xref: /openbmc/qemu/migration/ram.c (revision 638511e9)
1 /*
2  * QEMU System Emulator
3  *
4  * Copyright (c) 2003-2008 Fabrice Bellard
5  * Copyright (c) 2011-2015 Red Hat Inc
6  *
7  * Authors:
8  *  Juan Quintela <quintela@redhat.com>
9  *
10  * Permission is hereby granted, free of charge, to any person obtaining a copy
11  * of this software and associated documentation files (the "Software"), to deal
12  * in the Software without restriction, including without limitation the rights
13  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
14  * copies of the Software, and to permit persons to whom the Software is
15  * furnished to do so, subject to the following conditions:
16  *
17  * The above copyright notice and this permission notice shall be included in
18  * all copies or substantial portions of the Software.
19  *
20  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
25  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26  * THE SOFTWARE.
27  */
28 
29 #include "qemu/osdep.h"
30 #include "qemu/cutils.h"
31 #include "qemu/bitops.h"
32 #include "qemu/bitmap.h"
33 #include "qemu/madvise.h"
34 #include "qemu/main-loop.h"
35 #include "xbzrle.h"
36 #include "ram-compress.h"
37 #include "ram.h"
38 #include "migration.h"
39 #include "migration-stats.h"
40 #include "migration/register.h"
41 #include "migration/misc.h"
42 #include "qemu-file.h"
43 #include "postcopy-ram.h"
44 #include "page_cache.h"
45 #include "qemu/error-report.h"
46 #include "qapi/error.h"
47 #include "qapi/qapi-types-migration.h"
48 #include "qapi/qapi-events-migration.h"
49 #include "qapi/qapi-commands-migration.h"
50 #include "qapi/qmp/qerror.h"
51 #include "trace.h"
52 #include "exec/ram_addr.h"
53 #include "exec/target_page.h"
54 #include "qemu/rcu_queue.h"
55 #include "migration/colo.h"
56 #include "block.h"
57 #include "sysemu/cpu-throttle.h"
58 #include "savevm.h"
59 #include "qemu/iov.h"
60 #include "multifd.h"
61 #include "sysemu/runstate.h"
62 #include "options.h"
63 #include "sysemu/dirtylimit.h"
64 #include "sysemu/kvm.h"
65 
66 #include "hw/boards.h" /* for machine_dump_guest_core() */
67 
68 #if defined(__linux__)
69 #include "qemu/userfaultfd.h"
70 #endif /* defined(__linux__) */
71 
72 /***********************************************************/
73 /* ram save/restore */
74 
75 /*
76  * RAM_SAVE_FLAG_ZERO used to be named RAM_SAVE_FLAG_COMPRESS, it
77  * worked for pages that were filled with the same char.  We switched
78  * it to only search for the zero value.  And to avoid confusion with
79  * RAM_SAVE_FLAG_COMPRESS_PAGE just rename it.
80  */
81 /*
82  * RAM_SAVE_FLAG_FULL was obsoleted in 2009, it can be reused now
83  */
84 #define RAM_SAVE_FLAG_FULL     0x01
85 #define RAM_SAVE_FLAG_ZERO     0x02
86 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
87 #define RAM_SAVE_FLAG_PAGE     0x08
88 #define RAM_SAVE_FLAG_EOS      0x10
89 #define RAM_SAVE_FLAG_CONTINUE 0x20
90 #define RAM_SAVE_FLAG_XBZRLE   0x40
91 /* 0x80 is reserved in qemu-file.h for RAM_SAVE_FLAG_HOOK */
92 #define RAM_SAVE_FLAG_COMPRESS_PAGE    0x100
93 #define RAM_SAVE_FLAG_MULTIFD_FLUSH    0x200
94 /* We can't use any flag that is bigger than 0x200 */
95 
96 XBZRLECacheStats xbzrle_counters;
97 
98 /* used by the search for pages to send */
99 struct PageSearchStatus {
100     /* The migration channel used for a specific host page */
101     QEMUFile    *pss_channel;
102     /* Last block from where we have sent data */
103     RAMBlock *last_sent_block;
104     /* Current block being searched */
105     RAMBlock    *block;
106     /* Current page to search from */
107     unsigned long page;
108     /* Set once we wrap around */
109     bool         complete_round;
110     /* Whether we're sending a host page */
111     bool          host_page_sending;
112     /* The start/end of current host page.  Invalid if host_page_sending==false */
113     unsigned long host_page_start;
114     unsigned long host_page_end;
115 };
116 typedef struct PageSearchStatus PageSearchStatus;
117 
118 /* struct contains XBZRLE cache and a static page
119    used by the compression */
120 static struct {
121     /* buffer used for XBZRLE encoding */
122     uint8_t *encoded_buf;
123     /* buffer for storing page content */
124     uint8_t *current_buf;
125     /* Cache for XBZRLE, Protected by lock. */
126     PageCache *cache;
127     QemuMutex lock;
128     /* it will store a page full of zeros */
129     uint8_t *zero_target_page;
130     /* buffer used for XBZRLE decoding */
131     uint8_t *decoded_buf;
132 } XBZRLE;
133 
134 static void XBZRLE_cache_lock(void)
135 {
136     if (migrate_xbzrle()) {
137         qemu_mutex_lock(&XBZRLE.lock);
138     }
139 }
140 
141 static void XBZRLE_cache_unlock(void)
142 {
143     if (migrate_xbzrle()) {
144         qemu_mutex_unlock(&XBZRLE.lock);
145     }
146 }
147 
148 /**
149  * xbzrle_cache_resize: resize the xbzrle cache
150  *
151  * This function is called from migrate_params_apply in main
152  * thread, possibly while a migration is in progress.  A running
153  * migration may be using the cache and might finish during this call,
154  * hence changes to the cache are protected by XBZRLE.lock().
155  *
156  * Returns 0 for success or -1 for error
157  *
158  * @new_size: new cache size
159  * @errp: set *errp if the check failed, with reason
160  */
161 int xbzrle_cache_resize(uint64_t new_size, Error **errp)
162 {
163     PageCache *new_cache;
164     int64_t ret = 0;
165 
166     /* Check for truncation */
167     if (new_size != (size_t)new_size) {
168         error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cache size",
169                    "exceeding address space");
170         return -1;
171     }
172 
173     if (new_size == migrate_xbzrle_cache_size()) {
174         /* nothing to do */
175         return 0;
176     }
177 
178     XBZRLE_cache_lock();
179 
180     if (XBZRLE.cache != NULL) {
181         new_cache = cache_init(new_size, TARGET_PAGE_SIZE, errp);
182         if (!new_cache) {
183             ret = -1;
184             goto out;
185         }
186 
187         cache_fini(XBZRLE.cache);
188         XBZRLE.cache = new_cache;
189     }
190 out:
191     XBZRLE_cache_unlock();
192     return ret;
193 }
194 
195 static bool postcopy_preempt_active(void)
196 {
197     return migrate_postcopy_preempt() && migration_in_postcopy();
198 }
199 
200 bool migrate_ram_is_ignored(RAMBlock *block)
201 {
202     return !qemu_ram_is_migratable(block) ||
203            (migrate_ignore_shared() && qemu_ram_is_shared(block)
204                                     && qemu_ram_is_named_file(block));
205 }
206 
207 #undef RAMBLOCK_FOREACH
208 
209 int foreach_not_ignored_block(RAMBlockIterFunc func, void *opaque)
210 {
211     RAMBlock *block;
212     int ret = 0;
213 
214     RCU_READ_LOCK_GUARD();
215 
216     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
217         ret = func(block, opaque);
218         if (ret) {
219             break;
220         }
221     }
222     return ret;
223 }
224 
225 static void ramblock_recv_map_init(void)
226 {
227     RAMBlock *rb;
228 
229     RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
230         assert(!rb->receivedmap);
231         rb->receivedmap = bitmap_new(rb->max_length >> qemu_target_page_bits());
232     }
233 }
234 
235 int ramblock_recv_bitmap_test(RAMBlock *rb, void *host_addr)
236 {
237     return test_bit(ramblock_recv_bitmap_offset(host_addr, rb),
238                     rb->receivedmap);
239 }
240 
241 bool ramblock_recv_bitmap_test_byte_offset(RAMBlock *rb, uint64_t byte_offset)
242 {
243     return test_bit(byte_offset >> TARGET_PAGE_BITS, rb->receivedmap);
244 }
245 
246 void ramblock_recv_bitmap_set(RAMBlock *rb, void *host_addr)
247 {
248     set_bit_atomic(ramblock_recv_bitmap_offset(host_addr, rb), rb->receivedmap);
249 }
250 
251 void ramblock_recv_bitmap_set_range(RAMBlock *rb, void *host_addr,
252                                     size_t nr)
253 {
254     bitmap_set_atomic(rb->receivedmap,
255                       ramblock_recv_bitmap_offset(host_addr, rb),
256                       nr);
257 }
258 
259 #define  RAMBLOCK_RECV_BITMAP_ENDING  (0x0123456789abcdefULL)
260 
261 /*
262  * Format: bitmap_size (8 bytes) + whole_bitmap (N bytes).
263  *
264  * Returns >0 if success with sent bytes, or <0 if error.
265  */
266 int64_t ramblock_recv_bitmap_send(QEMUFile *file,
267                                   const char *block_name)
268 {
269     RAMBlock *block = qemu_ram_block_by_name(block_name);
270     unsigned long *le_bitmap, nbits;
271     uint64_t size;
272 
273     if (!block) {
274         error_report("%s: invalid block name: %s", __func__, block_name);
275         return -1;
276     }
277 
278     nbits = block->postcopy_length >> TARGET_PAGE_BITS;
279 
280     /*
281      * Make sure the tmp bitmap buffer is big enough, e.g., on 32bit
282      * machines we may need 4 more bytes for padding (see below
283      * comment). So extend it a bit before hand.
284      */
285     le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
286 
287     /*
288      * Always use little endian when sending the bitmap. This is
289      * required that when source and destination VMs are not using the
290      * same endianness. (Note: big endian won't work.)
291      */
292     bitmap_to_le(le_bitmap, block->receivedmap, nbits);
293 
294     /* Size of the bitmap, in bytes */
295     size = DIV_ROUND_UP(nbits, 8);
296 
297     /*
298      * size is always aligned to 8 bytes for 64bit machines, but it
299      * may not be true for 32bit machines. We need this padding to
300      * make sure the migration can survive even between 32bit and
301      * 64bit machines.
302      */
303     size = ROUND_UP(size, 8);
304 
305     qemu_put_be64(file, size);
306     qemu_put_buffer(file, (const uint8_t *)le_bitmap, size);
307     /*
308      * Mark as an end, in case the middle part is screwed up due to
309      * some "mysterious" reason.
310      */
311     qemu_put_be64(file, RAMBLOCK_RECV_BITMAP_ENDING);
312     qemu_fflush(file);
313 
314     g_free(le_bitmap);
315 
316     if (qemu_file_get_error(file)) {
317         return qemu_file_get_error(file);
318     }
319 
320     return size + sizeof(size);
321 }
322 
323 /*
324  * An outstanding page request, on the source, having been received
325  * and queued
326  */
327 struct RAMSrcPageRequest {
328     RAMBlock *rb;
329     hwaddr    offset;
330     hwaddr    len;
331 
332     QSIMPLEQ_ENTRY(RAMSrcPageRequest) next_req;
333 };
334 
335 /* State of RAM for migration */
336 struct RAMState {
337     /*
338      * PageSearchStatus structures for the channels when send pages.
339      * Protected by the bitmap_mutex.
340      */
341     PageSearchStatus pss[RAM_CHANNEL_MAX];
342     /* UFFD file descriptor, used in 'write-tracking' migration */
343     int uffdio_fd;
344     /* total ram size in bytes */
345     uint64_t ram_bytes_total;
346     /* Last block that we have visited searching for dirty pages */
347     RAMBlock *last_seen_block;
348     /* Last dirty target page we have sent */
349     ram_addr_t last_page;
350     /* last ram version we have seen */
351     uint32_t last_version;
352     /* How many times we have dirty too many pages */
353     int dirty_rate_high_cnt;
354     /* these variables are used for bitmap sync */
355     /* last time we did a full bitmap_sync */
356     int64_t time_last_bitmap_sync;
357     /* bytes transferred at start_time */
358     uint64_t bytes_xfer_prev;
359     /* number of dirty pages since start_time */
360     uint64_t num_dirty_pages_period;
361     /* xbzrle misses since the beginning of the period */
362     uint64_t xbzrle_cache_miss_prev;
363     /* Amount of xbzrle pages since the beginning of the period */
364     uint64_t xbzrle_pages_prev;
365     /* Amount of xbzrle encoded bytes since the beginning of the period */
366     uint64_t xbzrle_bytes_prev;
367     /* Are we really using XBZRLE (e.g., after the first round). */
368     bool xbzrle_started;
369     /* Are we on the last stage of migration */
370     bool last_stage;
371     /* compression statistics since the beginning of the period */
372     /* amount of count that no free thread to compress data */
373     uint64_t compress_thread_busy_prev;
374     /* amount bytes after compression */
375     uint64_t compressed_size_prev;
376     /* amount of compressed pages */
377     uint64_t compress_pages_prev;
378 
379     /* total handled target pages at the beginning of period */
380     uint64_t target_page_count_prev;
381     /* total handled target pages since start */
382     uint64_t target_page_count;
383     /* number of dirty bits in the bitmap */
384     uint64_t migration_dirty_pages;
385     /*
386      * Protects:
387      * - dirty/clear bitmap
388      * - migration_dirty_pages
389      * - pss structures
390      */
391     QemuMutex bitmap_mutex;
392     /* The RAMBlock used in the last src_page_requests */
393     RAMBlock *last_req_rb;
394     /* Queue of outstanding page requests from the destination */
395     QemuMutex src_page_req_mutex;
396     QSIMPLEQ_HEAD(, RAMSrcPageRequest) src_page_requests;
397 };
398 typedef struct RAMState RAMState;
399 
400 static RAMState *ram_state;
401 
402 static NotifierWithReturnList precopy_notifier_list;
403 
404 /* Whether postcopy has queued requests? */
405 static bool postcopy_has_request(RAMState *rs)
406 {
407     return !QSIMPLEQ_EMPTY_ATOMIC(&rs->src_page_requests);
408 }
409 
410 void precopy_infrastructure_init(void)
411 {
412     notifier_with_return_list_init(&precopy_notifier_list);
413 }
414 
415 void precopy_add_notifier(NotifierWithReturn *n)
416 {
417     notifier_with_return_list_add(&precopy_notifier_list, n);
418 }
419 
420 void precopy_remove_notifier(NotifierWithReturn *n)
421 {
422     notifier_with_return_remove(n);
423 }
424 
425 int precopy_notify(PrecopyNotifyReason reason, Error **errp)
426 {
427     PrecopyNotifyData pnd;
428     pnd.reason = reason;
429     pnd.errp = errp;
430 
431     return notifier_with_return_list_notify(&precopy_notifier_list, &pnd);
432 }
433 
434 uint64_t ram_bytes_remaining(void)
435 {
436     return ram_state ? (ram_state->migration_dirty_pages * TARGET_PAGE_SIZE) :
437                        0;
438 }
439 
440 void ram_transferred_add(uint64_t bytes)
441 {
442     if (runstate_is_running()) {
443         stat64_add(&mig_stats.precopy_bytes, bytes);
444     } else if (migration_in_postcopy()) {
445         stat64_add(&mig_stats.postcopy_bytes, bytes);
446     } else {
447         stat64_add(&mig_stats.downtime_bytes, bytes);
448     }
449     stat64_add(&mig_stats.transferred, bytes);
450 }
451 
452 struct MigrationOps {
453     int (*ram_save_target_page)(RAMState *rs, PageSearchStatus *pss);
454 };
455 typedef struct MigrationOps MigrationOps;
456 
457 MigrationOps *migration_ops;
458 
459 static int ram_save_host_page_urgent(PageSearchStatus *pss);
460 
461 /* NOTE: page is the PFN not real ram_addr_t. */
462 static void pss_init(PageSearchStatus *pss, RAMBlock *rb, ram_addr_t page)
463 {
464     pss->block = rb;
465     pss->page = page;
466     pss->complete_round = false;
467 }
468 
469 /*
470  * Check whether two PSSs are actively sending the same page.  Return true
471  * if it is, false otherwise.
472  */
473 static bool pss_overlap(PageSearchStatus *pss1, PageSearchStatus *pss2)
474 {
475     return pss1->host_page_sending && pss2->host_page_sending &&
476         (pss1->host_page_start == pss2->host_page_start);
477 }
478 
479 /**
480  * save_page_header: write page header to wire
481  *
482  * If this is the 1st block, it also writes the block identification
483  *
484  * Returns the number of bytes written
485  *
486  * @pss: current PSS channel status
487  * @block: block that contains the page we want to send
488  * @offset: offset inside the block for the page
489  *          in the lower bits, it contains flags
490  */
491 static size_t save_page_header(PageSearchStatus *pss, QEMUFile *f,
492                                RAMBlock *block, ram_addr_t offset)
493 {
494     size_t size, len;
495     bool same_block = (block == pss->last_sent_block);
496 
497     if (same_block) {
498         offset |= RAM_SAVE_FLAG_CONTINUE;
499     }
500     qemu_put_be64(f, offset);
501     size = 8;
502 
503     if (!same_block) {
504         len = strlen(block->idstr);
505         qemu_put_byte(f, len);
506         qemu_put_buffer(f, (uint8_t *)block->idstr, len);
507         size += 1 + len;
508         pss->last_sent_block = block;
509     }
510     return size;
511 }
512 
513 /**
514  * mig_throttle_guest_down: throttle down the guest
515  *
516  * Reduce amount of guest cpu execution to hopefully slow down memory
517  * writes. If guest dirty memory rate is reduced below the rate at
518  * which we can transfer pages to the destination then we should be
519  * able to complete migration. Some workloads dirty memory way too
520  * fast and will not effectively converge, even with auto-converge.
521  */
522 static void mig_throttle_guest_down(uint64_t bytes_dirty_period,
523                                     uint64_t bytes_dirty_threshold)
524 {
525     uint64_t pct_initial = migrate_cpu_throttle_initial();
526     uint64_t pct_increment = migrate_cpu_throttle_increment();
527     bool pct_tailslow = migrate_cpu_throttle_tailslow();
528     int pct_max = migrate_max_cpu_throttle();
529 
530     uint64_t throttle_now = cpu_throttle_get_percentage();
531     uint64_t cpu_now, cpu_ideal, throttle_inc;
532 
533     /* We have not started throttling yet. Let's start it. */
534     if (!cpu_throttle_active()) {
535         cpu_throttle_set(pct_initial);
536     } else {
537         /* Throttling already on, just increase the rate */
538         if (!pct_tailslow) {
539             throttle_inc = pct_increment;
540         } else {
541             /* Compute the ideal CPU percentage used by Guest, which may
542              * make the dirty rate match the dirty rate threshold. */
543             cpu_now = 100 - throttle_now;
544             cpu_ideal = cpu_now * (bytes_dirty_threshold * 1.0 /
545                         bytes_dirty_period);
546             throttle_inc = MIN(cpu_now - cpu_ideal, pct_increment);
547         }
548         cpu_throttle_set(MIN(throttle_now + throttle_inc, pct_max));
549     }
550 }
551 
552 void mig_throttle_counter_reset(void)
553 {
554     RAMState *rs = ram_state;
555 
556     rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
557     rs->num_dirty_pages_period = 0;
558     rs->bytes_xfer_prev = stat64_get(&mig_stats.transferred);
559 }
560 
561 /**
562  * xbzrle_cache_zero_page: insert a zero page in the XBZRLE cache
563  *
564  * @rs: current RAM state
565  * @current_addr: address for the zero page
566  *
567  * Update the xbzrle cache to reflect a page that's been sent as all 0.
568  * The important thing is that a stale (not-yet-0'd) page be replaced
569  * by the new data.
570  * As a bonus, if the page wasn't in the cache it gets added so that
571  * when a small write is made into the 0'd page it gets XBZRLE sent.
572  */
573 static void xbzrle_cache_zero_page(RAMState *rs, ram_addr_t current_addr)
574 {
575     /* We don't care if this fails to allocate a new cache page
576      * as long as it updated an old one */
577     cache_insert(XBZRLE.cache, current_addr, XBZRLE.zero_target_page,
578                  stat64_get(&mig_stats.dirty_sync_count));
579 }
580 
581 #define ENCODING_FLAG_XBZRLE 0x1
582 
583 /**
584  * save_xbzrle_page: compress and send current page
585  *
586  * Returns: 1 means that we wrote the page
587  *          0 means that page is identical to the one already sent
588  *          -1 means that xbzrle would be longer than normal
589  *
590  * @rs: current RAM state
591  * @pss: current PSS channel
592  * @current_data: pointer to the address of the page contents
593  * @current_addr: addr of the page
594  * @block: block that contains the page we want to send
595  * @offset: offset inside the block for the page
596  */
597 static int save_xbzrle_page(RAMState *rs, PageSearchStatus *pss,
598                             uint8_t **current_data, ram_addr_t current_addr,
599                             RAMBlock *block, ram_addr_t offset)
600 {
601     int encoded_len = 0, bytes_xbzrle;
602     uint8_t *prev_cached_page;
603     QEMUFile *file = pss->pss_channel;
604     uint64_t generation = stat64_get(&mig_stats.dirty_sync_count);
605 
606     if (!cache_is_cached(XBZRLE.cache, current_addr, generation)) {
607         xbzrle_counters.cache_miss++;
608         if (!rs->last_stage) {
609             if (cache_insert(XBZRLE.cache, current_addr, *current_data,
610                              generation) == -1) {
611                 return -1;
612             } else {
613                 /* update *current_data when the page has been
614                    inserted into cache */
615                 *current_data = get_cached_data(XBZRLE.cache, current_addr);
616             }
617         }
618         return -1;
619     }
620 
621     /*
622      * Reaching here means the page has hit the xbzrle cache, no matter what
623      * encoding result it is (normal encoding, overflow or skipping the page),
624      * count the page as encoded. This is used to calculate the encoding rate.
625      *
626      * Example: 2 pages (8KB) being encoded, first page encoding generates 2KB,
627      * 2nd page turns out to be skipped (i.e. no new bytes written to the
628      * page), the overall encoding rate will be 8KB / 2KB = 4, which has the
629      * skipped page included. In this way, the encoding rate can tell if the
630      * guest page is good for xbzrle encoding.
631      */
632     xbzrle_counters.pages++;
633     prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
634 
635     /* save current buffer into memory */
636     memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE);
637 
638     /* XBZRLE encoding (if there is no overflow) */
639     encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
640                                        TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
641                                        TARGET_PAGE_SIZE);
642 
643     /*
644      * Update the cache contents, so that it corresponds to the data
645      * sent, in all cases except where we skip the page.
646      */
647     if (!rs->last_stage && encoded_len != 0) {
648         memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
649         /*
650          * In the case where we couldn't compress, ensure that the caller
651          * sends the data from the cache, since the guest might have
652          * changed the RAM since we copied it.
653          */
654         *current_data = prev_cached_page;
655     }
656 
657     if (encoded_len == 0) {
658         trace_save_xbzrle_page_skipping();
659         return 0;
660     } else if (encoded_len == -1) {
661         trace_save_xbzrle_page_overflow();
662         xbzrle_counters.overflow++;
663         xbzrle_counters.bytes += TARGET_PAGE_SIZE;
664         return -1;
665     }
666 
667     /* Send XBZRLE based compressed page */
668     bytes_xbzrle = save_page_header(pss, pss->pss_channel, block,
669                                     offset | RAM_SAVE_FLAG_XBZRLE);
670     qemu_put_byte(file, ENCODING_FLAG_XBZRLE);
671     qemu_put_be16(file, encoded_len);
672     qemu_put_buffer(file, XBZRLE.encoded_buf, encoded_len);
673     bytes_xbzrle += encoded_len + 1 + 2;
674     /*
675      * Like compressed_size (please see update_compress_thread_counts),
676      * the xbzrle encoded bytes don't count the 8 byte header with
677      * RAM_SAVE_FLAG_CONTINUE.
678      */
679     xbzrle_counters.bytes += bytes_xbzrle - 8;
680     ram_transferred_add(bytes_xbzrle);
681 
682     return 1;
683 }
684 
685 /**
686  * pss_find_next_dirty: find the next dirty page of current ramblock
687  *
688  * This function updates pss->page to point to the next dirty page index
689  * within the ramblock to migrate, or the end of ramblock when nothing
690  * found.  Note that when pss->host_page_sending==true it means we're
691  * during sending a host page, so we won't look for dirty page that is
692  * outside the host page boundary.
693  *
694  * @pss: the current page search status
695  */
696 static void pss_find_next_dirty(PageSearchStatus *pss)
697 {
698     RAMBlock *rb = pss->block;
699     unsigned long size = rb->used_length >> TARGET_PAGE_BITS;
700     unsigned long *bitmap = rb->bmap;
701 
702     if (migrate_ram_is_ignored(rb)) {
703         /* Points directly to the end, so we know no dirty page */
704         pss->page = size;
705         return;
706     }
707 
708     /*
709      * If during sending a host page, only look for dirty pages within the
710      * current host page being send.
711      */
712     if (pss->host_page_sending) {
713         assert(pss->host_page_end);
714         size = MIN(size, pss->host_page_end);
715     }
716 
717     pss->page = find_next_bit(bitmap, size, pss->page);
718 }
719 
720 static void migration_clear_memory_region_dirty_bitmap(RAMBlock *rb,
721                                                        unsigned long page)
722 {
723     uint8_t shift;
724     hwaddr size, start;
725 
726     if (!rb->clear_bmap || !clear_bmap_test_and_clear(rb, page)) {
727         return;
728     }
729 
730     shift = rb->clear_bmap_shift;
731     /*
732      * CLEAR_BITMAP_SHIFT_MIN should always guarantee this... this
733      * can make things easier sometimes since then start address
734      * of the small chunk will always be 64 pages aligned so the
735      * bitmap will always be aligned to unsigned long. We should
736      * even be able to remove this restriction but I'm simply
737      * keeping it.
738      */
739     assert(shift >= 6);
740 
741     size = 1ULL << (TARGET_PAGE_BITS + shift);
742     start = QEMU_ALIGN_DOWN((ram_addr_t)page << TARGET_PAGE_BITS, size);
743     trace_migration_bitmap_clear_dirty(rb->idstr, start, size, page);
744     memory_region_clear_dirty_bitmap(rb->mr, start, size);
745 }
746 
747 static void
748 migration_clear_memory_region_dirty_bitmap_range(RAMBlock *rb,
749                                                  unsigned long start,
750                                                  unsigned long npages)
751 {
752     unsigned long i, chunk_pages = 1UL << rb->clear_bmap_shift;
753     unsigned long chunk_start = QEMU_ALIGN_DOWN(start, chunk_pages);
754     unsigned long chunk_end = QEMU_ALIGN_UP(start + npages, chunk_pages);
755 
756     /*
757      * Clear pages from start to start + npages - 1, so the end boundary is
758      * exclusive.
759      */
760     for (i = chunk_start; i < chunk_end; i += chunk_pages) {
761         migration_clear_memory_region_dirty_bitmap(rb, i);
762     }
763 }
764 
765 /*
766  * colo_bitmap_find_diry:find contiguous dirty pages from start
767  *
768  * Returns the page offset within memory region of the start of the contiguout
769  * dirty page
770  *
771  * @rs: current RAM state
772  * @rb: RAMBlock where to search for dirty pages
773  * @start: page where we start the search
774  * @num: the number of contiguous dirty pages
775  */
776 static inline
777 unsigned long colo_bitmap_find_dirty(RAMState *rs, RAMBlock *rb,
778                                      unsigned long start, unsigned long *num)
779 {
780     unsigned long size = rb->used_length >> TARGET_PAGE_BITS;
781     unsigned long *bitmap = rb->bmap;
782     unsigned long first, next;
783 
784     *num = 0;
785 
786     if (migrate_ram_is_ignored(rb)) {
787         return size;
788     }
789 
790     first = find_next_bit(bitmap, size, start);
791     if (first >= size) {
792         return first;
793     }
794     next = find_next_zero_bit(bitmap, size, first + 1);
795     assert(next >= first);
796     *num = next - first;
797     return first;
798 }
799 
800 static inline bool migration_bitmap_clear_dirty(RAMState *rs,
801                                                 RAMBlock *rb,
802                                                 unsigned long page)
803 {
804     bool ret;
805 
806     /*
807      * Clear dirty bitmap if needed.  This _must_ be called before we
808      * send any of the page in the chunk because we need to make sure
809      * we can capture further page content changes when we sync dirty
810      * log the next time.  So as long as we are going to send any of
811      * the page in the chunk we clear the remote dirty bitmap for all.
812      * Clearing it earlier won't be a problem, but too late will.
813      */
814     migration_clear_memory_region_dirty_bitmap(rb, page);
815 
816     ret = test_and_clear_bit(page, rb->bmap);
817     if (ret) {
818         rs->migration_dirty_pages--;
819     }
820 
821     return ret;
822 }
823 
824 static void dirty_bitmap_clear_section(MemoryRegionSection *section,
825                                        void *opaque)
826 {
827     const hwaddr offset = section->offset_within_region;
828     const hwaddr size = int128_get64(section->size);
829     const unsigned long start = offset >> TARGET_PAGE_BITS;
830     const unsigned long npages = size >> TARGET_PAGE_BITS;
831     RAMBlock *rb = section->mr->ram_block;
832     uint64_t *cleared_bits = opaque;
833 
834     /*
835      * We don't grab ram_state->bitmap_mutex because we expect to run
836      * only when starting migration or during postcopy recovery where
837      * we don't have concurrent access.
838      */
839     if (!migration_in_postcopy() && !migrate_background_snapshot()) {
840         migration_clear_memory_region_dirty_bitmap_range(rb, start, npages);
841     }
842     *cleared_bits += bitmap_count_one_with_offset(rb->bmap, start, npages);
843     bitmap_clear(rb->bmap, start, npages);
844 }
845 
846 /*
847  * Exclude all dirty pages from migration that fall into a discarded range as
848  * managed by a RamDiscardManager responsible for the mapped memory region of
849  * the RAMBlock. Clear the corresponding bits in the dirty bitmaps.
850  *
851  * Discarded pages ("logically unplugged") have undefined content and must
852  * not get migrated, because even reading these pages for migration might
853  * result in undesired behavior.
854  *
855  * Returns the number of cleared bits in the RAMBlock dirty bitmap.
856  *
857  * Note: The result is only stable while migrating (precopy/postcopy).
858  */
859 static uint64_t ramblock_dirty_bitmap_clear_discarded_pages(RAMBlock *rb)
860 {
861     uint64_t cleared_bits = 0;
862 
863     if (rb->mr && rb->bmap && memory_region_has_ram_discard_manager(rb->mr)) {
864         RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr);
865         MemoryRegionSection section = {
866             .mr = rb->mr,
867             .offset_within_region = 0,
868             .size = int128_make64(qemu_ram_get_used_length(rb)),
869         };
870 
871         ram_discard_manager_replay_discarded(rdm, &section,
872                                              dirty_bitmap_clear_section,
873                                              &cleared_bits);
874     }
875     return cleared_bits;
876 }
877 
878 /*
879  * Check if a host-page aligned page falls into a discarded range as managed by
880  * a RamDiscardManager responsible for the mapped memory region of the RAMBlock.
881  *
882  * Note: The result is only stable while migrating (precopy/postcopy).
883  */
884 bool ramblock_page_is_discarded(RAMBlock *rb, ram_addr_t start)
885 {
886     if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) {
887         RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr);
888         MemoryRegionSection section = {
889             .mr = rb->mr,
890             .offset_within_region = start,
891             .size = int128_make64(qemu_ram_pagesize(rb)),
892         };
893 
894         return !ram_discard_manager_is_populated(rdm, &section);
895     }
896     return false;
897 }
898 
899 /* Called with RCU critical section */
900 static void ramblock_sync_dirty_bitmap(RAMState *rs, RAMBlock *rb)
901 {
902     uint64_t new_dirty_pages =
903         cpu_physical_memory_sync_dirty_bitmap(rb, 0, rb->used_length);
904 
905     rs->migration_dirty_pages += new_dirty_pages;
906     rs->num_dirty_pages_period += new_dirty_pages;
907 }
908 
909 /**
910  * ram_pagesize_summary: calculate all the pagesizes of a VM
911  *
912  * Returns a summary bitmap of the page sizes of all RAMBlocks
913  *
914  * For VMs with just normal pages this is equivalent to the host page
915  * size. If it's got some huge pages then it's the OR of all the
916  * different page sizes.
917  */
918 uint64_t ram_pagesize_summary(void)
919 {
920     RAMBlock *block;
921     uint64_t summary = 0;
922 
923     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
924         summary |= block->page_size;
925     }
926 
927     return summary;
928 }
929 
930 uint64_t ram_get_total_transferred_pages(void)
931 {
932     return stat64_get(&mig_stats.normal_pages) +
933         stat64_get(&mig_stats.zero_pages) +
934         compression_counters.pages + xbzrle_counters.pages;
935 }
936 
937 static void migration_update_rates(RAMState *rs, int64_t end_time)
938 {
939     uint64_t page_count = rs->target_page_count - rs->target_page_count_prev;
940     double compressed_size;
941 
942     /* calculate period counters */
943     stat64_set(&mig_stats.dirty_pages_rate,
944                rs->num_dirty_pages_period * 1000 /
945                (end_time - rs->time_last_bitmap_sync));
946 
947     if (!page_count) {
948         return;
949     }
950 
951     if (migrate_xbzrle()) {
952         double encoded_size, unencoded_size;
953 
954         xbzrle_counters.cache_miss_rate = (double)(xbzrle_counters.cache_miss -
955             rs->xbzrle_cache_miss_prev) / page_count;
956         rs->xbzrle_cache_miss_prev = xbzrle_counters.cache_miss;
957         unencoded_size = (xbzrle_counters.pages - rs->xbzrle_pages_prev) *
958                          TARGET_PAGE_SIZE;
959         encoded_size = xbzrle_counters.bytes - rs->xbzrle_bytes_prev;
960         if (xbzrle_counters.pages == rs->xbzrle_pages_prev || !encoded_size) {
961             xbzrle_counters.encoding_rate = 0;
962         } else {
963             xbzrle_counters.encoding_rate = unencoded_size / encoded_size;
964         }
965         rs->xbzrle_pages_prev = xbzrle_counters.pages;
966         rs->xbzrle_bytes_prev = xbzrle_counters.bytes;
967     }
968 
969     if (migrate_compress()) {
970         compression_counters.busy_rate = (double)(compression_counters.busy -
971             rs->compress_thread_busy_prev) / page_count;
972         rs->compress_thread_busy_prev = compression_counters.busy;
973 
974         compressed_size = compression_counters.compressed_size -
975                           rs->compressed_size_prev;
976         if (compressed_size) {
977             double uncompressed_size = (compression_counters.pages -
978                                     rs->compress_pages_prev) * TARGET_PAGE_SIZE;
979 
980             /* Compression-Ratio = Uncompressed-size / Compressed-size */
981             compression_counters.compression_rate =
982                                         uncompressed_size / compressed_size;
983 
984             rs->compress_pages_prev = compression_counters.pages;
985             rs->compressed_size_prev = compression_counters.compressed_size;
986         }
987     }
988 }
989 
990 /*
991  * Enable dirty-limit to throttle down the guest
992  */
993 static void migration_dirty_limit_guest(void)
994 {
995     /*
996      * dirty page rate quota for all vCPUs fetched from
997      * migration parameter 'vcpu_dirty_limit'
998      */
999     static int64_t quota_dirtyrate;
1000     MigrationState *s = migrate_get_current();
1001 
1002     /*
1003      * If dirty limit already enabled and migration parameter
1004      * vcpu-dirty-limit untouched.
1005      */
1006     if (dirtylimit_in_service() &&
1007         quota_dirtyrate == s->parameters.vcpu_dirty_limit) {
1008         return;
1009     }
1010 
1011     quota_dirtyrate = s->parameters.vcpu_dirty_limit;
1012 
1013     /*
1014      * Set all vCPU a quota dirtyrate, note that the second
1015      * parameter will be ignored if setting all vCPU for the vm
1016      */
1017     qmp_set_vcpu_dirty_limit(false, -1, quota_dirtyrate, NULL);
1018     trace_migration_dirty_limit_guest(quota_dirtyrate);
1019 }
1020 
1021 static void migration_trigger_throttle(RAMState *rs)
1022 {
1023     uint64_t threshold = migrate_throttle_trigger_threshold();
1024     uint64_t bytes_xfer_period =
1025         stat64_get(&mig_stats.transferred) - rs->bytes_xfer_prev;
1026     uint64_t bytes_dirty_period = rs->num_dirty_pages_period * TARGET_PAGE_SIZE;
1027     uint64_t bytes_dirty_threshold = bytes_xfer_period * threshold / 100;
1028 
1029     /* During block migration the auto-converge logic incorrectly detects
1030      * that ram migration makes no progress. Avoid this by disabling the
1031      * throttling logic during the bulk phase of block migration. */
1032     if (blk_mig_bulk_active()) {
1033         return;
1034     }
1035 
1036     /*
1037      * The following detection logic can be refined later. For now:
1038      * Check to see if the ratio between dirtied bytes and the approx.
1039      * amount of bytes that just got transferred since the last time
1040      * we were in this routine reaches the threshold. If that happens
1041      * twice, start or increase throttling.
1042      */
1043     if ((bytes_dirty_period > bytes_dirty_threshold) &&
1044         (++rs->dirty_rate_high_cnt >= 2)) {
1045         rs->dirty_rate_high_cnt = 0;
1046         if (migrate_auto_converge()) {
1047             trace_migration_throttle();
1048             mig_throttle_guest_down(bytes_dirty_period,
1049                                     bytes_dirty_threshold);
1050         } else if (migrate_dirty_limit()) {
1051             migration_dirty_limit_guest();
1052         }
1053     }
1054 }
1055 
1056 static void migration_bitmap_sync(RAMState *rs, bool last_stage)
1057 {
1058     RAMBlock *block;
1059     int64_t end_time;
1060 
1061     stat64_add(&mig_stats.dirty_sync_count, 1);
1062 
1063     if (!rs->time_last_bitmap_sync) {
1064         rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
1065     }
1066 
1067     trace_migration_bitmap_sync_start();
1068     memory_global_dirty_log_sync(last_stage);
1069 
1070     qemu_mutex_lock(&rs->bitmap_mutex);
1071     WITH_RCU_READ_LOCK_GUARD() {
1072         RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1073             ramblock_sync_dirty_bitmap(rs, block);
1074         }
1075         stat64_set(&mig_stats.dirty_bytes_last_sync, ram_bytes_remaining());
1076     }
1077     qemu_mutex_unlock(&rs->bitmap_mutex);
1078 
1079     memory_global_after_dirty_log_sync();
1080     trace_migration_bitmap_sync_end(rs->num_dirty_pages_period);
1081 
1082     end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
1083 
1084     /* more than 1 second = 1000 millisecons */
1085     if (end_time > rs->time_last_bitmap_sync + 1000) {
1086         migration_trigger_throttle(rs);
1087 
1088         migration_update_rates(rs, end_time);
1089 
1090         rs->target_page_count_prev = rs->target_page_count;
1091 
1092         /* reset period counters */
1093         rs->time_last_bitmap_sync = end_time;
1094         rs->num_dirty_pages_period = 0;
1095         rs->bytes_xfer_prev = stat64_get(&mig_stats.transferred);
1096     }
1097     if (migrate_events()) {
1098         uint64_t generation = stat64_get(&mig_stats.dirty_sync_count);
1099         qapi_event_send_migration_pass(generation);
1100     }
1101 }
1102 
1103 static void migration_bitmap_sync_precopy(RAMState *rs, bool last_stage)
1104 {
1105     Error *local_err = NULL;
1106 
1107     /*
1108      * The current notifier usage is just an optimization to migration, so we
1109      * don't stop the normal migration process in the error case.
1110      */
1111     if (precopy_notify(PRECOPY_NOTIFY_BEFORE_BITMAP_SYNC, &local_err)) {
1112         error_report_err(local_err);
1113         local_err = NULL;
1114     }
1115 
1116     migration_bitmap_sync(rs, last_stage);
1117 
1118     if (precopy_notify(PRECOPY_NOTIFY_AFTER_BITMAP_SYNC, &local_err)) {
1119         error_report_err(local_err);
1120     }
1121 }
1122 
1123 void ram_release_page(const char *rbname, uint64_t offset)
1124 {
1125     if (!migrate_release_ram() || !migration_in_postcopy()) {
1126         return;
1127     }
1128 
1129     ram_discard_range(rbname, offset, TARGET_PAGE_SIZE);
1130 }
1131 
1132 /**
1133  * save_zero_page_to_file: send the zero page to the file
1134  *
1135  * Returns the size of data written to the file, 0 means the page is not
1136  * a zero page
1137  *
1138  * @pss: current PSS channel
1139  * @block: block that contains the page we want to send
1140  * @offset: offset inside the block for the page
1141  */
1142 static int save_zero_page_to_file(PageSearchStatus *pss, QEMUFile *file,
1143                                   RAMBlock *block, ram_addr_t offset)
1144 {
1145     uint8_t *p = block->host + offset;
1146     int len = 0;
1147 
1148     if (buffer_is_zero(p, TARGET_PAGE_SIZE)) {
1149         len += save_page_header(pss, file, block, offset | RAM_SAVE_FLAG_ZERO);
1150         qemu_put_byte(file, 0);
1151         len += 1;
1152         ram_release_page(block->idstr, offset);
1153     }
1154     return len;
1155 }
1156 
1157 /**
1158  * save_zero_page: send the zero page to the stream
1159  *
1160  * Returns the number of pages written.
1161  *
1162  * @pss: current PSS channel
1163  * @block: block that contains the page we want to send
1164  * @offset: offset inside the block for the page
1165  */
1166 static int save_zero_page(PageSearchStatus *pss, QEMUFile *f, RAMBlock *block,
1167                           ram_addr_t offset)
1168 {
1169     int len = save_zero_page_to_file(pss, f, block, offset);
1170 
1171     if (len) {
1172         stat64_add(&mig_stats.zero_pages, 1);
1173         ram_transferred_add(len);
1174         return 1;
1175     }
1176     return -1;
1177 }
1178 
1179 /*
1180  * @pages: the number of pages written by the control path,
1181  *        < 0 - error
1182  *        > 0 - number of pages written
1183  *
1184  * Return true if the pages has been saved, otherwise false is returned.
1185  */
1186 static bool control_save_page(PageSearchStatus *pss, RAMBlock *block,
1187                               ram_addr_t offset, int *pages)
1188 {
1189     uint64_t bytes_xmit = 0;
1190     int ret;
1191 
1192     *pages = -1;
1193     ret = ram_control_save_page(pss->pss_channel, block->offset, offset,
1194                                 TARGET_PAGE_SIZE, &bytes_xmit);
1195     if (ret == RAM_SAVE_CONTROL_NOT_SUPP) {
1196         return false;
1197     }
1198 
1199     if (bytes_xmit) {
1200         ram_transferred_add(bytes_xmit);
1201         *pages = 1;
1202     }
1203 
1204     if (ret == RAM_SAVE_CONTROL_DELAYED) {
1205         return true;
1206     }
1207 
1208     if (bytes_xmit > 0) {
1209         stat64_add(&mig_stats.normal_pages, 1);
1210     } else if (bytes_xmit == 0) {
1211         stat64_add(&mig_stats.zero_pages, 1);
1212     }
1213 
1214     return true;
1215 }
1216 
1217 /*
1218  * directly send the page to the stream
1219  *
1220  * Returns the number of pages written.
1221  *
1222  * @pss: current PSS channel
1223  * @block: block that contains the page we want to send
1224  * @offset: offset inside the block for the page
1225  * @buf: the page to be sent
1226  * @async: send to page asyncly
1227  */
1228 static int save_normal_page(PageSearchStatus *pss, RAMBlock *block,
1229                             ram_addr_t offset, uint8_t *buf, bool async)
1230 {
1231     QEMUFile *file = pss->pss_channel;
1232 
1233     ram_transferred_add(save_page_header(pss, pss->pss_channel, block,
1234                                          offset | RAM_SAVE_FLAG_PAGE));
1235     if (async) {
1236         qemu_put_buffer_async(file, buf, TARGET_PAGE_SIZE,
1237                               migrate_release_ram() &&
1238                               migration_in_postcopy());
1239     } else {
1240         qemu_put_buffer(file, buf, TARGET_PAGE_SIZE);
1241     }
1242     ram_transferred_add(TARGET_PAGE_SIZE);
1243     stat64_add(&mig_stats.normal_pages, 1);
1244     return 1;
1245 }
1246 
1247 /**
1248  * ram_save_page: send the given page to the stream
1249  *
1250  * Returns the number of pages written.
1251  *          < 0 - error
1252  *          >=0 - Number of pages written - this might legally be 0
1253  *                if xbzrle noticed the page was the same.
1254  *
1255  * @rs: current RAM state
1256  * @block: block that contains the page we want to send
1257  * @offset: offset inside the block for the page
1258  */
1259 static int ram_save_page(RAMState *rs, PageSearchStatus *pss)
1260 {
1261     int pages = -1;
1262     uint8_t *p;
1263     bool send_async = true;
1264     RAMBlock *block = pss->block;
1265     ram_addr_t offset = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS;
1266     ram_addr_t current_addr = block->offset + offset;
1267 
1268     p = block->host + offset;
1269     trace_ram_save_page(block->idstr, (uint64_t)offset, p);
1270 
1271     XBZRLE_cache_lock();
1272     if (rs->xbzrle_started && !migration_in_postcopy()) {
1273         pages = save_xbzrle_page(rs, pss, &p, current_addr,
1274                                  block, offset);
1275         if (!rs->last_stage) {
1276             /* Can't send this cached data async, since the cache page
1277              * might get updated before it gets to the wire
1278              */
1279             send_async = false;
1280         }
1281     }
1282 
1283     /* XBZRLE overflow or normal page */
1284     if (pages == -1) {
1285         pages = save_normal_page(pss, block, offset, p, send_async);
1286     }
1287 
1288     XBZRLE_cache_unlock();
1289 
1290     return pages;
1291 }
1292 
1293 static int ram_save_multifd_page(QEMUFile *file, RAMBlock *block,
1294                                  ram_addr_t offset)
1295 {
1296     if (multifd_queue_page(file, block, offset) < 0) {
1297         return -1;
1298     }
1299     stat64_add(&mig_stats.normal_pages, 1);
1300 
1301     return 1;
1302 }
1303 
1304 static void
1305 update_compress_thread_counts(const CompressParam *param, int bytes_xmit)
1306 {
1307     ram_transferred_add(bytes_xmit);
1308 
1309     if (param->result == RES_ZEROPAGE) {
1310         stat64_add(&mig_stats.zero_pages, 1);
1311         return;
1312     }
1313 
1314     /* 8 means a header with RAM_SAVE_FLAG_CONTINUE. */
1315     compression_counters.compressed_size += bytes_xmit - 8;
1316     compression_counters.pages++;
1317 }
1318 
1319 static bool save_page_use_compression(RAMState *rs);
1320 
1321 static int send_queued_data(CompressParam *param)
1322 {
1323     PageSearchStatus *pss = &ram_state->pss[RAM_CHANNEL_PRECOPY];
1324     MigrationState *ms = migrate_get_current();
1325     QEMUFile *file = ms->to_dst_file;
1326     int len = 0;
1327 
1328     RAMBlock *block = param->block;
1329     ram_addr_t offset = param->offset;
1330 
1331     if (param->result == RES_NONE) {
1332         return 0;
1333     }
1334 
1335     assert(block == pss->last_sent_block);
1336 
1337     if (param->result == RES_ZEROPAGE) {
1338         assert(qemu_file_buffer_empty(param->file));
1339         len += save_page_header(pss, file, block, offset | RAM_SAVE_FLAG_ZERO);
1340         qemu_put_byte(file, 0);
1341         len += 1;
1342         ram_release_page(block->idstr, offset);
1343     } else if (param->result == RES_COMPRESS) {
1344         assert(!qemu_file_buffer_empty(param->file));
1345         len += save_page_header(pss, file, block,
1346                                 offset | RAM_SAVE_FLAG_COMPRESS_PAGE);
1347         len += qemu_put_qemu_file(file, param->file);
1348     } else {
1349         abort();
1350     }
1351 
1352     update_compress_thread_counts(param, len);
1353 
1354     return len;
1355 }
1356 
1357 static void ram_flush_compressed_data(RAMState *rs)
1358 {
1359     if (!save_page_use_compression(rs)) {
1360         return;
1361     }
1362 
1363     flush_compressed_data(send_queued_data);
1364 }
1365 
1366 #define PAGE_ALL_CLEAN 0
1367 #define PAGE_TRY_AGAIN 1
1368 #define PAGE_DIRTY_FOUND 2
1369 /**
1370  * find_dirty_block: find the next dirty page and update any state
1371  * associated with the search process.
1372  *
1373  * Returns:
1374  *         <0: An error happened
1375  *         PAGE_ALL_CLEAN: no dirty page found, give up
1376  *         PAGE_TRY_AGAIN: no dirty page found, retry for next block
1377  *         PAGE_DIRTY_FOUND: dirty page found
1378  *
1379  * @rs: current RAM state
1380  * @pss: data about the state of the current dirty page scan
1381  * @again: set to false if the search has scanned the whole of RAM
1382  */
1383 static int find_dirty_block(RAMState *rs, PageSearchStatus *pss)
1384 {
1385     /* Update pss->page for the next dirty bit in ramblock */
1386     pss_find_next_dirty(pss);
1387 
1388     if (pss->complete_round && pss->block == rs->last_seen_block &&
1389         pss->page >= rs->last_page) {
1390         /*
1391          * We've been once around the RAM and haven't found anything.
1392          * Give up.
1393          */
1394         return PAGE_ALL_CLEAN;
1395     }
1396     if (!offset_in_ramblock(pss->block,
1397                             ((ram_addr_t)pss->page) << TARGET_PAGE_BITS)) {
1398         /* Didn't find anything in this RAM Block */
1399         pss->page = 0;
1400         pss->block = QLIST_NEXT_RCU(pss->block, next);
1401         if (!pss->block) {
1402             if (!migrate_multifd_flush_after_each_section()) {
1403                 QEMUFile *f = rs->pss[RAM_CHANNEL_PRECOPY].pss_channel;
1404                 int ret = multifd_send_sync_main(f);
1405                 if (ret < 0) {
1406                     return ret;
1407                 }
1408                 qemu_put_be64(f, RAM_SAVE_FLAG_MULTIFD_FLUSH);
1409                 qemu_fflush(f);
1410             }
1411             /*
1412              * If memory migration starts over, we will meet a dirtied page
1413              * which may still exists in compression threads's ring, so we
1414              * should flush the compressed data to make sure the new page
1415              * is not overwritten by the old one in the destination.
1416              *
1417              * Also If xbzrle is on, stop using the data compression at this
1418              * point. In theory, xbzrle can do better than compression.
1419              */
1420             ram_flush_compressed_data(rs);
1421 
1422             /* Hit the end of the list */
1423             pss->block = QLIST_FIRST_RCU(&ram_list.blocks);
1424             /* Flag that we've looped */
1425             pss->complete_round = true;
1426             /* After the first round, enable XBZRLE. */
1427             if (migrate_xbzrle()) {
1428                 rs->xbzrle_started = true;
1429             }
1430         }
1431         /* Didn't find anything this time, but try again on the new block */
1432         return PAGE_TRY_AGAIN;
1433     } else {
1434         /* We've found something */
1435         return PAGE_DIRTY_FOUND;
1436     }
1437 }
1438 
1439 /**
1440  * unqueue_page: gets a page of the queue
1441  *
1442  * Helper for 'get_queued_page' - gets a page off the queue
1443  *
1444  * Returns the block of the page (or NULL if none available)
1445  *
1446  * @rs: current RAM state
1447  * @offset: used to return the offset within the RAMBlock
1448  */
1449 static RAMBlock *unqueue_page(RAMState *rs, ram_addr_t *offset)
1450 {
1451     struct RAMSrcPageRequest *entry;
1452     RAMBlock *block = NULL;
1453 
1454     if (!postcopy_has_request(rs)) {
1455         return NULL;
1456     }
1457 
1458     QEMU_LOCK_GUARD(&rs->src_page_req_mutex);
1459 
1460     /*
1461      * This should _never_ change even after we take the lock, because no one
1462      * should be taking anything off the request list other than us.
1463      */
1464     assert(postcopy_has_request(rs));
1465 
1466     entry = QSIMPLEQ_FIRST(&rs->src_page_requests);
1467     block = entry->rb;
1468     *offset = entry->offset;
1469 
1470     if (entry->len > TARGET_PAGE_SIZE) {
1471         entry->len -= TARGET_PAGE_SIZE;
1472         entry->offset += TARGET_PAGE_SIZE;
1473     } else {
1474         memory_region_unref(block->mr);
1475         QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
1476         g_free(entry);
1477         migration_consume_urgent_request();
1478     }
1479 
1480     return block;
1481 }
1482 
1483 #if defined(__linux__)
1484 /**
1485  * poll_fault_page: try to get next UFFD write fault page and, if pending fault
1486  *   is found, return RAM block pointer and page offset
1487  *
1488  * Returns pointer to the RAMBlock containing faulting page,
1489  *   NULL if no write faults are pending
1490  *
1491  * @rs: current RAM state
1492  * @offset: page offset from the beginning of the block
1493  */
1494 static RAMBlock *poll_fault_page(RAMState *rs, ram_addr_t *offset)
1495 {
1496     struct uffd_msg uffd_msg;
1497     void *page_address;
1498     RAMBlock *block;
1499     int res;
1500 
1501     if (!migrate_background_snapshot()) {
1502         return NULL;
1503     }
1504 
1505     res = uffd_read_events(rs->uffdio_fd, &uffd_msg, 1);
1506     if (res <= 0) {
1507         return NULL;
1508     }
1509 
1510     page_address = (void *)(uintptr_t) uffd_msg.arg.pagefault.address;
1511     block = qemu_ram_block_from_host(page_address, false, offset);
1512     assert(block && (block->flags & RAM_UF_WRITEPROTECT) != 0);
1513     return block;
1514 }
1515 
1516 /**
1517  * ram_save_release_protection: release UFFD write protection after
1518  *   a range of pages has been saved
1519  *
1520  * @rs: current RAM state
1521  * @pss: page-search-status structure
1522  * @start_page: index of the first page in the range relative to pss->block
1523  *
1524  * Returns 0 on success, negative value in case of an error
1525 */
1526 static int ram_save_release_protection(RAMState *rs, PageSearchStatus *pss,
1527         unsigned long start_page)
1528 {
1529     int res = 0;
1530 
1531     /* Check if page is from UFFD-managed region. */
1532     if (pss->block->flags & RAM_UF_WRITEPROTECT) {
1533         void *page_address = pss->block->host + (start_page << TARGET_PAGE_BITS);
1534         uint64_t run_length = (pss->page - start_page) << TARGET_PAGE_BITS;
1535 
1536         /* Flush async buffers before un-protect. */
1537         qemu_fflush(pss->pss_channel);
1538         /* Un-protect memory range. */
1539         res = uffd_change_protection(rs->uffdio_fd, page_address, run_length,
1540                 false, false);
1541     }
1542 
1543     return res;
1544 }
1545 
1546 /* ram_write_tracking_available: check if kernel supports required UFFD features
1547  *
1548  * Returns true if supports, false otherwise
1549  */
1550 bool ram_write_tracking_available(void)
1551 {
1552     uint64_t uffd_features;
1553     int res;
1554 
1555     res = uffd_query_features(&uffd_features);
1556     return (res == 0 &&
1557             (uffd_features & UFFD_FEATURE_PAGEFAULT_FLAG_WP) != 0);
1558 }
1559 
1560 /* ram_write_tracking_compatible: check if guest configuration is
1561  *   compatible with 'write-tracking'
1562  *
1563  * Returns true if compatible, false otherwise
1564  */
1565 bool ram_write_tracking_compatible(void)
1566 {
1567     const uint64_t uffd_ioctls_mask = BIT(_UFFDIO_WRITEPROTECT);
1568     int uffd_fd;
1569     RAMBlock *block;
1570     bool ret = false;
1571 
1572     /* Open UFFD file descriptor */
1573     uffd_fd = uffd_create_fd(UFFD_FEATURE_PAGEFAULT_FLAG_WP, false);
1574     if (uffd_fd < 0) {
1575         return false;
1576     }
1577 
1578     RCU_READ_LOCK_GUARD();
1579 
1580     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1581         uint64_t uffd_ioctls;
1582 
1583         /* Nothing to do with read-only and MMIO-writable regions */
1584         if (block->mr->readonly || block->mr->rom_device) {
1585             continue;
1586         }
1587         /* Try to register block memory via UFFD-IO to track writes */
1588         if (uffd_register_memory(uffd_fd, block->host, block->max_length,
1589                 UFFDIO_REGISTER_MODE_WP, &uffd_ioctls)) {
1590             goto out;
1591         }
1592         if ((uffd_ioctls & uffd_ioctls_mask) != uffd_ioctls_mask) {
1593             goto out;
1594         }
1595     }
1596     ret = true;
1597 
1598 out:
1599     uffd_close_fd(uffd_fd);
1600     return ret;
1601 }
1602 
1603 static inline void populate_read_range(RAMBlock *block, ram_addr_t offset,
1604                                        ram_addr_t size)
1605 {
1606     const ram_addr_t end = offset + size;
1607 
1608     /*
1609      * We read one byte of each page; this will preallocate page tables if
1610      * required and populate the shared zeropage on MAP_PRIVATE anonymous memory
1611      * where no page was populated yet. This might require adaption when
1612      * supporting other mappings, like shmem.
1613      */
1614     for (; offset < end; offset += block->page_size) {
1615         char tmp = *((char *)block->host + offset);
1616 
1617         /* Don't optimize the read out */
1618         asm volatile("" : "+r" (tmp));
1619     }
1620 }
1621 
1622 static inline int populate_read_section(MemoryRegionSection *section,
1623                                         void *opaque)
1624 {
1625     const hwaddr size = int128_get64(section->size);
1626     hwaddr offset = section->offset_within_region;
1627     RAMBlock *block = section->mr->ram_block;
1628 
1629     populate_read_range(block, offset, size);
1630     return 0;
1631 }
1632 
1633 /*
1634  * ram_block_populate_read: preallocate page tables and populate pages in the
1635  *   RAM block by reading a byte of each page.
1636  *
1637  * Since it's solely used for userfault_fd WP feature, here we just
1638  *   hardcode page size to qemu_real_host_page_size.
1639  *
1640  * @block: RAM block to populate
1641  */
1642 static void ram_block_populate_read(RAMBlock *rb)
1643 {
1644     /*
1645      * Skip populating all pages that fall into a discarded range as managed by
1646      * a RamDiscardManager responsible for the mapped memory region of the
1647      * RAMBlock. Such discarded ("logically unplugged") parts of a RAMBlock
1648      * must not get populated automatically. We don't have to track
1649      * modifications via userfaultfd WP reliably, because these pages will
1650      * not be part of the migration stream either way -- see
1651      * ramblock_dirty_bitmap_exclude_discarded_pages().
1652      *
1653      * Note: The result is only stable while migrating (precopy/postcopy).
1654      */
1655     if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) {
1656         RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr);
1657         MemoryRegionSection section = {
1658             .mr = rb->mr,
1659             .offset_within_region = 0,
1660             .size = rb->mr->size,
1661         };
1662 
1663         ram_discard_manager_replay_populated(rdm, &section,
1664                                              populate_read_section, NULL);
1665     } else {
1666         populate_read_range(rb, 0, rb->used_length);
1667     }
1668 }
1669 
1670 /*
1671  * ram_write_tracking_prepare: prepare for UFFD-WP memory tracking
1672  */
1673 void ram_write_tracking_prepare(void)
1674 {
1675     RAMBlock *block;
1676 
1677     RCU_READ_LOCK_GUARD();
1678 
1679     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1680         /* Nothing to do with read-only and MMIO-writable regions */
1681         if (block->mr->readonly || block->mr->rom_device) {
1682             continue;
1683         }
1684 
1685         /*
1686          * Populate pages of the RAM block before enabling userfault_fd
1687          * write protection.
1688          *
1689          * This stage is required since ioctl(UFFDIO_WRITEPROTECT) with
1690          * UFFDIO_WRITEPROTECT_MODE_WP mode setting would silently skip
1691          * pages with pte_none() entries in page table.
1692          */
1693         ram_block_populate_read(block);
1694     }
1695 }
1696 
1697 static inline int uffd_protect_section(MemoryRegionSection *section,
1698                                        void *opaque)
1699 {
1700     const hwaddr size = int128_get64(section->size);
1701     const hwaddr offset = section->offset_within_region;
1702     RAMBlock *rb = section->mr->ram_block;
1703     int uffd_fd = (uintptr_t)opaque;
1704 
1705     return uffd_change_protection(uffd_fd, rb->host + offset, size, true,
1706                                   false);
1707 }
1708 
1709 static int ram_block_uffd_protect(RAMBlock *rb, int uffd_fd)
1710 {
1711     assert(rb->flags & RAM_UF_WRITEPROTECT);
1712 
1713     /* See ram_block_populate_read() */
1714     if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) {
1715         RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr);
1716         MemoryRegionSection section = {
1717             .mr = rb->mr,
1718             .offset_within_region = 0,
1719             .size = rb->mr->size,
1720         };
1721 
1722         return ram_discard_manager_replay_populated(rdm, &section,
1723                                                     uffd_protect_section,
1724                                                     (void *)(uintptr_t)uffd_fd);
1725     }
1726     return uffd_change_protection(uffd_fd, rb->host,
1727                                   rb->used_length, true, false);
1728 }
1729 
1730 /*
1731  * ram_write_tracking_start: start UFFD-WP memory tracking
1732  *
1733  * Returns 0 for success or negative value in case of error
1734  */
1735 int ram_write_tracking_start(void)
1736 {
1737     int uffd_fd;
1738     RAMState *rs = ram_state;
1739     RAMBlock *block;
1740 
1741     /* Open UFFD file descriptor */
1742     uffd_fd = uffd_create_fd(UFFD_FEATURE_PAGEFAULT_FLAG_WP, true);
1743     if (uffd_fd < 0) {
1744         return uffd_fd;
1745     }
1746     rs->uffdio_fd = uffd_fd;
1747 
1748     RCU_READ_LOCK_GUARD();
1749 
1750     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1751         /* Nothing to do with read-only and MMIO-writable regions */
1752         if (block->mr->readonly || block->mr->rom_device) {
1753             continue;
1754         }
1755 
1756         /* Register block memory with UFFD to track writes */
1757         if (uffd_register_memory(rs->uffdio_fd, block->host,
1758                 block->max_length, UFFDIO_REGISTER_MODE_WP, NULL)) {
1759             goto fail;
1760         }
1761         block->flags |= RAM_UF_WRITEPROTECT;
1762         memory_region_ref(block->mr);
1763 
1764         /* Apply UFFD write protection to the block memory range */
1765         if (ram_block_uffd_protect(block, uffd_fd)) {
1766             goto fail;
1767         }
1768 
1769         trace_ram_write_tracking_ramblock_start(block->idstr, block->page_size,
1770                 block->host, block->max_length);
1771     }
1772 
1773     return 0;
1774 
1775 fail:
1776     error_report("ram_write_tracking_start() failed: restoring initial memory state");
1777 
1778     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1779         if ((block->flags & RAM_UF_WRITEPROTECT) == 0) {
1780             continue;
1781         }
1782         uffd_unregister_memory(rs->uffdio_fd, block->host, block->max_length);
1783         /* Cleanup flags and remove reference */
1784         block->flags &= ~RAM_UF_WRITEPROTECT;
1785         memory_region_unref(block->mr);
1786     }
1787 
1788     uffd_close_fd(uffd_fd);
1789     rs->uffdio_fd = -1;
1790     return -1;
1791 }
1792 
1793 /**
1794  * ram_write_tracking_stop: stop UFFD-WP memory tracking and remove protection
1795  */
1796 void ram_write_tracking_stop(void)
1797 {
1798     RAMState *rs = ram_state;
1799     RAMBlock *block;
1800 
1801     RCU_READ_LOCK_GUARD();
1802 
1803     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1804         if ((block->flags & RAM_UF_WRITEPROTECT) == 0) {
1805             continue;
1806         }
1807         uffd_unregister_memory(rs->uffdio_fd, block->host, block->max_length);
1808 
1809         trace_ram_write_tracking_ramblock_stop(block->idstr, block->page_size,
1810                 block->host, block->max_length);
1811 
1812         /* Cleanup flags and remove reference */
1813         block->flags &= ~RAM_UF_WRITEPROTECT;
1814         memory_region_unref(block->mr);
1815     }
1816 
1817     /* Finally close UFFD file descriptor */
1818     uffd_close_fd(rs->uffdio_fd);
1819     rs->uffdio_fd = -1;
1820 }
1821 
1822 #else
1823 /* No target OS support, stubs just fail or ignore */
1824 
1825 static RAMBlock *poll_fault_page(RAMState *rs, ram_addr_t *offset)
1826 {
1827     (void) rs;
1828     (void) offset;
1829 
1830     return NULL;
1831 }
1832 
1833 static int ram_save_release_protection(RAMState *rs, PageSearchStatus *pss,
1834         unsigned long start_page)
1835 {
1836     (void) rs;
1837     (void) pss;
1838     (void) start_page;
1839 
1840     return 0;
1841 }
1842 
1843 bool ram_write_tracking_available(void)
1844 {
1845     return false;
1846 }
1847 
1848 bool ram_write_tracking_compatible(void)
1849 {
1850     assert(0);
1851     return false;
1852 }
1853 
1854 int ram_write_tracking_start(void)
1855 {
1856     assert(0);
1857     return -1;
1858 }
1859 
1860 void ram_write_tracking_stop(void)
1861 {
1862     assert(0);
1863 }
1864 #endif /* defined(__linux__) */
1865 
1866 /**
1867  * get_queued_page: unqueue a page from the postcopy requests
1868  *
1869  * Skips pages that are already sent (!dirty)
1870  *
1871  * Returns true if a queued page is found
1872  *
1873  * @rs: current RAM state
1874  * @pss: data about the state of the current dirty page scan
1875  */
1876 static bool get_queued_page(RAMState *rs, PageSearchStatus *pss)
1877 {
1878     RAMBlock  *block;
1879     ram_addr_t offset;
1880     bool dirty;
1881 
1882     do {
1883         block = unqueue_page(rs, &offset);
1884         /*
1885          * We're sending this page, and since it's postcopy nothing else
1886          * will dirty it, and we must make sure it doesn't get sent again
1887          * even if this queue request was received after the background
1888          * search already sent it.
1889          */
1890         if (block) {
1891             unsigned long page;
1892 
1893             page = offset >> TARGET_PAGE_BITS;
1894             dirty = test_bit(page, block->bmap);
1895             if (!dirty) {
1896                 trace_get_queued_page_not_dirty(block->idstr, (uint64_t)offset,
1897                                                 page);
1898             } else {
1899                 trace_get_queued_page(block->idstr, (uint64_t)offset, page);
1900             }
1901         }
1902 
1903     } while (block && !dirty);
1904 
1905     if (!block) {
1906         /*
1907          * Poll write faults too if background snapshot is enabled; that's
1908          * when we have vcpus got blocked by the write protected pages.
1909          */
1910         block = poll_fault_page(rs, &offset);
1911     }
1912 
1913     if (block) {
1914         /*
1915          * We want the background search to continue from the queued page
1916          * since the guest is likely to want other pages near to the page
1917          * it just requested.
1918          */
1919         pss->block = block;
1920         pss->page = offset >> TARGET_PAGE_BITS;
1921 
1922         /*
1923          * This unqueued page would break the "one round" check, even is
1924          * really rare.
1925          */
1926         pss->complete_round = false;
1927     }
1928 
1929     return !!block;
1930 }
1931 
1932 /**
1933  * migration_page_queue_free: drop any remaining pages in the ram
1934  * request queue
1935  *
1936  * It should be empty at the end anyway, but in error cases there may
1937  * be some left.  in case that there is any page left, we drop it.
1938  *
1939  */
1940 static void migration_page_queue_free(RAMState *rs)
1941 {
1942     struct RAMSrcPageRequest *mspr, *next_mspr;
1943     /* This queue generally should be empty - but in the case of a failed
1944      * migration might have some droppings in.
1945      */
1946     RCU_READ_LOCK_GUARD();
1947     QSIMPLEQ_FOREACH_SAFE(mspr, &rs->src_page_requests, next_req, next_mspr) {
1948         memory_region_unref(mspr->rb->mr);
1949         QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
1950         g_free(mspr);
1951     }
1952 }
1953 
1954 /**
1955  * ram_save_queue_pages: queue the page for transmission
1956  *
1957  * A request from postcopy destination for example.
1958  *
1959  * Returns zero on success or negative on error
1960  *
1961  * @rbname: Name of the RAMBLock of the request. NULL means the
1962  *          same that last one.
1963  * @start: starting address from the start of the RAMBlock
1964  * @len: length (in bytes) to send
1965  */
1966 int ram_save_queue_pages(const char *rbname, ram_addr_t start, ram_addr_t len)
1967 {
1968     RAMBlock *ramblock;
1969     RAMState *rs = ram_state;
1970 
1971     stat64_add(&mig_stats.postcopy_requests, 1);
1972     RCU_READ_LOCK_GUARD();
1973 
1974     if (!rbname) {
1975         /* Reuse last RAMBlock */
1976         ramblock = rs->last_req_rb;
1977 
1978         if (!ramblock) {
1979             /*
1980              * Shouldn't happen, we can't reuse the last RAMBlock if
1981              * it's the 1st request.
1982              */
1983             error_report("ram_save_queue_pages no previous block");
1984             return -1;
1985         }
1986     } else {
1987         ramblock = qemu_ram_block_by_name(rbname);
1988 
1989         if (!ramblock) {
1990             /* We shouldn't be asked for a non-existent RAMBlock */
1991             error_report("ram_save_queue_pages no block '%s'", rbname);
1992             return -1;
1993         }
1994         rs->last_req_rb = ramblock;
1995     }
1996     trace_ram_save_queue_pages(ramblock->idstr, start, len);
1997     if (!offset_in_ramblock(ramblock, start + len - 1)) {
1998         error_report("%s request overrun start=" RAM_ADDR_FMT " len="
1999                      RAM_ADDR_FMT " blocklen=" RAM_ADDR_FMT,
2000                      __func__, start, len, ramblock->used_length);
2001         return -1;
2002     }
2003 
2004     /*
2005      * When with postcopy preempt, we send back the page directly in the
2006      * rp-return thread.
2007      */
2008     if (postcopy_preempt_active()) {
2009         ram_addr_t page_start = start >> TARGET_PAGE_BITS;
2010         size_t page_size = qemu_ram_pagesize(ramblock);
2011         PageSearchStatus *pss = &ram_state->pss[RAM_CHANNEL_POSTCOPY];
2012         int ret = 0;
2013 
2014         qemu_mutex_lock(&rs->bitmap_mutex);
2015 
2016         pss_init(pss, ramblock, page_start);
2017         /*
2018          * Always use the preempt channel, and make sure it's there.  It's
2019          * safe to access without lock, because when rp-thread is running
2020          * we should be the only one who operates on the qemufile
2021          */
2022         pss->pss_channel = migrate_get_current()->postcopy_qemufile_src;
2023         assert(pss->pss_channel);
2024 
2025         /*
2026          * It must be either one or multiple of host page size.  Just
2027          * assert; if something wrong we're mostly split brain anyway.
2028          */
2029         assert(len % page_size == 0);
2030         while (len) {
2031             if (ram_save_host_page_urgent(pss)) {
2032                 error_report("%s: ram_save_host_page_urgent() failed: "
2033                              "ramblock=%s, start_addr=0x"RAM_ADDR_FMT,
2034                              __func__, ramblock->idstr, start);
2035                 ret = -1;
2036                 break;
2037             }
2038             /*
2039              * NOTE: after ram_save_host_page_urgent() succeeded, pss->page
2040              * will automatically be moved and point to the next host page
2041              * we're going to send, so no need to update here.
2042              *
2043              * Normally QEMU never sends >1 host page in requests, so
2044              * logically we don't even need that as the loop should only
2045              * run once, but just to be consistent.
2046              */
2047             len -= page_size;
2048         };
2049         qemu_mutex_unlock(&rs->bitmap_mutex);
2050 
2051         return ret;
2052     }
2053 
2054     struct RAMSrcPageRequest *new_entry =
2055         g_new0(struct RAMSrcPageRequest, 1);
2056     new_entry->rb = ramblock;
2057     new_entry->offset = start;
2058     new_entry->len = len;
2059 
2060     memory_region_ref(ramblock->mr);
2061     qemu_mutex_lock(&rs->src_page_req_mutex);
2062     QSIMPLEQ_INSERT_TAIL(&rs->src_page_requests, new_entry, next_req);
2063     migration_make_urgent_request();
2064     qemu_mutex_unlock(&rs->src_page_req_mutex);
2065 
2066     return 0;
2067 }
2068 
2069 static bool save_page_use_compression(RAMState *rs)
2070 {
2071     if (!migrate_compress()) {
2072         return false;
2073     }
2074 
2075     /*
2076      * If xbzrle is enabled (e.g., after first round of migration), stop
2077      * using the data compression. In theory, xbzrle can do better than
2078      * compression.
2079      */
2080     if (rs->xbzrle_started) {
2081         return false;
2082     }
2083 
2084     return true;
2085 }
2086 
2087 /*
2088  * try to compress the page before posting it out, return true if the page
2089  * has been properly handled by compression, otherwise needs other
2090  * paths to handle it
2091  */
2092 static bool save_compress_page(RAMState *rs, PageSearchStatus *pss,
2093                                RAMBlock *block, ram_addr_t offset)
2094 {
2095     if (!save_page_use_compression(rs)) {
2096         return false;
2097     }
2098 
2099     /*
2100      * When starting the process of a new block, the first page of
2101      * the block should be sent out before other pages in the same
2102      * block, and all the pages in last block should have been sent
2103      * out, keeping this order is important, because the 'cont' flag
2104      * is used to avoid resending the block name.
2105      *
2106      * We post the fist page as normal page as compression will take
2107      * much CPU resource.
2108      */
2109     if (block != pss->last_sent_block) {
2110         ram_flush_compressed_data(rs);
2111         return false;
2112     }
2113 
2114     if (compress_page_with_multi_thread(block, offset, send_queued_data) > 0) {
2115         return true;
2116     }
2117 
2118     compression_counters.busy++;
2119     return false;
2120 }
2121 
2122 /**
2123  * ram_save_target_page_legacy: save one target page
2124  *
2125  * Returns the number of pages written
2126  *
2127  * @rs: current RAM state
2128  * @pss: data about the page we want to send
2129  */
2130 static int ram_save_target_page_legacy(RAMState *rs, PageSearchStatus *pss)
2131 {
2132     RAMBlock *block = pss->block;
2133     ram_addr_t offset = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS;
2134     int res;
2135 
2136     if (control_save_page(pss, block, offset, &res)) {
2137         return res;
2138     }
2139 
2140     if (save_compress_page(rs, pss, block, offset)) {
2141         return 1;
2142     }
2143 
2144     res = save_zero_page(pss, pss->pss_channel, block, offset);
2145     if (res > 0) {
2146         /* Must let xbzrle know, otherwise a previous (now 0'd) cached
2147          * page would be stale
2148          */
2149         if (rs->xbzrle_started) {
2150             XBZRLE_cache_lock();
2151             xbzrle_cache_zero_page(rs, block->offset + offset);
2152             XBZRLE_cache_unlock();
2153         }
2154         return res;
2155     }
2156 
2157     /*
2158      * Do not use multifd in postcopy as one whole host page should be
2159      * placed.  Meanwhile postcopy requires atomic update of pages, so even
2160      * if host page size == guest page size the dest guest during run may
2161      * still see partially copied pages which is data corruption.
2162      */
2163     if (migrate_multifd() && !migration_in_postcopy()) {
2164         return ram_save_multifd_page(pss->pss_channel, block, offset);
2165     }
2166 
2167     return ram_save_page(rs, pss);
2168 }
2169 
2170 /* Should be called before sending a host page */
2171 static void pss_host_page_prepare(PageSearchStatus *pss)
2172 {
2173     /* How many guest pages are there in one host page? */
2174     size_t guest_pfns = qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS;
2175 
2176     pss->host_page_sending = true;
2177     if (guest_pfns <= 1) {
2178         /*
2179          * This covers both when guest psize == host psize, or when guest
2180          * has larger psize than the host (guest_pfns==0).
2181          *
2182          * For the latter, we always send one whole guest page per
2183          * iteration of the host page (example: an Alpha VM on x86 host
2184          * will have guest psize 8K while host psize 4K).
2185          */
2186         pss->host_page_start = pss->page;
2187         pss->host_page_end = pss->page + 1;
2188     } else {
2189         /*
2190          * The host page spans over multiple guest pages, we send them
2191          * within the same host page iteration.
2192          */
2193         pss->host_page_start = ROUND_DOWN(pss->page, guest_pfns);
2194         pss->host_page_end = ROUND_UP(pss->page + 1, guest_pfns);
2195     }
2196 }
2197 
2198 /*
2199  * Whether the page pointed by PSS is within the host page being sent.
2200  * Must be called after a previous pss_host_page_prepare().
2201  */
2202 static bool pss_within_range(PageSearchStatus *pss)
2203 {
2204     ram_addr_t ram_addr;
2205 
2206     assert(pss->host_page_sending);
2207 
2208     /* Over host-page boundary? */
2209     if (pss->page >= pss->host_page_end) {
2210         return false;
2211     }
2212 
2213     ram_addr = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS;
2214 
2215     return offset_in_ramblock(pss->block, ram_addr);
2216 }
2217 
2218 static void pss_host_page_finish(PageSearchStatus *pss)
2219 {
2220     pss->host_page_sending = false;
2221     /* This is not needed, but just to reset it */
2222     pss->host_page_start = pss->host_page_end = 0;
2223 }
2224 
2225 /*
2226  * Send an urgent host page specified by `pss'.  Need to be called with
2227  * bitmap_mutex held.
2228  *
2229  * Returns 0 if save host page succeeded, false otherwise.
2230  */
2231 static int ram_save_host_page_urgent(PageSearchStatus *pss)
2232 {
2233     bool page_dirty, sent = false;
2234     RAMState *rs = ram_state;
2235     int ret = 0;
2236 
2237     trace_postcopy_preempt_send_host_page(pss->block->idstr, pss->page);
2238     pss_host_page_prepare(pss);
2239 
2240     /*
2241      * If precopy is sending the same page, let it be done in precopy, or
2242      * we could send the same page in two channels and none of them will
2243      * receive the whole page.
2244      */
2245     if (pss_overlap(pss, &ram_state->pss[RAM_CHANNEL_PRECOPY])) {
2246         trace_postcopy_preempt_hit(pss->block->idstr,
2247                                    pss->page << TARGET_PAGE_BITS);
2248         return 0;
2249     }
2250 
2251     do {
2252         page_dirty = migration_bitmap_clear_dirty(rs, pss->block, pss->page);
2253 
2254         if (page_dirty) {
2255             /* Be strict to return code; it must be 1, or what else? */
2256             if (migration_ops->ram_save_target_page(rs, pss) != 1) {
2257                 error_report_once("%s: ram_save_target_page failed", __func__);
2258                 ret = -1;
2259                 goto out;
2260             }
2261             sent = true;
2262         }
2263         pss_find_next_dirty(pss);
2264     } while (pss_within_range(pss));
2265 out:
2266     pss_host_page_finish(pss);
2267     /* For urgent requests, flush immediately if sent */
2268     if (sent) {
2269         qemu_fflush(pss->pss_channel);
2270     }
2271     return ret;
2272 }
2273 
2274 /**
2275  * ram_save_host_page: save a whole host page
2276  *
2277  * Starting at *offset send pages up to the end of the current host
2278  * page. It's valid for the initial offset to point into the middle of
2279  * a host page in which case the remainder of the hostpage is sent.
2280  * Only dirty target pages are sent. Note that the host page size may
2281  * be a huge page for this block.
2282  *
2283  * The saving stops at the boundary of the used_length of the block
2284  * if the RAMBlock isn't a multiple of the host page size.
2285  *
2286  * The caller must be with ram_state.bitmap_mutex held to call this
2287  * function.  Note that this function can temporarily release the lock, but
2288  * when the function is returned it'll make sure the lock is still held.
2289  *
2290  * Returns the number of pages written or negative on error
2291  *
2292  * @rs: current RAM state
2293  * @pss: data about the page we want to send
2294  */
2295 static int ram_save_host_page(RAMState *rs, PageSearchStatus *pss)
2296 {
2297     bool page_dirty, preempt_active = postcopy_preempt_active();
2298     int tmppages, pages = 0;
2299     size_t pagesize_bits =
2300         qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS;
2301     unsigned long start_page = pss->page;
2302     int res;
2303 
2304     if (migrate_ram_is_ignored(pss->block)) {
2305         error_report("block %s should not be migrated !", pss->block->idstr);
2306         return 0;
2307     }
2308 
2309     /* Update host page boundary information */
2310     pss_host_page_prepare(pss);
2311 
2312     do {
2313         page_dirty = migration_bitmap_clear_dirty(rs, pss->block, pss->page);
2314 
2315         /* Check the pages is dirty and if it is send it */
2316         if (page_dirty) {
2317             /*
2318              * Properly yield the lock only in postcopy preempt mode
2319              * because both migration thread and rp-return thread can
2320              * operate on the bitmaps.
2321              */
2322             if (preempt_active) {
2323                 qemu_mutex_unlock(&rs->bitmap_mutex);
2324             }
2325             tmppages = migration_ops->ram_save_target_page(rs, pss);
2326             if (tmppages >= 0) {
2327                 pages += tmppages;
2328                 /*
2329                  * Allow rate limiting to happen in the middle of huge pages if
2330                  * something is sent in the current iteration.
2331                  */
2332                 if (pagesize_bits > 1 && tmppages > 0) {
2333                     migration_rate_limit();
2334                 }
2335             }
2336             if (preempt_active) {
2337                 qemu_mutex_lock(&rs->bitmap_mutex);
2338             }
2339         } else {
2340             tmppages = 0;
2341         }
2342 
2343         if (tmppages < 0) {
2344             pss_host_page_finish(pss);
2345             return tmppages;
2346         }
2347 
2348         pss_find_next_dirty(pss);
2349     } while (pss_within_range(pss));
2350 
2351     pss_host_page_finish(pss);
2352 
2353     res = ram_save_release_protection(rs, pss, start_page);
2354     return (res < 0 ? res : pages);
2355 }
2356 
2357 /**
2358  * ram_find_and_save_block: finds a dirty page and sends it to f
2359  *
2360  * Called within an RCU critical section.
2361  *
2362  * Returns the number of pages written where zero means no dirty pages,
2363  * or negative on error
2364  *
2365  * @rs: current RAM state
2366  *
2367  * On systems where host-page-size > target-page-size it will send all the
2368  * pages in a host page that are dirty.
2369  */
2370 static int ram_find_and_save_block(RAMState *rs)
2371 {
2372     PageSearchStatus *pss = &rs->pss[RAM_CHANNEL_PRECOPY];
2373     int pages = 0;
2374 
2375     /* No dirty page as there is zero RAM */
2376     if (!rs->ram_bytes_total) {
2377         return pages;
2378     }
2379 
2380     /*
2381      * Always keep last_seen_block/last_page valid during this procedure,
2382      * because find_dirty_block() relies on these values (e.g., we compare
2383      * last_seen_block with pss.block to see whether we searched all the
2384      * ramblocks) to detect the completion of migration.  Having NULL value
2385      * of last_seen_block can conditionally cause below loop to run forever.
2386      */
2387     if (!rs->last_seen_block) {
2388         rs->last_seen_block = QLIST_FIRST_RCU(&ram_list.blocks);
2389         rs->last_page = 0;
2390     }
2391 
2392     pss_init(pss, rs->last_seen_block, rs->last_page);
2393 
2394     while (true){
2395         if (!get_queued_page(rs, pss)) {
2396             /* priority queue empty, so just search for something dirty */
2397             int res = find_dirty_block(rs, pss);
2398             if (res != PAGE_DIRTY_FOUND) {
2399                 if (res == PAGE_ALL_CLEAN) {
2400                     break;
2401                 } else if (res == PAGE_TRY_AGAIN) {
2402                     continue;
2403                 } else if (res < 0) {
2404                     pages = res;
2405                     break;
2406                 }
2407             }
2408         }
2409         pages = ram_save_host_page(rs, pss);
2410         if (pages) {
2411             break;
2412         }
2413     }
2414 
2415     rs->last_seen_block = pss->block;
2416     rs->last_page = pss->page;
2417 
2418     return pages;
2419 }
2420 
2421 static uint64_t ram_bytes_total_with_ignored(void)
2422 {
2423     RAMBlock *block;
2424     uint64_t total = 0;
2425 
2426     RCU_READ_LOCK_GUARD();
2427 
2428     RAMBLOCK_FOREACH_MIGRATABLE(block) {
2429         total += block->used_length;
2430     }
2431     return total;
2432 }
2433 
2434 uint64_t ram_bytes_total(void)
2435 {
2436     RAMBlock *block;
2437     uint64_t total = 0;
2438 
2439     RCU_READ_LOCK_GUARD();
2440 
2441     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2442         total += block->used_length;
2443     }
2444     return total;
2445 }
2446 
2447 static void xbzrle_load_setup(void)
2448 {
2449     XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE);
2450 }
2451 
2452 static void xbzrle_load_cleanup(void)
2453 {
2454     g_free(XBZRLE.decoded_buf);
2455     XBZRLE.decoded_buf = NULL;
2456 }
2457 
2458 static void ram_state_cleanup(RAMState **rsp)
2459 {
2460     if (*rsp) {
2461         migration_page_queue_free(*rsp);
2462         qemu_mutex_destroy(&(*rsp)->bitmap_mutex);
2463         qemu_mutex_destroy(&(*rsp)->src_page_req_mutex);
2464         g_free(*rsp);
2465         *rsp = NULL;
2466     }
2467 }
2468 
2469 static void xbzrle_cleanup(void)
2470 {
2471     XBZRLE_cache_lock();
2472     if (XBZRLE.cache) {
2473         cache_fini(XBZRLE.cache);
2474         g_free(XBZRLE.encoded_buf);
2475         g_free(XBZRLE.current_buf);
2476         g_free(XBZRLE.zero_target_page);
2477         XBZRLE.cache = NULL;
2478         XBZRLE.encoded_buf = NULL;
2479         XBZRLE.current_buf = NULL;
2480         XBZRLE.zero_target_page = NULL;
2481     }
2482     XBZRLE_cache_unlock();
2483 }
2484 
2485 static void ram_save_cleanup(void *opaque)
2486 {
2487     RAMState **rsp = opaque;
2488     RAMBlock *block;
2489 
2490     /* We don't use dirty log with background snapshots */
2491     if (!migrate_background_snapshot()) {
2492         /* caller have hold iothread lock or is in a bh, so there is
2493          * no writing race against the migration bitmap
2494          */
2495         if (global_dirty_tracking & GLOBAL_DIRTY_MIGRATION) {
2496             /*
2497              * do not stop dirty log without starting it, since
2498              * memory_global_dirty_log_stop will assert that
2499              * memory_global_dirty_log_start/stop used in pairs
2500              */
2501             memory_global_dirty_log_stop(GLOBAL_DIRTY_MIGRATION);
2502         }
2503     }
2504 
2505     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2506         g_free(block->clear_bmap);
2507         block->clear_bmap = NULL;
2508         g_free(block->bmap);
2509         block->bmap = NULL;
2510     }
2511 
2512     xbzrle_cleanup();
2513     compress_threads_save_cleanup();
2514     ram_state_cleanup(rsp);
2515     g_free(migration_ops);
2516     migration_ops = NULL;
2517 }
2518 
2519 static void ram_state_reset(RAMState *rs)
2520 {
2521     int i;
2522 
2523     for (i = 0; i < RAM_CHANNEL_MAX; i++) {
2524         rs->pss[i].last_sent_block = NULL;
2525     }
2526 
2527     rs->last_seen_block = NULL;
2528     rs->last_page = 0;
2529     rs->last_version = ram_list.version;
2530     rs->xbzrle_started = false;
2531 }
2532 
2533 #define MAX_WAIT 50 /* ms, half buffered_file limit */
2534 
2535 /* **** functions for postcopy ***** */
2536 
2537 void ram_postcopy_migrated_memory_release(MigrationState *ms)
2538 {
2539     struct RAMBlock *block;
2540 
2541     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2542         unsigned long *bitmap = block->bmap;
2543         unsigned long range = block->used_length >> TARGET_PAGE_BITS;
2544         unsigned long run_start = find_next_zero_bit(bitmap, range, 0);
2545 
2546         while (run_start < range) {
2547             unsigned long run_end = find_next_bit(bitmap, range, run_start + 1);
2548             ram_discard_range(block->idstr,
2549                               ((ram_addr_t)run_start) << TARGET_PAGE_BITS,
2550                               ((ram_addr_t)(run_end - run_start))
2551                                 << TARGET_PAGE_BITS);
2552             run_start = find_next_zero_bit(bitmap, range, run_end + 1);
2553         }
2554     }
2555 }
2556 
2557 /**
2558  * postcopy_send_discard_bm_ram: discard a RAMBlock
2559  *
2560  * Callback from postcopy_each_ram_send_discard for each RAMBlock
2561  *
2562  * @ms: current migration state
2563  * @block: RAMBlock to discard
2564  */
2565 static void postcopy_send_discard_bm_ram(MigrationState *ms, RAMBlock *block)
2566 {
2567     unsigned long end = block->used_length >> TARGET_PAGE_BITS;
2568     unsigned long current;
2569     unsigned long *bitmap = block->bmap;
2570 
2571     for (current = 0; current < end; ) {
2572         unsigned long one = find_next_bit(bitmap, end, current);
2573         unsigned long zero, discard_length;
2574 
2575         if (one >= end) {
2576             break;
2577         }
2578 
2579         zero = find_next_zero_bit(bitmap, end, one + 1);
2580 
2581         if (zero >= end) {
2582             discard_length = end - one;
2583         } else {
2584             discard_length = zero - one;
2585         }
2586         postcopy_discard_send_range(ms, one, discard_length);
2587         current = one + discard_length;
2588     }
2589 }
2590 
2591 static void postcopy_chunk_hostpages_pass(MigrationState *ms, RAMBlock *block);
2592 
2593 /**
2594  * postcopy_each_ram_send_discard: discard all RAMBlocks
2595  *
2596  * Utility for the outgoing postcopy code.
2597  *   Calls postcopy_send_discard_bm_ram for each RAMBlock
2598  *   passing it bitmap indexes and name.
2599  * (qemu_ram_foreach_block ends up passing unscaled lengths
2600  *  which would mean postcopy code would have to deal with target page)
2601  *
2602  * @ms: current migration state
2603  */
2604 static void postcopy_each_ram_send_discard(MigrationState *ms)
2605 {
2606     struct RAMBlock *block;
2607 
2608     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2609         postcopy_discard_send_init(ms, block->idstr);
2610 
2611         /*
2612          * Deal with TPS != HPS and huge pages.  It discard any partially sent
2613          * host-page size chunks, mark any partially dirty host-page size
2614          * chunks as all dirty.  In this case the host-page is the host-page
2615          * for the particular RAMBlock, i.e. it might be a huge page.
2616          */
2617         postcopy_chunk_hostpages_pass(ms, block);
2618 
2619         /*
2620          * Postcopy sends chunks of bitmap over the wire, but it
2621          * just needs indexes at this point, avoids it having
2622          * target page specific code.
2623          */
2624         postcopy_send_discard_bm_ram(ms, block);
2625         postcopy_discard_send_finish(ms);
2626     }
2627 }
2628 
2629 /**
2630  * postcopy_chunk_hostpages_pass: canonicalize bitmap in hostpages
2631  *
2632  * Helper for postcopy_chunk_hostpages; it's called twice to
2633  * canonicalize the two bitmaps, that are similar, but one is
2634  * inverted.
2635  *
2636  * Postcopy requires that all target pages in a hostpage are dirty or
2637  * clean, not a mix.  This function canonicalizes the bitmaps.
2638  *
2639  * @ms: current migration state
2640  * @block: block that contains the page we want to canonicalize
2641  */
2642 static void postcopy_chunk_hostpages_pass(MigrationState *ms, RAMBlock *block)
2643 {
2644     RAMState *rs = ram_state;
2645     unsigned long *bitmap = block->bmap;
2646     unsigned int host_ratio = block->page_size / TARGET_PAGE_SIZE;
2647     unsigned long pages = block->used_length >> TARGET_PAGE_BITS;
2648     unsigned long run_start;
2649 
2650     if (block->page_size == TARGET_PAGE_SIZE) {
2651         /* Easy case - TPS==HPS for a non-huge page RAMBlock */
2652         return;
2653     }
2654 
2655     /* Find a dirty page */
2656     run_start = find_next_bit(bitmap, pages, 0);
2657 
2658     while (run_start < pages) {
2659 
2660         /*
2661          * If the start of this run of pages is in the middle of a host
2662          * page, then we need to fixup this host page.
2663          */
2664         if (QEMU_IS_ALIGNED(run_start, host_ratio)) {
2665             /* Find the end of this run */
2666             run_start = find_next_zero_bit(bitmap, pages, run_start + 1);
2667             /*
2668              * If the end isn't at the start of a host page, then the
2669              * run doesn't finish at the end of a host page
2670              * and we need to discard.
2671              */
2672         }
2673 
2674         if (!QEMU_IS_ALIGNED(run_start, host_ratio)) {
2675             unsigned long page;
2676             unsigned long fixup_start_addr = QEMU_ALIGN_DOWN(run_start,
2677                                                              host_ratio);
2678             run_start = QEMU_ALIGN_UP(run_start, host_ratio);
2679 
2680             /* Clean up the bitmap */
2681             for (page = fixup_start_addr;
2682                  page < fixup_start_addr + host_ratio; page++) {
2683                 /*
2684                  * Remark them as dirty, updating the count for any pages
2685                  * that weren't previously dirty.
2686                  */
2687                 rs->migration_dirty_pages += !test_and_set_bit(page, bitmap);
2688             }
2689         }
2690 
2691         /* Find the next dirty page for the next iteration */
2692         run_start = find_next_bit(bitmap, pages, run_start);
2693     }
2694 }
2695 
2696 /**
2697  * ram_postcopy_send_discard_bitmap: transmit the discard bitmap
2698  *
2699  * Transmit the set of pages to be discarded after precopy to the target
2700  * these are pages that:
2701  *     a) Have been previously transmitted but are now dirty again
2702  *     b) Pages that have never been transmitted, this ensures that
2703  *        any pages on the destination that have been mapped by background
2704  *        tasks get discarded (transparent huge pages is the specific concern)
2705  * Hopefully this is pretty sparse
2706  *
2707  * @ms: current migration state
2708  */
2709 void ram_postcopy_send_discard_bitmap(MigrationState *ms)
2710 {
2711     RAMState *rs = ram_state;
2712 
2713     RCU_READ_LOCK_GUARD();
2714 
2715     /* This should be our last sync, the src is now paused */
2716     migration_bitmap_sync(rs, false);
2717 
2718     /* Easiest way to make sure we don't resume in the middle of a host-page */
2719     rs->pss[RAM_CHANNEL_PRECOPY].last_sent_block = NULL;
2720     rs->last_seen_block = NULL;
2721     rs->last_page = 0;
2722 
2723     postcopy_each_ram_send_discard(ms);
2724 
2725     trace_ram_postcopy_send_discard_bitmap();
2726 }
2727 
2728 /**
2729  * ram_discard_range: discard dirtied pages at the beginning of postcopy
2730  *
2731  * Returns zero on success
2732  *
2733  * @rbname: name of the RAMBlock of the request. NULL means the
2734  *          same that last one.
2735  * @start: RAMBlock starting page
2736  * @length: RAMBlock size
2737  */
2738 int ram_discard_range(const char *rbname, uint64_t start, size_t length)
2739 {
2740     trace_ram_discard_range(rbname, start, length);
2741 
2742     RCU_READ_LOCK_GUARD();
2743     RAMBlock *rb = qemu_ram_block_by_name(rbname);
2744 
2745     if (!rb) {
2746         error_report("ram_discard_range: Failed to find block '%s'", rbname);
2747         return -1;
2748     }
2749 
2750     /*
2751      * On source VM, we don't need to update the received bitmap since
2752      * we don't even have one.
2753      */
2754     if (rb->receivedmap) {
2755         bitmap_clear(rb->receivedmap, start >> qemu_target_page_bits(),
2756                      length >> qemu_target_page_bits());
2757     }
2758 
2759     return ram_block_discard_range(rb, start, length);
2760 }
2761 
2762 /*
2763  * For every allocation, we will try not to crash the VM if the
2764  * allocation failed.
2765  */
2766 static int xbzrle_init(void)
2767 {
2768     Error *local_err = NULL;
2769 
2770     if (!migrate_xbzrle()) {
2771         return 0;
2772     }
2773 
2774     XBZRLE_cache_lock();
2775 
2776     XBZRLE.zero_target_page = g_try_malloc0(TARGET_PAGE_SIZE);
2777     if (!XBZRLE.zero_target_page) {
2778         error_report("%s: Error allocating zero page", __func__);
2779         goto err_out;
2780     }
2781 
2782     XBZRLE.cache = cache_init(migrate_xbzrle_cache_size(),
2783                               TARGET_PAGE_SIZE, &local_err);
2784     if (!XBZRLE.cache) {
2785         error_report_err(local_err);
2786         goto free_zero_page;
2787     }
2788 
2789     XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE);
2790     if (!XBZRLE.encoded_buf) {
2791         error_report("%s: Error allocating encoded_buf", __func__);
2792         goto free_cache;
2793     }
2794 
2795     XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE);
2796     if (!XBZRLE.current_buf) {
2797         error_report("%s: Error allocating current_buf", __func__);
2798         goto free_encoded_buf;
2799     }
2800 
2801     /* We are all good */
2802     XBZRLE_cache_unlock();
2803     return 0;
2804 
2805 free_encoded_buf:
2806     g_free(XBZRLE.encoded_buf);
2807     XBZRLE.encoded_buf = NULL;
2808 free_cache:
2809     cache_fini(XBZRLE.cache);
2810     XBZRLE.cache = NULL;
2811 free_zero_page:
2812     g_free(XBZRLE.zero_target_page);
2813     XBZRLE.zero_target_page = NULL;
2814 err_out:
2815     XBZRLE_cache_unlock();
2816     return -ENOMEM;
2817 }
2818 
2819 static int ram_state_init(RAMState **rsp)
2820 {
2821     *rsp = g_try_new0(RAMState, 1);
2822 
2823     if (!*rsp) {
2824         error_report("%s: Init ramstate fail", __func__);
2825         return -1;
2826     }
2827 
2828     qemu_mutex_init(&(*rsp)->bitmap_mutex);
2829     qemu_mutex_init(&(*rsp)->src_page_req_mutex);
2830     QSIMPLEQ_INIT(&(*rsp)->src_page_requests);
2831     (*rsp)->ram_bytes_total = ram_bytes_total();
2832 
2833     /*
2834      * Count the total number of pages used by ram blocks not including any
2835      * gaps due to alignment or unplugs.
2836      * This must match with the initial values of dirty bitmap.
2837      */
2838     (*rsp)->migration_dirty_pages = (*rsp)->ram_bytes_total >> TARGET_PAGE_BITS;
2839     ram_state_reset(*rsp);
2840 
2841     return 0;
2842 }
2843 
2844 static void ram_list_init_bitmaps(void)
2845 {
2846     MigrationState *ms = migrate_get_current();
2847     RAMBlock *block;
2848     unsigned long pages;
2849     uint8_t shift;
2850 
2851     /* Skip setting bitmap if there is no RAM */
2852     if (ram_bytes_total()) {
2853         shift = ms->clear_bitmap_shift;
2854         if (shift > CLEAR_BITMAP_SHIFT_MAX) {
2855             error_report("clear_bitmap_shift (%u) too big, using "
2856                          "max value (%u)", shift, CLEAR_BITMAP_SHIFT_MAX);
2857             shift = CLEAR_BITMAP_SHIFT_MAX;
2858         } else if (shift < CLEAR_BITMAP_SHIFT_MIN) {
2859             error_report("clear_bitmap_shift (%u) too small, using "
2860                          "min value (%u)", shift, CLEAR_BITMAP_SHIFT_MIN);
2861             shift = CLEAR_BITMAP_SHIFT_MIN;
2862         }
2863 
2864         RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2865             pages = block->max_length >> TARGET_PAGE_BITS;
2866             /*
2867              * The initial dirty bitmap for migration must be set with all
2868              * ones to make sure we'll migrate every guest RAM page to
2869              * destination.
2870              * Here we set RAMBlock.bmap all to 1 because when rebegin a
2871              * new migration after a failed migration, ram_list.
2872              * dirty_memory[DIRTY_MEMORY_MIGRATION] don't include the whole
2873              * guest memory.
2874              */
2875             block->bmap = bitmap_new(pages);
2876             bitmap_set(block->bmap, 0, pages);
2877             block->clear_bmap_shift = shift;
2878             block->clear_bmap = bitmap_new(clear_bmap_size(pages, shift));
2879         }
2880     }
2881 }
2882 
2883 static void migration_bitmap_clear_discarded_pages(RAMState *rs)
2884 {
2885     unsigned long pages;
2886     RAMBlock *rb;
2887 
2888     RCU_READ_LOCK_GUARD();
2889 
2890     RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
2891             pages = ramblock_dirty_bitmap_clear_discarded_pages(rb);
2892             rs->migration_dirty_pages -= pages;
2893     }
2894 }
2895 
2896 static void ram_init_bitmaps(RAMState *rs)
2897 {
2898     /* For memory_global_dirty_log_start below.  */
2899     qemu_mutex_lock_iothread();
2900     qemu_mutex_lock_ramlist();
2901 
2902     WITH_RCU_READ_LOCK_GUARD() {
2903         ram_list_init_bitmaps();
2904         /* We don't use dirty log with background snapshots */
2905         if (!migrate_background_snapshot()) {
2906             memory_global_dirty_log_start(GLOBAL_DIRTY_MIGRATION);
2907             migration_bitmap_sync_precopy(rs, false);
2908         }
2909     }
2910     qemu_mutex_unlock_ramlist();
2911     qemu_mutex_unlock_iothread();
2912 
2913     /*
2914      * After an eventual first bitmap sync, fixup the initial bitmap
2915      * containing all 1s to exclude any discarded pages from migration.
2916      */
2917     migration_bitmap_clear_discarded_pages(rs);
2918 }
2919 
2920 static int ram_init_all(RAMState **rsp)
2921 {
2922     if (ram_state_init(rsp)) {
2923         return -1;
2924     }
2925 
2926     if (xbzrle_init()) {
2927         ram_state_cleanup(rsp);
2928         return -1;
2929     }
2930 
2931     ram_init_bitmaps(*rsp);
2932 
2933     return 0;
2934 }
2935 
2936 static void ram_state_resume_prepare(RAMState *rs, QEMUFile *out)
2937 {
2938     RAMBlock *block;
2939     uint64_t pages = 0;
2940 
2941     /*
2942      * Postcopy is not using xbzrle/compression, so no need for that.
2943      * Also, since source are already halted, we don't need to care
2944      * about dirty page logging as well.
2945      */
2946 
2947     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2948         pages += bitmap_count_one(block->bmap,
2949                                   block->used_length >> TARGET_PAGE_BITS);
2950     }
2951 
2952     /* This may not be aligned with current bitmaps. Recalculate. */
2953     rs->migration_dirty_pages = pages;
2954 
2955     ram_state_reset(rs);
2956 
2957     /* Update RAMState cache of output QEMUFile */
2958     rs->pss[RAM_CHANNEL_PRECOPY].pss_channel = out;
2959 
2960     trace_ram_state_resume_prepare(pages);
2961 }
2962 
2963 /*
2964  * This function clears bits of the free pages reported by the caller from the
2965  * migration dirty bitmap. @addr is the host address corresponding to the
2966  * start of the continuous guest free pages, and @len is the total bytes of
2967  * those pages.
2968  */
2969 void qemu_guest_free_page_hint(void *addr, size_t len)
2970 {
2971     RAMBlock *block;
2972     ram_addr_t offset;
2973     size_t used_len, start, npages;
2974     MigrationState *s = migrate_get_current();
2975 
2976     /* This function is currently expected to be used during live migration */
2977     if (!migration_is_setup_or_active(s->state)) {
2978         return;
2979     }
2980 
2981     for (; len > 0; len -= used_len, addr += used_len) {
2982         block = qemu_ram_block_from_host(addr, false, &offset);
2983         if (unlikely(!block || offset >= block->used_length)) {
2984             /*
2985              * The implementation might not support RAMBlock resize during
2986              * live migration, but it could happen in theory with future
2987              * updates. So we add a check here to capture that case.
2988              */
2989             error_report_once("%s unexpected error", __func__);
2990             return;
2991         }
2992 
2993         if (len <= block->used_length - offset) {
2994             used_len = len;
2995         } else {
2996             used_len = block->used_length - offset;
2997         }
2998 
2999         start = offset >> TARGET_PAGE_BITS;
3000         npages = used_len >> TARGET_PAGE_BITS;
3001 
3002         qemu_mutex_lock(&ram_state->bitmap_mutex);
3003         /*
3004          * The skipped free pages are equavalent to be sent from clear_bmap's
3005          * perspective, so clear the bits from the memory region bitmap which
3006          * are initially set. Otherwise those skipped pages will be sent in
3007          * the next round after syncing from the memory region bitmap.
3008          */
3009         migration_clear_memory_region_dirty_bitmap_range(block, start, npages);
3010         ram_state->migration_dirty_pages -=
3011                       bitmap_count_one_with_offset(block->bmap, start, npages);
3012         bitmap_clear(block->bmap, start, npages);
3013         qemu_mutex_unlock(&ram_state->bitmap_mutex);
3014     }
3015 }
3016 
3017 /*
3018  * Each of ram_save_setup, ram_save_iterate and ram_save_complete has
3019  * long-running RCU critical section.  When rcu-reclaims in the code
3020  * start to become numerous it will be necessary to reduce the
3021  * granularity of these critical sections.
3022  */
3023 
3024 /**
3025  * ram_save_setup: Setup RAM for migration
3026  *
3027  * Returns zero to indicate success and negative for error
3028  *
3029  * @f: QEMUFile where to send the data
3030  * @opaque: RAMState pointer
3031  */
3032 static int ram_save_setup(QEMUFile *f, void *opaque)
3033 {
3034     RAMState **rsp = opaque;
3035     RAMBlock *block;
3036     int ret;
3037 
3038     if (compress_threads_save_setup()) {
3039         return -1;
3040     }
3041 
3042     /* migration has already setup the bitmap, reuse it. */
3043     if (!migration_in_colo_state()) {
3044         if (ram_init_all(rsp) != 0) {
3045             compress_threads_save_cleanup();
3046             return -1;
3047         }
3048     }
3049     (*rsp)->pss[RAM_CHANNEL_PRECOPY].pss_channel = f;
3050 
3051     WITH_RCU_READ_LOCK_GUARD() {
3052         qemu_put_be64(f, ram_bytes_total_with_ignored()
3053                          | RAM_SAVE_FLAG_MEM_SIZE);
3054 
3055         RAMBLOCK_FOREACH_MIGRATABLE(block) {
3056             qemu_put_byte(f, strlen(block->idstr));
3057             qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
3058             qemu_put_be64(f, block->used_length);
3059             if (migrate_postcopy_ram() && block->page_size !=
3060                                           qemu_host_page_size) {
3061                 qemu_put_be64(f, block->page_size);
3062             }
3063             if (migrate_ignore_shared()) {
3064                 qemu_put_be64(f, block->mr->addr);
3065             }
3066         }
3067     }
3068 
3069     ram_control_before_iterate(f, RAM_CONTROL_SETUP);
3070     ram_control_after_iterate(f, RAM_CONTROL_SETUP);
3071 
3072     migration_ops = g_malloc0(sizeof(MigrationOps));
3073     migration_ops->ram_save_target_page = ram_save_target_page_legacy;
3074     ret = multifd_send_sync_main(f);
3075     if (ret < 0) {
3076         return ret;
3077     }
3078 
3079     if (!migrate_multifd_flush_after_each_section()) {
3080         qemu_put_be64(f, RAM_SAVE_FLAG_MULTIFD_FLUSH);
3081     }
3082 
3083     qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3084     qemu_fflush(f);
3085 
3086     return 0;
3087 }
3088 
3089 /**
3090  * ram_save_iterate: iterative stage for migration
3091  *
3092  * Returns zero to indicate success and negative for error
3093  *
3094  * @f: QEMUFile where to send the data
3095  * @opaque: RAMState pointer
3096  */
3097 static int ram_save_iterate(QEMUFile *f, void *opaque)
3098 {
3099     RAMState **temp = opaque;
3100     RAMState *rs = *temp;
3101     int ret = 0;
3102     int i;
3103     int64_t t0;
3104     int done = 0;
3105 
3106     if (blk_mig_bulk_active()) {
3107         /* Avoid transferring ram during bulk phase of block migration as
3108          * the bulk phase will usually take a long time and transferring
3109          * ram updates during that time is pointless. */
3110         goto out;
3111     }
3112 
3113     /*
3114      * We'll take this lock a little bit long, but it's okay for two reasons.
3115      * Firstly, the only possible other thread to take it is who calls
3116      * qemu_guest_free_page_hint(), which should be rare; secondly, see
3117      * MAX_WAIT (if curious, further see commit 4508bd9ed8053ce) below, which
3118      * guarantees that we'll at least released it in a regular basis.
3119      */
3120     qemu_mutex_lock(&rs->bitmap_mutex);
3121     WITH_RCU_READ_LOCK_GUARD() {
3122         if (ram_list.version != rs->last_version) {
3123             ram_state_reset(rs);
3124         }
3125 
3126         /* Read version before ram_list.blocks */
3127         smp_rmb();
3128 
3129         ram_control_before_iterate(f, RAM_CONTROL_ROUND);
3130 
3131         t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
3132         i = 0;
3133         while ((ret = migration_rate_exceeded(f)) == 0 ||
3134                postcopy_has_request(rs)) {
3135             int pages;
3136 
3137             if (qemu_file_get_error(f)) {
3138                 break;
3139             }
3140 
3141             pages = ram_find_and_save_block(rs);
3142             /* no more pages to sent */
3143             if (pages == 0) {
3144                 done = 1;
3145                 break;
3146             }
3147 
3148             if (pages < 0) {
3149                 qemu_file_set_error(f, pages);
3150                 break;
3151             }
3152 
3153             rs->target_page_count += pages;
3154 
3155             /*
3156              * During postcopy, it is necessary to make sure one whole host
3157              * page is sent in one chunk.
3158              */
3159             if (migrate_postcopy_ram()) {
3160                 ram_flush_compressed_data(rs);
3161             }
3162 
3163             /*
3164              * we want to check in the 1st loop, just in case it was the 1st
3165              * time and we had to sync the dirty bitmap.
3166              * qemu_clock_get_ns() is a bit expensive, so we only check each
3167              * some iterations
3168              */
3169             if ((i & 63) == 0) {
3170                 uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) /
3171                               1000000;
3172                 if (t1 > MAX_WAIT) {
3173                     trace_ram_save_iterate_big_wait(t1, i);
3174                     break;
3175                 }
3176             }
3177             i++;
3178         }
3179     }
3180     qemu_mutex_unlock(&rs->bitmap_mutex);
3181 
3182     /*
3183      * Must occur before EOS (or any QEMUFile operation)
3184      * because of RDMA protocol.
3185      */
3186     ram_control_after_iterate(f, RAM_CONTROL_ROUND);
3187 
3188 out:
3189     if (ret >= 0
3190         && migration_is_setup_or_active(migrate_get_current()->state)) {
3191         if (migrate_multifd_flush_after_each_section()) {
3192             ret = multifd_send_sync_main(rs->pss[RAM_CHANNEL_PRECOPY].pss_channel);
3193             if (ret < 0) {
3194                 return ret;
3195             }
3196         }
3197 
3198         qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3199         qemu_fflush(f);
3200         ram_transferred_add(8);
3201 
3202         ret = qemu_file_get_error(f);
3203     }
3204     if (ret < 0) {
3205         return ret;
3206     }
3207 
3208     return done;
3209 }
3210 
3211 /**
3212  * ram_save_complete: function called to send the remaining amount of ram
3213  *
3214  * Returns zero to indicate success or negative on error
3215  *
3216  * Called with iothread lock
3217  *
3218  * @f: QEMUFile where to send the data
3219  * @opaque: RAMState pointer
3220  */
3221 static int ram_save_complete(QEMUFile *f, void *opaque)
3222 {
3223     RAMState **temp = opaque;
3224     RAMState *rs = *temp;
3225     int ret = 0;
3226 
3227     rs->last_stage = !migration_in_colo_state();
3228 
3229     WITH_RCU_READ_LOCK_GUARD() {
3230         if (!migration_in_postcopy()) {
3231             migration_bitmap_sync_precopy(rs, true);
3232         }
3233 
3234         ram_control_before_iterate(f, RAM_CONTROL_FINISH);
3235 
3236         /* try transferring iterative blocks of memory */
3237 
3238         /* flush all remaining blocks regardless of rate limiting */
3239         qemu_mutex_lock(&rs->bitmap_mutex);
3240         while (true) {
3241             int pages;
3242 
3243             pages = ram_find_and_save_block(rs);
3244             /* no more blocks to sent */
3245             if (pages == 0) {
3246                 break;
3247             }
3248             if (pages < 0) {
3249                 ret = pages;
3250                 break;
3251             }
3252         }
3253         qemu_mutex_unlock(&rs->bitmap_mutex);
3254 
3255         ram_flush_compressed_data(rs);
3256         ram_control_after_iterate(f, RAM_CONTROL_FINISH);
3257     }
3258 
3259     if (ret < 0) {
3260         return ret;
3261     }
3262 
3263     ret = multifd_send_sync_main(rs->pss[RAM_CHANNEL_PRECOPY].pss_channel);
3264     if (ret < 0) {
3265         return ret;
3266     }
3267 
3268     if (!migrate_multifd_flush_after_each_section()) {
3269         qemu_put_be64(f, RAM_SAVE_FLAG_MULTIFD_FLUSH);
3270     }
3271     qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3272     qemu_fflush(f);
3273 
3274     return 0;
3275 }
3276 
3277 static void ram_state_pending_estimate(void *opaque, uint64_t *must_precopy,
3278                                        uint64_t *can_postcopy)
3279 {
3280     RAMState **temp = opaque;
3281     RAMState *rs = *temp;
3282 
3283     uint64_t remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
3284 
3285     if (migrate_postcopy_ram()) {
3286         /* We can do postcopy, and all the data is postcopiable */
3287         *can_postcopy += remaining_size;
3288     } else {
3289         *must_precopy += remaining_size;
3290     }
3291 }
3292 
3293 static void ram_state_pending_exact(void *opaque, uint64_t *must_precopy,
3294                                     uint64_t *can_postcopy)
3295 {
3296     MigrationState *s = migrate_get_current();
3297     RAMState **temp = opaque;
3298     RAMState *rs = *temp;
3299 
3300     uint64_t remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
3301 
3302     if (!migration_in_postcopy() && remaining_size < s->threshold_size) {
3303         qemu_mutex_lock_iothread();
3304         WITH_RCU_READ_LOCK_GUARD() {
3305             migration_bitmap_sync_precopy(rs, false);
3306         }
3307         qemu_mutex_unlock_iothread();
3308         remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
3309     }
3310 
3311     if (migrate_postcopy_ram()) {
3312         /* We can do postcopy, and all the data is postcopiable */
3313         *can_postcopy += remaining_size;
3314     } else {
3315         *must_precopy += remaining_size;
3316     }
3317 }
3318 
3319 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
3320 {
3321     unsigned int xh_len;
3322     int xh_flags;
3323     uint8_t *loaded_data;
3324 
3325     /* extract RLE header */
3326     xh_flags = qemu_get_byte(f);
3327     xh_len = qemu_get_be16(f);
3328 
3329     if (xh_flags != ENCODING_FLAG_XBZRLE) {
3330         error_report("Failed to load XBZRLE page - wrong compression!");
3331         return -1;
3332     }
3333 
3334     if (xh_len > TARGET_PAGE_SIZE) {
3335         error_report("Failed to load XBZRLE page - len overflow!");
3336         return -1;
3337     }
3338     loaded_data = XBZRLE.decoded_buf;
3339     /* load data and decode */
3340     /* it can change loaded_data to point to an internal buffer */
3341     qemu_get_buffer_in_place(f, &loaded_data, xh_len);
3342 
3343     /* decode RLE */
3344     if (xbzrle_decode_buffer(loaded_data, xh_len, host,
3345                              TARGET_PAGE_SIZE) == -1) {
3346         error_report("Failed to load XBZRLE page - decode error!");
3347         return -1;
3348     }
3349 
3350     return 0;
3351 }
3352 
3353 /**
3354  * ram_block_from_stream: read a RAMBlock id from the migration stream
3355  *
3356  * Must be called from within a rcu critical section.
3357  *
3358  * Returns a pointer from within the RCU-protected ram_list.
3359  *
3360  * @mis: the migration incoming state pointer
3361  * @f: QEMUFile where to read the data from
3362  * @flags: Page flags (mostly to see if it's a continuation of previous block)
3363  * @channel: the channel we're using
3364  */
3365 static inline RAMBlock *ram_block_from_stream(MigrationIncomingState *mis,
3366                                               QEMUFile *f, int flags,
3367                                               int channel)
3368 {
3369     RAMBlock *block = mis->last_recv_block[channel];
3370     char id[256];
3371     uint8_t len;
3372 
3373     if (flags & RAM_SAVE_FLAG_CONTINUE) {
3374         if (!block) {
3375             error_report("Ack, bad migration stream!");
3376             return NULL;
3377         }
3378         return block;
3379     }
3380 
3381     len = qemu_get_byte(f);
3382     qemu_get_buffer(f, (uint8_t *)id, len);
3383     id[len] = 0;
3384 
3385     block = qemu_ram_block_by_name(id);
3386     if (!block) {
3387         error_report("Can't find block %s", id);
3388         return NULL;
3389     }
3390 
3391     if (migrate_ram_is_ignored(block)) {
3392         error_report("block %s should not be migrated !", id);
3393         return NULL;
3394     }
3395 
3396     mis->last_recv_block[channel] = block;
3397 
3398     return block;
3399 }
3400 
3401 static inline void *host_from_ram_block_offset(RAMBlock *block,
3402                                                ram_addr_t offset)
3403 {
3404     if (!offset_in_ramblock(block, offset)) {
3405         return NULL;
3406     }
3407 
3408     return block->host + offset;
3409 }
3410 
3411 static void *host_page_from_ram_block_offset(RAMBlock *block,
3412                                              ram_addr_t offset)
3413 {
3414     /* Note: Explicitly no check against offset_in_ramblock(). */
3415     return (void *)QEMU_ALIGN_DOWN((uintptr_t)(block->host + offset),
3416                                    block->page_size);
3417 }
3418 
3419 static ram_addr_t host_page_offset_from_ram_block_offset(RAMBlock *block,
3420                                                          ram_addr_t offset)
3421 {
3422     return ((uintptr_t)block->host + offset) & (block->page_size - 1);
3423 }
3424 
3425 void colo_record_bitmap(RAMBlock *block, ram_addr_t *normal, uint32_t pages)
3426 {
3427     qemu_mutex_lock(&ram_state->bitmap_mutex);
3428     for (int i = 0; i < pages; i++) {
3429         ram_addr_t offset = normal[i];
3430         ram_state->migration_dirty_pages += !test_and_set_bit(
3431                                                 offset >> TARGET_PAGE_BITS,
3432                                                 block->bmap);
3433     }
3434     qemu_mutex_unlock(&ram_state->bitmap_mutex);
3435 }
3436 
3437 static inline void *colo_cache_from_block_offset(RAMBlock *block,
3438                              ram_addr_t offset, bool record_bitmap)
3439 {
3440     if (!offset_in_ramblock(block, offset)) {
3441         return NULL;
3442     }
3443     if (!block->colo_cache) {
3444         error_report("%s: colo_cache is NULL in block :%s",
3445                      __func__, block->idstr);
3446         return NULL;
3447     }
3448 
3449     /*
3450     * During colo checkpoint, we need bitmap of these migrated pages.
3451     * It help us to decide which pages in ram cache should be flushed
3452     * into VM's RAM later.
3453     */
3454     if (record_bitmap) {
3455         colo_record_bitmap(block, &offset, 1);
3456     }
3457     return block->colo_cache + offset;
3458 }
3459 
3460 /**
3461  * ram_handle_compressed: handle the zero page case
3462  *
3463  * If a page (or a whole RDMA chunk) has been
3464  * determined to be zero, then zap it.
3465  *
3466  * @host: host address for the zero page
3467  * @ch: what the page is filled from.  We only support zero
3468  * @size: size of the zero page
3469  */
3470 void ram_handle_compressed(void *host, uint8_t ch, uint64_t size)
3471 {
3472     if (ch != 0 || !buffer_is_zero(host, size)) {
3473         memset(host, ch, size);
3474     }
3475 }
3476 
3477 static void colo_init_ram_state(void)
3478 {
3479     ram_state_init(&ram_state);
3480 }
3481 
3482 /*
3483  * colo cache: this is for secondary VM, we cache the whole
3484  * memory of the secondary VM, it is need to hold the global lock
3485  * to call this helper.
3486  */
3487 int colo_init_ram_cache(void)
3488 {
3489     RAMBlock *block;
3490 
3491     WITH_RCU_READ_LOCK_GUARD() {
3492         RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3493             block->colo_cache = qemu_anon_ram_alloc(block->used_length,
3494                                                     NULL, false, false);
3495             if (!block->colo_cache) {
3496                 error_report("%s: Can't alloc memory for COLO cache of block %s,"
3497                              "size 0x" RAM_ADDR_FMT, __func__, block->idstr,
3498                              block->used_length);
3499                 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3500                     if (block->colo_cache) {
3501                         qemu_anon_ram_free(block->colo_cache, block->used_length);
3502                         block->colo_cache = NULL;
3503                     }
3504                 }
3505                 return -errno;
3506             }
3507             if (!machine_dump_guest_core(current_machine)) {
3508                 qemu_madvise(block->colo_cache, block->used_length,
3509                              QEMU_MADV_DONTDUMP);
3510             }
3511         }
3512     }
3513 
3514     /*
3515     * Record the dirty pages that sent by PVM, we use this dirty bitmap together
3516     * with to decide which page in cache should be flushed into SVM's RAM. Here
3517     * we use the same name 'ram_bitmap' as for migration.
3518     */
3519     if (ram_bytes_total()) {
3520         RAMBlock *block;
3521 
3522         RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3523             unsigned long pages = block->max_length >> TARGET_PAGE_BITS;
3524             block->bmap = bitmap_new(pages);
3525         }
3526     }
3527 
3528     colo_init_ram_state();
3529     return 0;
3530 }
3531 
3532 /* TODO: duplicated with ram_init_bitmaps */
3533 void colo_incoming_start_dirty_log(void)
3534 {
3535     RAMBlock *block = NULL;
3536     /* For memory_global_dirty_log_start below. */
3537     qemu_mutex_lock_iothread();
3538     qemu_mutex_lock_ramlist();
3539 
3540     memory_global_dirty_log_sync(false);
3541     WITH_RCU_READ_LOCK_GUARD() {
3542         RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3543             ramblock_sync_dirty_bitmap(ram_state, block);
3544             /* Discard this dirty bitmap record */
3545             bitmap_zero(block->bmap, block->max_length >> TARGET_PAGE_BITS);
3546         }
3547         memory_global_dirty_log_start(GLOBAL_DIRTY_MIGRATION);
3548     }
3549     ram_state->migration_dirty_pages = 0;
3550     qemu_mutex_unlock_ramlist();
3551     qemu_mutex_unlock_iothread();
3552 }
3553 
3554 /* It is need to hold the global lock to call this helper */
3555 void colo_release_ram_cache(void)
3556 {
3557     RAMBlock *block;
3558 
3559     memory_global_dirty_log_stop(GLOBAL_DIRTY_MIGRATION);
3560     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3561         g_free(block->bmap);
3562         block->bmap = NULL;
3563     }
3564 
3565     WITH_RCU_READ_LOCK_GUARD() {
3566         RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3567             if (block->colo_cache) {
3568                 qemu_anon_ram_free(block->colo_cache, block->used_length);
3569                 block->colo_cache = NULL;
3570             }
3571         }
3572     }
3573     ram_state_cleanup(&ram_state);
3574 }
3575 
3576 /**
3577  * ram_load_setup: Setup RAM for migration incoming side
3578  *
3579  * Returns zero to indicate success and negative for error
3580  *
3581  * @f: QEMUFile where to receive the data
3582  * @opaque: RAMState pointer
3583  */
3584 static int ram_load_setup(QEMUFile *f, void *opaque)
3585 {
3586     xbzrle_load_setup();
3587     ramblock_recv_map_init();
3588 
3589     return 0;
3590 }
3591 
3592 static int ram_load_cleanup(void *opaque)
3593 {
3594     RAMBlock *rb;
3595 
3596     RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
3597         qemu_ram_block_writeback(rb);
3598     }
3599 
3600     xbzrle_load_cleanup();
3601 
3602     RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
3603         g_free(rb->receivedmap);
3604         rb->receivedmap = NULL;
3605     }
3606 
3607     return 0;
3608 }
3609 
3610 /**
3611  * ram_postcopy_incoming_init: allocate postcopy data structures
3612  *
3613  * Returns 0 for success and negative if there was one error
3614  *
3615  * @mis: current migration incoming state
3616  *
3617  * Allocate data structures etc needed by incoming migration with
3618  * postcopy-ram. postcopy-ram's similarly names
3619  * postcopy_ram_incoming_init does the work.
3620  */
3621 int ram_postcopy_incoming_init(MigrationIncomingState *mis)
3622 {
3623     return postcopy_ram_incoming_init(mis);
3624 }
3625 
3626 /**
3627  * ram_load_postcopy: load a page in postcopy case
3628  *
3629  * Returns 0 for success or -errno in case of error
3630  *
3631  * Called in postcopy mode by ram_load().
3632  * rcu_read_lock is taken prior to this being called.
3633  *
3634  * @f: QEMUFile where to send the data
3635  * @channel: the channel to use for loading
3636  */
3637 int ram_load_postcopy(QEMUFile *f, int channel)
3638 {
3639     int flags = 0, ret = 0;
3640     bool place_needed = false;
3641     bool matches_target_page_size = false;
3642     MigrationIncomingState *mis = migration_incoming_get_current();
3643     PostcopyTmpPage *tmp_page = &mis->postcopy_tmp_pages[channel];
3644 
3645     while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
3646         ram_addr_t addr;
3647         void *page_buffer = NULL;
3648         void *place_source = NULL;
3649         RAMBlock *block = NULL;
3650         uint8_t ch;
3651         int len;
3652 
3653         addr = qemu_get_be64(f);
3654 
3655         /*
3656          * If qemu file error, we should stop here, and then "addr"
3657          * may be invalid
3658          */
3659         ret = qemu_file_get_error(f);
3660         if (ret) {
3661             break;
3662         }
3663 
3664         flags = addr & ~TARGET_PAGE_MASK;
3665         addr &= TARGET_PAGE_MASK;
3666 
3667         trace_ram_load_postcopy_loop(channel, (uint64_t)addr, flags);
3668         if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE |
3669                      RAM_SAVE_FLAG_COMPRESS_PAGE)) {
3670             block = ram_block_from_stream(mis, f, flags, channel);
3671             if (!block) {
3672                 ret = -EINVAL;
3673                 break;
3674             }
3675 
3676             /*
3677              * Relying on used_length is racy and can result in false positives.
3678              * We might place pages beyond used_length in case RAM was shrunk
3679              * while in postcopy, which is fine - trying to place via
3680              * UFFDIO_COPY/UFFDIO_ZEROPAGE will never segfault.
3681              */
3682             if (!block->host || addr >= block->postcopy_length) {
3683                 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
3684                 ret = -EINVAL;
3685                 break;
3686             }
3687             tmp_page->target_pages++;
3688             matches_target_page_size = block->page_size == TARGET_PAGE_SIZE;
3689             /*
3690              * Postcopy requires that we place whole host pages atomically;
3691              * these may be huge pages for RAMBlocks that are backed by
3692              * hugetlbfs.
3693              * To make it atomic, the data is read into a temporary page
3694              * that's moved into place later.
3695              * The migration protocol uses,  possibly smaller, target-pages
3696              * however the source ensures it always sends all the components
3697              * of a host page in one chunk.
3698              */
3699             page_buffer = tmp_page->tmp_huge_page +
3700                           host_page_offset_from_ram_block_offset(block, addr);
3701             /* If all TP are zero then we can optimise the place */
3702             if (tmp_page->target_pages == 1) {
3703                 tmp_page->host_addr =
3704                     host_page_from_ram_block_offset(block, addr);
3705             } else if (tmp_page->host_addr !=
3706                        host_page_from_ram_block_offset(block, addr)) {
3707                 /* not the 1st TP within the HP */
3708                 error_report("Non-same host page detected on channel %d: "
3709                              "Target host page %p, received host page %p "
3710                              "(rb %s offset 0x"RAM_ADDR_FMT" target_pages %d)",
3711                              channel, tmp_page->host_addr,
3712                              host_page_from_ram_block_offset(block, addr),
3713                              block->idstr, addr, tmp_page->target_pages);
3714                 ret = -EINVAL;
3715                 break;
3716             }
3717 
3718             /*
3719              * If it's the last part of a host page then we place the host
3720              * page
3721              */
3722             if (tmp_page->target_pages ==
3723                 (block->page_size / TARGET_PAGE_SIZE)) {
3724                 place_needed = true;
3725             }
3726             place_source = tmp_page->tmp_huge_page;
3727         }
3728 
3729         switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
3730         case RAM_SAVE_FLAG_ZERO:
3731             ch = qemu_get_byte(f);
3732             /*
3733              * Can skip to set page_buffer when
3734              * this is a zero page and (block->page_size == TARGET_PAGE_SIZE).
3735              */
3736             if (ch || !matches_target_page_size) {
3737                 memset(page_buffer, ch, TARGET_PAGE_SIZE);
3738             }
3739             if (ch) {
3740                 tmp_page->all_zero = false;
3741             }
3742             break;
3743 
3744         case RAM_SAVE_FLAG_PAGE:
3745             tmp_page->all_zero = false;
3746             if (!matches_target_page_size) {
3747                 /* For huge pages, we always use temporary buffer */
3748                 qemu_get_buffer(f, page_buffer, TARGET_PAGE_SIZE);
3749             } else {
3750                 /*
3751                  * For small pages that matches target page size, we
3752                  * avoid the qemu_file copy.  Instead we directly use
3753                  * the buffer of QEMUFile to place the page.  Note: we
3754                  * cannot do any QEMUFile operation before using that
3755                  * buffer to make sure the buffer is valid when
3756                  * placing the page.
3757                  */
3758                 qemu_get_buffer_in_place(f, (uint8_t **)&place_source,
3759                                          TARGET_PAGE_SIZE);
3760             }
3761             break;
3762         case RAM_SAVE_FLAG_COMPRESS_PAGE:
3763             tmp_page->all_zero = false;
3764             len = qemu_get_be32(f);
3765             if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) {
3766                 error_report("Invalid compressed data length: %d", len);
3767                 ret = -EINVAL;
3768                 break;
3769             }
3770             decompress_data_with_multi_threads(f, page_buffer, len);
3771             break;
3772         case RAM_SAVE_FLAG_MULTIFD_FLUSH:
3773             multifd_recv_sync_main();
3774             break;
3775         case RAM_SAVE_FLAG_EOS:
3776             /* normal exit */
3777             if (migrate_multifd_flush_after_each_section()) {
3778                 multifd_recv_sync_main();
3779             }
3780             break;
3781         default:
3782             error_report("Unknown combination of migration flags: 0x%x"
3783                          " (postcopy mode)", flags);
3784             ret = -EINVAL;
3785             break;
3786         }
3787 
3788         /* Got the whole host page, wait for decompress before placing. */
3789         if (place_needed) {
3790             ret |= wait_for_decompress_done();
3791         }
3792 
3793         /* Detect for any possible file errors */
3794         if (!ret && qemu_file_get_error(f)) {
3795             ret = qemu_file_get_error(f);
3796         }
3797 
3798         if (!ret && place_needed) {
3799             if (tmp_page->all_zero) {
3800                 ret = postcopy_place_page_zero(mis, tmp_page->host_addr, block);
3801             } else {
3802                 ret = postcopy_place_page(mis, tmp_page->host_addr,
3803                                           place_source, block);
3804             }
3805             place_needed = false;
3806             postcopy_temp_page_reset(tmp_page);
3807         }
3808     }
3809 
3810     return ret;
3811 }
3812 
3813 static bool postcopy_is_running(void)
3814 {
3815     PostcopyState ps = postcopy_state_get();
3816     return ps >= POSTCOPY_INCOMING_LISTENING && ps < POSTCOPY_INCOMING_END;
3817 }
3818 
3819 /*
3820  * Flush content of RAM cache into SVM's memory.
3821  * Only flush the pages that be dirtied by PVM or SVM or both.
3822  */
3823 void colo_flush_ram_cache(void)
3824 {
3825     RAMBlock *block = NULL;
3826     void *dst_host;
3827     void *src_host;
3828     unsigned long offset = 0;
3829 
3830     memory_global_dirty_log_sync(false);
3831     qemu_mutex_lock(&ram_state->bitmap_mutex);
3832     WITH_RCU_READ_LOCK_GUARD() {
3833         RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3834             ramblock_sync_dirty_bitmap(ram_state, block);
3835         }
3836     }
3837 
3838     trace_colo_flush_ram_cache_begin(ram_state->migration_dirty_pages);
3839     WITH_RCU_READ_LOCK_GUARD() {
3840         block = QLIST_FIRST_RCU(&ram_list.blocks);
3841 
3842         while (block) {
3843             unsigned long num = 0;
3844 
3845             offset = colo_bitmap_find_dirty(ram_state, block, offset, &num);
3846             if (!offset_in_ramblock(block,
3847                                     ((ram_addr_t)offset) << TARGET_PAGE_BITS)) {
3848                 offset = 0;
3849                 num = 0;
3850                 block = QLIST_NEXT_RCU(block, next);
3851             } else {
3852                 unsigned long i = 0;
3853 
3854                 for (i = 0; i < num; i++) {
3855                     migration_bitmap_clear_dirty(ram_state, block, offset + i);
3856                 }
3857                 dst_host = block->host
3858                          + (((ram_addr_t)offset) << TARGET_PAGE_BITS);
3859                 src_host = block->colo_cache
3860                          + (((ram_addr_t)offset) << TARGET_PAGE_BITS);
3861                 memcpy(dst_host, src_host, TARGET_PAGE_SIZE * num);
3862                 offset += num;
3863             }
3864         }
3865     }
3866     qemu_mutex_unlock(&ram_state->bitmap_mutex);
3867     trace_colo_flush_ram_cache_end();
3868 }
3869 
3870 /**
3871  * ram_load_precopy: load pages in precopy case
3872  *
3873  * Returns 0 for success or -errno in case of error
3874  *
3875  * Called in precopy mode by ram_load().
3876  * rcu_read_lock is taken prior to this being called.
3877  *
3878  * @f: QEMUFile where to send the data
3879  */
3880 static int ram_load_precopy(QEMUFile *f)
3881 {
3882     MigrationIncomingState *mis = migration_incoming_get_current();
3883     int flags = 0, ret = 0, invalid_flags = 0, len = 0, i = 0;
3884     /* ADVISE is earlier, it shows the source has the postcopy capability on */
3885     bool postcopy_advised = migration_incoming_postcopy_advised();
3886     if (!migrate_compress()) {
3887         invalid_flags |= RAM_SAVE_FLAG_COMPRESS_PAGE;
3888     }
3889 
3890     while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
3891         ram_addr_t addr, total_ram_bytes;
3892         void *host = NULL, *host_bak = NULL;
3893         uint8_t ch;
3894 
3895         /*
3896          * Yield periodically to let main loop run, but an iteration of
3897          * the main loop is expensive, so do it each some iterations
3898          */
3899         if ((i & 32767) == 0 && qemu_in_coroutine()) {
3900             aio_co_schedule(qemu_get_current_aio_context(),
3901                             qemu_coroutine_self());
3902             qemu_coroutine_yield();
3903         }
3904         i++;
3905 
3906         addr = qemu_get_be64(f);
3907         flags = addr & ~TARGET_PAGE_MASK;
3908         addr &= TARGET_PAGE_MASK;
3909 
3910         if (flags & invalid_flags) {
3911             if (flags & invalid_flags & RAM_SAVE_FLAG_COMPRESS_PAGE) {
3912                 error_report("Received an unexpected compressed page");
3913             }
3914 
3915             ret = -EINVAL;
3916             break;
3917         }
3918 
3919         if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE |
3920                      RAM_SAVE_FLAG_COMPRESS_PAGE | RAM_SAVE_FLAG_XBZRLE)) {
3921             RAMBlock *block = ram_block_from_stream(mis, f, flags,
3922                                                     RAM_CHANNEL_PRECOPY);
3923 
3924             host = host_from_ram_block_offset(block, addr);
3925             /*
3926              * After going into COLO stage, we should not load the page
3927              * into SVM's memory directly, we put them into colo_cache firstly.
3928              * NOTE: We need to keep a copy of SVM's ram in colo_cache.
3929              * Previously, we copied all these memory in preparing stage of COLO
3930              * while we need to stop VM, which is a time-consuming process.
3931              * Here we optimize it by a trick, back-up every page while in
3932              * migration process while COLO is enabled, though it affects the
3933              * speed of the migration, but it obviously reduce the downtime of
3934              * back-up all SVM'S memory in COLO preparing stage.
3935              */
3936             if (migration_incoming_colo_enabled()) {
3937                 if (migration_incoming_in_colo_state()) {
3938                     /* In COLO stage, put all pages into cache temporarily */
3939                     host = colo_cache_from_block_offset(block, addr, true);
3940                 } else {
3941                    /*
3942                     * In migration stage but before COLO stage,
3943                     * Put all pages into both cache and SVM's memory.
3944                     */
3945                     host_bak = colo_cache_from_block_offset(block, addr, false);
3946                 }
3947             }
3948             if (!host) {
3949                 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
3950                 ret = -EINVAL;
3951                 break;
3952             }
3953             if (!migration_incoming_in_colo_state()) {
3954                 ramblock_recv_bitmap_set(block, host);
3955             }
3956 
3957             trace_ram_load_loop(block->idstr, (uint64_t)addr, flags, host);
3958         }
3959 
3960         switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
3961         case RAM_SAVE_FLAG_MEM_SIZE:
3962             /* Synchronize RAM block list */
3963             total_ram_bytes = addr;
3964             while (!ret && total_ram_bytes) {
3965                 RAMBlock *block;
3966                 char id[256];
3967                 ram_addr_t length;
3968 
3969                 len = qemu_get_byte(f);
3970                 qemu_get_buffer(f, (uint8_t *)id, len);
3971                 id[len] = 0;
3972                 length = qemu_get_be64(f);
3973 
3974                 block = qemu_ram_block_by_name(id);
3975                 if (block && !qemu_ram_is_migratable(block)) {
3976                     error_report("block %s should not be migrated !", id);
3977                     ret = -EINVAL;
3978                 } else if (block) {
3979                     if (length != block->used_length) {
3980                         Error *local_err = NULL;
3981 
3982                         ret = qemu_ram_resize(block, length,
3983                                               &local_err);
3984                         if (local_err) {
3985                             error_report_err(local_err);
3986                         }
3987                     }
3988                     /* For postcopy we need to check hugepage sizes match */
3989                     if (postcopy_advised && migrate_postcopy_ram() &&
3990                         block->page_size != qemu_host_page_size) {
3991                         uint64_t remote_page_size = qemu_get_be64(f);
3992                         if (remote_page_size != block->page_size) {
3993                             error_report("Mismatched RAM page size %s "
3994                                          "(local) %zd != %" PRId64,
3995                                          id, block->page_size,
3996                                          remote_page_size);
3997                             ret = -EINVAL;
3998                         }
3999                     }
4000                     if (migrate_ignore_shared()) {
4001                         hwaddr addr = qemu_get_be64(f);
4002                         if (migrate_ram_is_ignored(block) &&
4003                             block->mr->addr != addr) {
4004                             error_report("Mismatched GPAs for block %s "
4005                                          "%" PRId64 "!= %" PRId64,
4006                                          id, (uint64_t)addr,
4007                                          (uint64_t)block->mr->addr);
4008                             ret = -EINVAL;
4009                         }
4010                     }
4011                     ram_control_load_hook(f, RAM_CONTROL_BLOCK_REG,
4012                                           block->idstr);
4013                 } else {
4014                     error_report("Unknown ramblock \"%s\", cannot "
4015                                  "accept migration", id);
4016                     ret = -EINVAL;
4017                 }
4018 
4019                 total_ram_bytes -= length;
4020             }
4021             break;
4022 
4023         case RAM_SAVE_FLAG_ZERO:
4024             ch = qemu_get_byte(f);
4025             ram_handle_compressed(host, ch, TARGET_PAGE_SIZE);
4026             break;
4027 
4028         case RAM_SAVE_FLAG_PAGE:
4029             qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
4030             break;
4031 
4032         case RAM_SAVE_FLAG_COMPRESS_PAGE:
4033             len = qemu_get_be32(f);
4034             if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) {
4035                 error_report("Invalid compressed data length: %d", len);
4036                 ret = -EINVAL;
4037                 break;
4038             }
4039             decompress_data_with_multi_threads(f, host, len);
4040             break;
4041 
4042         case RAM_SAVE_FLAG_XBZRLE:
4043             if (load_xbzrle(f, addr, host) < 0) {
4044                 error_report("Failed to decompress XBZRLE page at "
4045                              RAM_ADDR_FMT, addr);
4046                 ret = -EINVAL;
4047                 break;
4048             }
4049             break;
4050         case RAM_SAVE_FLAG_MULTIFD_FLUSH:
4051             multifd_recv_sync_main();
4052             break;
4053         case RAM_SAVE_FLAG_EOS:
4054             /* normal exit */
4055             if (migrate_multifd_flush_after_each_section()) {
4056                 multifd_recv_sync_main();
4057             }
4058             break;
4059         case RAM_SAVE_FLAG_HOOK:
4060             ram_control_load_hook(f, RAM_CONTROL_HOOK, NULL);
4061             break;
4062         default:
4063             error_report("Unknown combination of migration flags: 0x%x", flags);
4064             ret = -EINVAL;
4065         }
4066         if (!ret) {
4067             ret = qemu_file_get_error(f);
4068         }
4069         if (!ret && host_bak) {
4070             memcpy(host_bak, host, TARGET_PAGE_SIZE);
4071         }
4072     }
4073 
4074     ret |= wait_for_decompress_done();
4075     return ret;
4076 }
4077 
4078 static int ram_load(QEMUFile *f, void *opaque, int version_id)
4079 {
4080     int ret = 0;
4081     static uint64_t seq_iter;
4082     /*
4083      * If system is running in postcopy mode, page inserts to host memory must
4084      * be atomic
4085      */
4086     bool postcopy_running = postcopy_is_running();
4087 
4088     seq_iter++;
4089 
4090     if (version_id != 4) {
4091         return -EINVAL;
4092     }
4093 
4094     /*
4095      * This RCU critical section can be very long running.
4096      * When RCU reclaims in the code start to become numerous,
4097      * it will be necessary to reduce the granularity of this
4098      * critical section.
4099      */
4100     WITH_RCU_READ_LOCK_GUARD() {
4101         if (postcopy_running) {
4102             /*
4103              * Note!  Here RAM_CHANNEL_PRECOPY is the precopy channel of
4104              * postcopy migration, we have another RAM_CHANNEL_POSTCOPY to
4105              * service fast page faults.
4106              */
4107             ret = ram_load_postcopy(f, RAM_CHANNEL_PRECOPY);
4108         } else {
4109             ret = ram_load_precopy(f);
4110         }
4111     }
4112     trace_ram_load_complete(ret, seq_iter);
4113 
4114     return ret;
4115 }
4116 
4117 static bool ram_has_postcopy(void *opaque)
4118 {
4119     RAMBlock *rb;
4120     RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
4121         if (ramblock_is_pmem(rb)) {
4122             info_report("Block: %s, host: %p is a nvdimm memory, postcopy"
4123                          "is not supported now!", rb->idstr, rb->host);
4124             return false;
4125         }
4126     }
4127 
4128     return migrate_postcopy_ram();
4129 }
4130 
4131 /* Sync all the dirty bitmap with destination VM.  */
4132 static int ram_dirty_bitmap_sync_all(MigrationState *s, RAMState *rs)
4133 {
4134     RAMBlock *block;
4135     QEMUFile *file = s->to_dst_file;
4136     int ramblock_count = 0;
4137 
4138     trace_ram_dirty_bitmap_sync_start();
4139 
4140     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
4141         qemu_savevm_send_recv_bitmap(file, block->idstr);
4142         trace_ram_dirty_bitmap_request(block->idstr);
4143         ramblock_count++;
4144     }
4145 
4146     trace_ram_dirty_bitmap_sync_wait();
4147 
4148     /* Wait until all the ramblocks' dirty bitmap synced */
4149     while (ramblock_count--) {
4150         qemu_sem_wait(&s->rp_state.rp_sem);
4151     }
4152 
4153     trace_ram_dirty_bitmap_sync_complete();
4154 
4155     return 0;
4156 }
4157 
4158 static void ram_dirty_bitmap_reload_notify(MigrationState *s)
4159 {
4160     qemu_sem_post(&s->rp_state.rp_sem);
4161 }
4162 
4163 /*
4164  * Read the received bitmap, revert it as the initial dirty bitmap.
4165  * This is only used when the postcopy migration is paused but wants
4166  * to resume from a middle point.
4167  */
4168 int ram_dirty_bitmap_reload(MigrationState *s, RAMBlock *block)
4169 {
4170     int ret = -EINVAL;
4171     /* from_dst_file is always valid because we're within rp_thread */
4172     QEMUFile *file = s->rp_state.from_dst_file;
4173     unsigned long *le_bitmap, nbits = block->used_length >> TARGET_PAGE_BITS;
4174     uint64_t local_size = DIV_ROUND_UP(nbits, 8);
4175     uint64_t size, end_mark;
4176 
4177     trace_ram_dirty_bitmap_reload_begin(block->idstr);
4178 
4179     if (s->state != MIGRATION_STATUS_POSTCOPY_RECOVER) {
4180         error_report("%s: incorrect state %s", __func__,
4181                      MigrationStatus_str(s->state));
4182         return -EINVAL;
4183     }
4184 
4185     /*
4186      * Note: see comments in ramblock_recv_bitmap_send() on why we
4187      * need the endianness conversion, and the paddings.
4188      */
4189     local_size = ROUND_UP(local_size, 8);
4190 
4191     /* Add paddings */
4192     le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
4193 
4194     size = qemu_get_be64(file);
4195 
4196     /* The size of the bitmap should match with our ramblock */
4197     if (size != local_size) {
4198         error_report("%s: ramblock '%s' bitmap size mismatch "
4199                      "(0x%"PRIx64" != 0x%"PRIx64")", __func__,
4200                      block->idstr, size, local_size);
4201         ret = -EINVAL;
4202         goto out;
4203     }
4204 
4205     size = qemu_get_buffer(file, (uint8_t *)le_bitmap, local_size);
4206     end_mark = qemu_get_be64(file);
4207 
4208     ret = qemu_file_get_error(file);
4209     if (ret || size != local_size) {
4210         error_report("%s: read bitmap failed for ramblock '%s': %d"
4211                      " (size 0x%"PRIx64", got: 0x%"PRIx64")",
4212                      __func__, block->idstr, ret, local_size, size);
4213         ret = -EIO;
4214         goto out;
4215     }
4216 
4217     if (end_mark != RAMBLOCK_RECV_BITMAP_ENDING) {
4218         error_report("%s: ramblock '%s' end mark incorrect: 0x%"PRIx64,
4219                      __func__, block->idstr, end_mark);
4220         ret = -EINVAL;
4221         goto out;
4222     }
4223 
4224     /*
4225      * Endianness conversion. We are during postcopy (though paused).
4226      * The dirty bitmap won't change. We can directly modify it.
4227      */
4228     bitmap_from_le(block->bmap, le_bitmap, nbits);
4229 
4230     /*
4231      * What we received is "received bitmap". Revert it as the initial
4232      * dirty bitmap for this ramblock.
4233      */
4234     bitmap_complement(block->bmap, block->bmap, nbits);
4235 
4236     /* Clear dirty bits of discarded ranges that we don't want to migrate. */
4237     ramblock_dirty_bitmap_clear_discarded_pages(block);
4238 
4239     /* We'll recalculate migration_dirty_pages in ram_state_resume_prepare(). */
4240     trace_ram_dirty_bitmap_reload_complete(block->idstr);
4241 
4242     /*
4243      * We succeeded to sync bitmap for current ramblock. If this is
4244      * the last one to sync, we need to notify the main send thread.
4245      */
4246     ram_dirty_bitmap_reload_notify(s);
4247 
4248     ret = 0;
4249 out:
4250     g_free(le_bitmap);
4251     return ret;
4252 }
4253 
4254 static int ram_resume_prepare(MigrationState *s, void *opaque)
4255 {
4256     RAMState *rs = *(RAMState **)opaque;
4257     int ret;
4258 
4259     ret = ram_dirty_bitmap_sync_all(s, rs);
4260     if (ret) {
4261         return ret;
4262     }
4263 
4264     ram_state_resume_prepare(rs, s->to_dst_file);
4265 
4266     return 0;
4267 }
4268 
4269 void postcopy_preempt_shutdown_file(MigrationState *s)
4270 {
4271     qemu_put_be64(s->postcopy_qemufile_src, RAM_SAVE_FLAG_EOS);
4272     qemu_fflush(s->postcopy_qemufile_src);
4273 }
4274 
4275 static SaveVMHandlers savevm_ram_handlers = {
4276     .save_setup = ram_save_setup,
4277     .save_live_iterate = ram_save_iterate,
4278     .save_live_complete_postcopy = ram_save_complete,
4279     .save_live_complete_precopy = ram_save_complete,
4280     .has_postcopy = ram_has_postcopy,
4281     .state_pending_exact = ram_state_pending_exact,
4282     .state_pending_estimate = ram_state_pending_estimate,
4283     .load_state = ram_load,
4284     .save_cleanup = ram_save_cleanup,
4285     .load_setup = ram_load_setup,
4286     .load_cleanup = ram_load_cleanup,
4287     .resume_prepare = ram_resume_prepare,
4288 };
4289 
4290 static void ram_mig_ram_block_resized(RAMBlockNotifier *n, void *host,
4291                                       size_t old_size, size_t new_size)
4292 {
4293     PostcopyState ps = postcopy_state_get();
4294     ram_addr_t offset;
4295     RAMBlock *rb = qemu_ram_block_from_host(host, false, &offset);
4296     Error *err = NULL;
4297 
4298     if (migrate_ram_is_ignored(rb)) {
4299         return;
4300     }
4301 
4302     if (!migration_is_idle()) {
4303         /*
4304          * Precopy code on the source cannot deal with the size of RAM blocks
4305          * changing at random points in time - especially after sending the
4306          * RAM block sizes in the migration stream, they must no longer change.
4307          * Abort and indicate a proper reason.
4308          */
4309         error_setg(&err, "RAM block '%s' resized during precopy.", rb->idstr);
4310         migration_cancel(err);
4311         error_free(err);
4312     }
4313 
4314     switch (ps) {
4315     case POSTCOPY_INCOMING_ADVISE:
4316         /*
4317          * Update what ram_postcopy_incoming_init()->init_range() does at the
4318          * time postcopy was advised. Syncing RAM blocks with the source will
4319          * result in RAM resizes.
4320          */
4321         if (old_size < new_size) {
4322             if (ram_discard_range(rb->idstr, old_size, new_size - old_size)) {
4323                 error_report("RAM block '%s' discard of resized RAM failed",
4324                              rb->idstr);
4325             }
4326         }
4327         rb->postcopy_length = new_size;
4328         break;
4329     case POSTCOPY_INCOMING_NONE:
4330     case POSTCOPY_INCOMING_RUNNING:
4331     case POSTCOPY_INCOMING_END:
4332         /*
4333          * Once our guest is running, postcopy does no longer care about
4334          * resizes. When growing, the new memory was not available on the
4335          * source, no handler needed.
4336          */
4337         break;
4338     default:
4339         error_report("RAM block '%s' resized during postcopy state: %d",
4340                      rb->idstr, ps);
4341         exit(-1);
4342     }
4343 }
4344 
4345 static RAMBlockNotifier ram_mig_ram_notifier = {
4346     .ram_block_resized = ram_mig_ram_block_resized,
4347 };
4348 
4349 void ram_mig_init(void)
4350 {
4351     qemu_mutex_init(&XBZRLE.lock);
4352     register_savevm_live("ram", 0, 4, &savevm_ram_handlers, &ram_state);
4353     ram_block_notifier_add(&ram_mig_ram_notifier);
4354 }
4355