xref: /openbmc/qemu/migration/ram.c (revision 5cf434b5)
1 /*
2  * QEMU System Emulator
3  *
4  * Copyright (c) 2003-2008 Fabrice Bellard
5  * Copyright (c) 2011-2015 Red Hat Inc
6  *
7  * Authors:
8  *  Juan Quintela <quintela@redhat.com>
9  *
10  * Permission is hereby granted, free of charge, to any person obtaining a copy
11  * of this software and associated documentation files (the "Software"), to deal
12  * in the Software without restriction, including without limitation the rights
13  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
14  * copies of the Software, and to permit persons to whom the Software is
15  * furnished to do so, subject to the following conditions:
16  *
17  * The above copyright notice and this permission notice shall be included in
18  * all copies or substantial portions of the Software.
19  *
20  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
25  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26  * THE SOFTWARE.
27  */
28 
29 #include "qemu/osdep.h"
30 #include "qemu/cutils.h"
31 #include "qemu/bitops.h"
32 #include "qemu/bitmap.h"
33 #include "qemu/madvise.h"
34 #include "qemu/main-loop.h"
35 #include "xbzrle.h"
36 #include "ram.h"
37 #include "migration.h"
38 #include "migration/register.h"
39 #include "migration/misc.h"
40 #include "qemu-file.h"
41 #include "postcopy-ram.h"
42 #include "page_cache.h"
43 #include "qemu/error-report.h"
44 #include "qapi/error.h"
45 #include "qapi/qapi-types-migration.h"
46 #include "qapi/qapi-events-migration.h"
47 #include "qapi/qmp/qerror.h"
48 #include "trace.h"
49 #include "exec/ram_addr.h"
50 #include "exec/target_page.h"
51 #include "qemu/rcu_queue.h"
52 #include "migration/colo.h"
53 #include "block.h"
54 #include "sysemu/cpu-throttle.h"
55 #include "savevm.h"
56 #include "qemu/iov.h"
57 #include "multifd.h"
58 #include "sysemu/runstate.h"
59 
60 #include "hw/boards.h" /* for machine_dump_guest_core() */
61 
62 #if defined(__linux__)
63 #include "qemu/userfaultfd.h"
64 #endif /* defined(__linux__) */
65 
66 /***********************************************************/
67 /* ram save/restore */
68 
69 /* RAM_SAVE_FLAG_ZERO used to be named RAM_SAVE_FLAG_COMPRESS, it
70  * worked for pages that where filled with the same char.  We switched
71  * it to only search for the zero value.  And to avoid confusion with
72  * RAM_SSAVE_FLAG_COMPRESS_PAGE just rename it.
73  */
74 
75 #define RAM_SAVE_FLAG_FULL     0x01 /* Obsolete, not used anymore */
76 #define RAM_SAVE_FLAG_ZERO     0x02
77 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
78 #define RAM_SAVE_FLAG_PAGE     0x08
79 #define RAM_SAVE_FLAG_EOS      0x10
80 #define RAM_SAVE_FLAG_CONTINUE 0x20
81 #define RAM_SAVE_FLAG_XBZRLE   0x40
82 /* 0x80 is reserved in migration.h start with 0x100 next */
83 #define RAM_SAVE_FLAG_COMPRESS_PAGE    0x100
84 
85 XBZRLECacheStats xbzrle_counters;
86 
87 /* struct contains XBZRLE cache and a static page
88    used by the compression */
89 static struct {
90     /* buffer used for XBZRLE encoding */
91     uint8_t *encoded_buf;
92     /* buffer for storing page content */
93     uint8_t *current_buf;
94     /* Cache for XBZRLE, Protected by lock. */
95     PageCache *cache;
96     QemuMutex lock;
97     /* it will store a page full of zeros */
98     uint8_t *zero_target_page;
99     /* buffer used for XBZRLE decoding */
100     uint8_t *decoded_buf;
101 } XBZRLE;
102 
103 static void XBZRLE_cache_lock(void)
104 {
105     if (migrate_use_xbzrle()) {
106         qemu_mutex_lock(&XBZRLE.lock);
107     }
108 }
109 
110 static void XBZRLE_cache_unlock(void)
111 {
112     if (migrate_use_xbzrle()) {
113         qemu_mutex_unlock(&XBZRLE.lock);
114     }
115 }
116 
117 /**
118  * xbzrle_cache_resize: resize the xbzrle cache
119  *
120  * This function is called from migrate_params_apply in main
121  * thread, possibly while a migration is in progress.  A running
122  * migration may be using the cache and might finish during this call,
123  * hence changes to the cache are protected by XBZRLE.lock().
124  *
125  * Returns 0 for success or -1 for error
126  *
127  * @new_size: new cache size
128  * @errp: set *errp if the check failed, with reason
129  */
130 int xbzrle_cache_resize(uint64_t new_size, Error **errp)
131 {
132     PageCache *new_cache;
133     int64_t ret = 0;
134 
135     /* Check for truncation */
136     if (new_size != (size_t)new_size) {
137         error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cache size",
138                    "exceeding address space");
139         return -1;
140     }
141 
142     if (new_size == migrate_xbzrle_cache_size()) {
143         /* nothing to do */
144         return 0;
145     }
146 
147     XBZRLE_cache_lock();
148 
149     if (XBZRLE.cache != NULL) {
150         new_cache = cache_init(new_size, TARGET_PAGE_SIZE, errp);
151         if (!new_cache) {
152             ret = -1;
153             goto out;
154         }
155 
156         cache_fini(XBZRLE.cache);
157         XBZRLE.cache = new_cache;
158     }
159 out:
160     XBZRLE_cache_unlock();
161     return ret;
162 }
163 
164 bool ramblock_is_ignored(RAMBlock *block)
165 {
166     return !qemu_ram_is_migratable(block) ||
167            (migrate_ignore_shared() && qemu_ram_is_shared(block));
168 }
169 
170 #undef RAMBLOCK_FOREACH
171 
172 int foreach_not_ignored_block(RAMBlockIterFunc func, void *opaque)
173 {
174     RAMBlock *block;
175     int ret = 0;
176 
177     RCU_READ_LOCK_GUARD();
178 
179     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
180         ret = func(block, opaque);
181         if (ret) {
182             break;
183         }
184     }
185     return ret;
186 }
187 
188 static void ramblock_recv_map_init(void)
189 {
190     RAMBlock *rb;
191 
192     RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
193         assert(!rb->receivedmap);
194         rb->receivedmap = bitmap_new(rb->max_length >> qemu_target_page_bits());
195     }
196 }
197 
198 int ramblock_recv_bitmap_test(RAMBlock *rb, void *host_addr)
199 {
200     return test_bit(ramblock_recv_bitmap_offset(host_addr, rb),
201                     rb->receivedmap);
202 }
203 
204 bool ramblock_recv_bitmap_test_byte_offset(RAMBlock *rb, uint64_t byte_offset)
205 {
206     return test_bit(byte_offset >> TARGET_PAGE_BITS, rb->receivedmap);
207 }
208 
209 void ramblock_recv_bitmap_set(RAMBlock *rb, void *host_addr)
210 {
211     set_bit_atomic(ramblock_recv_bitmap_offset(host_addr, rb), rb->receivedmap);
212 }
213 
214 void ramblock_recv_bitmap_set_range(RAMBlock *rb, void *host_addr,
215                                     size_t nr)
216 {
217     bitmap_set_atomic(rb->receivedmap,
218                       ramblock_recv_bitmap_offset(host_addr, rb),
219                       nr);
220 }
221 
222 #define  RAMBLOCK_RECV_BITMAP_ENDING  (0x0123456789abcdefULL)
223 
224 /*
225  * Format: bitmap_size (8 bytes) + whole_bitmap (N bytes).
226  *
227  * Returns >0 if success with sent bytes, or <0 if error.
228  */
229 int64_t ramblock_recv_bitmap_send(QEMUFile *file,
230                                   const char *block_name)
231 {
232     RAMBlock *block = qemu_ram_block_by_name(block_name);
233     unsigned long *le_bitmap, nbits;
234     uint64_t size;
235 
236     if (!block) {
237         error_report("%s: invalid block name: %s", __func__, block_name);
238         return -1;
239     }
240 
241     nbits = block->postcopy_length >> TARGET_PAGE_BITS;
242 
243     /*
244      * Make sure the tmp bitmap buffer is big enough, e.g., on 32bit
245      * machines we may need 4 more bytes for padding (see below
246      * comment). So extend it a bit before hand.
247      */
248     le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
249 
250     /*
251      * Always use little endian when sending the bitmap. This is
252      * required that when source and destination VMs are not using the
253      * same endianness. (Note: big endian won't work.)
254      */
255     bitmap_to_le(le_bitmap, block->receivedmap, nbits);
256 
257     /* Size of the bitmap, in bytes */
258     size = DIV_ROUND_UP(nbits, 8);
259 
260     /*
261      * size is always aligned to 8 bytes for 64bit machines, but it
262      * may not be true for 32bit machines. We need this padding to
263      * make sure the migration can survive even between 32bit and
264      * 64bit machines.
265      */
266     size = ROUND_UP(size, 8);
267 
268     qemu_put_be64(file, size);
269     qemu_put_buffer(file, (const uint8_t *)le_bitmap, size);
270     /*
271      * Mark as an end, in case the middle part is screwed up due to
272      * some "mysterious" reason.
273      */
274     qemu_put_be64(file, RAMBLOCK_RECV_BITMAP_ENDING);
275     qemu_fflush(file);
276 
277     g_free(le_bitmap);
278 
279     if (qemu_file_get_error(file)) {
280         return qemu_file_get_error(file);
281     }
282 
283     return size + sizeof(size);
284 }
285 
286 /*
287  * An outstanding page request, on the source, having been received
288  * and queued
289  */
290 struct RAMSrcPageRequest {
291     RAMBlock *rb;
292     hwaddr    offset;
293     hwaddr    len;
294 
295     QSIMPLEQ_ENTRY(RAMSrcPageRequest) next_req;
296 };
297 
298 /* State of RAM for migration */
299 struct RAMState {
300     /* QEMUFile used for this migration */
301     QEMUFile *f;
302     /* UFFD file descriptor, used in 'write-tracking' migration */
303     int uffdio_fd;
304     /* Last block that we have visited searching for dirty pages */
305     RAMBlock *last_seen_block;
306     /* Last block from where we have sent data */
307     RAMBlock *last_sent_block;
308     /* Last dirty target page we have sent */
309     ram_addr_t last_page;
310     /* last ram version we have seen */
311     uint32_t last_version;
312     /* How many times we have dirty too many pages */
313     int dirty_rate_high_cnt;
314     /* these variables are used for bitmap sync */
315     /* last time we did a full bitmap_sync */
316     int64_t time_last_bitmap_sync;
317     /* bytes transferred at start_time */
318     uint64_t bytes_xfer_prev;
319     /* number of dirty pages since start_time */
320     uint64_t num_dirty_pages_period;
321     /* xbzrle misses since the beginning of the period */
322     uint64_t xbzrle_cache_miss_prev;
323     /* Amount of xbzrle pages since the beginning of the period */
324     uint64_t xbzrle_pages_prev;
325     /* Amount of xbzrle encoded bytes since the beginning of the period */
326     uint64_t xbzrle_bytes_prev;
327     /* Start using XBZRLE (e.g., after the first round). */
328     bool xbzrle_enabled;
329     /* Are we on the last stage of migration */
330     bool last_stage;
331     /* compression statistics since the beginning of the period */
332     /* amount of count that no free thread to compress data */
333     uint64_t compress_thread_busy_prev;
334     /* amount bytes after compression */
335     uint64_t compressed_size_prev;
336     /* amount of compressed pages */
337     uint64_t compress_pages_prev;
338 
339     /* total handled target pages at the beginning of period */
340     uint64_t target_page_count_prev;
341     /* total handled target pages since start */
342     uint64_t target_page_count;
343     /* number of dirty bits in the bitmap */
344     uint64_t migration_dirty_pages;
345     /* Protects modification of the bitmap and migration dirty pages */
346     QemuMutex bitmap_mutex;
347     /* The RAMBlock used in the last src_page_requests */
348     RAMBlock *last_req_rb;
349     /* Queue of outstanding page requests from the destination */
350     QemuMutex src_page_req_mutex;
351     QSIMPLEQ_HEAD(, RAMSrcPageRequest) src_page_requests;
352 };
353 typedef struct RAMState RAMState;
354 
355 static RAMState *ram_state;
356 
357 static NotifierWithReturnList precopy_notifier_list;
358 
359 /* Whether postcopy has queued requests? */
360 static bool postcopy_has_request(RAMState *rs)
361 {
362     return !QSIMPLEQ_EMPTY_ATOMIC(&rs->src_page_requests);
363 }
364 
365 void precopy_infrastructure_init(void)
366 {
367     notifier_with_return_list_init(&precopy_notifier_list);
368 }
369 
370 void precopy_add_notifier(NotifierWithReturn *n)
371 {
372     notifier_with_return_list_add(&precopy_notifier_list, n);
373 }
374 
375 void precopy_remove_notifier(NotifierWithReturn *n)
376 {
377     notifier_with_return_remove(n);
378 }
379 
380 int precopy_notify(PrecopyNotifyReason reason, Error **errp)
381 {
382     PrecopyNotifyData pnd;
383     pnd.reason = reason;
384     pnd.errp = errp;
385 
386     return notifier_with_return_list_notify(&precopy_notifier_list, &pnd);
387 }
388 
389 uint64_t ram_bytes_remaining(void)
390 {
391     return ram_state ? (ram_state->migration_dirty_pages * TARGET_PAGE_SIZE) :
392                        0;
393 }
394 
395 MigrationStats ram_counters;
396 
397 static void ram_transferred_add(uint64_t bytes)
398 {
399     if (runstate_is_running()) {
400         ram_counters.precopy_bytes += bytes;
401     } else if (migration_in_postcopy()) {
402         ram_counters.postcopy_bytes += bytes;
403     } else {
404         ram_counters.downtime_bytes += bytes;
405     }
406     ram_counters.transferred += bytes;
407 }
408 
409 /* used by the search for pages to send */
410 struct PageSearchStatus {
411     /* Current block being searched */
412     RAMBlock    *block;
413     /* Current page to search from */
414     unsigned long page;
415     /* Set once we wrap around */
416     bool         complete_round;
417     /* Whether current page is explicitly requested by postcopy */
418     bool         postcopy_requested;
419 };
420 typedef struct PageSearchStatus PageSearchStatus;
421 
422 CompressionStats compression_counters;
423 
424 struct CompressParam {
425     bool done;
426     bool quit;
427     bool zero_page;
428     QEMUFile *file;
429     QemuMutex mutex;
430     QemuCond cond;
431     RAMBlock *block;
432     ram_addr_t offset;
433 
434     /* internally used fields */
435     z_stream stream;
436     uint8_t *originbuf;
437 };
438 typedef struct CompressParam CompressParam;
439 
440 struct DecompressParam {
441     bool done;
442     bool quit;
443     QemuMutex mutex;
444     QemuCond cond;
445     void *des;
446     uint8_t *compbuf;
447     int len;
448     z_stream stream;
449 };
450 typedef struct DecompressParam DecompressParam;
451 
452 static CompressParam *comp_param;
453 static QemuThread *compress_threads;
454 /* comp_done_cond is used to wake up the migration thread when
455  * one of the compression threads has finished the compression.
456  * comp_done_lock is used to co-work with comp_done_cond.
457  */
458 static QemuMutex comp_done_lock;
459 static QemuCond comp_done_cond;
460 /* The empty QEMUFileOps will be used by file in CompressParam */
461 static const QEMUFileOps empty_ops = { };
462 
463 static QEMUFile *decomp_file;
464 static DecompressParam *decomp_param;
465 static QemuThread *decompress_threads;
466 static QemuMutex decomp_done_lock;
467 static QemuCond decomp_done_cond;
468 
469 static bool do_compress_ram_page(QEMUFile *f, z_stream *stream, RAMBlock *block,
470                                  ram_addr_t offset, uint8_t *source_buf);
471 
472 static void *do_data_compress(void *opaque)
473 {
474     CompressParam *param = opaque;
475     RAMBlock *block;
476     ram_addr_t offset;
477     bool zero_page;
478 
479     qemu_mutex_lock(&param->mutex);
480     while (!param->quit) {
481         if (param->block) {
482             block = param->block;
483             offset = param->offset;
484             param->block = NULL;
485             qemu_mutex_unlock(&param->mutex);
486 
487             zero_page = do_compress_ram_page(param->file, &param->stream,
488                                              block, offset, param->originbuf);
489 
490             qemu_mutex_lock(&comp_done_lock);
491             param->done = true;
492             param->zero_page = zero_page;
493             qemu_cond_signal(&comp_done_cond);
494             qemu_mutex_unlock(&comp_done_lock);
495 
496             qemu_mutex_lock(&param->mutex);
497         } else {
498             qemu_cond_wait(&param->cond, &param->mutex);
499         }
500     }
501     qemu_mutex_unlock(&param->mutex);
502 
503     return NULL;
504 }
505 
506 static void compress_threads_save_cleanup(void)
507 {
508     int i, thread_count;
509 
510     if (!migrate_use_compression() || !comp_param) {
511         return;
512     }
513 
514     thread_count = migrate_compress_threads();
515     for (i = 0; i < thread_count; i++) {
516         /*
517          * we use it as a indicator which shows if the thread is
518          * properly init'd or not
519          */
520         if (!comp_param[i].file) {
521             break;
522         }
523 
524         qemu_mutex_lock(&comp_param[i].mutex);
525         comp_param[i].quit = true;
526         qemu_cond_signal(&comp_param[i].cond);
527         qemu_mutex_unlock(&comp_param[i].mutex);
528 
529         qemu_thread_join(compress_threads + i);
530         qemu_mutex_destroy(&comp_param[i].mutex);
531         qemu_cond_destroy(&comp_param[i].cond);
532         deflateEnd(&comp_param[i].stream);
533         g_free(comp_param[i].originbuf);
534         qemu_fclose(comp_param[i].file);
535         comp_param[i].file = NULL;
536     }
537     qemu_mutex_destroy(&comp_done_lock);
538     qemu_cond_destroy(&comp_done_cond);
539     g_free(compress_threads);
540     g_free(comp_param);
541     compress_threads = NULL;
542     comp_param = NULL;
543 }
544 
545 static int compress_threads_save_setup(void)
546 {
547     int i, thread_count;
548 
549     if (!migrate_use_compression()) {
550         return 0;
551     }
552     thread_count = migrate_compress_threads();
553     compress_threads = g_new0(QemuThread, thread_count);
554     comp_param = g_new0(CompressParam, thread_count);
555     qemu_cond_init(&comp_done_cond);
556     qemu_mutex_init(&comp_done_lock);
557     for (i = 0; i < thread_count; i++) {
558         comp_param[i].originbuf = g_try_malloc(TARGET_PAGE_SIZE);
559         if (!comp_param[i].originbuf) {
560             goto exit;
561         }
562 
563         if (deflateInit(&comp_param[i].stream,
564                         migrate_compress_level()) != Z_OK) {
565             g_free(comp_param[i].originbuf);
566             goto exit;
567         }
568 
569         /* comp_param[i].file is just used as a dummy buffer to save data,
570          * set its ops to empty.
571          */
572         comp_param[i].file = qemu_fopen_ops(NULL, &empty_ops, false);
573         comp_param[i].done = true;
574         comp_param[i].quit = false;
575         qemu_mutex_init(&comp_param[i].mutex);
576         qemu_cond_init(&comp_param[i].cond);
577         qemu_thread_create(compress_threads + i, "compress",
578                            do_data_compress, comp_param + i,
579                            QEMU_THREAD_JOINABLE);
580     }
581     return 0;
582 
583 exit:
584     compress_threads_save_cleanup();
585     return -1;
586 }
587 
588 /**
589  * save_page_header: write page header to wire
590  *
591  * If this is the 1st block, it also writes the block identification
592  *
593  * Returns the number of bytes written
594  *
595  * @f: QEMUFile where to send the data
596  * @block: block that contains the page we want to send
597  * @offset: offset inside the block for the page
598  *          in the lower bits, it contains flags
599  */
600 static size_t save_page_header(RAMState *rs, QEMUFile *f,  RAMBlock *block,
601                                ram_addr_t offset)
602 {
603     size_t size, len;
604 
605     if (block == rs->last_sent_block) {
606         offset |= RAM_SAVE_FLAG_CONTINUE;
607     }
608     qemu_put_be64(f, offset);
609     size = 8;
610 
611     if (!(offset & RAM_SAVE_FLAG_CONTINUE)) {
612         len = strlen(block->idstr);
613         qemu_put_byte(f, len);
614         qemu_put_buffer(f, (uint8_t *)block->idstr, len);
615         size += 1 + len;
616         rs->last_sent_block = block;
617     }
618     return size;
619 }
620 
621 /**
622  * mig_throttle_guest_down: throttle down the guest
623  *
624  * Reduce amount of guest cpu execution to hopefully slow down memory
625  * writes. If guest dirty memory rate is reduced below the rate at
626  * which we can transfer pages to the destination then we should be
627  * able to complete migration. Some workloads dirty memory way too
628  * fast and will not effectively converge, even with auto-converge.
629  */
630 static void mig_throttle_guest_down(uint64_t bytes_dirty_period,
631                                     uint64_t bytes_dirty_threshold)
632 {
633     MigrationState *s = migrate_get_current();
634     uint64_t pct_initial = s->parameters.cpu_throttle_initial;
635     uint64_t pct_increment = s->parameters.cpu_throttle_increment;
636     bool pct_tailslow = s->parameters.cpu_throttle_tailslow;
637     int pct_max = s->parameters.max_cpu_throttle;
638 
639     uint64_t throttle_now = cpu_throttle_get_percentage();
640     uint64_t cpu_now, cpu_ideal, throttle_inc;
641 
642     /* We have not started throttling yet. Let's start it. */
643     if (!cpu_throttle_active()) {
644         cpu_throttle_set(pct_initial);
645     } else {
646         /* Throttling already on, just increase the rate */
647         if (!pct_tailslow) {
648             throttle_inc = pct_increment;
649         } else {
650             /* Compute the ideal CPU percentage used by Guest, which may
651              * make the dirty rate match the dirty rate threshold. */
652             cpu_now = 100 - throttle_now;
653             cpu_ideal = cpu_now * (bytes_dirty_threshold * 1.0 /
654                         bytes_dirty_period);
655             throttle_inc = MIN(cpu_now - cpu_ideal, pct_increment);
656         }
657         cpu_throttle_set(MIN(throttle_now + throttle_inc, pct_max));
658     }
659 }
660 
661 void mig_throttle_counter_reset(void)
662 {
663     RAMState *rs = ram_state;
664 
665     rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
666     rs->num_dirty_pages_period = 0;
667     rs->bytes_xfer_prev = ram_counters.transferred;
668 }
669 
670 /**
671  * xbzrle_cache_zero_page: insert a zero page in the XBZRLE cache
672  *
673  * @rs: current RAM state
674  * @current_addr: address for the zero page
675  *
676  * Update the xbzrle cache to reflect a page that's been sent as all 0.
677  * The important thing is that a stale (not-yet-0'd) page be replaced
678  * by the new data.
679  * As a bonus, if the page wasn't in the cache it gets added so that
680  * when a small write is made into the 0'd page it gets XBZRLE sent.
681  */
682 static void xbzrle_cache_zero_page(RAMState *rs, ram_addr_t current_addr)
683 {
684     if (!rs->xbzrle_enabled) {
685         return;
686     }
687 
688     /* We don't care if this fails to allocate a new cache page
689      * as long as it updated an old one */
690     cache_insert(XBZRLE.cache, current_addr, XBZRLE.zero_target_page,
691                  ram_counters.dirty_sync_count);
692 }
693 
694 #define ENCODING_FLAG_XBZRLE 0x1
695 
696 /**
697  * save_xbzrle_page: compress and send current page
698  *
699  * Returns: 1 means that we wrote the page
700  *          0 means that page is identical to the one already sent
701  *          -1 means that xbzrle would be longer than normal
702  *
703  * @rs: current RAM state
704  * @current_data: pointer to the address of the page contents
705  * @current_addr: addr of the page
706  * @block: block that contains the page we want to send
707  * @offset: offset inside the block for the page
708  */
709 static int save_xbzrle_page(RAMState *rs, uint8_t **current_data,
710                             ram_addr_t current_addr, RAMBlock *block,
711                             ram_addr_t offset)
712 {
713     int encoded_len = 0, bytes_xbzrle;
714     uint8_t *prev_cached_page;
715 
716     if (!cache_is_cached(XBZRLE.cache, current_addr,
717                          ram_counters.dirty_sync_count)) {
718         xbzrle_counters.cache_miss++;
719         if (!rs->last_stage) {
720             if (cache_insert(XBZRLE.cache, current_addr, *current_data,
721                              ram_counters.dirty_sync_count) == -1) {
722                 return -1;
723             } else {
724                 /* update *current_data when the page has been
725                    inserted into cache */
726                 *current_data = get_cached_data(XBZRLE.cache, current_addr);
727             }
728         }
729         return -1;
730     }
731 
732     /*
733      * Reaching here means the page has hit the xbzrle cache, no matter what
734      * encoding result it is (normal encoding, overflow or skipping the page),
735      * count the page as encoded. This is used to calculate the encoding rate.
736      *
737      * Example: 2 pages (8KB) being encoded, first page encoding generates 2KB,
738      * 2nd page turns out to be skipped (i.e. no new bytes written to the
739      * page), the overall encoding rate will be 8KB / 2KB = 4, which has the
740      * skipped page included. In this way, the encoding rate can tell if the
741      * guest page is good for xbzrle encoding.
742      */
743     xbzrle_counters.pages++;
744     prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
745 
746     /* save current buffer into memory */
747     memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE);
748 
749     /* XBZRLE encoding (if there is no overflow) */
750     encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
751                                        TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
752                                        TARGET_PAGE_SIZE);
753 
754     /*
755      * Update the cache contents, so that it corresponds to the data
756      * sent, in all cases except where we skip the page.
757      */
758     if (!rs->last_stage && encoded_len != 0) {
759         memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
760         /*
761          * In the case where we couldn't compress, ensure that the caller
762          * sends the data from the cache, since the guest might have
763          * changed the RAM since we copied it.
764          */
765         *current_data = prev_cached_page;
766     }
767 
768     if (encoded_len == 0) {
769         trace_save_xbzrle_page_skipping();
770         return 0;
771     } else if (encoded_len == -1) {
772         trace_save_xbzrle_page_overflow();
773         xbzrle_counters.overflow++;
774         xbzrle_counters.bytes += TARGET_PAGE_SIZE;
775         return -1;
776     }
777 
778     /* Send XBZRLE based compressed page */
779     bytes_xbzrle = save_page_header(rs, rs->f, block,
780                                     offset | RAM_SAVE_FLAG_XBZRLE);
781     qemu_put_byte(rs->f, ENCODING_FLAG_XBZRLE);
782     qemu_put_be16(rs->f, encoded_len);
783     qemu_put_buffer(rs->f, XBZRLE.encoded_buf, encoded_len);
784     bytes_xbzrle += encoded_len + 1 + 2;
785     /*
786      * Like compressed_size (please see update_compress_thread_counts),
787      * the xbzrle encoded bytes don't count the 8 byte header with
788      * RAM_SAVE_FLAG_CONTINUE.
789      */
790     xbzrle_counters.bytes += bytes_xbzrle - 8;
791     ram_transferred_add(bytes_xbzrle);
792 
793     return 1;
794 }
795 
796 /**
797  * migration_bitmap_find_dirty: find the next dirty page from start
798  *
799  * Returns the page offset within memory region of the start of a dirty page
800  *
801  * @rs: current RAM state
802  * @rb: RAMBlock where to search for dirty pages
803  * @start: page where we start the search
804  */
805 static inline
806 unsigned long migration_bitmap_find_dirty(RAMState *rs, RAMBlock *rb,
807                                           unsigned long start)
808 {
809     unsigned long size = rb->used_length >> TARGET_PAGE_BITS;
810     unsigned long *bitmap = rb->bmap;
811 
812     if (ramblock_is_ignored(rb)) {
813         return size;
814     }
815 
816     return find_next_bit(bitmap, size, start);
817 }
818 
819 static void migration_clear_memory_region_dirty_bitmap(RAMBlock *rb,
820                                                        unsigned long page)
821 {
822     uint8_t shift;
823     hwaddr size, start;
824 
825     if (!rb->clear_bmap || !clear_bmap_test_and_clear(rb, page)) {
826         return;
827     }
828 
829     shift = rb->clear_bmap_shift;
830     /*
831      * CLEAR_BITMAP_SHIFT_MIN should always guarantee this... this
832      * can make things easier sometimes since then start address
833      * of the small chunk will always be 64 pages aligned so the
834      * bitmap will always be aligned to unsigned long. We should
835      * even be able to remove this restriction but I'm simply
836      * keeping it.
837      */
838     assert(shift >= 6);
839 
840     size = 1ULL << (TARGET_PAGE_BITS + shift);
841     start = QEMU_ALIGN_DOWN((ram_addr_t)page << TARGET_PAGE_BITS, size);
842     trace_migration_bitmap_clear_dirty(rb->idstr, start, size, page);
843     memory_region_clear_dirty_bitmap(rb->mr, start, size);
844 }
845 
846 static void
847 migration_clear_memory_region_dirty_bitmap_range(RAMBlock *rb,
848                                                  unsigned long start,
849                                                  unsigned long npages)
850 {
851     unsigned long i, chunk_pages = 1UL << rb->clear_bmap_shift;
852     unsigned long chunk_start = QEMU_ALIGN_DOWN(start, chunk_pages);
853     unsigned long chunk_end = QEMU_ALIGN_UP(start + npages, chunk_pages);
854 
855     /*
856      * Clear pages from start to start + npages - 1, so the end boundary is
857      * exclusive.
858      */
859     for (i = chunk_start; i < chunk_end; i += chunk_pages) {
860         migration_clear_memory_region_dirty_bitmap(rb, i);
861     }
862 }
863 
864 /*
865  * colo_bitmap_find_diry:find contiguous dirty pages from start
866  *
867  * Returns the page offset within memory region of the start of the contiguout
868  * dirty page
869  *
870  * @rs: current RAM state
871  * @rb: RAMBlock where to search for dirty pages
872  * @start: page where we start the search
873  * @num: the number of contiguous dirty pages
874  */
875 static inline
876 unsigned long colo_bitmap_find_dirty(RAMState *rs, RAMBlock *rb,
877                                      unsigned long start, unsigned long *num)
878 {
879     unsigned long size = rb->used_length >> TARGET_PAGE_BITS;
880     unsigned long *bitmap = rb->bmap;
881     unsigned long first, next;
882 
883     *num = 0;
884 
885     if (ramblock_is_ignored(rb)) {
886         return size;
887     }
888 
889     first = find_next_bit(bitmap, size, start);
890     if (first >= size) {
891         return first;
892     }
893     next = find_next_zero_bit(bitmap, size, first + 1);
894     assert(next >= first);
895     *num = next - first;
896     return first;
897 }
898 
899 static inline bool migration_bitmap_clear_dirty(RAMState *rs,
900                                                 RAMBlock *rb,
901                                                 unsigned long page)
902 {
903     bool ret;
904 
905     /*
906      * Clear dirty bitmap if needed.  This _must_ be called before we
907      * send any of the page in the chunk because we need to make sure
908      * we can capture further page content changes when we sync dirty
909      * log the next time.  So as long as we are going to send any of
910      * the page in the chunk we clear the remote dirty bitmap for all.
911      * Clearing it earlier won't be a problem, but too late will.
912      */
913     migration_clear_memory_region_dirty_bitmap(rb, page);
914 
915     ret = test_and_clear_bit(page, rb->bmap);
916     if (ret) {
917         rs->migration_dirty_pages--;
918     }
919 
920     return ret;
921 }
922 
923 static void dirty_bitmap_clear_section(MemoryRegionSection *section,
924                                        void *opaque)
925 {
926     const hwaddr offset = section->offset_within_region;
927     const hwaddr size = int128_get64(section->size);
928     const unsigned long start = offset >> TARGET_PAGE_BITS;
929     const unsigned long npages = size >> TARGET_PAGE_BITS;
930     RAMBlock *rb = section->mr->ram_block;
931     uint64_t *cleared_bits = opaque;
932 
933     /*
934      * We don't grab ram_state->bitmap_mutex because we expect to run
935      * only when starting migration or during postcopy recovery where
936      * we don't have concurrent access.
937      */
938     if (!migration_in_postcopy() && !migrate_background_snapshot()) {
939         migration_clear_memory_region_dirty_bitmap_range(rb, start, npages);
940     }
941     *cleared_bits += bitmap_count_one_with_offset(rb->bmap, start, npages);
942     bitmap_clear(rb->bmap, start, npages);
943 }
944 
945 /*
946  * Exclude all dirty pages from migration that fall into a discarded range as
947  * managed by a RamDiscardManager responsible for the mapped memory region of
948  * the RAMBlock. Clear the corresponding bits in the dirty bitmaps.
949  *
950  * Discarded pages ("logically unplugged") have undefined content and must
951  * not get migrated, because even reading these pages for migration might
952  * result in undesired behavior.
953  *
954  * Returns the number of cleared bits in the RAMBlock dirty bitmap.
955  *
956  * Note: The result is only stable while migrating (precopy/postcopy).
957  */
958 static uint64_t ramblock_dirty_bitmap_clear_discarded_pages(RAMBlock *rb)
959 {
960     uint64_t cleared_bits = 0;
961 
962     if (rb->mr && rb->bmap && memory_region_has_ram_discard_manager(rb->mr)) {
963         RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr);
964         MemoryRegionSection section = {
965             .mr = rb->mr,
966             .offset_within_region = 0,
967             .size = int128_make64(qemu_ram_get_used_length(rb)),
968         };
969 
970         ram_discard_manager_replay_discarded(rdm, &section,
971                                              dirty_bitmap_clear_section,
972                                              &cleared_bits);
973     }
974     return cleared_bits;
975 }
976 
977 /*
978  * Check if a host-page aligned page falls into a discarded range as managed by
979  * a RamDiscardManager responsible for the mapped memory region of the RAMBlock.
980  *
981  * Note: The result is only stable while migrating (precopy/postcopy).
982  */
983 bool ramblock_page_is_discarded(RAMBlock *rb, ram_addr_t start)
984 {
985     if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) {
986         RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr);
987         MemoryRegionSection section = {
988             .mr = rb->mr,
989             .offset_within_region = start,
990             .size = int128_make64(qemu_ram_pagesize(rb)),
991         };
992 
993         return !ram_discard_manager_is_populated(rdm, &section);
994     }
995     return false;
996 }
997 
998 /* Called with RCU critical section */
999 static void ramblock_sync_dirty_bitmap(RAMState *rs, RAMBlock *rb)
1000 {
1001     uint64_t new_dirty_pages =
1002         cpu_physical_memory_sync_dirty_bitmap(rb, 0, rb->used_length);
1003 
1004     rs->migration_dirty_pages += new_dirty_pages;
1005     rs->num_dirty_pages_period += new_dirty_pages;
1006 }
1007 
1008 /**
1009  * ram_pagesize_summary: calculate all the pagesizes of a VM
1010  *
1011  * Returns a summary bitmap of the page sizes of all RAMBlocks
1012  *
1013  * For VMs with just normal pages this is equivalent to the host page
1014  * size. If it's got some huge pages then it's the OR of all the
1015  * different page sizes.
1016  */
1017 uint64_t ram_pagesize_summary(void)
1018 {
1019     RAMBlock *block;
1020     uint64_t summary = 0;
1021 
1022     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1023         summary |= block->page_size;
1024     }
1025 
1026     return summary;
1027 }
1028 
1029 uint64_t ram_get_total_transferred_pages(void)
1030 {
1031     return  ram_counters.normal + ram_counters.duplicate +
1032                 compression_counters.pages + xbzrle_counters.pages;
1033 }
1034 
1035 static void migration_update_rates(RAMState *rs, int64_t end_time)
1036 {
1037     uint64_t page_count = rs->target_page_count - rs->target_page_count_prev;
1038     double compressed_size;
1039 
1040     /* calculate period counters */
1041     ram_counters.dirty_pages_rate = rs->num_dirty_pages_period * 1000
1042                 / (end_time - rs->time_last_bitmap_sync);
1043 
1044     if (!page_count) {
1045         return;
1046     }
1047 
1048     if (migrate_use_xbzrle()) {
1049         double encoded_size, unencoded_size;
1050 
1051         xbzrle_counters.cache_miss_rate = (double)(xbzrle_counters.cache_miss -
1052             rs->xbzrle_cache_miss_prev) / page_count;
1053         rs->xbzrle_cache_miss_prev = xbzrle_counters.cache_miss;
1054         unencoded_size = (xbzrle_counters.pages - rs->xbzrle_pages_prev) *
1055                          TARGET_PAGE_SIZE;
1056         encoded_size = xbzrle_counters.bytes - rs->xbzrle_bytes_prev;
1057         if (xbzrle_counters.pages == rs->xbzrle_pages_prev || !encoded_size) {
1058             xbzrle_counters.encoding_rate = 0;
1059         } else {
1060             xbzrle_counters.encoding_rate = unencoded_size / encoded_size;
1061         }
1062         rs->xbzrle_pages_prev = xbzrle_counters.pages;
1063         rs->xbzrle_bytes_prev = xbzrle_counters.bytes;
1064     }
1065 
1066     if (migrate_use_compression()) {
1067         compression_counters.busy_rate = (double)(compression_counters.busy -
1068             rs->compress_thread_busy_prev) / page_count;
1069         rs->compress_thread_busy_prev = compression_counters.busy;
1070 
1071         compressed_size = compression_counters.compressed_size -
1072                           rs->compressed_size_prev;
1073         if (compressed_size) {
1074             double uncompressed_size = (compression_counters.pages -
1075                                     rs->compress_pages_prev) * TARGET_PAGE_SIZE;
1076 
1077             /* Compression-Ratio = Uncompressed-size / Compressed-size */
1078             compression_counters.compression_rate =
1079                                         uncompressed_size / compressed_size;
1080 
1081             rs->compress_pages_prev = compression_counters.pages;
1082             rs->compressed_size_prev = compression_counters.compressed_size;
1083         }
1084     }
1085 }
1086 
1087 static void migration_trigger_throttle(RAMState *rs)
1088 {
1089     MigrationState *s = migrate_get_current();
1090     uint64_t threshold = s->parameters.throttle_trigger_threshold;
1091 
1092     uint64_t bytes_xfer_period = ram_counters.transferred - rs->bytes_xfer_prev;
1093     uint64_t bytes_dirty_period = rs->num_dirty_pages_period * TARGET_PAGE_SIZE;
1094     uint64_t bytes_dirty_threshold = bytes_xfer_period * threshold / 100;
1095 
1096     /* During block migration the auto-converge logic incorrectly detects
1097      * that ram migration makes no progress. Avoid this by disabling the
1098      * throttling logic during the bulk phase of block migration. */
1099     if (migrate_auto_converge() && !blk_mig_bulk_active()) {
1100         /* The following detection logic can be refined later. For now:
1101            Check to see if the ratio between dirtied bytes and the approx.
1102            amount of bytes that just got transferred since the last time
1103            we were in this routine reaches the threshold. If that happens
1104            twice, start or increase throttling. */
1105 
1106         if ((bytes_dirty_period > bytes_dirty_threshold) &&
1107             (++rs->dirty_rate_high_cnt >= 2)) {
1108             trace_migration_throttle();
1109             rs->dirty_rate_high_cnt = 0;
1110             mig_throttle_guest_down(bytes_dirty_period,
1111                                     bytes_dirty_threshold);
1112         }
1113     }
1114 }
1115 
1116 static void migration_bitmap_sync(RAMState *rs)
1117 {
1118     RAMBlock *block;
1119     int64_t end_time;
1120 
1121     ram_counters.dirty_sync_count++;
1122 
1123     if (!rs->time_last_bitmap_sync) {
1124         rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
1125     }
1126 
1127     trace_migration_bitmap_sync_start();
1128     memory_global_dirty_log_sync();
1129 
1130     qemu_mutex_lock(&rs->bitmap_mutex);
1131     WITH_RCU_READ_LOCK_GUARD() {
1132         RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1133             ramblock_sync_dirty_bitmap(rs, block);
1134         }
1135         ram_counters.remaining = ram_bytes_remaining();
1136     }
1137     qemu_mutex_unlock(&rs->bitmap_mutex);
1138 
1139     memory_global_after_dirty_log_sync();
1140     trace_migration_bitmap_sync_end(rs->num_dirty_pages_period);
1141 
1142     end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
1143 
1144     /* more than 1 second = 1000 millisecons */
1145     if (end_time > rs->time_last_bitmap_sync + 1000) {
1146         migration_trigger_throttle(rs);
1147 
1148         migration_update_rates(rs, end_time);
1149 
1150         rs->target_page_count_prev = rs->target_page_count;
1151 
1152         /* reset period counters */
1153         rs->time_last_bitmap_sync = end_time;
1154         rs->num_dirty_pages_period = 0;
1155         rs->bytes_xfer_prev = ram_counters.transferred;
1156     }
1157     if (migrate_use_events()) {
1158         qapi_event_send_migration_pass(ram_counters.dirty_sync_count);
1159     }
1160 }
1161 
1162 static void migration_bitmap_sync_precopy(RAMState *rs)
1163 {
1164     Error *local_err = NULL;
1165 
1166     /*
1167      * The current notifier usage is just an optimization to migration, so we
1168      * don't stop the normal migration process in the error case.
1169      */
1170     if (precopy_notify(PRECOPY_NOTIFY_BEFORE_BITMAP_SYNC, &local_err)) {
1171         error_report_err(local_err);
1172         local_err = NULL;
1173     }
1174 
1175     migration_bitmap_sync(rs);
1176 
1177     if (precopy_notify(PRECOPY_NOTIFY_AFTER_BITMAP_SYNC, &local_err)) {
1178         error_report_err(local_err);
1179     }
1180 }
1181 
1182 static void ram_release_page(const char *rbname, uint64_t offset)
1183 {
1184     if (!migrate_release_ram() || !migration_in_postcopy()) {
1185         return;
1186     }
1187 
1188     ram_discard_range(rbname, offset, TARGET_PAGE_SIZE);
1189 }
1190 
1191 /**
1192  * save_zero_page_to_file: send the zero page to the file
1193  *
1194  * Returns the size of data written to the file, 0 means the page is not
1195  * a zero page
1196  *
1197  * @rs: current RAM state
1198  * @file: the file where the data is saved
1199  * @block: block that contains the page we want to send
1200  * @offset: offset inside the block for the page
1201  */
1202 static int save_zero_page_to_file(RAMState *rs, QEMUFile *file,
1203                                   RAMBlock *block, ram_addr_t offset)
1204 {
1205     uint8_t *p = block->host + offset;
1206     int len = 0;
1207 
1208     if (buffer_is_zero(p, TARGET_PAGE_SIZE)) {
1209         len += save_page_header(rs, file, block, offset | RAM_SAVE_FLAG_ZERO);
1210         qemu_put_byte(file, 0);
1211         len += 1;
1212         ram_release_page(block->idstr, offset);
1213     }
1214     return len;
1215 }
1216 
1217 /**
1218  * save_zero_page: send the zero page to the stream
1219  *
1220  * Returns the number of pages written.
1221  *
1222  * @rs: current RAM state
1223  * @block: block that contains the page we want to send
1224  * @offset: offset inside the block for the page
1225  */
1226 static int save_zero_page(RAMState *rs, RAMBlock *block, ram_addr_t offset)
1227 {
1228     int len = save_zero_page_to_file(rs, rs->f, block, offset);
1229 
1230     if (len) {
1231         ram_counters.duplicate++;
1232         ram_transferred_add(len);
1233         return 1;
1234     }
1235     return -1;
1236 }
1237 
1238 /*
1239  * @pages: the number of pages written by the control path,
1240  *        < 0 - error
1241  *        > 0 - number of pages written
1242  *
1243  * Return true if the pages has been saved, otherwise false is returned.
1244  */
1245 static bool control_save_page(RAMState *rs, RAMBlock *block, ram_addr_t offset,
1246                               int *pages)
1247 {
1248     uint64_t bytes_xmit = 0;
1249     int ret;
1250 
1251     *pages = -1;
1252     ret = ram_control_save_page(rs->f, block->offset, offset, TARGET_PAGE_SIZE,
1253                                 &bytes_xmit);
1254     if (ret == RAM_SAVE_CONTROL_NOT_SUPP) {
1255         return false;
1256     }
1257 
1258     if (bytes_xmit) {
1259         ram_transferred_add(bytes_xmit);
1260         *pages = 1;
1261     }
1262 
1263     if (ret == RAM_SAVE_CONTROL_DELAYED) {
1264         return true;
1265     }
1266 
1267     if (bytes_xmit > 0) {
1268         ram_counters.normal++;
1269     } else if (bytes_xmit == 0) {
1270         ram_counters.duplicate++;
1271     }
1272 
1273     return true;
1274 }
1275 
1276 /*
1277  * directly send the page to the stream
1278  *
1279  * Returns the number of pages written.
1280  *
1281  * @rs: current RAM state
1282  * @block: block that contains the page we want to send
1283  * @offset: offset inside the block for the page
1284  * @buf: the page to be sent
1285  * @async: send to page asyncly
1286  */
1287 static int save_normal_page(RAMState *rs, RAMBlock *block, ram_addr_t offset,
1288                             uint8_t *buf, bool async)
1289 {
1290     ram_transferred_add(save_page_header(rs, rs->f, block,
1291                                          offset | RAM_SAVE_FLAG_PAGE));
1292     if (async) {
1293         qemu_put_buffer_async(rs->f, buf, TARGET_PAGE_SIZE,
1294                               migrate_release_ram() &&
1295                               migration_in_postcopy());
1296     } else {
1297         qemu_put_buffer(rs->f, buf, TARGET_PAGE_SIZE);
1298     }
1299     ram_transferred_add(TARGET_PAGE_SIZE);
1300     ram_counters.normal++;
1301     return 1;
1302 }
1303 
1304 /**
1305  * ram_save_page: send the given page to the stream
1306  *
1307  * Returns the number of pages written.
1308  *          < 0 - error
1309  *          >=0 - Number of pages written - this might legally be 0
1310  *                if xbzrle noticed the page was the same.
1311  *
1312  * @rs: current RAM state
1313  * @block: block that contains the page we want to send
1314  * @offset: offset inside the block for the page
1315  */
1316 static int ram_save_page(RAMState *rs, PageSearchStatus *pss)
1317 {
1318     int pages = -1;
1319     uint8_t *p;
1320     bool send_async = true;
1321     RAMBlock *block = pss->block;
1322     ram_addr_t offset = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS;
1323     ram_addr_t current_addr = block->offset + offset;
1324 
1325     p = block->host + offset;
1326     trace_ram_save_page(block->idstr, (uint64_t)offset, p);
1327 
1328     XBZRLE_cache_lock();
1329     if (rs->xbzrle_enabled && !migration_in_postcopy()) {
1330         pages = save_xbzrle_page(rs, &p, current_addr, block,
1331                                  offset);
1332         if (!rs->last_stage) {
1333             /* Can't send this cached data async, since the cache page
1334              * might get updated before it gets to the wire
1335              */
1336             send_async = false;
1337         }
1338     }
1339 
1340     /* XBZRLE overflow or normal page */
1341     if (pages == -1) {
1342         pages = save_normal_page(rs, block, offset, p, send_async);
1343     }
1344 
1345     XBZRLE_cache_unlock();
1346 
1347     return pages;
1348 }
1349 
1350 static int ram_save_multifd_page(RAMState *rs, RAMBlock *block,
1351                                  ram_addr_t offset)
1352 {
1353     if (multifd_queue_page(rs->f, block, offset) < 0) {
1354         return -1;
1355     }
1356     ram_counters.normal++;
1357 
1358     return 1;
1359 }
1360 
1361 static bool do_compress_ram_page(QEMUFile *f, z_stream *stream, RAMBlock *block,
1362                                  ram_addr_t offset, uint8_t *source_buf)
1363 {
1364     RAMState *rs = ram_state;
1365     uint8_t *p = block->host + offset;
1366     int ret;
1367 
1368     if (save_zero_page_to_file(rs, f, block, offset)) {
1369         return true;
1370     }
1371 
1372     save_page_header(rs, f, block, offset | RAM_SAVE_FLAG_COMPRESS_PAGE);
1373 
1374     /*
1375      * copy it to a internal buffer to avoid it being modified by VM
1376      * so that we can catch up the error during compression and
1377      * decompression
1378      */
1379     memcpy(source_buf, p, TARGET_PAGE_SIZE);
1380     ret = qemu_put_compression_data(f, stream, source_buf, TARGET_PAGE_SIZE);
1381     if (ret < 0) {
1382         qemu_file_set_error(migrate_get_current()->to_dst_file, ret);
1383         error_report("compressed data failed!");
1384     }
1385     return false;
1386 }
1387 
1388 static void
1389 update_compress_thread_counts(const CompressParam *param, int bytes_xmit)
1390 {
1391     ram_transferred_add(bytes_xmit);
1392 
1393     if (param->zero_page) {
1394         ram_counters.duplicate++;
1395         return;
1396     }
1397 
1398     /* 8 means a header with RAM_SAVE_FLAG_CONTINUE. */
1399     compression_counters.compressed_size += bytes_xmit - 8;
1400     compression_counters.pages++;
1401 }
1402 
1403 static bool save_page_use_compression(RAMState *rs);
1404 
1405 static void flush_compressed_data(RAMState *rs)
1406 {
1407     int idx, len, thread_count;
1408 
1409     if (!save_page_use_compression(rs)) {
1410         return;
1411     }
1412     thread_count = migrate_compress_threads();
1413 
1414     qemu_mutex_lock(&comp_done_lock);
1415     for (idx = 0; idx < thread_count; idx++) {
1416         while (!comp_param[idx].done) {
1417             qemu_cond_wait(&comp_done_cond, &comp_done_lock);
1418         }
1419     }
1420     qemu_mutex_unlock(&comp_done_lock);
1421 
1422     for (idx = 0; idx < thread_count; idx++) {
1423         qemu_mutex_lock(&comp_param[idx].mutex);
1424         if (!comp_param[idx].quit) {
1425             len = qemu_put_qemu_file(rs->f, comp_param[idx].file);
1426             /*
1427              * it's safe to fetch zero_page without holding comp_done_lock
1428              * as there is no further request submitted to the thread,
1429              * i.e, the thread should be waiting for a request at this point.
1430              */
1431             update_compress_thread_counts(&comp_param[idx], len);
1432         }
1433         qemu_mutex_unlock(&comp_param[idx].mutex);
1434     }
1435 }
1436 
1437 static inline void set_compress_params(CompressParam *param, RAMBlock *block,
1438                                        ram_addr_t offset)
1439 {
1440     param->block = block;
1441     param->offset = offset;
1442 }
1443 
1444 static int compress_page_with_multi_thread(RAMState *rs, RAMBlock *block,
1445                                            ram_addr_t offset)
1446 {
1447     int idx, thread_count, bytes_xmit = -1, pages = -1;
1448     bool wait = migrate_compress_wait_thread();
1449 
1450     thread_count = migrate_compress_threads();
1451     qemu_mutex_lock(&comp_done_lock);
1452 retry:
1453     for (idx = 0; idx < thread_count; idx++) {
1454         if (comp_param[idx].done) {
1455             comp_param[idx].done = false;
1456             bytes_xmit = qemu_put_qemu_file(rs->f, comp_param[idx].file);
1457             qemu_mutex_lock(&comp_param[idx].mutex);
1458             set_compress_params(&comp_param[idx], block, offset);
1459             qemu_cond_signal(&comp_param[idx].cond);
1460             qemu_mutex_unlock(&comp_param[idx].mutex);
1461             pages = 1;
1462             update_compress_thread_counts(&comp_param[idx], bytes_xmit);
1463             break;
1464         }
1465     }
1466 
1467     /*
1468      * wait for the free thread if the user specifies 'compress-wait-thread',
1469      * otherwise we will post the page out in the main thread as normal page.
1470      */
1471     if (pages < 0 && wait) {
1472         qemu_cond_wait(&comp_done_cond, &comp_done_lock);
1473         goto retry;
1474     }
1475     qemu_mutex_unlock(&comp_done_lock);
1476 
1477     return pages;
1478 }
1479 
1480 /**
1481  * find_dirty_block: find the next dirty page and update any state
1482  * associated with the search process.
1483  *
1484  * Returns true if a page is found
1485  *
1486  * @rs: current RAM state
1487  * @pss: data about the state of the current dirty page scan
1488  * @again: set to false if the search has scanned the whole of RAM
1489  */
1490 static bool find_dirty_block(RAMState *rs, PageSearchStatus *pss, bool *again)
1491 {
1492     /* This is not a postcopy requested page */
1493     pss->postcopy_requested = false;
1494 
1495     pss->page = migration_bitmap_find_dirty(rs, pss->block, pss->page);
1496     if (pss->complete_round && pss->block == rs->last_seen_block &&
1497         pss->page >= rs->last_page) {
1498         /*
1499          * We've been once around the RAM and haven't found anything.
1500          * Give up.
1501          */
1502         *again = false;
1503         return false;
1504     }
1505     if (!offset_in_ramblock(pss->block,
1506                             ((ram_addr_t)pss->page) << TARGET_PAGE_BITS)) {
1507         /* Didn't find anything in this RAM Block */
1508         pss->page = 0;
1509         pss->block = QLIST_NEXT_RCU(pss->block, next);
1510         if (!pss->block) {
1511             /*
1512              * If memory migration starts over, we will meet a dirtied page
1513              * which may still exists in compression threads's ring, so we
1514              * should flush the compressed data to make sure the new page
1515              * is not overwritten by the old one in the destination.
1516              *
1517              * Also If xbzrle is on, stop using the data compression at this
1518              * point. In theory, xbzrle can do better than compression.
1519              */
1520             flush_compressed_data(rs);
1521 
1522             /* Hit the end of the list */
1523             pss->block = QLIST_FIRST_RCU(&ram_list.blocks);
1524             /* Flag that we've looped */
1525             pss->complete_round = true;
1526             /* After the first round, enable XBZRLE. */
1527             if (migrate_use_xbzrle()) {
1528                 rs->xbzrle_enabled = true;
1529             }
1530         }
1531         /* Didn't find anything this time, but try again on the new block */
1532         *again = true;
1533         return false;
1534     } else {
1535         /* Can go around again, but... */
1536         *again = true;
1537         /* We've found something so probably don't need to */
1538         return true;
1539     }
1540 }
1541 
1542 /**
1543  * unqueue_page: gets a page of the queue
1544  *
1545  * Helper for 'get_queued_page' - gets a page off the queue
1546  *
1547  * Returns the block of the page (or NULL if none available)
1548  *
1549  * @rs: current RAM state
1550  * @offset: used to return the offset within the RAMBlock
1551  */
1552 static RAMBlock *unqueue_page(RAMState *rs, ram_addr_t *offset)
1553 {
1554     struct RAMSrcPageRequest *entry;
1555     RAMBlock *block = NULL;
1556     size_t page_size;
1557 
1558     if (!postcopy_has_request(rs)) {
1559         return NULL;
1560     }
1561 
1562     QEMU_LOCK_GUARD(&rs->src_page_req_mutex);
1563 
1564     /*
1565      * This should _never_ change even after we take the lock, because no one
1566      * should be taking anything off the request list other than us.
1567      */
1568     assert(postcopy_has_request(rs));
1569 
1570     entry = QSIMPLEQ_FIRST(&rs->src_page_requests);
1571     block = entry->rb;
1572     *offset = entry->offset;
1573     page_size = qemu_ram_pagesize(block);
1574     /* Each page request should only be multiple page size of the ramblock */
1575     assert((entry->len % page_size) == 0);
1576 
1577     if (entry->len > page_size) {
1578         entry->len -= page_size;
1579         entry->offset += page_size;
1580     } else {
1581         memory_region_unref(block->mr);
1582         QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
1583         g_free(entry);
1584         migration_consume_urgent_request();
1585     }
1586 
1587     trace_unqueue_page(block->idstr, *offset,
1588                        test_bit((*offset >> TARGET_PAGE_BITS), block->bmap));
1589 
1590     return block;
1591 }
1592 
1593 #if defined(__linux__)
1594 /**
1595  * poll_fault_page: try to get next UFFD write fault page and, if pending fault
1596  *   is found, return RAM block pointer and page offset
1597  *
1598  * Returns pointer to the RAMBlock containing faulting page,
1599  *   NULL if no write faults are pending
1600  *
1601  * @rs: current RAM state
1602  * @offset: page offset from the beginning of the block
1603  */
1604 static RAMBlock *poll_fault_page(RAMState *rs, ram_addr_t *offset)
1605 {
1606     struct uffd_msg uffd_msg;
1607     void *page_address;
1608     RAMBlock *block;
1609     int res;
1610 
1611     if (!migrate_background_snapshot()) {
1612         return NULL;
1613     }
1614 
1615     res = uffd_read_events(rs->uffdio_fd, &uffd_msg, 1);
1616     if (res <= 0) {
1617         return NULL;
1618     }
1619 
1620     page_address = (void *)(uintptr_t) uffd_msg.arg.pagefault.address;
1621     block = qemu_ram_block_from_host(page_address, false, offset);
1622     assert(block && (block->flags & RAM_UF_WRITEPROTECT) != 0);
1623     return block;
1624 }
1625 
1626 /**
1627  * ram_save_release_protection: release UFFD write protection after
1628  *   a range of pages has been saved
1629  *
1630  * @rs: current RAM state
1631  * @pss: page-search-status structure
1632  * @start_page: index of the first page in the range relative to pss->block
1633  *
1634  * Returns 0 on success, negative value in case of an error
1635 */
1636 static int ram_save_release_protection(RAMState *rs, PageSearchStatus *pss,
1637         unsigned long start_page)
1638 {
1639     int res = 0;
1640 
1641     /* Check if page is from UFFD-managed region. */
1642     if (pss->block->flags & RAM_UF_WRITEPROTECT) {
1643         void *page_address = pss->block->host + (start_page << TARGET_PAGE_BITS);
1644         uint64_t run_length = (pss->page - start_page) << TARGET_PAGE_BITS;
1645 
1646         /* Flush async buffers before un-protect. */
1647         qemu_fflush(rs->f);
1648         /* Un-protect memory range. */
1649         res = uffd_change_protection(rs->uffdio_fd, page_address, run_length,
1650                 false, false);
1651     }
1652 
1653     return res;
1654 }
1655 
1656 /* ram_write_tracking_available: check if kernel supports required UFFD features
1657  *
1658  * Returns true if supports, false otherwise
1659  */
1660 bool ram_write_tracking_available(void)
1661 {
1662     uint64_t uffd_features;
1663     int res;
1664 
1665     res = uffd_query_features(&uffd_features);
1666     return (res == 0 &&
1667             (uffd_features & UFFD_FEATURE_PAGEFAULT_FLAG_WP) != 0);
1668 }
1669 
1670 /* ram_write_tracking_compatible: check if guest configuration is
1671  *   compatible with 'write-tracking'
1672  *
1673  * Returns true if compatible, false otherwise
1674  */
1675 bool ram_write_tracking_compatible(void)
1676 {
1677     const uint64_t uffd_ioctls_mask = BIT(_UFFDIO_WRITEPROTECT);
1678     int uffd_fd;
1679     RAMBlock *block;
1680     bool ret = false;
1681 
1682     /* Open UFFD file descriptor */
1683     uffd_fd = uffd_create_fd(UFFD_FEATURE_PAGEFAULT_FLAG_WP, false);
1684     if (uffd_fd < 0) {
1685         return false;
1686     }
1687 
1688     RCU_READ_LOCK_GUARD();
1689 
1690     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1691         uint64_t uffd_ioctls;
1692 
1693         /* Nothing to do with read-only and MMIO-writable regions */
1694         if (block->mr->readonly || block->mr->rom_device) {
1695             continue;
1696         }
1697         /* Try to register block memory via UFFD-IO to track writes */
1698         if (uffd_register_memory(uffd_fd, block->host, block->max_length,
1699                 UFFDIO_REGISTER_MODE_WP, &uffd_ioctls)) {
1700             goto out;
1701         }
1702         if ((uffd_ioctls & uffd_ioctls_mask) != uffd_ioctls_mask) {
1703             goto out;
1704         }
1705     }
1706     ret = true;
1707 
1708 out:
1709     uffd_close_fd(uffd_fd);
1710     return ret;
1711 }
1712 
1713 static inline void populate_read_range(RAMBlock *block, ram_addr_t offset,
1714                                        ram_addr_t size)
1715 {
1716     /*
1717      * We read one byte of each page; this will preallocate page tables if
1718      * required and populate the shared zeropage on MAP_PRIVATE anonymous memory
1719      * where no page was populated yet. This might require adaption when
1720      * supporting other mappings, like shmem.
1721      */
1722     for (; offset < size; offset += block->page_size) {
1723         char tmp = *((char *)block->host + offset);
1724 
1725         /* Don't optimize the read out */
1726         asm volatile("" : "+r" (tmp));
1727     }
1728 }
1729 
1730 static inline int populate_read_section(MemoryRegionSection *section,
1731                                         void *opaque)
1732 {
1733     const hwaddr size = int128_get64(section->size);
1734     hwaddr offset = section->offset_within_region;
1735     RAMBlock *block = section->mr->ram_block;
1736 
1737     populate_read_range(block, offset, size);
1738     return 0;
1739 }
1740 
1741 /*
1742  * ram_block_populate_read: preallocate page tables and populate pages in the
1743  *   RAM block by reading a byte of each page.
1744  *
1745  * Since it's solely used for userfault_fd WP feature, here we just
1746  *   hardcode page size to qemu_real_host_page_size.
1747  *
1748  * @block: RAM block to populate
1749  */
1750 static void ram_block_populate_read(RAMBlock *rb)
1751 {
1752     /*
1753      * Skip populating all pages that fall into a discarded range as managed by
1754      * a RamDiscardManager responsible for the mapped memory region of the
1755      * RAMBlock. Such discarded ("logically unplugged") parts of a RAMBlock
1756      * must not get populated automatically. We don't have to track
1757      * modifications via userfaultfd WP reliably, because these pages will
1758      * not be part of the migration stream either way -- see
1759      * ramblock_dirty_bitmap_exclude_discarded_pages().
1760      *
1761      * Note: The result is only stable while migrating (precopy/postcopy).
1762      */
1763     if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) {
1764         RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr);
1765         MemoryRegionSection section = {
1766             .mr = rb->mr,
1767             .offset_within_region = 0,
1768             .size = rb->mr->size,
1769         };
1770 
1771         ram_discard_manager_replay_populated(rdm, &section,
1772                                              populate_read_section, NULL);
1773     } else {
1774         populate_read_range(rb, 0, rb->used_length);
1775     }
1776 }
1777 
1778 /*
1779  * ram_write_tracking_prepare: prepare for UFFD-WP memory tracking
1780  */
1781 void ram_write_tracking_prepare(void)
1782 {
1783     RAMBlock *block;
1784 
1785     RCU_READ_LOCK_GUARD();
1786 
1787     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1788         /* Nothing to do with read-only and MMIO-writable regions */
1789         if (block->mr->readonly || block->mr->rom_device) {
1790             continue;
1791         }
1792 
1793         /*
1794          * Populate pages of the RAM block before enabling userfault_fd
1795          * write protection.
1796          *
1797          * This stage is required since ioctl(UFFDIO_WRITEPROTECT) with
1798          * UFFDIO_WRITEPROTECT_MODE_WP mode setting would silently skip
1799          * pages with pte_none() entries in page table.
1800          */
1801         ram_block_populate_read(block);
1802     }
1803 }
1804 
1805 /*
1806  * ram_write_tracking_start: start UFFD-WP memory tracking
1807  *
1808  * Returns 0 for success or negative value in case of error
1809  */
1810 int ram_write_tracking_start(void)
1811 {
1812     int uffd_fd;
1813     RAMState *rs = ram_state;
1814     RAMBlock *block;
1815 
1816     /* Open UFFD file descriptor */
1817     uffd_fd = uffd_create_fd(UFFD_FEATURE_PAGEFAULT_FLAG_WP, true);
1818     if (uffd_fd < 0) {
1819         return uffd_fd;
1820     }
1821     rs->uffdio_fd = uffd_fd;
1822 
1823     RCU_READ_LOCK_GUARD();
1824 
1825     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1826         /* Nothing to do with read-only and MMIO-writable regions */
1827         if (block->mr->readonly || block->mr->rom_device) {
1828             continue;
1829         }
1830 
1831         /* Register block memory with UFFD to track writes */
1832         if (uffd_register_memory(rs->uffdio_fd, block->host,
1833                 block->max_length, UFFDIO_REGISTER_MODE_WP, NULL)) {
1834             goto fail;
1835         }
1836         /* Apply UFFD write protection to the block memory range */
1837         if (uffd_change_protection(rs->uffdio_fd, block->host,
1838                 block->max_length, true, false)) {
1839             goto fail;
1840         }
1841         block->flags |= RAM_UF_WRITEPROTECT;
1842         memory_region_ref(block->mr);
1843 
1844         trace_ram_write_tracking_ramblock_start(block->idstr, block->page_size,
1845                 block->host, block->max_length);
1846     }
1847 
1848     return 0;
1849 
1850 fail:
1851     error_report("ram_write_tracking_start() failed: restoring initial memory state");
1852 
1853     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1854         if ((block->flags & RAM_UF_WRITEPROTECT) == 0) {
1855             continue;
1856         }
1857         /*
1858          * In case some memory block failed to be write-protected
1859          * remove protection and unregister all succeeded RAM blocks
1860          */
1861         uffd_change_protection(rs->uffdio_fd, block->host, block->max_length,
1862                 false, false);
1863         uffd_unregister_memory(rs->uffdio_fd, block->host, block->max_length);
1864         /* Cleanup flags and remove reference */
1865         block->flags &= ~RAM_UF_WRITEPROTECT;
1866         memory_region_unref(block->mr);
1867     }
1868 
1869     uffd_close_fd(uffd_fd);
1870     rs->uffdio_fd = -1;
1871     return -1;
1872 }
1873 
1874 /**
1875  * ram_write_tracking_stop: stop UFFD-WP memory tracking and remove protection
1876  */
1877 void ram_write_tracking_stop(void)
1878 {
1879     RAMState *rs = ram_state;
1880     RAMBlock *block;
1881 
1882     RCU_READ_LOCK_GUARD();
1883 
1884     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1885         if ((block->flags & RAM_UF_WRITEPROTECT) == 0) {
1886             continue;
1887         }
1888         /* Remove protection and unregister all affected RAM blocks */
1889         uffd_change_protection(rs->uffdio_fd, block->host, block->max_length,
1890                 false, false);
1891         uffd_unregister_memory(rs->uffdio_fd, block->host, block->max_length);
1892 
1893         trace_ram_write_tracking_ramblock_stop(block->idstr, block->page_size,
1894                 block->host, block->max_length);
1895 
1896         /* Cleanup flags and remove reference */
1897         block->flags &= ~RAM_UF_WRITEPROTECT;
1898         memory_region_unref(block->mr);
1899     }
1900 
1901     /* Finally close UFFD file descriptor */
1902     uffd_close_fd(rs->uffdio_fd);
1903     rs->uffdio_fd = -1;
1904 }
1905 
1906 #else
1907 /* No target OS support, stubs just fail or ignore */
1908 
1909 static RAMBlock *poll_fault_page(RAMState *rs, ram_addr_t *offset)
1910 {
1911     (void) rs;
1912     (void) offset;
1913 
1914     return NULL;
1915 }
1916 
1917 static int ram_save_release_protection(RAMState *rs, PageSearchStatus *pss,
1918         unsigned long start_page)
1919 {
1920     (void) rs;
1921     (void) pss;
1922     (void) start_page;
1923 
1924     return 0;
1925 }
1926 
1927 bool ram_write_tracking_available(void)
1928 {
1929     return false;
1930 }
1931 
1932 bool ram_write_tracking_compatible(void)
1933 {
1934     assert(0);
1935     return false;
1936 }
1937 
1938 int ram_write_tracking_start(void)
1939 {
1940     assert(0);
1941     return -1;
1942 }
1943 
1944 void ram_write_tracking_stop(void)
1945 {
1946     assert(0);
1947 }
1948 #endif /* defined(__linux__) */
1949 
1950 /**
1951  * get_queued_page: unqueue a page from the postcopy requests
1952  *
1953  * Skips pages that are already sent (!dirty)
1954  *
1955  * Returns true if a queued page is found
1956  *
1957  * @rs: current RAM state
1958  * @pss: data about the state of the current dirty page scan
1959  */
1960 static bool get_queued_page(RAMState *rs, PageSearchStatus *pss)
1961 {
1962     RAMBlock  *block;
1963     ram_addr_t offset;
1964 
1965     block = unqueue_page(rs, &offset);
1966 
1967     if (!block) {
1968         /*
1969          * Poll write faults too if background snapshot is enabled; that's
1970          * when we have vcpus got blocked by the write protected pages.
1971          */
1972         block = poll_fault_page(rs, &offset);
1973     }
1974 
1975     if (block) {
1976         /*
1977          * We want the background search to continue from the queued page
1978          * since the guest is likely to want other pages near to the page
1979          * it just requested.
1980          */
1981         pss->block = block;
1982         pss->page = offset >> TARGET_PAGE_BITS;
1983 
1984         /*
1985          * This unqueued page would break the "one round" check, even is
1986          * really rare.
1987          */
1988         pss->complete_round = false;
1989         pss->postcopy_requested = true;
1990     }
1991 
1992     return !!block;
1993 }
1994 
1995 /**
1996  * migration_page_queue_free: drop any remaining pages in the ram
1997  * request queue
1998  *
1999  * It should be empty at the end anyway, but in error cases there may
2000  * be some left.  in case that there is any page left, we drop it.
2001  *
2002  */
2003 static void migration_page_queue_free(RAMState *rs)
2004 {
2005     struct RAMSrcPageRequest *mspr, *next_mspr;
2006     /* This queue generally should be empty - but in the case of a failed
2007      * migration might have some droppings in.
2008      */
2009     RCU_READ_LOCK_GUARD();
2010     QSIMPLEQ_FOREACH_SAFE(mspr, &rs->src_page_requests, next_req, next_mspr) {
2011         memory_region_unref(mspr->rb->mr);
2012         QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
2013         g_free(mspr);
2014     }
2015 }
2016 
2017 /**
2018  * ram_save_queue_pages: queue the page for transmission
2019  *
2020  * A request from postcopy destination for example.
2021  *
2022  * Returns zero on success or negative on error
2023  *
2024  * @rbname: Name of the RAMBLock of the request. NULL means the
2025  *          same that last one.
2026  * @start: starting address from the start of the RAMBlock
2027  * @len: length (in bytes) to send
2028  */
2029 int ram_save_queue_pages(const char *rbname, ram_addr_t start, ram_addr_t len)
2030 {
2031     RAMBlock *ramblock;
2032     RAMState *rs = ram_state;
2033 
2034     ram_counters.postcopy_requests++;
2035     RCU_READ_LOCK_GUARD();
2036 
2037     if (!rbname) {
2038         /* Reuse last RAMBlock */
2039         ramblock = rs->last_req_rb;
2040 
2041         if (!ramblock) {
2042             /*
2043              * Shouldn't happen, we can't reuse the last RAMBlock if
2044              * it's the 1st request.
2045              */
2046             error_report("ram_save_queue_pages no previous block");
2047             return -1;
2048         }
2049     } else {
2050         ramblock = qemu_ram_block_by_name(rbname);
2051 
2052         if (!ramblock) {
2053             /* We shouldn't be asked for a non-existent RAMBlock */
2054             error_report("ram_save_queue_pages no block '%s'", rbname);
2055             return -1;
2056         }
2057         rs->last_req_rb = ramblock;
2058     }
2059     trace_ram_save_queue_pages(ramblock->idstr, start, len);
2060     if (!offset_in_ramblock(ramblock, start + len - 1)) {
2061         error_report("%s request overrun start=" RAM_ADDR_FMT " len="
2062                      RAM_ADDR_FMT " blocklen=" RAM_ADDR_FMT,
2063                      __func__, start, len, ramblock->used_length);
2064         return -1;
2065     }
2066 
2067     struct RAMSrcPageRequest *new_entry =
2068         g_new0(struct RAMSrcPageRequest, 1);
2069     new_entry->rb = ramblock;
2070     new_entry->offset = start;
2071     new_entry->len = len;
2072 
2073     memory_region_ref(ramblock->mr);
2074     qemu_mutex_lock(&rs->src_page_req_mutex);
2075     QSIMPLEQ_INSERT_TAIL(&rs->src_page_requests, new_entry, next_req);
2076     migration_make_urgent_request();
2077     qemu_mutex_unlock(&rs->src_page_req_mutex);
2078 
2079     return 0;
2080 }
2081 
2082 static bool save_page_use_compression(RAMState *rs)
2083 {
2084     if (!migrate_use_compression()) {
2085         return false;
2086     }
2087 
2088     /*
2089      * If xbzrle is enabled (e.g., after first round of migration), stop
2090      * using the data compression. In theory, xbzrle can do better than
2091      * compression.
2092      */
2093     if (rs->xbzrle_enabled) {
2094         return false;
2095     }
2096 
2097     return true;
2098 }
2099 
2100 /*
2101  * try to compress the page before posting it out, return true if the page
2102  * has been properly handled by compression, otherwise needs other
2103  * paths to handle it
2104  */
2105 static bool save_compress_page(RAMState *rs, RAMBlock *block, ram_addr_t offset)
2106 {
2107     if (!save_page_use_compression(rs)) {
2108         return false;
2109     }
2110 
2111     /*
2112      * When starting the process of a new block, the first page of
2113      * the block should be sent out before other pages in the same
2114      * block, and all the pages in last block should have been sent
2115      * out, keeping this order is important, because the 'cont' flag
2116      * is used to avoid resending the block name.
2117      *
2118      * We post the fist page as normal page as compression will take
2119      * much CPU resource.
2120      */
2121     if (block != rs->last_sent_block) {
2122         flush_compressed_data(rs);
2123         return false;
2124     }
2125 
2126     if (compress_page_with_multi_thread(rs, block, offset) > 0) {
2127         return true;
2128     }
2129 
2130     compression_counters.busy++;
2131     return false;
2132 }
2133 
2134 /**
2135  * ram_save_target_page: save one target page
2136  *
2137  * Returns the number of pages written
2138  *
2139  * @rs: current RAM state
2140  * @pss: data about the page we want to send
2141  */
2142 static int ram_save_target_page(RAMState *rs, PageSearchStatus *pss)
2143 {
2144     RAMBlock *block = pss->block;
2145     ram_addr_t offset = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS;
2146     int res;
2147 
2148     if (control_save_page(rs, block, offset, &res)) {
2149         return res;
2150     }
2151 
2152     if (save_compress_page(rs, block, offset)) {
2153         return 1;
2154     }
2155 
2156     res = save_zero_page(rs, block, offset);
2157     if (res > 0) {
2158         /* Must let xbzrle know, otherwise a previous (now 0'd) cached
2159          * page would be stale
2160          */
2161         if (!save_page_use_compression(rs)) {
2162             XBZRLE_cache_lock();
2163             xbzrle_cache_zero_page(rs, block->offset + offset);
2164             XBZRLE_cache_unlock();
2165         }
2166         return res;
2167     }
2168 
2169     /*
2170      * Do not use multifd for:
2171      * 1. Compression as the first page in the new block should be posted out
2172      *    before sending the compressed page
2173      * 2. In postcopy as one whole host page should be placed
2174      */
2175     if (!save_page_use_compression(rs) && migrate_use_multifd()
2176         && !migration_in_postcopy()) {
2177         return ram_save_multifd_page(rs, block, offset);
2178     }
2179 
2180     return ram_save_page(rs, pss);
2181 }
2182 
2183 /**
2184  * ram_save_host_page: save a whole host page
2185  *
2186  * Starting at *offset send pages up to the end of the current host
2187  * page. It's valid for the initial offset to point into the middle of
2188  * a host page in which case the remainder of the hostpage is sent.
2189  * Only dirty target pages are sent. Note that the host page size may
2190  * be a huge page for this block.
2191  * The saving stops at the boundary of the used_length of the block
2192  * if the RAMBlock isn't a multiple of the host page size.
2193  *
2194  * Returns the number of pages written or negative on error
2195  *
2196  * @rs: current RAM state
2197  * @pss: data about the page we want to send
2198  */
2199 static int ram_save_host_page(RAMState *rs, PageSearchStatus *pss)
2200 {
2201     int tmppages, pages = 0;
2202     size_t pagesize_bits =
2203         qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS;
2204     unsigned long hostpage_boundary =
2205         QEMU_ALIGN_UP(pss->page + 1, pagesize_bits);
2206     unsigned long start_page = pss->page;
2207     int res;
2208 
2209     if (ramblock_is_ignored(pss->block)) {
2210         error_report("block %s should not be migrated !", pss->block->idstr);
2211         return 0;
2212     }
2213 
2214     do {
2215         /* Check the pages is dirty and if it is send it */
2216         if (migration_bitmap_clear_dirty(rs, pss->block, pss->page)) {
2217             tmppages = ram_save_target_page(rs, pss);
2218             if (tmppages < 0) {
2219                 return tmppages;
2220             }
2221 
2222             pages += tmppages;
2223             /*
2224              * Allow rate limiting to happen in the middle of huge pages if
2225              * something is sent in the current iteration.
2226              */
2227             if (pagesize_bits > 1 && tmppages > 0) {
2228                 migration_rate_limit();
2229             }
2230         }
2231         pss->page = migration_bitmap_find_dirty(rs, pss->block, pss->page);
2232     } while ((pss->page < hostpage_boundary) &&
2233              offset_in_ramblock(pss->block,
2234                                 ((ram_addr_t)pss->page) << TARGET_PAGE_BITS));
2235     /* The offset we leave with is the min boundary of host page and block */
2236     pss->page = MIN(pss->page, hostpage_boundary);
2237 
2238     res = ram_save_release_protection(rs, pss, start_page);
2239     return (res < 0 ? res : pages);
2240 }
2241 
2242 /**
2243  * ram_find_and_save_block: finds a dirty page and sends it to f
2244  *
2245  * Called within an RCU critical section.
2246  *
2247  * Returns the number of pages written where zero means no dirty pages,
2248  * or negative on error
2249  *
2250  * @rs: current RAM state
2251  *
2252  * On systems where host-page-size > target-page-size it will send all the
2253  * pages in a host page that are dirty.
2254  */
2255 static int ram_find_and_save_block(RAMState *rs)
2256 {
2257     PageSearchStatus pss;
2258     int pages = 0;
2259     bool again, found;
2260 
2261     /* No dirty page as there is zero RAM */
2262     if (!ram_bytes_total()) {
2263         return pages;
2264     }
2265 
2266     pss.block = rs->last_seen_block;
2267     pss.page = rs->last_page;
2268     pss.complete_round = false;
2269 
2270     if (!pss.block) {
2271         pss.block = QLIST_FIRST_RCU(&ram_list.blocks);
2272     }
2273 
2274     do {
2275         again = true;
2276         found = get_queued_page(rs, &pss);
2277 
2278         if (!found) {
2279             /* priority queue empty, so just search for something dirty */
2280             found = find_dirty_block(rs, &pss, &again);
2281         }
2282 
2283         if (found) {
2284             pages = ram_save_host_page(rs, &pss);
2285         }
2286     } while (!pages && again);
2287 
2288     rs->last_seen_block = pss.block;
2289     rs->last_page = pss.page;
2290 
2291     return pages;
2292 }
2293 
2294 void acct_update_position(QEMUFile *f, size_t size, bool zero)
2295 {
2296     uint64_t pages = size / TARGET_PAGE_SIZE;
2297 
2298     if (zero) {
2299         ram_counters.duplicate += pages;
2300     } else {
2301         ram_counters.normal += pages;
2302         ram_transferred_add(size);
2303         qemu_update_position(f, size);
2304     }
2305 }
2306 
2307 static uint64_t ram_bytes_total_common(bool count_ignored)
2308 {
2309     RAMBlock *block;
2310     uint64_t total = 0;
2311 
2312     RCU_READ_LOCK_GUARD();
2313 
2314     if (count_ignored) {
2315         RAMBLOCK_FOREACH_MIGRATABLE(block) {
2316             total += block->used_length;
2317         }
2318     } else {
2319         RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2320             total += block->used_length;
2321         }
2322     }
2323     return total;
2324 }
2325 
2326 uint64_t ram_bytes_total(void)
2327 {
2328     return ram_bytes_total_common(false);
2329 }
2330 
2331 static void xbzrle_load_setup(void)
2332 {
2333     XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE);
2334 }
2335 
2336 static void xbzrle_load_cleanup(void)
2337 {
2338     g_free(XBZRLE.decoded_buf);
2339     XBZRLE.decoded_buf = NULL;
2340 }
2341 
2342 static void ram_state_cleanup(RAMState **rsp)
2343 {
2344     if (*rsp) {
2345         migration_page_queue_free(*rsp);
2346         qemu_mutex_destroy(&(*rsp)->bitmap_mutex);
2347         qemu_mutex_destroy(&(*rsp)->src_page_req_mutex);
2348         g_free(*rsp);
2349         *rsp = NULL;
2350     }
2351 }
2352 
2353 static void xbzrle_cleanup(void)
2354 {
2355     XBZRLE_cache_lock();
2356     if (XBZRLE.cache) {
2357         cache_fini(XBZRLE.cache);
2358         g_free(XBZRLE.encoded_buf);
2359         g_free(XBZRLE.current_buf);
2360         g_free(XBZRLE.zero_target_page);
2361         XBZRLE.cache = NULL;
2362         XBZRLE.encoded_buf = NULL;
2363         XBZRLE.current_buf = NULL;
2364         XBZRLE.zero_target_page = NULL;
2365     }
2366     XBZRLE_cache_unlock();
2367 }
2368 
2369 static void ram_save_cleanup(void *opaque)
2370 {
2371     RAMState **rsp = opaque;
2372     RAMBlock *block;
2373 
2374     /* We don't use dirty log with background snapshots */
2375     if (!migrate_background_snapshot()) {
2376         /* caller have hold iothread lock or is in a bh, so there is
2377          * no writing race against the migration bitmap
2378          */
2379         if (global_dirty_tracking & GLOBAL_DIRTY_MIGRATION) {
2380             /*
2381              * do not stop dirty log without starting it, since
2382              * memory_global_dirty_log_stop will assert that
2383              * memory_global_dirty_log_start/stop used in pairs
2384              */
2385             memory_global_dirty_log_stop(GLOBAL_DIRTY_MIGRATION);
2386         }
2387     }
2388 
2389     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2390         g_free(block->clear_bmap);
2391         block->clear_bmap = NULL;
2392         g_free(block->bmap);
2393         block->bmap = NULL;
2394     }
2395 
2396     xbzrle_cleanup();
2397     compress_threads_save_cleanup();
2398     ram_state_cleanup(rsp);
2399 }
2400 
2401 static void ram_state_reset(RAMState *rs)
2402 {
2403     rs->last_seen_block = NULL;
2404     rs->last_sent_block = NULL;
2405     rs->last_page = 0;
2406     rs->last_version = ram_list.version;
2407     rs->xbzrle_enabled = false;
2408 }
2409 
2410 #define MAX_WAIT 50 /* ms, half buffered_file limit */
2411 
2412 /* **** functions for postcopy ***** */
2413 
2414 void ram_postcopy_migrated_memory_release(MigrationState *ms)
2415 {
2416     struct RAMBlock *block;
2417 
2418     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2419         unsigned long *bitmap = block->bmap;
2420         unsigned long range = block->used_length >> TARGET_PAGE_BITS;
2421         unsigned long run_start = find_next_zero_bit(bitmap, range, 0);
2422 
2423         while (run_start < range) {
2424             unsigned long run_end = find_next_bit(bitmap, range, run_start + 1);
2425             ram_discard_range(block->idstr,
2426                               ((ram_addr_t)run_start) << TARGET_PAGE_BITS,
2427                               ((ram_addr_t)(run_end - run_start))
2428                                 << TARGET_PAGE_BITS);
2429             run_start = find_next_zero_bit(bitmap, range, run_end + 1);
2430         }
2431     }
2432 }
2433 
2434 /**
2435  * postcopy_send_discard_bm_ram: discard a RAMBlock
2436  *
2437  * Callback from postcopy_each_ram_send_discard for each RAMBlock
2438  *
2439  * @ms: current migration state
2440  * @block: RAMBlock to discard
2441  */
2442 static void postcopy_send_discard_bm_ram(MigrationState *ms, RAMBlock *block)
2443 {
2444     unsigned long end = block->used_length >> TARGET_PAGE_BITS;
2445     unsigned long current;
2446     unsigned long *bitmap = block->bmap;
2447 
2448     for (current = 0; current < end; ) {
2449         unsigned long one = find_next_bit(bitmap, end, current);
2450         unsigned long zero, discard_length;
2451 
2452         if (one >= end) {
2453             break;
2454         }
2455 
2456         zero = find_next_zero_bit(bitmap, end, one + 1);
2457 
2458         if (zero >= end) {
2459             discard_length = end - one;
2460         } else {
2461             discard_length = zero - one;
2462         }
2463         postcopy_discard_send_range(ms, one, discard_length);
2464         current = one + discard_length;
2465     }
2466 }
2467 
2468 static void postcopy_chunk_hostpages_pass(MigrationState *ms, RAMBlock *block);
2469 
2470 /**
2471  * postcopy_each_ram_send_discard: discard all RAMBlocks
2472  *
2473  * Utility for the outgoing postcopy code.
2474  *   Calls postcopy_send_discard_bm_ram for each RAMBlock
2475  *   passing it bitmap indexes and name.
2476  * (qemu_ram_foreach_block ends up passing unscaled lengths
2477  *  which would mean postcopy code would have to deal with target page)
2478  *
2479  * @ms: current migration state
2480  */
2481 static void postcopy_each_ram_send_discard(MigrationState *ms)
2482 {
2483     struct RAMBlock *block;
2484 
2485     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2486         postcopy_discard_send_init(ms, block->idstr);
2487 
2488         /*
2489          * Deal with TPS != HPS and huge pages.  It discard any partially sent
2490          * host-page size chunks, mark any partially dirty host-page size
2491          * chunks as all dirty.  In this case the host-page is the host-page
2492          * for the particular RAMBlock, i.e. it might be a huge page.
2493          */
2494         postcopy_chunk_hostpages_pass(ms, block);
2495 
2496         /*
2497          * Postcopy sends chunks of bitmap over the wire, but it
2498          * just needs indexes at this point, avoids it having
2499          * target page specific code.
2500          */
2501         postcopy_send_discard_bm_ram(ms, block);
2502         postcopy_discard_send_finish(ms);
2503     }
2504 }
2505 
2506 /**
2507  * postcopy_chunk_hostpages_pass: canonicalize bitmap in hostpages
2508  *
2509  * Helper for postcopy_chunk_hostpages; it's called twice to
2510  * canonicalize the two bitmaps, that are similar, but one is
2511  * inverted.
2512  *
2513  * Postcopy requires that all target pages in a hostpage are dirty or
2514  * clean, not a mix.  This function canonicalizes the bitmaps.
2515  *
2516  * @ms: current migration state
2517  * @block: block that contains the page we want to canonicalize
2518  */
2519 static void postcopy_chunk_hostpages_pass(MigrationState *ms, RAMBlock *block)
2520 {
2521     RAMState *rs = ram_state;
2522     unsigned long *bitmap = block->bmap;
2523     unsigned int host_ratio = block->page_size / TARGET_PAGE_SIZE;
2524     unsigned long pages = block->used_length >> TARGET_PAGE_BITS;
2525     unsigned long run_start;
2526 
2527     if (block->page_size == TARGET_PAGE_SIZE) {
2528         /* Easy case - TPS==HPS for a non-huge page RAMBlock */
2529         return;
2530     }
2531 
2532     /* Find a dirty page */
2533     run_start = find_next_bit(bitmap, pages, 0);
2534 
2535     while (run_start < pages) {
2536 
2537         /*
2538          * If the start of this run of pages is in the middle of a host
2539          * page, then we need to fixup this host page.
2540          */
2541         if (QEMU_IS_ALIGNED(run_start, host_ratio)) {
2542             /* Find the end of this run */
2543             run_start = find_next_zero_bit(bitmap, pages, run_start + 1);
2544             /*
2545              * If the end isn't at the start of a host page, then the
2546              * run doesn't finish at the end of a host page
2547              * and we need to discard.
2548              */
2549         }
2550 
2551         if (!QEMU_IS_ALIGNED(run_start, host_ratio)) {
2552             unsigned long page;
2553             unsigned long fixup_start_addr = QEMU_ALIGN_DOWN(run_start,
2554                                                              host_ratio);
2555             run_start = QEMU_ALIGN_UP(run_start, host_ratio);
2556 
2557             /* Clean up the bitmap */
2558             for (page = fixup_start_addr;
2559                  page < fixup_start_addr + host_ratio; page++) {
2560                 /*
2561                  * Remark them as dirty, updating the count for any pages
2562                  * that weren't previously dirty.
2563                  */
2564                 rs->migration_dirty_pages += !test_and_set_bit(page, bitmap);
2565             }
2566         }
2567 
2568         /* Find the next dirty page for the next iteration */
2569         run_start = find_next_bit(bitmap, pages, run_start);
2570     }
2571 }
2572 
2573 /**
2574  * ram_postcopy_send_discard_bitmap: transmit the discard bitmap
2575  *
2576  * Transmit the set of pages to be discarded after precopy to the target
2577  * these are pages that:
2578  *     a) Have been previously transmitted but are now dirty again
2579  *     b) Pages that have never been transmitted, this ensures that
2580  *        any pages on the destination that have been mapped by background
2581  *        tasks get discarded (transparent huge pages is the specific concern)
2582  * Hopefully this is pretty sparse
2583  *
2584  * @ms: current migration state
2585  */
2586 void ram_postcopy_send_discard_bitmap(MigrationState *ms)
2587 {
2588     RAMState *rs = ram_state;
2589 
2590     RCU_READ_LOCK_GUARD();
2591 
2592     /* This should be our last sync, the src is now paused */
2593     migration_bitmap_sync(rs);
2594 
2595     /* Easiest way to make sure we don't resume in the middle of a host-page */
2596     rs->last_seen_block = NULL;
2597     rs->last_sent_block = NULL;
2598     rs->last_page = 0;
2599 
2600     postcopy_each_ram_send_discard(ms);
2601 
2602     trace_ram_postcopy_send_discard_bitmap();
2603 }
2604 
2605 /**
2606  * ram_discard_range: discard dirtied pages at the beginning of postcopy
2607  *
2608  * Returns zero on success
2609  *
2610  * @rbname: name of the RAMBlock of the request. NULL means the
2611  *          same that last one.
2612  * @start: RAMBlock starting page
2613  * @length: RAMBlock size
2614  */
2615 int ram_discard_range(const char *rbname, uint64_t start, size_t length)
2616 {
2617     trace_ram_discard_range(rbname, start, length);
2618 
2619     RCU_READ_LOCK_GUARD();
2620     RAMBlock *rb = qemu_ram_block_by_name(rbname);
2621 
2622     if (!rb) {
2623         error_report("ram_discard_range: Failed to find block '%s'", rbname);
2624         return -1;
2625     }
2626 
2627     /*
2628      * On source VM, we don't need to update the received bitmap since
2629      * we don't even have one.
2630      */
2631     if (rb->receivedmap) {
2632         bitmap_clear(rb->receivedmap, start >> qemu_target_page_bits(),
2633                      length >> qemu_target_page_bits());
2634     }
2635 
2636     return ram_block_discard_range(rb, start, length);
2637 }
2638 
2639 /*
2640  * For every allocation, we will try not to crash the VM if the
2641  * allocation failed.
2642  */
2643 static int xbzrle_init(void)
2644 {
2645     Error *local_err = NULL;
2646 
2647     if (!migrate_use_xbzrle()) {
2648         return 0;
2649     }
2650 
2651     XBZRLE_cache_lock();
2652 
2653     XBZRLE.zero_target_page = g_try_malloc0(TARGET_PAGE_SIZE);
2654     if (!XBZRLE.zero_target_page) {
2655         error_report("%s: Error allocating zero page", __func__);
2656         goto err_out;
2657     }
2658 
2659     XBZRLE.cache = cache_init(migrate_xbzrle_cache_size(),
2660                               TARGET_PAGE_SIZE, &local_err);
2661     if (!XBZRLE.cache) {
2662         error_report_err(local_err);
2663         goto free_zero_page;
2664     }
2665 
2666     XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE);
2667     if (!XBZRLE.encoded_buf) {
2668         error_report("%s: Error allocating encoded_buf", __func__);
2669         goto free_cache;
2670     }
2671 
2672     XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE);
2673     if (!XBZRLE.current_buf) {
2674         error_report("%s: Error allocating current_buf", __func__);
2675         goto free_encoded_buf;
2676     }
2677 
2678     /* We are all good */
2679     XBZRLE_cache_unlock();
2680     return 0;
2681 
2682 free_encoded_buf:
2683     g_free(XBZRLE.encoded_buf);
2684     XBZRLE.encoded_buf = NULL;
2685 free_cache:
2686     cache_fini(XBZRLE.cache);
2687     XBZRLE.cache = NULL;
2688 free_zero_page:
2689     g_free(XBZRLE.zero_target_page);
2690     XBZRLE.zero_target_page = NULL;
2691 err_out:
2692     XBZRLE_cache_unlock();
2693     return -ENOMEM;
2694 }
2695 
2696 static int ram_state_init(RAMState **rsp)
2697 {
2698     *rsp = g_try_new0(RAMState, 1);
2699 
2700     if (!*rsp) {
2701         error_report("%s: Init ramstate fail", __func__);
2702         return -1;
2703     }
2704 
2705     qemu_mutex_init(&(*rsp)->bitmap_mutex);
2706     qemu_mutex_init(&(*rsp)->src_page_req_mutex);
2707     QSIMPLEQ_INIT(&(*rsp)->src_page_requests);
2708 
2709     /*
2710      * Count the total number of pages used by ram blocks not including any
2711      * gaps due to alignment or unplugs.
2712      * This must match with the initial values of dirty bitmap.
2713      */
2714     (*rsp)->migration_dirty_pages = ram_bytes_total() >> TARGET_PAGE_BITS;
2715     ram_state_reset(*rsp);
2716 
2717     return 0;
2718 }
2719 
2720 static void ram_list_init_bitmaps(void)
2721 {
2722     MigrationState *ms = migrate_get_current();
2723     RAMBlock *block;
2724     unsigned long pages;
2725     uint8_t shift;
2726 
2727     /* Skip setting bitmap if there is no RAM */
2728     if (ram_bytes_total()) {
2729         shift = ms->clear_bitmap_shift;
2730         if (shift > CLEAR_BITMAP_SHIFT_MAX) {
2731             error_report("clear_bitmap_shift (%u) too big, using "
2732                          "max value (%u)", shift, CLEAR_BITMAP_SHIFT_MAX);
2733             shift = CLEAR_BITMAP_SHIFT_MAX;
2734         } else if (shift < CLEAR_BITMAP_SHIFT_MIN) {
2735             error_report("clear_bitmap_shift (%u) too small, using "
2736                          "min value (%u)", shift, CLEAR_BITMAP_SHIFT_MIN);
2737             shift = CLEAR_BITMAP_SHIFT_MIN;
2738         }
2739 
2740         RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2741             pages = block->max_length >> TARGET_PAGE_BITS;
2742             /*
2743              * The initial dirty bitmap for migration must be set with all
2744              * ones to make sure we'll migrate every guest RAM page to
2745              * destination.
2746              * Here we set RAMBlock.bmap all to 1 because when rebegin a
2747              * new migration after a failed migration, ram_list.
2748              * dirty_memory[DIRTY_MEMORY_MIGRATION] don't include the whole
2749              * guest memory.
2750              */
2751             block->bmap = bitmap_new(pages);
2752             bitmap_set(block->bmap, 0, pages);
2753             block->clear_bmap_shift = shift;
2754             block->clear_bmap = bitmap_new(clear_bmap_size(pages, shift));
2755         }
2756     }
2757 }
2758 
2759 static void migration_bitmap_clear_discarded_pages(RAMState *rs)
2760 {
2761     unsigned long pages;
2762     RAMBlock *rb;
2763 
2764     RCU_READ_LOCK_GUARD();
2765 
2766     RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
2767             pages = ramblock_dirty_bitmap_clear_discarded_pages(rb);
2768             rs->migration_dirty_pages -= pages;
2769     }
2770 }
2771 
2772 static void ram_init_bitmaps(RAMState *rs)
2773 {
2774     /* For memory_global_dirty_log_start below.  */
2775     qemu_mutex_lock_iothread();
2776     qemu_mutex_lock_ramlist();
2777 
2778     WITH_RCU_READ_LOCK_GUARD() {
2779         ram_list_init_bitmaps();
2780         /* We don't use dirty log with background snapshots */
2781         if (!migrate_background_snapshot()) {
2782             memory_global_dirty_log_start(GLOBAL_DIRTY_MIGRATION);
2783             migration_bitmap_sync_precopy(rs);
2784         }
2785     }
2786     qemu_mutex_unlock_ramlist();
2787     qemu_mutex_unlock_iothread();
2788 
2789     /*
2790      * After an eventual first bitmap sync, fixup the initial bitmap
2791      * containing all 1s to exclude any discarded pages from migration.
2792      */
2793     migration_bitmap_clear_discarded_pages(rs);
2794 }
2795 
2796 static int ram_init_all(RAMState **rsp)
2797 {
2798     if (ram_state_init(rsp)) {
2799         return -1;
2800     }
2801 
2802     if (xbzrle_init()) {
2803         ram_state_cleanup(rsp);
2804         return -1;
2805     }
2806 
2807     ram_init_bitmaps(*rsp);
2808 
2809     return 0;
2810 }
2811 
2812 static void ram_state_resume_prepare(RAMState *rs, QEMUFile *out)
2813 {
2814     RAMBlock *block;
2815     uint64_t pages = 0;
2816 
2817     /*
2818      * Postcopy is not using xbzrle/compression, so no need for that.
2819      * Also, since source are already halted, we don't need to care
2820      * about dirty page logging as well.
2821      */
2822 
2823     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2824         pages += bitmap_count_one(block->bmap,
2825                                   block->used_length >> TARGET_PAGE_BITS);
2826     }
2827 
2828     /* This may not be aligned with current bitmaps. Recalculate. */
2829     rs->migration_dirty_pages = pages;
2830 
2831     ram_state_reset(rs);
2832 
2833     /* Update RAMState cache of output QEMUFile */
2834     rs->f = out;
2835 
2836     trace_ram_state_resume_prepare(pages);
2837 }
2838 
2839 /*
2840  * This function clears bits of the free pages reported by the caller from the
2841  * migration dirty bitmap. @addr is the host address corresponding to the
2842  * start of the continuous guest free pages, and @len is the total bytes of
2843  * those pages.
2844  */
2845 void qemu_guest_free_page_hint(void *addr, size_t len)
2846 {
2847     RAMBlock *block;
2848     ram_addr_t offset;
2849     size_t used_len, start, npages;
2850     MigrationState *s = migrate_get_current();
2851 
2852     /* This function is currently expected to be used during live migration */
2853     if (!migration_is_setup_or_active(s->state)) {
2854         return;
2855     }
2856 
2857     for (; len > 0; len -= used_len, addr += used_len) {
2858         block = qemu_ram_block_from_host(addr, false, &offset);
2859         if (unlikely(!block || offset >= block->used_length)) {
2860             /*
2861              * The implementation might not support RAMBlock resize during
2862              * live migration, but it could happen in theory with future
2863              * updates. So we add a check here to capture that case.
2864              */
2865             error_report_once("%s unexpected error", __func__);
2866             return;
2867         }
2868 
2869         if (len <= block->used_length - offset) {
2870             used_len = len;
2871         } else {
2872             used_len = block->used_length - offset;
2873         }
2874 
2875         start = offset >> TARGET_PAGE_BITS;
2876         npages = used_len >> TARGET_PAGE_BITS;
2877 
2878         qemu_mutex_lock(&ram_state->bitmap_mutex);
2879         /*
2880          * The skipped free pages are equavalent to be sent from clear_bmap's
2881          * perspective, so clear the bits from the memory region bitmap which
2882          * are initially set. Otherwise those skipped pages will be sent in
2883          * the next round after syncing from the memory region bitmap.
2884          */
2885         migration_clear_memory_region_dirty_bitmap_range(block, start, npages);
2886         ram_state->migration_dirty_pages -=
2887                       bitmap_count_one_with_offset(block->bmap, start, npages);
2888         bitmap_clear(block->bmap, start, npages);
2889         qemu_mutex_unlock(&ram_state->bitmap_mutex);
2890     }
2891 }
2892 
2893 /*
2894  * Each of ram_save_setup, ram_save_iterate and ram_save_complete has
2895  * long-running RCU critical section.  When rcu-reclaims in the code
2896  * start to become numerous it will be necessary to reduce the
2897  * granularity of these critical sections.
2898  */
2899 
2900 /**
2901  * ram_save_setup: Setup RAM for migration
2902  *
2903  * Returns zero to indicate success and negative for error
2904  *
2905  * @f: QEMUFile where to send the data
2906  * @opaque: RAMState pointer
2907  */
2908 static int ram_save_setup(QEMUFile *f, void *opaque)
2909 {
2910     RAMState **rsp = opaque;
2911     RAMBlock *block;
2912 
2913     if (compress_threads_save_setup()) {
2914         return -1;
2915     }
2916 
2917     /* migration has already setup the bitmap, reuse it. */
2918     if (!migration_in_colo_state()) {
2919         if (ram_init_all(rsp) != 0) {
2920             compress_threads_save_cleanup();
2921             return -1;
2922         }
2923     }
2924     (*rsp)->f = f;
2925 
2926     WITH_RCU_READ_LOCK_GUARD() {
2927         qemu_put_be64(f, ram_bytes_total_common(true) | RAM_SAVE_FLAG_MEM_SIZE);
2928 
2929         RAMBLOCK_FOREACH_MIGRATABLE(block) {
2930             qemu_put_byte(f, strlen(block->idstr));
2931             qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
2932             qemu_put_be64(f, block->used_length);
2933             if (migrate_postcopy_ram() && block->page_size !=
2934                                           qemu_host_page_size) {
2935                 qemu_put_be64(f, block->page_size);
2936             }
2937             if (migrate_ignore_shared()) {
2938                 qemu_put_be64(f, block->mr->addr);
2939             }
2940         }
2941     }
2942 
2943     ram_control_before_iterate(f, RAM_CONTROL_SETUP);
2944     ram_control_after_iterate(f, RAM_CONTROL_SETUP);
2945 
2946     multifd_send_sync_main(f);
2947     qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
2948     qemu_fflush(f);
2949 
2950     return 0;
2951 }
2952 
2953 /**
2954  * ram_save_iterate: iterative stage for migration
2955  *
2956  * Returns zero to indicate success and negative for error
2957  *
2958  * @f: QEMUFile where to send the data
2959  * @opaque: RAMState pointer
2960  */
2961 static int ram_save_iterate(QEMUFile *f, void *opaque)
2962 {
2963     RAMState **temp = opaque;
2964     RAMState *rs = *temp;
2965     int ret = 0;
2966     int i;
2967     int64_t t0;
2968     int done = 0;
2969 
2970     if (blk_mig_bulk_active()) {
2971         /* Avoid transferring ram during bulk phase of block migration as
2972          * the bulk phase will usually take a long time and transferring
2973          * ram updates during that time is pointless. */
2974         goto out;
2975     }
2976 
2977     /*
2978      * We'll take this lock a little bit long, but it's okay for two reasons.
2979      * Firstly, the only possible other thread to take it is who calls
2980      * qemu_guest_free_page_hint(), which should be rare; secondly, see
2981      * MAX_WAIT (if curious, further see commit 4508bd9ed8053ce) below, which
2982      * guarantees that we'll at least released it in a regular basis.
2983      */
2984     qemu_mutex_lock(&rs->bitmap_mutex);
2985     WITH_RCU_READ_LOCK_GUARD() {
2986         if (ram_list.version != rs->last_version) {
2987             ram_state_reset(rs);
2988         }
2989 
2990         /* Read version before ram_list.blocks */
2991         smp_rmb();
2992 
2993         ram_control_before_iterate(f, RAM_CONTROL_ROUND);
2994 
2995         t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2996         i = 0;
2997         while ((ret = qemu_file_rate_limit(f)) == 0 ||
2998                postcopy_has_request(rs)) {
2999             int pages;
3000 
3001             if (qemu_file_get_error(f)) {
3002                 break;
3003             }
3004 
3005             pages = ram_find_and_save_block(rs);
3006             /* no more pages to sent */
3007             if (pages == 0) {
3008                 done = 1;
3009                 break;
3010             }
3011 
3012             if (pages < 0) {
3013                 qemu_file_set_error(f, pages);
3014                 break;
3015             }
3016 
3017             rs->target_page_count += pages;
3018 
3019             /*
3020              * During postcopy, it is necessary to make sure one whole host
3021              * page is sent in one chunk.
3022              */
3023             if (migrate_postcopy_ram()) {
3024                 flush_compressed_data(rs);
3025             }
3026 
3027             /*
3028              * we want to check in the 1st loop, just in case it was the 1st
3029              * time and we had to sync the dirty bitmap.
3030              * qemu_clock_get_ns() is a bit expensive, so we only check each
3031              * some iterations
3032              */
3033             if ((i & 63) == 0) {
3034                 uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) /
3035                               1000000;
3036                 if (t1 > MAX_WAIT) {
3037                     trace_ram_save_iterate_big_wait(t1, i);
3038                     break;
3039                 }
3040             }
3041             i++;
3042         }
3043     }
3044     qemu_mutex_unlock(&rs->bitmap_mutex);
3045 
3046     /*
3047      * Must occur before EOS (or any QEMUFile operation)
3048      * because of RDMA protocol.
3049      */
3050     ram_control_after_iterate(f, RAM_CONTROL_ROUND);
3051 
3052 out:
3053     if (ret >= 0
3054         && migration_is_setup_or_active(migrate_get_current()->state)) {
3055         multifd_send_sync_main(rs->f);
3056         qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3057         qemu_fflush(f);
3058         ram_transferred_add(8);
3059 
3060         ret = qemu_file_get_error(f);
3061     }
3062     if (ret < 0) {
3063         return ret;
3064     }
3065 
3066     return done;
3067 }
3068 
3069 /**
3070  * ram_save_complete: function called to send the remaining amount of ram
3071  *
3072  * Returns zero to indicate success or negative on error
3073  *
3074  * Called with iothread lock
3075  *
3076  * @f: QEMUFile where to send the data
3077  * @opaque: RAMState pointer
3078  */
3079 static int ram_save_complete(QEMUFile *f, void *opaque)
3080 {
3081     RAMState **temp = opaque;
3082     RAMState *rs = *temp;
3083     int ret = 0;
3084 
3085     rs->last_stage = !migration_in_colo_state();
3086 
3087     WITH_RCU_READ_LOCK_GUARD() {
3088         if (!migration_in_postcopy()) {
3089             migration_bitmap_sync_precopy(rs);
3090         }
3091 
3092         ram_control_before_iterate(f, RAM_CONTROL_FINISH);
3093 
3094         /* try transferring iterative blocks of memory */
3095 
3096         /* flush all remaining blocks regardless of rate limiting */
3097         while (true) {
3098             int pages;
3099 
3100             pages = ram_find_and_save_block(rs);
3101             /* no more blocks to sent */
3102             if (pages == 0) {
3103                 break;
3104             }
3105             if (pages < 0) {
3106                 ret = pages;
3107                 break;
3108             }
3109         }
3110 
3111         flush_compressed_data(rs);
3112         ram_control_after_iterate(f, RAM_CONTROL_FINISH);
3113     }
3114 
3115     if (ret >= 0) {
3116         multifd_send_sync_main(rs->f);
3117         qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3118         qemu_fflush(f);
3119     }
3120 
3121     return ret;
3122 }
3123 
3124 static void ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size,
3125                              uint64_t *res_precopy_only,
3126                              uint64_t *res_compatible,
3127                              uint64_t *res_postcopy_only)
3128 {
3129     RAMState **temp = opaque;
3130     RAMState *rs = *temp;
3131     uint64_t remaining_size;
3132 
3133     remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
3134 
3135     if (!migration_in_postcopy() &&
3136         remaining_size < max_size) {
3137         qemu_mutex_lock_iothread();
3138         WITH_RCU_READ_LOCK_GUARD() {
3139             migration_bitmap_sync_precopy(rs);
3140         }
3141         qemu_mutex_unlock_iothread();
3142         remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
3143     }
3144 
3145     if (migrate_postcopy_ram()) {
3146         /* We can do postcopy, and all the data is postcopiable */
3147         *res_compatible += remaining_size;
3148     } else {
3149         *res_precopy_only += remaining_size;
3150     }
3151 }
3152 
3153 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
3154 {
3155     unsigned int xh_len;
3156     int xh_flags;
3157     uint8_t *loaded_data;
3158 
3159     /* extract RLE header */
3160     xh_flags = qemu_get_byte(f);
3161     xh_len = qemu_get_be16(f);
3162 
3163     if (xh_flags != ENCODING_FLAG_XBZRLE) {
3164         error_report("Failed to load XBZRLE page - wrong compression!");
3165         return -1;
3166     }
3167 
3168     if (xh_len > TARGET_PAGE_SIZE) {
3169         error_report("Failed to load XBZRLE page - len overflow!");
3170         return -1;
3171     }
3172     loaded_data = XBZRLE.decoded_buf;
3173     /* load data and decode */
3174     /* it can change loaded_data to point to an internal buffer */
3175     qemu_get_buffer_in_place(f, &loaded_data, xh_len);
3176 
3177     /* decode RLE */
3178     if (xbzrle_decode_buffer(loaded_data, xh_len, host,
3179                              TARGET_PAGE_SIZE) == -1) {
3180         error_report("Failed to load XBZRLE page - decode error!");
3181         return -1;
3182     }
3183 
3184     return 0;
3185 }
3186 
3187 /**
3188  * ram_block_from_stream: read a RAMBlock id from the migration stream
3189  *
3190  * Must be called from within a rcu critical section.
3191  *
3192  * Returns a pointer from within the RCU-protected ram_list.
3193  *
3194  * @mis: the migration incoming state pointer
3195  * @f: QEMUFile where to read the data from
3196  * @flags: Page flags (mostly to see if it's a continuation of previous block)
3197  */
3198 static inline RAMBlock *ram_block_from_stream(MigrationIncomingState *mis,
3199                                               QEMUFile *f, int flags)
3200 {
3201     RAMBlock *block = mis->last_recv_block;
3202     char id[256];
3203     uint8_t len;
3204 
3205     if (flags & RAM_SAVE_FLAG_CONTINUE) {
3206         if (!block) {
3207             error_report("Ack, bad migration stream!");
3208             return NULL;
3209         }
3210         return block;
3211     }
3212 
3213     len = qemu_get_byte(f);
3214     qemu_get_buffer(f, (uint8_t *)id, len);
3215     id[len] = 0;
3216 
3217     block = qemu_ram_block_by_name(id);
3218     if (!block) {
3219         error_report("Can't find block %s", id);
3220         return NULL;
3221     }
3222 
3223     if (ramblock_is_ignored(block)) {
3224         error_report("block %s should not be migrated !", id);
3225         return NULL;
3226     }
3227 
3228     mis->last_recv_block = block;
3229 
3230     return block;
3231 }
3232 
3233 static inline void *host_from_ram_block_offset(RAMBlock *block,
3234                                                ram_addr_t offset)
3235 {
3236     if (!offset_in_ramblock(block, offset)) {
3237         return NULL;
3238     }
3239 
3240     return block->host + offset;
3241 }
3242 
3243 static void *host_page_from_ram_block_offset(RAMBlock *block,
3244                                              ram_addr_t offset)
3245 {
3246     /* Note: Explicitly no check against offset_in_ramblock(). */
3247     return (void *)QEMU_ALIGN_DOWN((uintptr_t)(block->host + offset),
3248                                    block->page_size);
3249 }
3250 
3251 static ram_addr_t host_page_offset_from_ram_block_offset(RAMBlock *block,
3252                                                          ram_addr_t offset)
3253 {
3254     return ((uintptr_t)block->host + offset) & (block->page_size - 1);
3255 }
3256 
3257 static inline void *colo_cache_from_block_offset(RAMBlock *block,
3258                              ram_addr_t offset, bool record_bitmap)
3259 {
3260     if (!offset_in_ramblock(block, offset)) {
3261         return NULL;
3262     }
3263     if (!block->colo_cache) {
3264         error_report("%s: colo_cache is NULL in block :%s",
3265                      __func__, block->idstr);
3266         return NULL;
3267     }
3268 
3269     /*
3270     * During colo checkpoint, we need bitmap of these migrated pages.
3271     * It help us to decide which pages in ram cache should be flushed
3272     * into VM's RAM later.
3273     */
3274     if (record_bitmap &&
3275         !test_and_set_bit(offset >> TARGET_PAGE_BITS, block->bmap)) {
3276         ram_state->migration_dirty_pages++;
3277     }
3278     return block->colo_cache + offset;
3279 }
3280 
3281 /**
3282  * ram_handle_compressed: handle the zero page case
3283  *
3284  * If a page (or a whole RDMA chunk) has been
3285  * determined to be zero, then zap it.
3286  *
3287  * @host: host address for the zero page
3288  * @ch: what the page is filled from.  We only support zero
3289  * @size: size of the zero page
3290  */
3291 void ram_handle_compressed(void *host, uint8_t ch, uint64_t size)
3292 {
3293     if (ch != 0 || !buffer_is_zero(host, size)) {
3294         memset(host, ch, size);
3295     }
3296 }
3297 
3298 /* return the size after decompression, or negative value on error */
3299 static int
3300 qemu_uncompress_data(z_stream *stream, uint8_t *dest, size_t dest_len,
3301                      const uint8_t *source, size_t source_len)
3302 {
3303     int err;
3304 
3305     err = inflateReset(stream);
3306     if (err != Z_OK) {
3307         return -1;
3308     }
3309 
3310     stream->avail_in = source_len;
3311     stream->next_in = (uint8_t *)source;
3312     stream->avail_out = dest_len;
3313     stream->next_out = dest;
3314 
3315     err = inflate(stream, Z_NO_FLUSH);
3316     if (err != Z_STREAM_END) {
3317         return -1;
3318     }
3319 
3320     return stream->total_out;
3321 }
3322 
3323 static void *do_data_decompress(void *opaque)
3324 {
3325     DecompressParam *param = opaque;
3326     unsigned long pagesize;
3327     uint8_t *des;
3328     int len, ret;
3329 
3330     qemu_mutex_lock(&param->mutex);
3331     while (!param->quit) {
3332         if (param->des) {
3333             des = param->des;
3334             len = param->len;
3335             param->des = 0;
3336             qemu_mutex_unlock(&param->mutex);
3337 
3338             pagesize = TARGET_PAGE_SIZE;
3339 
3340             ret = qemu_uncompress_data(&param->stream, des, pagesize,
3341                                        param->compbuf, len);
3342             if (ret < 0 && migrate_get_current()->decompress_error_check) {
3343                 error_report("decompress data failed");
3344                 qemu_file_set_error(decomp_file, ret);
3345             }
3346 
3347             qemu_mutex_lock(&decomp_done_lock);
3348             param->done = true;
3349             qemu_cond_signal(&decomp_done_cond);
3350             qemu_mutex_unlock(&decomp_done_lock);
3351 
3352             qemu_mutex_lock(&param->mutex);
3353         } else {
3354             qemu_cond_wait(&param->cond, &param->mutex);
3355         }
3356     }
3357     qemu_mutex_unlock(&param->mutex);
3358 
3359     return NULL;
3360 }
3361 
3362 static int wait_for_decompress_done(void)
3363 {
3364     int idx, thread_count;
3365 
3366     if (!migrate_use_compression()) {
3367         return 0;
3368     }
3369 
3370     thread_count = migrate_decompress_threads();
3371     qemu_mutex_lock(&decomp_done_lock);
3372     for (idx = 0; idx < thread_count; idx++) {
3373         while (!decomp_param[idx].done) {
3374             qemu_cond_wait(&decomp_done_cond, &decomp_done_lock);
3375         }
3376     }
3377     qemu_mutex_unlock(&decomp_done_lock);
3378     return qemu_file_get_error(decomp_file);
3379 }
3380 
3381 static void compress_threads_load_cleanup(void)
3382 {
3383     int i, thread_count;
3384 
3385     if (!migrate_use_compression()) {
3386         return;
3387     }
3388     thread_count = migrate_decompress_threads();
3389     for (i = 0; i < thread_count; i++) {
3390         /*
3391          * we use it as a indicator which shows if the thread is
3392          * properly init'd or not
3393          */
3394         if (!decomp_param[i].compbuf) {
3395             break;
3396         }
3397 
3398         qemu_mutex_lock(&decomp_param[i].mutex);
3399         decomp_param[i].quit = true;
3400         qemu_cond_signal(&decomp_param[i].cond);
3401         qemu_mutex_unlock(&decomp_param[i].mutex);
3402     }
3403     for (i = 0; i < thread_count; i++) {
3404         if (!decomp_param[i].compbuf) {
3405             break;
3406         }
3407 
3408         qemu_thread_join(decompress_threads + i);
3409         qemu_mutex_destroy(&decomp_param[i].mutex);
3410         qemu_cond_destroy(&decomp_param[i].cond);
3411         inflateEnd(&decomp_param[i].stream);
3412         g_free(decomp_param[i].compbuf);
3413         decomp_param[i].compbuf = NULL;
3414     }
3415     g_free(decompress_threads);
3416     g_free(decomp_param);
3417     decompress_threads = NULL;
3418     decomp_param = NULL;
3419     decomp_file = NULL;
3420 }
3421 
3422 static int compress_threads_load_setup(QEMUFile *f)
3423 {
3424     int i, thread_count;
3425 
3426     if (!migrate_use_compression()) {
3427         return 0;
3428     }
3429 
3430     thread_count = migrate_decompress_threads();
3431     decompress_threads = g_new0(QemuThread, thread_count);
3432     decomp_param = g_new0(DecompressParam, thread_count);
3433     qemu_mutex_init(&decomp_done_lock);
3434     qemu_cond_init(&decomp_done_cond);
3435     decomp_file = f;
3436     for (i = 0; i < thread_count; i++) {
3437         if (inflateInit(&decomp_param[i].stream) != Z_OK) {
3438             goto exit;
3439         }
3440 
3441         decomp_param[i].compbuf = g_malloc0(compressBound(TARGET_PAGE_SIZE));
3442         qemu_mutex_init(&decomp_param[i].mutex);
3443         qemu_cond_init(&decomp_param[i].cond);
3444         decomp_param[i].done = true;
3445         decomp_param[i].quit = false;
3446         qemu_thread_create(decompress_threads + i, "decompress",
3447                            do_data_decompress, decomp_param + i,
3448                            QEMU_THREAD_JOINABLE);
3449     }
3450     return 0;
3451 exit:
3452     compress_threads_load_cleanup();
3453     return -1;
3454 }
3455 
3456 static void decompress_data_with_multi_threads(QEMUFile *f,
3457                                                void *host, int len)
3458 {
3459     int idx, thread_count;
3460 
3461     thread_count = migrate_decompress_threads();
3462     QEMU_LOCK_GUARD(&decomp_done_lock);
3463     while (true) {
3464         for (idx = 0; idx < thread_count; idx++) {
3465             if (decomp_param[idx].done) {
3466                 decomp_param[idx].done = false;
3467                 qemu_mutex_lock(&decomp_param[idx].mutex);
3468                 qemu_get_buffer(f, decomp_param[idx].compbuf, len);
3469                 decomp_param[idx].des = host;
3470                 decomp_param[idx].len = len;
3471                 qemu_cond_signal(&decomp_param[idx].cond);
3472                 qemu_mutex_unlock(&decomp_param[idx].mutex);
3473                 break;
3474             }
3475         }
3476         if (idx < thread_count) {
3477             break;
3478         } else {
3479             qemu_cond_wait(&decomp_done_cond, &decomp_done_lock);
3480         }
3481     }
3482 }
3483 
3484 static void colo_init_ram_state(void)
3485 {
3486     ram_state_init(&ram_state);
3487 }
3488 
3489 /*
3490  * colo cache: this is for secondary VM, we cache the whole
3491  * memory of the secondary VM, it is need to hold the global lock
3492  * to call this helper.
3493  */
3494 int colo_init_ram_cache(void)
3495 {
3496     RAMBlock *block;
3497 
3498     WITH_RCU_READ_LOCK_GUARD() {
3499         RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3500             block->colo_cache = qemu_anon_ram_alloc(block->used_length,
3501                                                     NULL, false, false);
3502             if (!block->colo_cache) {
3503                 error_report("%s: Can't alloc memory for COLO cache of block %s,"
3504                              "size 0x" RAM_ADDR_FMT, __func__, block->idstr,
3505                              block->used_length);
3506                 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3507                     if (block->colo_cache) {
3508                         qemu_anon_ram_free(block->colo_cache, block->used_length);
3509                         block->colo_cache = NULL;
3510                     }
3511                 }
3512                 return -errno;
3513             }
3514             if (!machine_dump_guest_core(current_machine)) {
3515                 qemu_madvise(block->colo_cache, block->used_length,
3516                              QEMU_MADV_DONTDUMP);
3517             }
3518         }
3519     }
3520 
3521     /*
3522     * Record the dirty pages that sent by PVM, we use this dirty bitmap together
3523     * with to decide which page in cache should be flushed into SVM's RAM. Here
3524     * we use the same name 'ram_bitmap' as for migration.
3525     */
3526     if (ram_bytes_total()) {
3527         RAMBlock *block;
3528 
3529         RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3530             unsigned long pages = block->max_length >> TARGET_PAGE_BITS;
3531             block->bmap = bitmap_new(pages);
3532         }
3533     }
3534 
3535     colo_init_ram_state();
3536     return 0;
3537 }
3538 
3539 /* TODO: duplicated with ram_init_bitmaps */
3540 void colo_incoming_start_dirty_log(void)
3541 {
3542     RAMBlock *block = NULL;
3543     /* For memory_global_dirty_log_start below. */
3544     qemu_mutex_lock_iothread();
3545     qemu_mutex_lock_ramlist();
3546 
3547     memory_global_dirty_log_sync();
3548     WITH_RCU_READ_LOCK_GUARD() {
3549         RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3550             ramblock_sync_dirty_bitmap(ram_state, block);
3551             /* Discard this dirty bitmap record */
3552             bitmap_zero(block->bmap, block->max_length >> TARGET_PAGE_BITS);
3553         }
3554         memory_global_dirty_log_start(GLOBAL_DIRTY_MIGRATION);
3555     }
3556     ram_state->migration_dirty_pages = 0;
3557     qemu_mutex_unlock_ramlist();
3558     qemu_mutex_unlock_iothread();
3559 }
3560 
3561 /* It is need to hold the global lock to call this helper */
3562 void colo_release_ram_cache(void)
3563 {
3564     RAMBlock *block;
3565 
3566     memory_global_dirty_log_stop(GLOBAL_DIRTY_MIGRATION);
3567     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3568         g_free(block->bmap);
3569         block->bmap = NULL;
3570     }
3571 
3572     WITH_RCU_READ_LOCK_GUARD() {
3573         RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3574             if (block->colo_cache) {
3575                 qemu_anon_ram_free(block->colo_cache, block->used_length);
3576                 block->colo_cache = NULL;
3577             }
3578         }
3579     }
3580     ram_state_cleanup(&ram_state);
3581 }
3582 
3583 /**
3584  * ram_load_setup: Setup RAM for migration incoming side
3585  *
3586  * Returns zero to indicate success and negative for error
3587  *
3588  * @f: QEMUFile where to receive the data
3589  * @opaque: RAMState pointer
3590  */
3591 static int ram_load_setup(QEMUFile *f, void *opaque)
3592 {
3593     if (compress_threads_load_setup(f)) {
3594         return -1;
3595     }
3596 
3597     xbzrle_load_setup();
3598     ramblock_recv_map_init();
3599 
3600     return 0;
3601 }
3602 
3603 static int ram_load_cleanup(void *opaque)
3604 {
3605     RAMBlock *rb;
3606 
3607     RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
3608         qemu_ram_block_writeback(rb);
3609     }
3610 
3611     xbzrle_load_cleanup();
3612     compress_threads_load_cleanup();
3613 
3614     RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
3615         g_free(rb->receivedmap);
3616         rb->receivedmap = NULL;
3617     }
3618 
3619     return 0;
3620 }
3621 
3622 /**
3623  * ram_postcopy_incoming_init: allocate postcopy data structures
3624  *
3625  * Returns 0 for success and negative if there was one error
3626  *
3627  * @mis: current migration incoming state
3628  *
3629  * Allocate data structures etc needed by incoming migration with
3630  * postcopy-ram. postcopy-ram's similarly names
3631  * postcopy_ram_incoming_init does the work.
3632  */
3633 int ram_postcopy_incoming_init(MigrationIncomingState *mis)
3634 {
3635     return postcopy_ram_incoming_init(mis);
3636 }
3637 
3638 /**
3639  * ram_load_postcopy: load a page in postcopy case
3640  *
3641  * Returns 0 for success or -errno in case of error
3642  *
3643  * Called in postcopy mode by ram_load().
3644  * rcu_read_lock is taken prior to this being called.
3645  *
3646  * @f: QEMUFile where to send the data
3647  */
3648 int ram_load_postcopy(QEMUFile *f)
3649 {
3650     int flags = 0, ret = 0;
3651     bool place_needed = false;
3652     bool matches_target_page_size = false;
3653     MigrationIncomingState *mis = migration_incoming_get_current();
3654     /* Currently we only use channel 0.  TODO: use all the channels */
3655     PostcopyTmpPage *tmp_page = &mis->postcopy_tmp_pages[0];
3656 
3657     while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
3658         ram_addr_t addr;
3659         void *page_buffer = NULL;
3660         void *place_source = NULL;
3661         RAMBlock *block = NULL;
3662         uint8_t ch;
3663         int len;
3664 
3665         addr = qemu_get_be64(f);
3666 
3667         /*
3668          * If qemu file error, we should stop here, and then "addr"
3669          * may be invalid
3670          */
3671         ret = qemu_file_get_error(f);
3672         if (ret) {
3673             break;
3674         }
3675 
3676         flags = addr & ~TARGET_PAGE_MASK;
3677         addr &= TARGET_PAGE_MASK;
3678 
3679         trace_ram_load_postcopy_loop((uint64_t)addr, flags);
3680         if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE |
3681                      RAM_SAVE_FLAG_COMPRESS_PAGE)) {
3682             block = ram_block_from_stream(mis, f, flags);
3683             if (!block) {
3684                 ret = -EINVAL;
3685                 break;
3686             }
3687 
3688             /*
3689              * Relying on used_length is racy and can result in false positives.
3690              * We might place pages beyond used_length in case RAM was shrunk
3691              * while in postcopy, which is fine - trying to place via
3692              * UFFDIO_COPY/UFFDIO_ZEROPAGE will never segfault.
3693              */
3694             if (!block->host || addr >= block->postcopy_length) {
3695                 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
3696                 ret = -EINVAL;
3697                 break;
3698             }
3699             tmp_page->target_pages++;
3700             matches_target_page_size = block->page_size == TARGET_PAGE_SIZE;
3701             /*
3702              * Postcopy requires that we place whole host pages atomically;
3703              * these may be huge pages for RAMBlocks that are backed by
3704              * hugetlbfs.
3705              * To make it atomic, the data is read into a temporary page
3706              * that's moved into place later.
3707              * The migration protocol uses,  possibly smaller, target-pages
3708              * however the source ensures it always sends all the components
3709              * of a host page in one chunk.
3710              */
3711             page_buffer = tmp_page->tmp_huge_page +
3712                           host_page_offset_from_ram_block_offset(block, addr);
3713             /* If all TP are zero then we can optimise the place */
3714             if (tmp_page->target_pages == 1) {
3715                 tmp_page->host_addr =
3716                     host_page_from_ram_block_offset(block, addr);
3717             } else if (tmp_page->host_addr !=
3718                        host_page_from_ram_block_offset(block, addr)) {
3719                 /* not the 1st TP within the HP */
3720                 error_report("Non-same host page detected.  "
3721                              "Target host page %p, received host page %p "
3722                              "(rb %s offset 0x"RAM_ADDR_FMT" target_pages %d)",
3723                              tmp_page->host_addr,
3724                              host_page_from_ram_block_offset(block, addr),
3725                              block->idstr, addr, tmp_page->target_pages);
3726                 ret = -EINVAL;
3727                 break;
3728             }
3729 
3730             /*
3731              * If it's the last part of a host page then we place the host
3732              * page
3733              */
3734             if (tmp_page->target_pages ==
3735                 (block->page_size / TARGET_PAGE_SIZE)) {
3736                 place_needed = true;
3737             }
3738             place_source = tmp_page->tmp_huge_page;
3739         }
3740 
3741         switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
3742         case RAM_SAVE_FLAG_ZERO:
3743             ch = qemu_get_byte(f);
3744             /*
3745              * Can skip to set page_buffer when
3746              * this is a zero page and (block->page_size == TARGET_PAGE_SIZE).
3747              */
3748             if (ch || !matches_target_page_size) {
3749                 memset(page_buffer, ch, TARGET_PAGE_SIZE);
3750             }
3751             if (ch) {
3752                 tmp_page->all_zero = false;
3753             }
3754             break;
3755 
3756         case RAM_SAVE_FLAG_PAGE:
3757             tmp_page->all_zero = false;
3758             if (!matches_target_page_size) {
3759                 /* For huge pages, we always use temporary buffer */
3760                 qemu_get_buffer(f, page_buffer, TARGET_PAGE_SIZE);
3761             } else {
3762                 /*
3763                  * For small pages that matches target page size, we
3764                  * avoid the qemu_file copy.  Instead we directly use
3765                  * the buffer of QEMUFile to place the page.  Note: we
3766                  * cannot do any QEMUFile operation before using that
3767                  * buffer to make sure the buffer is valid when
3768                  * placing the page.
3769                  */
3770                 qemu_get_buffer_in_place(f, (uint8_t **)&place_source,
3771                                          TARGET_PAGE_SIZE);
3772             }
3773             break;
3774         case RAM_SAVE_FLAG_COMPRESS_PAGE:
3775             tmp_page->all_zero = false;
3776             len = qemu_get_be32(f);
3777             if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) {
3778                 error_report("Invalid compressed data length: %d", len);
3779                 ret = -EINVAL;
3780                 break;
3781             }
3782             decompress_data_with_multi_threads(f, page_buffer, len);
3783             break;
3784 
3785         case RAM_SAVE_FLAG_EOS:
3786             /* normal exit */
3787             multifd_recv_sync_main();
3788             break;
3789         default:
3790             error_report("Unknown combination of migration flags: 0x%x"
3791                          " (postcopy mode)", flags);
3792             ret = -EINVAL;
3793             break;
3794         }
3795 
3796         /* Got the whole host page, wait for decompress before placing. */
3797         if (place_needed) {
3798             ret |= wait_for_decompress_done();
3799         }
3800 
3801         /* Detect for any possible file errors */
3802         if (!ret && qemu_file_get_error(f)) {
3803             ret = qemu_file_get_error(f);
3804         }
3805 
3806         if (!ret && place_needed) {
3807             if (tmp_page->all_zero) {
3808                 ret = postcopy_place_page_zero(mis, tmp_page->host_addr, block);
3809             } else {
3810                 ret = postcopy_place_page(mis, tmp_page->host_addr,
3811                                           place_source, block);
3812             }
3813             place_needed = false;
3814             postcopy_temp_page_reset(tmp_page);
3815         }
3816     }
3817 
3818     return ret;
3819 }
3820 
3821 static bool postcopy_is_advised(void)
3822 {
3823     PostcopyState ps = postcopy_state_get();
3824     return ps >= POSTCOPY_INCOMING_ADVISE && ps < POSTCOPY_INCOMING_END;
3825 }
3826 
3827 static bool postcopy_is_running(void)
3828 {
3829     PostcopyState ps = postcopy_state_get();
3830     return ps >= POSTCOPY_INCOMING_LISTENING && ps < POSTCOPY_INCOMING_END;
3831 }
3832 
3833 /*
3834  * Flush content of RAM cache into SVM's memory.
3835  * Only flush the pages that be dirtied by PVM or SVM or both.
3836  */
3837 void colo_flush_ram_cache(void)
3838 {
3839     RAMBlock *block = NULL;
3840     void *dst_host;
3841     void *src_host;
3842     unsigned long offset = 0;
3843 
3844     memory_global_dirty_log_sync();
3845     WITH_RCU_READ_LOCK_GUARD() {
3846         RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3847             ramblock_sync_dirty_bitmap(ram_state, block);
3848         }
3849     }
3850 
3851     trace_colo_flush_ram_cache_begin(ram_state->migration_dirty_pages);
3852     WITH_RCU_READ_LOCK_GUARD() {
3853         block = QLIST_FIRST_RCU(&ram_list.blocks);
3854 
3855         while (block) {
3856             unsigned long num = 0;
3857 
3858             offset = colo_bitmap_find_dirty(ram_state, block, offset, &num);
3859             if (!offset_in_ramblock(block,
3860                                     ((ram_addr_t)offset) << TARGET_PAGE_BITS)) {
3861                 offset = 0;
3862                 num = 0;
3863                 block = QLIST_NEXT_RCU(block, next);
3864             } else {
3865                 unsigned long i = 0;
3866 
3867                 for (i = 0; i < num; i++) {
3868                     migration_bitmap_clear_dirty(ram_state, block, offset + i);
3869                 }
3870                 dst_host = block->host
3871                          + (((ram_addr_t)offset) << TARGET_PAGE_BITS);
3872                 src_host = block->colo_cache
3873                          + (((ram_addr_t)offset) << TARGET_PAGE_BITS);
3874                 memcpy(dst_host, src_host, TARGET_PAGE_SIZE * num);
3875                 offset += num;
3876             }
3877         }
3878     }
3879     trace_colo_flush_ram_cache_end();
3880 }
3881 
3882 /**
3883  * ram_load_precopy: load pages in precopy case
3884  *
3885  * Returns 0 for success or -errno in case of error
3886  *
3887  * Called in precopy mode by ram_load().
3888  * rcu_read_lock is taken prior to this being called.
3889  *
3890  * @f: QEMUFile where to send the data
3891  */
3892 static int ram_load_precopy(QEMUFile *f)
3893 {
3894     MigrationIncomingState *mis = migration_incoming_get_current();
3895     int flags = 0, ret = 0, invalid_flags = 0, len = 0, i = 0;
3896     /* ADVISE is earlier, it shows the source has the postcopy capability on */
3897     bool postcopy_advised = postcopy_is_advised();
3898     if (!migrate_use_compression()) {
3899         invalid_flags |= RAM_SAVE_FLAG_COMPRESS_PAGE;
3900     }
3901 
3902     while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
3903         ram_addr_t addr, total_ram_bytes;
3904         void *host = NULL, *host_bak = NULL;
3905         uint8_t ch;
3906 
3907         /*
3908          * Yield periodically to let main loop run, but an iteration of
3909          * the main loop is expensive, so do it each some iterations
3910          */
3911         if ((i & 32767) == 0 && qemu_in_coroutine()) {
3912             aio_co_schedule(qemu_get_current_aio_context(),
3913                             qemu_coroutine_self());
3914             qemu_coroutine_yield();
3915         }
3916         i++;
3917 
3918         addr = qemu_get_be64(f);
3919         flags = addr & ~TARGET_PAGE_MASK;
3920         addr &= TARGET_PAGE_MASK;
3921 
3922         if (flags & invalid_flags) {
3923             if (flags & invalid_flags & RAM_SAVE_FLAG_COMPRESS_PAGE) {
3924                 error_report("Received an unexpected compressed page");
3925             }
3926 
3927             ret = -EINVAL;
3928             break;
3929         }
3930 
3931         if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE |
3932                      RAM_SAVE_FLAG_COMPRESS_PAGE | RAM_SAVE_FLAG_XBZRLE)) {
3933             RAMBlock *block = ram_block_from_stream(mis, f, flags);
3934 
3935             host = host_from_ram_block_offset(block, addr);
3936             /*
3937              * After going into COLO stage, we should not load the page
3938              * into SVM's memory directly, we put them into colo_cache firstly.
3939              * NOTE: We need to keep a copy of SVM's ram in colo_cache.
3940              * Previously, we copied all these memory in preparing stage of COLO
3941              * while we need to stop VM, which is a time-consuming process.
3942              * Here we optimize it by a trick, back-up every page while in
3943              * migration process while COLO is enabled, though it affects the
3944              * speed of the migration, but it obviously reduce the downtime of
3945              * back-up all SVM'S memory in COLO preparing stage.
3946              */
3947             if (migration_incoming_colo_enabled()) {
3948                 if (migration_incoming_in_colo_state()) {
3949                     /* In COLO stage, put all pages into cache temporarily */
3950                     host = colo_cache_from_block_offset(block, addr, true);
3951                 } else {
3952                    /*
3953                     * In migration stage but before COLO stage,
3954                     * Put all pages into both cache and SVM's memory.
3955                     */
3956                     host_bak = colo_cache_from_block_offset(block, addr, false);
3957                 }
3958             }
3959             if (!host) {
3960                 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
3961                 ret = -EINVAL;
3962                 break;
3963             }
3964             if (!migration_incoming_in_colo_state()) {
3965                 ramblock_recv_bitmap_set(block, host);
3966             }
3967 
3968             trace_ram_load_loop(block->idstr, (uint64_t)addr, flags, host);
3969         }
3970 
3971         switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
3972         case RAM_SAVE_FLAG_MEM_SIZE:
3973             /* Synchronize RAM block list */
3974             total_ram_bytes = addr;
3975             while (!ret && total_ram_bytes) {
3976                 RAMBlock *block;
3977                 char id[256];
3978                 ram_addr_t length;
3979 
3980                 len = qemu_get_byte(f);
3981                 qemu_get_buffer(f, (uint8_t *)id, len);
3982                 id[len] = 0;
3983                 length = qemu_get_be64(f);
3984 
3985                 block = qemu_ram_block_by_name(id);
3986                 if (block && !qemu_ram_is_migratable(block)) {
3987                     error_report("block %s should not be migrated !", id);
3988                     ret = -EINVAL;
3989                 } else if (block) {
3990                     if (length != block->used_length) {
3991                         Error *local_err = NULL;
3992 
3993                         ret = qemu_ram_resize(block, length,
3994                                               &local_err);
3995                         if (local_err) {
3996                             error_report_err(local_err);
3997                         }
3998                     }
3999                     /* For postcopy we need to check hugepage sizes match */
4000                     if (postcopy_advised && migrate_postcopy_ram() &&
4001                         block->page_size != qemu_host_page_size) {
4002                         uint64_t remote_page_size = qemu_get_be64(f);
4003                         if (remote_page_size != block->page_size) {
4004                             error_report("Mismatched RAM page size %s "
4005                                          "(local) %zd != %" PRId64,
4006                                          id, block->page_size,
4007                                          remote_page_size);
4008                             ret = -EINVAL;
4009                         }
4010                     }
4011                     if (migrate_ignore_shared()) {
4012                         hwaddr addr = qemu_get_be64(f);
4013                         if (ramblock_is_ignored(block) &&
4014                             block->mr->addr != addr) {
4015                             error_report("Mismatched GPAs for block %s "
4016                                          "%" PRId64 "!= %" PRId64,
4017                                          id, (uint64_t)addr,
4018                                          (uint64_t)block->mr->addr);
4019                             ret = -EINVAL;
4020                         }
4021                     }
4022                     ram_control_load_hook(f, RAM_CONTROL_BLOCK_REG,
4023                                           block->idstr);
4024                 } else {
4025                     error_report("Unknown ramblock \"%s\", cannot "
4026                                  "accept migration", id);
4027                     ret = -EINVAL;
4028                 }
4029 
4030                 total_ram_bytes -= length;
4031             }
4032             break;
4033 
4034         case RAM_SAVE_FLAG_ZERO:
4035             ch = qemu_get_byte(f);
4036             ram_handle_compressed(host, ch, TARGET_PAGE_SIZE);
4037             break;
4038 
4039         case RAM_SAVE_FLAG_PAGE:
4040             qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
4041             break;
4042 
4043         case RAM_SAVE_FLAG_COMPRESS_PAGE:
4044             len = qemu_get_be32(f);
4045             if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) {
4046                 error_report("Invalid compressed data length: %d", len);
4047                 ret = -EINVAL;
4048                 break;
4049             }
4050             decompress_data_with_multi_threads(f, host, len);
4051             break;
4052 
4053         case RAM_SAVE_FLAG_XBZRLE:
4054             if (load_xbzrle(f, addr, host) < 0) {
4055                 error_report("Failed to decompress XBZRLE page at "
4056                              RAM_ADDR_FMT, addr);
4057                 ret = -EINVAL;
4058                 break;
4059             }
4060             break;
4061         case RAM_SAVE_FLAG_EOS:
4062             /* normal exit */
4063             multifd_recv_sync_main();
4064             break;
4065         default:
4066             if (flags & RAM_SAVE_FLAG_HOOK) {
4067                 ram_control_load_hook(f, RAM_CONTROL_HOOK, NULL);
4068             } else {
4069                 error_report("Unknown combination of migration flags: 0x%x",
4070                              flags);
4071                 ret = -EINVAL;
4072             }
4073         }
4074         if (!ret) {
4075             ret = qemu_file_get_error(f);
4076         }
4077         if (!ret && host_bak) {
4078             memcpy(host_bak, host, TARGET_PAGE_SIZE);
4079         }
4080     }
4081 
4082     ret |= wait_for_decompress_done();
4083     return ret;
4084 }
4085 
4086 static int ram_load(QEMUFile *f, void *opaque, int version_id)
4087 {
4088     int ret = 0;
4089     static uint64_t seq_iter;
4090     /*
4091      * If system is running in postcopy mode, page inserts to host memory must
4092      * be atomic
4093      */
4094     bool postcopy_running = postcopy_is_running();
4095 
4096     seq_iter++;
4097 
4098     if (version_id != 4) {
4099         return -EINVAL;
4100     }
4101 
4102     /*
4103      * This RCU critical section can be very long running.
4104      * When RCU reclaims in the code start to become numerous,
4105      * it will be necessary to reduce the granularity of this
4106      * critical section.
4107      */
4108     WITH_RCU_READ_LOCK_GUARD() {
4109         if (postcopy_running) {
4110             ret = ram_load_postcopy(f);
4111         } else {
4112             ret = ram_load_precopy(f);
4113         }
4114     }
4115     trace_ram_load_complete(ret, seq_iter);
4116 
4117     return ret;
4118 }
4119 
4120 static bool ram_has_postcopy(void *opaque)
4121 {
4122     RAMBlock *rb;
4123     RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
4124         if (ramblock_is_pmem(rb)) {
4125             info_report("Block: %s, host: %p is a nvdimm memory, postcopy"
4126                          "is not supported now!", rb->idstr, rb->host);
4127             return false;
4128         }
4129     }
4130 
4131     return migrate_postcopy_ram();
4132 }
4133 
4134 /* Sync all the dirty bitmap with destination VM.  */
4135 static int ram_dirty_bitmap_sync_all(MigrationState *s, RAMState *rs)
4136 {
4137     RAMBlock *block;
4138     QEMUFile *file = s->to_dst_file;
4139     int ramblock_count = 0;
4140 
4141     trace_ram_dirty_bitmap_sync_start();
4142 
4143     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
4144         qemu_savevm_send_recv_bitmap(file, block->idstr);
4145         trace_ram_dirty_bitmap_request(block->idstr);
4146         ramblock_count++;
4147     }
4148 
4149     trace_ram_dirty_bitmap_sync_wait();
4150 
4151     /* Wait until all the ramblocks' dirty bitmap synced */
4152     while (ramblock_count--) {
4153         qemu_sem_wait(&s->rp_state.rp_sem);
4154     }
4155 
4156     trace_ram_dirty_bitmap_sync_complete();
4157 
4158     return 0;
4159 }
4160 
4161 static void ram_dirty_bitmap_reload_notify(MigrationState *s)
4162 {
4163     qemu_sem_post(&s->rp_state.rp_sem);
4164 }
4165 
4166 /*
4167  * Read the received bitmap, revert it as the initial dirty bitmap.
4168  * This is only used when the postcopy migration is paused but wants
4169  * to resume from a middle point.
4170  */
4171 int ram_dirty_bitmap_reload(MigrationState *s, RAMBlock *block)
4172 {
4173     int ret = -EINVAL;
4174     /* from_dst_file is always valid because we're within rp_thread */
4175     QEMUFile *file = s->rp_state.from_dst_file;
4176     unsigned long *le_bitmap, nbits = block->used_length >> TARGET_PAGE_BITS;
4177     uint64_t local_size = DIV_ROUND_UP(nbits, 8);
4178     uint64_t size, end_mark;
4179 
4180     trace_ram_dirty_bitmap_reload_begin(block->idstr);
4181 
4182     if (s->state != MIGRATION_STATUS_POSTCOPY_RECOVER) {
4183         error_report("%s: incorrect state %s", __func__,
4184                      MigrationStatus_str(s->state));
4185         return -EINVAL;
4186     }
4187 
4188     /*
4189      * Note: see comments in ramblock_recv_bitmap_send() on why we
4190      * need the endianness conversion, and the paddings.
4191      */
4192     local_size = ROUND_UP(local_size, 8);
4193 
4194     /* Add paddings */
4195     le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
4196 
4197     size = qemu_get_be64(file);
4198 
4199     /* The size of the bitmap should match with our ramblock */
4200     if (size != local_size) {
4201         error_report("%s: ramblock '%s' bitmap size mismatch "
4202                      "(0x%"PRIx64" != 0x%"PRIx64")", __func__,
4203                      block->idstr, size, local_size);
4204         ret = -EINVAL;
4205         goto out;
4206     }
4207 
4208     size = qemu_get_buffer(file, (uint8_t *)le_bitmap, local_size);
4209     end_mark = qemu_get_be64(file);
4210 
4211     ret = qemu_file_get_error(file);
4212     if (ret || size != local_size) {
4213         error_report("%s: read bitmap failed for ramblock '%s': %d"
4214                      " (size 0x%"PRIx64", got: 0x%"PRIx64")",
4215                      __func__, block->idstr, ret, local_size, size);
4216         ret = -EIO;
4217         goto out;
4218     }
4219 
4220     if (end_mark != RAMBLOCK_RECV_BITMAP_ENDING) {
4221         error_report("%s: ramblock '%s' end mark incorrect: 0x%"PRIx64,
4222                      __func__, block->idstr, end_mark);
4223         ret = -EINVAL;
4224         goto out;
4225     }
4226 
4227     /*
4228      * Endianness conversion. We are during postcopy (though paused).
4229      * The dirty bitmap won't change. We can directly modify it.
4230      */
4231     bitmap_from_le(block->bmap, le_bitmap, nbits);
4232 
4233     /*
4234      * What we received is "received bitmap". Revert it as the initial
4235      * dirty bitmap for this ramblock.
4236      */
4237     bitmap_complement(block->bmap, block->bmap, nbits);
4238 
4239     /* Clear dirty bits of discarded ranges that we don't want to migrate. */
4240     ramblock_dirty_bitmap_clear_discarded_pages(block);
4241 
4242     /* We'll recalculate migration_dirty_pages in ram_state_resume_prepare(). */
4243     trace_ram_dirty_bitmap_reload_complete(block->idstr);
4244 
4245     /*
4246      * We succeeded to sync bitmap for current ramblock. If this is
4247      * the last one to sync, we need to notify the main send thread.
4248      */
4249     ram_dirty_bitmap_reload_notify(s);
4250 
4251     ret = 0;
4252 out:
4253     g_free(le_bitmap);
4254     return ret;
4255 }
4256 
4257 static int ram_resume_prepare(MigrationState *s, void *opaque)
4258 {
4259     RAMState *rs = *(RAMState **)opaque;
4260     int ret;
4261 
4262     ret = ram_dirty_bitmap_sync_all(s, rs);
4263     if (ret) {
4264         return ret;
4265     }
4266 
4267     ram_state_resume_prepare(rs, s->to_dst_file);
4268 
4269     return 0;
4270 }
4271 
4272 static SaveVMHandlers savevm_ram_handlers = {
4273     .save_setup = ram_save_setup,
4274     .save_live_iterate = ram_save_iterate,
4275     .save_live_complete_postcopy = ram_save_complete,
4276     .save_live_complete_precopy = ram_save_complete,
4277     .has_postcopy = ram_has_postcopy,
4278     .save_live_pending = ram_save_pending,
4279     .load_state = ram_load,
4280     .save_cleanup = ram_save_cleanup,
4281     .load_setup = ram_load_setup,
4282     .load_cleanup = ram_load_cleanup,
4283     .resume_prepare = ram_resume_prepare,
4284 };
4285 
4286 static void ram_mig_ram_block_resized(RAMBlockNotifier *n, void *host,
4287                                       size_t old_size, size_t new_size)
4288 {
4289     PostcopyState ps = postcopy_state_get();
4290     ram_addr_t offset;
4291     RAMBlock *rb = qemu_ram_block_from_host(host, false, &offset);
4292     Error *err = NULL;
4293 
4294     if (ramblock_is_ignored(rb)) {
4295         return;
4296     }
4297 
4298     if (!migration_is_idle()) {
4299         /*
4300          * Precopy code on the source cannot deal with the size of RAM blocks
4301          * changing at random points in time - especially after sending the
4302          * RAM block sizes in the migration stream, they must no longer change.
4303          * Abort and indicate a proper reason.
4304          */
4305         error_setg(&err, "RAM block '%s' resized during precopy.", rb->idstr);
4306         migration_cancel(err);
4307         error_free(err);
4308     }
4309 
4310     switch (ps) {
4311     case POSTCOPY_INCOMING_ADVISE:
4312         /*
4313          * Update what ram_postcopy_incoming_init()->init_range() does at the
4314          * time postcopy was advised. Syncing RAM blocks with the source will
4315          * result in RAM resizes.
4316          */
4317         if (old_size < new_size) {
4318             if (ram_discard_range(rb->idstr, old_size, new_size - old_size)) {
4319                 error_report("RAM block '%s' discard of resized RAM failed",
4320                              rb->idstr);
4321             }
4322         }
4323         rb->postcopy_length = new_size;
4324         break;
4325     case POSTCOPY_INCOMING_NONE:
4326     case POSTCOPY_INCOMING_RUNNING:
4327     case POSTCOPY_INCOMING_END:
4328         /*
4329          * Once our guest is running, postcopy does no longer care about
4330          * resizes. When growing, the new memory was not available on the
4331          * source, no handler needed.
4332          */
4333         break;
4334     default:
4335         error_report("RAM block '%s' resized during postcopy state: %d",
4336                      rb->idstr, ps);
4337         exit(-1);
4338     }
4339 }
4340 
4341 static RAMBlockNotifier ram_mig_ram_notifier = {
4342     .ram_block_resized = ram_mig_ram_block_resized,
4343 };
4344 
4345 void ram_mig_init(void)
4346 {
4347     qemu_mutex_init(&XBZRLE.lock);
4348     register_savevm_live("ram", 0, 4, &savevm_ram_handlers, &ram_state);
4349     ram_block_notifier_add(&ram_mig_ram_notifier);
4350 }
4351