1 /* 2 * QEMU System Emulator 3 * 4 * Copyright (c) 2003-2008 Fabrice Bellard 5 * Copyright (c) 2011-2015 Red Hat Inc 6 * 7 * Authors: 8 * Juan Quintela <quintela@redhat.com> 9 * 10 * Permission is hereby granted, free of charge, to any person obtaining a copy 11 * of this software and associated documentation files (the "Software"), to deal 12 * in the Software without restriction, including without limitation the rights 13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 14 * copies of the Software, and to permit persons to whom the Software is 15 * furnished to do so, subject to the following conditions: 16 * 17 * The above copyright notice and this permission notice shall be included in 18 * all copies or substantial portions of the Software. 19 * 20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 26 * THE SOFTWARE. 27 */ 28 #include "qemu/osdep.h" 29 #include "qemu-common.h" 30 #include "cpu.h" 31 #include <zlib.h> 32 #include "qapi-event.h" 33 #include "qemu/cutils.h" 34 #include "qemu/bitops.h" 35 #include "qemu/bitmap.h" 36 #include "qemu/timer.h" 37 #include "qemu/main-loop.h" 38 #include "xbzrle.h" 39 #include "ram.h" 40 #include "migration/migration.h" 41 #include "migration/misc.h" 42 #include "qemu-file.h" 43 #include "migration/vmstate.h" 44 #include "postcopy-ram.h" 45 #include "exec/address-spaces.h" 46 #include "migration/page_cache.h" 47 #include "qemu/error-report.h" 48 #include "trace.h" 49 #include "exec/ram_addr.h" 50 #include "qemu/rcu_queue.h" 51 #include "migration/colo.h" 52 53 /***********************************************************/ 54 /* ram save/restore */ 55 56 /* RAM_SAVE_FLAG_ZERO used to be named RAM_SAVE_FLAG_COMPRESS, it 57 * worked for pages that where filled with the same char. We switched 58 * it to only search for the zero value. And to avoid confusion with 59 * RAM_SSAVE_FLAG_COMPRESS_PAGE just rename it. 60 */ 61 62 #define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */ 63 #define RAM_SAVE_FLAG_ZERO 0x02 64 #define RAM_SAVE_FLAG_MEM_SIZE 0x04 65 #define RAM_SAVE_FLAG_PAGE 0x08 66 #define RAM_SAVE_FLAG_EOS 0x10 67 #define RAM_SAVE_FLAG_CONTINUE 0x20 68 #define RAM_SAVE_FLAG_XBZRLE 0x40 69 /* 0x80 is reserved in migration.h start with 0x100 next */ 70 #define RAM_SAVE_FLAG_COMPRESS_PAGE 0x100 71 72 static inline bool is_zero_range(uint8_t *p, uint64_t size) 73 { 74 return buffer_is_zero(p, size); 75 } 76 77 XBZRLECacheStats xbzrle_counters; 78 79 /* struct contains XBZRLE cache and a static page 80 used by the compression */ 81 static struct { 82 /* buffer used for XBZRLE encoding */ 83 uint8_t *encoded_buf; 84 /* buffer for storing page content */ 85 uint8_t *current_buf; 86 /* Cache for XBZRLE, Protected by lock. */ 87 PageCache *cache; 88 QemuMutex lock; 89 /* it will store a page full of zeros */ 90 uint8_t *zero_target_page; 91 } XBZRLE; 92 93 /* buffer used for XBZRLE decoding */ 94 static uint8_t *xbzrle_decoded_buf; 95 96 static void XBZRLE_cache_lock(void) 97 { 98 if (migrate_use_xbzrle()) 99 qemu_mutex_lock(&XBZRLE.lock); 100 } 101 102 static void XBZRLE_cache_unlock(void) 103 { 104 if (migrate_use_xbzrle()) 105 qemu_mutex_unlock(&XBZRLE.lock); 106 } 107 108 /** 109 * xbzrle_cache_resize: resize the xbzrle cache 110 * 111 * This function is called from qmp_migrate_set_cache_size in main 112 * thread, possibly while a migration is in progress. A running 113 * migration may be using the cache and might finish during this call, 114 * hence changes to the cache are protected by XBZRLE.lock(). 115 * 116 * Returns the new_size or negative in case of error. 117 * 118 * @new_size: new cache size 119 */ 120 int64_t xbzrle_cache_resize(int64_t new_size) 121 { 122 PageCache *new_cache; 123 int64_t ret; 124 125 if (new_size < TARGET_PAGE_SIZE) { 126 return -1; 127 } 128 129 XBZRLE_cache_lock(); 130 131 if (XBZRLE.cache != NULL) { 132 if (pow2floor(new_size) == migrate_xbzrle_cache_size()) { 133 goto out_new_size; 134 } 135 new_cache = cache_init(new_size / TARGET_PAGE_SIZE, 136 TARGET_PAGE_SIZE); 137 if (!new_cache) { 138 error_report("Error creating cache"); 139 ret = -1; 140 goto out; 141 } 142 143 cache_fini(XBZRLE.cache); 144 XBZRLE.cache = new_cache; 145 } 146 147 out_new_size: 148 ret = pow2floor(new_size); 149 out: 150 XBZRLE_cache_unlock(); 151 return ret; 152 } 153 154 /* 155 * An outstanding page request, on the source, having been received 156 * and queued 157 */ 158 struct RAMSrcPageRequest { 159 RAMBlock *rb; 160 hwaddr offset; 161 hwaddr len; 162 163 QSIMPLEQ_ENTRY(RAMSrcPageRequest) next_req; 164 }; 165 166 /* State of RAM for migration */ 167 struct RAMState { 168 /* QEMUFile used for this migration */ 169 QEMUFile *f; 170 /* Last block that we have visited searching for dirty pages */ 171 RAMBlock *last_seen_block; 172 /* Last block from where we have sent data */ 173 RAMBlock *last_sent_block; 174 /* Last dirty target page we have sent */ 175 ram_addr_t last_page; 176 /* last ram version we have seen */ 177 uint32_t last_version; 178 /* We are in the first round */ 179 bool ram_bulk_stage; 180 /* How many times we have dirty too many pages */ 181 int dirty_rate_high_cnt; 182 /* these variables are used for bitmap sync */ 183 /* last time we did a full bitmap_sync */ 184 int64_t time_last_bitmap_sync; 185 /* bytes transferred at start_time */ 186 uint64_t bytes_xfer_prev; 187 /* number of dirty pages since start_time */ 188 uint64_t num_dirty_pages_period; 189 /* xbzrle misses since the beginning of the period */ 190 uint64_t xbzrle_cache_miss_prev; 191 /* number of iterations at the beginning of period */ 192 uint64_t iterations_prev; 193 /* Iterations since start */ 194 uint64_t iterations; 195 /* protects modification of the bitmap */ 196 uint64_t migration_dirty_pages; 197 /* number of dirty bits in the bitmap */ 198 QemuMutex bitmap_mutex; 199 /* The RAMBlock used in the last src_page_requests */ 200 RAMBlock *last_req_rb; 201 /* Queue of outstanding page requests from the destination */ 202 QemuMutex src_page_req_mutex; 203 QSIMPLEQ_HEAD(src_page_requests, RAMSrcPageRequest) src_page_requests; 204 }; 205 typedef struct RAMState RAMState; 206 207 static RAMState *ram_state; 208 209 uint64_t ram_bytes_remaining(void) 210 { 211 return ram_state->migration_dirty_pages * TARGET_PAGE_SIZE; 212 } 213 214 MigrationStats ram_counters; 215 216 /* used by the search for pages to send */ 217 struct PageSearchStatus { 218 /* Current block being searched */ 219 RAMBlock *block; 220 /* Current page to search from */ 221 unsigned long page; 222 /* Set once we wrap around */ 223 bool complete_round; 224 }; 225 typedef struct PageSearchStatus PageSearchStatus; 226 227 struct CompressParam { 228 bool done; 229 bool quit; 230 QEMUFile *file; 231 QemuMutex mutex; 232 QemuCond cond; 233 RAMBlock *block; 234 ram_addr_t offset; 235 }; 236 typedef struct CompressParam CompressParam; 237 238 struct DecompressParam { 239 bool done; 240 bool quit; 241 QemuMutex mutex; 242 QemuCond cond; 243 void *des; 244 uint8_t *compbuf; 245 int len; 246 }; 247 typedef struct DecompressParam DecompressParam; 248 249 static CompressParam *comp_param; 250 static QemuThread *compress_threads; 251 /* comp_done_cond is used to wake up the migration thread when 252 * one of the compression threads has finished the compression. 253 * comp_done_lock is used to co-work with comp_done_cond. 254 */ 255 static QemuMutex comp_done_lock; 256 static QemuCond comp_done_cond; 257 /* The empty QEMUFileOps will be used by file in CompressParam */ 258 static const QEMUFileOps empty_ops = { }; 259 260 static DecompressParam *decomp_param; 261 static QemuThread *decompress_threads; 262 static QemuMutex decomp_done_lock; 263 static QemuCond decomp_done_cond; 264 265 static int do_compress_ram_page(QEMUFile *f, RAMBlock *block, 266 ram_addr_t offset); 267 268 static void *do_data_compress(void *opaque) 269 { 270 CompressParam *param = opaque; 271 RAMBlock *block; 272 ram_addr_t offset; 273 274 qemu_mutex_lock(¶m->mutex); 275 while (!param->quit) { 276 if (param->block) { 277 block = param->block; 278 offset = param->offset; 279 param->block = NULL; 280 qemu_mutex_unlock(¶m->mutex); 281 282 do_compress_ram_page(param->file, block, offset); 283 284 qemu_mutex_lock(&comp_done_lock); 285 param->done = true; 286 qemu_cond_signal(&comp_done_cond); 287 qemu_mutex_unlock(&comp_done_lock); 288 289 qemu_mutex_lock(¶m->mutex); 290 } else { 291 qemu_cond_wait(¶m->cond, ¶m->mutex); 292 } 293 } 294 qemu_mutex_unlock(¶m->mutex); 295 296 return NULL; 297 } 298 299 static inline void terminate_compression_threads(void) 300 { 301 int idx, thread_count; 302 303 thread_count = migrate_compress_threads(); 304 305 for (idx = 0; idx < thread_count; idx++) { 306 qemu_mutex_lock(&comp_param[idx].mutex); 307 comp_param[idx].quit = true; 308 qemu_cond_signal(&comp_param[idx].cond); 309 qemu_mutex_unlock(&comp_param[idx].mutex); 310 } 311 } 312 313 void migrate_compress_threads_join(void) 314 { 315 int i, thread_count; 316 317 if (!migrate_use_compression()) { 318 return; 319 } 320 terminate_compression_threads(); 321 thread_count = migrate_compress_threads(); 322 for (i = 0; i < thread_count; i++) { 323 qemu_thread_join(compress_threads + i); 324 qemu_fclose(comp_param[i].file); 325 qemu_mutex_destroy(&comp_param[i].mutex); 326 qemu_cond_destroy(&comp_param[i].cond); 327 } 328 qemu_mutex_destroy(&comp_done_lock); 329 qemu_cond_destroy(&comp_done_cond); 330 g_free(compress_threads); 331 g_free(comp_param); 332 compress_threads = NULL; 333 comp_param = NULL; 334 } 335 336 void migrate_compress_threads_create(void) 337 { 338 int i, thread_count; 339 340 if (!migrate_use_compression()) { 341 return; 342 } 343 thread_count = migrate_compress_threads(); 344 compress_threads = g_new0(QemuThread, thread_count); 345 comp_param = g_new0(CompressParam, thread_count); 346 qemu_cond_init(&comp_done_cond); 347 qemu_mutex_init(&comp_done_lock); 348 for (i = 0; i < thread_count; i++) { 349 /* comp_param[i].file is just used as a dummy buffer to save data, 350 * set its ops to empty. 351 */ 352 comp_param[i].file = qemu_fopen_ops(NULL, &empty_ops); 353 comp_param[i].done = true; 354 comp_param[i].quit = false; 355 qemu_mutex_init(&comp_param[i].mutex); 356 qemu_cond_init(&comp_param[i].cond); 357 qemu_thread_create(compress_threads + i, "compress", 358 do_data_compress, comp_param + i, 359 QEMU_THREAD_JOINABLE); 360 } 361 } 362 363 /** 364 * save_page_header: write page header to wire 365 * 366 * If this is the 1st block, it also writes the block identification 367 * 368 * Returns the number of bytes written 369 * 370 * @f: QEMUFile where to send the data 371 * @block: block that contains the page we want to send 372 * @offset: offset inside the block for the page 373 * in the lower bits, it contains flags 374 */ 375 static size_t save_page_header(RAMState *rs, QEMUFile *f, RAMBlock *block, 376 ram_addr_t offset) 377 { 378 size_t size, len; 379 380 if (block == rs->last_sent_block) { 381 offset |= RAM_SAVE_FLAG_CONTINUE; 382 } 383 qemu_put_be64(f, offset); 384 size = 8; 385 386 if (!(offset & RAM_SAVE_FLAG_CONTINUE)) { 387 len = strlen(block->idstr); 388 qemu_put_byte(f, len); 389 qemu_put_buffer(f, (uint8_t *)block->idstr, len); 390 size += 1 + len; 391 rs->last_sent_block = block; 392 } 393 return size; 394 } 395 396 /** 397 * mig_throttle_guest_down: throotle down the guest 398 * 399 * Reduce amount of guest cpu execution to hopefully slow down memory 400 * writes. If guest dirty memory rate is reduced below the rate at 401 * which we can transfer pages to the destination then we should be 402 * able to complete migration. Some workloads dirty memory way too 403 * fast and will not effectively converge, even with auto-converge. 404 */ 405 static void mig_throttle_guest_down(void) 406 { 407 MigrationState *s = migrate_get_current(); 408 uint64_t pct_initial = s->parameters.cpu_throttle_initial; 409 uint64_t pct_icrement = s->parameters.cpu_throttle_increment; 410 411 /* We have not started throttling yet. Let's start it. */ 412 if (!cpu_throttle_active()) { 413 cpu_throttle_set(pct_initial); 414 } else { 415 /* Throttling already on, just increase the rate */ 416 cpu_throttle_set(cpu_throttle_get_percentage() + pct_icrement); 417 } 418 } 419 420 /** 421 * xbzrle_cache_zero_page: insert a zero page in the XBZRLE cache 422 * 423 * @rs: current RAM state 424 * @current_addr: address for the zero page 425 * 426 * Update the xbzrle cache to reflect a page that's been sent as all 0. 427 * The important thing is that a stale (not-yet-0'd) page be replaced 428 * by the new data. 429 * As a bonus, if the page wasn't in the cache it gets added so that 430 * when a small write is made into the 0'd page it gets XBZRLE sent. 431 */ 432 static void xbzrle_cache_zero_page(RAMState *rs, ram_addr_t current_addr) 433 { 434 if (rs->ram_bulk_stage || !migrate_use_xbzrle()) { 435 return; 436 } 437 438 /* We don't care if this fails to allocate a new cache page 439 * as long as it updated an old one */ 440 cache_insert(XBZRLE.cache, current_addr, XBZRLE.zero_target_page, 441 ram_counters.dirty_sync_count); 442 } 443 444 #define ENCODING_FLAG_XBZRLE 0x1 445 446 /** 447 * save_xbzrle_page: compress and send current page 448 * 449 * Returns: 1 means that we wrote the page 450 * 0 means that page is identical to the one already sent 451 * -1 means that xbzrle would be longer than normal 452 * 453 * @rs: current RAM state 454 * @current_data: pointer to the address of the page contents 455 * @current_addr: addr of the page 456 * @block: block that contains the page we want to send 457 * @offset: offset inside the block for the page 458 * @last_stage: if we are at the completion stage 459 */ 460 static int save_xbzrle_page(RAMState *rs, uint8_t **current_data, 461 ram_addr_t current_addr, RAMBlock *block, 462 ram_addr_t offset, bool last_stage) 463 { 464 int encoded_len = 0, bytes_xbzrle; 465 uint8_t *prev_cached_page; 466 467 if (!cache_is_cached(XBZRLE.cache, current_addr, 468 ram_counters.dirty_sync_count)) { 469 xbzrle_counters.cache_miss++; 470 if (!last_stage) { 471 if (cache_insert(XBZRLE.cache, current_addr, *current_data, 472 ram_counters.dirty_sync_count) == -1) { 473 return -1; 474 } else { 475 /* update *current_data when the page has been 476 inserted into cache */ 477 *current_data = get_cached_data(XBZRLE.cache, current_addr); 478 } 479 } 480 return -1; 481 } 482 483 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr); 484 485 /* save current buffer into memory */ 486 memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE); 487 488 /* XBZRLE encoding (if there is no overflow) */ 489 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf, 490 TARGET_PAGE_SIZE, XBZRLE.encoded_buf, 491 TARGET_PAGE_SIZE); 492 if (encoded_len == 0) { 493 trace_save_xbzrle_page_skipping(); 494 return 0; 495 } else if (encoded_len == -1) { 496 trace_save_xbzrle_page_overflow(); 497 xbzrle_counters.overflow++; 498 /* update data in the cache */ 499 if (!last_stage) { 500 memcpy(prev_cached_page, *current_data, TARGET_PAGE_SIZE); 501 *current_data = prev_cached_page; 502 } 503 return -1; 504 } 505 506 /* we need to update the data in the cache, in order to get the same data */ 507 if (!last_stage) { 508 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE); 509 } 510 511 /* Send XBZRLE based compressed page */ 512 bytes_xbzrle = save_page_header(rs, rs->f, block, 513 offset | RAM_SAVE_FLAG_XBZRLE); 514 qemu_put_byte(rs->f, ENCODING_FLAG_XBZRLE); 515 qemu_put_be16(rs->f, encoded_len); 516 qemu_put_buffer(rs->f, XBZRLE.encoded_buf, encoded_len); 517 bytes_xbzrle += encoded_len + 1 + 2; 518 xbzrle_counters.pages++; 519 xbzrle_counters.bytes += bytes_xbzrle; 520 ram_counters.transferred += bytes_xbzrle; 521 522 return 1; 523 } 524 525 /** 526 * migration_bitmap_find_dirty: find the next dirty page from start 527 * 528 * Called with rcu_read_lock() to protect migration_bitmap 529 * 530 * Returns the byte offset within memory region of the start of a dirty page 531 * 532 * @rs: current RAM state 533 * @rb: RAMBlock where to search for dirty pages 534 * @start: page where we start the search 535 */ 536 static inline 537 unsigned long migration_bitmap_find_dirty(RAMState *rs, RAMBlock *rb, 538 unsigned long start) 539 { 540 unsigned long size = rb->used_length >> TARGET_PAGE_BITS; 541 unsigned long *bitmap = rb->bmap; 542 unsigned long next; 543 544 if (rs->ram_bulk_stage && start > 0) { 545 next = start + 1; 546 } else { 547 next = find_next_bit(bitmap, size, start); 548 } 549 550 return next; 551 } 552 553 static inline bool migration_bitmap_clear_dirty(RAMState *rs, 554 RAMBlock *rb, 555 unsigned long page) 556 { 557 bool ret; 558 559 ret = test_and_clear_bit(page, rb->bmap); 560 561 if (ret) { 562 rs->migration_dirty_pages--; 563 } 564 return ret; 565 } 566 567 static void migration_bitmap_sync_range(RAMState *rs, RAMBlock *rb, 568 ram_addr_t start, ram_addr_t length) 569 { 570 rs->migration_dirty_pages += 571 cpu_physical_memory_sync_dirty_bitmap(rb, start, length, 572 &rs->num_dirty_pages_period); 573 } 574 575 /** 576 * ram_pagesize_summary: calculate all the pagesizes of a VM 577 * 578 * Returns a summary bitmap of the page sizes of all RAMBlocks 579 * 580 * For VMs with just normal pages this is equivalent to the host page 581 * size. If it's got some huge pages then it's the OR of all the 582 * different page sizes. 583 */ 584 uint64_t ram_pagesize_summary(void) 585 { 586 RAMBlock *block; 587 uint64_t summary = 0; 588 589 RAMBLOCK_FOREACH(block) { 590 summary |= block->page_size; 591 } 592 593 return summary; 594 } 595 596 static void migration_bitmap_sync(RAMState *rs) 597 { 598 RAMBlock *block; 599 int64_t end_time; 600 uint64_t bytes_xfer_now; 601 602 ram_counters.dirty_sync_count++; 603 604 if (!rs->time_last_bitmap_sync) { 605 rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); 606 } 607 608 trace_migration_bitmap_sync_start(); 609 memory_global_dirty_log_sync(); 610 611 qemu_mutex_lock(&rs->bitmap_mutex); 612 rcu_read_lock(); 613 RAMBLOCK_FOREACH(block) { 614 migration_bitmap_sync_range(rs, block, 0, block->used_length); 615 } 616 rcu_read_unlock(); 617 qemu_mutex_unlock(&rs->bitmap_mutex); 618 619 trace_migration_bitmap_sync_end(rs->num_dirty_pages_period); 620 621 end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); 622 623 /* more than 1 second = 1000 millisecons */ 624 if (end_time > rs->time_last_bitmap_sync + 1000) { 625 /* calculate period counters */ 626 ram_counters.dirty_pages_rate = rs->num_dirty_pages_period * 1000 627 / (end_time - rs->time_last_bitmap_sync); 628 bytes_xfer_now = ram_counters.transferred; 629 630 if (migrate_auto_converge()) { 631 /* The following detection logic can be refined later. For now: 632 Check to see if the dirtied bytes is 50% more than the approx. 633 amount of bytes that just got transferred since the last time we 634 were in this routine. If that happens twice, start or increase 635 throttling */ 636 637 if ((rs->num_dirty_pages_period * TARGET_PAGE_SIZE > 638 (bytes_xfer_now - rs->bytes_xfer_prev) / 2) && 639 (++rs->dirty_rate_high_cnt >= 2)) { 640 trace_migration_throttle(); 641 rs->dirty_rate_high_cnt = 0; 642 mig_throttle_guest_down(); 643 } 644 } 645 646 if (migrate_use_xbzrle()) { 647 if (rs->iterations_prev != rs->iterations) { 648 xbzrle_counters.cache_miss_rate = 649 (double)(xbzrle_counters.cache_miss - 650 rs->xbzrle_cache_miss_prev) / 651 (rs->iterations - rs->iterations_prev); 652 } 653 rs->iterations_prev = rs->iterations; 654 rs->xbzrle_cache_miss_prev = xbzrle_counters.cache_miss; 655 } 656 657 /* reset period counters */ 658 rs->time_last_bitmap_sync = end_time; 659 rs->num_dirty_pages_period = 0; 660 rs->bytes_xfer_prev = bytes_xfer_now; 661 } 662 if (migrate_use_events()) { 663 qapi_event_send_migration_pass(ram_counters.dirty_sync_count, NULL); 664 } 665 } 666 667 /** 668 * save_zero_page: send the zero page to the stream 669 * 670 * Returns the number of pages written. 671 * 672 * @rs: current RAM state 673 * @block: block that contains the page we want to send 674 * @offset: offset inside the block for the page 675 * @p: pointer to the page 676 */ 677 static int save_zero_page(RAMState *rs, RAMBlock *block, ram_addr_t offset, 678 uint8_t *p) 679 { 680 int pages = -1; 681 682 if (is_zero_range(p, TARGET_PAGE_SIZE)) { 683 ram_counters.duplicate++; 684 ram_counters.transferred += 685 save_page_header(rs, rs->f, block, offset | RAM_SAVE_FLAG_ZERO); 686 qemu_put_byte(rs->f, 0); 687 ram_counters.transferred += 1; 688 pages = 1; 689 } 690 691 return pages; 692 } 693 694 static void ram_release_pages(const char *rbname, uint64_t offset, int pages) 695 { 696 if (!migrate_release_ram() || !migration_in_postcopy()) { 697 return; 698 } 699 700 ram_discard_range(rbname, offset, pages << TARGET_PAGE_BITS); 701 } 702 703 /** 704 * ram_save_page: send the given page to the stream 705 * 706 * Returns the number of pages written. 707 * < 0 - error 708 * >=0 - Number of pages written - this might legally be 0 709 * if xbzrle noticed the page was the same. 710 * 711 * @rs: current RAM state 712 * @block: block that contains the page we want to send 713 * @offset: offset inside the block for the page 714 * @last_stage: if we are at the completion stage 715 */ 716 static int ram_save_page(RAMState *rs, PageSearchStatus *pss, bool last_stage) 717 { 718 int pages = -1; 719 uint64_t bytes_xmit; 720 ram_addr_t current_addr; 721 uint8_t *p; 722 int ret; 723 bool send_async = true; 724 RAMBlock *block = pss->block; 725 ram_addr_t offset = pss->page << TARGET_PAGE_BITS; 726 727 p = block->host + offset; 728 trace_ram_save_page(block->idstr, (uint64_t)offset, p); 729 730 /* In doubt sent page as normal */ 731 bytes_xmit = 0; 732 ret = ram_control_save_page(rs->f, block->offset, 733 offset, TARGET_PAGE_SIZE, &bytes_xmit); 734 if (bytes_xmit) { 735 ram_counters.transferred += bytes_xmit; 736 pages = 1; 737 } 738 739 XBZRLE_cache_lock(); 740 741 current_addr = block->offset + offset; 742 743 if (ret != RAM_SAVE_CONTROL_NOT_SUPP) { 744 if (ret != RAM_SAVE_CONTROL_DELAYED) { 745 if (bytes_xmit > 0) { 746 ram_counters.normal++; 747 } else if (bytes_xmit == 0) { 748 ram_counters.duplicate++; 749 } 750 } 751 } else { 752 pages = save_zero_page(rs, block, offset, p); 753 if (pages > 0) { 754 /* Must let xbzrle know, otherwise a previous (now 0'd) cached 755 * page would be stale 756 */ 757 xbzrle_cache_zero_page(rs, current_addr); 758 ram_release_pages(block->idstr, offset, pages); 759 } else if (!rs->ram_bulk_stage && 760 !migration_in_postcopy() && migrate_use_xbzrle()) { 761 pages = save_xbzrle_page(rs, &p, current_addr, block, 762 offset, last_stage); 763 if (!last_stage) { 764 /* Can't send this cached data async, since the cache page 765 * might get updated before it gets to the wire 766 */ 767 send_async = false; 768 } 769 } 770 } 771 772 /* XBZRLE overflow or normal page */ 773 if (pages == -1) { 774 ram_counters.transferred += 775 save_page_header(rs, rs->f, block, offset | RAM_SAVE_FLAG_PAGE); 776 if (send_async) { 777 qemu_put_buffer_async(rs->f, p, TARGET_PAGE_SIZE, 778 migrate_release_ram() & 779 migration_in_postcopy()); 780 } else { 781 qemu_put_buffer(rs->f, p, TARGET_PAGE_SIZE); 782 } 783 ram_counters.transferred += TARGET_PAGE_SIZE; 784 pages = 1; 785 ram_counters.normal++; 786 } 787 788 XBZRLE_cache_unlock(); 789 790 return pages; 791 } 792 793 static int do_compress_ram_page(QEMUFile *f, RAMBlock *block, 794 ram_addr_t offset) 795 { 796 RAMState *rs = ram_state; 797 int bytes_sent, blen; 798 uint8_t *p = block->host + (offset & TARGET_PAGE_MASK); 799 800 bytes_sent = save_page_header(rs, f, block, offset | 801 RAM_SAVE_FLAG_COMPRESS_PAGE); 802 blen = qemu_put_compression_data(f, p, TARGET_PAGE_SIZE, 803 migrate_compress_level()); 804 if (blen < 0) { 805 bytes_sent = 0; 806 qemu_file_set_error(migrate_get_current()->to_dst_file, blen); 807 error_report("compressed data failed!"); 808 } else { 809 bytes_sent += blen; 810 ram_release_pages(block->idstr, offset & TARGET_PAGE_MASK, 1); 811 } 812 813 return bytes_sent; 814 } 815 816 static void flush_compressed_data(RAMState *rs) 817 { 818 int idx, len, thread_count; 819 820 if (!migrate_use_compression()) { 821 return; 822 } 823 thread_count = migrate_compress_threads(); 824 825 qemu_mutex_lock(&comp_done_lock); 826 for (idx = 0; idx < thread_count; idx++) { 827 while (!comp_param[idx].done) { 828 qemu_cond_wait(&comp_done_cond, &comp_done_lock); 829 } 830 } 831 qemu_mutex_unlock(&comp_done_lock); 832 833 for (idx = 0; idx < thread_count; idx++) { 834 qemu_mutex_lock(&comp_param[idx].mutex); 835 if (!comp_param[idx].quit) { 836 len = qemu_put_qemu_file(rs->f, comp_param[idx].file); 837 ram_counters.transferred += len; 838 } 839 qemu_mutex_unlock(&comp_param[idx].mutex); 840 } 841 } 842 843 static inline void set_compress_params(CompressParam *param, RAMBlock *block, 844 ram_addr_t offset) 845 { 846 param->block = block; 847 param->offset = offset; 848 } 849 850 static int compress_page_with_multi_thread(RAMState *rs, RAMBlock *block, 851 ram_addr_t offset) 852 { 853 int idx, thread_count, bytes_xmit = -1, pages = -1; 854 855 thread_count = migrate_compress_threads(); 856 qemu_mutex_lock(&comp_done_lock); 857 while (true) { 858 for (idx = 0; idx < thread_count; idx++) { 859 if (comp_param[idx].done) { 860 comp_param[idx].done = false; 861 bytes_xmit = qemu_put_qemu_file(rs->f, comp_param[idx].file); 862 qemu_mutex_lock(&comp_param[idx].mutex); 863 set_compress_params(&comp_param[idx], block, offset); 864 qemu_cond_signal(&comp_param[idx].cond); 865 qemu_mutex_unlock(&comp_param[idx].mutex); 866 pages = 1; 867 ram_counters.normal++; 868 ram_counters.transferred += bytes_xmit; 869 break; 870 } 871 } 872 if (pages > 0) { 873 break; 874 } else { 875 qemu_cond_wait(&comp_done_cond, &comp_done_lock); 876 } 877 } 878 qemu_mutex_unlock(&comp_done_lock); 879 880 return pages; 881 } 882 883 /** 884 * ram_save_compressed_page: compress the given page and send it to the stream 885 * 886 * Returns the number of pages written. 887 * 888 * @rs: current RAM state 889 * @block: block that contains the page we want to send 890 * @offset: offset inside the block for the page 891 * @last_stage: if we are at the completion stage 892 */ 893 static int ram_save_compressed_page(RAMState *rs, PageSearchStatus *pss, 894 bool last_stage) 895 { 896 int pages = -1; 897 uint64_t bytes_xmit = 0; 898 uint8_t *p; 899 int ret, blen; 900 RAMBlock *block = pss->block; 901 ram_addr_t offset = pss->page << TARGET_PAGE_BITS; 902 903 p = block->host + offset; 904 905 ret = ram_control_save_page(rs->f, block->offset, 906 offset, TARGET_PAGE_SIZE, &bytes_xmit); 907 if (bytes_xmit) { 908 ram_counters.transferred += bytes_xmit; 909 pages = 1; 910 } 911 if (ret != RAM_SAVE_CONTROL_NOT_SUPP) { 912 if (ret != RAM_SAVE_CONTROL_DELAYED) { 913 if (bytes_xmit > 0) { 914 ram_counters.normal++; 915 } else if (bytes_xmit == 0) { 916 ram_counters.duplicate++; 917 } 918 } 919 } else { 920 /* When starting the process of a new block, the first page of 921 * the block should be sent out before other pages in the same 922 * block, and all the pages in last block should have been sent 923 * out, keeping this order is important, because the 'cont' flag 924 * is used to avoid resending the block name. 925 */ 926 if (block != rs->last_sent_block) { 927 flush_compressed_data(rs); 928 pages = save_zero_page(rs, block, offset, p); 929 if (pages == -1) { 930 /* Make sure the first page is sent out before other pages */ 931 bytes_xmit = save_page_header(rs, rs->f, block, offset | 932 RAM_SAVE_FLAG_COMPRESS_PAGE); 933 blen = qemu_put_compression_data(rs->f, p, TARGET_PAGE_SIZE, 934 migrate_compress_level()); 935 if (blen > 0) { 936 ram_counters.transferred += bytes_xmit + blen; 937 ram_counters.normal++; 938 pages = 1; 939 } else { 940 qemu_file_set_error(rs->f, blen); 941 error_report("compressed data failed!"); 942 } 943 } 944 if (pages > 0) { 945 ram_release_pages(block->idstr, offset, pages); 946 } 947 } else { 948 pages = save_zero_page(rs, block, offset, p); 949 if (pages == -1) { 950 pages = compress_page_with_multi_thread(rs, block, offset); 951 } else { 952 ram_release_pages(block->idstr, offset, pages); 953 } 954 } 955 } 956 957 return pages; 958 } 959 960 /** 961 * find_dirty_block: find the next dirty page and update any state 962 * associated with the search process. 963 * 964 * Returns if a page is found 965 * 966 * @rs: current RAM state 967 * @pss: data about the state of the current dirty page scan 968 * @again: set to false if the search has scanned the whole of RAM 969 */ 970 static bool find_dirty_block(RAMState *rs, PageSearchStatus *pss, bool *again) 971 { 972 pss->page = migration_bitmap_find_dirty(rs, pss->block, pss->page); 973 if (pss->complete_round && pss->block == rs->last_seen_block && 974 pss->page >= rs->last_page) { 975 /* 976 * We've been once around the RAM and haven't found anything. 977 * Give up. 978 */ 979 *again = false; 980 return false; 981 } 982 if ((pss->page << TARGET_PAGE_BITS) >= pss->block->used_length) { 983 /* Didn't find anything in this RAM Block */ 984 pss->page = 0; 985 pss->block = QLIST_NEXT_RCU(pss->block, next); 986 if (!pss->block) { 987 /* Hit the end of the list */ 988 pss->block = QLIST_FIRST_RCU(&ram_list.blocks); 989 /* Flag that we've looped */ 990 pss->complete_round = true; 991 rs->ram_bulk_stage = false; 992 if (migrate_use_xbzrle()) { 993 /* If xbzrle is on, stop using the data compression at this 994 * point. In theory, xbzrle can do better than compression. 995 */ 996 flush_compressed_data(rs); 997 } 998 } 999 /* Didn't find anything this time, but try again on the new block */ 1000 *again = true; 1001 return false; 1002 } else { 1003 /* Can go around again, but... */ 1004 *again = true; 1005 /* We've found something so probably don't need to */ 1006 return true; 1007 } 1008 } 1009 1010 /** 1011 * unqueue_page: gets a page of the queue 1012 * 1013 * Helper for 'get_queued_page' - gets a page off the queue 1014 * 1015 * Returns the block of the page (or NULL if none available) 1016 * 1017 * @rs: current RAM state 1018 * @offset: used to return the offset within the RAMBlock 1019 */ 1020 static RAMBlock *unqueue_page(RAMState *rs, ram_addr_t *offset) 1021 { 1022 RAMBlock *block = NULL; 1023 1024 qemu_mutex_lock(&rs->src_page_req_mutex); 1025 if (!QSIMPLEQ_EMPTY(&rs->src_page_requests)) { 1026 struct RAMSrcPageRequest *entry = 1027 QSIMPLEQ_FIRST(&rs->src_page_requests); 1028 block = entry->rb; 1029 *offset = entry->offset; 1030 1031 if (entry->len > TARGET_PAGE_SIZE) { 1032 entry->len -= TARGET_PAGE_SIZE; 1033 entry->offset += TARGET_PAGE_SIZE; 1034 } else { 1035 memory_region_unref(block->mr); 1036 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req); 1037 g_free(entry); 1038 } 1039 } 1040 qemu_mutex_unlock(&rs->src_page_req_mutex); 1041 1042 return block; 1043 } 1044 1045 /** 1046 * get_queued_page: unqueue a page from the postocpy requests 1047 * 1048 * Skips pages that are already sent (!dirty) 1049 * 1050 * Returns if a queued page is found 1051 * 1052 * @rs: current RAM state 1053 * @pss: data about the state of the current dirty page scan 1054 */ 1055 static bool get_queued_page(RAMState *rs, PageSearchStatus *pss) 1056 { 1057 RAMBlock *block; 1058 ram_addr_t offset; 1059 bool dirty; 1060 1061 do { 1062 block = unqueue_page(rs, &offset); 1063 /* 1064 * We're sending this page, and since it's postcopy nothing else 1065 * will dirty it, and we must make sure it doesn't get sent again 1066 * even if this queue request was received after the background 1067 * search already sent it. 1068 */ 1069 if (block) { 1070 unsigned long page; 1071 1072 page = offset >> TARGET_PAGE_BITS; 1073 dirty = test_bit(page, block->bmap); 1074 if (!dirty) { 1075 trace_get_queued_page_not_dirty(block->idstr, (uint64_t)offset, 1076 page, test_bit(page, block->unsentmap)); 1077 } else { 1078 trace_get_queued_page(block->idstr, (uint64_t)offset, page); 1079 } 1080 } 1081 1082 } while (block && !dirty); 1083 1084 if (block) { 1085 /* 1086 * As soon as we start servicing pages out of order, then we have 1087 * to kill the bulk stage, since the bulk stage assumes 1088 * in (migration_bitmap_find_and_reset_dirty) that every page is 1089 * dirty, that's no longer true. 1090 */ 1091 rs->ram_bulk_stage = false; 1092 1093 /* 1094 * We want the background search to continue from the queued page 1095 * since the guest is likely to want other pages near to the page 1096 * it just requested. 1097 */ 1098 pss->block = block; 1099 pss->page = offset >> TARGET_PAGE_BITS; 1100 } 1101 1102 return !!block; 1103 } 1104 1105 /** 1106 * migration_page_queue_free: drop any remaining pages in the ram 1107 * request queue 1108 * 1109 * It should be empty at the end anyway, but in error cases there may 1110 * be some left. in case that there is any page left, we drop it. 1111 * 1112 */ 1113 static void migration_page_queue_free(RAMState *rs) 1114 { 1115 struct RAMSrcPageRequest *mspr, *next_mspr; 1116 /* This queue generally should be empty - but in the case of a failed 1117 * migration might have some droppings in. 1118 */ 1119 rcu_read_lock(); 1120 QSIMPLEQ_FOREACH_SAFE(mspr, &rs->src_page_requests, next_req, next_mspr) { 1121 memory_region_unref(mspr->rb->mr); 1122 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req); 1123 g_free(mspr); 1124 } 1125 rcu_read_unlock(); 1126 } 1127 1128 /** 1129 * ram_save_queue_pages: queue the page for transmission 1130 * 1131 * A request from postcopy destination for example. 1132 * 1133 * Returns zero on success or negative on error 1134 * 1135 * @rbname: Name of the RAMBLock of the request. NULL means the 1136 * same that last one. 1137 * @start: starting address from the start of the RAMBlock 1138 * @len: length (in bytes) to send 1139 */ 1140 int ram_save_queue_pages(const char *rbname, ram_addr_t start, ram_addr_t len) 1141 { 1142 RAMBlock *ramblock; 1143 RAMState *rs = ram_state; 1144 1145 ram_counters.postcopy_requests++; 1146 rcu_read_lock(); 1147 if (!rbname) { 1148 /* Reuse last RAMBlock */ 1149 ramblock = rs->last_req_rb; 1150 1151 if (!ramblock) { 1152 /* 1153 * Shouldn't happen, we can't reuse the last RAMBlock if 1154 * it's the 1st request. 1155 */ 1156 error_report("ram_save_queue_pages no previous block"); 1157 goto err; 1158 } 1159 } else { 1160 ramblock = qemu_ram_block_by_name(rbname); 1161 1162 if (!ramblock) { 1163 /* We shouldn't be asked for a non-existent RAMBlock */ 1164 error_report("ram_save_queue_pages no block '%s'", rbname); 1165 goto err; 1166 } 1167 rs->last_req_rb = ramblock; 1168 } 1169 trace_ram_save_queue_pages(ramblock->idstr, start, len); 1170 if (start+len > ramblock->used_length) { 1171 error_report("%s request overrun start=" RAM_ADDR_FMT " len=" 1172 RAM_ADDR_FMT " blocklen=" RAM_ADDR_FMT, 1173 __func__, start, len, ramblock->used_length); 1174 goto err; 1175 } 1176 1177 struct RAMSrcPageRequest *new_entry = 1178 g_malloc0(sizeof(struct RAMSrcPageRequest)); 1179 new_entry->rb = ramblock; 1180 new_entry->offset = start; 1181 new_entry->len = len; 1182 1183 memory_region_ref(ramblock->mr); 1184 qemu_mutex_lock(&rs->src_page_req_mutex); 1185 QSIMPLEQ_INSERT_TAIL(&rs->src_page_requests, new_entry, next_req); 1186 qemu_mutex_unlock(&rs->src_page_req_mutex); 1187 rcu_read_unlock(); 1188 1189 return 0; 1190 1191 err: 1192 rcu_read_unlock(); 1193 return -1; 1194 } 1195 1196 /** 1197 * ram_save_target_page: save one target page 1198 * 1199 * Returns the number of pages written 1200 * 1201 * @rs: current RAM state 1202 * @ms: current migration state 1203 * @pss: data about the page we want to send 1204 * @last_stage: if we are at the completion stage 1205 */ 1206 static int ram_save_target_page(RAMState *rs, PageSearchStatus *pss, 1207 bool last_stage) 1208 { 1209 int res = 0; 1210 1211 /* Check the pages is dirty and if it is send it */ 1212 if (migration_bitmap_clear_dirty(rs, pss->block, pss->page)) { 1213 /* 1214 * If xbzrle is on, stop using the data compression after first 1215 * round of migration even if compression is enabled. In theory, 1216 * xbzrle can do better than compression. 1217 */ 1218 if (migrate_use_compression() && 1219 (rs->ram_bulk_stage || !migrate_use_xbzrle())) { 1220 res = ram_save_compressed_page(rs, pss, last_stage); 1221 } else { 1222 res = ram_save_page(rs, pss, last_stage); 1223 } 1224 1225 if (res < 0) { 1226 return res; 1227 } 1228 if (pss->block->unsentmap) { 1229 clear_bit(pss->page, pss->block->unsentmap); 1230 } 1231 } 1232 1233 return res; 1234 } 1235 1236 /** 1237 * ram_save_host_page: save a whole host page 1238 * 1239 * Starting at *offset send pages up to the end of the current host 1240 * page. It's valid for the initial offset to point into the middle of 1241 * a host page in which case the remainder of the hostpage is sent. 1242 * Only dirty target pages are sent. Note that the host page size may 1243 * be a huge page for this block. 1244 * The saving stops at the boundary of the used_length of the block 1245 * if the RAMBlock isn't a multiple of the host page size. 1246 * 1247 * Returns the number of pages written or negative on error 1248 * 1249 * @rs: current RAM state 1250 * @ms: current migration state 1251 * @pss: data about the page we want to send 1252 * @last_stage: if we are at the completion stage 1253 */ 1254 static int ram_save_host_page(RAMState *rs, PageSearchStatus *pss, 1255 bool last_stage) 1256 { 1257 int tmppages, pages = 0; 1258 size_t pagesize_bits = 1259 qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS; 1260 1261 do { 1262 tmppages = ram_save_target_page(rs, pss, last_stage); 1263 if (tmppages < 0) { 1264 return tmppages; 1265 } 1266 1267 pages += tmppages; 1268 pss->page++; 1269 } while ((pss->page & (pagesize_bits - 1)) && 1270 offset_in_ramblock(pss->block, pss->page << TARGET_PAGE_BITS)); 1271 1272 /* The offset we leave with is the last one we looked at */ 1273 pss->page--; 1274 return pages; 1275 } 1276 1277 /** 1278 * ram_find_and_save_block: finds a dirty page and sends it to f 1279 * 1280 * Called within an RCU critical section. 1281 * 1282 * Returns the number of pages written where zero means no dirty pages 1283 * 1284 * @rs: current RAM state 1285 * @last_stage: if we are at the completion stage 1286 * 1287 * On systems where host-page-size > target-page-size it will send all the 1288 * pages in a host page that are dirty. 1289 */ 1290 1291 static int ram_find_and_save_block(RAMState *rs, bool last_stage) 1292 { 1293 PageSearchStatus pss; 1294 int pages = 0; 1295 bool again, found; 1296 1297 /* No dirty page as there is zero RAM */ 1298 if (!ram_bytes_total()) { 1299 return pages; 1300 } 1301 1302 pss.block = rs->last_seen_block; 1303 pss.page = rs->last_page; 1304 pss.complete_round = false; 1305 1306 if (!pss.block) { 1307 pss.block = QLIST_FIRST_RCU(&ram_list.blocks); 1308 } 1309 1310 do { 1311 again = true; 1312 found = get_queued_page(rs, &pss); 1313 1314 if (!found) { 1315 /* priority queue empty, so just search for something dirty */ 1316 found = find_dirty_block(rs, &pss, &again); 1317 } 1318 1319 if (found) { 1320 pages = ram_save_host_page(rs, &pss, last_stage); 1321 } 1322 } while (!pages && again); 1323 1324 rs->last_seen_block = pss.block; 1325 rs->last_page = pss.page; 1326 1327 return pages; 1328 } 1329 1330 void acct_update_position(QEMUFile *f, size_t size, bool zero) 1331 { 1332 uint64_t pages = size / TARGET_PAGE_SIZE; 1333 1334 if (zero) { 1335 ram_counters.duplicate += pages; 1336 } else { 1337 ram_counters.normal += pages; 1338 ram_counters.transferred += size; 1339 qemu_update_position(f, size); 1340 } 1341 } 1342 1343 uint64_t ram_bytes_total(void) 1344 { 1345 RAMBlock *block; 1346 uint64_t total = 0; 1347 1348 rcu_read_lock(); 1349 RAMBLOCK_FOREACH(block) { 1350 total += block->used_length; 1351 } 1352 rcu_read_unlock(); 1353 return total; 1354 } 1355 1356 void free_xbzrle_decoded_buf(void) 1357 { 1358 g_free(xbzrle_decoded_buf); 1359 xbzrle_decoded_buf = NULL; 1360 } 1361 1362 static void ram_migration_cleanup(void *opaque) 1363 { 1364 RAMState **rsp = opaque; 1365 RAMBlock *block; 1366 1367 /* caller have hold iothread lock or is in a bh, so there is 1368 * no writing race against this migration_bitmap 1369 */ 1370 memory_global_dirty_log_stop(); 1371 1372 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { 1373 g_free(block->bmap); 1374 block->bmap = NULL; 1375 g_free(block->unsentmap); 1376 block->unsentmap = NULL; 1377 } 1378 1379 XBZRLE_cache_lock(); 1380 if (XBZRLE.cache) { 1381 cache_fini(XBZRLE.cache); 1382 g_free(XBZRLE.encoded_buf); 1383 g_free(XBZRLE.current_buf); 1384 g_free(XBZRLE.zero_target_page); 1385 XBZRLE.cache = NULL; 1386 XBZRLE.encoded_buf = NULL; 1387 XBZRLE.current_buf = NULL; 1388 XBZRLE.zero_target_page = NULL; 1389 } 1390 XBZRLE_cache_unlock(); 1391 migration_page_queue_free(*rsp); 1392 g_free(*rsp); 1393 *rsp = NULL; 1394 } 1395 1396 static void ram_state_reset(RAMState *rs) 1397 { 1398 rs->last_seen_block = NULL; 1399 rs->last_sent_block = NULL; 1400 rs->last_page = 0; 1401 rs->last_version = ram_list.version; 1402 rs->ram_bulk_stage = true; 1403 } 1404 1405 #define MAX_WAIT 50 /* ms, half buffered_file limit */ 1406 1407 /* 1408 * 'expected' is the value you expect the bitmap mostly to be full 1409 * of; it won't bother printing lines that are all this value. 1410 * If 'todump' is null the migration bitmap is dumped. 1411 */ 1412 void ram_debug_dump_bitmap(unsigned long *todump, bool expected, 1413 unsigned long pages) 1414 { 1415 int64_t cur; 1416 int64_t linelen = 128; 1417 char linebuf[129]; 1418 1419 for (cur = 0; cur < pages; cur += linelen) { 1420 int64_t curb; 1421 bool found = false; 1422 /* 1423 * Last line; catch the case where the line length 1424 * is longer than remaining ram 1425 */ 1426 if (cur + linelen > pages) { 1427 linelen = pages - cur; 1428 } 1429 for (curb = 0; curb < linelen; curb++) { 1430 bool thisbit = test_bit(cur + curb, todump); 1431 linebuf[curb] = thisbit ? '1' : '.'; 1432 found = found || (thisbit != expected); 1433 } 1434 if (found) { 1435 linebuf[curb] = '\0'; 1436 fprintf(stderr, "0x%08" PRIx64 " : %s\n", cur, linebuf); 1437 } 1438 } 1439 } 1440 1441 /* **** functions for postcopy ***** */ 1442 1443 void ram_postcopy_migrated_memory_release(MigrationState *ms) 1444 { 1445 struct RAMBlock *block; 1446 1447 RAMBLOCK_FOREACH(block) { 1448 unsigned long *bitmap = block->bmap; 1449 unsigned long range = block->used_length >> TARGET_PAGE_BITS; 1450 unsigned long run_start = find_next_zero_bit(bitmap, range, 0); 1451 1452 while (run_start < range) { 1453 unsigned long run_end = find_next_bit(bitmap, range, run_start + 1); 1454 ram_discard_range(block->idstr, run_start << TARGET_PAGE_BITS, 1455 (run_end - run_start) << TARGET_PAGE_BITS); 1456 run_start = find_next_zero_bit(bitmap, range, run_end + 1); 1457 } 1458 } 1459 } 1460 1461 /** 1462 * postcopy_send_discard_bm_ram: discard a RAMBlock 1463 * 1464 * Returns zero on success 1465 * 1466 * Callback from postcopy_each_ram_send_discard for each RAMBlock 1467 * Note: At this point the 'unsentmap' is the processed bitmap combined 1468 * with the dirtymap; so a '1' means it's either dirty or unsent. 1469 * 1470 * @ms: current migration state 1471 * @pds: state for postcopy 1472 * @start: RAMBlock starting page 1473 * @length: RAMBlock size 1474 */ 1475 static int postcopy_send_discard_bm_ram(MigrationState *ms, 1476 PostcopyDiscardState *pds, 1477 RAMBlock *block) 1478 { 1479 unsigned long end = block->used_length >> TARGET_PAGE_BITS; 1480 unsigned long current; 1481 unsigned long *unsentmap = block->unsentmap; 1482 1483 for (current = 0; current < end; ) { 1484 unsigned long one = find_next_bit(unsentmap, end, current); 1485 1486 if (one <= end) { 1487 unsigned long zero = find_next_zero_bit(unsentmap, end, one + 1); 1488 unsigned long discard_length; 1489 1490 if (zero >= end) { 1491 discard_length = end - one; 1492 } else { 1493 discard_length = zero - one; 1494 } 1495 if (discard_length) { 1496 postcopy_discard_send_range(ms, pds, one, discard_length); 1497 } 1498 current = one + discard_length; 1499 } else { 1500 current = one; 1501 } 1502 } 1503 1504 return 0; 1505 } 1506 1507 /** 1508 * postcopy_each_ram_send_discard: discard all RAMBlocks 1509 * 1510 * Returns 0 for success or negative for error 1511 * 1512 * Utility for the outgoing postcopy code. 1513 * Calls postcopy_send_discard_bm_ram for each RAMBlock 1514 * passing it bitmap indexes and name. 1515 * (qemu_ram_foreach_block ends up passing unscaled lengths 1516 * which would mean postcopy code would have to deal with target page) 1517 * 1518 * @ms: current migration state 1519 */ 1520 static int postcopy_each_ram_send_discard(MigrationState *ms) 1521 { 1522 struct RAMBlock *block; 1523 int ret; 1524 1525 RAMBLOCK_FOREACH(block) { 1526 PostcopyDiscardState *pds = 1527 postcopy_discard_send_init(ms, block->idstr); 1528 1529 /* 1530 * Postcopy sends chunks of bitmap over the wire, but it 1531 * just needs indexes at this point, avoids it having 1532 * target page specific code. 1533 */ 1534 ret = postcopy_send_discard_bm_ram(ms, pds, block); 1535 postcopy_discard_send_finish(ms, pds); 1536 if (ret) { 1537 return ret; 1538 } 1539 } 1540 1541 return 0; 1542 } 1543 1544 /** 1545 * postcopy_chunk_hostpages_pass: canocalize bitmap in hostpages 1546 * 1547 * Helper for postcopy_chunk_hostpages; it's called twice to 1548 * canonicalize the two bitmaps, that are similar, but one is 1549 * inverted. 1550 * 1551 * Postcopy requires that all target pages in a hostpage are dirty or 1552 * clean, not a mix. This function canonicalizes the bitmaps. 1553 * 1554 * @ms: current migration state 1555 * @unsent_pass: if true we need to canonicalize partially unsent host pages 1556 * otherwise we need to canonicalize partially dirty host pages 1557 * @block: block that contains the page we want to canonicalize 1558 * @pds: state for postcopy 1559 */ 1560 static void postcopy_chunk_hostpages_pass(MigrationState *ms, bool unsent_pass, 1561 RAMBlock *block, 1562 PostcopyDiscardState *pds) 1563 { 1564 RAMState *rs = ram_state; 1565 unsigned long *bitmap = block->bmap; 1566 unsigned long *unsentmap = block->unsentmap; 1567 unsigned int host_ratio = block->page_size / TARGET_PAGE_SIZE; 1568 unsigned long pages = block->used_length >> TARGET_PAGE_BITS; 1569 unsigned long run_start; 1570 1571 if (block->page_size == TARGET_PAGE_SIZE) { 1572 /* Easy case - TPS==HPS for a non-huge page RAMBlock */ 1573 return; 1574 } 1575 1576 if (unsent_pass) { 1577 /* Find a sent page */ 1578 run_start = find_next_zero_bit(unsentmap, pages, 0); 1579 } else { 1580 /* Find a dirty page */ 1581 run_start = find_next_bit(bitmap, pages, 0); 1582 } 1583 1584 while (run_start < pages) { 1585 bool do_fixup = false; 1586 unsigned long fixup_start_addr; 1587 unsigned long host_offset; 1588 1589 /* 1590 * If the start of this run of pages is in the middle of a host 1591 * page, then we need to fixup this host page. 1592 */ 1593 host_offset = run_start % host_ratio; 1594 if (host_offset) { 1595 do_fixup = true; 1596 run_start -= host_offset; 1597 fixup_start_addr = run_start; 1598 /* For the next pass */ 1599 run_start = run_start + host_ratio; 1600 } else { 1601 /* Find the end of this run */ 1602 unsigned long run_end; 1603 if (unsent_pass) { 1604 run_end = find_next_bit(unsentmap, pages, run_start + 1); 1605 } else { 1606 run_end = find_next_zero_bit(bitmap, pages, run_start + 1); 1607 } 1608 /* 1609 * If the end isn't at the start of a host page, then the 1610 * run doesn't finish at the end of a host page 1611 * and we need to discard. 1612 */ 1613 host_offset = run_end % host_ratio; 1614 if (host_offset) { 1615 do_fixup = true; 1616 fixup_start_addr = run_end - host_offset; 1617 /* 1618 * This host page has gone, the next loop iteration starts 1619 * from after the fixup 1620 */ 1621 run_start = fixup_start_addr + host_ratio; 1622 } else { 1623 /* 1624 * No discards on this iteration, next loop starts from 1625 * next sent/dirty page 1626 */ 1627 run_start = run_end + 1; 1628 } 1629 } 1630 1631 if (do_fixup) { 1632 unsigned long page; 1633 1634 /* Tell the destination to discard this page */ 1635 if (unsent_pass || !test_bit(fixup_start_addr, unsentmap)) { 1636 /* For the unsent_pass we: 1637 * discard partially sent pages 1638 * For the !unsent_pass (dirty) we: 1639 * discard partially dirty pages that were sent 1640 * (any partially sent pages were already discarded 1641 * by the previous unsent_pass) 1642 */ 1643 postcopy_discard_send_range(ms, pds, fixup_start_addr, 1644 host_ratio); 1645 } 1646 1647 /* Clean up the bitmap */ 1648 for (page = fixup_start_addr; 1649 page < fixup_start_addr + host_ratio; page++) { 1650 /* All pages in this host page are now not sent */ 1651 set_bit(page, unsentmap); 1652 1653 /* 1654 * Remark them as dirty, updating the count for any pages 1655 * that weren't previously dirty. 1656 */ 1657 rs->migration_dirty_pages += !test_and_set_bit(page, bitmap); 1658 } 1659 } 1660 1661 if (unsent_pass) { 1662 /* Find the next sent page for the next iteration */ 1663 run_start = find_next_zero_bit(unsentmap, pages, run_start); 1664 } else { 1665 /* Find the next dirty page for the next iteration */ 1666 run_start = find_next_bit(bitmap, pages, run_start); 1667 } 1668 } 1669 } 1670 1671 /** 1672 * postcopy_chuck_hostpages: discrad any partially sent host page 1673 * 1674 * Utility for the outgoing postcopy code. 1675 * 1676 * Discard any partially sent host-page size chunks, mark any partially 1677 * dirty host-page size chunks as all dirty. In this case the host-page 1678 * is the host-page for the particular RAMBlock, i.e. it might be a huge page 1679 * 1680 * Returns zero on success 1681 * 1682 * @ms: current migration state 1683 * @block: block we want to work with 1684 */ 1685 static int postcopy_chunk_hostpages(MigrationState *ms, RAMBlock *block) 1686 { 1687 PostcopyDiscardState *pds = 1688 postcopy_discard_send_init(ms, block->idstr); 1689 1690 /* First pass: Discard all partially sent host pages */ 1691 postcopy_chunk_hostpages_pass(ms, true, block, pds); 1692 /* 1693 * Second pass: Ensure that all partially dirty host pages are made 1694 * fully dirty. 1695 */ 1696 postcopy_chunk_hostpages_pass(ms, false, block, pds); 1697 1698 postcopy_discard_send_finish(ms, pds); 1699 return 0; 1700 } 1701 1702 /** 1703 * ram_postcopy_send_discard_bitmap: transmit the discard bitmap 1704 * 1705 * Returns zero on success 1706 * 1707 * Transmit the set of pages to be discarded after precopy to the target 1708 * these are pages that: 1709 * a) Have been previously transmitted but are now dirty again 1710 * b) Pages that have never been transmitted, this ensures that 1711 * any pages on the destination that have been mapped by background 1712 * tasks get discarded (transparent huge pages is the specific concern) 1713 * Hopefully this is pretty sparse 1714 * 1715 * @ms: current migration state 1716 */ 1717 int ram_postcopy_send_discard_bitmap(MigrationState *ms) 1718 { 1719 RAMState *rs = ram_state; 1720 RAMBlock *block; 1721 int ret; 1722 1723 rcu_read_lock(); 1724 1725 /* This should be our last sync, the src is now paused */ 1726 migration_bitmap_sync(rs); 1727 1728 /* Easiest way to make sure we don't resume in the middle of a host-page */ 1729 rs->last_seen_block = NULL; 1730 rs->last_sent_block = NULL; 1731 rs->last_page = 0; 1732 1733 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { 1734 unsigned long pages = block->used_length >> TARGET_PAGE_BITS; 1735 unsigned long *bitmap = block->bmap; 1736 unsigned long *unsentmap = block->unsentmap; 1737 1738 if (!unsentmap) { 1739 /* We don't have a safe way to resize the sentmap, so 1740 * if the bitmap was resized it will be NULL at this 1741 * point. 1742 */ 1743 error_report("migration ram resized during precopy phase"); 1744 rcu_read_unlock(); 1745 return -EINVAL; 1746 } 1747 /* Deal with TPS != HPS and huge pages */ 1748 ret = postcopy_chunk_hostpages(ms, block); 1749 if (ret) { 1750 rcu_read_unlock(); 1751 return ret; 1752 } 1753 1754 /* 1755 * Update the unsentmap to be unsentmap = unsentmap | dirty 1756 */ 1757 bitmap_or(unsentmap, unsentmap, bitmap, pages); 1758 #ifdef DEBUG_POSTCOPY 1759 ram_debug_dump_bitmap(unsentmap, true, pages); 1760 #endif 1761 } 1762 trace_ram_postcopy_send_discard_bitmap(); 1763 1764 ret = postcopy_each_ram_send_discard(ms); 1765 rcu_read_unlock(); 1766 1767 return ret; 1768 } 1769 1770 /** 1771 * ram_discard_range: discard dirtied pages at the beginning of postcopy 1772 * 1773 * Returns zero on success 1774 * 1775 * @rbname: name of the RAMBlock of the request. NULL means the 1776 * same that last one. 1777 * @start: RAMBlock starting page 1778 * @length: RAMBlock size 1779 */ 1780 int ram_discard_range(const char *rbname, uint64_t start, size_t length) 1781 { 1782 int ret = -1; 1783 1784 trace_ram_discard_range(rbname, start, length); 1785 1786 rcu_read_lock(); 1787 RAMBlock *rb = qemu_ram_block_by_name(rbname); 1788 1789 if (!rb) { 1790 error_report("ram_discard_range: Failed to find block '%s'", rbname); 1791 goto err; 1792 } 1793 1794 ret = ram_block_discard_range(rb, start, length); 1795 1796 err: 1797 rcu_read_unlock(); 1798 1799 return ret; 1800 } 1801 1802 static int ram_state_init(RAMState **rsp) 1803 { 1804 *rsp = g_new0(RAMState, 1); 1805 1806 qemu_mutex_init(&(*rsp)->bitmap_mutex); 1807 qemu_mutex_init(&(*rsp)->src_page_req_mutex); 1808 QSIMPLEQ_INIT(&(*rsp)->src_page_requests); 1809 1810 if (migrate_use_xbzrle()) { 1811 XBZRLE_cache_lock(); 1812 XBZRLE.zero_target_page = g_malloc0(TARGET_PAGE_SIZE); 1813 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size() / 1814 TARGET_PAGE_SIZE, 1815 TARGET_PAGE_SIZE); 1816 if (!XBZRLE.cache) { 1817 XBZRLE_cache_unlock(); 1818 error_report("Error creating cache"); 1819 g_free(*rsp); 1820 *rsp = NULL; 1821 return -1; 1822 } 1823 XBZRLE_cache_unlock(); 1824 1825 /* We prefer not to abort if there is no memory */ 1826 XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE); 1827 if (!XBZRLE.encoded_buf) { 1828 error_report("Error allocating encoded_buf"); 1829 g_free(*rsp); 1830 *rsp = NULL; 1831 return -1; 1832 } 1833 1834 XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE); 1835 if (!XBZRLE.current_buf) { 1836 error_report("Error allocating current_buf"); 1837 g_free(XBZRLE.encoded_buf); 1838 XBZRLE.encoded_buf = NULL; 1839 g_free(*rsp); 1840 *rsp = NULL; 1841 return -1; 1842 } 1843 } 1844 1845 /* For memory_global_dirty_log_start below. */ 1846 qemu_mutex_lock_iothread(); 1847 1848 qemu_mutex_lock_ramlist(); 1849 rcu_read_lock(); 1850 ram_state_reset(*rsp); 1851 1852 /* Skip setting bitmap if there is no RAM */ 1853 if (ram_bytes_total()) { 1854 RAMBlock *block; 1855 1856 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { 1857 unsigned long pages = block->max_length >> TARGET_PAGE_BITS; 1858 1859 block->bmap = bitmap_new(pages); 1860 bitmap_set(block->bmap, 0, pages); 1861 if (migrate_postcopy_ram()) { 1862 block->unsentmap = bitmap_new(pages); 1863 bitmap_set(block->unsentmap, 0, pages); 1864 } 1865 } 1866 } 1867 1868 /* 1869 * Count the total number of pages used by ram blocks not including any 1870 * gaps due to alignment or unplugs. 1871 */ 1872 (*rsp)->migration_dirty_pages = ram_bytes_total() >> TARGET_PAGE_BITS; 1873 1874 memory_global_dirty_log_start(); 1875 migration_bitmap_sync(*rsp); 1876 qemu_mutex_unlock_ramlist(); 1877 qemu_mutex_unlock_iothread(); 1878 rcu_read_unlock(); 1879 1880 return 0; 1881 } 1882 1883 /* 1884 * Each of ram_save_setup, ram_save_iterate and ram_save_complete has 1885 * long-running RCU critical section. When rcu-reclaims in the code 1886 * start to become numerous it will be necessary to reduce the 1887 * granularity of these critical sections. 1888 */ 1889 1890 /** 1891 * ram_save_setup: Setup RAM for migration 1892 * 1893 * Returns zero to indicate success and negative for error 1894 * 1895 * @f: QEMUFile where to send the data 1896 * @opaque: RAMState pointer 1897 */ 1898 static int ram_save_setup(QEMUFile *f, void *opaque) 1899 { 1900 RAMState **rsp = opaque; 1901 RAMBlock *block; 1902 1903 /* migration has already setup the bitmap, reuse it. */ 1904 if (!migration_in_colo_state()) { 1905 if (ram_state_init(rsp) != 0) { 1906 return -1; 1907 } 1908 } 1909 (*rsp)->f = f; 1910 1911 rcu_read_lock(); 1912 1913 qemu_put_be64(f, ram_bytes_total() | RAM_SAVE_FLAG_MEM_SIZE); 1914 1915 RAMBLOCK_FOREACH(block) { 1916 qemu_put_byte(f, strlen(block->idstr)); 1917 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr)); 1918 qemu_put_be64(f, block->used_length); 1919 if (migrate_postcopy_ram() && block->page_size != qemu_host_page_size) { 1920 qemu_put_be64(f, block->page_size); 1921 } 1922 } 1923 1924 rcu_read_unlock(); 1925 1926 ram_control_before_iterate(f, RAM_CONTROL_SETUP); 1927 ram_control_after_iterate(f, RAM_CONTROL_SETUP); 1928 1929 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 1930 1931 return 0; 1932 } 1933 1934 /** 1935 * ram_save_iterate: iterative stage for migration 1936 * 1937 * Returns zero to indicate success and negative for error 1938 * 1939 * @f: QEMUFile where to send the data 1940 * @opaque: RAMState pointer 1941 */ 1942 static int ram_save_iterate(QEMUFile *f, void *opaque) 1943 { 1944 RAMState **temp = opaque; 1945 RAMState *rs = *temp; 1946 int ret; 1947 int i; 1948 int64_t t0; 1949 int done = 0; 1950 1951 rcu_read_lock(); 1952 if (ram_list.version != rs->last_version) { 1953 ram_state_reset(rs); 1954 } 1955 1956 /* Read version before ram_list.blocks */ 1957 smp_rmb(); 1958 1959 ram_control_before_iterate(f, RAM_CONTROL_ROUND); 1960 1961 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 1962 i = 0; 1963 while ((ret = qemu_file_rate_limit(f)) == 0) { 1964 int pages; 1965 1966 pages = ram_find_and_save_block(rs, false); 1967 /* no more pages to sent */ 1968 if (pages == 0) { 1969 done = 1; 1970 break; 1971 } 1972 rs->iterations++; 1973 1974 /* we want to check in the 1st loop, just in case it was the 1st time 1975 and we had to sync the dirty bitmap. 1976 qemu_get_clock_ns() is a bit expensive, so we only check each some 1977 iterations 1978 */ 1979 if ((i & 63) == 0) { 1980 uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) / 1000000; 1981 if (t1 > MAX_WAIT) { 1982 trace_ram_save_iterate_big_wait(t1, i); 1983 break; 1984 } 1985 } 1986 i++; 1987 } 1988 flush_compressed_data(rs); 1989 rcu_read_unlock(); 1990 1991 /* 1992 * Must occur before EOS (or any QEMUFile operation) 1993 * because of RDMA protocol. 1994 */ 1995 ram_control_after_iterate(f, RAM_CONTROL_ROUND); 1996 1997 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 1998 ram_counters.transferred += 8; 1999 2000 ret = qemu_file_get_error(f); 2001 if (ret < 0) { 2002 return ret; 2003 } 2004 2005 return done; 2006 } 2007 2008 /** 2009 * ram_save_complete: function called to send the remaining amount of ram 2010 * 2011 * Returns zero to indicate success 2012 * 2013 * Called with iothread lock 2014 * 2015 * @f: QEMUFile where to send the data 2016 * @opaque: RAMState pointer 2017 */ 2018 static int ram_save_complete(QEMUFile *f, void *opaque) 2019 { 2020 RAMState **temp = opaque; 2021 RAMState *rs = *temp; 2022 2023 rcu_read_lock(); 2024 2025 if (!migration_in_postcopy()) { 2026 migration_bitmap_sync(rs); 2027 } 2028 2029 ram_control_before_iterate(f, RAM_CONTROL_FINISH); 2030 2031 /* try transferring iterative blocks of memory */ 2032 2033 /* flush all remaining blocks regardless of rate limiting */ 2034 while (true) { 2035 int pages; 2036 2037 pages = ram_find_and_save_block(rs, !migration_in_colo_state()); 2038 /* no more blocks to sent */ 2039 if (pages == 0) { 2040 break; 2041 } 2042 } 2043 2044 flush_compressed_data(rs); 2045 ram_control_after_iterate(f, RAM_CONTROL_FINISH); 2046 2047 rcu_read_unlock(); 2048 2049 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 2050 2051 return 0; 2052 } 2053 2054 static void ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size, 2055 uint64_t *non_postcopiable_pending, 2056 uint64_t *postcopiable_pending) 2057 { 2058 RAMState **temp = opaque; 2059 RAMState *rs = *temp; 2060 uint64_t remaining_size; 2061 2062 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE; 2063 2064 if (!migration_in_postcopy() && 2065 remaining_size < max_size) { 2066 qemu_mutex_lock_iothread(); 2067 rcu_read_lock(); 2068 migration_bitmap_sync(rs); 2069 rcu_read_unlock(); 2070 qemu_mutex_unlock_iothread(); 2071 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE; 2072 } 2073 2074 /* We can do postcopy, and all the data is postcopiable */ 2075 *postcopiable_pending += remaining_size; 2076 } 2077 2078 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host) 2079 { 2080 unsigned int xh_len; 2081 int xh_flags; 2082 uint8_t *loaded_data; 2083 2084 if (!xbzrle_decoded_buf) { 2085 xbzrle_decoded_buf = g_malloc(TARGET_PAGE_SIZE); 2086 } 2087 loaded_data = xbzrle_decoded_buf; 2088 2089 /* extract RLE header */ 2090 xh_flags = qemu_get_byte(f); 2091 xh_len = qemu_get_be16(f); 2092 2093 if (xh_flags != ENCODING_FLAG_XBZRLE) { 2094 error_report("Failed to load XBZRLE page - wrong compression!"); 2095 return -1; 2096 } 2097 2098 if (xh_len > TARGET_PAGE_SIZE) { 2099 error_report("Failed to load XBZRLE page - len overflow!"); 2100 return -1; 2101 } 2102 /* load data and decode */ 2103 qemu_get_buffer_in_place(f, &loaded_data, xh_len); 2104 2105 /* decode RLE */ 2106 if (xbzrle_decode_buffer(loaded_data, xh_len, host, 2107 TARGET_PAGE_SIZE) == -1) { 2108 error_report("Failed to load XBZRLE page - decode error!"); 2109 return -1; 2110 } 2111 2112 return 0; 2113 } 2114 2115 /** 2116 * ram_block_from_stream: read a RAMBlock id from the migration stream 2117 * 2118 * Must be called from within a rcu critical section. 2119 * 2120 * Returns a pointer from within the RCU-protected ram_list. 2121 * 2122 * @f: QEMUFile where to read the data from 2123 * @flags: Page flags (mostly to see if it's a continuation of previous block) 2124 */ 2125 static inline RAMBlock *ram_block_from_stream(QEMUFile *f, int flags) 2126 { 2127 static RAMBlock *block = NULL; 2128 char id[256]; 2129 uint8_t len; 2130 2131 if (flags & RAM_SAVE_FLAG_CONTINUE) { 2132 if (!block) { 2133 error_report("Ack, bad migration stream!"); 2134 return NULL; 2135 } 2136 return block; 2137 } 2138 2139 len = qemu_get_byte(f); 2140 qemu_get_buffer(f, (uint8_t *)id, len); 2141 id[len] = 0; 2142 2143 block = qemu_ram_block_by_name(id); 2144 if (!block) { 2145 error_report("Can't find block %s", id); 2146 return NULL; 2147 } 2148 2149 return block; 2150 } 2151 2152 static inline void *host_from_ram_block_offset(RAMBlock *block, 2153 ram_addr_t offset) 2154 { 2155 if (!offset_in_ramblock(block, offset)) { 2156 return NULL; 2157 } 2158 2159 return block->host + offset; 2160 } 2161 2162 /** 2163 * ram_handle_compressed: handle the zero page case 2164 * 2165 * If a page (or a whole RDMA chunk) has been 2166 * determined to be zero, then zap it. 2167 * 2168 * @host: host address for the zero page 2169 * @ch: what the page is filled from. We only support zero 2170 * @size: size of the zero page 2171 */ 2172 void ram_handle_compressed(void *host, uint8_t ch, uint64_t size) 2173 { 2174 if (ch != 0 || !is_zero_range(host, size)) { 2175 memset(host, ch, size); 2176 } 2177 } 2178 2179 static void *do_data_decompress(void *opaque) 2180 { 2181 DecompressParam *param = opaque; 2182 unsigned long pagesize; 2183 uint8_t *des; 2184 int len; 2185 2186 qemu_mutex_lock(¶m->mutex); 2187 while (!param->quit) { 2188 if (param->des) { 2189 des = param->des; 2190 len = param->len; 2191 param->des = 0; 2192 qemu_mutex_unlock(¶m->mutex); 2193 2194 pagesize = TARGET_PAGE_SIZE; 2195 /* uncompress() will return failed in some case, especially 2196 * when the page is dirted when doing the compression, it's 2197 * not a problem because the dirty page will be retransferred 2198 * and uncompress() won't break the data in other pages. 2199 */ 2200 uncompress((Bytef *)des, &pagesize, 2201 (const Bytef *)param->compbuf, len); 2202 2203 qemu_mutex_lock(&decomp_done_lock); 2204 param->done = true; 2205 qemu_cond_signal(&decomp_done_cond); 2206 qemu_mutex_unlock(&decomp_done_lock); 2207 2208 qemu_mutex_lock(¶m->mutex); 2209 } else { 2210 qemu_cond_wait(¶m->cond, ¶m->mutex); 2211 } 2212 } 2213 qemu_mutex_unlock(¶m->mutex); 2214 2215 return NULL; 2216 } 2217 2218 static void wait_for_decompress_done(void) 2219 { 2220 int idx, thread_count; 2221 2222 if (!migrate_use_compression()) { 2223 return; 2224 } 2225 2226 thread_count = migrate_decompress_threads(); 2227 qemu_mutex_lock(&decomp_done_lock); 2228 for (idx = 0; idx < thread_count; idx++) { 2229 while (!decomp_param[idx].done) { 2230 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock); 2231 } 2232 } 2233 qemu_mutex_unlock(&decomp_done_lock); 2234 } 2235 2236 void migrate_decompress_threads_create(void) 2237 { 2238 int i, thread_count; 2239 2240 thread_count = migrate_decompress_threads(); 2241 decompress_threads = g_new0(QemuThread, thread_count); 2242 decomp_param = g_new0(DecompressParam, thread_count); 2243 qemu_mutex_init(&decomp_done_lock); 2244 qemu_cond_init(&decomp_done_cond); 2245 for (i = 0; i < thread_count; i++) { 2246 qemu_mutex_init(&decomp_param[i].mutex); 2247 qemu_cond_init(&decomp_param[i].cond); 2248 decomp_param[i].compbuf = g_malloc0(compressBound(TARGET_PAGE_SIZE)); 2249 decomp_param[i].done = true; 2250 decomp_param[i].quit = false; 2251 qemu_thread_create(decompress_threads + i, "decompress", 2252 do_data_decompress, decomp_param + i, 2253 QEMU_THREAD_JOINABLE); 2254 } 2255 } 2256 2257 void migrate_decompress_threads_join(void) 2258 { 2259 int i, thread_count; 2260 2261 thread_count = migrate_decompress_threads(); 2262 for (i = 0; i < thread_count; i++) { 2263 qemu_mutex_lock(&decomp_param[i].mutex); 2264 decomp_param[i].quit = true; 2265 qemu_cond_signal(&decomp_param[i].cond); 2266 qemu_mutex_unlock(&decomp_param[i].mutex); 2267 } 2268 for (i = 0; i < thread_count; i++) { 2269 qemu_thread_join(decompress_threads + i); 2270 qemu_mutex_destroy(&decomp_param[i].mutex); 2271 qemu_cond_destroy(&decomp_param[i].cond); 2272 g_free(decomp_param[i].compbuf); 2273 } 2274 g_free(decompress_threads); 2275 g_free(decomp_param); 2276 decompress_threads = NULL; 2277 decomp_param = NULL; 2278 } 2279 2280 static void decompress_data_with_multi_threads(QEMUFile *f, 2281 void *host, int len) 2282 { 2283 int idx, thread_count; 2284 2285 thread_count = migrate_decompress_threads(); 2286 qemu_mutex_lock(&decomp_done_lock); 2287 while (true) { 2288 for (idx = 0; idx < thread_count; idx++) { 2289 if (decomp_param[idx].done) { 2290 decomp_param[idx].done = false; 2291 qemu_mutex_lock(&decomp_param[idx].mutex); 2292 qemu_get_buffer(f, decomp_param[idx].compbuf, len); 2293 decomp_param[idx].des = host; 2294 decomp_param[idx].len = len; 2295 qemu_cond_signal(&decomp_param[idx].cond); 2296 qemu_mutex_unlock(&decomp_param[idx].mutex); 2297 break; 2298 } 2299 } 2300 if (idx < thread_count) { 2301 break; 2302 } else { 2303 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock); 2304 } 2305 } 2306 qemu_mutex_unlock(&decomp_done_lock); 2307 } 2308 2309 /** 2310 * ram_postcopy_incoming_init: allocate postcopy data structures 2311 * 2312 * Returns 0 for success and negative if there was one error 2313 * 2314 * @mis: current migration incoming state 2315 * 2316 * Allocate data structures etc needed by incoming migration with 2317 * postcopy-ram. postcopy-ram's similarly names 2318 * postcopy_ram_incoming_init does the work. 2319 */ 2320 int ram_postcopy_incoming_init(MigrationIncomingState *mis) 2321 { 2322 unsigned long ram_pages = last_ram_page(); 2323 2324 return postcopy_ram_incoming_init(mis, ram_pages); 2325 } 2326 2327 /** 2328 * ram_load_postcopy: load a page in postcopy case 2329 * 2330 * Returns 0 for success or -errno in case of error 2331 * 2332 * Called in postcopy mode by ram_load(). 2333 * rcu_read_lock is taken prior to this being called. 2334 * 2335 * @f: QEMUFile where to send the data 2336 */ 2337 static int ram_load_postcopy(QEMUFile *f) 2338 { 2339 int flags = 0, ret = 0; 2340 bool place_needed = false; 2341 bool matching_page_sizes = false; 2342 MigrationIncomingState *mis = migration_incoming_get_current(); 2343 /* Temporary page that is later 'placed' */ 2344 void *postcopy_host_page = postcopy_get_tmp_page(mis); 2345 void *last_host = NULL; 2346 bool all_zero = false; 2347 2348 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) { 2349 ram_addr_t addr; 2350 void *host = NULL; 2351 void *page_buffer = NULL; 2352 void *place_source = NULL; 2353 RAMBlock *block = NULL; 2354 uint8_t ch; 2355 2356 addr = qemu_get_be64(f); 2357 flags = addr & ~TARGET_PAGE_MASK; 2358 addr &= TARGET_PAGE_MASK; 2359 2360 trace_ram_load_postcopy_loop((uint64_t)addr, flags); 2361 place_needed = false; 2362 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE)) { 2363 block = ram_block_from_stream(f, flags); 2364 2365 host = host_from_ram_block_offset(block, addr); 2366 if (!host) { 2367 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr); 2368 ret = -EINVAL; 2369 break; 2370 } 2371 matching_page_sizes = block->page_size == TARGET_PAGE_SIZE; 2372 /* 2373 * Postcopy requires that we place whole host pages atomically; 2374 * these may be huge pages for RAMBlocks that are backed by 2375 * hugetlbfs. 2376 * To make it atomic, the data is read into a temporary page 2377 * that's moved into place later. 2378 * The migration protocol uses, possibly smaller, target-pages 2379 * however the source ensures it always sends all the components 2380 * of a host page in order. 2381 */ 2382 page_buffer = postcopy_host_page + 2383 ((uintptr_t)host & (block->page_size - 1)); 2384 /* If all TP are zero then we can optimise the place */ 2385 if (!((uintptr_t)host & (block->page_size - 1))) { 2386 all_zero = true; 2387 } else { 2388 /* not the 1st TP within the HP */ 2389 if (host != (last_host + TARGET_PAGE_SIZE)) { 2390 error_report("Non-sequential target page %p/%p", 2391 host, last_host); 2392 ret = -EINVAL; 2393 break; 2394 } 2395 } 2396 2397 2398 /* 2399 * If it's the last part of a host page then we place the host 2400 * page 2401 */ 2402 place_needed = (((uintptr_t)host + TARGET_PAGE_SIZE) & 2403 (block->page_size - 1)) == 0; 2404 place_source = postcopy_host_page; 2405 } 2406 last_host = host; 2407 2408 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) { 2409 case RAM_SAVE_FLAG_ZERO: 2410 ch = qemu_get_byte(f); 2411 memset(page_buffer, ch, TARGET_PAGE_SIZE); 2412 if (ch) { 2413 all_zero = false; 2414 } 2415 break; 2416 2417 case RAM_SAVE_FLAG_PAGE: 2418 all_zero = false; 2419 if (!place_needed || !matching_page_sizes) { 2420 qemu_get_buffer(f, page_buffer, TARGET_PAGE_SIZE); 2421 } else { 2422 /* Avoids the qemu_file copy during postcopy, which is 2423 * going to do a copy later; can only do it when we 2424 * do this read in one go (matching page sizes) 2425 */ 2426 qemu_get_buffer_in_place(f, (uint8_t **)&place_source, 2427 TARGET_PAGE_SIZE); 2428 } 2429 break; 2430 case RAM_SAVE_FLAG_EOS: 2431 /* normal exit */ 2432 break; 2433 default: 2434 error_report("Unknown combination of migration flags: %#x" 2435 " (postcopy mode)", flags); 2436 ret = -EINVAL; 2437 } 2438 2439 if (place_needed) { 2440 /* This gets called at the last target page in the host page */ 2441 void *place_dest = host + TARGET_PAGE_SIZE - block->page_size; 2442 2443 if (all_zero) { 2444 ret = postcopy_place_page_zero(mis, place_dest, 2445 block->page_size); 2446 } else { 2447 ret = postcopy_place_page(mis, place_dest, 2448 place_source, block->page_size); 2449 } 2450 } 2451 if (!ret) { 2452 ret = qemu_file_get_error(f); 2453 } 2454 } 2455 2456 return ret; 2457 } 2458 2459 static int ram_load(QEMUFile *f, void *opaque, int version_id) 2460 { 2461 int flags = 0, ret = 0; 2462 static uint64_t seq_iter; 2463 int len = 0; 2464 /* 2465 * If system is running in postcopy mode, page inserts to host memory must 2466 * be atomic 2467 */ 2468 bool postcopy_running = postcopy_state_get() >= POSTCOPY_INCOMING_LISTENING; 2469 /* ADVISE is earlier, it shows the source has the postcopy capability on */ 2470 bool postcopy_advised = postcopy_state_get() >= POSTCOPY_INCOMING_ADVISE; 2471 2472 seq_iter++; 2473 2474 if (version_id != 4) { 2475 ret = -EINVAL; 2476 } 2477 2478 /* This RCU critical section can be very long running. 2479 * When RCU reclaims in the code start to become numerous, 2480 * it will be necessary to reduce the granularity of this 2481 * critical section. 2482 */ 2483 rcu_read_lock(); 2484 2485 if (postcopy_running) { 2486 ret = ram_load_postcopy(f); 2487 } 2488 2489 while (!postcopy_running && !ret && !(flags & RAM_SAVE_FLAG_EOS)) { 2490 ram_addr_t addr, total_ram_bytes; 2491 void *host = NULL; 2492 uint8_t ch; 2493 2494 addr = qemu_get_be64(f); 2495 flags = addr & ~TARGET_PAGE_MASK; 2496 addr &= TARGET_PAGE_MASK; 2497 2498 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE | 2499 RAM_SAVE_FLAG_COMPRESS_PAGE | RAM_SAVE_FLAG_XBZRLE)) { 2500 RAMBlock *block = ram_block_from_stream(f, flags); 2501 2502 host = host_from_ram_block_offset(block, addr); 2503 if (!host) { 2504 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr); 2505 ret = -EINVAL; 2506 break; 2507 } 2508 trace_ram_load_loop(block->idstr, (uint64_t)addr, flags, host); 2509 } 2510 2511 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) { 2512 case RAM_SAVE_FLAG_MEM_SIZE: 2513 /* Synchronize RAM block list */ 2514 total_ram_bytes = addr; 2515 while (!ret && total_ram_bytes) { 2516 RAMBlock *block; 2517 char id[256]; 2518 ram_addr_t length; 2519 2520 len = qemu_get_byte(f); 2521 qemu_get_buffer(f, (uint8_t *)id, len); 2522 id[len] = 0; 2523 length = qemu_get_be64(f); 2524 2525 block = qemu_ram_block_by_name(id); 2526 if (block) { 2527 if (length != block->used_length) { 2528 Error *local_err = NULL; 2529 2530 ret = qemu_ram_resize(block, length, 2531 &local_err); 2532 if (local_err) { 2533 error_report_err(local_err); 2534 } 2535 } 2536 /* For postcopy we need to check hugepage sizes match */ 2537 if (postcopy_advised && 2538 block->page_size != qemu_host_page_size) { 2539 uint64_t remote_page_size = qemu_get_be64(f); 2540 if (remote_page_size != block->page_size) { 2541 error_report("Mismatched RAM page size %s " 2542 "(local) %zd != %" PRId64, 2543 id, block->page_size, 2544 remote_page_size); 2545 ret = -EINVAL; 2546 } 2547 } 2548 ram_control_load_hook(f, RAM_CONTROL_BLOCK_REG, 2549 block->idstr); 2550 } else { 2551 error_report("Unknown ramblock \"%s\", cannot " 2552 "accept migration", id); 2553 ret = -EINVAL; 2554 } 2555 2556 total_ram_bytes -= length; 2557 } 2558 break; 2559 2560 case RAM_SAVE_FLAG_ZERO: 2561 ch = qemu_get_byte(f); 2562 ram_handle_compressed(host, ch, TARGET_PAGE_SIZE); 2563 break; 2564 2565 case RAM_SAVE_FLAG_PAGE: 2566 qemu_get_buffer(f, host, TARGET_PAGE_SIZE); 2567 break; 2568 2569 case RAM_SAVE_FLAG_COMPRESS_PAGE: 2570 len = qemu_get_be32(f); 2571 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) { 2572 error_report("Invalid compressed data length: %d", len); 2573 ret = -EINVAL; 2574 break; 2575 } 2576 decompress_data_with_multi_threads(f, host, len); 2577 break; 2578 2579 case RAM_SAVE_FLAG_XBZRLE: 2580 if (load_xbzrle(f, addr, host) < 0) { 2581 error_report("Failed to decompress XBZRLE page at " 2582 RAM_ADDR_FMT, addr); 2583 ret = -EINVAL; 2584 break; 2585 } 2586 break; 2587 case RAM_SAVE_FLAG_EOS: 2588 /* normal exit */ 2589 break; 2590 default: 2591 if (flags & RAM_SAVE_FLAG_HOOK) { 2592 ram_control_load_hook(f, RAM_CONTROL_HOOK, NULL); 2593 } else { 2594 error_report("Unknown combination of migration flags: %#x", 2595 flags); 2596 ret = -EINVAL; 2597 } 2598 } 2599 if (!ret) { 2600 ret = qemu_file_get_error(f); 2601 } 2602 } 2603 2604 wait_for_decompress_done(); 2605 rcu_read_unlock(); 2606 trace_ram_load_complete(ret, seq_iter); 2607 return ret; 2608 } 2609 2610 static SaveVMHandlers savevm_ram_handlers = { 2611 .save_live_setup = ram_save_setup, 2612 .save_live_iterate = ram_save_iterate, 2613 .save_live_complete_postcopy = ram_save_complete, 2614 .save_live_complete_precopy = ram_save_complete, 2615 .save_live_pending = ram_save_pending, 2616 .load_state = ram_load, 2617 .cleanup = ram_migration_cleanup, 2618 }; 2619 2620 void ram_mig_init(void) 2621 { 2622 qemu_mutex_init(&XBZRLE.lock); 2623 register_savevm_live(NULL, "ram", 0, 4, &savevm_ram_handlers, &ram_state); 2624 } 2625