1 /* 2 * QEMU System Emulator 3 * 4 * Copyright (c) 2003-2008 Fabrice Bellard 5 * Copyright (c) 2011-2015 Red Hat Inc 6 * 7 * Authors: 8 * Juan Quintela <quintela@redhat.com> 9 * 10 * Permission is hereby granted, free of charge, to any person obtaining a copy 11 * of this software and associated documentation files (the "Software"), to deal 12 * in the Software without restriction, including without limitation the rights 13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 14 * copies of the Software, and to permit persons to whom the Software is 15 * furnished to do so, subject to the following conditions: 16 * 17 * The above copyright notice and this permission notice shall be included in 18 * all copies or substantial portions of the Software. 19 * 20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 26 * THE SOFTWARE. 27 */ 28 29 #include "qemu/osdep.h" 30 #include "cpu.h" 31 #include <zlib.h> 32 #include "qemu/cutils.h" 33 #include "qemu/bitops.h" 34 #include "qemu/bitmap.h" 35 #include "qemu/main-loop.h" 36 #include "qemu/pmem.h" 37 #include "xbzrle.h" 38 #include "ram.h" 39 #include "migration.h" 40 #include "socket.h" 41 #include "migration/register.h" 42 #include "migration/misc.h" 43 #include "qemu-file.h" 44 #include "postcopy-ram.h" 45 #include "page_cache.h" 46 #include "qemu/error-report.h" 47 #include "qapi/error.h" 48 #include "qapi/qapi-events-migration.h" 49 #include "qapi/qmp/qerror.h" 50 #include "trace.h" 51 #include "exec/ram_addr.h" 52 #include "exec/target_page.h" 53 #include "qemu/rcu_queue.h" 54 #include "migration/colo.h" 55 #include "block.h" 56 #include "sysemu/sysemu.h" 57 #include "qemu/uuid.h" 58 #include "savevm.h" 59 #include "qemu/iov.h" 60 61 /***********************************************************/ 62 /* ram save/restore */ 63 64 /* RAM_SAVE_FLAG_ZERO used to be named RAM_SAVE_FLAG_COMPRESS, it 65 * worked for pages that where filled with the same char. We switched 66 * it to only search for the zero value. And to avoid confusion with 67 * RAM_SSAVE_FLAG_COMPRESS_PAGE just rename it. 68 */ 69 70 #define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */ 71 #define RAM_SAVE_FLAG_ZERO 0x02 72 #define RAM_SAVE_FLAG_MEM_SIZE 0x04 73 #define RAM_SAVE_FLAG_PAGE 0x08 74 #define RAM_SAVE_FLAG_EOS 0x10 75 #define RAM_SAVE_FLAG_CONTINUE 0x20 76 #define RAM_SAVE_FLAG_XBZRLE 0x40 77 /* 0x80 is reserved in migration.h start with 0x100 next */ 78 #define RAM_SAVE_FLAG_COMPRESS_PAGE 0x100 79 80 static inline bool is_zero_range(uint8_t *p, uint64_t size) 81 { 82 return buffer_is_zero(p, size); 83 } 84 85 XBZRLECacheStats xbzrle_counters; 86 87 /* struct contains XBZRLE cache and a static page 88 used by the compression */ 89 static struct { 90 /* buffer used for XBZRLE encoding */ 91 uint8_t *encoded_buf; 92 /* buffer for storing page content */ 93 uint8_t *current_buf; 94 /* Cache for XBZRLE, Protected by lock. */ 95 PageCache *cache; 96 QemuMutex lock; 97 /* it will store a page full of zeros */ 98 uint8_t *zero_target_page; 99 /* buffer used for XBZRLE decoding */ 100 uint8_t *decoded_buf; 101 } XBZRLE; 102 103 static void XBZRLE_cache_lock(void) 104 { 105 if (migrate_use_xbzrle()) 106 qemu_mutex_lock(&XBZRLE.lock); 107 } 108 109 static void XBZRLE_cache_unlock(void) 110 { 111 if (migrate_use_xbzrle()) 112 qemu_mutex_unlock(&XBZRLE.lock); 113 } 114 115 /** 116 * xbzrle_cache_resize: resize the xbzrle cache 117 * 118 * This function is called from qmp_migrate_set_cache_size in main 119 * thread, possibly while a migration is in progress. A running 120 * migration may be using the cache and might finish during this call, 121 * hence changes to the cache are protected by XBZRLE.lock(). 122 * 123 * Returns 0 for success or -1 for error 124 * 125 * @new_size: new cache size 126 * @errp: set *errp if the check failed, with reason 127 */ 128 int xbzrle_cache_resize(int64_t new_size, Error **errp) 129 { 130 PageCache *new_cache; 131 int64_t ret = 0; 132 133 /* Check for truncation */ 134 if (new_size != (size_t)new_size) { 135 error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cache size", 136 "exceeding address space"); 137 return -1; 138 } 139 140 if (new_size == migrate_xbzrle_cache_size()) { 141 /* nothing to do */ 142 return 0; 143 } 144 145 XBZRLE_cache_lock(); 146 147 if (XBZRLE.cache != NULL) { 148 new_cache = cache_init(new_size, TARGET_PAGE_SIZE, errp); 149 if (!new_cache) { 150 ret = -1; 151 goto out; 152 } 153 154 cache_fini(XBZRLE.cache); 155 XBZRLE.cache = new_cache; 156 } 157 out: 158 XBZRLE_cache_unlock(); 159 return ret; 160 } 161 162 static bool ramblock_is_ignored(RAMBlock *block) 163 { 164 return !qemu_ram_is_migratable(block) || 165 (migrate_ignore_shared() && qemu_ram_is_shared(block)); 166 } 167 168 /* Should be holding either ram_list.mutex, or the RCU lock. */ 169 #define RAMBLOCK_FOREACH_NOT_IGNORED(block) \ 170 INTERNAL_RAMBLOCK_FOREACH(block) \ 171 if (ramblock_is_ignored(block)) {} else 172 173 #define RAMBLOCK_FOREACH_MIGRATABLE(block) \ 174 INTERNAL_RAMBLOCK_FOREACH(block) \ 175 if (!qemu_ram_is_migratable(block)) {} else 176 177 #undef RAMBLOCK_FOREACH 178 179 int foreach_not_ignored_block(RAMBlockIterFunc func, void *opaque) 180 { 181 RAMBlock *block; 182 int ret = 0; 183 184 rcu_read_lock(); 185 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 186 ret = func(block, opaque); 187 if (ret) { 188 break; 189 } 190 } 191 rcu_read_unlock(); 192 return ret; 193 } 194 195 static void ramblock_recv_map_init(void) 196 { 197 RAMBlock *rb; 198 199 RAMBLOCK_FOREACH_NOT_IGNORED(rb) { 200 assert(!rb->receivedmap); 201 rb->receivedmap = bitmap_new(rb->max_length >> qemu_target_page_bits()); 202 } 203 } 204 205 int ramblock_recv_bitmap_test(RAMBlock *rb, void *host_addr) 206 { 207 return test_bit(ramblock_recv_bitmap_offset(host_addr, rb), 208 rb->receivedmap); 209 } 210 211 bool ramblock_recv_bitmap_test_byte_offset(RAMBlock *rb, uint64_t byte_offset) 212 { 213 return test_bit(byte_offset >> TARGET_PAGE_BITS, rb->receivedmap); 214 } 215 216 void ramblock_recv_bitmap_set(RAMBlock *rb, void *host_addr) 217 { 218 set_bit_atomic(ramblock_recv_bitmap_offset(host_addr, rb), rb->receivedmap); 219 } 220 221 void ramblock_recv_bitmap_set_range(RAMBlock *rb, void *host_addr, 222 size_t nr) 223 { 224 bitmap_set_atomic(rb->receivedmap, 225 ramblock_recv_bitmap_offset(host_addr, rb), 226 nr); 227 } 228 229 #define RAMBLOCK_RECV_BITMAP_ENDING (0x0123456789abcdefULL) 230 231 /* 232 * Format: bitmap_size (8 bytes) + whole_bitmap (N bytes). 233 * 234 * Returns >0 if success with sent bytes, or <0 if error. 235 */ 236 int64_t ramblock_recv_bitmap_send(QEMUFile *file, 237 const char *block_name) 238 { 239 RAMBlock *block = qemu_ram_block_by_name(block_name); 240 unsigned long *le_bitmap, nbits; 241 uint64_t size; 242 243 if (!block) { 244 error_report("%s: invalid block name: %s", __func__, block_name); 245 return -1; 246 } 247 248 nbits = block->used_length >> TARGET_PAGE_BITS; 249 250 /* 251 * Make sure the tmp bitmap buffer is big enough, e.g., on 32bit 252 * machines we may need 4 more bytes for padding (see below 253 * comment). So extend it a bit before hand. 254 */ 255 le_bitmap = bitmap_new(nbits + BITS_PER_LONG); 256 257 /* 258 * Always use little endian when sending the bitmap. This is 259 * required that when source and destination VMs are not using the 260 * same endianess. (Note: big endian won't work.) 261 */ 262 bitmap_to_le(le_bitmap, block->receivedmap, nbits); 263 264 /* Size of the bitmap, in bytes */ 265 size = DIV_ROUND_UP(nbits, 8); 266 267 /* 268 * size is always aligned to 8 bytes for 64bit machines, but it 269 * may not be true for 32bit machines. We need this padding to 270 * make sure the migration can survive even between 32bit and 271 * 64bit machines. 272 */ 273 size = ROUND_UP(size, 8); 274 275 qemu_put_be64(file, size); 276 qemu_put_buffer(file, (const uint8_t *)le_bitmap, size); 277 /* 278 * Mark as an end, in case the middle part is screwed up due to 279 * some "misterious" reason. 280 */ 281 qemu_put_be64(file, RAMBLOCK_RECV_BITMAP_ENDING); 282 qemu_fflush(file); 283 284 g_free(le_bitmap); 285 286 if (qemu_file_get_error(file)) { 287 return qemu_file_get_error(file); 288 } 289 290 return size + sizeof(size); 291 } 292 293 /* 294 * An outstanding page request, on the source, having been received 295 * and queued 296 */ 297 struct RAMSrcPageRequest { 298 RAMBlock *rb; 299 hwaddr offset; 300 hwaddr len; 301 302 QSIMPLEQ_ENTRY(RAMSrcPageRequest) next_req; 303 }; 304 305 /* State of RAM for migration */ 306 struct RAMState { 307 /* QEMUFile used for this migration */ 308 QEMUFile *f; 309 /* Last block that we have visited searching for dirty pages */ 310 RAMBlock *last_seen_block; 311 /* Last block from where we have sent data */ 312 RAMBlock *last_sent_block; 313 /* Last dirty target page we have sent */ 314 ram_addr_t last_page; 315 /* last ram version we have seen */ 316 uint32_t last_version; 317 /* We are in the first round */ 318 bool ram_bulk_stage; 319 /* The free page optimization is enabled */ 320 bool fpo_enabled; 321 /* How many times we have dirty too many pages */ 322 int dirty_rate_high_cnt; 323 /* these variables are used for bitmap sync */ 324 /* last time we did a full bitmap_sync */ 325 int64_t time_last_bitmap_sync; 326 /* bytes transferred at start_time */ 327 uint64_t bytes_xfer_prev; 328 /* number of dirty pages since start_time */ 329 uint64_t num_dirty_pages_period; 330 /* xbzrle misses since the beginning of the period */ 331 uint64_t xbzrle_cache_miss_prev; 332 333 /* compression statistics since the beginning of the period */ 334 /* amount of count that no free thread to compress data */ 335 uint64_t compress_thread_busy_prev; 336 /* amount bytes after compression */ 337 uint64_t compressed_size_prev; 338 /* amount of compressed pages */ 339 uint64_t compress_pages_prev; 340 341 /* total handled target pages at the beginning of period */ 342 uint64_t target_page_count_prev; 343 /* total handled target pages since start */ 344 uint64_t target_page_count; 345 /* number of dirty bits in the bitmap */ 346 uint64_t migration_dirty_pages; 347 /* Protects modification of the bitmap and migration dirty pages */ 348 QemuMutex bitmap_mutex; 349 /* The RAMBlock used in the last src_page_requests */ 350 RAMBlock *last_req_rb; 351 /* Queue of outstanding page requests from the destination */ 352 QemuMutex src_page_req_mutex; 353 QSIMPLEQ_HEAD(, RAMSrcPageRequest) src_page_requests; 354 }; 355 typedef struct RAMState RAMState; 356 357 static RAMState *ram_state; 358 359 static NotifierWithReturnList precopy_notifier_list; 360 361 void precopy_infrastructure_init(void) 362 { 363 notifier_with_return_list_init(&precopy_notifier_list); 364 } 365 366 void precopy_add_notifier(NotifierWithReturn *n) 367 { 368 notifier_with_return_list_add(&precopy_notifier_list, n); 369 } 370 371 void precopy_remove_notifier(NotifierWithReturn *n) 372 { 373 notifier_with_return_remove(n); 374 } 375 376 int precopy_notify(PrecopyNotifyReason reason, Error **errp) 377 { 378 PrecopyNotifyData pnd; 379 pnd.reason = reason; 380 pnd.errp = errp; 381 382 return notifier_with_return_list_notify(&precopy_notifier_list, &pnd); 383 } 384 385 void precopy_enable_free_page_optimization(void) 386 { 387 if (!ram_state) { 388 return; 389 } 390 391 ram_state->fpo_enabled = true; 392 } 393 394 uint64_t ram_bytes_remaining(void) 395 { 396 return ram_state ? (ram_state->migration_dirty_pages * TARGET_PAGE_SIZE) : 397 0; 398 } 399 400 MigrationStats ram_counters; 401 402 /* used by the search for pages to send */ 403 struct PageSearchStatus { 404 /* Current block being searched */ 405 RAMBlock *block; 406 /* Current page to search from */ 407 unsigned long page; 408 /* Set once we wrap around */ 409 bool complete_round; 410 }; 411 typedef struct PageSearchStatus PageSearchStatus; 412 413 CompressionStats compression_counters; 414 415 struct CompressParam { 416 bool done; 417 bool quit; 418 bool zero_page; 419 QEMUFile *file; 420 QemuMutex mutex; 421 QemuCond cond; 422 RAMBlock *block; 423 ram_addr_t offset; 424 425 /* internally used fields */ 426 z_stream stream; 427 uint8_t *originbuf; 428 }; 429 typedef struct CompressParam CompressParam; 430 431 struct DecompressParam { 432 bool done; 433 bool quit; 434 QemuMutex mutex; 435 QemuCond cond; 436 void *des; 437 uint8_t *compbuf; 438 int len; 439 z_stream stream; 440 }; 441 typedef struct DecompressParam DecompressParam; 442 443 static CompressParam *comp_param; 444 static QemuThread *compress_threads; 445 /* comp_done_cond is used to wake up the migration thread when 446 * one of the compression threads has finished the compression. 447 * comp_done_lock is used to co-work with comp_done_cond. 448 */ 449 static QemuMutex comp_done_lock; 450 static QemuCond comp_done_cond; 451 /* The empty QEMUFileOps will be used by file in CompressParam */ 452 static const QEMUFileOps empty_ops = { }; 453 454 static QEMUFile *decomp_file; 455 static DecompressParam *decomp_param; 456 static QemuThread *decompress_threads; 457 static QemuMutex decomp_done_lock; 458 static QemuCond decomp_done_cond; 459 460 static bool do_compress_ram_page(QEMUFile *f, z_stream *stream, RAMBlock *block, 461 ram_addr_t offset, uint8_t *source_buf); 462 463 static void *do_data_compress(void *opaque) 464 { 465 CompressParam *param = opaque; 466 RAMBlock *block; 467 ram_addr_t offset; 468 bool zero_page; 469 470 qemu_mutex_lock(¶m->mutex); 471 while (!param->quit) { 472 if (param->block) { 473 block = param->block; 474 offset = param->offset; 475 param->block = NULL; 476 qemu_mutex_unlock(¶m->mutex); 477 478 zero_page = do_compress_ram_page(param->file, ¶m->stream, 479 block, offset, param->originbuf); 480 481 qemu_mutex_lock(&comp_done_lock); 482 param->done = true; 483 param->zero_page = zero_page; 484 qemu_cond_signal(&comp_done_cond); 485 qemu_mutex_unlock(&comp_done_lock); 486 487 qemu_mutex_lock(¶m->mutex); 488 } else { 489 qemu_cond_wait(¶m->cond, ¶m->mutex); 490 } 491 } 492 qemu_mutex_unlock(¶m->mutex); 493 494 return NULL; 495 } 496 497 static void compress_threads_save_cleanup(void) 498 { 499 int i, thread_count; 500 501 if (!migrate_use_compression() || !comp_param) { 502 return; 503 } 504 505 thread_count = migrate_compress_threads(); 506 for (i = 0; i < thread_count; i++) { 507 /* 508 * we use it as a indicator which shows if the thread is 509 * properly init'd or not 510 */ 511 if (!comp_param[i].file) { 512 break; 513 } 514 515 qemu_mutex_lock(&comp_param[i].mutex); 516 comp_param[i].quit = true; 517 qemu_cond_signal(&comp_param[i].cond); 518 qemu_mutex_unlock(&comp_param[i].mutex); 519 520 qemu_thread_join(compress_threads + i); 521 qemu_mutex_destroy(&comp_param[i].mutex); 522 qemu_cond_destroy(&comp_param[i].cond); 523 deflateEnd(&comp_param[i].stream); 524 g_free(comp_param[i].originbuf); 525 qemu_fclose(comp_param[i].file); 526 comp_param[i].file = NULL; 527 } 528 qemu_mutex_destroy(&comp_done_lock); 529 qemu_cond_destroy(&comp_done_cond); 530 g_free(compress_threads); 531 g_free(comp_param); 532 compress_threads = NULL; 533 comp_param = NULL; 534 } 535 536 static int compress_threads_save_setup(void) 537 { 538 int i, thread_count; 539 540 if (!migrate_use_compression()) { 541 return 0; 542 } 543 thread_count = migrate_compress_threads(); 544 compress_threads = g_new0(QemuThread, thread_count); 545 comp_param = g_new0(CompressParam, thread_count); 546 qemu_cond_init(&comp_done_cond); 547 qemu_mutex_init(&comp_done_lock); 548 for (i = 0; i < thread_count; i++) { 549 comp_param[i].originbuf = g_try_malloc(TARGET_PAGE_SIZE); 550 if (!comp_param[i].originbuf) { 551 goto exit; 552 } 553 554 if (deflateInit(&comp_param[i].stream, 555 migrate_compress_level()) != Z_OK) { 556 g_free(comp_param[i].originbuf); 557 goto exit; 558 } 559 560 /* comp_param[i].file is just used as a dummy buffer to save data, 561 * set its ops to empty. 562 */ 563 comp_param[i].file = qemu_fopen_ops(NULL, &empty_ops); 564 comp_param[i].done = true; 565 comp_param[i].quit = false; 566 qemu_mutex_init(&comp_param[i].mutex); 567 qemu_cond_init(&comp_param[i].cond); 568 qemu_thread_create(compress_threads + i, "compress", 569 do_data_compress, comp_param + i, 570 QEMU_THREAD_JOINABLE); 571 } 572 return 0; 573 574 exit: 575 compress_threads_save_cleanup(); 576 return -1; 577 } 578 579 /* Multiple fd's */ 580 581 #define MULTIFD_MAGIC 0x11223344U 582 #define MULTIFD_VERSION 1 583 584 #define MULTIFD_FLAG_SYNC (1 << 0) 585 586 /* This value needs to be a multiple of qemu_target_page_size() */ 587 #define MULTIFD_PACKET_SIZE (512 * 1024) 588 589 typedef struct { 590 uint32_t magic; 591 uint32_t version; 592 unsigned char uuid[16]; /* QemuUUID */ 593 uint8_t id; 594 uint8_t unused1[7]; /* Reserved for future use */ 595 uint64_t unused2[4]; /* Reserved for future use */ 596 } __attribute__((packed)) MultiFDInit_t; 597 598 typedef struct { 599 uint32_t magic; 600 uint32_t version; 601 uint32_t flags; 602 /* maximum number of allocated pages */ 603 uint32_t pages_alloc; 604 uint32_t pages_used; 605 /* size of the next packet that contains pages */ 606 uint32_t next_packet_size; 607 uint64_t packet_num; 608 uint64_t unused[4]; /* Reserved for future use */ 609 char ramblock[256]; 610 uint64_t offset[]; 611 } __attribute__((packed)) MultiFDPacket_t; 612 613 typedef struct { 614 /* number of used pages */ 615 uint32_t used; 616 /* number of allocated pages */ 617 uint32_t allocated; 618 /* global number of generated multifd packets */ 619 uint64_t packet_num; 620 /* offset of each page */ 621 ram_addr_t *offset; 622 /* pointer to each page */ 623 struct iovec *iov; 624 RAMBlock *block; 625 } MultiFDPages_t; 626 627 typedef struct { 628 /* this fields are not changed once the thread is created */ 629 /* channel number */ 630 uint8_t id; 631 /* channel thread name */ 632 char *name; 633 /* channel thread id */ 634 QemuThread thread; 635 /* communication channel */ 636 QIOChannel *c; 637 /* sem where to wait for more work */ 638 QemuSemaphore sem; 639 /* this mutex protects the following parameters */ 640 QemuMutex mutex; 641 /* is this channel thread running */ 642 bool running; 643 /* should this thread finish */ 644 bool quit; 645 /* thread has work to do */ 646 int pending_job; 647 /* array of pages to sent */ 648 MultiFDPages_t *pages; 649 /* packet allocated len */ 650 uint32_t packet_len; 651 /* pointer to the packet */ 652 MultiFDPacket_t *packet; 653 /* multifd flags for each packet */ 654 uint32_t flags; 655 /* size of the next packet that contains pages */ 656 uint32_t next_packet_size; 657 /* global number of generated multifd packets */ 658 uint64_t packet_num; 659 /* thread local variables */ 660 /* packets sent through this channel */ 661 uint64_t num_packets; 662 /* pages sent through this channel */ 663 uint64_t num_pages; 664 /* syncs main thread and channels */ 665 QemuSemaphore sem_sync; 666 } MultiFDSendParams; 667 668 typedef struct { 669 /* this fields are not changed once the thread is created */ 670 /* channel number */ 671 uint8_t id; 672 /* channel thread name */ 673 char *name; 674 /* channel thread id */ 675 QemuThread thread; 676 /* communication channel */ 677 QIOChannel *c; 678 /* this mutex protects the following parameters */ 679 QemuMutex mutex; 680 /* is this channel thread running */ 681 bool running; 682 /* array of pages to receive */ 683 MultiFDPages_t *pages; 684 /* packet allocated len */ 685 uint32_t packet_len; 686 /* pointer to the packet */ 687 MultiFDPacket_t *packet; 688 /* multifd flags for each packet */ 689 uint32_t flags; 690 /* global number of generated multifd packets */ 691 uint64_t packet_num; 692 /* thread local variables */ 693 /* size of the next packet that contains pages */ 694 uint32_t next_packet_size; 695 /* packets sent through this channel */ 696 uint64_t num_packets; 697 /* pages sent through this channel */ 698 uint64_t num_pages; 699 /* syncs main thread and channels */ 700 QemuSemaphore sem_sync; 701 } MultiFDRecvParams; 702 703 static int multifd_send_initial_packet(MultiFDSendParams *p, Error **errp) 704 { 705 MultiFDInit_t msg; 706 int ret; 707 708 msg.magic = cpu_to_be32(MULTIFD_MAGIC); 709 msg.version = cpu_to_be32(MULTIFD_VERSION); 710 msg.id = p->id; 711 memcpy(msg.uuid, &qemu_uuid.data, sizeof(msg.uuid)); 712 713 ret = qio_channel_write_all(p->c, (char *)&msg, sizeof(msg), errp); 714 if (ret != 0) { 715 return -1; 716 } 717 return 0; 718 } 719 720 static int multifd_recv_initial_packet(QIOChannel *c, Error **errp) 721 { 722 MultiFDInit_t msg; 723 int ret; 724 725 ret = qio_channel_read_all(c, (char *)&msg, sizeof(msg), errp); 726 if (ret != 0) { 727 return -1; 728 } 729 730 msg.magic = be32_to_cpu(msg.magic); 731 msg.version = be32_to_cpu(msg.version); 732 733 if (msg.magic != MULTIFD_MAGIC) { 734 error_setg(errp, "multifd: received packet magic %x " 735 "expected %x", msg.magic, MULTIFD_MAGIC); 736 return -1; 737 } 738 739 if (msg.version != MULTIFD_VERSION) { 740 error_setg(errp, "multifd: received packet version %d " 741 "expected %d", msg.version, MULTIFD_VERSION); 742 return -1; 743 } 744 745 if (memcmp(msg.uuid, &qemu_uuid, sizeof(qemu_uuid))) { 746 char *uuid = qemu_uuid_unparse_strdup(&qemu_uuid); 747 char *msg_uuid = qemu_uuid_unparse_strdup((const QemuUUID *)msg.uuid); 748 749 error_setg(errp, "multifd: received uuid '%s' and expected " 750 "uuid '%s' for channel %hhd", msg_uuid, uuid, msg.id); 751 g_free(uuid); 752 g_free(msg_uuid); 753 return -1; 754 } 755 756 if (msg.id > migrate_multifd_channels()) { 757 error_setg(errp, "multifd: received channel version %d " 758 "expected %d", msg.version, MULTIFD_VERSION); 759 return -1; 760 } 761 762 return msg.id; 763 } 764 765 static MultiFDPages_t *multifd_pages_init(size_t size) 766 { 767 MultiFDPages_t *pages = g_new0(MultiFDPages_t, 1); 768 769 pages->allocated = size; 770 pages->iov = g_new0(struct iovec, size); 771 pages->offset = g_new0(ram_addr_t, size); 772 773 return pages; 774 } 775 776 static void multifd_pages_clear(MultiFDPages_t *pages) 777 { 778 pages->used = 0; 779 pages->allocated = 0; 780 pages->packet_num = 0; 781 pages->block = NULL; 782 g_free(pages->iov); 783 pages->iov = NULL; 784 g_free(pages->offset); 785 pages->offset = NULL; 786 g_free(pages); 787 } 788 789 static void multifd_send_fill_packet(MultiFDSendParams *p) 790 { 791 MultiFDPacket_t *packet = p->packet; 792 uint32_t page_max = MULTIFD_PACKET_SIZE / qemu_target_page_size(); 793 int i; 794 795 packet->magic = cpu_to_be32(MULTIFD_MAGIC); 796 packet->version = cpu_to_be32(MULTIFD_VERSION); 797 packet->flags = cpu_to_be32(p->flags); 798 packet->pages_alloc = cpu_to_be32(page_max); 799 packet->pages_used = cpu_to_be32(p->pages->used); 800 packet->next_packet_size = cpu_to_be32(p->next_packet_size); 801 packet->packet_num = cpu_to_be64(p->packet_num); 802 803 if (p->pages->block) { 804 strncpy(packet->ramblock, p->pages->block->idstr, 256); 805 } 806 807 for (i = 0; i < p->pages->used; i++) { 808 packet->offset[i] = cpu_to_be64(p->pages->offset[i]); 809 } 810 } 811 812 static int multifd_recv_unfill_packet(MultiFDRecvParams *p, Error **errp) 813 { 814 MultiFDPacket_t *packet = p->packet; 815 uint32_t pages_max = MULTIFD_PACKET_SIZE / qemu_target_page_size(); 816 RAMBlock *block; 817 int i; 818 819 packet->magic = be32_to_cpu(packet->magic); 820 if (packet->magic != MULTIFD_MAGIC) { 821 error_setg(errp, "multifd: received packet " 822 "magic %x and expected magic %x", 823 packet->magic, MULTIFD_MAGIC); 824 return -1; 825 } 826 827 packet->version = be32_to_cpu(packet->version); 828 if (packet->version != MULTIFD_VERSION) { 829 error_setg(errp, "multifd: received packet " 830 "version %d and expected version %d", 831 packet->version, MULTIFD_VERSION); 832 return -1; 833 } 834 835 p->flags = be32_to_cpu(packet->flags); 836 837 packet->pages_alloc = be32_to_cpu(packet->pages_alloc); 838 /* 839 * If we recevied a packet that is 100 times bigger than expected 840 * just stop migration. It is a magic number. 841 */ 842 if (packet->pages_alloc > pages_max * 100) { 843 error_setg(errp, "multifd: received packet " 844 "with size %d and expected a maximum size of %d", 845 packet->pages_alloc, pages_max * 100) ; 846 return -1; 847 } 848 /* 849 * We received a packet that is bigger than expected but inside 850 * reasonable limits (see previous comment). Just reallocate. 851 */ 852 if (packet->pages_alloc > p->pages->allocated) { 853 multifd_pages_clear(p->pages); 854 p->pages = multifd_pages_init(packet->pages_alloc); 855 } 856 857 p->pages->used = be32_to_cpu(packet->pages_used); 858 if (p->pages->used > packet->pages_alloc) { 859 error_setg(errp, "multifd: received packet " 860 "with %d pages and expected maximum pages are %d", 861 p->pages->used, packet->pages_alloc) ; 862 return -1; 863 } 864 865 p->next_packet_size = be32_to_cpu(packet->next_packet_size); 866 p->packet_num = be64_to_cpu(packet->packet_num); 867 868 if (p->pages->used) { 869 /* make sure that ramblock is 0 terminated */ 870 packet->ramblock[255] = 0; 871 block = qemu_ram_block_by_name(packet->ramblock); 872 if (!block) { 873 error_setg(errp, "multifd: unknown ram block %s", 874 packet->ramblock); 875 return -1; 876 } 877 } 878 879 for (i = 0; i < p->pages->used; i++) { 880 ram_addr_t offset = be64_to_cpu(packet->offset[i]); 881 882 if (offset > (block->used_length - TARGET_PAGE_SIZE)) { 883 error_setg(errp, "multifd: offset too long " RAM_ADDR_FMT 884 " (max " RAM_ADDR_FMT ")", 885 offset, block->max_length); 886 return -1; 887 } 888 p->pages->iov[i].iov_base = block->host + offset; 889 p->pages->iov[i].iov_len = TARGET_PAGE_SIZE; 890 } 891 892 return 0; 893 } 894 895 struct { 896 MultiFDSendParams *params; 897 /* number of created threads */ 898 int count; 899 /* array of pages to sent */ 900 MultiFDPages_t *pages; 901 /* syncs main thread and channels */ 902 QemuSemaphore sem_sync; 903 /* global number of generated multifd packets */ 904 uint64_t packet_num; 905 /* send channels ready */ 906 QemuSemaphore channels_ready; 907 } *multifd_send_state; 908 909 /* 910 * How we use multifd_send_state->pages and channel->pages? 911 * 912 * We create a pages for each channel, and a main one. Each time that 913 * we need to send a batch of pages we interchange the ones between 914 * multifd_send_state and the channel that is sending it. There are 915 * two reasons for that: 916 * - to not have to do so many mallocs during migration 917 * - to make easier to know what to free at the end of migration 918 * 919 * This way we always know who is the owner of each "pages" struct, 920 * and we don't need any locking. It belongs to the migration thread 921 * or to the channel thread. Switching is safe because the migration 922 * thread is using the channel mutex when changing it, and the channel 923 * have to had finish with its own, otherwise pending_job can't be 924 * false. 925 */ 926 927 static void multifd_send_pages(void) 928 { 929 int i; 930 static int next_channel; 931 MultiFDSendParams *p = NULL; /* make happy gcc */ 932 MultiFDPages_t *pages = multifd_send_state->pages; 933 uint64_t transferred; 934 935 qemu_sem_wait(&multifd_send_state->channels_ready); 936 for (i = next_channel;; i = (i + 1) % migrate_multifd_channels()) { 937 p = &multifd_send_state->params[i]; 938 939 qemu_mutex_lock(&p->mutex); 940 if (!p->pending_job) { 941 p->pending_job++; 942 next_channel = (i + 1) % migrate_multifd_channels(); 943 break; 944 } 945 qemu_mutex_unlock(&p->mutex); 946 } 947 p->pages->used = 0; 948 949 p->packet_num = multifd_send_state->packet_num++; 950 p->pages->block = NULL; 951 multifd_send_state->pages = p->pages; 952 p->pages = pages; 953 transferred = ((uint64_t) pages->used) * TARGET_PAGE_SIZE + p->packet_len; 954 ram_counters.multifd_bytes += transferred; 955 ram_counters.transferred += transferred;; 956 qemu_mutex_unlock(&p->mutex); 957 qemu_sem_post(&p->sem); 958 } 959 960 static void multifd_queue_page(RAMBlock *block, ram_addr_t offset) 961 { 962 MultiFDPages_t *pages = multifd_send_state->pages; 963 964 if (!pages->block) { 965 pages->block = block; 966 } 967 968 if (pages->block == block) { 969 pages->offset[pages->used] = offset; 970 pages->iov[pages->used].iov_base = block->host + offset; 971 pages->iov[pages->used].iov_len = TARGET_PAGE_SIZE; 972 pages->used++; 973 974 if (pages->used < pages->allocated) { 975 return; 976 } 977 } 978 979 multifd_send_pages(); 980 981 if (pages->block != block) { 982 multifd_queue_page(block, offset); 983 } 984 } 985 986 static void multifd_send_terminate_threads(Error *err) 987 { 988 int i; 989 990 if (err) { 991 MigrationState *s = migrate_get_current(); 992 migrate_set_error(s, err); 993 if (s->state == MIGRATION_STATUS_SETUP || 994 s->state == MIGRATION_STATUS_PRE_SWITCHOVER || 995 s->state == MIGRATION_STATUS_DEVICE || 996 s->state == MIGRATION_STATUS_ACTIVE) { 997 migrate_set_state(&s->state, s->state, 998 MIGRATION_STATUS_FAILED); 999 } 1000 } 1001 1002 for (i = 0; i < migrate_multifd_channels(); i++) { 1003 MultiFDSendParams *p = &multifd_send_state->params[i]; 1004 1005 qemu_mutex_lock(&p->mutex); 1006 p->quit = true; 1007 qemu_sem_post(&p->sem); 1008 qemu_mutex_unlock(&p->mutex); 1009 } 1010 } 1011 1012 void multifd_save_cleanup(void) 1013 { 1014 int i; 1015 1016 if (!migrate_use_multifd()) { 1017 return; 1018 } 1019 multifd_send_terminate_threads(NULL); 1020 for (i = 0; i < migrate_multifd_channels(); i++) { 1021 MultiFDSendParams *p = &multifd_send_state->params[i]; 1022 1023 if (p->running) { 1024 qemu_thread_join(&p->thread); 1025 } 1026 socket_send_channel_destroy(p->c); 1027 p->c = NULL; 1028 qemu_mutex_destroy(&p->mutex); 1029 qemu_sem_destroy(&p->sem); 1030 qemu_sem_destroy(&p->sem_sync); 1031 g_free(p->name); 1032 p->name = NULL; 1033 multifd_pages_clear(p->pages); 1034 p->pages = NULL; 1035 p->packet_len = 0; 1036 g_free(p->packet); 1037 p->packet = NULL; 1038 } 1039 qemu_sem_destroy(&multifd_send_state->channels_ready); 1040 qemu_sem_destroy(&multifd_send_state->sem_sync); 1041 g_free(multifd_send_state->params); 1042 multifd_send_state->params = NULL; 1043 multifd_pages_clear(multifd_send_state->pages); 1044 multifd_send_state->pages = NULL; 1045 g_free(multifd_send_state); 1046 multifd_send_state = NULL; 1047 } 1048 1049 static void multifd_send_sync_main(void) 1050 { 1051 int i; 1052 1053 if (!migrate_use_multifd()) { 1054 return; 1055 } 1056 if (multifd_send_state->pages->used) { 1057 multifd_send_pages(); 1058 } 1059 for (i = 0; i < migrate_multifd_channels(); i++) { 1060 MultiFDSendParams *p = &multifd_send_state->params[i]; 1061 1062 trace_multifd_send_sync_main_signal(p->id); 1063 1064 qemu_mutex_lock(&p->mutex); 1065 1066 p->packet_num = multifd_send_state->packet_num++; 1067 p->flags |= MULTIFD_FLAG_SYNC; 1068 p->pending_job++; 1069 qemu_mutex_unlock(&p->mutex); 1070 qemu_sem_post(&p->sem); 1071 } 1072 for (i = 0; i < migrate_multifd_channels(); i++) { 1073 MultiFDSendParams *p = &multifd_send_state->params[i]; 1074 1075 trace_multifd_send_sync_main_wait(p->id); 1076 qemu_sem_wait(&multifd_send_state->sem_sync); 1077 } 1078 trace_multifd_send_sync_main(multifd_send_state->packet_num); 1079 } 1080 1081 static void *multifd_send_thread(void *opaque) 1082 { 1083 MultiFDSendParams *p = opaque; 1084 Error *local_err = NULL; 1085 int ret; 1086 1087 trace_multifd_send_thread_start(p->id); 1088 rcu_register_thread(); 1089 1090 if (multifd_send_initial_packet(p, &local_err) < 0) { 1091 goto out; 1092 } 1093 /* initial packet */ 1094 p->num_packets = 1; 1095 1096 while (true) { 1097 qemu_sem_wait(&p->sem); 1098 qemu_mutex_lock(&p->mutex); 1099 1100 if (p->pending_job) { 1101 uint32_t used = p->pages->used; 1102 uint64_t packet_num = p->packet_num; 1103 uint32_t flags = p->flags; 1104 1105 p->next_packet_size = used * qemu_target_page_size(); 1106 multifd_send_fill_packet(p); 1107 p->flags = 0; 1108 p->num_packets++; 1109 p->num_pages += used; 1110 p->pages->used = 0; 1111 qemu_mutex_unlock(&p->mutex); 1112 1113 trace_multifd_send(p->id, packet_num, used, flags, 1114 p->next_packet_size); 1115 1116 ret = qio_channel_write_all(p->c, (void *)p->packet, 1117 p->packet_len, &local_err); 1118 if (ret != 0) { 1119 break; 1120 } 1121 1122 if (used) { 1123 ret = qio_channel_writev_all(p->c, p->pages->iov, 1124 used, &local_err); 1125 if (ret != 0) { 1126 break; 1127 } 1128 } 1129 1130 qemu_mutex_lock(&p->mutex); 1131 p->pending_job--; 1132 qemu_mutex_unlock(&p->mutex); 1133 1134 if (flags & MULTIFD_FLAG_SYNC) { 1135 qemu_sem_post(&multifd_send_state->sem_sync); 1136 } 1137 qemu_sem_post(&multifd_send_state->channels_ready); 1138 } else if (p->quit) { 1139 qemu_mutex_unlock(&p->mutex); 1140 break; 1141 } else { 1142 qemu_mutex_unlock(&p->mutex); 1143 /* sometimes there are spurious wakeups */ 1144 } 1145 } 1146 1147 out: 1148 if (local_err) { 1149 multifd_send_terminate_threads(local_err); 1150 } 1151 1152 qemu_mutex_lock(&p->mutex); 1153 p->running = false; 1154 qemu_mutex_unlock(&p->mutex); 1155 1156 rcu_unregister_thread(); 1157 trace_multifd_send_thread_end(p->id, p->num_packets, p->num_pages); 1158 1159 return NULL; 1160 } 1161 1162 static void multifd_new_send_channel_async(QIOTask *task, gpointer opaque) 1163 { 1164 MultiFDSendParams *p = opaque; 1165 QIOChannel *sioc = QIO_CHANNEL(qio_task_get_source(task)); 1166 Error *local_err = NULL; 1167 1168 if (qio_task_propagate_error(task, &local_err)) { 1169 migrate_set_error(migrate_get_current(), local_err); 1170 multifd_save_cleanup(); 1171 } else { 1172 p->c = QIO_CHANNEL(sioc); 1173 qio_channel_set_delay(p->c, false); 1174 p->running = true; 1175 qemu_thread_create(&p->thread, p->name, multifd_send_thread, p, 1176 QEMU_THREAD_JOINABLE); 1177 1178 atomic_inc(&multifd_send_state->count); 1179 } 1180 } 1181 1182 int multifd_save_setup(void) 1183 { 1184 int thread_count; 1185 uint32_t page_count = MULTIFD_PACKET_SIZE / qemu_target_page_size(); 1186 uint8_t i; 1187 1188 if (!migrate_use_multifd()) { 1189 return 0; 1190 } 1191 thread_count = migrate_multifd_channels(); 1192 multifd_send_state = g_malloc0(sizeof(*multifd_send_state)); 1193 multifd_send_state->params = g_new0(MultiFDSendParams, thread_count); 1194 atomic_set(&multifd_send_state->count, 0); 1195 multifd_send_state->pages = multifd_pages_init(page_count); 1196 qemu_sem_init(&multifd_send_state->sem_sync, 0); 1197 qemu_sem_init(&multifd_send_state->channels_ready, 0); 1198 1199 for (i = 0; i < thread_count; i++) { 1200 MultiFDSendParams *p = &multifd_send_state->params[i]; 1201 1202 qemu_mutex_init(&p->mutex); 1203 qemu_sem_init(&p->sem, 0); 1204 qemu_sem_init(&p->sem_sync, 0); 1205 p->quit = false; 1206 p->pending_job = 0; 1207 p->id = i; 1208 p->pages = multifd_pages_init(page_count); 1209 p->packet_len = sizeof(MultiFDPacket_t) 1210 + sizeof(ram_addr_t) * page_count; 1211 p->packet = g_malloc0(p->packet_len); 1212 p->name = g_strdup_printf("multifdsend_%d", i); 1213 socket_send_channel_create(multifd_new_send_channel_async, p); 1214 } 1215 return 0; 1216 } 1217 1218 struct { 1219 MultiFDRecvParams *params; 1220 /* number of created threads */ 1221 int count; 1222 /* syncs main thread and channels */ 1223 QemuSemaphore sem_sync; 1224 /* global number of generated multifd packets */ 1225 uint64_t packet_num; 1226 } *multifd_recv_state; 1227 1228 static void multifd_recv_terminate_threads(Error *err) 1229 { 1230 int i; 1231 1232 if (err) { 1233 MigrationState *s = migrate_get_current(); 1234 migrate_set_error(s, err); 1235 if (s->state == MIGRATION_STATUS_SETUP || 1236 s->state == MIGRATION_STATUS_ACTIVE) { 1237 migrate_set_state(&s->state, s->state, 1238 MIGRATION_STATUS_FAILED); 1239 } 1240 } 1241 1242 for (i = 0; i < migrate_multifd_channels(); i++) { 1243 MultiFDRecvParams *p = &multifd_recv_state->params[i]; 1244 1245 qemu_mutex_lock(&p->mutex); 1246 /* We could arrive here for two reasons: 1247 - normal quit, i.e. everything went fine, just finished 1248 - error quit: We close the channels so the channel threads 1249 finish the qio_channel_read_all_eof() */ 1250 qio_channel_shutdown(p->c, QIO_CHANNEL_SHUTDOWN_BOTH, NULL); 1251 qemu_mutex_unlock(&p->mutex); 1252 } 1253 } 1254 1255 int multifd_load_cleanup(Error **errp) 1256 { 1257 int i; 1258 int ret = 0; 1259 1260 if (!migrate_use_multifd()) { 1261 return 0; 1262 } 1263 multifd_recv_terminate_threads(NULL); 1264 for (i = 0; i < migrate_multifd_channels(); i++) { 1265 MultiFDRecvParams *p = &multifd_recv_state->params[i]; 1266 1267 if (p->running) { 1268 qemu_thread_join(&p->thread); 1269 } 1270 object_unref(OBJECT(p->c)); 1271 p->c = NULL; 1272 qemu_mutex_destroy(&p->mutex); 1273 qemu_sem_destroy(&p->sem_sync); 1274 g_free(p->name); 1275 p->name = NULL; 1276 multifd_pages_clear(p->pages); 1277 p->pages = NULL; 1278 p->packet_len = 0; 1279 g_free(p->packet); 1280 p->packet = NULL; 1281 } 1282 qemu_sem_destroy(&multifd_recv_state->sem_sync); 1283 g_free(multifd_recv_state->params); 1284 multifd_recv_state->params = NULL; 1285 g_free(multifd_recv_state); 1286 multifd_recv_state = NULL; 1287 1288 return ret; 1289 } 1290 1291 static void multifd_recv_sync_main(void) 1292 { 1293 int i; 1294 1295 if (!migrate_use_multifd()) { 1296 return; 1297 } 1298 for (i = 0; i < migrate_multifd_channels(); i++) { 1299 MultiFDRecvParams *p = &multifd_recv_state->params[i]; 1300 1301 trace_multifd_recv_sync_main_wait(p->id); 1302 qemu_sem_wait(&multifd_recv_state->sem_sync); 1303 qemu_mutex_lock(&p->mutex); 1304 if (multifd_recv_state->packet_num < p->packet_num) { 1305 multifd_recv_state->packet_num = p->packet_num; 1306 } 1307 qemu_mutex_unlock(&p->mutex); 1308 } 1309 for (i = 0; i < migrate_multifd_channels(); i++) { 1310 MultiFDRecvParams *p = &multifd_recv_state->params[i]; 1311 1312 trace_multifd_recv_sync_main_signal(p->id); 1313 qemu_sem_post(&p->sem_sync); 1314 } 1315 trace_multifd_recv_sync_main(multifd_recv_state->packet_num); 1316 } 1317 1318 static void *multifd_recv_thread(void *opaque) 1319 { 1320 MultiFDRecvParams *p = opaque; 1321 Error *local_err = NULL; 1322 int ret; 1323 1324 trace_multifd_recv_thread_start(p->id); 1325 rcu_register_thread(); 1326 1327 while (true) { 1328 uint32_t used; 1329 uint32_t flags; 1330 1331 ret = qio_channel_read_all_eof(p->c, (void *)p->packet, 1332 p->packet_len, &local_err); 1333 if (ret == 0) { /* EOF */ 1334 break; 1335 } 1336 if (ret == -1) { /* Error */ 1337 break; 1338 } 1339 1340 qemu_mutex_lock(&p->mutex); 1341 ret = multifd_recv_unfill_packet(p, &local_err); 1342 if (ret) { 1343 qemu_mutex_unlock(&p->mutex); 1344 break; 1345 } 1346 1347 used = p->pages->used; 1348 flags = p->flags; 1349 trace_multifd_recv(p->id, p->packet_num, used, flags, 1350 p->next_packet_size); 1351 p->num_packets++; 1352 p->num_pages += used; 1353 qemu_mutex_unlock(&p->mutex); 1354 1355 if (used) { 1356 ret = qio_channel_readv_all(p->c, p->pages->iov, 1357 used, &local_err); 1358 if (ret != 0) { 1359 break; 1360 } 1361 } 1362 1363 if (flags & MULTIFD_FLAG_SYNC) { 1364 qemu_sem_post(&multifd_recv_state->sem_sync); 1365 qemu_sem_wait(&p->sem_sync); 1366 } 1367 } 1368 1369 if (local_err) { 1370 multifd_recv_terminate_threads(local_err); 1371 } 1372 qemu_mutex_lock(&p->mutex); 1373 p->running = false; 1374 qemu_mutex_unlock(&p->mutex); 1375 1376 rcu_unregister_thread(); 1377 trace_multifd_recv_thread_end(p->id, p->num_packets, p->num_pages); 1378 1379 return NULL; 1380 } 1381 1382 int multifd_load_setup(void) 1383 { 1384 int thread_count; 1385 uint32_t page_count = MULTIFD_PACKET_SIZE / qemu_target_page_size(); 1386 uint8_t i; 1387 1388 if (!migrate_use_multifd()) { 1389 return 0; 1390 } 1391 thread_count = migrate_multifd_channels(); 1392 multifd_recv_state = g_malloc0(sizeof(*multifd_recv_state)); 1393 multifd_recv_state->params = g_new0(MultiFDRecvParams, thread_count); 1394 atomic_set(&multifd_recv_state->count, 0); 1395 qemu_sem_init(&multifd_recv_state->sem_sync, 0); 1396 1397 for (i = 0; i < thread_count; i++) { 1398 MultiFDRecvParams *p = &multifd_recv_state->params[i]; 1399 1400 qemu_mutex_init(&p->mutex); 1401 qemu_sem_init(&p->sem_sync, 0); 1402 p->id = i; 1403 p->pages = multifd_pages_init(page_count); 1404 p->packet_len = sizeof(MultiFDPacket_t) 1405 + sizeof(ram_addr_t) * page_count; 1406 p->packet = g_malloc0(p->packet_len); 1407 p->name = g_strdup_printf("multifdrecv_%d", i); 1408 } 1409 return 0; 1410 } 1411 1412 bool multifd_recv_all_channels_created(void) 1413 { 1414 int thread_count = migrate_multifd_channels(); 1415 1416 if (!migrate_use_multifd()) { 1417 return true; 1418 } 1419 1420 return thread_count == atomic_read(&multifd_recv_state->count); 1421 } 1422 1423 /* 1424 * Try to receive all multifd channels to get ready for the migration. 1425 * - Return true and do not set @errp when correctly receving all channels; 1426 * - Return false and do not set @errp when correctly receiving the current one; 1427 * - Return false and set @errp when failing to receive the current channel. 1428 */ 1429 bool multifd_recv_new_channel(QIOChannel *ioc, Error **errp) 1430 { 1431 MultiFDRecvParams *p; 1432 Error *local_err = NULL; 1433 int id; 1434 1435 id = multifd_recv_initial_packet(ioc, &local_err); 1436 if (id < 0) { 1437 multifd_recv_terminate_threads(local_err); 1438 error_propagate_prepend(errp, local_err, 1439 "failed to receive packet" 1440 " via multifd channel %d: ", 1441 atomic_read(&multifd_recv_state->count)); 1442 return false; 1443 } 1444 1445 p = &multifd_recv_state->params[id]; 1446 if (p->c != NULL) { 1447 error_setg(&local_err, "multifd: received id '%d' already setup'", 1448 id); 1449 multifd_recv_terminate_threads(local_err); 1450 error_propagate(errp, local_err); 1451 return false; 1452 } 1453 p->c = ioc; 1454 object_ref(OBJECT(ioc)); 1455 /* initial packet */ 1456 p->num_packets = 1; 1457 1458 p->running = true; 1459 qemu_thread_create(&p->thread, p->name, multifd_recv_thread, p, 1460 QEMU_THREAD_JOINABLE); 1461 atomic_inc(&multifd_recv_state->count); 1462 return atomic_read(&multifd_recv_state->count) == 1463 migrate_multifd_channels(); 1464 } 1465 1466 /** 1467 * save_page_header: write page header to wire 1468 * 1469 * If this is the 1st block, it also writes the block identification 1470 * 1471 * Returns the number of bytes written 1472 * 1473 * @f: QEMUFile where to send the data 1474 * @block: block that contains the page we want to send 1475 * @offset: offset inside the block for the page 1476 * in the lower bits, it contains flags 1477 */ 1478 static size_t save_page_header(RAMState *rs, QEMUFile *f, RAMBlock *block, 1479 ram_addr_t offset) 1480 { 1481 size_t size, len; 1482 1483 if (block == rs->last_sent_block) { 1484 offset |= RAM_SAVE_FLAG_CONTINUE; 1485 } 1486 qemu_put_be64(f, offset); 1487 size = 8; 1488 1489 if (!(offset & RAM_SAVE_FLAG_CONTINUE)) { 1490 len = strlen(block->idstr); 1491 qemu_put_byte(f, len); 1492 qemu_put_buffer(f, (uint8_t *)block->idstr, len); 1493 size += 1 + len; 1494 rs->last_sent_block = block; 1495 } 1496 return size; 1497 } 1498 1499 /** 1500 * mig_throttle_guest_down: throotle down the guest 1501 * 1502 * Reduce amount of guest cpu execution to hopefully slow down memory 1503 * writes. If guest dirty memory rate is reduced below the rate at 1504 * which we can transfer pages to the destination then we should be 1505 * able to complete migration. Some workloads dirty memory way too 1506 * fast and will not effectively converge, even with auto-converge. 1507 */ 1508 static void mig_throttle_guest_down(void) 1509 { 1510 MigrationState *s = migrate_get_current(); 1511 uint64_t pct_initial = s->parameters.cpu_throttle_initial; 1512 uint64_t pct_icrement = s->parameters.cpu_throttle_increment; 1513 int pct_max = s->parameters.max_cpu_throttle; 1514 1515 /* We have not started throttling yet. Let's start it. */ 1516 if (!cpu_throttle_active()) { 1517 cpu_throttle_set(pct_initial); 1518 } else { 1519 /* Throttling already on, just increase the rate */ 1520 cpu_throttle_set(MIN(cpu_throttle_get_percentage() + pct_icrement, 1521 pct_max)); 1522 } 1523 } 1524 1525 /** 1526 * xbzrle_cache_zero_page: insert a zero page in the XBZRLE cache 1527 * 1528 * @rs: current RAM state 1529 * @current_addr: address for the zero page 1530 * 1531 * Update the xbzrle cache to reflect a page that's been sent as all 0. 1532 * The important thing is that a stale (not-yet-0'd) page be replaced 1533 * by the new data. 1534 * As a bonus, if the page wasn't in the cache it gets added so that 1535 * when a small write is made into the 0'd page it gets XBZRLE sent. 1536 */ 1537 static void xbzrle_cache_zero_page(RAMState *rs, ram_addr_t current_addr) 1538 { 1539 if (rs->ram_bulk_stage || !migrate_use_xbzrle()) { 1540 return; 1541 } 1542 1543 /* We don't care if this fails to allocate a new cache page 1544 * as long as it updated an old one */ 1545 cache_insert(XBZRLE.cache, current_addr, XBZRLE.zero_target_page, 1546 ram_counters.dirty_sync_count); 1547 } 1548 1549 #define ENCODING_FLAG_XBZRLE 0x1 1550 1551 /** 1552 * save_xbzrle_page: compress and send current page 1553 * 1554 * Returns: 1 means that we wrote the page 1555 * 0 means that page is identical to the one already sent 1556 * -1 means that xbzrle would be longer than normal 1557 * 1558 * @rs: current RAM state 1559 * @current_data: pointer to the address of the page contents 1560 * @current_addr: addr of the page 1561 * @block: block that contains the page we want to send 1562 * @offset: offset inside the block for the page 1563 * @last_stage: if we are at the completion stage 1564 */ 1565 static int save_xbzrle_page(RAMState *rs, uint8_t **current_data, 1566 ram_addr_t current_addr, RAMBlock *block, 1567 ram_addr_t offset, bool last_stage) 1568 { 1569 int encoded_len = 0, bytes_xbzrle; 1570 uint8_t *prev_cached_page; 1571 1572 if (!cache_is_cached(XBZRLE.cache, current_addr, 1573 ram_counters.dirty_sync_count)) { 1574 xbzrle_counters.cache_miss++; 1575 if (!last_stage) { 1576 if (cache_insert(XBZRLE.cache, current_addr, *current_data, 1577 ram_counters.dirty_sync_count) == -1) { 1578 return -1; 1579 } else { 1580 /* update *current_data when the page has been 1581 inserted into cache */ 1582 *current_data = get_cached_data(XBZRLE.cache, current_addr); 1583 } 1584 } 1585 return -1; 1586 } 1587 1588 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr); 1589 1590 /* save current buffer into memory */ 1591 memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE); 1592 1593 /* XBZRLE encoding (if there is no overflow) */ 1594 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf, 1595 TARGET_PAGE_SIZE, XBZRLE.encoded_buf, 1596 TARGET_PAGE_SIZE); 1597 if (encoded_len == 0) { 1598 trace_save_xbzrle_page_skipping(); 1599 return 0; 1600 } else if (encoded_len == -1) { 1601 trace_save_xbzrle_page_overflow(); 1602 xbzrle_counters.overflow++; 1603 /* update data in the cache */ 1604 if (!last_stage) { 1605 memcpy(prev_cached_page, *current_data, TARGET_PAGE_SIZE); 1606 *current_data = prev_cached_page; 1607 } 1608 return -1; 1609 } 1610 1611 /* we need to update the data in the cache, in order to get the same data */ 1612 if (!last_stage) { 1613 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE); 1614 } 1615 1616 /* Send XBZRLE based compressed page */ 1617 bytes_xbzrle = save_page_header(rs, rs->f, block, 1618 offset | RAM_SAVE_FLAG_XBZRLE); 1619 qemu_put_byte(rs->f, ENCODING_FLAG_XBZRLE); 1620 qemu_put_be16(rs->f, encoded_len); 1621 qemu_put_buffer(rs->f, XBZRLE.encoded_buf, encoded_len); 1622 bytes_xbzrle += encoded_len + 1 + 2; 1623 xbzrle_counters.pages++; 1624 xbzrle_counters.bytes += bytes_xbzrle; 1625 ram_counters.transferred += bytes_xbzrle; 1626 1627 return 1; 1628 } 1629 1630 /** 1631 * migration_bitmap_find_dirty: find the next dirty page from start 1632 * 1633 * Returns the page offset within memory region of the start of a dirty page 1634 * 1635 * @rs: current RAM state 1636 * @rb: RAMBlock where to search for dirty pages 1637 * @start: page where we start the search 1638 */ 1639 static inline 1640 unsigned long migration_bitmap_find_dirty(RAMState *rs, RAMBlock *rb, 1641 unsigned long start) 1642 { 1643 unsigned long size = rb->used_length >> TARGET_PAGE_BITS; 1644 unsigned long *bitmap = rb->bmap; 1645 unsigned long next; 1646 1647 if (ramblock_is_ignored(rb)) { 1648 return size; 1649 } 1650 1651 /* 1652 * When the free page optimization is enabled, we need to check the bitmap 1653 * to send the non-free pages rather than all the pages in the bulk stage. 1654 */ 1655 if (!rs->fpo_enabled && rs->ram_bulk_stage && start > 0) { 1656 next = start + 1; 1657 } else { 1658 next = find_next_bit(bitmap, size, start); 1659 } 1660 1661 return next; 1662 } 1663 1664 static inline bool migration_bitmap_clear_dirty(RAMState *rs, 1665 RAMBlock *rb, 1666 unsigned long page) 1667 { 1668 bool ret; 1669 1670 qemu_mutex_lock(&rs->bitmap_mutex); 1671 ret = test_and_clear_bit(page, rb->bmap); 1672 1673 if (ret) { 1674 rs->migration_dirty_pages--; 1675 } 1676 qemu_mutex_unlock(&rs->bitmap_mutex); 1677 1678 return ret; 1679 } 1680 1681 static void migration_bitmap_sync_range(RAMState *rs, RAMBlock *rb, 1682 ram_addr_t length) 1683 { 1684 rs->migration_dirty_pages += 1685 cpu_physical_memory_sync_dirty_bitmap(rb, 0, length, 1686 &rs->num_dirty_pages_period); 1687 } 1688 1689 /** 1690 * ram_pagesize_summary: calculate all the pagesizes of a VM 1691 * 1692 * Returns a summary bitmap of the page sizes of all RAMBlocks 1693 * 1694 * For VMs with just normal pages this is equivalent to the host page 1695 * size. If it's got some huge pages then it's the OR of all the 1696 * different page sizes. 1697 */ 1698 uint64_t ram_pagesize_summary(void) 1699 { 1700 RAMBlock *block; 1701 uint64_t summary = 0; 1702 1703 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 1704 summary |= block->page_size; 1705 } 1706 1707 return summary; 1708 } 1709 1710 uint64_t ram_get_total_transferred_pages(void) 1711 { 1712 return ram_counters.normal + ram_counters.duplicate + 1713 compression_counters.pages + xbzrle_counters.pages; 1714 } 1715 1716 static void migration_update_rates(RAMState *rs, int64_t end_time) 1717 { 1718 uint64_t page_count = rs->target_page_count - rs->target_page_count_prev; 1719 double compressed_size; 1720 1721 /* calculate period counters */ 1722 ram_counters.dirty_pages_rate = rs->num_dirty_pages_period * 1000 1723 / (end_time - rs->time_last_bitmap_sync); 1724 1725 if (!page_count) { 1726 return; 1727 } 1728 1729 if (migrate_use_xbzrle()) { 1730 xbzrle_counters.cache_miss_rate = (double)(xbzrle_counters.cache_miss - 1731 rs->xbzrle_cache_miss_prev) / page_count; 1732 rs->xbzrle_cache_miss_prev = xbzrle_counters.cache_miss; 1733 } 1734 1735 if (migrate_use_compression()) { 1736 compression_counters.busy_rate = (double)(compression_counters.busy - 1737 rs->compress_thread_busy_prev) / page_count; 1738 rs->compress_thread_busy_prev = compression_counters.busy; 1739 1740 compressed_size = compression_counters.compressed_size - 1741 rs->compressed_size_prev; 1742 if (compressed_size) { 1743 double uncompressed_size = (compression_counters.pages - 1744 rs->compress_pages_prev) * TARGET_PAGE_SIZE; 1745 1746 /* Compression-Ratio = Uncompressed-size / Compressed-size */ 1747 compression_counters.compression_rate = 1748 uncompressed_size / compressed_size; 1749 1750 rs->compress_pages_prev = compression_counters.pages; 1751 rs->compressed_size_prev = compression_counters.compressed_size; 1752 } 1753 } 1754 } 1755 1756 static void migration_bitmap_sync(RAMState *rs) 1757 { 1758 RAMBlock *block; 1759 int64_t end_time; 1760 uint64_t bytes_xfer_now; 1761 1762 ram_counters.dirty_sync_count++; 1763 1764 if (!rs->time_last_bitmap_sync) { 1765 rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); 1766 } 1767 1768 trace_migration_bitmap_sync_start(); 1769 memory_global_dirty_log_sync(); 1770 1771 qemu_mutex_lock(&rs->bitmap_mutex); 1772 rcu_read_lock(); 1773 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 1774 migration_bitmap_sync_range(rs, block, block->used_length); 1775 } 1776 ram_counters.remaining = ram_bytes_remaining(); 1777 rcu_read_unlock(); 1778 qemu_mutex_unlock(&rs->bitmap_mutex); 1779 1780 trace_migration_bitmap_sync_end(rs->num_dirty_pages_period); 1781 1782 end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); 1783 1784 /* more than 1 second = 1000 millisecons */ 1785 if (end_time > rs->time_last_bitmap_sync + 1000) { 1786 bytes_xfer_now = ram_counters.transferred; 1787 1788 /* During block migration the auto-converge logic incorrectly detects 1789 * that ram migration makes no progress. Avoid this by disabling the 1790 * throttling logic during the bulk phase of block migration. */ 1791 if (migrate_auto_converge() && !blk_mig_bulk_active()) { 1792 /* The following detection logic can be refined later. For now: 1793 Check to see if the dirtied bytes is 50% more than the approx. 1794 amount of bytes that just got transferred since the last time we 1795 were in this routine. If that happens twice, start or increase 1796 throttling */ 1797 1798 if ((rs->num_dirty_pages_period * TARGET_PAGE_SIZE > 1799 (bytes_xfer_now - rs->bytes_xfer_prev) / 2) && 1800 (++rs->dirty_rate_high_cnt >= 2)) { 1801 trace_migration_throttle(); 1802 rs->dirty_rate_high_cnt = 0; 1803 mig_throttle_guest_down(); 1804 } 1805 } 1806 1807 migration_update_rates(rs, end_time); 1808 1809 rs->target_page_count_prev = rs->target_page_count; 1810 1811 /* reset period counters */ 1812 rs->time_last_bitmap_sync = end_time; 1813 rs->num_dirty_pages_period = 0; 1814 rs->bytes_xfer_prev = bytes_xfer_now; 1815 } 1816 if (migrate_use_events()) { 1817 qapi_event_send_migration_pass(ram_counters.dirty_sync_count); 1818 } 1819 } 1820 1821 static void migration_bitmap_sync_precopy(RAMState *rs) 1822 { 1823 Error *local_err = NULL; 1824 1825 /* 1826 * The current notifier usage is just an optimization to migration, so we 1827 * don't stop the normal migration process in the error case. 1828 */ 1829 if (precopy_notify(PRECOPY_NOTIFY_BEFORE_BITMAP_SYNC, &local_err)) { 1830 error_report_err(local_err); 1831 } 1832 1833 migration_bitmap_sync(rs); 1834 1835 if (precopy_notify(PRECOPY_NOTIFY_AFTER_BITMAP_SYNC, &local_err)) { 1836 error_report_err(local_err); 1837 } 1838 } 1839 1840 /** 1841 * save_zero_page_to_file: send the zero page to the file 1842 * 1843 * Returns the size of data written to the file, 0 means the page is not 1844 * a zero page 1845 * 1846 * @rs: current RAM state 1847 * @file: the file where the data is saved 1848 * @block: block that contains the page we want to send 1849 * @offset: offset inside the block for the page 1850 */ 1851 static int save_zero_page_to_file(RAMState *rs, QEMUFile *file, 1852 RAMBlock *block, ram_addr_t offset) 1853 { 1854 uint8_t *p = block->host + offset; 1855 int len = 0; 1856 1857 if (is_zero_range(p, TARGET_PAGE_SIZE)) { 1858 len += save_page_header(rs, file, block, offset | RAM_SAVE_FLAG_ZERO); 1859 qemu_put_byte(file, 0); 1860 len += 1; 1861 } 1862 return len; 1863 } 1864 1865 /** 1866 * save_zero_page: send the zero page to the stream 1867 * 1868 * Returns the number of pages written. 1869 * 1870 * @rs: current RAM state 1871 * @block: block that contains the page we want to send 1872 * @offset: offset inside the block for the page 1873 */ 1874 static int save_zero_page(RAMState *rs, RAMBlock *block, ram_addr_t offset) 1875 { 1876 int len = save_zero_page_to_file(rs, rs->f, block, offset); 1877 1878 if (len) { 1879 ram_counters.duplicate++; 1880 ram_counters.transferred += len; 1881 return 1; 1882 } 1883 return -1; 1884 } 1885 1886 static void ram_release_pages(const char *rbname, uint64_t offset, int pages) 1887 { 1888 if (!migrate_release_ram() || !migration_in_postcopy()) { 1889 return; 1890 } 1891 1892 ram_discard_range(rbname, offset, pages << TARGET_PAGE_BITS); 1893 } 1894 1895 /* 1896 * @pages: the number of pages written by the control path, 1897 * < 0 - error 1898 * > 0 - number of pages written 1899 * 1900 * Return true if the pages has been saved, otherwise false is returned. 1901 */ 1902 static bool control_save_page(RAMState *rs, RAMBlock *block, ram_addr_t offset, 1903 int *pages) 1904 { 1905 uint64_t bytes_xmit = 0; 1906 int ret; 1907 1908 *pages = -1; 1909 ret = ram_control_save_page(rs->f, block->offset, offset, TARGET_PAGE_SIZE, 1910 &bytes_xmit); 1911 if (ret == RAM_SAVE_CONTROL_NOT_SUPP) { 1912 return false; 1913 } 1914 1915 if (bytes_xmit) { 1916 ram_counters.transferred += bytes_xmit; 1917 *pages = 1; 1918 } 1919 1920 if (ret == RAM_SAVE_CONTROL_DELAYED) { 1921 return true; 1922 } 1923 1924 if (bytes_xmit > 0) { 1925 ram_counters.normal++; 1926 } else if (bytes_xmit == 0) { 1927 ram_counters.duplicate++; 1928 } 1929 1930 return true; 1931 } 1932 1933 /* 1934 * directly send the page to the stream 1935 * 1936 * Returns the number of pages written. 1937 * 1938 * @rs: current RAM state 1939 * @block: block that contains the page we want to send 1940 * @offset: offset inside the block for the page 1941 * @buf: the page to be sent 1942 * @async: send to page asyncly 1943 */ 1944 static int save_normal_page(RAMState *rs, RAMBlock *block, ram_addr_t offset, 1945 uint8_t *buf, bool async) 1946 { 1947 ram_counters.transferred += save_page_header(rs, rs->f, block, 1948 offset | RAM_SAVE_FLAG_PAGE); 1949 if (async) { 1950 qemu_put_buffer_async(rs->f, buf, TARGET_PAGE_SIZE, 1951 migrate_release_ram() & 1952 migration_in_postcopy()); 1953 } else { 1954 qemu_put_buffer(rs->f, buf, TARGET_PAGE_SIZE); 1955 } 1956 ram_counters.transferred += TARGET_PAGE_SIZE; 1957 ram_counters.normal++; 1958 return 1; 1959 } 1960 1961 /** 1962 * ram_save_page: send the given page to the stream 1963 * 1964 * Returns the number of pages written. 1965 * < 0 - error 1966 * >=0 - Number of pages written - this might legally be 0 1967 * if xbzrle noticed the page was the same. 1968 * 1969 * @rs: current RAM state 1970 * @block: block that contains the page we want to send 1971 * @offset: offset inside the block for the page 1972 * @last_stage: if we are at the completion stage 1973 */ 1974 static int ram_save_page(RAMState *rs, PageSearchStatus *pss, bool last_stage) 1975 { 1976 int pages = -1; 1977 uint8_t *p; 1978 bool send_async = true; 1979 RAMBlock *block = pss->block; 1980 ram_addr_t offset = pss->page << TARGET_PAGE_BITS; 1981 ram_addr_t current_addr = block->offset + offset; 1982 1983 p = block->host + offset; 1984 trace_ram_save_page(block->idstr, (uint64_t)offset, p); 1985 1986 XBZRLE_cache_lock(); 1987 if (!rs->ram_bulk_stage && !migration_in_postcopy() && 1988 migrate_use_xbzrle()) { 1989 pages = save_xbzrle_page(rs, &p, current_addr, block, 1990 offset, last_stage); 1991 if (!last_stage) { 1992 /* Can't send this cached data async, since the cache page 1993 * might get updated before it gets to the wire 1994 */ 1995 send_async = false; 1996 } 1997 } 1998 1999 /* XBZRLE overflow or normal page */ 2000 if (pages == -1) { 2001 pages = save_normal_page(rs, block, offset, p, send_async); 2002 } 2003 2004 XBZRLE_cache_unlock(); 2005 2006 return pages; 2007 } 2008 2009 static int ram_save_multifd_page(RAMState *rs, RAMBlock *block, 2010 ram_addr_t offset) 2011 { 2012 multifd_queue_page(block, offset); 2013 ram_counters.normal++; 2014 2015 return 1; 2016 } 2017 2018 static bool do_compress_ram_page(QEMUFile *f, z_stream *stream, RAMBlock *block, 2019 ram_addr_t offset, uint8_t *source_buf) 2020 { 2021 RAMState *rs = ram_state; 2022 uint8_t *p = block->host + (offset & TARGET_PAGE_MASK); 2023 bool zero_page = false; 2024 int ret; 2025 2026 if (save_zero_page_to_file(rs, f, block, offset)) { 2027 zero_page = true; 2028 goto exit; 2029 } 2030 2031 save_page_header(rs, f, block, offset | RAM_SAVE_FLAG_COMPRESS_PAGE); 2032 2033 /* 2034 * copy it to a internal buffer to avoid it being modified by VM 2035 * so that we can catch up the error during compression and 2036 * decompression 2037 */ 2038 memcpy(source_buf, p, TARGET_PAGE_SIZE); 2039 ret = qemu_put_compression_data(f, stream, source_buf, TARGET_PAGE_SIZE); 2040 if (ret < 0) { 2041 qemu_file_set_error(migrate_get_current()->to_dst_file, ret); 2042 error_report("compressed data failed!"); 2043 return false; 2044 } 2045 2046 exit: 2047 ram_release_pages(block->idstr, offset & TARGET_PAGE_MASK, 1); 2048 return zero_page; 2049 } 2050 2051 static void 2052 update_compress_thread_counts(const CompressParam *param, int bytes_xmit) 2053 { 2054 ram_counters.transferred += bytes_xmit; 2055 2056 if (param->zero_page) { 2057 ram_counters.duplicate++; 2058 return; 2059 } 2060 2061 /* 8 means a header with RAM_SAVE_FLAG_CONTINUE. */ 2062 compression_counters.compressed_size += bytes_xmit - 8; 2063 compression_counters.pages++; 2064 } 2065 2066 static bool save_page_use_compression(RAMState *rs); 2067 2068 static void flush_compressed_data(RAMState *rs) 2069 { 2070 int idx, len, thread_count; 2071 2072 if (!save_page_use_compression(rs)) { 2073 return; 2074 } 2075 thread_count = migrate_compress_threads(); 2076 2077 qemu_mutex_lock(&comp_done_lock); 2078 for (idx = 0; idx < thread_count; idx++) { 2079 while (!comp_param[idx].done) { 2080 qemu_cond_wait(&comp_done_cond, &comp_done_lock); 2081 } 2082 } 2083 qemu_mutex_unlock(&comp_done_lock); 2084 2085 for (idx = 0; idx < thread_count; idx++) { 2086 qemu_mutex_lock(&comp_param[idx].mutex); 2087 if (!comp_param[idx].quit) { 2088 len = qemu_put_qemu_file(rs->f, comp_param[idx].file); 2089 /* 2090 * it's safe to fetch zero_page without holding comp_done_lock 2091 * as there is no further request submitted to the thread, 2092 * i.e, the thread should be waiting for a request at this point. 2093 */ 2094 update_compress_thread_counts(&comp_param[idx], len); 2095 } 2096 qemu_mutex_unlock(&comp_param[idx].mutex); 2097 } 2098 } 2099 2100 static inline void set_compress_params(CompressParam *param, RAMBlock *block, 2101 ram_addr_t offset) 2102 { 2103 param->block = block; 2104 param->offset = offset; 2105 } 2106 2107 static int compress_page_with_multi_thread(RAMState *rs, RAMBlock *block, 2108 ram_addr_t offset) 2109 { 2110 int idx, thread_count, bytes_xmit = -1, pages = -1; 2111 bool wait = migrate_compress_wait_thread(); 2112 2113 thread_count = migrate_compress_threads(); 2114 qemu_mutex_lock(&comp_done_lock); 2115 retry: 2116 for (idx = 0; idx < thread_count; idx++) { 2117 if (comp_param[idx].done) { 2118 comp_param[idx].done = false; 2119 bytes_xmit = qemu_put_qemu_file(rs->f, comp_param[idx].file); 2120 qemu_mutex_lock(&comp_param[idx].mutex); 2121 set_compress_params(&comp_param[idx], block, offset); 2122 qemu_cond_signal(&comp_param[idx].cond); 2123 qemu_mutex_unlock(&comp_param[idx].mutex); 2124 pages = 1; 2125 update_compress_thread_counts(&comp_param[idx], bytes_xmit); 2126 break; 2127 } 2128 } 2129 2130 /* 2131 * wait for the free thread if the user specifies 'compress-wait-thread', 2132 * otherwise we will post the page out in the main thread as normal page. 2133 */ 2134 if (pages < 0 && wait) { 2135 qemu_cond_wait(&comp_done_cond, &comp_done_lock); 2136 goto retry; 2137 } 2138 qemu_mutex_unlock(&comp_done_lock); 2139 2140 return pages; 2141 } 2142 2143 /** 2144 * find_dirty_block: find the next dirty page and update any state 2145 * associated with the search process. 2146 * 2147 * Returns true if a page is found 2148 * 2149 * @rs: current RAM state 2150 * @pss: data about the state of the current dirty page scan 2151 * @again: set to false if the search has scanned the whole of RAM 2152 */ 2153 static bool find_dirty_block(RAMState *rs, PageSearchStatus *pss, bool *again) 2154 { 2155 pss->page = migration_bitmap_find_dirty(rs, pss->block, pss->page); 2156 if (pss->complete_round && pss->block == rs->last_seen_block && 2157 pss->page >= rs->last_page) { 2158 /* 2159 * We've been once around the RAM and haven't found anything. 2160 * Give up. 2161 */ 2162 *again = false; 2163 return false; 2164 } 2165 if ((pss->page << TARGET_PAGE_BITS) >= pss->block->used_length) { 2166 /* Didn't find anything in this RAM Block */ 2167 pss->page = 0; 2168 pss->block = QLIST_NEXT_RCU(pss->block, next); 2169 if (!pss->block) { 2170 /* 2171 * If memory migration starts over, we will meet a dirtied page 2172 * which may still exists in compression threads's ring, so we 2173 * should flush the compressed data to make sure the new page 2174 * is not overwritten by the old one in the destination. 2175 * 2176 * Also If xbzrle is on, stop using the data compression at this 2177 * point. In theory, xbzrle can do better than compression. 2178 */ 2179 flush_compressed_data(rs); 2180 2181 /* Hit the end of the list */ 2182 pss->block = QLIST_FIRST_RCU(&ram_list.blocks); 2183 /* Flag that we've looped */ 2184 pss->complete_round = true; 2185 rs->ram_bulk_stage = false; 2186 } 2187 /* Didn't find anything this time, but try again on the new block */ 2188 *again = true; 2189 return false; 2190 } else { 2191 /* Can go around again, but... */ 2192 *again = true; 2193 /* We've found something so probably don't need to */ 2194 return true; 2195 } 2196 } 2197 2198 /** 2199 * unqueue_page: gets a page of the queue 2200 * 2201 * Helper for 'get_queued_page' - gets a page off the queue 2202 * 2203 * Returns the block of the page (or NULL if none available) 2204 * 2205 * @rs: current RAM state 2206 * @offset: used to return the offset within the RAMBlock 2207 */ 2208 static RAMBlock *unqueue_page(RAMState *rs, ram_addr_t *offset) 2209 { 2210 RAMBlock *block = NULL; 2211 2212 if (QSIMPLEQ_EMPTY_ATOMIC(&rs->src_page_requests)) { 2213 return NULL; 2214 } 2215 2216 qemu_mutex_lock(&rs->src_page_req_mutex); 2217 if (!QSIMPLEQ_EMPTY(&rs->src_page_requests)) { 2218 struct RAMSrcPageRequest *entry = 2219 QSIMPLEQ_FIRST(&rs->src_page_requests); 2220 block = entry->rb; 2221 *offset = entry->offset; 2222 2223 if (entry->len > TARGET_PAGE_SIZE) { 2224 entry->len -= TARGET_PAGE_SIZE; 2225 entry->offset += TARGET_PAGE_SIZE; 2226 } else { 2227 memory_region_unref(block->mr); 2228 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req); 2229 g_free(entry); 2230 migration_consume_urgent_request(); 2231 } 2232 } 2233 qemu_mutex_unlock(&rs->src_page_req_mutex); 2234 2235 return block; 2236 } 2237 2238 /** 2239 * get_queued_page: unqueue a page from the postocpy requests 2240 * 2241 * Skips pages that are already sent (!dirty) 2242 * 2243 * Returns true if a queued page is found 2244 * 2245 * @rs: current RAM state 2246 * @pss: data about the state of the current dirty page scan 2247 */ 2248 static bool get_queued_page(RAMState *rs, PageSearchStatus *pss) 2249 { 2250 RAMBlock *block; 2251 ram_addr_t offset; 2252 bool dirty; 2253 2254 do { 2255 block = unqueue_page(rs, &offset); 2256 /* 2257 * We're sending this page, and since it's postcopy nothing else 2258 * will dirty it, and we must make sure it doesn't get sent again 2259 * even if this queue request was received after the background 2260 * search already sent it. 2261 */ 2262 if (block) { 2263 unsigned long page; 2264 2265 page = offset >> TARGET_PAGE_BITS; 2266 dirty = test_bit(page, block->bmap); 2267 if (!dirty) { 2268 trace_get_queued_page_not_dirty(block->idstr, (uint64_t)offset, 2269 page, test_bit(page, block->unsentmap)); 2270 } else { 2271 trace_get_queued_page(block->idstr, (uint64_t)offset, page); 2272 } 2273 } 2274 2275 } while (block && !dirty); 2276 2277 if (block) { 2278 /* 2279 * As soon as we start servicing pages out of order, then we have 2280 * to kill the bulk stage, since the bulk stage assumes 2281 * in (migration_bitmap_find_and_reset_dirty) that every page is 2282 * dirty, that's no longer true. 2283 */ 2284 rs->ram_bulk_stage = false; 2285 2286 /* 2287 * We want the background search to continue from the queued page 2288 * since the guest is likely to want other pages near to the page 2289 * it just requested. 2290 */ 2291 pss->block = block; 2292 pss->page = offset >> TARGET_PAGE_BITS; 2293 } 2294 2295 return !!block; 2296 } 2297 2298 /** 2299 * migration_page_queue_free: drop any remaining pages in the ram 2300 * request queue 2301 * 2302 * It should be empty at the end anyway, but in error cases there may 2303 * be some left. in case that there is any page left, we drop it. 2304 * 2305 */ 2306 static void migration_page_queue_free(RAMState *rs) 2307 { 2308 struct RAMSrcPageRequest *mspr, *next_mspr; 2309 /* This queue generally should be empty - but in the case of a failed 2310 * migration might have some droppings in. 2311 */ 2312 rcu_read_lock(); 2313 QSIMPLEQ_FOREACH_SAFE(mspr, &rs->src_page_requests, next_req, next_mspr) { 2314 memory_region_unref(mspr->rb->mr); 2315 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req); 2316 g_free(mspr); 2317 } 2318 rcu_read_unlock(); 2319 } 2320 2321 /** 2322 * ram_save_queue_pages: queue the page for transmission 2323 * 2324 * A request from postcopy destination for example. 2325 * 2326 * Returns zero on success or negative on error 2327 * 2328 * @rbname: Name of the RAMBLock of the request. NULL means the 2329 * same that last one. 2330 * @start: starting address from the start of the RAMBlock 2331 * @len: length (in bytes) to send 2332 */ 2333 int ram_save_queue_pages(const char *rbname, ram_addr_t start, ram_addr_t len) 2334 { 2335 RAMBlock *ramblock; 2336 RAMState *rs = ram_state; 2337 2338 ram_counters.postcopy_requests++; 2339 rcu_read_lock(); 2340 if (!rbname) { 2341 /* Reuse last RAMBlock */ 2342 ramblock = rs->last_req_rb; 2343 2344 if (!ramblock) { 2345 /* 2346 * Shouldn't happen, we can't reuse the last RAMBlock if 2347 * it's the 1st request. 2348 */ 2349 error_report("ram_save_queue_pages no previous block"); 2350 goto err; 2351 } 2352 } else { 2353 ramblock = qemu_ram_block_by_name(rbname); 2354 2355 if (!ramblock) { 2356 /* We shouldn't be asked for a non-existent RAMBlock */ 2357 error_report("ram_save_queue_pages no block '%s'", rbname); 2358 goto err; 2359 } 2360 rs->last_req_rb = ramblock; 2361 } 2362 trace_ram_save_queue_pages(ramblock->idstr, start, len); 2363 if (start+len > ramblock->used_length) { 2364 error_report("%s request overrun start=" RAM_ADDR_FMT " len=" 2365 RAM_ADDR_FMT " blocklen=" RAM_ADDR_FMT, 2366 __func__, start, len, ramblock->used_length); 2367 goto err; 2368 } 2369 2370 struct RAMSrcPageRequest *new_entry = 2371 g_malloc0(sizeof(struct RAMSrcPageRequest)); 2372 new_entry->rb = ramblock; 2373 new_entry->offset = start; 2374 new_entry->len = len; 2375 2376 memory_region_ref(ramblock->mr); 2377 qemu_mutex_lock(&rs->src_page_req_mutex); 2378 QSIMPLEQ_INSERT_TAIL(&rs->src_page_requests, new_entry, next_req); 2379 migration_make_urgent_request(); 2380 qemu_mutex_unlock(&rs->src_page_req_mutex); 2381 rcu_read_unlock(); 2382 2383 return 0; 2384 2385 err: 2386 rcu_read_unlock(); 2387 return -1; 2388 } 2389 2390 static bool save_page_use_compression(RAMState *rs) 2391 { 2392 if (!migrate_use_compression()) { 2393 return false; 2394 } 2395 2396 /* 2397 * If xbzrle is on, stop using the data compression after first 2398 * round of migration even if compression is enabled. In theory, 2399 * xbzrle can do better than compression. 2400 */ 2401 if (rs->ram_bulk_stage || !migrate_use_xbzrle()) { 2402 return true; 2403 } 2404 2405 return false; 2406 } 2407 2408 /* 2409 * try to compress the page before posting it out, return true if the page 2410 * has been properly handled by compression, otherwise needs other 2411 * paths to handle it 2412 */ 2413 static bool save_compress_page(RAMState *rs, RAMBlock *block, ram_addr_t offset) 2414 { 2415 if (!save_page_use_compression(rs)) { 2416 return false; 2417 } 2418 2419 /* 2420 * When starting the process of a new block, the first page of 2421 * the block should be sent out before other pages in the same 2422 * block, and all the pages in last block should have been sent 2423 * out, keeping this order is important, because the 'cont' flag 2424 * is used to avoid resending the block name. 2425 * 2426 * We post the fist page as normal page as compression will take 2427 * much CPU resource. 2428 */ 2429 if (block != rs->last_sent_block) { 2430 flush_compressed_data(rs); 2431 return false; 2432 } 2433 2434 if (compress_page_with_multi_thread(rs, block, offset) > 0) { 2435 return true; 2436 } 2437 2438 compression_counters.busy++; 2439 return false; 2440 } 2441 2442 /** 2443 * ram_save_target_page: save one target page 2444 * 2445 * Returns the number of pages written 2446 * 2447 * @rs: current RAM state 2448 * @pss: data about the page we want to send 2449 * @last_stage: if we are at the completion stage 2450 */ 2451 static int ram_save_target_page(RAMState *rs, PageSearchStatus *pss, 2452 bool last_stage) 2453 { 2454 RAMBlock *block = pss->block; 2455 ram_addr_t offset = pss->page << TARGET_PAGE_BITS; 2456 int res; 2457 2458 if (control_save_page(rs, block, offset, &res)) { 2459 return res; 2460 } 2461 2462 if (save_compress_page(rs, block, offset)) { 2463 return 1; 2464 } 2465 2466 res = save_zero_page(rs, block, offset); 2467 if (res > 0) { 2468 /* Must let xbzrle know, otherwise a previous (now 0'd) cached 2469 * page would be stale 2470 */ 2471 if (!save_page_use_compression(rs)) { 2472 XBZRLE_cache_lock(); 2473 xbzrle_cache_zero_page(rs, block->offset + offset); 2474 XBZRLE_cache_unlock(); 2475 } 2476 ram_release_pages(block->idstr, offset, res); 2477 return res; 2478 } 2479 2480 /* 2481 * do not use multifd for compression as the first page in the new 2482 * block should be posted out before sending the compressed page 2483 */ 2484 if (!save_page_use_compression(rs) && migrate_use_multifd()) { 2485 return ram_save_multifd_page(rs, block, offset); 2486 } 2487 2488 return ram_save_page(rs, pss, last_stage); 2489 } 2490 2491 /** 2492 * ram_save_host_page: save a whole host page 2493 * 2494 * Starting at *offset send pages up to the end of the current host 2495 * page. It's valid for the initial offset to point into the middle of 2496 * a host page in which case the remainder of the hostpage is sent. 2497 * Only dirty target pages are sent. Note that the host page size may 2498 * be a huge page for this block. 2499 * The saving stops at the boundary of the used_length of the block 2500 * if the RAMBlock isn't a multiple of the host page size. 2501 * 2502 * Returns the number of pages written or negative on error 2503 * 2504 * @rs: current RAM state 2505 * @ms: current migration state 2506 * @pss: data about the page we want to send 2507 * @last_stage: if we are at the completion stage 2508 */ 2509 static int ram_save_host_page(RAMState *rs, PageSearchStatus *pss, 2510 bool last_stage) 2511 { 2512 int tmppages, pages = 0; 2513 size_t pagesize_bits = 2514 qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS; 2515 2516 if (ramblock_is_ignored(pss->block)) { 2517 error_report("block %s should not be migrated !", pss->block->idstr); 2518 return 0; 2519 } 2520 2521 do { 2522 /* Check the pages is dirty and if it is send it */ 2523 if (!migration_bitmap_clear_dirty(rs, pss->block, pss->page)) { 2524 pss->page++; 2525 continue; 2526 } 2527 2528 tmppages = ram_save_target_page(rs, pss, last_stage); 2529 if (tmppages < 0) { 2530 return tmppages; 2531 } 2532 2533 pages += tmppages; 2534 if (pss->block->unsentmap) { 2535 clear_bit(pss->page, pss->block->unsentmap); 2536 } 2537 2538 pss->page++; 2539 } while ((pss->page & (pagesize_bits - 1)) && 2540 offset_in_ramblock(pss->block, pss->page << TARGET_PAGE_BITS)); 2541 2542 /* The offset we leave with is the last one we looked at */ 2543 pss->page--; 2544 return pages; 2545 } 2546 2547 /** 2548 * ram_find_and_save_block: finds a dirty page and sends it to f 2549 * 2550 * Called within an RCU critical section. 2551 * 2552 * Returns the number of pages written where zero means no dirty pages, 2553 * or negative on error 2554 * 2555 * @rs: current RAM state 2556 * @last_stage: if we are at the completion stage 2557 * 2558 * On systems where host-page-size > target-page-size it will send all the 2559 * pages in a host page that are dirty. 2560 */ 2561 2562 static int ram_find_and_save_block(RAMState *rs, bool last_stage) 2563 { 2564 PageSearchStatus pss; 2565 int pages = 0; 2566 bool again, found; 2567 2568 /* No dirty page as there is zero RAM */ 2569 if (!ram_bytes_total()) { 2570 return pages; 2571 } 2572 2573 pss.block = rs->last_seen_block; 2574 pss.page = rs->last_page; 2575 pss.complete_round = false; 2576 2577 if (!pss.block) { 2578 pss.block = QLIST_FIRST_RCU(&ram_list.blocks); 2579 } 2580 2581 do { 2582 again = true; 2583 found = get_queued_page(rs, &pss); 2584 2585 if (!found) { 2586 /* priority queue empty, so just search for something dirty */ 2587 found = find_dirty_block(rs, &pss, &again); 2588 } 2589 2590 if (found) { 2591 pages = ram_save_host_page(rs, &pss, last_stage); 2592 } 2593 } while (!pages && again); 2594 2595 rs->last_seen_block = pss.block; 2596 rs->last_page = pss.page; 2597 2598 return pages; 2599 } 2600 2601 void acct_update_position(QEMUFile *f, size_t size, bool zero) 2602 { 2603 uint64_t pages = size / TARGET_PAGE_SIZE; 2604 2605 if (zero) { 2606 ram_counters.duplicate += pages; 2607 } else { 2608 ram_counters.normal += pages; 2609 ram_counters.transferred += size; 2610 qemu_update_position(f, size); 2611 } 2612 } 2613 2614 static uint64_t ram_bytes_total_common(bool count_ignored) 2615 { 2616 RAMBlock *block; 2617 uint64_t total = 0; 2618 2619 rcu_read_lock(); 2620 if (count_ignored) { 2621 RAMBLOCK_FOREACH_MIGRATABLE(block) { 2622 total += block->used_length; 2623 } 2624 } else { 2625 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 2626 total += block->used_length; 2627 } 2628 } 2629 rcu_read_unlock(); 2630 return total; 2631 } 2632 2633 uint64_t ram_bytes_total(void) 2634 { 2635 return ram_bytes_total_common(false); 2636 } 2637 2638 static void xbzrle_load_setup(void) 2639 { 2640 XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE); 2641 } 2642 2643 static void xbzrle_load_cleanup(void) 2644 { 2645 g_free(XBZRLE.decoded_buf); 2646 XBZRLE.decoded_buf = NULL; 2647 } 2648 2649 static void ram_state_cleanup(RAMState **rsp) 2650 { 2651 if (*rsp) { 2652 migration_page_queue_free(*rsp); 2653 qemu_mutex_destroy(&(*rsp)->bitmap_mutex); 2654 qemu_mutex_destroy(&(*rsp)->src_page_req_mutex); 2655 g_free(*rsp); 2656 *rsp = NULL; 2657 } 2658 } 2659 2660 static void xbzrle_cleanup(void) 2661 { 2662 XBZRLE_cache_lock(); 2663 if (XBZRLE.cache) { 2664 cache_fini(XBZRLE.cache); 2665 g_free(XBZRLE.encoded_buf); 2666 g_free(XBZRLE.current_buf); 2667 g_free(XBZRLE.zero_target_page); 2668 XBZRLE.cache = NULL; 2669 XBZRLE.encoded_buf = NULL; 2670 XBZRLE.current_buf = NULL; 2671 XBZRLE.zero_target_page = NULL; 2672 } 2673 XBZRLE_cache_unlock(); 2674 } 2675 2676 static void ram_save_cleanup(void *opaque) 2677 { 2678 RAMState **rsp = opaque; 2679 RAMBlock *block; 2680 2681 /* caller have hold iothread lock or is in a bh, so there is 2682 * no writing race against the migration bitmap 2683 */ 2684 memory_global_dirty_log_stop(); 2685 2686 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 2687 g_free(block->bmap); 2688 block->bmap = NULL; 2689 g_free(block->unsentmap); 2690 block->unsentmap = NULL; 2691 } 2692 2693 xbzrle_cleanup(); 2694 compress_threads_save_cleanup(); 2695 ram_state_cleanup(rsp); 2696 } 2697 2698 static void ram_state_reset(RAMState *rs) 2699 { 2700 rs->last_seen_block = NULL; 2701 rs->last_sent_block = NULL; 2702 rs->last_page = 0; 2703 rs->last_version = ram_list.version; 2704 rs->ram_bulk_stage = true; 2705 rs->fpo_enabled = false; 2706 } 2707 2708 #define MAX_WAIT 50 /* ms, half buffered_file limit */ 2709 2710 /* 2711 * 'expected' is the value you expect the bitmap mostly to be full 2712 * of; it won't bother printing lines that are all this value. 2713 * If 'todump' is null the migration bitmap is dumped. 2714 */ 2715 void ram_debug_dump_bitmap(unsigned long *todump, bool expected, 2716 unsigned long pages) 2717 { 2718 int64_t cur; 2719 int64_t linelen = 128; 2720 char linebuf[129]; 2721 2722 for (cur = 0; cur < pages; cur += linelen) { 2723 int64_t curb; 2724 bool found = false; 2725 /* 2726 * Last line; catch the case where the line length 2727 * is longer than remaining ram 2728 */ 2729 if (cur + linelen > pages) { 2730 linelen = pages - cur; 2731 } 2732 for (curb = 0; curb < linelen; curb++) { 2733 bool thisbit = test_bit(cur + curb, todump); 2734 linebuf[curb] = thisbit ? '1' : '.'; 2735 found = found || (thisbit != expected); 2736 } 2737 if (found) { 2738 linebuf[curb] = '\0'; 2739 fprintf(stderr, "0x%08" PRIx64 " : %s\n", cur, linebuf); 2740 } 2741 } 2742 } 2743 2744 /* **** functions for postcopy ***** */ 2745 2746 void ram_postcopy_migrated_memory_release(MigrationState *ms) 2747 { 2748 struct RAMBlock *block; 2749 2750 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 2751 unsigned long *bitmap = block->bmap; 2752 unsigned long range = block->used_length >> TARGET_PAGE_BITS; 2753 unsigned long run_start = find_next_zero_bit(bitmap, range, 0); 2754 2755 while (run_start < range) { 2756 unsigned long run_end = find_next_bit(bitmap, range, run_start + 1); 2757 ram_discard_range(block->idstr, run_start << TARGET_PAGE_BITS, 2758 (run_end - run_start) << TARGET_PAGE_BITS); 2759 run_start = find_next_zero_bit(bitmap, range, run_end + 1); 2760 } 2761 } 2762 } 2763 2764 /** 2765 * postcopy_send_discard_bm_ram: discard a RAMBlock 2766 * 2767 * Returns zero on success 2768 * 2769 * Callback from postcopy_each_ram_send_discard for each RAMBlock 2770 * Note: At this point the 'unsentmap' is the processed bitmap combined 2771 * with the dirtymap; so a '1' means it's either dirty or unsent. 2772 * 2773 * @ms: current migration state 2774 * @pds: state for postcopy 2775 * @start: RAMBlock starting page 2776 * @length: RAMBlock size 2777 */ 2778 static int postcopy_send_discard_bm_ram(MigrationState *ms, 2779 PostcopyDiscardState *pds, 2780 RAMBlock *block) 2781 { 2782 unsigned long end = block->used_length >> TARGET_PAGE_BITS; 2783 unsigned long current; 2784 unsigned long *unsentmap = block->unsentmap; 2785 2786 for (current = 0; current < end; ) { 2787 unsigned long one = find_next_bit(unsentmap, end, current); 2788 2789 if (one <= end) { 2790 unsigned long zero = find_next_zero_bit(unsentmap, end, one + 1); 2791 unsigned long discard_length; 2792 2793 if (zero >= end) { 2794 discard_length = end - one; 2795 } else { 2796 discard_length = zero - one; 2797 } 2798 if (discard_length) { 2799 postcopy_discard_send_range(ms, pds, one, discard_length); 2800 } 2801 current = one + discard_length; 2802 } else { 2803 current = one; 2804 } 2805 } 2806 2807 return 0; 2808 } 2809 2810 /** 2811 * postcopy_each_ram_send_discard: discard all RAMBlocks 2812 * 2813 * Returns 0 for success or negative for error 2814 * 2815 * Utility for the outgoing postcopy code. 2816 * Calls postcopy_send_discard_bm_ram for each RAMBlock 2817 * passing it bitmap indexes and name. 2818 * (qemu_ram_foreach_block ends up passing unscaled lengths 2819 * which would mean postcopy code would have to deal with target page) 2820 * 2821 * @ms: current migration state 2822 */ 2823 static int postcopy_each_ram_send_discard(MigrationState *ms) 2824 { 2825 struct RAMBlock *block; 2826 int ret; 2827 2828 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 2829 PostcopyDiscardState *pds = 2830 postcopy_discard_send_init(ms, block->idstr); 2831 2832 /* 2833 * Postcopy sends chunks of bitmap over the wire, but it 2834 * just needs indexes at this point, avoids it having 2835 * target page specific code. 2836 */ 2837 ret = postcopy_send_discard_bm_ram(ms, pds, block); 2838 postcopy_discard_send_finish(ms, pds); 2839 if (ret) { 2840 return ret; 2841 } 2842 } 2843 2844 return 0; 2845 } 2846 2847 /** 2848 * postcopy_chunk_hostpages_pass: canocalize bitmap in hostpages 2849 * 2850 * Helper for postcopy_chunk_hostpages; it's called twice to 2851 * canonicalize the two bitmaps, that are similar, but one is 2852 * inverted. 2853 * 2854 * Postcopy requires that all target pages in a hostpage are dirty or 2855 * clean, not a mix. This function canonicalizes the bitmaps. 2856 * 2857 * @ms: current migration state 2858 * @unsent_pass: if true we need to canonicalize partially unsent host pages 2859 * otherwise we need to canonicalize partially dirty host pages 2860 * @block: block that contains the page we want to canonicalize 2861 * @pds: state for postcopy 2862 */ 2863 static void postcopy_chunk_hostpages_pass(MigrationState *ms, bool unsent_pass, 2864 RAMBlock *block, 2865 PostcopyDiscardState *pds) 2866 { 2867 RAMState *rs = ram_state; 2868 unsigned long *bitmap = block->bmap; 2869 unsigned long *unsentmap = block->unsentmap; 2870 unsigned int host_ratio = block->page_size / TARGET_PAGE_SIZE; 2871 unsigned long pages = block->used_length >> TARGET_PAGE_BITS; 2872 unsigned long run_start; 2873 2874 if (block->page_size == TARGET_PAGE_SIZE) { 2875 /* Easy case - TPS==HPS for a non-huge page RAMBlock */ 2876 return; 2877 } 2878 2879 if (unsent_pass) { 2880 /* Find a sent page */ 2881 run_start = find_next_zero_bit(unsentmap, pages, 0); 2882 } else { 2883 /* Find a dirty page */ 2884 run_start = find_next_bit(bitmap, pages, 0); 2885 } 2886 2887 while (run_start < pages) { 2888 bool do_fixup = false; 2889 unsigned long fixup_start_addr; 2890 unsigned long host_offset; 2891 2892 /* 2893 * If the start of this run of pages is in the middle of a host 2894 * page, then we need to fixup this host page. 2895 */ 2896 host_offset = run_start % host_ratio; 2897 if (host_offset) { 2898 do_fixup = true; 2899 run_start -= host_offset; 2900 fixup_start_addr = run_start; 2901 /* For the next pass */ 2902 run_start = run_start + host_ratio; 2903 } else { 2904 /* Find the end of this run */ 2905 unsigned long run_end; 2906 if (unsent_pass) { 2907 run_end = find_next_bit(unsentmap, pages, run_start + 1); 2908 } else { 2909 run_end = find_next_zero_bit(bitmap, pages, run_start + 1); 2910 } 2911 /* 2912 * If the end isn't at the start of a host page, then the 2913 * run doesn't finish at the end of a host page 2914 * and we need to discard. 2915 */ 2916 host_offset = run_end % host_ratio; 2917 if (host_offset) { 2918 do_fixup = true; 2919 fixup_start_addr = run_end - host_offset; 2920 /* 2921 * This host page has gone, the next loop iteration starts 2922 * from after the fixup 2923 */ 2924 run_start = fixup_start_addr + host_ratio; 2925 } else { 2926 /* 2927 * No discards on this iteration, next loop starts from 2928 * next sent/dirty page 2929 */ 2930 run_start = run_end + 1; 2931 } 2932 } 2933 2934 if (do_fixup) { 2935 unsigned long page; 2936 2937 /* Tell the destination to discard this page */ 2938 if (unsent_pass || !test_bit(fixup_start_addr, unsentmap)) { 2939 /* For the unsent_pass we: 2940 * discard partially sent pages 2941 * For the !unsent_pass (dirty) we: 2942 * discard partially dirty pages that were sent 2943 * (any partially sent pages were already discarded 2944 * by the previous unsent_pass) 2945 */ 2946 postcopy_discard_send_range(ms, pds, fixup_start_addr, 2947 host_ratio); 2948 } 2949 2950 /* Clean up the bitmap */ 2951 for (page = fixup_start_addr; 2952 page < fixup_start_addr + host_ratio; page++) { 2953 /* All pages in this host page are now not sent */ 2954 set_bit(page, unsentmap); 2955 2956 /* 2957 * Remark them as dirty, updating the count for any pages 2958 * that weren't previously dirty. 2959 */ 2960 rs->migration_dirty_pages += !test_and_set_bit(page, bitmap); 2961 } 2962 } 2963 2964 if (unsent_pass) { 2965 /* Find the next sent page for the next iteration */ 2966 run_start = find_next_zero_bit(unsentmap, pages, run_start); 2967 } else { 2968 /* Find the next dirty page for the next iteration */ 2969 run_start = find_next_bit(bitmap, pages, run_start); 2970 } 2971 } 2972 } 2973 2974 /** 2975 * postcopy_chuck_hostpages: discrad any partially sent host page 2976 * 2977 * Utility for the outgoing postcopy code. 2978 * 2979 * Discard any partially sent host-page size chunks, mark any partially 2980 * dirty host-page size chunks as all dirty. In this case the host-page 2981 * is the host-page for the particular RAMBlock, i.e. it might be a huge page 2982 * 2983 * Returns zero on success 2984 * 2985 * @ms: current migration state 2986 * @block: block we want to work with 2987 */ 2988 static int postcopy_chunk_hostpages(MigrationState *ms, RAMBlock *block) 2989 { 2990 PostcopyDiscardState *pds = 2991 postcopy_discard_send_init(ms, block->idstr); 2992 2993 /* First pass: Discard all partially sent host pages */ 2994 postcopy_chunk_hostpages_pass(ms, true, block, pds); 2995 /* 2996 * Second pass: Ensure that all partially dirty host pages are made 2997 * fully dirty. 2998 */ 2999 postcopy_chunk_hostpages_pass(ms, false, block, pds); 3000 3001 postcopy_discard_send_finish(ms, pds); 3002 return 0; 3003 } 3004 3005 /** 3006 * ram_postcopy_send_discard_bitmap: transmit the discard bitmap 3007 * 3008 * Returns zero on success 3009 * 3010 * Transmit the set of pages to be discarded after precopy to the target 3011 * these are pages that: 3012 * a) Have been previously transmitted but are now dirty again 3013 * b) Pages that have never been transmitted, this ensures that 3014 * any pages on the destination that have been mapped by background 3015 * tasks get discarded (transparent huge pages is the specific concern) 3016 * Hopefully this is pretty sparse 3017 * 3018 * @ms: current migration state 3019 */ 3020 int ram_postcopy_send_discard_bitmap(MigrationState *ms) 3021 { 3022 RAMState *rs = ram_state; 3023 RAMBlock *block; 3024 int ret; 3025 3026 rcu_read_lock(); 3027 3028 /* This should be our last sync, the src is now paused */ 3029 migration_bitmap_sync(rs); 3030 3031 /* Easiest way to make sure we don't resume in the middle of a host-page */ 3032 rs->last_seen_block = NULL; 3033 rs->last_sent_block = NULL; 3034 rs->last_page = 0; 3035 3036 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3037 unsigned long pages = block->used_length >> TARGET_PAGE_BITS; 3038 unsigned long *bitmap = block->bmap; 3039 unsigned long *unsentmap = block->unsentmap; 3040 3041 if (!unsentmap) { 3042 /* We don't have a safe way to resize the sentmap, so 3043 * if the bitmap was resized it will be NULL at this 3044 * point. 3045 */ 3046 error_report("migration ram resized during precopy phase"); 3047 rcu_read_unlock(); 3048 return -EINVAL; 3049 } 3050 /* Deal with TPS != HPS and huge pages */ 3051 ret = postcopy_chunk_hostpages(ms, block); 3052 if (ret) { 3053 rcu_read_unlock(); 3054 return ret; 3055 } 3056 3057 /* 3058 * Update the unsentmap to be unsentmap = unsentmap | dirty 3059 */ 3060 bitmap_or(unsentmap, unsentmap, bitmap, pages); 3061 #ifdef DEBUG_POSTCOPY 3062 ram_debug_dump_bitmap(unsentmap, true, pages); 3063 #endif 3064 } 3065 trace_ram_postcopy_send_discard_bitmap(); 3066 3067 ret = postcopy_each_ram_send_discard(ms); 3068 rcu_read_unlock(); 3069 3070 return ret; 3071 } 3072 3073 /** 3074 * ram_discard_range: discard dirtied pages at the beginning of postcopy 3075 * 3076 * Returns zero on success 3077 * 3078 * @rbname: name of the RAMBlock of the request. NULL means the 3079 * same that last one. 3080 * @start: RAMBlock starting page 3081 * @length: RAMBlock size 3082 */ 3083 int ram_discard_range(const char *rbname, uint64_t start, size_t length) 3084 { 3085 int ret = -1; 3086 3087 trace_ram_discard_range(rbname, start, length); 3088 3089 rcu_read_lock(); 3090 RAMBlock *rb = qemu_ram_block_by_name(rbname); 3091 3092 if (!rb) { 3093 error_report("ram_discard_range: Failed to find block '%s'", rbname); 3094 goto err; 3095 } 3096 3097 /* 3098 * On source VM, we don't need to update the received bitmap since 3099 * we don't even have one. 3100 */ 3101 if (rb->receivedmap) { 3102 bitmap_clear(rb->receivedmap, start >> qemu_target_page_bits(), 3103 length >> qemu_target_page_bits()); 3104 } 3105 3106 ret = ram_block_discard_range(rb, start, length); 3107 3108 err: 3109 rcu_read_unlock(); 3110 3111 return ret; 3112 } 3113 3114 /* 3115 * For every allocation, we will try not to crash the VM if the 3116 * allocation failed. 3117 */ 3118 static int xbzrle_init(void) 3119 { 3120 Error *local_err = NULL; 3121 3122 if (!migrate_use_xbzrle()) { 3123 return 0; 3124 } 3125 3126 XBZRLE_cache_lock(); 3127 3128 XBZRLE.zero_target_page = g_try_malloc0(TARGET_PAGE_SIZE); 3129 if (!XBZRLE.zero_target_page) { 3130 error_report("%s: Error allocating zero page", __func__); 3131 goto err_out; 3132 } 3133 3134 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size(), 3135 TARGET_PAGE_SIZE, &local_err); 3136 if (!XBZRLE.cache) { 3137 error_report_err(local_err); 3138 goto free_zero_page; 3139 } 3140 3141 XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE); 3142 if (!XBZRLE.encoded_buf) { 3143 error_report("%s: Error allocating encoded_buf", __func__); 3144 goto free_cache; 3145 } 3146 3147 XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE); 3148 if (!XBZRLE.current_buf) { 3149 error_report("%s: Error allocating current_buf", __func__); 3150 goto free_encoded_buf; 3151 } 3152 3153 /* We are all good */ 3154 XBZRLE_cache_unlock(); 3155 return 0; 3156 3157 free_encoded_buf: 3158 g_free(XBZRLE.encoded_buf); 3159 XBZRLE.encoded_buf = NULL; 3160 free_cache: 3161 cache_fini(XBZRLE.cache); 3162 XBZRLE.cache = NULL; 3163 free_zero_page: 3164 g_free(XBZRLE.zero_target_page); 3165 XBZRLE.zero_target_page = NULL; 3166 err_out: 3167 XBZRLE_cache_unlock(); 3168 return -ENOMEM; 3169 } 3170 3171 static int ram_state_init(RAMState **rsp) 3172 { 3173 *rsp = g_try_new0(RAMState, 1); 3174 3175 if (!*rsp) { 3176 error_report("%s: Init ramstate fail", __func__); 3177 return -1; 3178 } 3179 3180 qemu_mutex_init(&(*rsp)->bitmap_mutex); 3181 qemu_mutex_init(&(*rsp)->src_page_req_mutex); 3182 QSIMPLEQ_INIT(&(*rsp)->src_page_requests); 3183 3184 /* 3185 * Count the total number of pages used by ram blocks not including any 3186 * gaps due to alignment or unplugs. 3187 */ 3188 (*rsp)->migration_dirty_pages = ram_bytes_total() >> TARGET_PAGE_BITS; 3189 3190 ram_state_reset(*rsp); 3191 3192 return 0; 3193 } 3194 3195 static void ram_list_init_bitmaps(void) 3196 { 3197 RAMBlock *block; 3198 unsigned long pages; 3199 3200 /* Skip setting bitmap if there is no RAM */ 3201 if (ram_bytes_total()) { 3202 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3203 pages = block->max_length >> TARGET_PAGE_BITS; 3204 block->bmap = bitmap_new(pages); 3205 bitmap_set(block->bmap, 0, pages); 3206 if (migrate_postcopy_ram()) { 3207 block->unsentmap = bitmap_new(pages); 3208 bitmap_set(block->unsentmap, 0, pages); 3209 } 3210 } 3211 } 3212 } 3213 3214 static void ram_init_bitmaps(RAMState *rs) 3215 { 3216 /* For memory_global_dirty_log_start below. */ 3217 qemu_mutex_lock_iothread(); 3218 qemu_mutex_lock_ramlist(); 3219 rcu_read_lock(); 3220 3221 ram_list_init_bitmaps(); 3222 memory_global_dirty_log_start(); 3223 migration_bitmap_sync_precopy(rs); 3224 3225 rcu_read_unlock(); 3226 qemu_mutex_unlock_ramlist(); 3227 qemu_mutex_unlock_iothread(); 3228 } 3229 3230 static int ram_init_all(RAMState **rsp) 3231 { 3232 if (ram_state_init(rsp)) { 3233 return -1; 3234 } 3235 3236 if (xbzrle_init()) { 3237 ram_state_cleanup(rsp); 3238 return -1; 3239 } 3240 3241 ram_init_bitmaps(*rsp); 3242 3243 return 0; 3244 } 3245 3246 static void ram_state_resume_prepare(RAMState *rs, QEMUFile *out) 3247 { 3248 RAMBlock *block; 3249 uint64_t pages = 0; 3250 3251 /* 3252 * Postcopy is not using xbzrle/compression, so no need for that. 3253 * Also, since source are already halted, we don't need to care 3254 * about dirty page logging as well. 3255 */ 3256 3257 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3258 pages += bitmap_count_one(block->bmap, 3259 block->used_length >> TARGET_PAGE_BITS); 3260 } 3261 3262 /* This may not be aligned with current bitmaps. Recalculate. */ 3263 rs->migration_dirty_pages = pages; 3264 3265 rs->last_seen_block = NULL; 3266 rs->last_sent_block = NULL; 3267 rs->last_page = 0; 3268 rs->last_version = ram_list.version; 3269 /* 3270 * Disable the bulk stage, otherwise we'll resend the whole RAM no 3271 * matter what we have sent. 3272 */ 3273 rs->ram_bulk_stage = false; 3274 3275 /* Update RAMState cache of output QEMUFile */ 3276 rs->f = out; 3277 3278 trace_ram_state_resume_prepare(pages); 3279 } 3280 3281 /* 3282 * This function clears bits of the free pages reported by the caller from the 3283 * migration dirty bitmap. @addr is the host address corresponding to the 3284 * start of the continuous guest free pages, and @len is the total bytes of 3285 * those pages. 3286 */ 3287 void qemu_guest_free_page_hint(void *addr, size_t len) 3288 { 3289 RAMBlock *block; 3290 ram_addr_t offset; 3291 size_t used_len, start, npages; 3292 MigrationState *s = migrate_get_current(); 3293 3294 /* This function is currently expected to be used during live migration */ 3295 if (!migration_is_setup_or_active(s->state)) { 3296 return; 3297 } 3298 3299 for (; len > 0; len -= used_len, addr += used_len) { 3300 block = qemu_ram_block_from_host(addr, false, &offset); 3301 if (unlikely(!block || offset >= block->used_length)) { 3302 /* 3303 * The implementation might not support RAMBlock resize during 3304 * live migration, but it could happen in theory with future 3305 * updates. So we add a check here to capture that case. 3306 */ 3307 error_report_once("%s unexpected error", __func__); 3308 return; 3309 } 3310 3311 if (len <= block->used_length - offset) { 3312 used_len = len; 3313 } else { 3314 used_len = block->used_length - offset; 3315 } 3316 3317 start = offset >> TARGET_PAGE_BITS; 3318 npages = used_len >> TARGET_PAGE_BITS; 3319 3320 qemu_mutex_lock(&ram_state->bitmap_mutex); 3321 ram_state->migration_dirty_pages -= 3322 bitmap_count_one_with_offset(block->bmap, start, npages); 3323 bitmap_clear(block->bmap, start, npages); 3324 qemu_mutex_unlock(&ram_state->bitmap_mutex); 3325 } 3326 } 3327 3328 /* 3329 * Each of ram_save_setup, ram_save_iterate and ram_save_complete has 3330 * long-running RCU critical section. When rcu-reclaims in the code 3331 * start to become numerous it will be necessary to reduce the 3332 * granularity of these critical sections. 3333 */ 3334 3335 /** 3336 * ram_save_setup: Setup RAM for migration 3337 * 3338 * Returns zero to indicate success and negative for error 3339 * 3340 * @f: QEMUFile where to send the data 3341 * @opaque: RAMState pointer 3342 */ 3343 static int ram_save_setup(QEMUFile *f, void *opaque) 3344 { 3345 RAMState **rsp = opaque; 3346 RAMBlock *block; 3347 3348 if (compress_threads_save_setup()) { 3349 return -1; 3350 } 3351 3352 /* migration has already setup the bitmap, reuse it. */ 3353 if (!migration_in_colo_state()) { 3354 if (ram_init_all(rsp) != 0) { 3355 compress_threads_save_cleanup(); 3356 return -1; 3357 } 3358 } 3359 (*rsp)->f = f; 3360 3361 rcu_read_lock(); 3362 3363 qemu_put_be64(f, ram_bytes_total_common(true) | RAM_SAVE_FLAG_MEM_SIZE); 3364 3365 RAMBLOCK_FOREACH_MIGRATABLE(block) { 3366 qemu_put_byte(f, strlen(block->idstr)); 3367 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr)); 3368 qemu_put_be64(f, block->used_length); 3369 if (migrate_postcopy_ram() && block->page_size != qemu_host_page_size) { 3370 qemu_put_be64(f, block->page_size); 3371 } 3372 if (migrate_ignore_shared()) { 3373 qemu_put_be64(f, block->mr->addr); 3374 qemu_put_byte(f, ramblock_is_ignored(block) ? 1 : 0); 3375 } 3376 } 3377 3378 rcu_read_unlock(); 3379 3380 ram_control_before_iterate(f, RAM_CONTROL_SETUP); 3381 ram_control_after_iterate(f, RAM_CONTROL_SETUP); 3382 3383 multifd_send_sync_main(); 3384 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 3385 qemu_fflush(f); 3386 3387 return 0; 3388 } 3389 3390 /** 3391 * ram_save_iterate: iterative stage for migration 3392 * 3393 * Returns zero to indicate success and negative for error 3394 * 3395 * @f: QEMUFile where to send the data 3396 * @opaque: RAMState pointer 3397 */ 3398 static int ram_save_iterate(QEMUFile *f, void *opaque) 3399 { 3400 RAMState **temp = opaque; 3401 RAMState *rs = *temp; 3402 int ret; 3403 int i; 3404 int64_t t0; 3405 int done = 0; 3406 3407 if (blk_mig_bulk_active()) { 3408 /* Avoid transferring ram during bulk phase of block migration as 3409 * the bulk phase will usually take a long time and transferring 3410 * ram updates during that time is pointless. */ 3411 goto out; 3412 } 3413 3414 rcu_read_lock(); 3415 if (ram_list.version != rs->last_version) { 3416 ram_state_reset(rs); 3417 } 3418 3419 /* Read version before ram_list.blocks */ 3420 smp_rmb(); 3421 3422 ram_control_before_iterate(f, RAM_CONTROL_ROUND); 3423 3424 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 3425 i = 0; 3426 while ((ret = qemu_file_rate_limit(f)) == 0 || 3427 !QSIMPLEQ_EMPTY(&rs->src_page_requests)) { 3428 int pages; 3429 3430 if (qemu_file_get_error(f)) { 3431 break; 3432 } 3433 3434 pages = ram_find_and_save_block(rs, false); 3435 /* no more pages to sent */ 3436 if (pages == 0) { 3437 done = 1; 3438 break; 3439 } 3440 3441 if (pages < 0) { 3442 qemu_file_set_error(f, pages); 3443 break; 3444 } 3445 3446 rs->target_page_count += pages; 3447 3448 /* we want to check in the 1st loop, just in case it was the 1st time 3449 and we had to sync the dirty bitmap. 3450 qemu_clock_get_ns() is a bit expensive, so we only check each some 3451 iterations 3452 */ 3453 if ((i & 63) == 0) { 3454 uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) / 1000000; 3455 if (t1 > MAX_WAIT) { 3456 trace_ram_save_iterate_big_wait(t1, i); 3457 break; 3458 } 3459 } 3460 i++; 3461 } 3462 rcu_read_unlock(); 3463 3464 /* 3465 * Must occur before EOS (or any QEMUFile operation) 3466 * because of RDMA protocol. 3467 */ 3468 ram_control_after_iterate(f, RAM_CONTROL_ROUND); 3469 3470 multifd_send_sync_main(); 3471 out: 3472 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 3473 qemu_fflush(f); 3474 ram_counters.transferred += 8; 3475 3476 ret = qemu_file_get_error(f); 3477 if (ret < 0) { 3478 return ret; 3479 } 3480 3481 return done; 3482 } 3483 3484 /** 3485 * ram_save_complete: function called to send the remaining amount of ram 3486 * 3487 * Returns zero to indicate success or negative on error 3488 * 3489 * Called with iothread lock 3490 * 3491 * @f: QEMUFile where to send the data 3492 * @opaque: RAMState pointer 3493 */ 3494 static int ram_save_complete(QEMUFile *f, void *opaque) 3495 { 3496 RAMState **temp = opaque; 3497 RAMState *rs = *temp; 3498 int ret = 0; 3499 3500 rcu_read_lock(); 3501 3502 if (!migration_in_postcopy()) { 3503 migration_bitmap_sync_precopy(rs); 3504 } 3505 3506 ram_control_before_iterate(f, RAM_CONTROL_FINISH); 3507 3508 /* try transferring iterative blocks of memory */ 3509 3510 /* flush all remaining blocks regardless of rate limiting */ 3511 while (true) { 3512 int pages; 3513 3514 pages = ram_find_and_save_block(rs, !migration_in_colo_state()); 3515 /* no more blocks to sent */ 3516 if (pages == 0) { 3517 break; 3518 } 3519 if (pages < 0) { 3520 ret = pages; 3521 break; 3522 } 3523 } 3524 3525 flush_compressed_data(rs); 3526 ram_control_after_iterate(f, RAM_CONTROL_FINISH); 3527 3528 rcu_read_unlock(); 3529 3530 multifd_send_sync_main(); 3531 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 3532 qemu_fflush(f); 3533 3534 return ret; 3535 } 3536 3537 static void ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size, 3538 uint64_t *res_precopy_only, 3539 uint64_t *res_compatible, 3540 uint64_t *res_postcopy_only) 3541 { 3542 RAMState **temp = opaque; 3543 RAMState *rs = *temp; 3544 uint64_t remaining_size; 3545 3546 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE; 3547 3548 if (!migration_in_postcopy() && 3549 remaining_size < max_size) { 3550 qemu_mutex_lock_iothread(); 3551 rcu_read_lock(); 3552 migration_bitmap_sync_precopy(rs); 3553 rcu_read_unlock(); 3554 qemu_mutex_unlock_iothread(); 3555 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE; 3556 } 3557 3558 if (migrate_postcopy_ram()) { 3559 /* We can do postcopy, and all the data is postcopiable */ 3560 *res_compatible += remaining_size; 3561 } else { 3562 *res_precopy_only += remaining_size; 3563 } 3564 } 3565 3566 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host) 3567 { 3568 unsigned int xh_len; 3569 int xh_flags; 3570 uint8_t *loaded_data; 3571 3572 /* extract RLE header */ 3573 xh_flags = qemu_get_byte(f); 3574 xh_len = qemu_get_be16(f); 3575 3576 if (xh_flags != ENCODING_FLAG_XBZRLE) { 3577 error_report("Failed to load XBZRLE page - wrong compression!"); 3578 return -1; 3579 } 3580 3581 if (xh_len > TARGET_PAGE_SIZE) { 3582 error_report("Failed to load XBZRLE page - len overflow!"); 3583 return -1; 3584 } 3585 loaded_data = XBZRLE.decoded_buf; 3586 /* load data and decode */ 3587 /* it can change loaded_data to point to an internal buffer */ 3588 qemu_get_buffer_in_place(f, &loaded_data, xh_len); 3589 3590 /* decode RLE */ 3591 if (xbzrle_decode_buffer(loaded_data, xh_len, host, 3592 TARGET_PAGE_SIZE) == -1) { 3593 error_report("Failed to load XBZRLE page - decode error!"); 3594 return -1; 3595 } 3596 3597 return 0; 3598 } 3599 3600 /** 3601 * ram_block_from_stream: read a RAMBlock id from the migration stream 3602 * 3603 * Must be called from within a rcu critical section. 3604 * 3605 * Returns a pointer from within the RCU-protected ram_list. 3606 * 3607 * @f: QEMUFile where to read the data from 3608 * @flags: Page flags (mostly to see if it's a continuation of previous block) 3609 */ 3610 static inline RAMBlock *ram_block_from_stream(QEMUFile *f, int flags) 3611 { 3612 static RAMBlock *block = NULL; 3613 char id[256]; 3614 uint8_t len; 3615 3616 if (flags & RAM_SAVE_FLAG_CONTINUE) { 3617 if (!block) { 3618 error_report("Ack, bad migration stream!"); 3619 return NULL; 3620 } 3621 return block; 3622 } 3623 3624 len = qemu_get_byte(f); 3625 qemu_get_buffer(f, (uint8_t *)id, len); 3626 id[len] = 0; 3627 3628 block = qemu_ram_block_by_name(id); 3629 if (!block) { 3630 error_report("Can't find block %s", id); 3631 return NULL; 3632 } 3633 3634 if (ramblock_is_ignored(block)) { 3635 error_report("block %s should not be migrated !", id); 3636 return NULL; 3637 } 3638 3639 return block; 3640 } 3641 3642 static inline void *host_from_ram_block_offset(RAMBlock *block, 3643 ram_addr_t offset) 3644 { 3645 if (!offset_in_ramblock(block, offset)) { 3646 return NULL; 3647 } 3648 3649 return block->host + offset; 3650 } 3651 3652 static inline void *colo_cache_from_block_offset(RAMBlock *block, 3653 ram_addr_t offset) 3654 { 3655 if (!offset_in_ramblock(block, offset)) { 3656 return NULL; 3657 } 3658 if (!block->colo_cache) { 3659 error_report("%s: colo_cache is NULL in block :%s", 3660 __func__, block->idstr); 3661 return NULL; 3662 } 3663 3664 /* 3665 * During colo checkpoint, we need bitmap of these migrated pages. 3666 * It help us to decide which pages in ram cache should be flushed 3667 * into VM's RAM later. 3668 */ 3669 if (!test_and_set_bit(offset >> TARGET_PAGE_BITS, block->bmap)) { 3670 ram_state->migration_dirty_pages++; 3671 } 3672 return block->colo_cache + offset; 3673 } 3674 3675 /** 3676 * ram_handle_compressed: handle the zero page case 3677 * 3678 * If a page (or a whole RDMA chunk) has been 3679 * determined to be zero, then zap it. 3680 * 3681 * @host: host address for the zero page 3682 * @ch: what the page is filled from. We only support zero 3683 * @size: size of the zero page 3684 */ 3685 void ram_handle_compressed(void *host, uint8_t ch, uint64_t size) 3686 { 3687 if (ch != 0 || !is_zero_range(host, size)) { 3688 memset(host, ch, size); 3689 } 3690 } 3691 3692 /* return the size after decompression, or negative value on error */ 3693 static int 3694 qemu_uncompress_data(z_stream *stream, uint8_t *dest, size_t dest_len, 3695 const uint8_t *source, size_t source_len) 3696 { 3697 int err; 3698 3699 err = inflateReset(stream); 3700 if (err != Z_OK) { 3701 return -1; 3702 } 3703 3704 stream->avail_in = source_len; 3705 stream->next_in = (uint8_t *)source; 3706 stream->avail_out = dest_len; 3707 stream->next_out = dest; 3708 3709 err = inflate(stream, Z_NO_FLUSH); 3710 if (err != Z_STREAM_END) { 3711 return -1; 3712 } 3713 3714 return stream->total_out; 3715 } 3716 3717 static void *do_data_decompress(void *opaque) 3718 { 3719 DecompressParam *param = opaque; 3720 unsigned long pagesize; 3721 uint8_t *des; 3722 int len, ret; 3723 3724 qemu_mutex_lock(¶m->mutex); 3725 while (!param->quit) { 3726 if (param->des) { 3727 des = param->des; 3728 len = param->len; 3729 param->des = 0; 3730 qemu_mutex_unlock(¶m->mutex); 3731 3732 pagesize = TARGET_PAGE_SIZE; 3733 3734 ret = qemu_uncompress_data(¶m->stream, des, pagesize, 3735 param->compbuf, len); 3736 if (ret < 0 && migrate_get_current()->decompress_error_check) { 3737 error_report("decompress data failed"); 3738 qemu_file_set_error(decomp_file, ret); 3739 } 3740 3741 qemu_mutex_lock(&decomp_done_lock); 3742 param->done = true; 3743 qemu_cond_signal(&decomp_done_cond); 3744 qemu_mutex_unlock(&decomp_done_lock); 3745 3746 qemu_mutex_lock(¶m->mutex); 3747 } else { 3748 qemu_cond_wait(¶m->cond, ¶m->mutex); 3749 } 3750 } 3751 qemu_mutex_unlock(¶m->mutex); 3752 3753 return NULL; 3754 } 3755 3756 static int wait_for_decompress_done(void) 3757 { 3758 int idx, thread_count; 3759 3760 if (!migrate_use_compression()) { 3761 return 0; 3762 } 3763 3764 thread_count = migrate_decompress_threads(); 3765 qemu_mutex_lock(&decomp_done_lock); 3766 for (idx = 0; idx < thread_count; idx++) { 3767 while (!decomp_param[idx].done) { 3768 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock); 3769 } 3770 } 3771 qemu_mutex_unlock(&decomp_done_lock); 3772 return qemu_file_get_error(decomp_file); 3773 } 3774 3775 static void compress_threads_load_cleanup(void) 3776 { 3777 int i, thread_count; 3778 3779 if (!migrate_use_compression()) { 3780 return; 3781 } 3782 thread_count = migrate_decompress_threads(); 3783 for (i = 0; i < thread_count; i++) { 3784 /* 3785 * we use it as a indicator which shows if the thread is 3786 * properly init'd or not 3787 */ 3788 if (!decomp_param[i].compbuf) { 3789 break; 3790 } 3791 3792 qemu_mutex_lock(&decomp_param[i].mutex); 3793 decomp_param[i].quit = true; 3794 qemu_cond_signal(&decomp_param[i].cond); 3795 qemu_mutex_unlock(&decomp_param[i].mutex); 3796 } 3797 for (i = 0; i < thread_count; i++) { 3798 if (!decomp_param[i].compbuf) { 3799 break; 3800 } 3801 3802 qemu_thread_join(decompress_threads + i); 3803 qemu_mutex_destroy(&decomp_param[i].mutex); 3804 qemu_cond_destroy(&decomp_param[i].cond); 3805 inflateEnd(&decomp_param[i].stream); 3806 g_free(decomp_param[i].compbuf); 3807 decomp_param[i].compbuf = NULL; 3808 } 3809 g_free(decompress_threads); 3810 g_free(decomp_param); 3811 decompress_threads = NULL; 3812 decomp_param = NULL; 3813 decomp_file = NULL; 3814 } 3815 3816 static int compress_threads_load_setup(QEMUFile *f) 3817 { 3818 int i, thread_count; 3819 3820 if (!migrate_use_compression()) { 3821 return 0; 3822 } 3823 3824 thread_count = migrate_decompress_threads(); 3825 decompress_threads = g_new0(QemuThread, thread_count); 3826 decomp_param = g_new0(DecompressParam, thread_count); 3827 qemu_mutex_init(&decomp_done_lock); 3828 qemu_cond_init(&decomp_done_cond); 3829 decomp_file = f; 3830 for (i = 0; i < thread_count; i++) { 3831 if (inflateInit(&decomp_param[i].stream) != Z_OK) { 3832 goto exit; 3833 } 3834 3835 decomp_param[i].compbuf = g_malloc0(compressBound(TARGET_PAGE_SIZE)); 3836 qemu_mutex_init(&decomp_param[i].mutex); 3837 qemu_cond_init(&decomp_param[i].cond); 3838 decomp_param[i].done = true; 3839 decomp_param[i].quit = false; 3840 qemu_thread_create(decompress_threads + i, "decompress", 3841 do_data_decompress, decomp_param + i, 3842 QEMU_THREAD_JOINABLE); 3843 } 3844 return 0; 3845 exit: 3846 compress_threads_load_cleanup(); 3847 return -1; 3848 } 3849 3850 static void decompress_data_with_multi_threads(QEMUFile *f, 3851 void *host, int len) 3852 { 3853 int idx, thread_count; 3854 3855 thread_count = migrate_decompress_threads(); 3856 qemu_mutex_lock(&decomp_done_lock); 3857 while (true) { 3858 for (idx = 0; idx < thread_count; idx++) { 3859 if (decomp_param[idx].done) { 3860 decomp_param[idx].done = false; 3861 qemu_mutex_lock(&decomp_param[idx].mutex); 3862 qemu_get_buffer(f, decomp_param[idx].compbuf, len); 3863 decomp_param[idx].des = host; 3864 decomp_param[idx].len = len; 3865 qemu_cond_signal(&decomp_param[idx].cond); 3866 qemu_mutex_unlock(&decomp_param[idx].mutex); 3867 break; 3868 } 3869 } 3870 if (idx < thread_count) { 3871 break; 3872 } else { 3873 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock); 3874 } 3875 } 3876 qemu_mutex_unlock(&decomp_done_lock); 3877 } 3878 3879 /* 3880 * colo cache: this is for secondary VM, we cache the whole 3881 * memory of the secondary VM, it is need to hold the global lock 3882 * to call this helper. 3883 */ 3884 int colo_init_ram_cache(void) 3885 { 3886 RAMBlock *block; 3887 3888 rcu_read_lock(); 3889 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3890 block->colo_cache = qemu_anon_ram_alloc(block->used_length, 3891 NULL, 3892 false); 3893 if (!block->colo_cache) { 3894 error_report("%s: Can't alloc memory for COLO cache of block %s," 3895 "size 0x" RAM_ADDR_FMT, __func__, block->idstr, 3896 block->used_length); 3897 goto out_locked; 3898 } 3899 memcpy(block->colo_cache, block->host, block->used_length); 3900 } 3901 rcu_read_unlock(); 3902 /* 3903 * Record the dirty pages that sent by PVM, we use this dirty bitmap together 3904 * with to decide which page in cache should be flushed into SVM's RAM. Here 3905 * we use the same name 'ram_bitmap' as for migration. 3906 */ 3907 if (ram_bytes_total()) { 3908 RAMBlock *block; 3909 3910 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3911 unsigned long pages = block->max_length >> TARGET_PAGE_BITS; 3912 3913 block->bmap = bitmap_new(pages); 3914 bitmap_set(block->bmap, 0, pages); 3915 } 3916 } 3917 ram_state = g_new0(RAMState, 1); 3918 ram_state->migration_dirty_pages = 0; 3919 qemu_mutex_init(&ram_state->bitmap_mutex); 3920 memory_global_dirty_log_start(); 3921 3922 return 0; 3923 3924 out_locked: 3925 3926 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3927 if (block->colo_cache) { 3928 qemu_anon_ram_free(block->colo_cache, block->used_length); 3929 block->colo_cache = NULL; 3930 } 3931 } 3932 3933 rcu_read_unlock(); 3934 return -errno; 3935 } 3936 3937 /* It is need to hold the global lock to call this helper */ 3938 void colo_release_ram_cache(void) 3939 { 3940 RAMBlock *block; 3941 3942 memory_global_dirty_log_stop(); 3943 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3944 g_free(block->bmap); 3945 block->bmap = NULL; 3946 } 3947 3948 rcu_read_lock(); 3949 3950 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3951 if (block->colo_cache) { 3952 qemu_anon_ram_free(block->colo_cache, block->used_length); 3953 block->colo_cache = NULL; 3954 } 3955 } 3956 3957 rcu_read_unlock(); 3958 qemu_mutex_destroy(&ram_state->bitmap_mutex); 3959 g_free(ram_state); 3960 ram_state = NULL; 3961 } 3962 3963 /** 3964 * ram_load_setup: Setup RAM for migration incoming side 3965 * 3966 * Returns zero to indicate success and negative for error 3967 * 3968 * @f: QEMUFile where to receive the data 3969 * @opaque: RAMState pointer 3970 */ 3971 static int ram_load_setup(QEMUFile *f, void *opaque) 3972 { 3973 if (compress_threads_load_setup(f)) { 3974 return -1; 3975 } 3976 3977 xbzrle_load_setup(); 3978 ramblock_recv_map_init(); 3979 3980 return 0; 3981 } 3982 3983 static int ram_load_cleanup(void *opaque) 3984 { 3985 RAMBlock *rb; 3986 3987 RAMBLOCK_FOREACH_NOT_IGNORED(rb) { 3988 if (ramblock_is_pmem(rb)) { 3989 pmem_persist(rb->host, rb->used_length); 3990 } 3991 } 3992 3993 xbzrle_load_cleanup(); 3994 compress_threads_load_cleanup(); 3995 3996 RAMBLOCK_FOREACH_NOT_IGNORED(rb) { 3997 g_free(rb->receivedmap); 3998 rb->receivedmap = NULL; 3999 } 4000 4001 return 0; 4002 } 4003 4004 /** 4005 * ram_postcopy_incoming_init: allocate postcopy data structures 4006 * 4007 * Returns 0 for success and negative if there was one error 4008 * 4009 * @mis: current migration incoming state 4010 * 4011 * Allocate data structures etc needed by incoming migration with 4012 * postcopy-ram. postcopy-ram's similarly names 4013 * postcopy_ram_incoming_init does the work. 4014 */ 4015 int ram_postcopy_incoming_init(MigrationIncomingState *mis) 4016 { 4017 return postcopy_ram_incoming_init(mis); 4018 } 4019 4020 /** 4021 * ram_load_postcopy: load a page in postcopy case 4022 * 4023 * Returns 0 for success or -errno in case of error 4024 * 4025 * Called in postcopy mode by ram_load(). 4026 * rcu_read_lock is taken prior to this being called. 4027 * 4028 * @f: QEMUFile where to send the data 4029 */ 4030 static int ram_load_postcopy(QEMUFile *f) 4031 { 4032 int flags = 0, ret = 0; 4033 bool place_needed = false; 4034 bool matches_target_page_size = false; 4035 MigrationIncomingState *mis = migration_incoming_get_current(); 4036 /* Temporary page that is later 'placed' */ 4037 void *postcopy_host_page = postcopy_get_tmp_page(mis); 4038 void *last_host = NULL; 4039 bool all_zero = false; 4040 4041 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) { 4042 ram_addr_t addr; 4043 void *host = NULL; 4044 void *page_buffer = NULL; 4045 void *place_source = NULL; 4046 RAMBlock *block = NULL; 4047 uint8_t ch; 4048 4049 addr = qemu_get_be64(f); 4050 4051 /* 4052 * If qemu file error, we should stop here, and then "addr" 4053 * may be invalid 4054 */ 4055 ret = qemu_file_get_error(f); 4056 if (ret) { 4057 break; 4058 } 4059 4060 flags = addr & ~TARGET_PAGE_MASK; 4061 addr &= TARGET_PAGE_MASK; 4062 4063 trace_ram_load_postcopy_loop((uint64_t)addr, flags); 4064 place_needed = false; 4065 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE)) { 4066 block = ram_block_from_stream(f, flags); 4067 4068 host = host_from_ram_block_offset(block, addr); 4069 if (!host) { 4070 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr); 4071 ret = -EINVAL; 4072 break; 4073 } 4074 matches_target_page_size = block->page_size == TARGET_PAGE_SIZE; 4075 /* 4076 * Postcopy requires that we place whole host pages atomically; 4077 * these may be huge pages for RAMBlocks that are backed by 4078 * hugetlbfs. 4079 * To make it atomic, the data is read into a temporary page 4080 * that's moved into place later. 4081 * The migration protocol uses, possibly smaller, target-pages 4082 * however the source ensures it always sends all the components 4083 * of a host page in order. 4084 */ 4085 page_buffer = postcopy_host_page + 4086 ((uintptr_t)host & (block->page_size - 1)); 4087 /* If all TP are zero then we can optimise the place */ 4088 if (!((uintptr_t)host & (block->page_size - 1))) { 4089 all_zero = true; 4090 } else { 4091 /* not the 1st TP within the HP */ 4092 if (host != (last_host + TARGET_PAGE_SIZE)) { 4093 error_report("Non-sequential target page %p/%p", 4094 host, last_host); 4095 ret = -EINVAL; 4096 break; 4097 } 4098 } 4099 4100 4101 /* 4102 * If it's the last part of a host page then we place the host 4103 * page 4104 */ 4105 place_needed = (((uintptr_t)host + TARGET_PAGE_SIZE) & 4106 (block->page_size - 1)) == 0; 4107 place_source = postcopy_host_page; 4108 } 4109 last_host = host; 4110 4111 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) { 4112 case RAM_SAVE_FLAG_ZERO: 4113 ch = qemu_get_byte(f); 4114 memset(page_buffer, ch, TARGET_PAGE_SIZE); 4115 if (ch) { 4116 all_zero = false; 4117 } 4118 break; 4119 4120 case RAM_SAVE_FLAG_PAGE: 4121 all_zero = false; 4122 if (!matches_target_page_size) { 4123 /* For huge pages, we always use temporary buffer */ 4124 qemu_get_buffer(f, page_buffer, TARGET_PAGE_SIZE); 4125 } else { 4126 /* 4127 * For small pages that matches target page size, we 4128 * avoid the qemu_file copy. Instead we directly use 4129 * the buffer of QEMUFile to place the page. Note: we 4130 * cannot do any QEMUFile operation before using that 4131 * buffer to make sure the buffer is valid when 4132 * placing the page. 4133 */ 4134 qemu_get_buffer_in_place(f, (uint8_t **)&place_source, 4135 TARGET_PAGE_SIZE); 4136 } 4137 break; 4138 case RAM_SAVE_FLAG_EOS: 4139 /* normal exit */ 4140 multifd_recv_sync_main(); 4141 break; 4142 default: 4143 error_report("Unknown combination of migration flags: %#x" 4144 " (postcopy mode)", flags); 4145 ret = -EINVAL; 4146 break; 4147 } 4148 4149 /* Detect for any possible file errors */ 4150 if (!ret && qemu_file_get_error(f)) { 4151 ret = qemu_file_get_error(f); 4152 } 4153 4154 if (!ret && place_needed) { 4155 /* This gets called at the last target page in the host page */ 4156 void *place_dest = host + TARGET_PAGE_SIZE - block->page_size; 4157 4158 if (all_zero) { 4159 ret = postcopy_place_page_zero(mis, place_dest, 4160 block); 4161 } else { 4162 ret = postcopy_place_page(mis, place_dest, 4163 place_source, block); 4164 } 4165 } 4166 } 4167 4168 return ret; 4169 } 4170 4171 static bool postcopy_is_advised(void) 4172 { 4173 PostcopyState ps = postcopy_state_get(); 4174 return ps >= POSTCOPY_INCOMING_ADVISE && ps < POSTCOPY_INCOMING_END; 4175 } 4176 4177 static bool postcopy_is_running(void) 4178 { 4179 PostcopyState ps = postcopy_state_get(); 4180 return ps >= POSTCOPY_INCOMING_LISTENING && ps < POSTCOPY_INCOMING_END; 4181 } 4182 4183 /* 4184 * Flush content of RAM cache into SVM's memory. 4185 * Only flush the pages that be dirtied by PVM or SVM or both. 4186 */ 4187 static void colo_flush_ram_cache(void) 4188 { 4189 RAMBlock *block = NULL; 4190 void *dst_host; 4191 void *src_host; 4192 unsigned long offset = 0; 4193 4194 memory_global_dirty_log_sync(); 4195 rcu_read_lock(); 4196 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 4197 migration_bitmap_sync_range(ram_state, block, block->used_length); 4198 } 4199 rcu_read_unlock(); 4200 4201 trace_colo_flush_ram_cache_begin(ram_state->migration_dirty_pages); 4202 rcu_read_lock(); 4203 block = QLIST_FIRST_RCU(&ram_list.blocks); 4204 4205 while (block) { 4206 offset = migration_bitmap_find_dirty(ram_state, block, offset); 4207 4208 if (offset << TARGET_PAGE_BITS >= block->used_length) { 4209 offset = 0; 4210 block = QLIST_NEXT_RCU(block, next); 4211 } else { 4212 migration_bitmap_clear_dirty(ram_state, block, offset); 4213 dst_host = block->host + (offset << TARGET_PAGE_BITS); 4214 src_host = block->colo_cache + (offset << TARGET_PAGE_BITS); 4215 memcpy(dst_host, src_host, TARGET_PAGE_SIZE); 4216 } 4217 } 4218 4219 rcu_read_unlock(); 4220 trace_colo_flush_ram_cache_end(); 4221 } 4222 4223 static int ram_load(QEMUFile *f, void *opaque, int version_id) 4224 { 4225 int flags = 0, ret = 0, invalid_flags = 0; 4226 static uint64_t seq_iter; 4227 int len = 0; 4228 /* 4229 * If system is running in postcopy mode, page inserts to host memory must 4230 * be atomic 4231 */ 4232 bool postcopy_running = postcopy_is_running(); 4233 /* ADVISE is earlier, it shows the source has the postcopy capability on */ 4234 bool postcopy_advised = postcopy_is_advised(); 4235 4236 seq_iter++; 4237 4238 if (version_id != 4) { 4239 ret = -EINVAL; 4240 } 4241 4242 if (!migrate_use_compression()) { 4243 invalid_flags |= RAM_SAVE_FLAG_COMPRESS_PAGE; 4244 } 4245 /* This RCU critical section can be very long running. 4246 * When RCU reclaims in the code start to become numerous, 4247 * it will be necessary to reduce the granularity of this 4248 * critical section. 4249 */ 4250 rcu_read_lock(); 4251 4252 if (postcopy_running) { 4253 ret = ram_load_postcopy(f); 4254 } 4255 4256 while (!postcopy_running && !ret && !(flags & RAM_SAVE_FLAG_EOS)) { 4257 ram_addr_t addr, total_ram_bytes; 4258 void *host = NULL; 4259 uint8_t ch; 4260 4261 addr = qemu_get_be64(f); 4262 flags = addr & ~TARGET_PAGE_MASK; 4263 addr &= TARGET_PAGE_MASK; 4264 4265 if (flags & invalid_flags) { 4266 if (flags & invalid_flags & RAM_SAVE_FLAG_COMPRESS_PAGE) { 4267 error_report("Received an unexpected compressed page"); 4268 } 4269 4270 ret = -EINVAL; 4271 break; 4272 } 4273 4274 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE | 4275 RAM_SAVE_FLAG_COMPRESS_PAGE | RAM_SAVE_FLAG_XBZRLE)) { 4276 RAMBlock *block = ram_block_from_stream(f, flags); 4277 4278 /* 4279 * After going into COLO, we should load the Page into colo_cache. 4280 */ 4281 if (migration_incoming_in_colo_state()) { 4282 host = colo_cache_from_block_offset(block, addr); 4283 } else { 4284 host = host_from_ram_block_offset(block, addr); 4285 } 4286 if (!host) { 4287 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr); 4288 ret = -EINVAL; 4289 break; 4290 } 4291 4292 if (!migration_incoming_in_colo_state()) { 4293 ramblock_recv_bitmap_set(block, host); 4294 } 4295 4296 trace_ram_load_loop(block->idstr, (uint64_t)addr, flags, host); 4297 } 4298 4299 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) { 4300 case RAM_SAVE_FLAG_MEM_SIZE: 4301 /* Synchronize RAM block list */ 4302 total_ram_bytes = addr; 4303 while (!ret && total_ram_bytes) { 4304 RAMBlock *block; 4305 char id[256]; 4306 ram_addr_t length; 4307 4308 len = qemu_get_byte(f); 4309 qemu_get_buffer(f, (uint8_t *)id, len); 4310 id[len] = 0; 4311 length = qemu_get_be64(f); 4312 4313 block = qemu_ram_block_by_name(id); 4314 if (block && !qemu_ram_is_migratable(block)) { 4315 error_report("block %s should not be migrated !", id); 4316 ret = -EINVAL; 4317 } else if (block) { 4318 if (length != block->used_length) { 4319 Error *local_err = NULL; 4320 4321 ret = qemu_ram_resize(block, length, 4322 &local_err); 4323 if (local_err) { 4324 error_report_err(local_err); 4325 } 4326 } 4327 /* For postcopy we need to check hugepage sizes match */ 4328 if (postcopy_advised && 4329 block->page_size != qemu_host_page_size) { 4330 uint64_t remote_page_size = qemu_get_be64(f); 4331 if (remote_page_size != block->page_size) { 4332 error_report("Mismatched RAM page size %s " 4333 "(local) %zd != %" PRId64, 4334 id, block->page_size, 4335 remote_page_size); 4336 ret = -EINVAL; 4337 } 4338 } 4339 if (migrate_ignore_shared()) { 4340 hwaddr addr = qemu_get_be64(f); 4341 bool ignored = qemu_get_byte(f); 4342 if (ignored != ramblock_is_ignored(block)) { 4343 error_report("RAM block %s should %s be migrated", 4344 id, ignored ? "" : "not"); 4345 ret = -EINVAL; 4346 } 4347 if (ramblock_is_ignored(block) && 4348 block->mr->addr != addr) { 4349 error_report("Mismatched GPAs for block %s " 4350 "%" PRId64 "!= %" PRId64, 4351 id, (uint64_t)addr, 4352 (uint64_t)block->mr->addr); 4353 ret = -EINVAL; 4354 } 4355 } 4356 ram_control_load_hook(f, RAM_CONTROL_BLOCK_REG, 4357 block->idstr); 4358 } else { 4359 error_report("Unknown ramblock \"%s\", cannot " 4360 "accept migration", id); 4361 ret = -EINVAL; 4362 } 4363 4364 total_ram_bytes -= length; 4365 } 4366 break; 4367 4368 case RAM_SAVE_FLAG_ZERO: 4369 ch = qemu_get_byte(f); 4370 ram_handle_compressed(host, ch, TARGET_PAGE_SIZE); 4371 break; 4372 4373 case RAM_SAVE_FLAG_PAGE: 4374 qemu_get_buffer(f, host, TARGET_PAGE_SIZE); 4375 break; 4376 4377 case RAM_SAVE_FLAG_COMPRESS_PAGE: 4378 len = qemu_get_be32(f); 4379 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) { 4380 error_report("Invalid compressed data length: %d", len); 4381 ret = -EINVAL; 4382 break; 4383 } 4384 decompress_data_with_multi_threads(f, host, len); 4385 break; 4386 4387 case RAM_SAVE_FLAG_XBZRLE: 4388 if (load_xbzrle(f, addr, host) < 0) { 4389 error_report("Failed to decompress XBZRLE page at " 4390 RAM_ADDR_FMT, addr); 4391 ret = -EINVAL; 4392 break; 4393 } 4394 break; 4395 case RAM_SAVE_FLAG_EOS: 4396 /* normal exit */ 4397 multifd_recv_sync_main(); 4398 break; 4399 default: 4400 if (flags & RAM_SAVE_FLAG_HOOK) { 4401 ram_control_load_hook(f, RAM_CONTROL_HOOK, NULL); 4402 } else { 4403 error_report("Unknown combination of migration flags: %#x", 4404 flags); 4405 ret = -EINVAL; 4406 } 4407 } 4408 if (!ret) { 4409 ret = qemu_file_get_error(f); 4410 } 4411 } 4412 4413 ret |= wait_for_decompress_done(); 4414 rcu_read_unlock(); 4415 trace_ram_load_complete(ret, seq_iter); 4416 4417 if (!ret && migration_incoming_in_colo_state()) { 4418 colo_flush_ram_cache(); 4419 } 4420 return ret; 4421 } 4422 4423 static bool ram_has_postcopy(void *opaque) 4424 { 4425 RAMBlock *rb; 4426 RAMBLOCK_FOREACH_NOT_IGNORED(rb) { 4427 if (ramblock_is_pmem(rb)) { 4428 info_report("Block: %s, host: %p is a nvdimm memory, postcopy" 4429 "is not supported now!", rb->idstr, rb->host); 4430 return false; 4431 } 4432 } 4433 4434 return migrate_postcopy_ram(); 4435 } 4436 4437 /* Sync all the dirty bitmap with destination VM. */ 4438 static int ram_dirty_bitmap_sync_all(MigrationState *s, RAMState *rs) 4439 { 4440 RAMBlock *block; 4441 QEMUFile *file = s->to_dst_file; 4442 int ramblock_count = 0; 4443 4444 trace_ram_dirty_bitmap_sync_start(); 4445 4446 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 4447 qemu_savevm_send_recv_bitmap(file, block->idstr); 4448 trace_ram_dirty_bitmap_request(block->idstr); 4449 ramblock_count++; 4450 } 4451 4452 trace_ram_dirty_bitmap_sync_wait(); 4453 4454 /* Wait until all the ramblocks' dirty bitmap synced */ 4455 while (ramblock_count--) { 4456 qemu_sem_wait(&s->rp_state.rp_sem); 4457 } 4458 4459 trace_ram_dirty_bitmap_sync_complete(); 4460 4461 return 0; 4462 } 4463 4464 static void ram_dirty_bitmap_reload_notify(MigrationState *s) 4465 { 4466 qemu_sem_post(&s->rp_state.rp_sem); 4467 } 4468 4469 /* 4470 * Read the received bitmap, revert it as the initial dirty bitmap. 4471 * This is only used when the postcopy migration is paused but wants 4472 * to resume from a middle point. 4473 */ 4474 int ram_dirty_bitmap_reload(MigrationState *s, RAMBlock *block) 4475 { 4476 int ret = -EINVAL; 4477 QEMUFile *file = s->rp_state.from_dst_file; 4478 unsigned long *le_bitmap, nbits = block->used_length >> TARGET_PAGE_BITS; 4479 uint64_t local_size = DIV_ROUND_UP(nbits, 8); 4480 uint64_t size, end_mark; 4481 4482 trace_ram_dirty_bitmap_reload_begin(block->idstr); 4483 4484 if (s->state != MIGRATION_STATUS_POSTCOPY_RECOVER) { 4485 error_report("%s: incorrect state %s", __func__, 4486 MigrationStatus_str(s->state)); 4487 return -EINVAL; 4488 } 4489 4490 /* 4491 * Note: see comments in ramblock_recv_bitmap_send() on why we 4492 * need the endianess convertion, and the paddings. 4493 */ 4494 local_size = ROUND_UP(local_size, 8); 4495 4496 /* Add paddings */ 4497 le_bitmap = bitmap_new(nbits + BITS_PER_LONG); 4498 4499 size = qemu_get_be64(file); 4500 4501 /* The size of the bitmap should match with our ramblock */ 4502 if (size != local_size) { 4503 error_report("%s: ramblock '%s' bitmap size mismatch " 4504 "(0x%"PRIx64" != 0x%"PRIx64")", __func__, 4505 block->idstr, size, local_size); 4506 ret = -EINVAL; 4507 goto out; 4508 } 4509 4510 size = qemu_get_buffer(file, (uint8_t *)le_bitmap, local_size); 4511 end_mark = qemu_get_be64(file); 4512 4513 ret = qemu_file_get_error(file); 4514 if (ret || size != local_size) { 4515 error_report("%s: read bitmap failed for ramblock '%s': %d" 4516 " (size 0x%"PRIx64", got: 0x%"PRIx64")", 4517 __func__, block->idstr, ret, local_size, size); 4518 ret = -EIO; 4519 goto out; 4520 } 4521 4522 if (end_mark != RAMBLOCK_RECV_BITMAP_ENDING) { 4523 error_report("%s: ramblock '%s' end mark incorrect: 0x%"PRIu64, 4524 __func__, block->idstr, end_mark); 4525 ret = -EINVAL; 4526 goto out; 4527 } 4528 4529 /* 4530 * Endianess convertion. We are during postcopy (though paused). 4531 * The dirty bitmap won't change. We can directly modify it. 4532 */ 4533 bitmap_from_le(block->bmap, le_bitmap, nbits); 4534 4535 /* 4536 * What we received is "received bitmap". Revert it as the initial 4537 * dirty bitmap for this ramblock. 4538 */ 4539 bitmap_complement(block->bmap, block->bmap, nbits); 4540 4541 trace_ram_dirty_bitmap_reload_complete(block->idstr); 4542 4543 /* 4544 * We succeeded to sync bitmap for current ramblock. If this is 4545 * the last one to sync, we need to notify the main send thread. 4546 */ 4547 ram_dirty_bitmap_reload_notify(s); 4548 4549 ret = 0; 4550 out: 4551 g_free(le_bitmap); 4552 return ret; 4553 } 4554 4555 static int ram_resume_prepare(MigrationState *s, void *opaque) 4556 { 4557 RAMState *rs = *(RAMState **)opaque; 4558 int ret; 4559 4560 ret = ram_dirty_bitmap_sync_all(s, rs); 4561 if (ret) { 4562 return ret; 4563 } 4564 4565 ram_state_resume_prepare(rs, s->to_dst_file); 4566 4567 return 0; 4568 } 4569 4570 static SaveVMHandlers savevm_ram_handlers = { 4571 .save_setup = ram_save_setup, 4572 .save_live_iterate = ram_save_iterate, 4573 .save_live_complete_postcopy = ram_save_complete, 4574 .save_live_complete_precopy = ram_save_complete, 4575 .has_postcopy = ram_has_postcopy, 4576 .save_live_pending = ram_save_pending, 4577 .load_state = ram_load, 4578 .save_cleanup = ram_save_cleanup, 4579 .load_setup = ram_load_setup, 4580 .load_cleanup = ram_load_cleanup, 4581 .resume_prepare = ram_resume_prepare, 4582 }; 4583 4584 void ram_mig_init(void) 4585 { 4586 qemu_mutex_init(&XBZRLE.lock); 4587 register_savevm_live(NULL, "ram", 0, 4, &savevm_ram_handlers, &ram_state); 4588 } 4589