: QEMUFile where to send the data 3401 * @opaque: RAMState pointer 3402 */ 3403 static int ram_save_iterate(QEMUFile *f, void *opaque) 3404 { 3405 RAMState **temp = opaque; 3406 RAMState *rs = *temp; 3407 int ret; 3408 int i; 3409 int64_t t0; 3410 int done = 0; 3411 3412 if (blk_mig_bulk_active()) { 3413 /* Avoid transferring ram during bulk phase of block migration as 3414 * the bulk phase will usually take a long time and transferring 3415 * ram updates during that time is pointless. */ 3416 goto out; 3417 } 3418 3419 WITH_RCU_READ_LOCK_GUARD() { 3420 if (ram_list.version != rs->last_version) { 3421 ram_state_reset(rs); 3422 } 3423 3424 /* Read version before ram_list.blocks */ 3425 smp_rmb(); 3426 3427 ram_control_before_iterate(f, RAM_CONTROL_ROUND); 3428 3429 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 3430 i = 0; 3431 while ((ret = qemu_file_rate_limit(f)) == 0 || 3432 !QSIMPLEQ_EMPTY(&rs->src_page_requests)) { 3433 int pages; 3434 3435 if (qemu_file_get_error(f)) { 3436 break; 3437 } 3438 3439 pages = ram_find_and_save_block(rs, false); 3440 /* no more pages to sent */ 3441 if (pages == 0) { 3442 done = 1; 3443 break; 3444 } 3445 3446 if (pages < 0) { 3447 qemu_file_set_error(f, pages); 3448 break; 3449 } 3450 3451 rs->target_page_count += pages; 3452 3453 /* 3454 * we want to check in the 1st loop, just in case it was the 1st 3455 * time and we had to sync the dirty bitmap. 3456 * qemu_clock_get_ns() is a bit expensive, so we only check each 3457 * some iterations 3458 */ 3459 if ((i & 63) == 0) { 3460 uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) / 3461 1000000; 3462 if (t1 > MAX_WAIT) { 3463 trace_ram_save_iterate_big_wait(t1, i); 3464 break; 3465 } 3466 } 3467 i++; 3468 } 3469 } 3470 3471 /* 3472 * Must occur before EOS (or any QEMUFile operation) 3473 * because of RDMA protocol. 3474 */ 3475 ram_control_after_iterate(f, RAM_CONTROL_ROUND); 3476 3477 out: 3478 multifd_send_sync_main(rs); 3479 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 3480 qemu_fflush(f); 3481 ram_counters.transferred += 8; 3482 3483 ret = qemu_file_get_error(f); 3484 if (ret < 0) { 3485 return ret; 3486 } 3487 3488 return done; 3489 } 3490 3491 /** 3492 * ram_save_complete: function called to send the remaining amount of ram 3493 * 3494 * Returns zero to indicate success or negative on error 3495 * 3496 * Called with iothread lock 3497 * 3498 * @f: QEMUFile where to send the data 3499 * @opaque: RAMState pointer 3500 */ 3501 static int ram_save_complete(QEMUFile *f, void *opaque) 3502 { 3503 RAMState **temp = opaque; 3504 RAMState *rs = *temp; 3505 int ret = 0; 3506 3507 WITH_RCU_READ_LOCK_GUARD() { 3508 if (!migration_in_postcopy()) { 3509 migration_bitmap_sync_precopy(rs); 3510 } 3511 3512 ram_control_before_iterate(f, RAM_CONTROL_FINISH); 3513 3514 /* try transferring iterative blocks of memory */ 3515 3516 /* flush all remaining blocks regardless of rate limiting */ 3517 while (true) { 3518 int pages; 3519 3520 pages = ram_find_and_save_block(rs, !migration_in_colo_state()); 3521 /* no more blocks to sent */ 3522 if (pages == 0) { 3523 break; 3524 } 3525 if (pages < 0) { 3526 ret = pages; 3527 break; 3528 } 3529 } 3530 3531 flush_compressed_data(rs); 3532 ram_control_after_iterate(f, RAM_CONTROL_FINISH); 3533 } 3534 3535 multifd_send_sync_main(rs); 3536 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 3537 qemu_fflush(f); 3538 3539 return ret; 3540 } 3541 3542 static void ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size, 3543 uint64_t *res_precopy_only, 3544 uint64_t *res_compatible, 3545 uint64_t *res_postcopy_only) 3546 { 3547 RAMState **temp = opaque; 3548 RAMState *rs = *temp; 3549 uint64_t remaining_size; 3550 3551 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE; 3552 3553 if (!migration_in_postcopy() && 3554 remaining_size < max_size) { 3555 qemu_mutex_lock_iothread(); 3556 WITH_RCU_READ_LOCK_GUARD() { 3557 migration_bitmap_sync_precopy(rs); 3558 } 3559 qemu_mutex_unlock_iothread(); 3560 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE; 3561 } 3562 3563 if (migrate_postcopy_ram()) { 3564 /* We can do postcopy, and all the data is postcopiable */ 3565 *res_compatible += remaining_size; 3566 } else { 3567 *res_precopy_only += remaining_size; 3568 } 3569 } 3570 3571 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host) 3572 { 3573 unsigned int xh_len; 3574 int xh_flags; 3575 uint8_t *loaded_data; 3576 3577 /* extract RLE header */ 3578 xh_flags = qemu_get_byte(f); 3579 xh_len = qemu_get_be16(f); 3580 3581 if (xh_flags != ENCODING_FLAG_XBZRLE) { 3582 error_report("Failed to load XBZRLE page - wrong compression!"); 3583 return -1; 3584 } 3585 3586 if (xh_len > TARGET_PAGE_SIZE) { 3587 error_report("Failed to load XBZRLE page - len overflow!"); 3588 return -1; 3589 } 3590 loaded_data = XBZRLE.decoded_buf; 3591 /* load data and decode */ 3592 /* it can change loaded_data to point to an internal buffer */ 3593 qemu_get_buffer_in_place(f, &loaded_data, xh_len); 3594 3595 /* decode RLE */ 3596 if (xbzrle_decode_buffer(loaded_data, xh_len, host, 3597 TARGET_PAGE_SIZE) == -1) { 3598 error_report("Failed to load XBZRLE page - decode error!"); 3599 return -1; 3600 } 3601 3602 return 0; 3603 } 3604 3605 /** 3606 * ram_block_from_stream: read a RAMBlock id from the migration stream 3607 * 3608 * Must be called from within a rcu critical section. 3609 * 3610 * Returns a pointer from within the RCU-protected ram_list. 3611 * 3612 * @f: QEMUFile where to read the data from 3613 * @flags: Page flags (mostly to see if it's a continuation of previous block) 3614 */ 3615 static inline RAMBlock *ram_block_from_stream(QEMUFile *f, int flags) 3616 { 3617 static RAMBlock *block = NULL; 3618 char id[256]; 3619 uint8_t len; 3620 3621 if (flags & RAM_SAVE_FLAG_CONTINUE) { 3622 if (!block) { 3623 error_report("Ack, bad migration stream!"); 3624 return NULL; 3625 } 3626 return block; 3627 } 3628 3629 len = qemu_get_byte(f); 3630 qemu_get_buffer(f, (uint8_t *)id, len); 3631 id[len] = 0; 3632 3633 block = qemu_ram_block_by_name(id); 3634 if (!block) { 3635 error_report("Can't find block %s", id); 3636 return NULL; 3637 } 3638 3639 if (ramblock_is_ignored(block)) { 3640 error_report("block %s should not be migrated !", id); 3641 return NULL; 3642 } 3643 3644 return block; 3645 } 3646 3647 static inline void *host_from_ram_block_offset(RAMBlock *block, 3648 ram_addr_t offset) 3649 { 3650 if (!offset_in_ramblock(block, offset)) { 3651 return NULL; 3652 } 3653 3654 return block->host + offset; 3655 } 3656 3657 static inline void *colo_cache_from_block_offset(RAMBlock *block, 3658 ram_addr_t offset) 3659 { 3660 if (!offset_in_ramblock(block, offset)) { 3661 return NULL; 3662 } 3663 if (!block->colo_cache) { 3664 error_report("%s: colo_cache is NULL in block :%s", 3665 __func__, block->idstr); 3666 return NULL; 3667 } 3668 3669 /* 3670 * During colo checkpoint, we need bitmap of these migrated pages. 3671 * It help us to decide which pages in ram cache should be flushed 3672 * into VM's RAM later. 3673 */ 3674 if (!test_and_set_bit(offset >> TARGET_PAGE_BITS, block->bmap)) { 3675 ram_state->migration_dirty_pages++; 3676 } 3677 return block->colo_cache + offset; 3678 } 3679 3680 /** 3681 * ram_handle_compressed: handle the zero page case 3682 * 3683 * If a page (or a whole RDMA chunk) has been 3684 * determined to be zero, then zap it. 3685 * 3686 * @host: host address for the zero page 3687 * @ch: what the page is filled from. We only support zero 3688 * @size: size of the zero page 3689 */ 3690 void ram_handle_compressed(void *host, uint8_t ch, uint64_t size) 3691 { 3692 if (ch != 0 || !is_zero_range(host, size)) { 3693 memset(host, ch, size); 3694 } 3695 } 3696 3697 /* return the size after decompression, or negative value on error */ 3698 static int 3699 qemu_uncompress_data(z_stream *stream, uint8_t *dest, size_t dest_len, 3700 const uint8_t *source, size_t source_len) 3701 { 3702 int err; 3703 3704 err = inflateReset(stream); 3705 if (err != Z_OK) { 3706 return -1; 3707 } 3708 3709 stream->avail_in = source_len; 3710 stream->next_in = (uint8_t *)source; 3711 stream->avail_out = dest_len; 3712 stream->next_out = dest; 3713 3714 err = inflate(stream, Z_NO_FLUSH); 3715 if (err != Z_STREAM_END) { 3716 return -1; 3717 } 3718 3719 return stream->total_out; 3720 } 3721 3722 static void *do_data_decompress(void *opaque) 3723 { 3724 DecompressParam *param = opaque; 3725 unsigned long pagesize; 3726 uint8_t *des; 3727 int len, ret; 3728 3729 qemu_mutex_lock(¶m->mutex); 3730 while (!param->quit) { 3731 if (param->des) { 3732 des = param->des; 3733 len = param->len; 3734 param->des = 0; 3735 qemu_mutex_unlock(¶m->mutex); 3736 3737 pagesize = TARGET_PAGE_SIZE; 3738 3739 ret = qemu_uncompress_data(¶m->stream, des, pagesize, 3740 param->compbuf, len); 3741 if (ret < 0 && migrate_get_current()->decompress_error_check) { 3742 error_report("decompress data failed"); 3743 qemu_file_set_error(decomp_file, ret); 3744 } 3745 3746 qemu_mutex_lock(&decomp_done_lock); 3747 param->done = true; 3748 qemu_cond_signal(&decomp_done_cond); 3749 qemu_mutex_unlock(&decomp_done_lock); 3750 3751 qemu_mutex_lock(¶m->mutex); 3752 } else { 3753 qemu_cond_wait(¶m->cond, ¶m->mutex); 3754 } 3755 } 3756 qemu_mutex_unlock(¶m->mutex); 3757 3758 return NULL; 3759 } 3760 3761 static int wait_for_decompress_done(void) 3762 { 3763 int idx, thread_count; 3764 3765 if (!migrate_use_compression()) { 3766 return 0; 3767 } 3768 3769 thread_count = migrate_decompress_threads(); 3770 qemu_mutex_lock(&decomp_done_lock); 3771 for (idx = 0; idx < thread_count; idx++) { 3772 while (!decomp_param[idx].done) { 3773 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock); 3774 } 3775 } 3776 qemu_mutex_unlock(&decomp_done_lock); 3777 return qemu_file_get_error(decomp_file); 3778 } 3779 3780 static void compress_threads_load_cleanup(void) 3781 { 3782 int i, thread_count; 3783 3784 if (!migrate_use_compression()) { 3785 return; 3786 } 3787 thread_count = migrate_decompress_threads(); 3788 for (i = 0; i < thread_count; i++) { 3789 /* 3790 * we use it as a indicator which shows if the thread is 3791 * properly init'd or not 3792 */ 3793 if (!decomp_param[i].compbuf) { 3794 break; 3795 } 3796 3797 qemu_mutex_lock(&decomp_param[i].mutex); 3798 decomp_param[i].quit = true; 3799 qemu_cond_signal(&decomp_param[i].cond); 3800 qemu_mutex_unlock(&decomp_param[i].mutex); 3801 } 3802 for (i = 0; i < thread_count; i++) { 3803 if (!decomp_param[i].compbuf) { 3804 break; 3805 } 3806 3807 qemu_thread_join(decompress_threads + i); 3808 qemu_mutex_destroy(&decomp_param[i].mutex); 3809 qemu_cond_destroy(&decomp_param[i].cond); 3810 inflateEnd(&decomp_param[i].stream); 3811 g_free(decomp_param[i].compbuf); 3812 decomp_param[i].compbuf = NULL; 3813 } 3814 g_free(decompress_threads); 3815 g_free(decomp_param); 3816 decompress_threads = NULL; 3817 decomp_param = NULL; 3818 decomp_file = NULL; 3819 } 3820 3821 static int compress_threads_load_setup(QEMUFile *f) 3822 { 3823 int i, thread_count; 3824 3825 if (!migrate_use_compression()) { 3826 return 0; 3827 } 3828 3829 thread_count = migrate_decompress_threads(); 3830 decompress_threads = g_new0(QemuThread, thread_count); 3831 decomp_param = g_new0(DecompressParam, thread_count); 3832 qemu_mutex_init(&decomp_done_lock); 3833 qemu_cond_init(&decomp_done_cond); 3834 decomp_file = f; 3835 for (i = 0; i < thread_count; i++) { 3836 if (inflateInit(&decomp_param[i].stream) != Z_OK) { 3837 goto exit; 3838 } 3839 3840 decomp_param[i].compbuf = g_malloc0(compressBound(TARGET_PAGE_SIZE)); 3841 qemu_mutex_init(&decomp_param[i].mutex); 3842 qemu_cond_init(&decomp_param[i].cond); 3843 decomp_param[i].done = true; 3844 decomp_param[i].quit = false; 3845 qemu_thread_create(decompress_threads + i, "decompress", 3846 do_data_decompress, decomp_param + i, 3847 QEMU_THREAD_JOINABLE); 3848 } 3849 return 0; 3850 exit: 3851 compress_threads_load_cleanup(); 3852 return -1; 3853 } 3854 3855 static void decompress_data_with_multi_threads(QEMUFile *f, 3856 void *host, int len) 3857 { 3858 int idx, thread_count; 3859 3860 thread_count = migrate_decompress_threads(); 3861 qemu_mutex_lock(&decomp_done_lock); 3862 while (true) { 3863 for (idx = 0; idx < thread_count; idx++) { 3864 if (decomp_param[idx].done) { 3865 decomp_param[idx].done = false; 3866 qemu_mutex_lock(&decomp_param[idx].mutex); 3867 qemu_get_buffer(f, decomp_param[idx].compbuf, len); 3868 decomp_param[idx].des = host; 3869 decomp_param[idx].len = len; 3870 qemu_cond_signal(&decomp_param[idx].cond); 3871 qemu_mutex_unlock(&decomp_param[idx].mutex); 3872 break; 3873 } 3874 } 3875 if (idx < thread_count) { 3876 break; 3877 } else { 3878 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock); 3879 } 3880 } 3881 qemu_mutex_unlock(&decomp_done_lock); 3882 } 3883 3884 /* 3885 * colo cache: this is for secondary VM, we cache the whole 3886 * memory of the secondary VM, it is need to hold the global lock 3887 * to call this helper. 3888 */ 3889 int colo_init_ram_cache(void) 3890 { 3891 RAMBlock *block; 3892 3893 WITH_RCU_READ_LOCK_GUARD() { 3894 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3895 block->colo_cache = qemu_anon_ram_alloc(block->used_length, 3896 NULL, 3897 false); 3898 if (!block->colo_cache) { 3899 error_report("%s: Can't alloc memory for COLO cache of block %s," 3900 "size 0x" RAM_ADDR_FMT, __func__, block->idstr, 3901 block->used_length); 3902 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3903 if (block->colo_cache) { 3904 qemu_anon_ram_free(block->colo_cache, block->used_length); 3905 block->colo_cache = NULL; 3906 } 3907 } 3908 return -errno; 3909 } 3910 memcpy(block->colo_cache, block->host, block->used_length); 3911 } 3912 } 3913 3914 /* 3915 * Record the dirty pages that sent by PVM, we use this dirty bitmap together 3916 * with to decide which page in cache should be flushed into SVM's RAM. Here 3917 * we use the same name 'ram_bitmap' as for migration. 3918 */ 3919 if (ram_bytes_total()) { 3920 RAMBlock *block; 3921 3922 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3923 unsigned long pages = block->max_length >> TARGET_PAGE_BITS; 3924 3925 block->bmap = bitmap_new(pages); 3926 bitmap_set(block->bmap, 0, pages); 3927 } 3928 } 3929 ram_state = g_new0(RAMState, 1); 3930 ram_state->migration_dirty_pages = 0; 3931 qemu_mutex_init(&ram_state->bitmap_mutex); 3932 memory_global_dirty_log_start(); 3933 3934 return 0; 3935 } 3936 3937 /* It is need to hold the global lock to call this helper */ 3938 void colo_release_ram_cache(void) 3939 { 3940 RAMBlock *block; 3941 3942 memory_global_dirty_log_stop(); 3943 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3944 g_free(block->bmap); 3945 block->bmap = NULL; 3946 } 3947 3948 WITH_RCU_READ_LOCK_GUARD() { 3949 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3950 if (block->colo_cache) { 3951 qemu_anon_ram_free(block->colo_cache, block->used_length); 3952 block->colo_cache = NULL; 3953 } 3954 } 3955 } 3956 qemu_mutex_destroy(&ram_state->bitmap_mutex); 3957 g_free(ram_state); 3958 ram_state = NULL; 3959 } 3960 3961 /** 3962 * ram_load_setup: Setup RAM for migration incoming side 3963 * 3964 * Returns zero to indicate success and negative for error 3965 * 3966 * @f: QEMUFile where to receive the data 3967 * @opaque: RAMState pointer 3968 */ 3969 static int ram_load_setup(QEMUFile *f, void *opaque) 3970 { 3971 if (compress_threads_load_setup(f)) { 3972 return -1; 3973 } 3974 3975 xbzrle_load_setup(); 3976 ramblock_recv_map_init(); 3977 3978 return 0; 3979 } 3980 3981 static int ram_load_cleanup(void *opaque) 3982 { 3983 RAMBlock *rb; 3984 3985 RAMBLOCK_FOREACH_NOT_IGNORED(rb) { 3986 qemu_ram_block_writeback(rb); 3987 } 3988 3989 xbzrle_load_cleanup(); 3990 compress_threads_load_cleanup(); 3991 3992 RAMBLOCK_FOREACH_NOT_IGNORED(rb) { 3993 g_free(rb->receivedmap); 3994 rb->receivedmap = NULL; 3995 } 3996 3997 return 0; 3998 } 3999 4000 /** 4001 * ram_postcopy_incoming_init: allocate postcopy data structures 4002 * 4003 * Returns 0 for success and negative if there was one error 4004 * 4005 * @mis: current migration incoming state 4006 * 4007 * Allocate data structures etc needed by incoming migration with 4008 * postcopy-ram. postcopy-ram's similarly names 4009 * postcopy_ram_incoming_init does the work. 4010 */ 4011 int ram_postcopy_incoming_init(MigrationIncomingState *mis) 4012 { 4013 return postcopy_ram_incoming_init(mis); 4014 } 4015 4016 /** 4017 * ram_load_postcopy: load a page in postcopy case 4018 * 4019 * Returns 0 for success or -errno in case of error 4020 * 4021 * Called in postcopy mode by ram_load(). 4022 * rcu_read_lock is taken prior to this being called. 4023 * 4024 * @f: QEMUFile where to send the data 4025 */ 4026 static int ram_load_postcopy(QEMUFile *f) 4027 { 4028 int flags = 0, ret = 0; 4029 bool place_needed = false; 4030 bool matches_target_page_size = false; 4031 MigrationIncomingState *mis = migration_incoming_get_current(); 4032 /* Temporary page that is later 'placed' */ 4033 void *postcopy_host_page = mis->postcopy_tmp_page; 4034 void *last_host = NULL; 4035 bool all_zero = false; 4036 4037 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) { 4038 ram_addr_t addr; 4039 void *host = NULL; 4040 void *page_buffer = NULL; 4041 void *place_source = NULL; 4042 RAMBlock *block = NULL; 4043 uint8_t ch; 4044 4045 addr = qemu_get_be64(f); 4046 4047 /* 4048 * If qemu file error, we should stop here, and then "addr" 4049 * may be invalid 4050 */ 4051 ret = qemu_file_get_error(f); 4052 if (ret) { 4053 break; 4054 } 4055 4056 flags = addr & ~TARGET_PAGE_MASK; 4057 addr &= TARGET_PAGE_MASK; 4058 4059 trace_ram_load_postcopy_loop((uint64_t)addr, flags); 4060 place_needed = false; 4061 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE)) { 4062 block = ram_block_from_stream(f, flags); 4063 4064 host = host_from_ram_block_offset(block, addr); 4065 if (!host) { 4066 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr); 4067 ret = -EINVAL; 4068 break; 4069 } 4070 matches_target_page_size = block->page_size == TARGET_PAGE_SIZE; 4071 /* 4072 * Postcopy requires that we place whole host pages atomically; 4073 * these may be huge pages for RAMBlocks that are backed by 4074 * hugetlbfs. 4075 * To make it atomic, the data is read into a temporary page 4076 * that's moved into place later. 4077 * The migration protocol uses, possibly smaller, target-pages 4078 * however the source ensures it always sends all the components 4079 * of a host page in order. 4080 */ 4081 page_buffer = postcopy_host_page + 4082 ((uintptr_t)host & (block->page_size - 1)); 4083 /* If all TP are zero then we can optimise the place */ 4084 if (!((uintptr_t)host & (block->page_size - 1))) { 4085 all_zero = true; 4086 } else { 4087 /* not the 1st TP within the HP */ 4088 if (host != (last_host + TARGET_PAGE_SIZE)) { 4089 error_report("Non-sequential target page %p/%p", 4090 host, last_host); 4091 ret = -EINVAL; 4092 break; 4093 } 4094 } 4095 4096 4097 /* 4098 * If it's the last part of a host page then we place the host 4099 * page 4100 */ 4101 place_needed = (((uintptr_t)host + TARGET_PAGE_SIZE) & 4102 (block->page_size - 1)) == 0; 4103 place_source = postcopy_host_page; 4104 } 4105 last_host = host; 4106 4107 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) { 4108 case RAM_SAVE_FLAG_ZERO: 4109 ch = qemu_get_byte(f); 4110 memset(page_buffer, ch, TARGET_PAGE_SIZE); 4111 if (ch) { 4112 all_zero = false; 4113 } 4114 break; 4115 4116 case RAM_SAVE_FLAG_PAGE: 4117 all_zero = false; 4118 if (!matches_target_page_size) { 4119 /* For huge pages, we always use temporary buffer */ 4120 qemu_get_buffer(f, page_buffer, TARGET_PAGE_SIZE); 4121 } else { 4122 /* 4123 * For small pages that matches target page size, we 4124 * avoid the qemu_file copy. Instead we directly use 4125 * the buffer of QEMUFile to place the page. Note: we 4126 * cannot do any QEMUFile operation before using that 4127 * buffer to make sure the buffer is valid when 4128 * placing the page. 4129 */ 4130 qemu_get_buffer_in_place(f, (uint8_t **)&place_source, 4131 TARGET_PAGE_SIZE); 4132 } 4133 break; 4134 case RAM_SAVE_FLAG_EOS: 4135 /* normal exit */ 4136 multifd_recv_sync_main(); 4137 break; 4138 default: 4139 error_report("Unknown combination of migration flags: %#x" 4140 " (postcopy mode)", flags); 4141 ret = -EINVAL; 4142 break; 4143 } 4144 4145 /* Detect for any possible file errors */ 4146 if (!ret && qemu_file_get_error(f)) { 4147 ret = qemu_file_get_error(f); 4148 } 4149 4150 if (!ret && place_needed) { 4151 /* This gets called at the last target page in the host page */ 4152 void *place_dest = host + TARGET_PAGE_SIZE - block->page_size; 4153 4154 if (all_zero) { 4155 ret = postcopy_place_page_zero(mis, place_dest, 4156 block); 4157 } else { 4158 ret = postcopy_place_page(mis, place_dest, 4159 place_source, block); 4160 } 4161 } 4162 } 4163 4164 return ret; 4165 } 4166 4167 static bool postcopy_is_advised(void) 4168 { 4169 PostcopyState ps = postcopy_state_get(); 4170 return ps >= POSTCOPY_INCOMING_ADVISE && ps < POSTCOPY_INCOMING_END; 4171 } 4172 4173 static bool postcopy_is_running(void) 4174 { 4175 PostcopyState ps = postcopy_state_get(); 4176 return ps >= POSTCOPY_INCOMING_LISTENING && ps < POSTCOPY_INCOMING_END; 4177 } 4178 4179 /* 4180 * Flush content of RAM cache into SVM's memory. 4181 * Only flush the pages that be dirtied by PVM or SVM or both. 4182 */ 4183 static void colo_flush_ram_cache(void) 4184 { 4185 RAMBlock *block = NULL; 4186 void *dst_host; 4187 void *src_host; 4188 unsigned long offset = 0; 4189 4190 memory_global_dirty_log_sync(); 4191 WITH_RCU_READ_LOCK_GUARD() { 4192 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 4193 ramblock_sync_dirty_bitmap(ram_state, block); 4194 } 4195 } 4196 4197 trace_colo_flush_ram_cache_begin(ram_state->migration_dirty_pages); 4198 WITH_RCU_READ_LOCK_GUARD() { 4199 block = QLIST_FIRST_RCU(&ram_list.blocks); 4200 4201 while (block) { 4202 offset = migration_bitmap_find_dirty(ram_state, block, offset); 4203 4204 if (offset << TARGET_PAGE_BITS >= block->used_length) { 4205 offset = 0; 4206 block = QLIST_NEXT_RCU(block, next); 4207 } else { 4208 migration_bitmap_clear_dirty(ram_state, block, offset); 4209 dst_host = block->host + (offset << TARGET_PAGE_BITS); 4210 src_host = block->colo_cache + (offset << TARGET_PAGE_BITS); 4211 memcpy(dst_host, src_host, TARGET_PAGE_SIZE); 4212 } 4213 } 4214 } 4215 trace_colo_flush_ram_cache_end(); 4216 } 4217 4218 /** 4219 * ram_load_precopy: load pages in precopy case 4220 * 4221 * Returns 0 for success or -errno in case of error 4222 * 4223 * Called in precopy mode by ram_load(). 4224 * rcu_read_lock is taken prior to this being called. 4225 * 4226 * @f: QEMUFile where to send the data 4227 */ 4228 static int ram_load_precopy(QEMUFile *f) 4229 { 4230 int flags = 0, ret = 0, invalid_flags = 0, len = 0; 4231 /* ADVISE is earlier, it shows the source has the postcopy capability on */ 4232 bool postcopy_advised = postcopy_is_advised(); 4233 if (!migrate_use_compression()) { 4234 invalid_flags |= RAM_SAVE_FLAG_COMPRESS_PAGE; 4235 } 4236 4237 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) { 4238 ram_addr_t addr, total_ram_bytes; 4239 void *host = NULL; 4240 uint8_t ch; 4241 4242 addr = qemu_get_be64(f); 4243 flags = addr & ~TARGET_PAGE_MASK; 4244 addr &= TARGET_PAGE_MASK; 4245 4246 if (flags & invalid_flags) { 4247 if (flags & invalid_flags & RAM_SAVE_FLAG_COMPRESS_PAGE) { 4248 error_report("Received an unexpected compressed page"); 4249 } 4250 4251 ret = -EINVAL; 4252 break; 4253 } 4254 4255 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE | 4256 RAM_SAVE_FLAG_COMPRESS_PAGE | RAM_SAVE_FLAG_XBZRLE)) { 4257 RAMBlock *block = ram_block_from_stream(f, flags); 4258 4259 /* 4260 * After going into COLO, we should load the Page into colo_cache. 4261 */ 4262 if (migration_incoming_in_colo_state()) { 4263 host = colo_cache_from_block_offset(block, addr); 4264 } else { 4265 host = host_from_ram_block_offset(block, addr); 4266 } 4267 if (!host) { 4268 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr); 4269 ret = -EINVAL; 4270 break; 4271 } 4272 4273 if (!migration_incoming_in_colo_state()) { 4274 ramblock_recv_bitmap_set(block, host); 4275 } 4276 4277 trace_ram_load_loop(block->idstr, (uint64_t)addr, flags, host); 4278 } 4279 4280 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) { 4281 case RAM_SAVE_FLAG_MEM_SIZE: 4282 /* Synchronize RAM block list */ 4283 total_ram_bytes = addr; 4284 while (!ret && total_ram_bytes) { 4285 RAMBlock *block; 4286 char id[256]; 4287 ram_addr_t length; 4288 4289 len = qemu_get_byte(f); 4290 qemu_get_buffer(f, (uint8_t *)id, len); 4291 id[len] = 0; 4292 length = qemu_get_be64(f); 4293 4294 block = qemu_ram_block_by_name(id); 4295 if (block && !qemu_ram_is_migratable(block)) { 4296 error_report("block %s should not be migrated !", id); 4297 ret = -EINVAL; 4298 } else if (block) { 4299 if (length != block->used_length) { 4300 Error *local_err = NULL; 4301 4302 ret = qemu_ram_resize(block, length, 4303 &local_err); 4304 if (local_err) { 4305 error_report_err(local_err); 4306 } 4307 } 4308 /* For postcopy we need to check hugepage sizes match */ 4309 if (postcopy_advised && 4310 block->page_size != qemu_host_page_size) { 4311 uint64_t remote_page_size = qemu_get_be64(f); 4312 if (remote_page_size != block->page_size) { 4313 error_report("Mismatched RAM page size %s " 4314 "(local) %zd != %" PRId64, 4315 id, block->page_size, 4316 remote_page_size); 4317 ret = -EINVAL; 4318 } 4319 } 4320 if (migrate_ignore_shared()) { 4321 hwaddr addr = qemu_get_be64(f); 4322 if (ramblock_is_ignored(block) && 4323 block->mr->addr != addr) { 4324 error_report("Mismatched GPAs for block %s " 4325 "%" PRId64 "!= %" PRId64, 4326 id, (uint64_t)addr, 4327 (uint64_t)block->mr->addr); 4328 ret = -EINVAL; 4329 } 4330 } 4331 ram_control_load_hook(f, RAM_CONTROL_BLOCK_REG, 4332 block->idstr); 4333 } else { 4334 error_report("Unknown ramblock \"%s\", cannot " 4335 "accept migration", id); 4336 ret = -EINVAL; 4337 } 4338 4339 total_ram_bytes -= length; 4340 } 4341 break; 4342 4343 case RAM_SAVE_FLAG_ZERO: 4344 ch = qemu_get_byte(f); 4345 ram_handle_compressed(host, ch, TARGET_PAGE_SIZE); 4346 break; 4347 4348 case RAM_SAVE_FLAG_PAGE: 4349 qemu_get_buffer(f, host, TARGET_PAGE_SIZE); 4350 break; 4351 4352 case RAM_SAVE_FLAG_COMPRESS_PAGE: 4353 len = qemu_get_be32(f); 4354 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) { 4355 error_report("Invalid compressed data length: %d", len); 4356 ret = -EINVAL; 4357 break; 4358 } 4359 decompress_data_with_multi_threads(f, host, len); 4360 break; 4361 4362 case RAM_SAVE_FLAG_XBZRLE: 4363 if (load_xbzrle(f, addr, host) < 0) { 4364 error_report("Failed to decompress XBZRLE page at " 4365 RAM_ADDR_FMT, addr); 4366 ret = -EINVAL; 4367 break; 4368 } 4369 break; 4370 case RAM_SAVE_FLAG_EOS: 4371 /* normal exit */ 4372 multifd_recv_sync_main(); 4373 break; 4374 default: 4375 if (flags & RAM_SAVE_FLAG_HOOK) { 4376 ram_control_load_hook(f, RAM_CONTROL_HOOK, NULL); 4377 } else { 4378 error_report("Unknown combination of migration flags: %#x", 4379 flags); 4380 ret = -EINVAL; 4381 } 4382 } 4383 if (!ret) { 4384 ret = qemu_file_get_error(f); 4385 } 4386 } 4387 4388 return ret; 4389 } 4390 4391 static int ram_load(QEMUFile *f, void *opaque, int version_id) 4392 { 4393 int ret = 0; 4394 static uint64_t seq_iter; 4395 /* 4396 * If system is running in postcopy mode, page inserts to host memory must 4397 * be atomic 4398 */ 4399 bool postcopy_running = postcopy_is_running(); 4400 4401 seq_iter++; 4402 4403 if (version_id != 4) { 4404 return -EINVAL; 4405 } 4406 4407 /* 4408 * This RCU critical section can be very long running. 4409 * When RCU reclaims in the code start to become numerous, 4410 * it will be necessary to reduce the granularity of this 4411 * critical section. 4412 */ 4413 WITH_RCU_READ_LOCK_GUARD() { 4414 if (postcopy_running) { 4415 ret = ram_load_postcopy(f); 4416 } else { 4417 ret = ram_load_precopy(f); 4418 } 4419 4420 ret |= wait_for_decompress_done(); 4421 } 4422 trace_ram_load_complete(ret, seq_iter); 4423 4424 if (!ret && migration_incoming_in_colo_state()) { 4425 colo_flush_ram_cache(); 4426 } 4427 return ret; 4428 } 4429 4430 static bool ram_has_postcopy(void *opaque) 4431 { 4432 RAMBlock *rb; 4433 RAMBLOCK_FOREACH_NOT_IGNORED(rb) { 4434 if (ramblock_is_pmem(rb)) { 4435 info_report("Block: %s, host: %p is a nvdimm memory, postcopy" 4436 "is not supported now!", rb->idstr, rb->host); 4437 return false; 4438 } 4439 } 4440 4441 return migrate_postcopy_ram(); 4442 } 4443 4444 /* Sync all the dirty bitmap with destination VM. */ 4445 static int ram_dirty_bitmap_sync_all(MigrationState *s, RAMState *rs) 4446 { 4447 RAMBlock *block; 4448 QEMUFile *file = s->to_dst_file; 4449 int ramblock_count = 0; 4450 4451 trace_ram_dirty_bitmap_sync_start(); 4452 4453 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 4454 qemu_savevm_send_recv_bitmap(file, block->idstr); 4455 trace_ram_dirty_bitmap_request(block->idstr); 4456 ramblock_count++; 4457 } 4458 4459 trace_ram_dirty_bitmap_sync_wait(); 4460 4461 /* Wait until all the ramblocks' dirty bitmap synced */ 4462 while (ramblock_count--) { 4463 qemu_sem_wait(&s->rp_state.rp_sem); 4464 } 4465 4466 trace_ram_dirty_bitmap_sync_complete(); 4467 4468 return 0; 4469 } 4470 4471 static void ram_dirty_bitmap_reload_notify(MigrationState *s) 4472 { 4473 qemu_sem_post(&s->rp_state.rp_sem); 4474 } 4475 4476 /* 4477 * Read the received bitmap, revert it as the initial dirty bitmap. 4478 * This is only used when the postcopy migration is paused but wants 4479 * to resume from a middle point. 4480 */ 4481 int ram_dirty_bitmap_reload(MigrationState *s, RAMBlock *block) 4482 { 4483 int ret = -EINVAL; 4484 QEMUFile *file = s->rp_state.from_dst_file; 4485 unsigned long *le_bitmap, nbits = block->used_length >> TARGET_PAGE_BITS; 4486 uint64_t local_size = DIV_ROUND_UP(nbits, 8); 4487 uint64_t size, end_mark; 4488 4489 trace_ram_dirty_bitmap_reload_begin(block->idstr); 4490 4491 if (s->state != MIGRATION_STATUS_POSTCOPY_RECOVER) { 4492 error_report("%s: incorrect state %s", __func__, 4493 MigrationStatus_str(s->state)); 4494 return -EINVAL; 4495 } 4496 4497 /* 4498 * Note: see comments in ramblock_recv_bitmap_send() on why we 4499 * need the endianess convertion, and the paddings. 4500 */ 4501 local_size = ROUND_UP(local_size, 8); 4502 4503 /* Add paddings */ 4504 le_bitmap = bitmap_new(nbits + BITS_PER_LONG); 4505 4506 size = qemu_get_be64(file); 4507 4508 /* The size of the bitmap should match with our ramblock */ 4509 if (size != local_size) { 4510 error_report("%s: ramblock '%s' bitmap size mismatch " 4511 "(0x%"PRIx64" != 0x%"PRIx64")", __func__, 4512 block->idstr, size, local_size); 4513 ret = -EINVAL; 4514 goto out; 4515 } 4516 4517 size = qemu_get_buffer(file, (uint8_t *)le_bitmap, local_size); 4518 end_mark = qemu_get_be64(file); 4519 4520 ret = qemu_file_get_error(file); 4521 if (ret || size != local_size) { 4522 error_report("%s: read bitmap failed for ramblock '%s': %d" 4523 " (size 0x%"PRIx64", got: 0x%"PRIx64")", 4524 __func__, block->idstr, ret, local_size, size); 4525 ret = -EIO; 4526 goto out; 4527 } 4528 4529 if (end_mark != RAMBLOCK_RECV_BITMAP_ENDING) { 4530 error_report("%s: ramblock '%s' end mark incorrect: 0x%"PRIu64, 4531 __func__, block->idstr, end_mark); 4532 ret = -EINVAL; 4533 goto out; 4534 } 4535 4536 /* 4537 * Endianess convertion. We are during postcopy (though paused). 4538 * The dirty bitmap won't change. We can directly modify it. 4539 */ 4540 bitmap_from_le(block->bmap, le_bitmap, nbits); 4541 4542 /* 4543 * What we received is "received bitmap". Revert it as the initial 4544 * dirty bitmap for this ramblock. 4545 */ 4546 bitmap_complement(block->bmap, block->bmap, nbits); 4547 4548 trace_ram_dirty_bitmap_reload_complete(block->idstr); 4549 4550 /* 4551 * We succeeded to sync bitmap for current ramblock. If this is 4552 * the last one to sync, we need to notify the main send thread. 4553 */ 4554 ram_dirty_bitmap_reload_notify(s); 4555 4556 ret = 0; 4557 out: 4558 g_free(le_bitmap); 4559 return ret; 4560 } 4561 4562 static int ram_resume_prepare(MigrationState *s, void *opaque) 4563 { 4564 RAMState *rs = *(RAMState **)opaque; 4565 int ret; 4566 4567 ret = ram_dirty_bitmap_sync_all(s, rs); 4568 if (ret) { 4569 return ret; 4570 } 4571 4572 ram_state_resume_prepare(rs, s->to_dst_file); 4573 4574 return 0; 4575 } 4576 4577 static SaveVMHandlers savevm_ram_handlers = { 4578 .save_setup = ram_save_setup, 4579 .save_live_iterate = ram_save_iterate, 4580 .save_live_complete_postcopy = ram_save_complete, 4581 .save_live_complete_precopy = ram_save_complete, 4582 .has_postcopy = ram_has_postcopy, 4583 .save_live_pending = ram_save_pending, 4584 .load_state = ram_load, 4585 .save_cleanup = ram_save_cleanup, 4586 .load_setup = ram_load_setup, 4587 .load_cleanup = ram_load_cleanup, 4588 .resume_prepare = ram_resume_prepare, 4589 }; 4590 4591 void ram_mig_init(void) 4592 { 4593 qemu_mutex_init(&XBZRLE.lock); 4594 register_savevm_live("ram", 0, 4, &savevm_ram_handlers, &ram_state); 4595 } 4596