1 /* 2 * QEMU System Emulator 3 * 4 * Copyright (c) 2003-2008 Fabrice Bellard 5 * Copyright (c) 2011-2015 Red Hat Inc 6 * 7 * Authors: 8 * Juan Quintela <quintela@redhat.com> 9 * 10 * Permission is hereby granted, free of charge, to any person obtaining a copy 11 * of this software and associated documentation files (the "Software"), to deal 12 * in the Software without restriction, including without limitation the rights 13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 14 * copies of the Software, and to permit persons to whom the Software is 15 * furnished to do so, subject to the following conditions: 16 * 17 * The above copyright notice and this permission notice shall be included in 18 * all copies or substantial portions of the Software. 19 * 20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 26 * THE SOFTWARE. 27 */ 28 #include <stdint.h> 29 #include <zlib.h> 30 #include "qemu/bitops.h" 31 #include "qemu/bitmap.h" 32 #include "qemu/timer.h" 33 #include "qemu/main-loop.h" 34 #include "migration/migration.h" 35 #include "migration/postcopy-ram.h" 36 #include "exec/address-spaces.h" 37 #include "migration/page_cache.h" 38 #include "qemu/error-report.h" 39 #include "trace.h" 40 #include "exec/ram_addr.h" 41 #include "qemu/rcu_queue.h" 42 43 #ifdef DEBUG_MIGRATION_RAM 44 #define DPRINTF(fmt, ...) \ 45 do { fprintf(stdout, "migration_ram: " fmt, ## __VA_ARGS__); } while (0) 46 #else 47 #define DPRINTF(fmt, ...) \ 48 do { } while (0) 49 #endif 50 51 static int dirty_rate_high_cnt; 52 53 static uint64_t bitmap_sync_count; 54 55 /***********************************************************/ 56 /* ram save/restore */ 57 58 #define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */ 59 #define RAM_SAVE_FLAG_COMPRESS 0x02 60 #define RAM_SAVE_FLAG_MEM_SIZE 0x04 61 #define RAM_SAVE_FLAG_PAGE 0x08 62 #define RAM_SAVE_FLAG_EOS 0x10 63 #define RAM_SAVE_FLAG_CONTINUE 0x20 64 #define RAM_SAVE_FLAG_XBZRLE 0x40 65 /* 0x80 is reserved in migration.h start with 0x100 next */ 66 #define RAM_SAVE_FLAG_COMPRESS_PAGE 0x100 67 68 static const uint8_t ZERO_TARGET_PAGE[TARGET_PAGE_SIZE]; 69 70 static inline bool is_zero_range(uint8_t *p, uint64_t size) 71 { 72 return buffer_find_nonzero_offset(p, size) == size; 73 } 74 75 /* struct contains XBZRLE cache and a static page 76 used by the compression */ 77 static struct { 78 /* buffer used for XBZRLE encoding */ 79 uint8_t *encoded_buf; 80 /* buffer for storing page content */ 81 uint8_t *current_buf; 82 /* Cache for XBZRLE, Protected by lock. */ 83 PageCache *cache; 84 QemuMutex lock; 85 } XBZRLE; 86 87 /* buffer used for XBZRLE decoding */ 88 static uint8_t *xbzrle_decoded_buf; 89 90 static void XBZRLE_cache_lock(void) 91 { 92 if (migrate_use_xbzrle()) 93 qemu_mutex_lock(&XBZRLE.lock); 94 } 95 96 static void XBZRLE_cache_unlock(void) 97 { 98 if (migrate_use_xbzrle()) 99 qemu_mutex_unlock(&XBZRLE.lock); 100 } 101 102 /* 103 * called from qmp_migrate_set_cache_size in main thread, possibly while 104 * a migration is in progress. 105 * A running migration maybe using the cache and might finish during this 106 * call, hence changes to the cache are protected by XBZRLE.lock(). 107 */ 108 int64_t xbzrle_cache_resize(int64_t new_size) 109 { 110 PageCache *new_cache; 111 int64_t ret; 112 113 if (new_size < TARGET_PAGE_SIZE) { 114 return -1; 115 } 116 117 XBZRLE_cache_lock(); 118 119 if (XBZRLE.cache != NULL) { 120 if (pow2floor(new_size) == migrate_xbzrle_cache_size()) { 121 goto out_new_size; 122 } 123 new_cache = cache_init(new_size / TARGET_PAGE_SIZE, 124 TARGET_PAGE_SIZE); 125 if (!new_cache) { 126 error_report("Error creating cache"); 127 ret = -1; 128 goto out; 129 } 130 131 cache_fini(XBZRLE.cache); 132 XBZRLE.cache = new_cache; 133 } 134 135 out_new_size: 136 ret = pow2floor(new_size); 137 out: 138 XBZRLE_cache_unlock(); 139 return ret; 140 } 141 142 /* accounting for migration statistics */ 143 typedef struct AccountingInfo { 144 uint64_t dup_pages; 145 uint64_t skipped_pages; 146 uint64_t norm_pages; 147 uint64_t iterations; 148 uint64_t xbzrle_bytes; 149 uint64_t xbzrle_pages; 150 uint64_t xbzrle_cache_miss; 151 double xbzrle_cache_miss_rate; 152 uint64_t xbzrle_overflows; 153 } AccountingInfo; 154 155 static AccountingInfo acct_info; 156 157 static void acct_clear(void) 158 { 159 memset(&acct_info, 0, sizeof(acct_info)); 160 } 161 162 uint64_t dup_mig_bytes_transferred(void) 163 { 164 return acct_info.dup_pages * TARGET_PAGE_SIZE; 165 } 166 167 uint64_t dup_mig_pages_transferred(void) 168 { 169 return acct_info.dup_pages; 170 } 171 172 uint64_t skipped_mig_bytes_transferred(void) 173 { 174 return acct_info.skipped_pages * TARGET_PAGE_SIZE; 175 } 176 177 uint64_t skipped_mig_pages_transferred(void) 178 { 179 return acct_info.skipped_pages; 180 } 181 182 uint64_t norm_mig_bytes_transferred(void) 183 { 184 return acct_info.norm_pages * TARGET_PAGE_SIZE; 185 } 186 187 uint64_t norm_mig_pages_transferred(void) 188 { 189 return acct_info.norm_pages; 190 } 191 192 uint64_t xbzrle_mig_bytes_transferred(void) 193 { 194 return acct_info.xbzrle_bytes; 195 } 196 197 uint64_t xbzrle_mig_pages_transferred(void) 198 { 199 return acct_info.xbzrle_pages; 200 } 201 202 uint64_t xbzrle_mig_pages_cache_miss(void) 203 { 204 return acct_info.xbzrle_cache_miss; 205 } 206 207 double xbzrle_mig_cache_miss_rate(void) 208 { 209 return acct_info.xbzrle_cache_miss_rate; 210 } 211 212 uint64_t xbzrle_mig_pages_overflow(void) 213 { 214 return acct_info.xbzrle_overflows; 215 } 216 217 /* This is the last block that we have visited serching for dirty pages 218 */ 219 static RAMBlock *last_seen_block; 220 /* This is the last block from where we have sent data */ 221 static RAMBlock *last_sent_block; 222 static ram_addr_t last_offset; 223 static QemuMutex migration_bitmap_mutex; 224 static uint64_t migration_dirty_pages; 225 static uint32_t last_version; 226 static bool ram_bulk_stage; 227 228 /* used by the search for pages to send */ 229 struct PageSearchStatus { 230 /* Current block being searched */ 231 RAMBlock *block; 232 /* Current offset to search from */ 233 ram_addr_t offset; 234 /* Set once we wrap around */ 235 bool complete_round; 236 }; 237 typedef struct PageSearchStatus PageSearchStatus; 238 239 static struct BitmapRcu { 240 struct rcu_head rcu; 241 /* Main migration bitmap */ 242 unsigned long *bmap; 243 /* bitmap of pages that haven't been sent even once 244 * only maintained and used in postcopy at the moment 245 * where it's used to send the dirtymap at the start 246 * of the postcopy phase 247 */ 248 unsigned long *unsentmap; 249 } *migration_bitmap_rcu; 250 251 struct CompressParam { 252 bool start; 253 bool done; 254 QEMUFile *file; 255 QemuMutex mutex; 256 QemuCond cond; 257 RAMBlock *block; 258 ram_addr_t offset; 259 }; 260 typedef struct CompressParam CompressParam; 261 262 struct DecompressParam { 263 bool start; 264 QemuMutex mutex; 265 QemuCond cond; 266 void *des; 267 uint8 *compbuf; 268 int len; 269 }; 270 typedef struct DecompressParam DecompressParam; 271 272 static CompressParam *comp_param; 273 static QemuThread *compress_threads; 274 /* comp_done_cond is used to wake up the migration thread when 275 * one of the compression threads has finished the compression. 276 * comp_done_lock is used to co-work with comp_done_cond. 277 */ 278 static QemuMutex *comp_done_lock; 279 static QemuCond *comp_done_cond; 280 /* The empty QEMUFileOps will be used by file in CompressParam */ 281 static const QEMUFileOps empty_ops = { }; 282 283 static bool compression_switch; 284 static bool quit_comp_thread; 285 static bool quit_decomp_thread; 286 static DecompressParam *decomp_param; 287 static QemuThread *decompress_threads; 288 static uint8_t *compressed_data_buf; 289 290 static int do_compress_ram_page(CompressParam *param); 291 292 static void *do_data_compress(void *opaque) 293 { 294 CompressParam *param = opaque; 295 296 while (!quit_comp_thread) { 297 qemu_mutex_lock(¶m->mutex); 298 /* Re-check the quit_comp_thread in case of 299 * terminate_compression_threads is called just before 300 * qemu_mutex_lock(¶m->mutex) and after 301 * while(!quit_comp_thread), re-check it here can make 302 * sure the compression thread terminate as expected. 303 */ 304 while (!param->start && !quit_comp_thread) { 305 qemu_cond_wait(¶m->cond, ¶m->mutex); 306 } 307 if (!quit_comp_thread) { 308 do_compress_ram_page(param); 309 } 310 param->start = false; 311 qemu_mutex_unlock(¶m->mutex); 312 313 qemu_mutex_lock(comp_done_lock); 314 param->done = true; 315 qemu_cond_signal(comp_done_cond); 316 qemu_mutex_unlock(comp_done_lock); 317 } 318 319 return NULL; 320 } 321 322 static inline void terminate_compression_threads(void) 323 { 324 int idx, thread_count; 325 326 thread_count = migrate_compress_threads(); 327 quit_comp_thread = true; 328 for (idx = 0; idx < thread_count; idx++) { 329 qemu_mutex_lock(&comp_param[idx].mutex); 330 qemu_cond_signal(&comp_param[idx].cond); 331 qemu_mutex_unlock(&comp_param[idx].mutex); 332 } 333 } 334 335 void migrate_compress_threads_join(void) 336 { 337 int i, thread_count; 338 339 if (!migrate_use_compression()) { 340 return; 341 } 342 terminate_compression_threads(); 343 thread_count = migrate_compress_threads(); 344 for (i = 0; i < thread_count; i++) { 345 qemu_thread_join(compress_threads + i); 346 qemu_fclose(comp_param[i].file); 347 qemu_mutex_destroy(&comp_param[i].mutex); 348 qemu_cond_destroy(&comp_param[i].cond); 349 } 350 qemu_mutex_destroy(comp_done_lock); 351 qemu_cond_destroy(comp_done_cond); 352 g_free(compress_threads); 353 g_free(comp_param); 354 g_free(comp_done_cond); 355 g_free(comp_done_lock); 356 compress_threads = NULL; 357 comp_param = NULL; 358 comp_done_cond = NULL; 359 comp_done_lock = NULL; 360 } 361 362 void migrate_compress_threads_create(void) 363 { 364 int i, thread_count; 365 366 if (!migrate_use_compression()) { 367 return; 368 } 369 quit_comp_thread = false; 370 compression_switch = true; 371 thread_count = migrate_compress_threads(); 372 compress_threads = g_new0(QemuThread, thread_count); 373 comp_param = g_new0(CompressParam, thread_count); 374 comp_done_cond = g_new0(QemuCond, 1); 375 comp_done_lock = g_new0(QemuMutex, 1); 376 qemu_cond_init(comp_done_cond); 377 qemu_mutex_init(comp_done_lock); 378 for (i = 0; i < thread_count; i++) { 379 /* com_param[i].file is just used as a dummy buffer to save data, set 380 * it's ops to empty. 381 */ 382 comp_param[i].file = qemu_fopen_ops(NULL, &empty_ops); 383 comp_param[i].done = true; 384 qemu_mutex_init(&comp_param[i].mutex); 385 qemu_cond_init(&comp_param[i].cond); 386 qemu_thread_create(compress_threads + i, "compress", 387 do_data_compress, comp_param + i, 388 QEMU_THREAD_JOINABLE); 389 } 390 } 391 392 /** 393 * save_page_header: Write page header to wire 394 * 395 * If this is the 1st block, it also writes the block identification 396 * 397 * Returns: Number of bytes written 398 * 399 * @f: QEMUFile where to send the data 400 * @block: block that contains the page we want to send 401 * @offset: offset inside the block for the page 402 * in the lower bits, it contains flags 403 */ 404 static size_t save_page_header(QEMUFile *f, RAMBlock *block, ram_addr_t offset) 405 { 406 size_t size, len; 407 408 qemu_put_be64(f, offset); 409 size = 8; 410 411 if (!(offset & RAM_SAVE_FLAG_CONTINUE)) { 412 len = strlen(block->idstr); 413 qemu_put_byte(f, len); 414 qemu_put_buffer(f, (uint8_t *)block->idstr, len); 415 size += 1 + len; 416 } 417 return size; 418 } 419 420 /* Reduce amount of guest cpu execution to hopefully slow down memory writes. 421 * If guest dirty memory rate is reduced below the rate at which we can 422 * transfer pages to the destination then we should be able to complete 423 * migration. Some workloads dirty memory way too fast and will not effectively 424 * converge, even with auto-converge. 425 */ 426 static void mig_throttle_guest_down(void) 427 { 428 MigrationState *s = migrate_get_current(); 429 uint64_t pct_initial = 430 s->parameters[MIGRATION_PARAMETER_X_CPU_THROTTLE_INITIAL]; 431 uint64_t pct_icrement = 432 s->parameters[MIGRATION_PARAMETER_X_CPU_THROTTLE_INCREMENT]; 433 434 /* We have not started throttling yet. Let's start it. */ 435 if (!cpu_throttle_active()) { 436 cpu_throttle_set(pct_initial); 437 } else { 438 /* Throttling already on, just increase the rate */ 439 cpu_throttle_set(cpu_throttle_get_percentage() + pct_icrement); 440 } 441 } 442 443 /* Update the xbzrle cache to reflect a page that's been sent as all 0. 444 * The important thing is that a stale (not-yet-0'd) page be replaced 445 * by the new data. 446 * As a bonus, if the page wasn't in the cache it gets added so that 447 * when a small write is made into the 0'd page it gets XBZRLE sent 448 */ 449 static void xbzrle_cache_zero_page(ram_addr_t current_addr) 450 { 451 if (ram_bulk_stage || !migrate_use_xbzrle()) { 452 return; 453 } 454 455 /* We don't care if this fails to allocate a new cache page 456 * as long as it updated an old one */ 457 cache_insert(XBZRLE.cache, current_addr, ZERO_TARGET_PAGE, 458 bitmap_sync_count); 459 } 460 461 #define ENCODING_FLAG_XBZRLE 0x1 462 463 /** 464 * save_xbzrle_page: compress and send current page 465 * 466 * Returns: 1 means that we wrote the page 467 * 0 means that page is identical to the one already sent 468 * -1 means that xbzrle would be longer than normal 469 * 470 * @f: QEMUFile where to send the data 471 * @current_data: 472 * @current_addr: 473 * @block: block that contains the page we want to send 474 * @offset: offset inside the block for the page 475 * @last_stage: if we are at the completion stage 476 * @bytes_transferred: increase it with the number of transferred bytes 477 */ 478 static int save_xbzrle_page(QEMUFile *f, uint8_t **current_data, 479 ram_addr_t current_addr, RAMBlock *block, 480 ram_addr_t offset, bool last_stage, 481 uint64_t *bytes_transferred) 482 { 483 int encoded_len = 0, bytes_xbzrle; 484 uint8_t *prev_cached_page; 485 486 if (!cache_is_cached(XBZRLE.cache, current_addr, bitmap_sync_count)) { 487 acct_info.xbzrle_cache_miss++; 488 if (!last_stage) { 489 if (cache_insert(XBZRLE.cache, current_addr, *current_data, 490 bitmap_sync_count) == -1) { 491 return -1; 492 } else { 493 /* update *current_data when the page has been 494 inserted into cache */ 495 *current_data = get_cached_data(XBZRLE.cache, current_addr); 496 } 497 } 498 return -1; 499 } 500 501 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr); 502 503 /* save current buffer into memory */ 504 memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE); 505 506 /* XBZRLE encoding (if there is no overflow) */ 507 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf, 508 TARGET_PAGE_SIZE, XBZRLE.encoded_buf, 509 TARGET_PAGE_SIZE); 510 if (encoded_len == 0) { 511 DPRINTF("Skipping unmodified page\n"); 512 return 0; 513 } else if (encoded_len == -1) { 514 DPRINTF("Overflow\n"); 515 acct_info.xbzrle_overflows++; 516 /* update data in the cache */ 517 if (!last_stage) { 518 memcpy(prev_cached_page, *current_data, TARGET_PAGE_SIZE); 519 *current_data = prev_cached_page; 520 } 521 return -1; 522 } 523 524 /* we need to update the data in the cache, in order to get the same data */ 525 if (!last_stage) { 526 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE); 527 } 528 529 /* Send XBZRLE based compressed page */ 530 bytes_xbzrle = save_page_header(f, block, offset | RAM_SAVE_FLAG_XBZRLE); 531 qemu_put_byte(f, ENCODING_FLAG_XBZRLE); 532 qemu_put_be16(f, encoded_len); 533 qemu_put_buffer(f, XBZRLE.encoded_buf, encoded_len); 534 bytes_xbzrle += encoded_len + 1 + 2; 535 acct_info.xbzrle_pages++; 536 acct_info.xbzrle_bytes += bytes_xbzrle; 537 *bytes_transferred += bytes_xbzrle; 538 539 return 1; 540 } 541 542 /* Called with rcu_read_lock() to protect migration_bitmap 543 * rb: The RAMBlock to search for dirty pages in 544 * start: Start address (typically so we can continue from previous page) 545 * ram_addr_abs: Pointer into which to store the address of the dirty page 546 * within the global ram_addr space 547 * 548 * Returns: byte offset within memory region of the start of a dirty page 549 */ 550 static inline 551 ram_addr_t migration_bitmap_find_dirty(RAMBlock *rb, 552 ram_addr_t start, 553 ram_addr_t *ram_addr_abs) 554 { 555 unsigned long base = rb->offset >> TARGET_PAGE_BITS; 556 unsigned long nr = base + (start >> TARGET_PAGE_BITS); 557 uint64_t rb_size = rb->used_length; 558 unsigned long size = base + (rb_size >> TARGET_PAGE_BITS); 559 unsigned long *bitmap; 560 561 unsigned long next; 562 563 bitmap = atomic_rcu_read(&migration_bitmap_rcu)->bmap; 564 if (ram_bulk_stage && nr > base) { 565 next = nr + 1; 566 } else { 567 next = find_next_bit(bitmap, size, nr); 568 } 569 570 *ram_addr_abs = next << TARGET_PAGE_BITS; 571 return (next - base) << TARGET_PAGE_BITS; 572 } 573 574 static inline bool migration_bitmap_clear_dirty(ram_addr_t addr) 575 { 576 bool ret; 577 int nr = addr >> TARGET_PAGE_BITS; 578 unsigned long *bitmap = atomic_rcu_read(&migration_bitmap_rcu)->bmap; 579 580 ret = test_and_clear_bit(nr, bitmap); 581 582 if (ret) { 583 migration_dirty_pages--; 584 } 585 return ret; 586 } 587 588 static void migration_bitmap_sync_range(ram_addr_t start, ram_addr_t length) 589 { 590 unsigned long *bitmap; 591 bitmap = atomic_rcu_read(&migration_bitmap_rcu)->bmap; 592 migration_dirty_pages += 593 cpu_physical_memory_sync_dirty_bitmap(bitmap, start, length); 594 } 595 596 /* Fix me: there are too many global variables used in migration process. */ 597 static int64_t start_time; 598 static int64_t bytes_xfer_prev; 599 static int64_t num_dirty_pages_period; 600 static uint64_t xbzrle_cache_miss_prev; 601 static uint64_t iterations_prev; 602 603 static void migration_bitmap_sync_init(void) 604 { 605 start_time = 0; 606 bytes_xfer_prev = 0; 607 num_dirty_pages_period = 0; 608 xbzrle_cache_miss_prev = 0; 609 iterations_prev = 0; 610 } 611 612 /* Called with iothread lock held, to protect ram_list.dirty_memory[] */ 613 static void migration_bitmap_sync(void) 614 { 615 RAMBlock *block; 616 uint64_t num_dirty_pages_init = migration_dirty_pages; 617 MigrationState *s = migrate_get_current(); 618 int64_t end_time; 619 int64_t bytes_xfer_now; 620 621 bitmap_sync_count++; 622 623 if (!bytes_xfer_prev) { 624 bytes_xfer_prev = ram_bytes_transferred(); 625 } 626 627 if (!start_time) { 628 start_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); 629 } 630 631 trace_migration_bitmap_sync_start(); 632 address_space_sync_dirty_bitmap(&address_space_memory); 633 634 qemu_mutex_lock(&migration_bitmap_mutex); 635 rcu_read_lock(); 636 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { 637 migration_bitmap_sync_range(block->offset, block->used_length); 638 } 639 rcu_read_unlock(); 640 qemu_mutex_unlock(&migration_bitmap_mutex); 641 642 trace_migration_bitmap_sync_end(migration_dirty_pages 643 - num_dirty_pages_init); 644 num_dirty_pages_period += migration_dirty_pages - num_dirty_pages_init; 645 end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); 646 647 /* more than 1 second = 1000 millisecons */ 648 if (end_time > start_time + 1000) { 649 if (migrate_auto_converge()) { 650 /* The following detection logic can be refined later. For now: 651 Check to see if the dirtied bytes is 50% more than the approx. 652 amount of bytes that just got transferred since the last time we 653 were in this routine. If that happens twice, start or increase 654 throttling */ 655 bytes_xfer_now = ram_bytes_transferred(); 656 657 if (s->dirty_pages_rate && 658 (num_dirty_pages_period * TARGET_PAGE_SIZE > 659 (bytes_xfer_now - bytes_xfer_prev)/2) && 660 (dirty_rate_high_cnt++ >= 2)) { 661 trace_migration_throttle(); 662 dirty_rate_high_cnt = 0; 663 mig_throttle_guest_down(); 664 } 665 bytes_xfer_prev = bytes_xfer_now; 666 } 667 668 if (migrate_use_xbzrle()) { 669 if (iterations_prev != acct_info.iterations) { 670 acct_info.xbzrle_cache_miss_rate = 671 (double)(acct_info.xbzrle_cache_miss - 672 xbzrle_cache_miss_prev) / 673 (acct_info.iterations - iterations_prev); 674 } 675 iterations_prev = acct_info.iterations; 676 xbzrle_cache_miss_prev = acct_info.xbzrle_cache_miss; 677 } 678 s->dirty_pages_rate = num_dirty_pages_period * 1000 679 / (end_time - start_time); 680 s->dirty_bytes_rate = s->dirty_pages_rate * TARGET_PAGE_SIZE; 681 start_time = end_time; 682 num_dirty_pages_period = 0; 683 } 684 s->dirty_sync_count = bitmap_sync_count; 685 } 686 687 /** 688 * save_zero_page: Send the zero page to the stream 689 * 690 * Returns: Number of pages written. 691 * 692 * @f: QEMUFile where to send the data 693 * @block: block that contains the page we want to send 694 * @offset: offset inside the block for the page 695 * @p: pointer to the page 696 * @bytes_transferred: increase it with the number of transferred bytes 697 */ 698 static int save_zero_page(QEMUFile *f, RAMBlock *block, ram_addr_t offset, 699 uint8_t *p, uint64_t *bytes_transferred) 700 { 701 int pages = -1; 702 703 if (is_zero_range(p, TARGET_PAGE_SIZE)) { 704 acct_info.dup_pages++; 705 *bytes_transferred += save_page_header(f, block, 706 offset | RAM_SAVE_FLAG_COMPRESS); 707 qemu_put_byte(f, 0); 708 *bytes_transferred += 1; 709 pages = 1; 710 } 711 712 return pages; 713 } 714 715 /** 716 * ram_save_page: Send the given page to the stream 717 * 718 * Returns: Number of pages written. 719 * 720 * @f: QEMUFile where to send the data 721 * @block: block that contains the page we want to send 722 * @offset: offset inside the block for the page 723 * @last_stage: if we are at the completion stage 724 * @bytes_transferred: increase it with the number of transferred bytes 725 */ 726 static int ram_save_page(QEMUFile *f, RAMBlock* block, ram_addr_t offset, 727 bool last_stage, uint64_t *bytes_transferred) 728 { 729 int pages = -1; 730 uint64_t bytes_xmit; 731 ram_addr_t current_addr; 732 uint8_t *p; 733 int ret; 734 bool send_async = true; 735 736 p = block->host + offset; 737 738 /* In doubt sent page as normal */ 739 bytes_xmit = 0; 740 ret = ram_control_save_page(f, block->offset, 741 offset, TARGET_PAGE_SIZE, &bytes_xmit); 742 if (bytes_xmit) { 743 *bytes_transferred += bytes_xmit; 744 pages = 1; 745 } 746 747 XBZRLE_cache_lock(); 748 749 current_addr = block->offset + offset; 750 751 if (block == last_sent_block) { 752 offset |= RAM_SAVE_FLAG_CONTINUE; 753 } 754 if (ret != RAM_SAVE_CONTROL_NOT_SUPP) { 755 if (ret != RAM_SAVE_CONTROL_DELAYED) { 756 if (bytes_xmit > 0) { 757 acct_info.norm_pages++; 758 } else if (bytes_xmit == 0) { 759 acct_info.dup_pages++; 760 } 761 } 762 } else { 763 pages = save_zero_page(f, block, offset, p, bytes_transferred); 764 if (pages > 0) { 765 /* Must let xbzrle know, otherwise a previous (now 0'd) cached 766 * page would be stale 767 */ 768 xbzrle_cache_zero_page(current_addr); 769 } else if (!ram_bulk_stage && migrate_use_xbzrle()) { 770 pages = save_xbzrle_page(f, &p, current_addr, block, 771 offset, last_stage, bytes_transferred); 772 if (!last_stage) { 773 /* Can't send this cached data async, since the cache page 774 * might get updated before it gets to the wire 775 */ 776 send_async = false; 777 } 778 } 779 } 780 781 /* XBZRLE overflow or normal page */ 782 if (pages == -1) { 783 *bytes_transferred += save_page_header(f, block, 784 offset | RAM_SAVE_FLAG_PAGE); 785 if (send_async) { 786 qemu_put_buffer_async(f, p, TARGET_PAGE_SIZE); 787 } else { 788 qemu_put_buffer(f, p, TARGET_PAGE_SIZE); 789 } 790 *bytes_transferred += TARGET_PAGE_SIZE; 791 pages = 1; 792 acct_info.norm_pages++; 793 } 794 795 XBZRLE_cache_unlock(); 796 797 return pages; 798 } 799 800 static int do_compress_ram_page(CompressParam *param) 801 { 802 int bytes_sent, blen; 803 uint8_t *p; 804 RAMBlock *block = param->block; 805 ram_addr_t offset = param->offset; 806 807 p = block->host + (offset & TARGET_PAGE_MASK); 808 809 bytes_sent = save_page_header(param->file, block, offset | 810 RAM_SAVE_FLAG_COMPRESS_PAGE); 811 blen = qemu_put_compression_data(param->file, p, TARGET_PAGE_SIZE, 812 migrate_compress_level()); 813 bytes_sent += blen; 814 815 return bytes_sent; 816 } 817 818 static inline void start_compression(CompressParam *param) 819 { 820 param->done = false; 821 qemu_mutex_lock(¶m->mutex); 822 param->start = true; 823 qemu_cond_signal(¶m->cond); 824 qemu_mutex_unlock(¶m->mutex); 825 } 826 827 static inline void start_decompression(DecompressParam *param) 828 { 829 qemu_mutex_lock(¶m->mutex); 830 param->start = true; 831 qemu_cond_signal(¶m->cond); 832 qemu_mutex_unlock(¶m->mutex); 833 } 834 835 static uint64_t bytes_transferred; 836 837 static void flush_compressed_data(QEMUFile *f) 838 { 839 int idx, len, thread_count; 840 841 if (!migrate_use_compression()) { 842 return; 843 } 844 thread_count = migrate_compress_threads(); 845 for (idx = 0; idx < thread_count; idx++) { 846 if (!comp_param[idx].done) { 847 qemu_mutex_lock(comp_done_lock); 848 while (!comp_param[idx].done && !quit_comp_thread) { 849 qemu_cond_wait(comp_done_cond, comp_done_lock); 850 } 851 qemu_mutex_unlock(comp_done_lock); 852 } 853 if (!quit_comp_thread) { 854 len = qemu_put_qemu_file(f, comp_param[idx].file); 855 bytes_transferred += len; 856 } 857 } 858 } 859 860 static inline void set_compress_params(CompressParam *param, RAMBlock *block, 861 ram_addr_t offset) 862 { 863 param->block = block; 864 param->offset = offset; 865 } 866 867 static int compress_page_with_multi_thread(QEMUFile *f, RAMBlock *block, 868 ram_addr_t offset, 869 uint64_t *bytes_transferred) 870 { 871 int idx, thread_count, bytes_xmit = -1, pages = -1; 872 873 thread_count = migrate_compress_threads(); 874 qemu_mutex_lock(comp_done_lock); 875 while (true) { 876 for (idx = 0; idx < thread_count; idx++) { 877 if (comp_param[idx].done) { 878 bytes_xmit = qemu_put_qemu_file(f, comp_param[idx].file); 879 set_compress_params(&comp_param[idx], block, offset); 880 start_compression(&comp_param[idx]); 881 pages = 1; 882 acct_info.norm_pages++; 883 *bytes_transferred += bytes_xmit; 884 break; 885 } 886 } 887 if (pages > 0) { 888 break; 889 } else { 890 qemu_cond_wait(comp_done_cond, comp_done_lock); 891 } 892 } 893 qemu_mutex_unlock(comp_done_lock); 894 895 return pages; 896 } 897 898 /** 899 * ram_save_compressed_page: compress the given page and send it to the stream 900 * 901 * Returns: Number of pages written. 902 * 903 * @f: QEMUFile where to send the data 904 * @block: block that contains the page we want to send 905 * @offset: offset inside the block for the page 906 * @last_stage: if we are at the completion stage 907 * @bytes_transferred: increase it with the number of transferred bytes 908 */ 909 static int ram_save_compressed_page(QEMUFile *f, RAMBlock *block, 910 ram_addr_t offset, bool last_stage, 911 uint64_t *bytes_transferred) 912 { 913 int pages = -1; 914 uint64_t bytes_xmit; 915 uint8_t *p; 916 int ret; 917 918 p = block->host + offset; 919 920 bytes_xmit = 0; 921 ret = ram_control_save_page(f, block->offset, 922 offset, TARGET_PAGE_SIZE, &bytes_xmit); 923 if (bytes_xmit) { 924 *bytes_transferred += bytes_xmit; 925 pages = 1; 926 } 927 if (block == last_sent_block) { 928 offset |= RAM_SAVE_FLAG_CONTINUE; 929 } 930 if (ret != RAM_SAVE_CONTROL_NOT_SUPP) { 931 if (ret != RAM_SAVE_CONTROL_DELAYED) { 932 if (bytes_xmit > 0) { 933 acct_info.norm_pages++; 934 } else if (bytes_xmit == 0) { 935 acct_info.dup_pages++; 936 } 937 } 938 } else { 939 /* When starting the process of a new block, the first page of 940 * the block should be sent out before other pages in the same 941 * block, and all the pages in last block should have been sent 942 * out, keeping this order is important, because the 'cont' flag 943 * is used to avoid resending the block name. 944 */ 945 if (block != last_sent_block) { 946 flush_compressed_data(f); 947 pages = save_zero_page(f, block, offset, p, bytes_transferred); 948 if (pages == -1) { 949 set_compress_params(&comp_param[0], block, offset); 950 /* Use the qemu thread to compress the data to make sure the 951 * first page is sent out before other pages 952 */ 953 bytes_xmit = do_compress_ram_page(&comp_param[0]); 954 acct_info.norm_pages++; 955 qemu_put_qemu_file(f, comp_param[0].file); 956 *bytes_transferred += bytes_xmit; 957 pages = 1; 958 } 959 } else { 960 pages = save_zero_page(f, block, offset, p, bytes_transferred); 961 if (pages == -1) { 962 pages = compress_page_with_multi_thread(f, block, offset, 963 bytes_transferred); 964 } 965 } 966 } 967 968 return pages; 969 } 970 971 /* 972 * Find the next dirty page and update any state associated with 973 * the search process. 974 * 975 * Returns: True if a page is found 976 * 977 * @f: Current migration stream. 978 * @pss: Data about the state of the current dirty page scan. 979 * @*again: Set to false if the search has scanned the whole of RAM 980 * *ram_addr_abs: Pointer into which to store the address of the dirty page 981 * within the global ram_addr space 982 */ 983 static bool find_dirty_block(QEMUFile *f, PageSearchStatus *pss, 984 bool *again, ram_addr_t *ram_addr_abs) 985 { 986 pss->offset = migration_bitmap_find_dirty(pss->block, pss->offset, 987 ram_addr_abs); 988 if (pss->complete_round && pss->block == last_seen_block && 989 pss->offset >= last_offset) { 990 /* 991 * We've been once around the RAM and haven't found anything. 992 * Give up. 993 */ 994 *again = false; 995 return false; 996 } 997 if (pss->offset >= pss->block->used_length) { 998 /* Didn't find anything in this RAM Block */ 999 pss->offset = 0; 1000 pss->block = QLIST_NEXT_RCU(pss->block, next); 1001 if (!pss->block) { 1002 /* Hit the end of the list */ 1003 pss->block = QLIST_FIRST_RCU(&ram_list.blocks); 1004 /* Flag that we've looped */ 1005 pss->complete_round = true; 1006 ram_bulk_stage = false; 1007 if (migrate_use_xbzrle()) { 1008 /* If xbzrle is on, stop using the data compression at this 1009 * point. In theory, xbzrle can do better than compression. 1010 */ 1011 flush_compressed_data(f); 1012 compression_switch = false; 1013 } 1014 } 1015 /* Didn't find anything this time, but try again on the new block */ 1016 *again = true; 1017 return false; 1018 } else { 1019 /* Can go around again, but... */ 1020 *again = true; 1021 /* We've found something so probably don't need to */ 1022 return true; 1023 } 1024 } 1025 1026 /* 1027 * Helper for 'get_queued_page' - gets a page off the queue 1028 * ms: MigrationState in 1029 * *offset: Used to return the offset within the RAMBlock 1030 * ram_addr_abs: global offset in the dirty/sent bitmaps 1031 * 1032 * Returns: block (or NULL if none available) 1033 */ 1034 static RAMBlock *unqueue_page(MigrationState *ms, ram_addr_t *offset, 1035 ram_addr_t *ram_addr_abs) 1036 { 1037 RAMBlock *block = NULL; 1038 1039 qemu_mutex_lock(&ms->src_page_req_mutex); 1040 if (!QSIMPLEQ_EMPTY(&ms->src_page_requests)) { 1041 struct MigrationSrcPageRequest *entry = 1042 QSIMPLEQ_FIRST(&ms->src_page_requests); 1043 block = entry->rb; 1044 *offset = entry->offset; 1045 *ram_addr_abs = (entry->offset + entry->rb->offset) & 1046 TARGET_PAGE_MASK; 1047 1048 if (entry->len > TARGET_PAGE_SIZE) { 1049 entry->len -= TARGET_PAGE_SIZE; 1050 entry->offset += TARGET_PAGE_SIZE; 1051 } else { 1052 memory_region_unref(block->mr); 1053 QSIMPLEQ_REMOVE_HEAD(&ms->src_page_requests, next_req); 1054 g_free(entry); 1055 } 1056 } 1057 qemu_mutex_unlock(&ms->src_page_req_mutex); 1058 1059 return block; 1060 } 1061 1062 /* 1063 * Unqueue a page from the queue fed by postcopy page requests; skips pages 1064 * that are already sent (!dirty) 1065 * 1066 * ms: MigrationState in 1067 * pss: PageSearchStatus structure updated with found block/offset 1068 * ram_addr_abs: global offset in the dirty/sent bitmaps 1069 * 1070 * Returns: true if a queued page is found 1071 */ 1072 static bool get_queued_page(MigrationState *ms, PageSearchStatus *pss, 1073 ram_addr_t *ram_addr_abs) 1074 { 1075 RAMBlock *block; 1076 ram_addr_t offset; 1077 bool dirty; 1078 1079 do { 1080 block = unqueue_page(ms, &offset, ram_addr_abs); 1081 /* 1082 * We're sending this page, and since it's postcopy nothing else 1083 * will dirty it, and we must make sure it doesn't get sent again 1084 * even if this queue request was received after the background 1085 * search already sent it. 1086 */ 1087 if (block) { 1088 unsigned long *bitmap; 1089 bitmap = atomic_rcu_read(&migration_bitmap_rcu)->bmap; 1090 dirty = test_bit(*ram_addr_abs >> TARGET_PAGE_BITS, bitmap); 1091 if (!dirty) { 1092 trace_get_queued_page_not_dirty( 1093 block->idstr, (uint64_t)offset, 1094 (uint64_t)*ram_addr_abs, 1095 test_bit(*ram_addr_abs >> TARGET_PAGE_BITS, 1096 atomic_rcu_read(&migration_bitmap_rcu)->unsentmap)); 1097 } else { 1098 trace_get_queued_page(block->idstr, 1099 (uint64_t)offset, 1100 (uint64_t)*ram_addr_abs); 1101 } 1102 } 1103 1104 } while (block && !dirty); 1105 1106 if (block) { 1107 /* 1108 * As soon as we start servicing pages out of order, then we have 1109 * to kill the bulk stage, since the bulk stage assumes 1110 * in (migration_bitmap_find_and_reset_dirty) that every page is 1111 * dirty, that's no longer true. 1112 */ 1113 ram_bulk_stage = false; 1114 1115 /* 1116 * We want the background search to continue from the queued page 1117 * since the guest is likely to want other pages near to the page 1118 * it just requested. 1119 */ 1120 pss->block = block; 1121 pss->offset = offset; 1122 } 1123 1124 return !!block; 1125 } 1126 1127 /** 1128 * flush_page_queue: Flush any remaining pages in the ram request queue 1129 * it should be empty at the end anyway, but in error cases there may be 1130 * some left. 1131 * 1132 * ms: MigrationState 1133 */ 1134 void flush_page_queue(MigrationState *ms) 1135 { 1136 struct MigrationSrcPageRequest *mspr, *next_mspr; 1137 /* This queue generally should be empty - but in the case of a failed 1138 * migration might have some droppings in. 1139 */ 1140 rcu_read_lock(); 1141 QSIMPLEQ_FOREACH_SAFE(mspr, &ms->src_page_requests, next_req, next_mspr) { 1142 memory_region_unref(mspr->rb->mr); 1143 QSIMPLEQ_REMOVE_HEAD(&ms->src_page_requests, next_req); 1144 g_free(mspr); 1145 } 1146 rcu_read_unlock(); 1147 } 1148 1149 /** 1150 * Queue the pages for transmission, e.g. a request from postcopy destination 1151 * ms: MigrationStatus in which the queue is held 1152 * rbname: The RAMBlock the request is for - may be NULL (to mean reuse last) 1153 * start: Offset from the start of the RAMBlock 1154 * len: Length (in bytes) to send 1155 * Return: 0 on success 1156 */ 1157 int ram_save_queue_pages(MigrationState *ms, const char *rbname, 1158 ram_addr_t start, ram_addr_t len) 1159 { 1160 RAMBlock *ramblock; 1161 1162 rcu_read_lock(); 1163 if (!rbname) { 1164 /* Reuse last RAMBlock */ 1165 ramblock = ms->last_req_rb; 1166 1167 if (!ramblock) { 1168 /* 1169 * Shouldn't happen, we can't reuse the last RAMBlock if 1170 * it's the 1st request. 1171 */ 1172 error_report("ram_save_queue_pages no previous block"); 1173 goto err; 1174 } 1175 } else { 1176 ramblock = qemu_ram_block_by_name(rbname); 1177 1178 if (!ramblock) { 1179 /* We shouldn't be asked for a non-existent RAMBlock */ 1180 error_report("ram_save_queue_pages no block '%s'", rbname); 1181 goto err; 1182 } 1183 ms->last_req_rb = ramblock; 1184 } 1185 trace_ram_save_queue_pages(ramblock->idstr, start, len); 1186 if (start+len > ramblock->used_length) { 1187 error_report("%s request overrun start=" RAM_ADDR_FMT " len=" 1188 RAM_ADDR_FMT " blocklen=" RAM_ADDR_FMT, 1189 __func__, start, len, ramblock->used_length); 1190 goto err; 1191 } 1192 1193 struct MigrationSrcPageRequest *new_entry = 1194 g_malloc0(sizeof(struct MigrationSrcPageRequest)); 1195 new_entry->rb = ramblock; 1196 new_entry->offset = start; 1197 new_entry->len = len; 1198 1199 memory_region_ref(ramblock->mr); 1200 qemu_mutex_lock(&ms->src_page_req_mutex); 1201 QSIMPLEQ_INSERT_TAIL(&ms->src_page_requests, new_entry, next_req); 1202 qemu_mutex_unlock(&ms->src_page_req_mutex); 1203 rcu_read_unlock(); 1204 1205 return 0; 1206 1207 err: 1208 rcu_read_unlock(); 1209 return -1; 1210 } 1211 1212 /** 1213 * ram_save_target_page: Save one target page 1214 * 1215 * 1216 * @f: QEMUFile where to send the data 1217 * @block: pointer to block that contains the page we want to send 1218 * @offset: offset inside the block for the page; 1219 * @last_stage: if we are at the completion stage 1220 * @bytes_transferred: increase it with the number of transferred bytes 1221 * @dirty_ram_abs: Address of the start of the dirty page in ram_addr_t space 1222 * 1223 * Returns: Number of pages written. 1224 */ 1225 static int ram_save_target_page(MigrationState *ms, QEMUFile *f, 1226 RAMBlock *block, ram_addr_t offset, 1227 bool last_stage, 1228 uint64_t *bytes_transferred, 1229 ram_addr_t dirty_ram_abs) 1230 { 1231 int res = 0; 1232 1233 /* Check the pages is dirty and if it is send it */ 1234 if (migration_bitmap_clear_dirty(dirty_ram_abs)) { 1235 unsigned long *unsentmap; 1236 if (compression_switch && migrate_use_compression()) { 1237 res = ram_save_compressed_page(f, block, offset, 1238 last_stage, 1239 bytes_transferred); 1240 } else { 1241 res = ram_save_page(f, block, offset, last_stage, 1242 bytes_transferred); 1243 } 1244 1245 if (res < 0) { 1246 return res; 1247 } 1248 unsentmap = atomic_rcu_read(&migration_bitmap_rcu)->unsentmap; 1249 if (unsentmap) { 1250 clear_bit(dirty_ram_abs >> TARGET_PAGE_BITS, unsentmap); 1251 } 1252 } 1253 1254 return res; 1255 } 1256 1257 /** 1258 * ram_save_host_page: Starting at *offset send pages upto the end 1259 * of the current host page. It's valid for the initial 1260 * offset to point into the middle of a host page 1261 * in which case the remainder of the hostpage is sent. 1262 * Only dirty target pages are sent. 1263 * 1264 * Returns: Number of pages written. 1265 * 1266 * @f: QEMUFile where to send the data 1267 * @block: pointer to block that contains the page we want to send 1268 * @offset: offset inside the block for the page; updated to last target page 1269 * sent 1270 * @last_stage: if we are at the completion stage 1271 * @bytes_transferred: increase it with the number of transferred bytes 1272 * @dirty_ram_abs: Address of the start of the dirty page in ram_addr_t space 1273 */ 1274 static int ram_save_host_page(MigrationState *ms, QEMUFile *f, RAMBlock *block, 1275 ram_addr_t *offset, bool last_stage, 1276 uint64_t *bytes_transferred, 1277 ram_addr_t dirty_ram_abs) 1278 { 1279 int tmppages, pages = 0; 1280 do { 1281 tmppages = ram_save_target_page(ms, f, block, *offset, last_stage, 1282 bytes_transferred, dirty_ram_abs); 1283 if (tmppages < 0) { 1284 return tmppages; 1285 } 1286 1287 pages += tmppages; 1288 *offset += TARGET_PAGE_SIZE; 1289 dirty_ram_abs += TARGET_PAGE_SIZE; 1290 } while (*offset & (qemu_host_page_size - 1)); 1291 1292 /* The offset we leave with is the last one we looked at */ 1293 *offset -= TARGET_PAGE_SIZE; 1294 return pages; 1295 } 1296 1297 /** 1298 * ram_find_and_save_block: Finds a dirty page and sends it to f 1299 * 1300 * Called within an RCU critical section. 1301 * 1302 * Returns: The number of pages written 1303 * 0 means no dirty pages 1304 * 1305 * @f: QEMUFile where to send the data 1306 * @last_stage: if we are at the completion stage 1307 * @bytes_transferred: increase it with the number of transferred bytes 1308 * 1309 * On systems where host-page-size > target-page-size it will send all the 1310 * pages in a host page that are dirty. 1311 */ 1312 1313 static int ram_find_and_save_block(QEMUFile *f, bool last_stage, 1314 uint64_t *bytes_transferred) 1315 { 1316 PageSearchStatus pss; 1317 MigrationState *ms = migrate_get_current(); 1318 int pages = 0; 1319 bool again, found; 1320 ram_addr_t dirty_ram_abs; /* Address of the start of the dirty page in 1321 ram_addr_t space */ 1322 1323 pss.block = last_seen_block; 1324 pss.offset = last_offset; 1325 pss.complete_round = false; 1326 1327 if (!pss.block) { 1328 pss.block = QLIST_FIRST_RCU(&ram_list.blocks); 1329 } 1330 1331 do { 1332 again = true; 1333 found = get_queued_page(ms, &pss, &dirty_ram_abs); 1334 1335 if (!found) { 1336 /* priority queue empty, so just search for something dirty */ 1337 found = find_dirty_block(f, &pss, &again, &dirty_ram_abs); 1338 } 1339 1340 if (found) { 1341 pages = ram_save_host_page(ms, f, pss.block, &pss.offset, 1342 last_stage, bytes_transferred, 1343 dirty_ram_abs); 1344 } 1345 } while (!pages && again); 1346 1347 last_seen_block = pss.block; 1348 last_offset = pss.offset; 1349 1350 return pages; 1351 } 1352 1353 void acct_update_position(QEMUFile *f, size_t size, bool zero) 1354 { 1355 uint64_t pages = size / TARGET_PAGE_SIZE; 1356 if (zero) { 1357 acct_info.dup_pages += pages; 1358 } else { 1359 acct_info.norm_pages += pages; 1360 bytes_transferred += size; 1361 qemu_update_position(f, size); 1362 } 1363 } 1364 1365 static ram_addr_t ram_save_remaining(void) 1366 { 1367 return migration_dirty_pages; 1368 } 1369 1370 uint64_t ram_bytes_remaining(void) 1371 { 1372 return ram_save_remaining() * TARGET_PAGE_SIZE; 1373 } 1374 1375 uint64_t ram_bytes_transferred(void) 1376 { 1377 return bytes_transferred; 1378 } 1379 1380 uint64_t ram_bytes_total(void) 1381 { 1382 RAMBlock *block; 1383 uint64_t total = 0; 1384 1385 rcu_read_lock(); 1386 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) 1387 total += block->used_length; 1388 rcu_read_unlock(); 1389 return total; 1390 } 1391 1392 void free_xbzrle_decoded_buf(void) 1393 { 1394 g_free(xbzrle_decoded_buf); 1395 xbzrle_decoded_buf = NULL; 1396 } 1397 1398 static void migration_bitmap_free(struct BitmapRcu *bmap) 1399 { 1400 g_free(bmap->bmap); 1401 g_free(bmap->unsentmap); 1402 g_free(bmap); 1403 } 1404 1405 static void ram_migration_cleanup(void *opaque) 1406 { 1407 /* caller have hold iothread lock or is in a bh, so there is 1408 * no writing race against this migration_bitmap 1409 */ 1410 struct BitmapRcu *bitmap = migration_bitmap_rcu; 1411 atomic_rcu_set(&migration_bitmap_rcu, NULL); 1412 if (bitmap) { 1413 memory_global_dirty_log_stop(); 1414 call_rcu(bitmap, migration_bitmap_free, rcu); 1415 } 1416 1417 XBZRLE_cache_lock(); 1418 if (XBZRLE.cache) { 1419 cache_fini(XBZRLE.cache); 1420 g_free(XBZRLE.encoded_buf); 1421 g_free(XBZRLE.current_buf); 1422 XBZRLE.cache = NULL; 1423 XBZRLE.encoded_buf = NULL; 1424 XBZRLE.current_buf = NULL; 1425 } 1426 XBZRLE_cache_unlock(); 1427 } 1428 1429 static void reset_ram_globals(void) 1430 { 1431 last_seen_block = NULL; 1432 last_sent_block = NULL; 1433 last_offset = 0; 1434 last_version = ram_list.version; 1435 ram_bulk_stage = true; 1436 } 1437 1438 #define MAX_WAIT 50 /* ms, half buffered_file limit */ 1439 1440 void migration_bitmap_extend(ram_addr_t old, ram_addr_t new) 1441 { 1442 /* called in qemu main thread, so there is 1443 * no writing race against this migration_bitmap 1444 */ 1445 if (migration_bitmap_rcu) { 1446 struct BitmapRcu *old_bitmap = migration_bitmap_rcu, *bitmap; 1447 bitmap = g_new(struct BitmapRcu, 1); 1448 bitmap->bmap = bitmap_new(new); 1449 1450 /* prevent migration_bitmap content from being set bit 1451 * by migration_bitmap_sync_range() at the same time. 1452 * it is safe to migration if migration_bitmap is cleared bit 1453 * at the same time. 1454 */ 1455 qemu_mutex_lock(&migration_bitmap_mutex); 1456 bitmap_copy(bitmap->bmap, old_bitmap->bmap, old); 1457 bitmap_set(bitmap->bmap, old, new - old); 1458 1459 /* We don't have a way to safely extend the sentmap 1460 * with RCU; so mark it as missing, entry to postcopy 1461 * will fail. 1462 */ 1463 bitmap->unsentmap = NULL; 1464 1465 atomic_rcu_set(&migration_bitmap_rcu, bitmap); 1466 qemu_mutex_unlock(&migration_bitmap_mutex); 1467 migration_dirty_pages += new - old; 1468 call_rcu(old_bitmap, migration_bitmap_free, rcu); 1469 } 1470 } 1471 1472 /* 1473 * 'expected' is the value you expect the bitmap mostly to be full 1474 * of; it won't bother printing lines that are all this value. 1475 * If 'todump' is null the migration bitmap is dumped. 1476 */ 1477 void ram_debug_dump_bitmap(unsigned long *todump, bool expected) 1478 { 1479 int64_t ram_pages = last_ram_offset() >> TARGET_PAGE_BITS; 1480 1481 int64_t cur; 1482 int64_t linelen = 128; 1483 char linebuf[129]; 1484 1485 if (!todump) { 1486 todump = atomic_rcu_read(&migration_bitmap_rcu)->bmap; 1487 } 1488 1489 for (cur = 0; cur < ram_pages; cur += linelen) { 1490 int64_t curb; 1491 bool found = false; 1492 /* 1493 * Last line; catch the case where the line length 1494 * is longer than remaining ram 1495 */ 1496 if (cur + linelen > ram_pages) { 1497 linelen = ram_pages - cur; 1498 } 1499 for (curb = 0; curb < linelen; curb++) { 1500 bool thisbit = test_bit(cur + curb, todump); 1501 linebuf[curb] = thisbit ? '1' : '.'; 1502 found = found || (thisbit != expected); 1503 } 1504 if (found) { 1505 linebuf[curb] = '\0'; 1506 fprintf(stderr, "0x%08" PRIx64 " : %s\n", cur, linebuf); 1507 } 1508 } 1509 } 1510 1511 /* **** functions for postcopy ***** */ 1512 1513 /* 1514 * Callback from postcopy_each_ram_send_discard for each RAMBlock 1515 * Note: At this point the 'unsentmap' is the processed bitmap combined 1516 * with the dirtymap; so a '1' means it's either dirty or unsent. 1517 * start,length: Indexes into the bitmap for the first bit 1518 * representing the named block and length in target-pages 1519 */ 1520 static int postcopy_send_discard_bm_ram(MigrationState *ms, 1521 PostcopyDiscardState *pds, 1522 unsigned long start, 1523 unsigned long length) 1524 { 1525 unsigned long end = start + length; /* one after the end */ 1526 unsigned long current; 1527 unsigned long *unsentmap; 1528 1529 unsentmap = atomic_rcu_read(&migration_bitmap_rcu)->unsentmap; 1530 for (current = start; current < end; ) { 1531 unsigned long one = find_next_bit(unsentmap, end, current); 1532 1533 if (one <= end) { 1534 unsigned long zero = find_next_zero_bit(unsentmap, end, one + 1); 1535 unsigned long discard_length; 1536 1537 if (zero >= end) { 1538 discard_length = end - one; 1539 } else { 1540 discard_length = zero - one; 1541 } 1542 postcopy_discard_send_range(ms, pds, one, discard_length); 1543 current = one + discard_length; 1544 } else { 1545 current = one; 1546 } 1547 } 1548 1549 return 0; 1550 } 1551 1552 /* 1553 * Utility for the outgoing postcopy code. 1554 * Calls postcopy_send_discard_bm_ram for each RAMBlock 1555 * passing it bitmap indexes and name. 1556 * Returns: 0 on success 1557 * (qemu_ram_foreach_block ends up passing unscaled lengths 1558 * which would mean postcopy code would have to deal with target page) 1559 */ 1560 static int postcopy_each_ram_send_discard(MigrationState *ms) 1561 { 1562 struct RAMBlock *block; 1563 int ret; 1564 1565 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { 1566 unsigned long first = block->offset >> TARGET_PAGE_BITS; 1567 PostcopyDiscardState *pds = postcopy_discard_send_init(ms, 1568 first, 1569 block->idstr); 1570 1571 /* 1572 * Postcopy sends chunks of bitmap over the wire, but it 1573 * just needs indexes at this point, avoids it having 1574 * target page specific code. 1575 */ 1576 ret = postcopy_send_discard_bm_ram(ms, pds, first, 1577 block->used_length >> TARGET_PAGE_BITS); 1578 postcopy_discard_send_finish(ms, pds); 1579 if (ret) { 1580 return ret; 1581 } 1582 } 1583 1584 return 0; 1585 } 1586 1587 /* 1588 * Helper for postcopy_chunk_hostpages; it's called twice to cleanup 1589 * the two bitmaps, that are similar, but one is inverted. 1590 * 1591 * We search for runs of target-pages that don't start or end on a 1592 * host page boundary; 1593 * unsent_pass=true: Cleans up partially unsent host pages by searching 1594 * the unsentmap 1595 * unsent_pass=false: Cleans up partially dirty host pages by searching 1596 * the main migration bitmap 1597 * 1598 */ 1599 static void postcopy_chunk_hostpages_pass(MigrationState *ms, bool unsent_pass, 1600 RAMBlock *block, 1601 PostcopyDiscardState *pds) 1602 { 1603 unsigned long *bitmap; 1604 unsigned long *unsentmap; 1605 unsigned int host_ratio = qemu_host_page_size / TARGET_PAGE_SIZE; 1606 unsigned long first = block->offset >> TARGET_PAGE_BITS; 1607 unsigned long len = block->used_length >> TARGET_PAGE_BITS; 1608 unsigned long last = first + (len - 1); 1609 unsigned long run_start; 1610 1611 bitmap = atomic_rcu_read(&migration_bitmap_rcu)->bmap; 1612 unsentmap = atomic_rcu_read(&migration_bitmap_rcu)->unsentmap; 1613 1614 if (unsent_pass) { 1615 /* Find a sent page */ 1616 run_start = find_next_zero_bit(unsentmap, last + 1, first); 1617 } else { 1618 /* Find a dirty page */ 1619 run_start = find_next_bit(bitmap, last + 1, first); 1620 } 1621 1622 while (run_start <= last) { 1623 bool do_fixup = false; 1624 unsigned long fixup_start_addr; 1625 unsigned long host_offset; 1626 1627 /* 1628 * If the start of this run of pages is in the middle of a host 1629 * page, then we need to fixup this host page. 1630 */ 1631 host_offset = run_start % host_ratio; 1632 if (host_offset) { 1633 do_fixup = true; 1634 run_start -= host_offset; 1635 fixup_start_addr = run_start; 1636 /* For the next pass */ 1637 run_start = run_start + host_ratio; 1638 } else { 1639 /* Find the end of this run */ 1640 unsigned long run_end; 1641 if (unsent_pass) { 1642 run_end = find_next_bit(unsentmap, last + 1, run_start + 1); 1643 } else { 1644 run_end = find_next_zero_bit(bitmap, last + 1, run_start + 1); 1645 } 1646 /* 1647 * If the end isn't at the start of a host page, then the 1648 * run doesn't finish at the end of a host page 1649 * and we need to discard. 1650 */ 1651 host_offset = run_end % host_ratio; 1652 if (host_offset) { 1653 do_fixup = true; 1654 fixup_start_addr = run_end - host_offset; 1655 /* 1656 * This host page has gone, the next loop iteration starts 1657 * from after the fixup 1658 */ 1659 run_start = fixup_start_addr + host_ratio; 1660 } else { 1661 /* 1662 * No discards on this iteration, next loop starts from 1663 * next sent/dirty page 1664 */ 1665 run_start = run_end + 1; 1666 } 1667 } 1668 1669 if (do_fixup) { 1670 unsigned long page; 1671 1672 /* Tell the destination to discard this page */ 1673 if (unsent_pass || !test_bit(fixup_start_addr, unsentmap)) { 1674 /* For the unsent_pass we: 1675 * discard partially sent pages 1676 * For the !unsent_pass (dirty) we: 1677 * discard partially dirty pages that were sent 1678 * (any partially sent pages were already discarded 1679 * by the previous unsent_pass) 1680 */ 1681 postcopy_discard_send_range(ms, pds, fixup_start_addr, 1682 host_ratio); 1683 } 1684 1685 /* Clean up the bitmap */ 1686 for (page = fixup_start_addr; 1687 page < fixup_start_addr + host_ratio; page++) { 1688 /* All pages in this host page are now not sent */ 1689 set_bit(page, unsentmap); 1690 1691 /* 1692 * Remark them as dirty, updating the count for any pages 1693 * that weren't previously dirty. 1694 */ 1695 migration_dirty_pages += !test_and_set_bit(page, bitmap); 1696 } 1697 } 1698 1699 if (unsent_pass) { 1700 /* Find the next sent page for the next iteration */ 1701 run_start = find_next_zero_bit(unsentmap, last + 1, 1702 run_start); 1703 } else { 1704 /* Find the next dirty page for the next iteration */ 1705 run_start = find_next_bit(bitmap, last + 1, run_start); 1706 } 1707 } 1708 } 1709 1710 /* 1711 * Utility for the outgoing postcopy code. 1712 * 1713 * Discard any partially sent host-page size chunks, mark any partially 1714 * dirty host-page size chunks as all dirty. 1715 * 1716 * Returns: 0 on success 1717 */ 1718 static int postcopy_chunk_hostpages(MigrationState *ms) 1719 { 1720 struct RAMBlock *block; 1721 1722 if (qemu_host_page_size == TARGET_PAGE_SIZE) { 1723 /* Easy case - TPS==HPS - nothing to be done */ 1724 return 0; 1725 } 1726 1727 /* Easiest way to make sure we don't resume in the middle of a host-page */ 1728 last_seen_block = NULL; 1729 last_sent_block = NULL; 1730 last_offset = 0; 1731 1732 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { 1733 unsigned long first = block->offset >> TARGET_PAGE_BITS; 1734 1735 PostcopyDiscardState *pds = 1736 postcopy_discard_send_init(ms, first, block->idstr); 1737 1738 /* First pass: Discard all partially sent host pages */ 1739 postcopy_chunk_hostpages_pass(ms, true, block, pds); 1740 /* 1741 * Second pass: Ensure that all partially dirty host pages are made 1742 * fully dirty. 1743 */ 1744 postcopy_chunk_hostpages_pass(ms, false, block, pds); 1745 1746 postcopy_discard_send_finish(ms, pds); 1747 } /* ram_list loop */ 1748 1749 return 0; 1750 } 1751 1752 /* 1753 * Transmit the set of pages to be discarded after precopy to the target 1754 * these are pages that: 1755 * a) Have been previously transmitted but are now dirty again 1756 * b) Pages that have never been transmitted, this ensures that 1757 * any pages on the destination that have been mapped by background 1758 * tasks get discarded (transparent huge pages is the specific concern) 1759 * Hopefully this is pretty sparse 1760 */ 1761 int ram_postcopy_send_discard_bitmap(MigrationState *ms) 1762 { 1763 int ret; 1764 unsigned long *bitmap, *unsentmap; 1765 1766 rcu_read_lock(); 1767 1768 /* This should be our last sync, the src is now paused */ 1769 migration_bitmap_sync(); 1770 1771 unsentmap = atomic_rcu_read(&migration_bitmap_rcu)->unsentmap; 1772 if (!unsentmap) { 1773 /* We don't have a safe way to resize the sentmap, so 1774 * if the bitmap was resized it will be NULL at this 1775 * point. 1776 */ 1777 error_report("migration ram resized during precopy phase"); 1778 rcu_read_unlock(); 1779 return -EINVAL; 1780 } 1781 1782 /* Deal with TPS != HPS */ 1783 ret = postcopy_chunk_hostpages(ms); 1784 if (ret) { 1785 rcu_read_unlock(); 1786 return ret; 1787 } 1788 1789 /* 1790 * Update the unsentmap to be unsentmap = unsentmap | dirty 1791 */ 1792 bitmap = atomic_rcu_read(&migration_bitmap_rcu)->bmap; 1793 bitmap_or(unsentmap, unsentmap, bitmap, 1794 last_ram_offset() >> TARGET_PAGE_BITS); 1795 1796 1797 trace_ram_postcopy_send_discard_bitmap(); 1798 #ifdef DEBUG_POSTCOPY 1799 ram_debug_dump_bitmap(unsentmap, true); 1800 #endif 1801 1802 ret = postcopy_each_ram_send_discard(ms); 1803 rcu_read_unlock(); 1804 1805 return ret; 1806 } 1807 1808 /* 1809 * At the start of the postcopy phase of migration, any now-dirty 1810 * precopied pages are discarded. 1811 * 1812 * start, length describe a byte address range within the RAMBlock 1813 * 1814 * Returns 0 on success. 1815 */ 1816 int ram_discard_range(MigrationIncomingState *mis, 1817 const char *block_name, 1818 uint64_t start, size_t length) 1819 { 1820 int ret = -1; 1821 1822 rcu_read_lock(); 1823 RAMBlock *rb = qemu_ram_block_by_name(block_name); 1824 1825 if (!rb) { 1826 error_report("ram_discard_range: Failed to find block '%s'", 1827 block_name); 1828 goto err; 1829 } 1830 1831 uint8_t *host_startaddr = rb->host + start; 1832 1833 if ((uintptr_t)host_startaddr & (qemu_host_page_size - 1)) { 1834 error_report("ram_discard_range: Unaligned start address: %p", 1835 host_startaddr); 1836 goto err; 1837 } 1838 1839 if ((start + length) <= rb->used_length) { 1840 uint8_t *host_endaddr = host_startaddr + length; 1841 if ((uintptr_t)host_endaddr & (qemu_host_page_size - 1)) { 1842 error_report("ram_discard_range: Unaligned end address: %p", 1843 host_endaddr); 1844 goto err; 1845 } 1846 ret = postcopy_ram_discard_range(mis, host_startaddr, length); 1847 } else { 1848 error_report("ram_discard_range: Overrun block '%s' (%" PRIu64 1849 "/%zx/" RAM_ADDR_FMT")", 1850 block_name, start, length, rb->used_length); 1851 } 1852 1853 err: 1854 rcu_read_unlock(); 1855 1856 return ret; 1857 } 1858 1859 1860 /* Each of ram_save_setup, ram_save_iterate and ram_save_complete has 1861 * long-running RCU critical section. When rcu-reclaims in the code 1862 * start to become numerous it will be necessary to reduce the 1863 * granularity of these critical sections. 1864 */ 1865 1866 static int ram_save_setup(QEMUFile *f, void *opaque) 1867 { 1868 RAMBlock *block; 1869 int64_t ram_bitmap_pages; /* Size of bitmap in pages, including gaps */ 1870 1871 dirty_rate_high_cnt = 0; 1872 bitmap_sync_count = 0; 1873 migration_bitmap_sync_init(); 1874 qemu_mutex_init(&migration_bitmap_mutex); 1875 1876 if (migrate_use_xbzrle()) { 1877 XBZRLE_cache_lock(); 1878 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size() / 1879 TARGET_PAGE_SIZE, 1880 TARGET_PAGE_SIZE); 1881 if (!XBZRLE.cache) { 1882 XBZRLE_cache_unlock(); 1883 error_report("Error creating cache"); 1884 return -1; 1885 } 1886 XBZRLE_cache_unlock(); 1887 1888 /* We prefer not to abort if there is no memory */ 1889 XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE); 1890 if (!XBZRLE.encoded_buf) { 1891 error_report("Error allocating encoded_buf"); 1892 return -1; 1893 } 1894 1895 XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE); 1896 if (!XBZRLE.current_buf) { 1897 error_report("Error allocating current_buf"); 1898 g_free(XBZRLE.encoded_buf); 1899 XBZRLE.encoded_buf = NULL; 1900 return -1; 1901 } 1902 1903 acct_clear(); 1904 } 1905 1906 /* iothread lock needed for ram_list.dirty_memory[] */ 1907 qemu_mutex_lock_iothread(); 1908 qemu_mutex_lock_ramlist(); 1909 rcu_read_lock(); 1910 bytes_transferred = 0; 1911 reset_ram_globals(); 1912 1913 ram_bitmap_pages = last_ram_offset() >> TARGET_PAGE_BITS; 1914 migration_bitmap_rcu = g_new0(struct BitmapRcu, 1); 1915 migration_bitmap_rcu->bmap = bitmap_new(ram_bitmap_pages); 1916 bitmap_set(migration_bitmap_rcu->bmap, 0, ram_bitmap_pages); 1917 1918 if (migrate_postcopy_ram()) { 1919 migration_bitmap_rcu->unsentmap = bitmap_new(ram_bitmap_pages); 1920 bitmap_set(migration_bitmap_rcu->unsentmap, 0, ram_bitmap_pages); 1921 } 1922 1923 /* 1924 * Count the total number of pages used by ram blocks not including any 1925 * gaps due to alignment or unplugs. 1926 */ 1927 migration_dirty_pages = ram_bytes_total() >> TARGET_PAGE_BITS; 1928 1929 memory_global_dirty_log_start(); 1930 migration_bitmap_sync(); 1931 qemu_mutex_unlock_ramlist(); 1932 qemu_mutex_unlock_iothread(); 1933 1934 qemu_put_be64(f, ram_bytes_total() | RAM_SAVE_FLAG_MEM_SIZE); 1935 1936 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { 1937 qemu_put_byte(f, strlen(block->idstr)); 1938 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr)); 1939 qemu_put_be64(f, block->used_length); 1940 } 1941 1942 rcu_read_unlock(); 1943 1944 ram_control_before_iterate(f, RAM_CONTROL_SETUP); 1945 ram_control_after_iterate(f, RAM_CONTROL_SETUP); 1946 1947 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 1948 1949 return 0; 1950 } 1951 1952 static int ram_save_iterate(QEMUFile *f, void *opaque) 1953 { 1954 int ret; 1955 int i; 1956 int64_t t0; 1957 int pages_sent = 0; 1958 1959 rcu_read_lock(); 1960 if (ram_list.version != last_version) { 1961 reset_ram_globals(); 1962 } 1963 1964 /* Read version before ram_list.blocks */ 1965 smp_rmb(); 1966 1967 ram_control_before_iterate(f, RAM_CONTROL_ROUND); 1968 1969 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 1970 i = 0; 1971 while ((ret = qemu_file_rate_limit(f)) == 0) { 1972 int pages; 1973 1974 pages = ram_find_and_save_block(f, false, &bytes_transferred); 1975 /* no more pages to sent */ 1976 if (pages == 0) { 1977 break; 1978 } 1979 pages_sent += pages; 1980 acct_info.iterations++; 1981 1982 /* we want to check in the 1st loop, just in case it was the 1st time 1983 and we had to sync the dirty bitmap. 1984 qemu_get_clock_ns() is a bit expensive, so we only check each some 1985 iterations 1986 */ 1987 if ((i & 63) == 0) { 1988 uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) / 1000000; 1989 if (t1 > MAX_WAIT) { 1990 DPRINTF("big wait: %" PRIu64 " milliseconds, %d iterations\n", 1991 t1, i); 1992 break; 1993 } 1994 } 1995 i++; 1996 } 1997 flush_compressed_data(f); 1998 rcu_read_unlock(); 1999 2000 /* 2001 * Must occur before EOS (or any QEMUFile operation) 2002 * because of RDMA protocol. 2003 */ 2004 ram_control_after_iterate(f, RAM_CONTROL_ROUND); 2005 2006 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 2007 bytes_transferred += 8; 2008 2009 ret = qemu_file_get_error(f); 2010 if (ret < 0) { 2011 return ret; 2012 } 2013 2014 return pages_sent; 2015 } 2016 2017 /* Called with iothread lock */ 2018 static int ram_save_complete(QEMUFile *f, void *opaque) 2019 { 2020 rcu_read_lock(); 2021 2022 if (!migration_in_postcopy(migrate_get_current())) { 2023 migration_bitmap_sync(); 2024 } 2025 2026 ram_control_before_iterate(f, RAM_CONTROL_FINISH); 2027 2028 /* try transferring iterative blocks of memory */ 2029 2030 /* flush all remaining blocks regardless of rate limiting */ 2031 while (true) { 2032 int pages; 2033 2034 pages = ram_find_and_save_block(f, true, &bytes_transferred); 2035 /* no more blocks to sent */ 2036 if (pages == 0) { 2037 break; 2038 } 2039 } 2040 2041 flush_compressed_data(f); 2042 ram_control_after_iterate(f, RAM_CONTROL_FINISH); 2043 2044 rcu_read_unlock(); 2045 2046 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 2047 2048 return 0; 2049 } 2050 2051 static void ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size, 2052 uint64_t *non_postcopiable_pending, 2053 uint64_t *postcopiable_pending) 2054 { 2055 uint64_t remaining_size; 2056 2057 remaining_size = ram_save_remaining() * TARGET_PAGE_SIZE; 2058 2059 if (!migration_in_postcopy(migrate_get_current()) && 2060 remaining_size < max_size) { 2061 qemu_mutex_lock_iothread(); 2062 rcu_read_lock(); 2063 migration_bitmap_sync(); 2064 rcu_read_unlock(); 2065 qemu_mutex_unlock_iothread(); 2066 remaining_size = ram_save_remaining() * TARGET_PAGE_SIZE; 2067 } 2068 2069 /* We can do postcopy, and all the data is postcopiable */ 2070 *postcopiable_pending += remaining_size; 2071 } 2072 2073 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host) 2074 { 2075 unsigned int xh_len; 2076 int xh_flags; 2077 2078 if (!xbzrle_decoded_buf) { 2079 xbzrle_decoded_buf = g_malloc(TARGET_PAGE_SIZE); 2080 } 2081 2082 /* extract RLE header */ 2083 xh_flags = qemu_get_byte(f); 2084 xh_len = qemu_get_be16(f); 2085 2086 if (xh_flags != ENCODING_FLAG_XBZRLE) { 2087 error_report("Failed to load XBZRLE page - wrong compression!"); 2088 return -1; 2089 } 2090 2091 if (xh_len > TARGET_PAGE_SIZE) { 2092 error_report("Failed to load XBZRLE page - len overflow!"); 2093 return -1; 2094 } 2095 /* load data and decode */ 2096 qemu_get_buffer(f, xbzrle_decoded_buf, xh_len); 2097 2098 /* decode RLE */ 2099 if (xbzrle_decode_buffer(xbzrle_decoded_buf, xh_len, host, 2100 TARGET_PAGE_SIZE) == -1) { 2101 error_report("Failed to load XBZRLE page - decode error!"); 2102 return -1; 2103 } 2104 2105 return 0; 2106 } 2107 2108 /* Must be called from within a rcu critical section. 2109 * Returns a pointer from within the RCU-protected ram_list. 2110 */ 2111 /* 2112 * Read a RAMBlock ID from the stream f, find the host address of the 2113 * start of that block and add on 'offset' 2114 * 2115 * f: Stream to read from 2116 * offset: Offset within the block 2117 * flags: Page flags (mostly to see if it's a continuation of previous block) 2118 */ 2119 static inline void *host_from_stream_offset(QEMUFile *f, 2120 ram_addr_t offset, 2121 int flags) 2122 { 2123 static RAMBlock *block = NULL; 2124 char id[256]; 2125 uint8_t len; 2126 2127 if (flags & RAM_SAVE_FLAG_CONTINUE) { 2128 if (!block || block->max_length <= offset) { 2129 error_report("Ack, bad migration stream!"); 2130 return NULL; 2131 } 2132 2133 return block->host + offset; 2134 } 2135 2136 len = qemu_get_byte(f); 2137 qemu_get_buffer(f, (uint8_t *)id, len); 2138 id[len] = 0; 2139 2140 block = qemu_ram_block_by_name(id); 2141 if (block && block->max_length > offset) { 2142 return block->host + offset; 2143 } 2144 2145 error_report("Can't find block %s", id); 2146 return NULL; 2147 } 2148 2149 /* 2150 * If a page (or a whole RDMA chunk) has been 2151 * determined to be zero, then zap it. 2152 */ 2153 void ram_handle_compressed(void *host, uint8_t ch, uint64_t size) 2154 { 2155 if (ch != 0 || !is_zero_range(host, size)) { 2156 memset(host, ch, size); 2157 } 2158 } 2159 2160 static void *do_data_decompress(void *opaque) 2161 { 2162 DecompressParam *param = opaque; 2163 unsigned long pagesize; 2164 2165 while (!quit_decomp_thread) { 2166 qemu_mutex_lock(¶m->mutex); 2167 while (!param->start && !quit_decomp_thread) { 2168 qemu_cond_wait(¶m->cond, ¶m->mutex); 2169 pagesize = TARGET_PAGE_SIZE; 2170 if (!quit_decomp_thread) { 2171 /* uncompress() will return failed in some case, especially 2172 * when the page is dirted when doing the compression, it's 2173 * not a problem because the dirty page will be retransferred 2174 * and uncompress() won't break the data in other pages. 2175 */ 2176 uncompress((Bytef *)param->des, &pagesize, 2177 (const Bytef *)param->compbuf, param->len); 2178 } 2179 param->start = false; 2180 } 2181 qemu_mutex_unlock(¶m->mutex); 2182 } 2183 2184 return NULL; 2185 } 2186 2187 void migrate_decompress_threads_create(void) 2188 { 2189 int i, thread_count; 2190 2191 thread_count = migrate_decompress_threads(); 2192 decompress_threads = g_new0(QemuThread, thread_count); 2193 decomp_param = g_new0(DecompressParam, thread_count); 2194 compressed_data_buf = g_malloc0(compressBound(TARGET_PAGE_SIZE)); 2195 quit_decomp_thread = false; 2196 for (i = 0; i < thread_count; i++) { 2197 qemu_mutex_init(&decomp_param[i].mutex); 2198 qemu_cond_init(&decomp_param[i].cond); 2199 decomp_param[i].compbuf = g_malloc0(compressBound(TARGET_PAGE_SIZE)); 2200 qemu_thread_create(decompress_threads + i, "decompress", 2201 do_data_decompress, decomp_param + i, 2202 QEMU_THREAD_JOINABLE); 2203 } 2204 } 2205 2206 void migrate_decompress_threads_join(void) 2207 { 2208 int i, thread_count; 2209 2210 quit_decomp_thread = true; 2211 thread_count = migrate_decompress_threads(); 2212 for (i = 0; i < thread_count; i++) { 2213 qemu_mutex_lock(&decomp_param[i].mutex); 2214 qemu_cond_signal(&decomp_param[i].cond); 2215 qemu_mutex_unlock(&decomp_param[i].mutex); 2216 } 2217 for (i = 0; i < thread_count; i++) { 2218 qemu_thread_join(decompress_threads + i); 2219 qemu_mutex_destroy(&decomp_param[i].mutex); 2220 qemu_cond_destroy(&decomp_param[i].cond); 2221 g_free(decomp_param[i].compbuf); 2222 } 2223 g_free(decompress_threads); 2224 g_free(decomp_param); 2225 g_free(compressed_data_buf); 2226 decompress_threads = NULL; 2227 decomp_param = NULL; 2228 compressed_data_buf = NULL; 2229 } 2230 2231 static void decompress_data_with_multi_threads(uint8_t *compbuf, 2232 void *host, int len) 2233 { 2234 int idx, thread_count; 2235 2236 thread_count = migrate_decompress_threads(); 2237 while (true) { 2238 for (idx = 0; idx < thread_count; idx++) { 2239 if (!decomp_param[idx].start) { 2240 memcpy(decomp_param[idx].compbuf, compbuf, len); 2241 decomp_param[idx].des = host; 2242 decomp_param[idx].len = len; 2243 start_decompression(&decomp_param[idx]); 2244 break; 2245 } 2246 } 2247 if (idx < thread_count) { 2248 break; 2249 } 2250 } 2251 } 2252 2253 /* 2254 * Allocate data structures etc needed by incoming migration with postcopy-ram 2255 * postcopy-ram's similarly names postcopy_ram_incoming_init does the work 2256 */ 2257 int ram_postcopy_incoming_init(MigrationIncomingState *mis) 2258 { 2259 size_t ram_pages = last_ram_offset() >> TARGET_PAGE_BITS; 2260 2261 return postcopy_ram_incoming_init(mis, ram_pages); 2262 } 2263 2264 /* 2265 * Called in postcopy mode by ram_load(). 2266 * rcu_read_lock is taken prior to this being called. 2267 */ 2268 static int ram_load_postcopy(QEMUFile *f) 2269 { 2270 int flags = 0, ret = 0; 2271 bool place_needed = false; 2272 bool matching_page_sizes = qemu_host_page_size == TARGET_PAGE_SIZE; 2273 MigrationIncomingState *mis = migration_incoming_get_current(); 2274 /* Temporary page that is later 'placed' */ 2275 void *postcopy_host_page = postcopy_get_tmp_page(mis); 2276 void *last_host = NULL; 2277 bool all_zero = false; 2278 2279 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) { 2280 ram_addr_t addr; 2281 void *host = NULL; 2282 void *page_buffer = NULL; 2283 void *place_source = NULL; 2284 uint8_t ch; 2285 2286 addr = qemu_get_be64(f); 2287 flags = addr & ~TARGET_PAGE_MASK; 2288 addr &= TARGET_PAGE_MASK; 2289 2290 trace_ram_load_postcopy_loop((uint64_t)addr, flags); 2291 place_needed = false; 2292 if (flags & (RAM_SAVE_FLAG_COMPRESS | RAM_SAVE_FLAG_PAGE)) { 2293 host = host_from_stream_offset(f, addr, flags); 2294 if (!host) { 2295 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr); 2296 ret = -EINVAL; 2297 break; 2298 } 2299 page_buffer = host; 2300 /* 2301 * Postcopy requires that we place whole host pages atomically. 2302 * To make it atomic, the data is read into a temporary page 2303 * that's moved into place later. 2304 * The migration protocol uses, possibly smaller, target-pages 2305 * however the source ensures it always sends all the components 2306 * of a host page in order. 2307 */ 2308 page_buffer = postcopy_host_page + 2309 ((uintptr_t)host & ~qemu_host_page_mask); 2310 /* If all TP are zero then we can optimise the place */ 2311 if (!((uintptr_t)host & ~qemu_host_page_mask)) { 2312 all_zero = true; 2313 } else { 2314 /* not the 1st TP within the HP */ 2315 if (host != (last_host + TARGET_PAGE_SIZE)) { 2316 error_report("Non-sequential target page %p/%p\n", 2317 host, last_host); 2318 ret = -EINVAL; 2319 break; 2320 } 2321 } 2322 2323 2324 /* 2325 * If it's the last part of a host page then we place the host 2326 * page 2327 */ 2328 place_needed = (((uintptr_t)host + TARGET_PAGE_SIZE) & 2329 ~qemu_host_page_mask) == 0; 2330 place_source = postcopy_host_page; 2331 } 2332 last_host = host; 2333 2334 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) { 2335 case RAM_SAVE_FLAG_COMPRESS: 2336 ch = qemu_get_byte(f); 2337 memset(page_buffer, ch, TARGET_PAGE_SIZE); 2338 if (ch) { 2339 all_zero = false; 2340 } 2341 break; 2342 2343 case RAM_SAVE_FLAG_PAGE: 2344 all_zero = false; 2345 if (!place_needed || !matching_page_sizes) { 2346 qemu_get_buffer(f, page_buffer, TARGET_PAGE_SIZE); 2347 } else { 2348 /* Avoids the qemu_file copy during postcopy, which is 2349 * going to do a copy later; can only do it when we 2350 * do this read in one go (matching page sizes) 2351 */ 2352 qemu_get_buffer_in_place(f, (uint8_t **)&place_source, 2353 TARGET_PAGE_SIZE); 2354 } 2355 break; 2356 case RAM_SAVE_FLAG_EOS: 2357 /* normal exit */ 2358 break; 2359 default: 2360 error_report("Unknown combination of migration flags: %#x" 2361 " (postcopy mode)", flags); 2362 ret = -EINVAL; 2363 } 2364 2365 if (place_needed) { 2366 /* This gets called at the last target page in the host page */ 2367 if (all_zero) { 2368 ret = postcopy_place_page_zero(mis, 2369 host + TARGET_PAGE_SIZE - 2370 qemu_host_page_size); 2371 } else { 2372 ret = postcopy_place_page(mis, host + TARGET_PAGE_SIZE - 2373 qemu_host_page_size, 2374 place_source); 2375 } 2376 } 2377 if (!ret) { 2378 ret = qemu_file_get_error(f); 2379 } 2380 } 2381 2382 return ret; 2383 } 2384 2385 static int ram_load(QEMUFile *f, void *opaque, int version_id) 2386 { 2387 int flags = 0, ret = 0; 2388 static uint64_t seq_iter; 2389 int len = 0; 2390 /* 2391 * If system is running in postcopy mode, page inserts to host memory must 2392 * be atomic 2393 */ 2394 bool postcopy_running = postcopy_state_get() >= POSTCOPY_INCOMING_LISTENING; 2395 2396 seq_iter++; 2397 2398 if (version_id != 4) { 2399 ret = -EINVAL; 2400 } 2401 2402 /* This RCU critical section can be very long running. 2403 * When RCU reclaims in the code start to become numerous, 2404 * it will be necessary to reduce the granularity of this 2405 * critical section. 2406 */ 2407 rcu_read_lock(); 2408 2409 if (postcopy_running) { 2410 ret = ram_load_postcopy(f); 2411 } 2412 2413 while (!postcopy_running && !ret && !(flags & RAM_SAVE_FLAG_EOS)) { 2414 ram_addr_t addr, total_ram_bytes; 2415 void *host = NULL; 2416 uint8_t ch; 2417 2418 addr = qemu_get_be64(f); 2419 flags = addr & ~TARGET_PAGE_MASK; 2420 addr &= TARGET_PAGE_MASK; 2421 2422 if (flags & (RAM_SAVE_FLAG_COMPRESS | RAM_SAVE_FLAG_PAGE | 2423 RAM_SAVE_FLAG_COMPRESS_PAGE | RAM_SAVE_FLAG_XBZRLE)) { 2424 host = host_from_stream_offset(f, addr, flags); 2425 if (!host) { 2426 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr); 2427 ret = -EINVAL; 2428 break; 2429 } 2430 } 2431 2432 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) { 2433 case RAM_SAVE_FLAG_MEM_SIZE: 2434 /* Synchronize RAM block list */ 2435 total_ram_bytes = addr; 2436 while (!ret && total_ram_bytes) { 2437 RAMBlock *block; 2438 char id[256]; 2439 ram_addr_t length; 2440 2441 len = qemu_get_byte(f); 2442 qemu_get_buffer(f, (uint8_t *)id, len); 2443 id[len] = 0; 2444 length = qemu_get_be64(f); 2445 2446 block = qemu_ram_block_by_name(id); 2447 if (block) { 2448 if (length != block->used_length) { 2449 Error *local_err = NULL; 2450 2451 ret = qemu_ram_resize(block->offset, length, 2452 &local_err); 2453 if (local_err) { 2454 error_report_err(local_err); 2455 } 2456 } 2457 ram_control_load_hook(f, RAM_CONTROL_BLOCK_REG, 2458 block->idstr); 2459 } else { 2460 error_report("Unknown ramblock \"%s\", cannot " 2461 "accept migration", id); 2462 ret = -EINVAL; 2463 } 2464 2465 total_ram_bytes -= length; 2466 } 2467 break; 2468 2469 case RAM_SAVE_FLAG_COMPRESS: 2470 ch = qemu_get_byte(f); 2471 ram_handle_compressed(host, ch, TARGET_PAGE_SIZE); 2472 break; 2473 2474 case RAM_SAVE_FLAG_PAGE: 2475 qemu_get_buffer(f, host, TARGET_PAGE_SIZE); 2476 break; 2477 2478 case RAM_SAVE_FLAG_COMPRESS_PAGE: 2479 len = qemu_get_be32(f); 2480 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) { 2481 error_report("Invalid compressed data length: %d", len); 2482 ret = -EINVAL; 2483 break; 2484 } 2485 qemu_get_buffer(f, compressed_data_buf, len); 2486 decompress_data_with_multi_threads(compressed_data_buf, host, len); 2487 break; 2488 2489 case RAM_SAVE_FLAG_XBZRLE: 2490 if (load_xbzrle(f, addr, host) < 0) { 2491 error_report("Failed to decompress XBZRLE page at " 2492 RAM_ADDR_FMT, addr); 2493 ret = -EINVAL; 2494 break; 2495 } 2496 break; 2497 case RAM_SAVE_FLAG_EOS: 2498 /* normal exit */ 2499 break; 2500 default: 2501 if (flags & RAM_SAVE_FLAG_HOOK) { 2502 ram_control_load_hook(f, RAM_CONTROL_HOOK, NULL); 2503 } else { 2504 error_report("Unknown combination of migration flags: %#x", 2505 flags); 2506 ret = -EINVAL; 2507 } 2508 } 2509 if (!ret) { 2510 ret = qemu_file_get_error(f); 2511 } 2512 } 2513 2514 rcu_read_unlock(); 2515 DPRINTF("Completed load of VM with exit code %d seq iteration " 2516 "%" PRIu64 "\n", ret, seq_iter); 2517 return ret; 2518 } 2519 2520 static SaveVMHandlers savevm_ram_handlers = { 2521 .save_live_setup = ram_save_setup, 2522 .save_live_iterate = ram_save_iterate, 2523 .save_live_complete_postcopy = ram_save_complete, 2524 .save_live_complete_precopy = ram_save_complete, 2525 .save_live_pending = ram_save_pending, 2526 .load_state = ram_load, 2527 .cleanup = ram_migration_cleanup, 2528 }; 2529 2530 void ram_mig_init(void) 2531 { 2532 qemu_mutex_init(&XBZRLE.lock); 2533 register_savevm_live(NULL, "ram", 0, 4, &savevm_ram_handlers, NULL); 2534 } 2535