1 /* 2 * QEMU System Emulator 3 * 4 * Copyright (c) 2003-2008 Fabrice Bellard 5 * Copyright (c) 2011-2015 Red Hat Inc 6 * 7 * Authors: 8 * Juan Quintela <quintela@redhat.com> 9 * 10 * Permission is hereby granted, free of charge, to any person obtaining a copy 11 * of this software and associated documentation files (the "Software"), to deal 12 * in the Software without restriction, including without limitation the rights 13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 14 * copies of the Software, and to permit persons to whom the Software is 15 * furnished to do so, subject to the following conditions: 16 * 17 * The above copyright notice and this permission notice shall be included in 18 * all copies or substantial portions of the Software. 19 * 20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 26 * THE SOFTWARE. 27 */ 28 29 #include "qemu/osdep.h" 30 #include "qemu/cutils.h" 31 #include "qemu/bitops.h" 32 #include "qemu/bitmap.h" 33 #include "qemu/madvise.h" 34 #include "qemu/main-loop.h" 35 #include "xbzrle.h" 36 #include "ram.h" 37 #include "migration.h" 38 #include "migration-stats.h" 39 #include "migration/register.h" 40 #include "migration/misc.h" 41 #include "qemu-file.h" 42 #include "postcopy-ram.h" 43 #include "page_cache.h" 44 #include "qemu/error-report.h" 45 #include "qapi/error.h" 46 #include "qapi/qapi-types-migration.h" 47 #include "qapi/qapi-events-migration.h" 48 #include "qapi/qapi-commands-migration.h" 49 #include "qapi/qmp/qerror.h" 50 #include "trace.h" 51 #include "system/ram_addr.h" 52 #include "exec/target_page.h" 53 #include "qemu/rcu_queue.h" 54 #include "migration/colo.h" 55 #include "system/cpu-throttle.h" 56 #include "savevm.h" 57 #include "qemu/iov.h" 58 #include "multifd.h" 59 #include "system/runstate.h" 60 #include "rdma.h" 61 #include "options.h" 62 #include "system/dirtylimit.h" 63 #include "system/kvm.h" 64 65 #include "hw/boards.h" /* for machine_dump_guest_core() */ 66 67 #if defined(__linux__) 68 #include "qemu/userfaultfd.h" 69 #endif /* defined(__linux__) */ 70 71 /***********************************************************/ 72 /* ram save/restore */ 73 74 /* 75 * mapped-ram migration supports O_DIRECT, so we need to make sure the 76 * userspace buffer, the IO operation size and the file offset are 77 * aligned according to the underlying device's block size. The first 78 * two are already aligned to page size, but we need to add padding to 79 * the file to align the offset. We cannot read the block size 80 * dynamically because the migration file can be moved between 81 * different systems, so use 1M to cover most block sizes and to keep 82 * the file offset aligned at page size as well. 83 */ 84 #define MAPPED_RAM_FILE_OFFSET_ALIGNMENT 0x100000 85 86 /* 87 * When doing mapped-ram migration, this is the amount we read from 88 * the pages region in the migration file at a time. 89 */ 90 #define MAPPED_RAM_LOAD_BUF_SIZE 0x100000 91 92 XBZRLECacheStats xbzrle_counters; 93 94 /* 95 * This structure locates a specific location of a guest page. In QEMU, 96 * it's described in a tuple of (ramblock, offset). 97 */ 98 struct PageLocation { 99 RAMBlock *block; 100 unsigned long offset; 101 }; 102 typedef struct PageLocation PageLocation; 103 104 /** 105 * PageLocationHint: describes a hint to a page location 106 * 107 * @valid set if the hint is vaild and to be consumed 108 * @location: the hint content 109 * 110 * In postcopy preempt mode, the urgent channel may provide hints to the 111 * background channel, so that QEMU source can try to migrate whatever is 112 * right after the requested urgent pages. 113 * 114 * This is based on the assumption that the VM (already running on the 115 * destination side) tends to access the memory with spatial locality. 116 * This is also the default behavior of vanilla postcopy (preempt off). 117 */ 118 struct PageLocationHint { 119 bool valid; 120 PageLocation location; 121 }; 122 typedef struct PageLocationHint PageLocationHint; 123 124 /* used by the search for pages to send */ 125 struct PageSearchStatus { 126 /* The migration channel used for a specific host page */ 127 QEMUFile *pss_channel; 128 /* Last block from where we have sent data */ 129 RAMBlock *last_sent_block; 130 /* Current block being searched */ 131 RAMBlock *block; 132 /* Current page to search from */ 133 unsigned long page; 134 /* Set once we wrap around */ 135 bool complete_round; 136 /* Whether we're sending a host page */ 137 bool host_page_sending; 138 /* The start/end of current host page. Invalid if host_page_sending==false */ 139 unsigned long host_page_start; 140 unsigned long host_page_end; 141 }; 142 typedef struct PageSearchStatus PageSearchStatus; 143 144 /* struct contains XBZRLE cache and a static page 145 used by the compression */ 146 static struct { 147 /* buffer used for XBZRLE encoding */ 148 uint8_t *encoded_buf; 149 /* buffer for storing page content */ 150 uint8_t *current_buf; 151 /* Cache for XBZRLE, Protected by lock. */ 152 PageCache *cache; 153 QemuMutex lock; 154 /* it will store a page full of zeros */ 155 uint8_t *zero_target_page; 156 /* buffer used for XBZRLE decoding */ 157 uint8_t *decoded_buf; 158 } XBZRLE; 159 160 static void XBZRLE_cache_lock(void) 161 { 162 if (migrate_xbzrle()) { 163 qemu_mutex_lock(&XBZRLE.lock); 164 } 165 } 166 167 static void XBZRLE_cache_unlock(void) 168 { 169 if (migrate_xbzrle()) { 170 qemu_mutex_unlock(&XBZRLE.lock); 171 } 172 } 173 174 /** 175 * xbzrle_cache_resize: resize the xbzrle cache 176 * 177 * This function is called from migrate_params_apply in main 178 * thread, possibly while a migration is in progress. A running 179 * migration may be using the cache and might finish during this call, 180 * hence changes to the cache are protected by XBZRLE.lock(). 181 * 182 * Returns 0 for success or -1 for error 183 * 184 * @new_size: new cache size 185 * @errp: set *errp if the check failed, with reason 186 */ 187 int xbzrle_cache_resize(uint64_t new_size, Error **errp) 188 { 189 PageCache *new_cache; 190 int64_t ret = 0; 191 192 /* Check for truncation */ 193 if (new_size != (size_t)new_size) { 194 error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cache size", 195 "exceeding address space"); 196 return -1; 197 } 198 199 if (new_size == migrate_xbzrle_cache_size()) { 200 /* nothing to do */ 201 return 0; 202 } 203 204 XBZRLE_cache_lock(); 205 206 if (XBZRLE.cache != NULL) { 207 new_cache = cache_init(new_size, TARGET_PAGE_SIZE, errp); 208 if (!new_cache) { 209 ret = -1; 210 goto out; 211 } 212 213 cache_fini(XBZRLE.cache); 214 XBZRLE.cache = new_cache; 215 } 216 out: 217 XBZRLE_cache_unlock(); 218 return ret; 219 } 220 221 static bool postcopy_preempt_active(void) 222 { 223 return migrate_postcopy_preempt() && migration_in_postcopy(); 224 } 225 226 bool migrate_ram_is_ignored(RAMBlock *block) 227 { 228 MigMode mode = migrate_mode(); 229 return !qemu_ram_is_migratable(block) || 230 mode == MIG_MODE_CPR_TRANSFER || 231 (migrate_ignore_shared() && qemu_ram_is_shared(block) 232 && qemu_ram_is_named_file(block)); 233 } 234 235 #undef RAMBLOCK_FOREACH 236 237 int foreach_not_ignored_block(RAMBlockIterFunc func, void *opaque) 238 { 239 RAMBlock *block; 240 int ret = 0; 241 242 RCU_READ_LOCK_GUARD(); 243 244 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 245 ret = func(block, opaque); 246 if (ret) { 247 break; 248 } 249 } 250 return ret; 251 } 252 253 static void ramblock_recv_map_init(void) 254 { 255 RAMBlock *rb; 256 257 RAMBLOCK_FOREACH_NOT_IGNORED(rb) { 258 assert(!rb->receivedmap); 259 rb->receivedmap = bitmap_new(rb->max_length >> qemu_target_page_bits()); 260 } 261 } 262 263 int ramblock_recv_bitmap_test(RAMBlock *rb, void *host_addr) 264 { 265 return test_bit(ramblock_recv_bitmap_offset(host_addr, rb), 266 rb->receivedmap); 267 } 268 269 bool ramblock_recv_bitmap_test_byte_offset(RAMBlock *rb, uint64_t byte_offset) 270 { 271 return test_bit(byte_offset >> TARGET_PAGE_BITS, rb->receivedmap); 272 } 273 274 void ramblock_recv_bitmap_set(RAMBlock *rb, void *host_addr) 275 { 276 set_bit_atomic(ramblock_recv_bitmap_offset(host_addr, rb), rb->receivedmap); 277 } 278 279 void ramblock_recv_bitmap_set_range(RAMBlock *rb, void *host_addr, 280 size_t nr) 281 { 282 bitmap_set_atomic(rb->receivedmap, 283 ramblock_recv_bitmap_offset(host_addr, rb), 284 nr); 285 } 286 287 void ramblock_recv_bitmap_set_offset(RAMBlock *rb, uint64_t byte_offset) 288 { 289 set_bit_atomic(byte_offset >> TARGET_PAGE_BITS, rb->receivedmap); 290 } 291 #define RAMBLOCK_RECV_BITMAP_ENDING (0x0123456789abcdefULL) 292 293 /* 294 * Format: bitmap_size (8 bytes) + whole_bitmap (N bytes). 295 * 296 * Returns >0 if success with sent bytes, or <0 if error. 297 */ 298 int64_t ramblock_recv_bitmap_send(QEMUFile *file, 299 const char *block_name) 300 { 301 RAMBlock *block = qemu_ram_block_by_name(block_name); 302 unsigned long *le_bitmap, nbits; 303 uint64_t size; 304 305 if (!block) { 306 error_report("%s: invalid block name: %s", __func__, block_name); 307 return -1; 308 } 309 310 nbits = block->postcopy_length >> TARGET_PAGE_BITS; 311 312 /* 313 * Make sure the tmp bitmap buffer is big enough, e.g., on 32bit 314 * machines we may need 4 more bytes for padding (see below 315 * comment). So extend it a bit before hand. 316 */ 317 le_bitmap = bitmap_new(nbits + BITS_PER_LONG); 318 319 /* 320 * Always use little endian when sending the bitmap. This is 321 * required that when source and destination VMs are not using the 322 * same endianness. (Note: big endian won't work.) 323 */ 324 bitmap_to_le(le_bitmap, block->receivedmap, nbits); 325 326 /* Size of the bitmap, in bytes */ 327 size = DIV_ROUND_UP(nbits, 8); 328 329 /* 330 * size is always aligned to 8 bytes for 64bit machines, but it 331 * may not be true for 32bit machines. We need this padding to 332 * make sure the migration can survive even between 32bit and 333 * 64bit machines. 334 */ 335 size = ROUND_UP(size, 8); 336 337 qemu_put_be64(file, size); 338 qemu_put_buffer(file, (const uint8_t *)le_bitmap, size); 339 g_free(le_bitmap); 340 /* 341 * Mark as an end, in case the middle part is screwed up due to 342 * some "mysterious" reason. 343 */ 344 qemu_put_be64(file, RAMBLOCK_RECV_BITMAP_ENDING); 345 int ret = qemu_fflush(file); 346 if (ret) { 347 return ret; 348 } 349 350 return size + sizeof(size); 351 } 352 353 /* 354 * An outstanding page request, on the source, having been received 355 * and queued 356 */ 357 struct RAMSrcPageRequest { 358 RAMBlock *rb; 359 hwaddr offset; 360 hwaddr len; 361 362 QSIMPLEQ_ENTRY(RAMSrcPageRequest) next_req; 363 }; 364 365 /* State of RAM for migration */ 366 struct RAMState { 367 /* 368 * PageSearchStatus structures for the channels when send pages. 369 * Protected by the bitmap_mutex. 370 */ 371 PageSearchStatus pss[RAM_CHANNEL_MAX]; 372 /* UFFD file descriptor, used in 'write-tracking' migration */ 373 int uffdio_fd; 374 /* total ram size in bytes */ 375 uint64_t ram_bytes_total; 376 /* Last block that we have visited searching for dirty pages */ 377 RAMBlock *last_seen_block; 378 /* Last dirty target page we have sent */ 379 ram_addr_t last_page; 380 /* last ram version we have seen */ 381 uint32_t last_version; 382 /* How many times we have dirty too many pages */ 383 int dirty_rate_high_cnt; 384 /* these variables are used for bitmap sync */ 385 /* last time we did a full bitmap_sync */ 386 int64_t time_last_bitmap_sync; 387 /* bytes transferred at start_time */ 388 uint64_t bytes_xfer_prev; 389 /* number of dirty pages since start_time */ 390 uint64_t num_dirty_pages_period; 391 /* xbzrle misses since the beginning of the period */ 392 uint64_t xbzrle_cache_miss_prev; 393 /* Amount of xbzrle pages since the beginning of the period */ 394 uint64_t xbzrle_pages_prev; 395 /* Amount of xbzrle encoded bytes since the beginning of the period */ 396 uint64_t xbzrle_bytes_prev; 397 /* Are we really using XBZRLE (e.g., after the first round). */ 398 bool xbzrle_started; 399 /* Are we on the last stage of migration */ 400 bool last_stage; 401 402 /* total handled target pages at the beginning of period */ 403 uint64_t target_page_count_prev; 404 /* total handled target pages since start */ 405 uint64_t target_page_count; 406 /* number of dirty bits in the bitmap */ 407 uint64_t migration_dirty_pages; 408 /* 409 * Protects: 410 * - dirty/clear bitmap 411 * - migration_dirty_pages 412 * - pss structures 413 */ 414 QemuMutex bitmap_mutex; 415 /* The RAMBlock used in the last src_page_requests */ 416 RAMBlock *last_req_rb; 417 /* Queue of outstanding page requests from the destination */ 418 QemuMutex src_page_req_mutex; 419 QSIMPLEQ_HEAD(, RAMSrcPageRequest) src_page_requests; 420 421 /* 422 * This is only used when postcopy is in recovery phase, to communicate 423 * between the migration thread and the return path thread on dirty 424 * bitmap synchronizations. This field is unused in other stages of 425 * RAM migration. 426 */ 427 unsigned int postcopy_bmap_sync_requested; 428 /* 429 * Page hint during postcopy when preempt mode is on. Return path 430 * thread sets it, while background migration thread consumes it. 431 * 432 * Protected by @bitmap_mutex. 433 */ 434 PageLocationHint page_hint; 435 }; 436 typedef struct RAMState RAMState; 437 438 static RAMState *ram_state; 439 440 static NotifierWithReturnList precopy_notifier_list; 441 442 /* Whether postcopy has queued requests? */ 443 static bool postcopy_has_request(RAMState *rs) 444 { 445 return !QSIMPLEQ_EMPTY_ATOMIC(&rs->src_page_requests); 446 } 447 448 void precopy_infrastructure_init(void) 449 { 450 notifier_with_return_list_init(&precopy_notifier_list); 451 } 452 453 void precopy_add_notifier(NotifierWithReturn *n) 454 { 455 notifier_with_return_list_add(&precopy_notifier_list, n); 456 } 457 458 void precopy_remove_notifier(NotifierWithReturn *n) 459 { 460 notifier_with_return_remove(n); 461 } 462 463 int precopy_notify(PrecopyNotifyReason reason, Error **errp) 464 { 465 PrecopyNotifyData pnd; 466 pnd.reason = reason; 467 468 return notifier_with_return_list_notify(&precopy_notifier_list, &pnd, errp); 469 } 470 471 uint64_t ram_bytes_remaining(void) 472 { 473 return ram_state ? (ram_state->migration_dirty_pages * TARGET_PAGE_SIZE) : 474 0; 475 } 476 477 void ram_transferred_add(uint64_t bytes) 478 { 479 if (runstate_is_running()) { 480 stat64_add(&mig_stats.precopy_bytes, bytes); 481 } else if (migration_in_postcopy()) { 482 stat64_add(&mig_stats.postcopy_bytes, bytes); 483 } else { 484 stat64_add(&mig_stats.downtime_bytes, bytes); 485 } 486 } 487 488 static int ram_save_host_page_urgent(PageSearchStatus *pss); 489 490 /* NOTE: page is the PFN not real ram_addr_t. */ 491 static void pss_init(PageSearchStatus *pss, RAMBlock *rb, ram_addr_t page) 492 { 493 pss->block = rb; 494 pss->page = page; 495 pss->complete_round = false; 496 } 497 498 /* 499 * Check whether two PSSs are actively sending the same page. Return true 500 * if it is, false otherwise. 501 */ 502 static bool pss_overlap(PageSearchStatus *pss1, PageSearchStatus *pss2) 503 { 504 return pss1->host_page_sending && pss2->host_page_sending && 505 (pss1->host_page_start == pss2->host_page_start); 506 } 507 508 /** 509 * save_page_header: write page header to wire 510 * 511 * If this is the 1st block, it also writes the block identification 512 * 513 * Returns the number of bytes written 514 * 515 * @pss: current PSS channel status 516 * @block: block that contains the page we want to send 517 * @offset: offset inside the block for the page 518 * in the lower bits, it contains flags 519 */ 520 static size_t save_page_header(PageSearchStatus *pss, QEMUFile *f, 521 RAMBlock *block, ram_addr_t offset) 522 { 523 size_t size, len; 524 bool same_block = (block == pss->last_sent_block); 525 526 if (same_block) { 527 offset |= RAM_SAVE_FLAG_CONTINUE; 528 } 529 qemu_put_be64(f, offset); 530 size = 8; 531 532 if (!same_block) { 533 len = strlen(block->idstr); 534 qemu_put_byte(f, len); 535 qemu_put_buffer(f, (uint8_t *)block->idstr, len); 536 size += 1 + len; 537 pss->last_sent_block = block; 538 } 539 return size; 540 } 541 542 /** 543 * mig_throttle_guest_down: throttle down the guest 544 * 545 * Reduce amount of guest cpu execution to hopefully slow down memory 546 * writes. If guest dirty memory rate is reduced below the rate at 547 * which we can transfer pages to the destination then we should be 548 * able to complete migration. Some workloads dirty memory way too 549 * fast and will not effectively converge, even with auto-converge. 550 */ 551 static void mig_throttle_guest_down(uint64_t bytes_dirty_period, 552 uint64_t bytes_dirty_threshold) 553 { 554 uint64_t pct_initial = migrate_cpu_throttle_initial(); 555 uint64_t pct_increment = migrate_cpu_throttle_increment(); 556 bool pct_tailslow = migrate_cpu_throttle_tailslow(); 557 int pct_max = migrate_max_cpu_throttle(); 558 559 uint64_t throttle_now = cpu_throttle_get_percentage(); 560 uint64_t cpu_now, cpu_ideal, throttle_inc; 561 562 /* We have not started throttling yet. Let's start it. */ 563 if (!cpu_throttle_active()) { 564 cpu_throttle_set(pct_initial); 565 } else { 566 /* Throttling already on, just increase the rate */ 567 if (!pct_tailslow) { 568 throttle_inc = pct_increment; 569 } else { 570 /* Compute the ideal CPU percentage used by Guest, which may 571 * make the dirty rate match the dirty rate threshold. */ 572 cpu_now = 100 - throttle_now; 573 cpu_ideal = cpu_now * (bytes_dirty_threshold * 1.0 / 574 bytes_dirty_period); 575 throttle_inc = MIN(cpu_now - cpu_ideal, pct_increment); 576 } 577 cpu_throttle_set(MIN(throttle_now + throttle_inc, pct_max)); 578 } 579 } 580 581 void mig_throttle_counter_reset(void) 582 { 583 RAMState *rs = ram_state; 584 585 rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); 586 rs->num_dirty_pages_period = 0; 587 rs->bytes_xfer_prev = migration_transferred_bytes(); 588 } 589 590 /** 591 * xbzrle_cache_zero_page: insert a zero page in the XBZRLE cache 592 * 593 * @current_addr: address for the zero page 594 * 595 * Update the xbzrle cache to reflect a page that's been sent as all 0. 596 * The important thing is that a stale (not-yet-0'd) page be replaced 597 * by the new data. 598 * As a bonus, if the page wasn't in the cache it gets added so that 599 * when a small write is made into the 0'd page it gets XBZRLE sent. 600 */ 601 static void xbzrle_cache_zero_page(ram_addr_t current_addr) 602 { 603 /* We don't care if this fails to allocate a new cache page 604 * as long as it updated an old one */ 605 cache_insert(XBZRLE.cache, current_addr, XBZRLE.zero_target_page, 606 stat64_get(&mig_stats.dirty_sync_count)); 607 } 608 609 #define ENCODING_FLAG_XBZRLE 0x1 610 611 /** 612 * save_xbzrle_page: compress and send current page 613 * 614 * Returns: 1 means that we wrote the page 615 * 0 means that page is identical to the one already sent 616 * -1 means that xbzrle would be longer than normal 617 * 618 * @rs: current RAM state 619 * @pss: current PSS channel 620 * @current_data: pointer to the address of the page contents 621 * @current_addr: addr of the page 622 * @block: block that contains the page we want to send 623 * @offset: offset inside the block for the page 624 */ 625 static int save_xbzrle_page(RAMState *rs, PageSearchStatus *pss, 626 uint8_t **current_data, ram_addr_t current_addr, 627 RAMBlock *block, ram_addr_t offset) 628 { 629 int encoded_len = 0, bytes_xbzrle; 630 uint8_t *prev_cached_page; 631 QEMUFile *file = pss->pss_channel; 632 uint64_t generation = stat64_get(&mig_stats.dirty_sync_count); 633 634 if (!cache_is_cached(XBZRLE.cache, current_addr, generation)) { 635 xbzrle_counters.cache_miss++; 636 if (!rs->last_stage) { 637 if (cache_insert(XBZRLE.cache, current_addr, *current_data, 638 generation) == -1) { 639 return -1; 640 } else { 641 /* update *current_data when the page has been 642 inserted into cache */ 643 *current_data = get_cached_data(XBZRLE.cache, current_addr); 644 } 645 } 646 return -1; 647 } 648 649 /* 650 * Reaching here means the page has hit the xbzrle cache, no matter what 651 * encoding result it is (normal encoding, overflow or skipping the page), 652 * count the page as encoded. This is used to calculate the encoding rate. 653 * 654 * Example: 2 pages (8KB) being encoded, first page encoding generates 2KB, 655 * 2nd page turns out to be skipped (i.e. no new bytes written to the 656 * page), the overall encoding rate will be 8KB / 2KB = 4, which has the 657 * skipped page included. In this way, the encoding rate can tell if the 658 * guest page is good for xbzrle encoding. 659 */ 660 xbzrle_counters.pages++; 661 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr); 662 663 /* save current buffer into memory */ 664 memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE); 665 666 /* XBZRLE encoding (if there is no overflow) */ 667 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf, 668 TARGET_PAGE_SIZE, XBZRLE.encoded_buf, 669 TARGET_PAGE_SIZE); 670 671 /* 672 * Update the cache contents, so that it corresponds to the data 673 * sent, in all cases except where we skip the page. 674 */ 675 if (!rs->last_stage && encoded_len != 0) { 676 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE); 677 /* 678 * In the case where we couldn't compress, ensure that the caller 679 * sends the data from the cache, since the guest might have 680 * changed the RAM since we copied it. 681 */ 682 *current_data = prev_cached_page; 683 } 684 685 if (encoded_len == 0) { 686 trace_save_xbzrle_page_skipping(); 687 return 0; 688 } else if (encoded_len == -1) { 689 trace_save_xbzrle_page_overflow(); 690 xbzrle_counters.overflow++; 691 xbzrle_counters.bytes += TARGET_PAGE_SIZE; 692 return -1; 693 } 694 695 /* Send XBZRLE based compressed page */ 696 bytes_xbzrle = save_page_header(pss, pss->pss_channel, block, 697 offset | RAM_SAVE_FLAG_XBZRLE); 698 qemu_put_byte(file, ENCODING_FLAG_XBZRLE); 699 qemu_put_be16(file, encoded_len); 700 qemu_put_buffer(file, XBZRLE.encoded_buf, encoded_len); 701 bytes_xbzrle += encoded_len + 1 + 2; 702 /* 703 * The xbzrle encoded bytes don't count the 8 byte header with 704 * RAM_SAVE_FLAG_CONTINUE. 705 */ 706 xbzrle_counters.bytes += bytes_xbzrle - 8; 707 ram_transferred_add(bytes_xbzrle); 708 709 return 1; 710 } 711 712 /** 713 * pss_find_next_dirty: find the next dirty page of current ramblock 714 * 715 * This function updates pss->page to point to the next dirty page index 716 * within the ramblock to migrate, or the end of ramblock when nothing 717 * found. Note that when pss->host_page_sending==true it means we're 718 * during sending a host page, so we won't look for dirty page that is 719 * outside the host page boundary. 720 * 721 * @pss: the current page search status 722 */ 723 static void pss_find_next_dirty(PageSearchStatus *pss) 724 { 725 RAMBlock *rb = pss->block; 726 unsigned long size = rb->used_length >> TARGET_PAGE_BITS; 727 unsigned long *bitmap = rb->bmap; 728 729 if (migrate_ram_is_ignored(rb)) { 730 /* Points directly to the end, so we know no dirty page */ 731 pss->page = size; 732 return; 733 } 734 735 /* 736 * If during sending a host page, only look for dirty pages within the 737 * current host page being send. 738 */ 739 if (pss->host_page_sending) { 740 assert(pss->host_page_end); 741 size = MIN(size, pss->host_page_end); 742 } 743 744 pss->page = find_next_bit(bitmap, size, pss->page); 745 } 746 747 static void migration_clear_memory_region_dirty_bitmap(RAMBlock *rb, 748 unsigned long page) 749 { 750 uint8_t shift; 751 hwaddr size, start; 752 753 if (!rb->clear_bmap || !clear_bmap_test_and_clear(rb, page)) { 754 return; 755 } 756 757 shift = rb->clear_bmap_shift; 758 /* 759 * CLEAR_BITMAP_SHIFT_MIN should always guarantee this... this 760 * can make things easier sometimes since then start address 761 * of the small chunk will always be 64 pages aligned so the 762 * bitmap will always be aligned to unsigned long. We should 763 * even be able to remove this restriction but I'm simply 764 * keeping it. 765 */ 766 assert(shift >= 6); 767 768 size = 1ULL << (TARGET_PAGE_BITS + shift); 769 start = QEMU_ALIGN_DOWN((ram_addr_t)page << TARGET_PAGE_BITS, size); 770 trace_migration_bitmap_clear_dirty(rb->idstr, start, size, page); 771 memory_region_clear_dirty_bitmap(rb->mr, start, size); 772 } 773 774 static void 775 migration_clear_memory_region_dirty_bitmap_range(RAMBlock *rb, 776 unsigned long start, 777 unsigned long npages) 778 { 779 unsigned long i, chunk_pages = 1UL << rb->clear_bmap_shift; 780 unsigned long chunk_start = QEMU_ALIGN_DOWN(start, chunk_pages); 781 unsigned long chunk_end = QEMU_ALIGN_UP(start + npages, chunk_pages); 782 783 /* 784 * Clear pages from start to start + npages - 1, so the end boundary is 785 * exclusive. 786 */ 787 for (i = chunk_start; i < chunk_end; i += chunk_pages) { 788 migration_clear_memory_region_dirty_bitmap(rb, i); 789 } 790 } 791 792 /* 793 * colo_bitmap_find_diry:find contiguous dirty pages from start 794 * 795 * Returns the page offset within memory region of the start of the contiguout 796 * dirty page 797 * 798 * @rs: current RAM state 799 * @rb: RAMBlock where to search for dirty pages 800 * @start: page where we start the search 801 * @num: the number of contiguous dirty pages 802 */ 803 static inline 804 unsigned long colo_bitmap_find_dirty(RAMState *rs, RAMBlock *rb, 805 unsigned long start, unsigned long *num) 806 { 807 unsigned long size = rb->used_length >> TARGET_PAGE_BITS; 808 unsigned long *bitmap = rb->bmap; 809 unsigned long first, next; 810 811 *num = 0; 812 813 if (migrate_ram_is_ignored(rb)) { 814 return size; 815 } 816 817 first = find_next_bit(bitmap, size, start); 818 if (first >= size) { 819 return first; 820 } 821 next = find_next_zero_bit(bitmap, size, first + 1); 822 assert(next >= first); 823 *num = next - first; 824 return first; 825 } 826 827 static inline bool migration_bitmap_clear_dirty(RAMState *rs, 828 RAMBlock *rb, 829 unsigned long page) 830 { 831 bool ret; 832 833 /* 834 * During the last stage (after source VM stopped), resetting the write 835 * protections isn't needed as we know there will be either (1) no 836 * further writes if migration will complete, or (2) migration fails 837 * at last then tracking isn't needed either. 838 * 839 * Do the same for postcopy due to the same reason. 840 */ 841 if (!rs->last_stage && !migration_in_postcopy()) { 842 /* 843 * Clear dirty bitmap if needed. This _must_ be called before we 844 * send any of the page in the chunk because we need to make sure 845 * we can capture further page content changes when we sync dirty 846 * log the next time. So as long as we are going to send any of 847 * the page in the chunk we clear the remote dirty bitmap for all. 848 * Clearing it earlier won't be a problem, but too late will. 849 */ 850 migration_clear_memory_region_dirty_bitmap(rb, page); 851 } 852 853 ret = test_and_clear_bit(page, rb->bmap); 854 if (ret) { 855 rs->migration_dirty_pages--; 856 } 857 858 return ret; 859 } 860 861 static int dirty_bitmap_clear_section(MemoryRegionSection *section, 862 void *opaque) 863 { 864 const hwaddr offset = section->offset_within_region; 865 const hwaddr size = int128_get64(section->size); 866 const unsigned long start = offset >> TARGET_PAGE_BITS; 867 const unsigned long npages = size >> TARGET_PAGE_BITS; 868 RAMBlock *rb = section->mr->ram_block; 869 uint64_t *cleared_bits = opaque; 870 871 /* 872 * We don't grab ram_state->bitmap_mutex because we expect to run 873 * only when starting migration or during postcopy recovery where 874 * we don't have concurrent access. 875 */ 876 if (!migration_in_postcopy() && !migrate_background_snapshot()) { 877 migration_clear_memory_region_dirty_bitmap_range(rb, start, npages); 878 } 879 *cleared_bits += bitmap_count_one_with_offset(rb->bmap, start, npages); 880 bitmap_clear(rb->bmap, start, npages); 881 return 0; 882 } 883 884 /* 885 * Exclude all dirty pages from migration that fall into a discarded range as 886 * managed by a RamDiscardManager responsible for the mapped memory region of 887 * the RAMBlock. Clear the corresponding bits in the dirty bitmaps. 888 * 889 * Discarded pages ("logically unplugged") have undefined content and must 890 * not get migrated, because even reading these pages for migration might 891 * result in undesired behavior. 892 * 893 * Returns the number of cleared bits in the RAMBlock dirty bitmap. 894 * 895 * Note: The result is only stable while migrating (precopy/postcopy). 896 */ 897 static uint64_t ramblock_dirty_bitmap_clear_discarded_pages(RAMBlock *rb) 898 { 899 uint64_t cleared_bits = 0; 900 901 if (rb->mr && rb->bmap && memory_region_has_ram_discard_manager(rb->mr)) { 902 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr); 903 MemoryRegionSection section = { 904 .mr = rb->mr, 905 .offset_within_region = 0, 906 .size = int128_make64(qemu_ram_get_used_length(rb)), 907 }; 908 909 ram_discard_manager_replay_discarded(rdm, §ion, 910 dirty_bitmap_clear_section, 911 &cleared_bits); 912 } 913 return cleared_bits; 914 } 915 916 /* 917 * Check if a host-page aligned page falls into a discarded range as managed by 918 * a RamDiscardManager responsible for the mapped memory region of the RAMBlock. 919 * 920 * Note: The result is only stable while migrating (precopy/postcopy). 921 */ 922 bool ramblock_page_is_discarded(RAMBlock *rb, ram_addr_t start) 923 { 924 if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) { 925 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr); 926 MemoryRegionSection section = { 927 .mr = rb->mr, 928 .offset_within_region = start, 929 .size = int128_make64(qemu_ram_pagesize(rb)), 930 }; 931 932 return !ram_discard_manager_is_populated(rdm, §ion); 933 } 934 return false; 935 } 936 937 /* Called with RCU critical section */ 938 static void ramblock_sync_dirty_bitmap(RAMState *rs, RAMBlock *rb) 939 { 940 uint64_t new_dirty_pages = 941 cpu_physical_memory_sync_dirty_bitmap(rb, 0, rb->used_length); 942 943 rs->migration_dirty_pages += new_dirty_pages; 944 rs->num_dirty_pages_period += new_dirty_pages; 945 } 946 947 /** 948 * ram_pagesize_summary: calculate all the pagesizes of a VM 949 * 950 * Returns a summary bitmap of the page sizes of all RAMBlocks 951 * 952 * For VMs with just normal pages this is equivalent to the host page 953 * size. If it's got some huge pages then it's the OR of all the 954 * different page sizes. 955 */ 956 uint64_t ram_pagesize_summary(void) 957 { 958 RAMBlock *block; 959 uint64_t summary = 0; 960 961 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 962 summary |= block->page_size; 963 } 964 965 return summary; 966 } 967 968 uint64_t ram_get_total_transferred_pages(void) 969 { 970 return stat64_get(&mig_stats.normal_pages) + 971 stat64_get(&mig_stats.zero_pages) + 972 xbzrle_counters.pages; 973 } 974 975 static void migration_update_rates(RAMState *rs, int64_t end_time) 976 { 977 uint64_t page_count = rs->target_page_count - rs->target_page_count_prev; 978 979 /* calculate period counters */ 980 stat64_set(&mig_stats.dirty_pages_rate, 981 rs->num_dirty_pages_period * 1000 / 982 (end_time - rs->time_last_bitmap_sync)); 983 984 if (!page_count) { 985 return; 986 } 987 988 if (migrate_xbzrle()) { 989 double encoded_size, unencoded_size; 990 991 xbzrle_counters.cache_miss_rate = (double)(xbzrle_counters.cache_miss - 992 rs->xbzrle_cache_miss_prev) / page_count; 993 rs->xbzrle_cache_miss_prev = xbzrle_counters.cache_miss; 994 unencoded_size = (xbzrle_counters.pages - rs->xbzrle_pages_prev) * 995 TARGET_PAGE_SIZE; 996 encoded_size = xbzrle_counters.bytes - rs->xbzrle_bytes_prev; 997 if (xbzrle_counters.pages == rs->xbzrle_pages_prev || !encoded_size) { 998 xbzrle_counters.encoding_rate = 0; 999 } else { 1000 xbzrle_counters.encoding_rate = unencoded_size / encoded_size; 1001 } 1002 rs->xbzrle_pages_prev = xbzrle_counters.pages; 1003 rs->xbzrle_bytes_prev = xbzrle_counters.bytes; 1004 } 1005 } 1006 1007 /* 1008 * Enable dirty-limit to throttle down the guest 1009 */ 1010 static void migration_dirty_limit_guest(void) 1011 { 1012 /* 1013 * dirty page rate quota for all vCPUs fetched from 1014 * migration parameter 'vcpu_dirty_limit' 1015 */ 1016 static int64_t quota_dirtyrate; 1017 MigrationState *s = migrate_get_current(); 1018 1019 /* 1020 * If dirty limit already enabled and migration parameter 1021 * vcpu-dirty-limit untouched. 1022 */ 1023 if (dirtylimit_in_service() && 1024 quota_dirtyrate == s->parameters.vcpu_dirty_limit) { 1025 return; 1026 } 1027 1028 quota_dirtyrate = s->parameters.vcpu_dirty_limit; 1029 1030 /* 1031 * Set all vCPU a quota dirtyrate, note that the second 1032 * parameter will be ignored if setting all vCPU for the vm 1033 */ 1034 qmp_set_vcpu_dirty_limit(false, -1, quota_dirtyrate, NULL); 1035 trace_migration_dirty_limit_guest(quota_dirtyrate); 1036 } 1037 1038 static void migration_trigger_throttle(RAMState *rs) 1039 { 1040 uint64_t threshold = migrate_throttle_trigger_threshold(); 1041 uint64_t bytes_xfer_period = 1042 migration_transferred_bytes() - rs->bytes_xfer_prev; 1043 uint64_t bytes_dirty_period = rs->num_dirty_pages_period * TARGET_PAGE_SIZE; 1044 uint64_t bytes_dirty_threshold = bytes_xfer_period * threshold / 100; 1045 1046 /* 1047 * The following detection logic can be refined later. For now: 1048 * Check to see if the ratio between dirtied bytes and the approx. 1049 * amount of bytes that just got transferred since the last time 1050 * we were in this routine reaches the threshold. If that happens 1051 * twice, start or increase throttling. 1052 */ 1053 if ((bytes_dirty_period > bytes_dirty_threshold) && 1054 (++rs->dirty_rate_high_cnt >= 2)) { 1055 rs->dirty_rate_high_cnt = 0; 1056 if (migrate_auto_converge()) { 1057 trace_migration_throttle(); 1058 mig_throttle_guest_down(bytes_dirty_period, 1059 bytes_dirty_threshold); 1060 } else if (migrate_dirty_limit()) { 1061 migration_dirty_limit_guest(); 1062 } 1063 } 1064 } 1065 1066 static void migration_bitmap_sync(RAMState *rs, bool last_stage) 1067 { 1068 RAMBlock *block; 1069 int64_t end_time; 1070 1071 stat64_add(&mig_stats.dirty_sync_count, 1); 1072 1073 if (!rs->time_last_bitmap_sync) { 1074 rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); 1075 } 1076 1077 trace_migration_bitmap_sync_start(); 1078 memory_global_dirty_log_sync(last_stage); 1079 1080 WITH_QEMU_LOCK_GUARD(&rs->bitmap_mutex) { 1081 WITH_RCU_READ_LOCK_GUARD() { 1082 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 1083 ramblock_sync_dirty_bitmap(rs, block); 1084 } 1085 stat64_set(&mig_stats.dirty_bytes_last_sync, ram_bytes_remaining()); 1086 } 1087 } 1088 1089 memory_global_after_dirty_log_sync(); 1090 trace_migration_bitmap_sync_end(rs->num_dirty_pages_period); 1091 1092 end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); 1093 1094 /* more than 1 second = 1000 millisecons */ 1095 if (end_time > rs->time_last_bitmap_sync + 1000) { 1096 migration_trigger_throttle(rs); 1097 1098 migration_update_rates(rs, end_time); 1099 1100 rs->target_page_count_prev = rs->target_page_count; 1101 1102 /* reset period counters */ 1103 rs->time_last_bitmap_sync = end_time; 1104 rs->num_dirty_pages_period = 0; 1105 rs->bytes_xfer_prev = migration_transferred_bytes(); 1106 } 1107 if (migrate_events()) { 1108 uint64_t generation = stat64_get(&mig_stats.dirty_sync_count); 1109 qapi_event_send_migration_pass(generation); 1110 } 1111 } 1112 1113 void migration_bitmap_sync_precopy(bool last_stage) 1114 { 1115 Error *local_err = NULL; 1116 assert(ram_state); 1117 1118 /* 1119 * The current notifier usage is just an optimization to migration, so we 1120 * don't stop the normal migration process in the error case. 1121 */ 1122 if (precopy_notify(PRECOPY_NOTIFY_BEFORE_BITMAP_SYNC, &local_err)) { 1123 error_report_err(local_err); 1124 local_err = NULL; 1125 } 1126 1127 migration_bitmap_sync(ram_state, last_stage); 1128 1129 if (precopy_notify(PRECOPY_NOTIFY_AFTER_BITMAP_SYNC, &local_err)) { 1130 error_report_err(local_err); 1131 } 1132 } 1133 1134 void ram_release_page(const char *rbname, uint64_t offset) 1135 { 1136 if (!migrate_release_ram() || !migration_in_postcopy()) { 1137 return; 1138 } 1139 1140 ram_discard_range(rbname, offset, TARGET_PAGE_SIZE); 1141 } 1142 1143 /** 1144 * save_zero_page: send the zero page to the stream 1145 * 1146 * Returns the number of pages written. 1147 * 1148 * @rs: current RAM state 1149 * @pss: current PSS channel 1150 * @offset: offset inside the block for the page 1151 */ 1152 static int save_zero_page(RAMState *rs, PageSearchStatus *pss, 1153 ram_addr_t offset) 1154 { 1155 uint8_t *p = pss->block->host + offset; 1156 QEMUFile *file = pss->pss_channel; 1157 int len = 0; 1158 1159 if (migrate_zero_page_detection() == ZERO_PAGE_DETECTION_NONE) { 1160 return 0; 1161 } 1162 1163 if (!buffer_is_zero(p, TARGET_PAGE_SIZE)) { 1164 return 0; 1165 } 1166 1167 stat64_add(&mig_stats.zero_pages, 1); 1168 1169 if (migrate_mapped_ram()) { 1170 /* zero pages are not transferred with mapped-ram */ 1171 clear_bit_atomic(offset >> TARGET_PAGE_BITS, pss->block->file_bmap); 1172 return 1; 1173 } 1174 1175 len += save_page_header(pss, file, pss->block, offset | RAM_SAVE_FLAG_ZERO); 1176 qemu_put_byte(file, 0); 1177 len += 1; 1178 ram_release_page(pss->block->idstr, offset); 1179 ram_transferred_add(len); 1180 1181 /* 1182 * Must let xbzrle know, otherwise a previous (now 0'd) cached 1183 * page would be stale. 1184 */ 1185 if (rs->xbzrle_started) { 1186 XBZRLE_cache_lock(); 1187 xbzrle_cache_zero_page(pss->block->offset + offset); 1188 XBZRLE_cache_unlock(); 1189 } 1190 1191 return len; 1192 } 1193 1194 /* 1195 * directly send the page to the stream 1196 * 1197 * Returns the number of pages written. 1198 * 1199 * @pss: current PSS channel 1200 * @block: block that contains the page we want to send 1201 * @offset: offset inside the block for the page 1202 * @buf: the page to be sent 1203 * @async: send to page asyncly 1204 */ 1205 static int save_normal_page(PageSearchStatus *pss, RAMBlock *block, 1206 ram_addr_t offset, uint8_t *buf, bool async) 1207 { 1208 QEMUFile *file = pss->pss_channel; 1209 1210 if (migrate_mapped_ram()) { 1211 qemu_put_buffer_at(file, buf, TARGET_PAGE_SIZE, 1212 block->pages_offset + offset); 1213 set_bit(offset >> TARGET_PAGE_BITS, block->file_bmap); 1214 } else { 1215 ram_transferred_add(save_page_header(pss, pss->pss_channel, block, 1216 offset | RAM_SAVE_FLAG_PAGE)); 1217 if (async) { 1218 qemu_put_buffer_async(file, buf, TARGET_PAGE_SIZE, 1219 migrate_release_ram() && 1220 migration_in_postcopy()); 1221 } else { 1222 qemu_put_buffer(file, buf, TARGET_PAGE_SIZE); 1223 } 1224 } 1225 ram_transferred_add(TARGET_PAGE_SIZE); 1226 stat64_add(&mig_stats.normal_pages, 1); 1227 return 1; 1228 } 1229 1230 /** 1231 * ram_save_page: send the given page to the stream 1232 * 1233 * Returns the number of pages written. 1234 * < 0 - error 1235 * >=0 - Number of pages written - this might legally be 0 1236 * if xbzrle noticed the page was the same. 1237 * 1238 * @rs: current RAM state 1239 * @block: block that contains the page we want to send 1240 * @offset: offset inside the block for the page 1241 */ 1242 static int ram_save_page(RAMState *rs, PageSearchStatus *pss) 1243 { 1244 int pages = -1; 1245 uint8_t *p; 1246 bool send_async = true; 1247 RAMBlock *block = pss->block; 1248 ram_addr_t offset = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS; 1249 ram_addr_t current_addr = block->offset + offset; 1250 1251 p = block->host + offset; 1252 trace_ram_save_page(block->idstr, (uint64_t)offset, p); 1253 1254 XBZRLE_cache_lock(); 1255 if (rs->xbzrle_started && !migration_in_postcopy()) { 1256 pages = save_xbzrle_page(rs, pss, &p, current_addr, 1257 block, offset); 1258 if (!rs->last_stage) { 1259 /* Can't send this cached data async, since the cache page 1260 * might get updated before it gets to the wire 1261 */ 1262 send_async = false; 1263 } 1264 } 1265 1266 /* XBZRLE overflow or normal page */ 1267 if (pages == -1) { 1268 pages = save_normal_page(pss, block, offset, p, send_async); 1269 } 1270 1271 XBZRLE_cache_unlock(); 1272 1273 return pages; 1274 } 1275 1276 static int ram_save_multifd_page(RAMBlock *block, ram_addr_t offset) 1277 { 1278 if (!multifd_queue_page(block, offset)) { 1279 return -1; 1280 } 1281 1282 return 1; 1283 } 1284 1285 1286 #define PAGE_ALL_CLEAN 0 1287 #define PAGE_TRY_AGAIN 1 1288 #define PAGE_DIRTY_FOUND 2 1289 /** 1290 * find_dirty_block: find the next dirty page and update any state 1291 * associated with the search process. 1292 * 1293 * Returns: 1294 * <0: An error happened 1295 * PAGE_ALL_CLEAN: no dirty page found, give up 1296 * PAGE_TRY_AGAIN: no dirty page found, retry for next block 1297 * PAGE_DIRTY_FOUND: dirty page found 1298 * 1299 * @rs: current RAM state 1300 * @pss: data about the state of the current dirty page scan 1301 * @again: set to false if the search has scanned the whole of RAM 1302 */ 1303 static int find_dirty_block(RAMState *rs, PageSearchStatus *pss) 1304 { 1305 /* Update pss->page for the next dirty bit in ramblock */ 1306 pss_find_next_dirty(pss); 1307 1308 if (pss->complete_round && pss->block == rs->last_seen_block && 1309 pss->page >= rs->last_page) { 1310 /* 1311 * We've been once around the RAM and haven't found anything. 1312 * Give up. 1313 */ 1314 return PAGE_ALL_CLEAN; 1315 } 1316 if (!offset_in_ramblock(pss->block, 1317 ((ram_addr_t)pss->page) << TARGET_PAGE_BITS)) { 1318 /* Didn't find anything in this RAM Block */ 1319 pss->page = 0; 1320 pss->block = QLIST_NEXT_RCU(pss->block, next); 1321 if (!pss->block) { 1322 if (multifd_ram_sync_per_round()) { 1323 QEMUFile *f = rs->pss[RAM_CHANNEL_PRECOPY].pss_channel; 1324 int ret = multifd_ram_flush_and_sync(f); 1325 if (ret < 0) { 1326 return ret; 1327 } 1328 } 1329 1330 /* Hit the end of the list */ 1331 pss->block = QLIST_FIRST_RCU(&ram_list.blocks); 1332 /* Flag that we've looped */ 1333 pss->complete_round = true; 1334 /* After the first round, enable XBZRLE. */ 1335 if (migrate_xbzrle()) { 1336 rs->xbzrle_started = true; 1337 } 1338 } 1339 /* Didn't find anything this time, but try again on the new block */ 1340 return PAGE_TRY_AGAIN; 1341 } else { 1342 /* We've found something */ 1343 return PAGE_DIRTY_FOUND; 1344 } 1345 } 1346 1347 /** 1348 * unqueue_page: gets a page of the queue 1349 * 1350 * Helper for 'get_queued_page' - gets a page off the queue 1351 * 1352 * Returns the block of the page (or NULL if none available) 1353 * 1354 * @rs: current RAM state 1355 * @offset: used to return the offset within the RAMBlock 1356 */ 1357 static RAMBlock *unqueue_page(RAMState *rs, ram_addr_t *offset) 1358 { 1359 struct RAMSrcPageRequest *entry; 1360 RAMBlock *block = NULL; 1361 1362 if (!postcopy_has_request(rs)) { 1363 return NULL; 1364 } 1365 1366 QEMU_LOCK_GUARD(&rs->src_page_req_mutex); 1367 1368 /* 1369 * This should _never_ change even after we take the lock, because no one 1370 * should be taking anything off the request list other than us. 1371 */ 1372 assert(postcopy_has_request(rs)); 1373 1374 entry = QSIMPLEQ_FIRST(&rs->src_page_requests); 1375 block = entry->rb; 1376 *offset = entry->offset; 1377 1378 if (entry->len > TARGET_PAGE_SIZE) { 1379 entry->len -= TARGET_PAGE_SIZE; 1380 entry->offset += TARGET_PAGE_SIZE; 1381 } else { 1382 memory_region_unref(block->mr); 1383 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req); 1384 g_free(entry); 1385 migration_consume_urgent_request(); 1386 } 1387 1388 return block; 1389 } 1390 1391 #if defined(__linux__) 1392 /** 1393 * poll_fault_page: try to get next UFFD write fault page and, if pending fault 1394 * is found, return RAM block pointer and page offset 1395 * 1396 * Returns pointer to the RAMBlock containing faulting page, 1397 * NULL if no write faults are pending 1398 * 1399 * @rs: current RAM state 1400 * @offset: page offset from the beginning of the block 1401 */ 1402 static RAMBlock *poll_fault_page(RAMState *rs, ram_addr_t *offset) 1403 { 1404 struct uffd_msg uffd_msg; 1405 void *page_address; 1406 RAMBlock *block; 1407 int res; 1408 1409 if (!migrate_background_snapshot()) { 1410 return NULL; 1411 } 1412 1413 res = uffd_read_events(rs->uffdio_fd, &uffd_msg, 1); 1414 if (res <= 0) { 1415 return NULL; 1416 } 1417 1418 page_address = (void *)(uintptr_t) uffd_msg.arg.pagefault.address; 1419 block = qemu_ram_block_from_host(page_address, false, offset); 1420 assert(block && (block->flags & RAM_UF_WRITEPROTECT) != 0); 1421 return block; 1422 } 1423 1424 /** 1425 * ram_save_release_protection: release UFFD write protection after 1426 * a range of pages has been saved 1427 * 1428 * @rs: current RAM state 1429 * @pss: page-search-status structure 1430 * @start_page: index of the first page in the range relative to pss->block 1431 * 1432 * Returns 0 on success, negative value in case of an error 1433 */ 1434 static int ram_save_release_protection(RAMState *rs, PageSearchStatus *pss, 1435 unsigned long start_page) 1436 { 1437 int res = 0; 1438 1439 /* Check if page is from UFFD-managed region. */ 1440 if (pss->block->flags & RAM_UF_WRITEPROTECT) { 1441 void *page_address = pss->block->host + (start_page << TARGET_PAGE_BITS); 1442 uint64_t run_length = (pss->page - start_page) << TARGET_PAGE_BITS; 1443 1444 /* Flush async buffers before un-protect. */ 1445 qemu_fflush(pss->pss_channel); 1446 /* Un-protect memory range. */ 1447 res = uffd_change_protection(rs->uffdio_fd, page_address, run_length, 1448 false, false); 1449 } 1450 1451 return res; 1452 } 1453 1454 /* ram_write_tracking_available: check if kernel supports required UFFD features 1455 * 1456 * Returns true if supports, false otherwise 1457 */ 1458 bool ram_write_tracking_available(void) 1459 { 1460 uint64_t uffd_features; 1461 int res; 1462 1463 res = uffd_query_features(&uffd_features); 1464 return (res == 0 && 1465 (uffd_features & UFFD_FEATURE_PAGEFAULT_FLAG_WP) != 0); 1466 } 1467 1468 /* ram_write_tracking_compatible: check if guest configuration is 1469 * compatible with 'write-tracking' 1470 * 1471 * Returns true if compatible, false otherwise 1472 */ 1473 bool ram_write_tracking_compatible(void) 1474 { 1475 const uint64_t uffd_ioctls_mask = BIT(_UFFDIO_WRITEPROTECT); 1476 int uffd_fd; 1477 RAMBlock *block; 1478 bool ret = false; 1479 1480 /* Open UFFD file descriptor */ 1481 uffd_fd = uffd_create_fd(UFFD_FEATURE_PAGEFAULT_FLAG_WP, false); 1482 if (uffd_fd < 0) { 1483 return false; 1484 } 1485 1486 RCU_READ_LOCK_GUARD(); 1487 1488 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 1489 uint64_t uffd_ioctls; 1490 1491 /* Nothing to do with read-only and MMIO-writable regions */ 1492 if (block->mr->readonly || block->mr->rom_device) { 1493 continue; 1494 } 1495 /* Try to register block memory via UFFD-IO to track writes */ 1496 if (uffd_register_memory(uffd_fd, block->host, block->max_length, 1497 UFFDIO_REGISTER_MODE_WP, &uffd_ioctls)) { 1498 goto out; 1499 } 1500 if ((uffd_ioctls & uffd_ioctls_mask) != uffd_ioctls_mask) { 1501 goto out; 1502 } 1503 } 1504 ret = true; 1505 1506 out: 1507 uffd_close_fd(uffd_fd); 1508 return ret; 1509 } 1510 1511 static inline void populate_read_range(RAMBlock *block, ram_addr_t offset, 1512 ram_addr_t size) 1513 { 1514 const ram_addr_t end = offset + size; 1515 1516 /* 1517 * We read one byte of each page; this will preallocate page tables if 1518 * required and populate the shared zeropage on MAP_PRIVATE anonymous memory 1519 * where no page was populated yet. This might require adaption when 1520 * supporting other mappings, like shmem. 1521 */ 1522 for (; offset < end; offset += block->page_size) { 1523 char tmp = *((char *)block->host + offset); 1524 1525 /* Don't optimize the read out */ 1526 asm volatile("" : "+r" (tmp)); 1527 } 1528 } 1529 1530 static inline int populate_read_section(MemoryRegionSection *section, 1531 void *opaque) 1532 { 1533 const hwaddr size = int128_get64(section->size); 1534 hwaddr offset = section->offset_within_region; 1535 RAMBlock *block = section->mr->ram_block; 1536 1537 populate_read_range(block, offset, size); 1538 return 0; 1539 } 1540 1541 /* 1542 * ram_block_populate_read: preallocate page tables and populate pages in the 1543 * RAM block by reading a byte of each page. 1544 * 1545 * Since it's solely used for userfault_fd WP feature, here we just 1546 * hardcode page size to qemu_real_host_page_size. 1547 * 1548 * @block: RAM block to populate 1549 */ 1550 static void ram_block_populate_read(RAMBlock *rb) 1551 { 1552 /* 1553 * Skip populating all pages that fall into a discarded range as managed by 1554 * a RamDiscardManager responsible for the mapped memory region of the 1555 * RAMBlock. Such discarded ("logically unplugged") parts of a RAMBlock 1556 * must not get populated automatically. We don't have to track 1557 * modifications via userfaultfd WP reliably, because these pages will 1558 * not be part of the migration stream either way -- see 1559 * ramblock_dirty_bitmap_exclude_discarded_pages(). 1560 * 1561 * Note: The result is only stable while migrating (precopy/postcopy). 1562 */ 1563 if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) { 1564 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr); 1565 MemoryRegionSection section = { 1566 .mr = rb->mr, 1567 .offset_within_region = 0, 1568 .size = rb->mr->size, 1569 }; 1570 1571 ram_discard_manager_replay_populated(rdm, §ion, 1572 populate_read_section, NULL); 1573 } else { 1574 populate_read_range(rb, 0, rb->used_length); 1575 } 1576 } 1577 1578 /* 1579 * ram_write_tracking_prepare: prepare for UFFD-WP memory tracking 1580 */ 1581 void ram_write_tracking_prepare(void) 1582 { 1583 RAMBlock *block; 1584 1585 RCU_READ_LOCK_GUARD(); 1586 1587 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 1588 /* Nothing to do with read-only and MMIO-writable regions */ 1589 if (block->mr->readonly || block->mr->rom_device) { 1590 continue; 1591 } 1592 1593 /* 1594 * Populate pages of the RAM block before enabling userfault_fd 1595 * write protection. 1596 * 1597 * This stage is required since ioctl(UFFDIO_WRITEPROTECT) with 1598 * UFFDIO_WRITEPROTECT_MODE_WP mode setting would silently skip 1599 * pages with pte_none() entries in page table. 1600 */ 1601 ram_block_populate_read(block); 1602 } 1603 } 1604 1605 static inline int uffd_protect_section(MemoryRegionSection *section, 1606 void *opaque) 1607 { 1608 const hwaddr size = int128_get64(section->size); 1609 const hwaddr offset = section->offset_within_region; 1610 RAMBlock *rb = section->mr->ram_block; 1611 int uffd_fd = (uintptr_t)opaque; 1612 1613 return uffd_change_protection(uffd_fd, rb->host + offset, size, true, 1614 false); 1615 } 1616 1617 static int ram_block_uffd_protect(RAMBlock *rb, int uffd_fd) 1618 { 1619 assert(rb->flags & RAM_UF_WRITEPROTECT); 1620 1621 /* See ram_block_populate_read() */ 1622 if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) { 1623 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr); 1624 MemoryRegionSection section = { 1625 .mr = rb->mr, 1626 .offset_within_region = 0, 1627 .size = rb->mr->size, 1628 }; 1629 1630 return ram_discard_manager_replay_populated(rdm, §ion, 1631 uffd_protect_section, 1632 (void *)(uintptr_t)uffd_fd); 1633 } 1634 return uffd_change_protection(uffd_fd, rb->host, 1635 rb->used_length, true, false); 1636 } 1637 1638 /* 1639 * ram_write_tracking_start: start UFFD-WP memory tracking 1640 * 1641 * Returns 0 for success or negative value in case of error 1642 */ 1643 int ram_write_tracking_start(void) 1644 { 1645 int uffd_fd; 1646 RAMState *rs = ram_state; 1647 RAMBlock *block; 1648 1649 /* Open UFFD file descriptor */ 1650 uffd_fd = uffd_create_fd(UFFD_FEATURE_PAGEFAULT_FLAG_WP, true); 1651 if (uffd_fd < 0) { 1652 return uffd_fd; 1653 } 1654 rs->uffdio_fd = uffd_fd; 1655 1656 RCU_READ_LOCK_GUARD(); 1657 1658 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 1659 /* Nothing to do with read-only and MMIO-writable regions */ 1660 if (block->mr->readonly || block->mr->rom_device) { 1661 continue; 1662 } 1663 1664 /* Register block memory with UFFD to track writes */ 1665 if (uffd_register_memory(rs->uffdio_fd, block->host, 1666 block->max_length, UFFDIO_REGISTER_MODE_WP, NULL)) { 1667 goto fail; 1668 } 1669 block->flags |= RAM_UF_WRITEPROTECT; 1670 memory_region_ref(block->mr); 1671 1672 /* Apply UFFD write protection to the block memory range */ 1673 if (ram_block_uffd_protect(block, uffd_fd)) { 1674 goto fail; 1675 } 1676 1677 trace_ram_write_tracking_ramblock_start(block->idstr, block->page_size, 1678 block->host, block->max_length); 1679 } 1680 1681 return 0; 1682 1683 fail: 1684 error_report("ram_write_tracking_start() failed: restoring initial memory state"); 1685 1686 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 1687 if ((block->flags & RAM_UF_WRITEPROTECT) == 0) { 1688 continue; 1689 } 1690 uffd_unregister_memory(rs->uffdio_fd, block->host, block->max_length); 1691 /* Cleanup flags and remove reference */ 1692 block->flags &= ~RAM_UF_WRITEPROTECT; 1693 memory_region_unref(block->mr); 1694 } 1695 1696 uffd_close_fd(uffd_fd); 1697 rs->uffdio_fd = -1; 1698 return -1; 1699 } 1700 1701 /** 1702 * ram_write_tracking_stop: stop UFFD-WP memory tracking and remove protection 1703 */ 1704 void ram_write_tracking_stop(void) 1705 { 1706 RAMState *rs = ram_state; 1707 RAMBlock *block; 1708 1709 RCU_READ_LOCK_GUARD(); 1710 1711 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 1712 if ((block->flags & RAM_UF_WRITEPROTECT) == 0) { 1713 continue; 1714 } 1715 uffd_unregister_memory(rs->uffdio_fd, block->host, block->max_length); 1716 1717 trace_ram_write_tracking_ramblock_stop(block->idstr, block->page_size, 1718 block->host, block->max_length); 1719 1720 /* Cleanup flags and remove reference */ 1721 block->flags &= ~RAM_UF_WRITEPROTECT; 1722 memory_region_unref(block->mr); 1723 } 1724 1725 /* Finally close UFFD file descriptor */ 1726 uffd_close_fd(rs->uffdio_fd); 1727 rs->uffdio_fd = -1; 1728 } 1729 1730 #else 1731 /* No target OS support, stubs just fail or ignore */ 1732 1733 static RAMBlock *poll_fault_page(RAMState *rs, ram_addr_t *offset) 1734 { 1735 (void) rs; 1736 (void) offset; 1737 1738 return NULL; 1739 } 1740 1741 static int ram_save_release_protection(RAMState *rs, PageSearchStatus *pss, 1742 unsigned long start_page) 1743 { 1744 (void) rs; 1745 (void) pss; 1746 (void) start_page; 1747 1748 return 0; 1749 } 1750 1751 bool ram_write_tracking_available(void) 1752 { 1753 return false; 1754 } 1755 1756 bool ram_write_tracking_compatible(void) 1757 { 1758 g_assert_not_reached(); 1759 } 1760 1761 int ram_write_tracking_start(void) 1762 { 1763 g_assert_not_reached(); 1764 } 1765 1766 void ram_write_tracking_stop(void) 1767 { 1768 g_assert_not_reached(); 1769 } 1770 #endif /* defined(__linux__) */ 1771 1772 /** 1773 * get_queued_page: unqueue a page from the postcopy requests 1774 * 1775 * Skips pages that are already sent (!dirty) 1776 * 1777 * Returns true if a queued page is found 1778 * 1779 * @rs: current RAM state 1780 * @pss: data about the state of the current dirty page scan 1781 */ 1782 static bool get_queued_page(RAMState *rs, PageSearchStatus *pss) 1783 { 1784 RAMBlock *block; 1785 ram_addr_t offset; 1786 bool dirty = false; 1787 1788 do { 1789 block = unqueue_page(rs, &offset); 1790 /* 1791 * We're sending this page, and since it's postcopy nothing else 1792 * will dirty it, and we must make sure it doesn't get sent again 1793 * even if this queue request was received after the background 1794 * search already sent it. 1795 */ 1796 if (block) { 1797 unsigned long page; 1798 1799 page = offset >> TARGET_PAGE_BITS; 1800 dirty = test_bit(page, block->bmap); 1801 if (!dirty) { 1802 trace_get_queued_page_not_dirty(block->idstr, (uint64_t)offset, 1803 page); 1804 } else { 1805 trace_get_queued_page(block->idstr, (uint64_t)offset, page); 1806 } 1807 } 1808 1809 } while (block && !dirty); 1810 1811 if (!block) { 1812 /* 1813 * Poll write faults too if background snapshot is enabled; that's 1814 * when we have vcpus got blocked by the write protected pages. 1815 */ 1816 block = poll_fault_page(rs, &offset); 1817 } 1818 1819 if (block) { 1820 /* 1821 * We want the background search to continue from the queued page 1822 * since the guest is likely to want other pages near to the page 1823 * it just requested. 1824 */ 1825 pss->block = block; 1826 pss->page = offset >> TARGET_PAGE_BITS; 1827 1828 /* 1829 * This unqueued page would break the "one round" check, even is 1830 * really rare. 1831 */ 1832 pss->complete_round = false; 1833 } 1834 1835 return !!block; 1836 } 1837 1838 /** 1839 * migration_page_queue_free: drop any remaining pages in the ram 1840 * request queue 1841 * 1842 * It should be empty at the end anyway, but in error cases there may 1843 * be some left. in case that there is any page left, we drop it. 1844 * 1845 */ 1846 static void migration_page_queue_free(RAMState *rs) 1847 { 1848 struct RAMSrcPageRequest *mspr, *next_mspr; 1849 /* This queue generally should be empty - but in the case of a failed 1850 * migration might have some droppings in. 1851 */ 1852 RCU_READ_LOCK_GUARD(); 1853 QSIMPLEQ_FOREACH_SAFE(mspr, &rs->src_page_requests, next_req, next_mspr) { 1854 memory_region_unref(mspr->rb->mr); 1855 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req); 1856 g_free(mspr); 1857 } 1858 } 1859 1860 /** 1861 * ram_save_queue_pages: queue the page for transmission 1862 * 1863 * A request from postcopy destination for example. 1864 * 1865 * Returns zero on success or negative on error 1866 * 1867 * @rbname: Name of the RAMBLock of the request. NULL means the 1868 * same that last one. 1869 * @start: starting address from the start of the RAMBlock 1870 * @len: length (in bytes) to send 1871 */ 1872 int ram_save_queue_pages(const char *rbname, ram_addr_t start, ram_addr_t len, 1873 Error **errp) 1874 { 1875 RAMBlock *ramblock; 1876 RAMState *rs = ram_state; 1877 1878 stat64_add(&mig_stats.postcopy_requests, 1); 1879 RCU_READ_LOCK_GUARD(); 1880 1881 if (!rbname) { 1882 /* Reuse last RAMBlock */ 1883 ramblock = rs->last_req_rb; 1884 1885 if (!ramblock) { 1886 /* 1887 * Shouldn't happen, we can't reuse the last RAMBlock if 1888 * it's the 1st request. 1889 */ 1890 error_setg(errp, "MIG_RP_MSG_REQ_PAGES has no previous block"); 1891 return -1; 1892 } 1893 } else { 1894 ramblock = qemu_ram_block_by_name(rbname); 1895 1896 if (!ramblock) { 1897 /* We shouldn't be asked for a non-existent RAMBlock */ 1898 error_setg(errp, "MIG_RP_MSG_REQ_PAGES has no block '%s'", rbname); 1899 return -1; 1900 } 1901 rs->last_req_rb = ramblock; 1902 } 1903 trace_ram_save_queue_pages(ramblock->idstr, start, len); 1904 if (!offset_in_ramblock(ramblock, start + len - 1)) { 1905 error_setg(errp, "MIG_RP_MSG_REQ_PAGES request overrun, " 1906 "start=" RAM_ADDR_FMT " len=" 1907 RAM_ADDR_FMT " blocklen=" RAM_ADDR_FMT, 1908 start, len, ramblock->used_length); 1909 return -1; 1910 } 1911 1912 /* 1913 * When with postcopy preempt, we send back the page directly in the 1914 * rp-return thread. 1915 */ 1916 if (postcopy_preempt_active()) { 1917 ram_addr_t page_start = start >> TARGET_PAGE_BITS; 1918 size_t page_size = qemu_ram_pagesize(ramblock); 1919 PageSearchStatus *pss = &ram_state->pss[RAM_CHANNEL_POSTCOPY]; 1920 int ret = 0; 1921 1922 qemu_mutex_lock(&rs->bitmap_mutex); 1923 1924 pss_init(pss, ramblock, page_start); 1925 /* 1926 * Always use the preempt channel, and make sure it's there. It's 1927 * safe to access without lock, because when rp-thread is running 1928 * we should be the only one who operates on the qemufile 1929 */ 1930 pss->pss_channel = migrate_get_current()->postcopy_qemufile_src; 1931 assert(pss->pss_channel); 1932 1933 /* 1934 * It must be either one or multiple of host page size. Just 1935 * assert; if something wrong we're mostly split brain anyway. 1936 */ 1937 assert(len % page_size == 0); 1938 while (len) { 1939 if (ram_save_host_page_urgent(pss)) { 1940 error_setg(errp, "ram_save_host_page_urgent() failed: " 1941 "ramblock=%s, start_addr=0x"RAM_ADDR_FMT, 1942 ramblock->idstr, start); 1943 ret = -1; 1944 break; 1945 } 1946 /* 1947 * NOTE: after ram_save_host_page_urgent() succeeded, pss->page 1948 * will automatically be moved and point to the next host page 1949 * we're going to send, so no need to update here. 1950 * 1951 * Normally QEMU never sends >1 host page in requests, so 1952 * logically we don't even need that as the loop should only 1953 * run once, but just to be consistent. 1954 */ 1955 len -= page_size; 1956 }; 1957 qemu_mutex_unlock(&rs->bitmap_mutex); 1958 1959 return ret; 1960 } 1961 1962 struct RAMSrcPageRequest *new_entry = 1963 g_new0(struct RAMSrcPageRequest, 1); 1964 new_entry->rb = ramblock; 1965 new_entry->offset = start; 1966 new_entry->len = len; 1967 1968 memory_region_ref(ramblock->mr); 1969 qemu_mutex_lock(&rs->src_page_req_mutex); 1970 QSIMPLEQ_INSERT_TAIL(&rs->src_page_requests, new_entry, next_req); 1971 migration_make_urgent_request(); 1972 qemu_mutex_unlock(&rs->src_page_req_mutex); 1973 1974 return 0; 1975 } 1976 1977 /** 1978 * ram_save_target_page: save one target page to the precopy thread 1979 * OR to multifd workers. 1980 * 1981 * @rs: current RAM state 1982 * @pss: data about the page we want to send 1983 */ 1984 static int ram_save_target_page(RAMState *rs, PageSearchStatus *pss) 1985 { 1986 ram_addr_t offset = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS; 1987 int res; 1988 1989 /* Hand over to RDMA first */ 1990 if (migrate_rdma()) { 1991 res = rdma_control_save_page(pss->pss_channel, pss->block->offset, 1992 offset, TARGET_PAGE_SIZE); 1993 1994 if (res == RAM_SAVE_CONTROL_DELAYED) { 1995 res = 1; 1996 } 1997 return res; 1998 } 1999 2000 if (!migrate_multifd() 2001 || migrate_zero_page_detection() == ZERO_PAGE_DETECTION_LEGACY) { 2002 if (save_zero_page(rs, pss, offset)) { 2003 return 1; 2004 } 2005 } 2006 2007 if (migrate_multifd() && !migration_in_postcopy()) { 2008 return ram_save_multifd_page(pss->block, offset); 2009 } 2010 2011 return ram_save_page(rs, pss); 2012 } 2013 2014 /* Should be called before sending a host page */ 2015 static void pss_host_page_prepare(PageSearchStatus *pss) 2016 { 2017 /* How many guest pages are there in one host page? */ 2018 size_t guest_pfns = qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS; 2019 2020 pss->host_page_sending = true; 2021 if (guest_pfns <= 1) { 2022 /* 2023 * This covers both when guest psize == host psize, or when guest 2024 * has larger psize than the host (guest_pfns==0). 2025 * 2026 * For the latter, we always send one whole guest page per 2027 * iteration of the host page (example: an Alpha VM on x86 host 2028 * will have guest psize 8K while host psize 4K). 2029 */ 2030 pss->host_page_start = pss->page; 2031 pss->host_page_end = pss->page + 1; 2032 } else { 2033 /* 2034 * The host page spans over multiple guest pages, we send them 2035 * within the same host page iteration. 2036 */ 2037 pss->host_page_start = ROUND_DOWN(pss->page, guest_pfns); 2038 pss->host_page_end = ROUND_UP(pss->page + 1, guest_pfns); 2039 } 2040 } 2041 2042 /* 2043 * Whether the page pointed by PSS is within the host page being sent. 2044 * Must be called after a previous pss_host_page_prepare(). 2045 */ 2046 static bool pss_within_range(PageSearchStatus *pss) 2047 { 2048 ram_addr_t ram_addr; 2049 2050 assert(pss->host_page_sending); 2051 2052 /* Over host-page boundary? */ 2053 if (pss->page >= pss->host_page_end) { 2054 return false; 2055 } 2056 2057 ram_addr = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS; 2058 2059 return offset_in_ramblock(pss->block, ram_addr); 2060 } 2061 2062 static void pss_host_page_finish(PageSearchStatus *pss) 2063 { 2064 pss->host_page_sending = false; 2065 /* This is not needed, but just to reset it */ 2066 pss->host_page_start = pss->host_page_end = 0; 2067 } 2068 2069 static void ram_page_hint_update(RAMState *rs, PageSearchStatus *pss) 2070 { 2071 PageLocationHint *hint = &rs->page_hint; 2072 2073 /* If there's a pending hint not consumed, don't bother */ 2074 if (hint->valid) { 2075 return; 2076 } 2077 2078 /* Provide a hint to the background stream otherwise */ 2079 hint->location.block = pss->block; 2080 hint->location.offset = pss->page; 2081 hint->valid = true; 2082 } 2083 2084 /* 2085 * Send an urgent host page specified by `pss'. Need to be called with 2086 * bitmap_mutex held. 2087 * 2088 * Returns 0 if save host page succeeded, false otherwise. 2089 */ 2090 static int ram_save_host_page_urgent(PageSearchStatus *pss) 2091 { 2092 bool page_dirty, sent = false; 2093 RAMState *rs = ram_state; 2094 int ret = 0; 2095 2096 trace_postcopy_preempt_send_host_page(pss->block->idstr, pss->page); 2097 pss_host_page_prepare(pss); 2098 2099 /* 2100 * If precopy is sending the same page, let it be done in precopy, or 2101 * we could send the same page in two channels and none of them will 2102 * receive the whole page. 2103 */ 2104 if (pss_overlap(pss, &ram_state->pss[RAM_CHANNEL_PRECOPY])) { 2105 trace_postcopy_preempt_hit(pss->block->idstr, 2106 pss->page << TARGET_PAGE_BITS); 2107 return 0; 2108 } 2109 2110 do { 2111 page_dirty = migration_bitmap_clear_dirty(rs, pss->block, pss->page); 2112 2113 if (page_dirty) { 2114 /* Be strict to return code; it must be 1, or what else? */ 2115 if (ram_save_target_page(rs, pss) != 1) { 2116 error_report_once("%s: ram_save_target_page failed", __func__); 2117 ret = -1; 2118 goto out; 2119 } 2120 sent = true; 2121 } 2122 pss_find_next_dirty(pss); 2123 } while (pss_within_range(pss)); 2124 out: 2125 pss_host_page_finish(pss); 2126 /* For urgent requests, flush immediately if sent */ 2127 if (sent) { 2128 qemu_fflush(pss->pss_channel); 2129 ram_page_hint_update(rs, pss); 2130 } 2131 return ret; 2132 } 2133 2134 /** 2135 * ram_save_host_page: save a whole host page 2136 * 2137 * Starting at *offset send pages up to the end of the current host 2138 * page. It's valid for the initial offset to point into the middle of 2139 * a host page in which case the remainder of the hostpage is sent. 2140 * Only dirty target pages are sent. Note that the host page size may 2141 * be a huge page for this block. 2142 * 2143 * The saving stops at the boundary of the used_length of the block 2144 * if the RAMBlock isn't a multiple of the host page size. 2145 * 2146 * The caller must be with ram_state.bitmap_mutex held to call this 2147 * function. Note that this function can temporarily release the lock, but 2148 * when the function is returned it'll make sure the lock is still held. 2149 * 2150 * Returns the number of pages written or negative on error 2151 * 2152 * @rs: current RAM state 2153 * @pss: data about the page we want to send 2154 */ 2155 static int ram_save_host_page(RAMState *rs, PageSearchStatus *pss) 2156 { 2157 bool page_dirty, preempt_active = postcopy_preempt_active(); 2158 int tmppages, pages = 0; 2159 size_t pagesize_bits = 2160 qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS; 2161 unsigned long start_page = pss->page; 2162 int res; 2163 2164 if (migrate_ram_is_ignored(pss->block)) { 2165 error_report("block %s should not be migrated !", pss->block->idstr); 2166 return 0; 2167 } 2168 2169 /* Update host page boundary information */ 2170 pss_host_page_prepare(pss); 2171 2172 do { 2173 page_dirty = migration_bitmap_clear_dirty(rs, pss->block, pss->page); 2174 2175 /* Check the pages is dirty and if it is send it */ 2176 if (page_dirty) { 2177 /* 2178 * Properly yield the lock only in postcopy preempt mode 2179 * because both migration thread and rp-return thread can 2180 * operate on the bitmaps. 2181 */ 2182 if (preempt_active) { 2183 qemu_mutex_unlock(&rs->bitmap_mutex); 2184 } 2185 tmppages = ram_save_target_page(rs, pss); 2186 if (tmppages >= 0) { 2187 pages += tmppages; 2188 /* 2189 * Allow rate limiting to happen in the middle of huge pages if 2190 * something is sent in the current iteration. 2191 */ 2192 if (pagesize_bits > 1 && tmppages > 0) { 2193 migration_rate_limit(); 2194 } 2195 } 2196 if (preempt_active) { 2197 qemu_mutex_lock(&rs->bitmap_mutex); 2198 } 2199 } else { 2200 tmppages = 0; 2201 } 2202 2203 if (tmppages < 0) { 2204 pss_host_page_finish(pss); 2205 return tmppages; 2206 } 2207 2208 pss_find_next_dirty(pss); 2209 } while (pss_within_range(pss)); 2210 2211 pss_host_page_finish(pss); 2212 2213 res = ram_save_release_protection(rs, pss, start_page); 2214 return (res < 0 ? res : pages); 2215 } 2216 2217 static bool ram_page_hint_valid(RAMState *rs) 2218 { 2219 /* There's only page hint during postcopy preempt mode */ 2220 if (!postcopy_preempt_active()) { 2221 return false; 2222 } 2223 2224 return rs->page_hint.valid; 2225 } 2226 2227 static void ram_page_hint_collect(RAMState *rs, RAMBlock **block, 2228 unsigned long *page) 2229 { 2230 PageLocationHint *hint = &rs->page_hint; 2231 2232 assert(hint->valid); 2233 2234 *block = hint->location.block; 2235 *page = hint->location.offset; 2236 2237 /* Mark the hint consumed */ 2238 hint->valid = false; 2239 } 2240 2241 /** 2242 * ram_find_and_save_block: finds a dirty page and sends it to f 2243 * 2244 * Called within an RCU critical section. 2245 * 2246 * Returns the number of pages written where zero means no dirty pages, 2247 * or negative on error 2248 * 2249 * @rs: current RAM state 2250 * 2251 * On systems where host-page-size > target-page-size it will send all the 2252 * pages in a host page that are dirty. 2253 */ 2254 static int ram_find_and_save_block(RAMState *rs) 2255 { 2256 PageSearchStatus *pss = &rs->pss[RAM_CHANNEL_PRECOPY]; 2257 unsigned long next_page; 2258 RAMBlock *next_block; 2259 int pages = 0; 2260 2261 /* No dirty page as there is zero RAM */ 2262 if (!rs->ram_bytes_total) { 2263 return pages; 2264 } 2265 2266 /* 2267 * Always keep last_seen_block/last_page valid during this procedure, 2268 * because find_dirty_block() relies on these values (e.g., we compare 2269 * last_seen_block with pss.block to see whether we searched all the 2270 * ramblocks) to detect the completion of migration. Having NULL value 2271 * of last_seen_block can conditionally cause below loop to run forever. 2272 */ 2273 if (!rs->last_seen_block) { 2274 rs->last_seen_block = QLIST_FIRST_RCU(&ram_list.blocks); 2275 rs->last_page = 0; 2276 } 2277 2278 if (ram_page_hint_valid(rs)) { 2279 ram_page_hint_collect(rs, &next_block, &next_page); 2280 } else { 2281 next_block = rs->last_seen_block; 2282 next_page = rs->last_page; 2283 } 2284 2285 pss_init(pss, next_block, next_page); 2286 2287 while (true){ 2288 if (!get_queued_page(rs, pss)) { 2289 /* priority queue empty, so just search for something dirty */ 2290 int res = find_dirty_block(rs, pss); 2291 2292 if (res == PAGE_ALL_CLEAN) { 2293 break; 2294 } else if (res == PAGE_TRY_AGAIN) { 2295 continue; 2296 } else if (res < 0) { 2297 pages = res; 2298 break; 2299 } 2300 2301 /* Otherwise we must have a dirty page to move */ 2302 assert(res == PAGE_DIRTY_FOUND); 2303 } 2304 pages = ram_save_host_page(rs, pss); 2305 if (pages) { 2306 break; 2307 } 2308 } 2309 2310 rs->last_seen_block = pss->block; 2311 rs->last_page = pss->page; 2312 2313 return pages; 2314 } 2315 2316 static uint64_t ram_bytes_total_with_ignored(void) 2317 { 2318 RAMBlock *block; 2319 uint64_t total = 0; 2320 2321 RCU_READ_LOCK_GUARD(); 2322 2323 RAMBLOCK_FOREACH_MIGRATABLE(block) { 2324 total += block->used_length; 2325 } 2326 return total; 2327 } 2328 2329 uint64_t ram_bytes_total(void) 2330 { 2331 RAMBlock *block; 2332 uint64_t total = 0; 2333 2334 RCU_READ_LOCK_GUARD(); 2335 2336 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 2337 total += block->used_length; 2338 } 2339 return total; 2340 } 2341 2342 static void xbzrle_load_setup(void) 2343 { 2344 XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE); 2345 } 2346 2347 static void xbzrle_load_cleanup(void) 2348 { 2349 g_free(XBZRLE.decoded_buf); 2350 XBZRLE.decoded_buf = NULL; 2351 } 2352 2353 static void ram_state_cleanup(RAMState **rsp) 2354 { 2355 if (*rsp) { 2356 migration_page_queue_free(*rsp); 2357 qemu_mutex_destroy(&(*rsp)->bitmap_mutex); 2358 qemu_mutex_destroy(&(*rsp)->src_page_req_mutex); 2359 g_free(*rsp); 2360 *rsp = NULL; 2361 } 2362 } 2363 2364 static void xbzrle_cleanup(void) 2365 { 2366 XBZRLE_cache_lock(); 2367 if (XBZRLE.cache) { 2368 cache_fini(XBZRLE.cache); 2369 g_free(XBZRLE.encoded_buf); 2370 g_free(XBZRLE.current_buf); 2371 g_free(XBZRLE.zero_target_page); 2372 XBZRLE.cache = NULL; 2373 XBZRLE.encoded_buf = NULL; 2374 XBZRLE.current_buf = NULL; 2375 XBZRLE.zero_target_page = NULL; 2376 } 2377 XBZRLE_cache_unlock(); 2378 } 2379 2380 static void ram_bitmaps_destroy(void) 2381 { 2382 RAMBlock *block; 2383 2384 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 2385 g_free(block->clear_bmap); 2386 block->clear_bmap = NULL; 2387 g_free(block->bmap); 2388 block->bmap = NULL; 2389 g_free(block->file_bmap); 2390 block->file_bmap = NULL; 2391 } 2392 } 2393 2394 static void ram_save_cleanup(void *opaque) 2395 { 2396 RAMState **rsp = opaque; 2397 2398 /* We don't use dirty log with background snapshots */ 2399 if (!migrate_background_snapshot()) { 2400 /* caller have hold BQL or is in a bh, so there is 2401 * no writing race against the migration bitmap 2402 */ 2403 if (global_dirty_tracking & GLOBAL_DIRTY_MIGRATION) { 2404 /* 2405 * do not stop dirty log without starting it, since 2406 * memory_global_dirty_log_stop will assert that 2407 * memory_global_dirty_log_start/stop used in pairs 2408 */ 2409 memory_global_dirty_log_stop(GLOBAL_DIRTY_MIGRATION); 2410 } 2411 } 2412 2413 ram_bitmaps_destroy(); 2414 2415 xbzrle_cleanup(); 2416 multifd_ram_save_cleanup(); 2417 ram_state_cleanup(rsp); 2418 } 2419 2420 static void ram_page_hint_reset(PageLocationHint *hint) 2421 { 2422 hint->location.block = NULL; 2423 hint->location.offset = 0; 2424 hint->valid = false; 2425 } 2426 2427 static void ram_state_reset(RAMState *rs) 2428 { 2429 int i; 2430 2431 for (i = 0; i < RAM_CHANNEL_MAX; i++) { 2432 rs->pss[i].last_sent_block = NULL; 2433 } 2434 2435 rs->last_seen_block = NULL; 2436 rs->last_page = 0; 2437 rs->last_version = ram_list.version; 2438 rs->xbzrle_started = false; 2439 2440 ram_page_hint_reset(&rs->page_hint); 2441 } 2442 2443 #define MAX_WAIT 50 /* ms, half buffered_file limit */ 2444 2445 /* **** functions for postcopy ***** */ 2446 2447 void ram_postcopy_migrated_memory_release(MigrationState *ms) 2448 { 2449 struct RAMBlock *block; 2450 2451 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 2452 unsigned long *bitmap = block->bmap; 2453 unsigned long range = block->used_length >> TARGET_PAGE_BITS; 2454 unsigned long run_start = find_next_zero_bit(bitmap, range, 0); 2455 2456 while (run_start < range) { 2457 unsigned long run_end = find_next_bit(bitmap, range, run_start + 1); 2458 ram_discard_range(block->idstr, 2459 ((ram_addr_t)run_start) << TARGET_PAGE_BITS, 2460 ((ram_addr_t)(run_end - run_start)) 2461 << TARGET_PAGE_BITS); 2462 run_start = find_next_zero_bit(bitmap, range, run_end + 1); 2463 } 2464 } 2465 } 2466 2467 /** 2468 * postcopy_send_discard_bm_ram: discard a RAMBlock 2469 * 2470 * Callback from postcopy_each_ram_send_discard for each RAMBlock 2471 * 2472 * @ms: current migration state 2473 * @block: RAMBlock to discard 2474 */ 2475 static void postcopy_send_discard_bm_ram(MigrationState *ms, RAMBlock *block) 2476 { 2477 unsigned long end = block->used_length >> TARGET_PAGE_BITS; 2478 unsigned long current; 2479 unsigned long *bitmap = block->bmap; 2480 2481 for (current = 0; current < end; ) { 2482 unsigned long one = find_next_bit(bitmap, end, current); 2483 unsigned long zero, discard_length; 2484 2485 if (one >= end) { 2486 break; 2487 } 2488 2489 zero = find_next_zero_bit(bitmap, end, one + 1); 2490 2491 if (zero >= end) { 2492 discard_length = end - one; 2493 } else { 2494 discard_length = zero - one; 2495 } 2496 postcopy_discard_send_range(ms, one, discard_length); 2497 current = one + discard_length; 2498 } 2499 } 2500 2501 static void postcopy_chunk_hostpages_pass(MigrationState *ms, RAMBlock *block); 2502 2503 /** 2504 * postcopy_each_ram_send_discard: discard all RAMBlocks 2505 * 2506 * Utility for the outgoing postcopy code. 2507 * Calls postcopy_send_discard_bm_ram for each RAMBlock 2508 * passing it bitmap indexes and name. 2509 * (qemu_ram_foreach_block ends up passing unscaled lengths 2510 * which would mean postcopy code would have to deal with target page) 2511 * 2512 * @ms: current migration state 2513 */ 2514 static void postcopy_each_ram_send_discard(MigrationState *ms) 2515 { 2516 struct RAMBlock *block; 2517 2518 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 2519 postcopy_discard_send_init(ms, block->idstr); 2520 2521 /* 2522 * Deal with TPS != HPS and huge pages. It discard any partially sent 2523 * host-page size chunks, mark any partially dirty host-page size 2524 * chunks as all dirty. In this case the host-page is the host-page 2525 * for the particular RAMBlock, i.e. it might be a huge page. 2526 */ 2527 postcopy_chunk_hostpages_pass(ms, block); 2528 2529 /* 2530 * Postcopy sends chunks of bitmap over the wire, but it 2531 * just needs indexes at this point, avoids it having 2532 * target page specific code. 2533 */ 2534 postcopy_send_discard_bm_ram(ms, block); 2535 postcopy_discard_send_finish(ms); 2536 } 2537 } 2538 2539 /** 2540 * postcopy_chunk_hostpages_pass: canonicalize bitmap in hostpages 2541 * 2542 * Helper for postcopy_chunk_hostpages; it's called twice to 2543 * canonicalize the two bitmaps, that are similar, but one is 2544 * inverted. 2545 * 2546 * Postcopy requires that all target pages in a hostpage are dirty or 2547 * clean, not a mix. This function canonicalizes the bitmaps. 2548 * 2549 * @ms: current migration state 2550 * @block: block that contains the page we want to canonicalize 2551 */ 2552 static void postcopy_chunk_hostpages_pass(MigrationState *ms, RAMBlock *block) 2553 { 2554 RAMState *rs = ram_state; 2555 unsigned long *bitmap = block->bmap; 2556 unsigned int host_ratio = block->page_size / TARGET_PAGE_SIZE; 2557 unsigned long pages = block->used_length >> TARGET_PAGE_BITS; 2558 unsigned long run_start; 2559 2560 if (block->page_size == TARGET_PAGE_SIZE) { 2561 /* Easy case - TPS==HPS for a non-huge page RAMBlock */ 2562 return; 2563 } 2564 2565 /* Find a dirty page */ 2566 run_start = find_next_bit(bitmap, pages, 0); 2567 2568 while (run_start < pages) { 2569 2570 /* 2571 * If the start of this run of pages is in the middle of a host 2572 * page, then we need to fixup this host page. 2573 */ 2574 if (QEMU_IS_ALIGNED(run_start, host_ratio)) { 2575 /* Find the end of this run */ 2576 run_start = find_next_zero_bit(bitmap, pages, run_start + 1); 2577 /* 2578 * If the end isn't at the start of a host page, then the 2579 * run doesn't finish at the end of a host page 2580 * and we need to discard. 2581 */ 2582 } 2583 2584 if (!QEMU_IS_ALIGNED(run_start, host_ratio)) { 2585 unsigned long page; 2586 unsigned long fixup_start_addr = QEMU_ALIGN_DOWN(run_start, 2587 host_ratio); 2588 run_start = QEMU_ALIGN_UP(run_start, host_ratio); 2589 2590 /* Clean up the bitmap */ 2591 for (page = fixup_start_addr; 2592 page < fixup_start_addr + host_ratio; page++) { 2593 /* 2594 * Remark them as dirty, updating the count for any pages 2595 * that weren't previously dirty. 2596 */ 2597 rs->migration_dirty_pages += !test_and_set_bit(page, bitmap); 2598 } 2599 } 2600 2601 /* Find the next dirty page for the next iteration */ 2602 run_start = find_next_bit(bitmap, pages, run_start); 2603 } 2604 } 2605 2606 /** 2607 * ram_postcopy_send_discard_bitmap: transmit the discard bitmap 2608 * 2609 * Transmit the set of pages to be discarded after precopy to the target 2610 * these are pages that: 2611 * a) Have been previously transmitted but are now dirty again 2612 * b) Pages that have never been transmitted, this ensures that 2613 * any pages on the destination that have been mapped by background 2614 * tasks get discarded (transparent huge pages is the specific concern) 2615 * Hopefully this is pretty sparse 2616 * 2617 * @ms: current migration state 2618 */ 2619 void ram_postcopy_send_discard_bitmap(MigrationState *ms) 2620 { 2621 RAMState *rs = ram_state; 2622 2623 RCU_READ_LOCK_GUARD(); 2624 2625 /* This should be our last sync, the src is now paused */ 2626 migration_bitmap_sync(rs, false); 2627 2628 /* Easiest way to make sure we don't resume in the middle of a host-page */ 2629 rs->pss[RAM_CHANNEL_PRECOPY].last_sent_block = NULL; 2630 rs->last_seen_block = NULL; 2631 rs->last_page = 0; 2632 2633 postcopy_each_ram_send_discard(ms); 2634 2635 trace_ram_postcopy_send_discard_bitmap(); 2636 } 2637 2638 /** 2639 * ram_discard_range: discard dirtied pages at the beginning of postcopy 2640 * 2641 * Returns zero on success 2642 * 2643 * @rbname: name of the RAMBlock of the request. NULL means the 2644 * same that last one. 2645 * @start: RAMBlock starting page 2646 * @length: RAMBlock size 2647 */ 2648 int ram_discard_range(const char *rbname, uint64_t start, size_t length) 2649 { 2650 trace_ram_discard_range(rbname, start, length); 2651 2652 RCU_READ_LOCK_GUARD(); 2653 RAMBlock *rb = qemu_ram_block_by_name(rbname); 2654 2655 if (!rb) { 2656 error_report("ram_discard_range: Failed to find block '%s'", rbname); 2657 return -1; 2658 } 2659 2660 /* 2661 * On source VM, we don't need to update the received bitmap since 2662 * we don't even have one. 2663 */ 2664 if (rb->receivedmap) { 2665 bitmap_clear(rb->receivedmap, start >> qemu_target_page_bits(), 2666 length >> qemu_target_page_bits()); 2667 } 2668 2669 return ram_block_discard_range(rb, start, length); 2670 } 2671 2672 /* 2673 * For every allocation, we will try not to crash the VM if the 2674 * allocation failed. 2675 */ 2676 static bool xbzrle_init(Error **errp) 2677 { 2678 if (!migrate_xbzrle()) { 2679 return true; 2680 } 2681 2682 XBZRLE_cache_lock(); 2683 2684 XBZRLE.zero_target_page = g_try_malloc0(TARGET_PAGE_SIZE); 2685 if (!XBZRLE.zero_target_page) { 2686 error_setg(errp, "%s: Error allocating zero page", __func__); 2687 goto err_out; 2688 } 2689 2690 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size(), 2691 TARGET_PAGE_SIZE, errp); 2692 if (!XBZRLE.cache) { 2693 goto free_zero_page; 2694 } 2695 2696 XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE); 2697 if (!XBZRLE.encoded_buf) { 2698 error_setg(errp, "%s: Error allocating encoded_buf", __func__); 2699 goto free_cache; 2700 } 2701 2702 XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE); 2703 if (!XBZRLE.current_buf) { 2704 error_setg(errp, "%s: Error allocating current_buf", __func__); 2705 goto free_encoded_buf; 2706 } 2707 2708 /* We are all good */ 2709 XBZRLE_cache_unlock(); 2710 return true; 2711 2712 free_encoded_buf: 2713 g_free(XBZRLE.encoded_buf); 2714 XBZRLE.encoded_buf = NULL; 2715 free_cache: 2716 cache_fini(XBZRLE.cache); 2717 XBZRLE.cache = NULL; 2718 free_zero_page: 2719 g_free(XBZRLE.zero_target_page); 2720 XBZRLE.zero_target_page = NULL; 2721 err_out: 2722 XBZRLE_cache_unlock(); 2723 return false; 2724 } 2725 2726 static bool ram_state_init(RAMState **rsp, Error **errp) 2727 { 2728 *rsp = g_try_new0(RAMState, 1); 2729 2730 if (!*rsp) { 2731 error_setg(errp, "%s: Init ramstate fail", __func__); 2732 return false; 2733 } 2734 2735 qemu_mutex_init(&(*rsp)->bitmap_mutex); 2736 qemu_mutex_init(&(*rsp)->src_page_req_mutex); 2737 QSIMPLEQ_INIT(&(*rsp)->src_page_requests); 2738 (*rsp)->ram_bytes_total = ram_bytes_total(); 2739 2740 /* 2741 * Count the total number of pages used by ram blocks not including any 2742 * gaps due to alignment or unplugs. 2743 * This must match with the initial values of dirty bitmap. 2744 */ 2745 (*rsp)->migration_dirty_pages = (*rsp)->ram_bytes_total >> TARGET_PAGE_BITS; 2746 ram_state_reset(*rsp); 2747 2748 return true; 2749 } 2750 2751 static void ram_list_init_bitmaps(void) 2752 { 2753 MigrationState *ms = migrate_get_current(); 2754 RAMBlock *block; 2755 unsigned long pages; 2756 uint8_t shift; 2757 2758 /* Skip setting bitmap if there is no RAM */ 2759 if (ram_bytes_total()) { 2760 shift = ms->clear_bitmap_shift; 2761 if (shift > CLEAR_BITMAP_SHIFT_MAX) { 2762 error_report("clear_bitmap_shift (%u) too big, using " 2763 "max value (%u)", shift, CLEAR_BITMAP_SHIFT_MAX); 2764 shift = CLEAR_BITMAP_SHIFT_MAX; 2765 } else if (shift < CLEAR_BITMAP_SHIFT_MIN) { 2766 error_report("clear_bitmap_shift (%u) too small, using " 2767 "min value (%u)", shift, CLEAR_BITMAP_SHIFT_MIN); 2768 shift = CLEAR_BITMAP_SHIFT_MIN; 2769 } 2770 2771 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 2772 pages = block->max_length >> TARGET_PAGE_BITS; 2773 /* 2774 * The initial dirty bitmap for migration must be set with all 2775 * ones to make sure we'll migrate every guest RAM page to 2776 * destination. 2777 * Here we set RAMBlock.bmap all to 1 because when rebegin a 2778 * new migration after a failed migration, ram_list. 2779 * dirty_memory[DIRTY_MEMORY_MIGRATION] don't include the whole 2780 * guest memory. 2781 */ 2782 block->bmap = bitmap_new(pages); 2783 bitmap_set(block->bmap, 0, pages); 2784 if (migrate_mapped_ram()) { 2785 block->file_bmap = bitmap_new(pages); 2786 } 2787 block->clear_bmap_shift = shift; 2788 block->clear_bmap = bitmap_new(clear_bmap_size(pages, shift)); 2789 } 2790 } 2791 } 2792 2793 static void migration_bitmap_clear_discarded_pages(RAMState *rs) 2794 { 2795 unsigned long pages; 2796 RAMBlock *rb; 2797 2798 RCU_READ_LOCK_GUARD(); 2799 2800 RAMBLOCK_FOREACH_NOT_IGNORED(rb) { 2801 pages = ramblock_dirty_bitmap_clear_discarded_pages(rb); 2802 rs->migration_dirty_pages -= pages; 2803 } 2804 } 2805 2806 static bool ram_init_bitmaps(RAMState *rs, Error **errp) 2807 { 2808 bool ret = true; 2809 2810 qemu_mutex_lock_ramlist(); 2811 2812 WITH_RCU_READ_LOCK_GUARD() { 2813 ram_list_init_bitmaps(); 2814 /* We don't use dirty log with background snapshots */ 2815 if (!migrate_background_snapshot()) { 2816 ret = memory_global_dirty_log_start(GLOBAL_DIRTY_MIGRATION, errp); 2817 if (!ret) { 2818 goto out_unlock; 2819 } 2820 migration_bitmap_sync_precopy(false); 2821 } 2822 } 2823 out_unlock: 2824 qemu_mutex_unlock_ramlist(); 2825 2826 if (!ret) { 2827 ram_bitmaps_destroy(); 2828 return false; 2829 } 2830 2831 /* 2832 * After an eventual first bitmap sync, fixup the initial bitmap 2833 * containing all 1s to exclude any discarded pages from migration. 2834 */ 2835 migration_bitmap_clear_discarded_pages(rs); 2836 return true; 2837 } 2838 2839 static int ram_init_all(RAMState **rsp, Error **errp) 2840 { 2841 if (!ram_state_init(rsp, errp)) { 2842 return -1; 2843 } 2844 2845 if (!xbzrle_init(errp)) { 2846 ram_state_cleanup(rsp); 2847 return -1; 2848 } 2849 2850 if (!ram_init_bitmaps(*rsp, errp)) { 2851 return -1; 2852 } 2853 2854 return 0; 2855 } 2856 2857 static void ram_state_resume_prepare(RAMState *rs, QEMUFile *out) 2858 { 2859 RAMBlock *block; 2860 uint64_t pages = 0; 2861 2862 /* 2863 * Postcopy is not using xbzrle/compression, so no need for that. 2864 * Also, since source are already halted, we don't need to care 2865 * about dirty page logging as well. 2866 */ 2867 2868 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 2869 pages += bitmap_count_one(block->bmap, 2870 block->used_length >> TARGET_PAGE_BITS); 2871 } 2872 2873 /* This may not be aligned with current bitmaps. Recalculate. */ 2874 rs->migration_dirty_pages = pages; 2875 2876 ram_state_reset(rs); 2877 2878 /* Update RAMState cache of output QEMUFile */ 2879 rs->pss[RAM_CHANNEL_PRECOPY].pss_channel = out; 2880 2881 trace_ram_state_resume_prepare(pages); 2882 } 2883 2884 /* 2885 * This function clears bits of the free pages reported by the caller from the 2886 * migration dirty bitmap. @addr is the host address corresponding to the 2887 * start of the continuous guest free pages, and @len is the total bytes of 2888 * those pages. 2889 */ 2890 void qemu_guest_free_page_hint(void *addr, size_t len) 2891 { 2892 RAMBlock *block; 2893 ram_addr_t offset; 2894 size_t used_len, start, npages; 2895 2896 /* This function is currently expected to be used during live migration */ 2897 if (!migration_is_running()) { 2898 return; 2899 } 2900 2901 for (; len > 0; len -= used_len, addr += used_len) { 2902 block = qemu_ram_block_from_host(addr, false, &offset); 2903 if (unlikely(!block || offset >= block->used_length)) { 2904 /* 2905 * The implementation might not support RAMBlock resize during 2906 * live migration, but it could happen in theory with future 2907 * updates. So we add a check here to capture that case. 2908 */ 2909 error_report_once("%s unexpected error", __func__); 2910 return; 2911 } 2912 2913 if (len <= block->used_length - offset) { 2914 used_len = len; 2915 } else { 2916 used_len = block->used_length - offset; 2917 } 2918 2919 start = offset >> TARGET_PAGE_BITS; 2920 npages = used_len >> TARGET_PAGE_BITS; 2921 2922 qemu_mutex_lock(&ram_state->bitmap_mutex); 2923 /* 2924 * The skipped free pages are equavalent to be sent from clear_bmap's 2925 * perspective, so clear the bits from the memory region bitmap which 2926 * are initially set. Otherwise those skipped pages will be sent in 2927 * the next round after syncing from the memory region bitmap. 2928 */ 2929 migration_clear_memory_region_dirty_bitmap_range(block, start, npages); 2930 ram_state->migration_dirty_pages -= 2931 bitmap_count_one_with_offset(block->bmap, start, npages); 2932 bitmap_clear(block->bmap, start, npages); 2933 qemu_mutex_unlock(&ram_state->bitmap_mutex); 2934 } 2935 } 2936 2937 #define MAPPED_RAM_HDR_VERSION 1 2938 struct MappedRamHeader { 2939 uint32_t version; 2940 /* 2941 * The target's page size, so we know how many pages are in the 2942 * bitmap. 2943 */ 2944 uint64_t page_size; 2945 /* 2946 * The offset in the migration file where the pages bitmap is 2947 * stored. 2948 */ 2949 uint64_t bitmap_offset; 2950 /* 2951 * The offset in the migration file where the actual pages (data) 2952 * are stored. 2953 */ 2954 uint64_t pages_offset; 2955 } QEMU_PACKED; 2956 typedef struct MappedRamHeader MappedRamHeader; 2957 2958 static void mapped_ram_setup_ramblock(QEMUFile *file, RAMBlock *block) 2959 { 2960 g_autofree MappedRamHeader *header = NULL; 2961 size_t header_size, bitmap_size; 2962 long num_pages; 2963 2964 header = g_new0(MappedRamHeader, 1); 2965 header_size = sizeof(MappedRamHeader); 2966 2967 num_pages = block->used_length >> TARGET_PAGE_BITS; 2968 bitmap_size = BITS_TO_LONGS(num_pages) * sizeof(unsigned long); 2969 2970 /* 2971 * Save the file offsets of where the bitmap and the pages should 2972 * go as they are written at the end of migration and during the 2973 * iterative phase, respectively. 2974 */ 2975 block->bitmap_offset = qemu_get_offset(file) + header_size; 2976 block->pages_offset = ROUND_UP(block->bitmap_offset + 2977 bitmap_size, 2978 MAPPED_RAM_FILE_OFFSET_ALIGNMENT); 2979 2980 header->version = cpu_to_be32(MAPPED_RAM_HDR_VERSION); 2981 header->page_size = cpu_to_be64(TARGET_PAGE_SIZE); 2982 header->bitmap_offset = cpu_to_be64(block->bitmap_offset); 2983 header->pages_offset = cpu_to_be64(block->pages_offset); 2984 2985 qemu_put_buffer(file, (uint8_t *) header, header_size); 2986 2987 /* prepare offset for next ramblock */ 2988 qemu_set_offset(file, block->pages_offset + block->used_length, SEEK_SET); 2989 } 2990 2991 static bool mapped_ram_read_header(QEMUFile *file, MappedRamHeader *header, 2992 Error **errp) 2993 { 2994 size_t ret, header_size = sizeof(MappedRamHeader); 2995 2996 ret = qemu_get_buffer(file, (uint8_t *)header, header_size); 2997 if (ret != header_size) { 2998 error_setg(errp, "Could not read whole mapped-ram migration header " 2999 "(expected %zd, got %zd bytes)", header_size, ret); 3000 return false; 3001 } 3002 3003 /* migration stream is big-endian */ 3004 header->version = be32_to_cpu(header->version); 3005 3006 if (header->version > MAPPED_RAM_HDR_VERSION) { 3007 error_setg(errp, "Migration mapped-ram capability version not " 3008 "supported (expected <= %d, got %d)", MAPPED_RAM_HDR_VERSION, 3009 header->version); 3010 return false; 3011 } 3012 3013 header->page_size = be64_to_cpu(header->page_size); 3014 header->bitmap_offset = be64_to_cpu(header->bitmap_offset); 3015 header->pages_offset = be64_to_cpu(header->pages_offset); 3016 3017 return true; 3018 } 3019 3020 /* 3021 * Each of ram_save_setup, ram_save_iterate and ram_save_complete has 3022 * long-running RCU critical section. When rcu-reclaims in the code 3023 * start to become numerous it will be necessary to reduce the 3024 * granularity of these critical sections. 3025 */ 3026 3027 /** 3028 * ram_save_setup: Setup RAM for migration 3029 * 3030 * Returns zero to indicate success and negative for error 3031 * 3032 * @f: QEMUFile where to send the data 3033 * @opaque: RAMState pointer 3034 * @errp: pointer to Error*, to store an error if it happens. 3035 */ 3036 static int ram_save_setup(QEMUFile *f, void *opaque, Error **errp) 3037 { 3038 RAMState **rsp = opaque; 3039 RAMBlock *block; 3040 int ret, max_hg_page_size; 3041 3042 /* migration has already setup the bitmap, reuse it. */ 3043 if (!migration_in_colo_state()) { 3044 if (ram_init_all(rsp, errp) != 0) { 3045 return -1; 3046 } 3047 } 3048 (*rsp)->pss[RAM_CHANNEL_PRECOPY].pss_channel = f; 3049 3050 /* 3051 * ??? Mirrors the previous value of qemu_host_page_size, 3052 * but is this really what was intended for the migration? 3053 */ 3054 max_hg_page_size = MAX(qemu_real_host_page_size(), TARGET_PAGE_SIZE); 3055 3056 WITH_RCU_READ_LOCK_GUARD() { 3057 qemu_put_be64(f, ram_bytes_total_with_ignored() 3058 | RAM_SAVE_FLAG_MEM_SIZE); 3059 3060 RAMBLOCK_FOREACH_MIGRATABLE(block) { 3061 qemu_put_byte(f, strlen(block->idstr)); 3062 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr)); 3063 qemu_put_be64(f, block->used_length); 3064 if (migrate_postcopy_ram() && 3065 block->page_size != max_hg_page_size) { 3066 qemu_put_be64(f, block->page_size); 3067 } 3068 if (migrate_ignore_shared()) { 3069 qemu_put_be64(f, block->mr->addr); 3070 } 3071 3072 if (migrate_mapped_ram()) { 3073 mapped_ram_setup_ramblock(f, block); 3074 } 3075 } 3076 } 3077 3078 ret = rdma_registration_start(f, RAM_CONTROL_SETUP); 3079 if (ret < 0) { 3080 error_setg(errp, "%s: failed to start RDMA registration", __func__); 3081 qemu_file_set_error(f, ret); 3082 return ret; 3083 } 3084 3085 ret = rdma_registration_stop(f, RAM_CONTROL_SETUP); 3086 if (ret < 0) { 3087 error_setg(errp, "%s: failed to stop RDMA registration", __func__); 3088 qemu_file_set_error(f, ret); 3089 return ret; 3090 } 3091 3092 if (migrate_multifd()) { 3093 multifd_ram_save_setup(); 3094 } 3095 3096 /* 3097 * This operation is unfortunate.. 3098 * 3099 * For legacy QEMUs using per-section sync 3100 * ======================================= 3101 * 3102 * This must exist because the EOS below requires the SYNC messages 3103 * per-channel to work. 3104 * 3105 * For modern QEMUs using per-round sync 3106 * ===================================== 3107 * 3108 * Logically such sync is not needed, and recv threads should not run 3109 * until setup ready (using things like channels_ready on src). Then 3110 * we should be all fine. 3111 * 3112 * However even if we add channels_ready to recv side in new QEMUs, old 3113 * QEMU won't have them so this sync will still be needed to make sure 3114 * multifd recv threads won't start processing guest pages early before 3115 * ram_load_setup() is properly done. 3116 * 3117 * Let's stick with this. Fortunately the overhead is low to sync 3118 * during setup because the VM is running, so at least it's not 3119 * accounted as part of downtime. 3120 */ 3121 bql_unlock(); 3122 ret = multifd_ram_flush_and_sync(f); 3123 bql_lock(); 3124 if (ret < 0) { 3125 error_setg(errp, "%s: multifd synchronization failed", __func__); 3126 return ret; 3127 } 3128 3129 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 3130 ret = qemu_fflush(f); 3131 if (ret < 0) { 3132 error_setg_errno(errp, -ret, "%s failed", __func__); 3133 } 3134 return ret; 3135 } 3136 3137 static void ram_save_file_bmap(QEMUFile *f) 3138 { 3139 RAMBlock *block; 3140 3141 RAMBLOCK_FOREACH_MIGRATABLE(block) { 3142 long num_pages = block->used_length >> TARGET_PAGE_BITS; 3143 long bitmap_size = BITS_TO_LONGS(num_pages) * sizeof(unsigned long); 3144 3145 qemu_put_buffer_at(f, (uint8_t *)block->file_bmap, bitmap_size, 3146 block->bitmap_offset); 3147 ram_transferred_add(bitmap_size); 3148 3149 /* 3150 * Free the bitmap here to catch any synchronization issues 3151 * with multifd channels. No channels should be sending pages 3152 * after we've written the bitmap to file. 3153 */ 3154 g_free(block->file_bmap); 3155 block->file_bmap = NULL; 3156 } 3157 } 3158 3159 void ramblock_set_file_bmap_atomic(RAMBlock *block, ram_addr_t offset, bool set) 3160 { 3161 if (set) { 3162 set_bit_atomic(offset >> TARGET_PAGE_BITS, block->file_bmap); 3163 } else { 3164 clear_bit_atomic(offset >> TARGET_PAGE_BITS, block->file_bmap); 3165 } 3166 } 3167 3168 /** 3169 * ram_save_iterate: iterative stage for migration 3170 * 3171 * Returns zero to indicate success and negative for error 3172 * 3173 * @f: QEMUFile where to send the data 3174 * @opaque: RAMState pointer 3175 */ 3176 static int ram_save_iterate(QEMUFile *f, void *opaque) 3177 { 3178 RAMState **temp = opaque; 3179 RAMState *rs = *temp; 3180 int ret = 0; 3181 int i; 3182 int64_t t0; 3183 int done = 0; 3184 3185 /* 3186 * We'll take this lock a little bit long, but it's okay for two reasons. 3187 * Firstly, the only possible other thread to take it is who calls 3188 * qemu_guest_free_page_hint(), which should be rare; secondly, see 3189 * MAX_WAIT (if curious, further see commit 4508bd9ed8053ce) below, which 3190 * guarantees that we'll at least released it in a regular basis. 3191 */ 3192 WITH_QEMU_LOCK_GUARD(&rs->bitmap_mutex) { 3193 WITH_RCU_READ_LOCK_GUARD() { 3194 if (ram_list.version != rs->last_version) { 3195 ram_state_reset(rs); 3196 } 3197 3198 /* Read version before ram_list.blocks */ 3199 smp_rmb(); 3200 3201 ret = rdma_registration_start(f, RAM_CONTROL_ROUND); 3202 if (ret < 0) { 3203 qemu_file_set_error(f, ret); 3204 goto out; 3205 } 3206 3207 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 3208 i = 0; 3209 while ((ret = migration_rate_exceeded(f)) == 0 || 3210 postcopy_has_request(rs)) { 3211 int pages; 3212 3213 if (qemu_file_get_error(f)) { 3214 break; 3215 } 3216 3217 pages = ram_find_and_save_block(rs); 3218 /* no more pages to sent */ 3219 if (pages == 0) { 3220 done = 1; 3221 break; 3222 } 3223 3224 if (pages < 0) { 3225 qemu_file_set_error(f, pages); 3226 break; 3227 } 3228 3229 rs->target_page_count += pages; 3230 3231 /* 3232 * we want to check in the 1st loop, just in case it was the 1st 3233 * time and we had to sync the dirty bitmap. 3234 * qemu_clock_get_ns() is a bit expensive, so we only check each 3235 * some iterations 3236 */ 3237 if ((i & 63) == 0) { 3238 uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) / 3239 1000000; 3240 if (t1 > MAX_WAIT) { 3241 trace_ram_save_iterate_big_wait(t1, i); 3242 break; 3243 } 3244 } 3245 i++; 3246 } 3247 } 3248 } 3249 3250 /* 3251 * Must occur before EOS (or any QEMUFile operation) 3252 * because of RDMA protocol. 3253 */ 3254 ret = rdma_registration_stop(f, RAM_CONTROL_ROUND); 3255 if (ret < 0) { 3256 qemu_file_set_error(f, ret); 3257 } 3258 3259 out: 3260 if (ret >= 0 && migration_is_running()) { 3261 if (multifd_ram_sync_per_section()) { 3262 ret = multifd_ram_flush_and_sync(f); 3263 if (ret < 0) { 3264 return ret; 3265 } 3266 } 3267 3268 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 3269 ram_transferred_add(8); 3270 ret = qemu_fflush(f); 3271 } 3272 if (ret < 0) { 3273 return ret; 3274 } 3275 3276 return done; 3277 } 3278 3279 /** 3280 * ram_save_complete: function called to send the remaining amount of ram 3281 * 3282 * Returns zero to indicate success or negative on error 3283 * 3284 * Called with the BQL 3285 * 3286 * @f: QEMUFile where to send the data 3287 * @opaque: RAMState pointer 3288 */ 3289 static int ram_save_complete(QEMUFile *f, void *opaque) 3290 { 3291 RAMState **temp = opaque; 3292 RAMState *rs = *temp; 3293 int ret = 0; 3294 3295 trace_ram_save_complete(rs->migration_dirty_pages, 0); 3296 3297 rs->last_stage = !migration_in_colo_state(); 3298 3299 WITH_RCU_READ_LOCK_GUARD() { 3300 if (!migration_in_postcopy()) { 3301 migration_bitmap_sync_precopy(true); 3302 } 3303 3304 ret = rdma_registration_start(f, RAM_CONTROL_FINISH); 3305 if (ret < 0) { 3306 qemu_file_set_error(f, ret); 3307 return ret; 3308 } 3309 3310 /* try transferring iterative blocks of memory */ 3311 3312 /* flush all remaining blocks regardless of rate limiting */ 3313 qemu_mutex_lock(&rs->bitmap_mutex); 3314 while (true) { 3315 int pages; 3316 3317 pages = ram_find_and_save_block(rs); 3318 /* no more blocks to sent */ 3319 if (pages == 0) { 3320 break; 3321 } 3322 if (pages < 0) { 3323 qemu_mutex_unlock(&rs->bitmap_mutex); 3324 return pages; 3325 } 3326 } 3327 qemu_mutex_unlock(&rs->bitmap_mutex); 3328 3329 ret = rdma_registration_stop(f, RAM_CONTROL_FINISH); 3330 if (ret < 0) { 3331 qemu_file_set_error(f, ret); 3332 return ret; 3333 } 3334 } 3335 3336 if (multifd_ram_sync_per_section()) { 3337 /* 3338 * Only the old dest QEMU will need this sync, because each EOS 3339 * will require one SYNC message on each channel. 3340 */ 3341 ret = multifd_ram_flush_and_sync(f); 3342 if (ret < 0) { 3343 return ret; 3344 } 3345 } 3346 3347 if (migrate_mapped_ram()) { 3348 ram_save_file_bmap(f); 3349 3350 if (qemu_file_get_error(f)) { 3351 Error *local_err = NULL; 3352 int err = qemu_file_get_error_obj(f, &local_err); 3353 3354 error_reportf_err(local_err, "Failed to write bitmap to file: "); 3355 return -err; 3356 } 3357 } 3358 3359 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 3360 3361 trace_ram_save_complete(rs->migration_dirty_pages, 1); 3362 3363 return qemu_fflush(f); 3364 } 3365 3366 static void ram_state_pending_estimate(void *opaque, uint64_t *must_precopy, 3367 uint64_t *can_postcopy) 3368 { 3369 RAMState **temp = opaque; 3370 RAMState *rs = *temp; 3371 3372 uint64_t remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE; 3373 3374 if (migrate_postcopy_ram()) { 3375 /* We can do postcopy, and all the data is postcopiable */ 3376 *can_postcopy += remaining_size; 3377 } else { 3378 *must_precopy += remaining_size; 3379 } 3380 } 3381 3382 static void ram_state_pending_exact(void *opaque, uint64_t *must_precopy, 3383 uint64_t *can_postcopy) 3384 { 3385 RAMState **temp = opaque; 3386 RAMState *rs = *temp; 3387 uint64_t remaining_size; 3388 3389 if (!migration_in_postcopy()) { 3390 bql_lock(); 3391 WITH_RCU_READ_LOCK_GUARD() { 3392 migration_bitmap_sync_precopy(false); 3393 } 3394 bql_unlock(); 3395 } 3396 3397 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE; 3398 3399 if (migrate_postcopy_ram()) { 3400 /* We can do postcopy, and all the data is postcopiable */ 3401 *can_postcopy += remaining_size; 3402 } else { 3403 *must_precopy += remaining_size; 3404 } 3405 } 3406 3407 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host) 3408 { 3409 unsigned int xh_len; 3410 int xh_flags; 3411 uint8_t *loaded_data; 3412 3413 /* extract RLE header */ 3414 xh_flags = qemu_get_byte(f); 3415 xh_len = qemu_get_be16(f); 3416 3417 if (xh_flags != ENCODING_FLAG_XBZRLE) { 3418 error_report("Failed to load XBZRLE page - wrong compression!"); 3419 return -1; 3420 } 3421 3422 if (xh_len > TARGET_PAGE_SIZE) { 3423 error_report("Failed to load XBZRLE page - len overflow!"); 3424 return -1; 3425 } 3426 loaded_data = XBZRLE.decoded_buf; 3427 /* load data and decode */ 3428 /* it can change loaded_data to point to an internal buffer */ 3429 qemu_get_buffer_in_place(f, &loaded_data, xh_len); 3430 3431 /* decode RLE */ 3432 if (xbzrle_decode_buffer(loaded_data, xh_len, host, 3433 TARGET_PAGE_SIZE) == -1) { 3434 error_report("Failed to load XBZRLE page - decode error!"); 3435 return -1; 3436 } 3437 3438 return 0; 3439 } 3440 3441 /** 3442 * ram_block_from_stream: read a RAMBlock id from the migration stream 3443 * 3444 * Must be called from within a rcu critical section. 3445 * 3446 * Returns a pointer from within the RCU-protected ram_list. 3447 * 3448 * @mis: the migration incoming state pointer 3449 * @f: QEMUFile where to read the data from 3450 * @flags: Page flags (mostly to see if it's a continuation of previous block) 3451 * @channel: the channel we're using 3452 */ 3453 static inline RAMBlock *ram_block_from_stream(MigrationIncomingState *mis, 3454 QEMUFile *f, int flags, 3455 int channel) 3456 { 3457 RAMBlock *block = mis->last_recv_block[channel]; 3458 char id[256]; 3459 uint8_t len; 3460 3461 if (flags & RAM_SAVE_FLAG_CONTINUE) { 3462 if (!block) { 3463 error_report("Ack, bad migration stream!"); 3464 return NULL; 3465 } 3466 return block; 3467 } 3468 3469 len = qemu_get_byte(f); 3470 qemu_get_buffer(f, (uint8_t *)id, len); 3471 id[len] = 0; 3472 3473 block = qemu_ram_block_by_name(id); 3474 if (!block) { 3475 error_report("Can't find block %s", id); 3476 return NULL; 3477 } 3478 3479 if (migrate_ram_is_ignored(block)) { 3480 error_report("block %s should not be migrated !", id); 3481 return NULL; 3482 } 3483 3484 mis->last_recv_block[channel] = block; 3485 3486 return block; 3487 } 3488 3489 static inline void *host_from_ram_block_offset(RAMBlock *block, 3490 ram_addr_t offset) 3491 { 3492 if (!offset_in_ramblock(block, offset)) { 3493 return NULL; 3494 } 3495 3496 return block->host + offset; 3497 } 3498 3499 static void *host_page_from_ram_block_offset(RAMBlock *block, 3500 ram_addr_t offset) 3501 { 3502 /* Note: Explicitly no check against offset_in_ramblock(). */ 3503 return (void *)QEMU_ALIGN_DOWN((uintptr_t)(block->host + offset), 3504 block->page_size); 3505 } 3506 3507 static ram_addr_t host_page_offset_from_ram_block_offset(RAMBlock *block, 3508 ram_addr_t offset) 3509 { 3510 return ((uintptr_t)block->host + offset) & (block->page_size - 1); 3511 } 3512 3513 void colo_record_bitmap(RAMBlock *block, ram_addr_t *normal, uint32_t pages) 3514 { 3515 qemu_mutex_lock(&ram_state->bitmap_mutex); 3516 for (int i = 0; i < pages; i++) { 3517 ram_addr_t offset = normal[i]; 3518 ram_state->migration_dirty_pages += !test_and_set_bit( 3519 offset >> TARGET_PAGE_BITS, 3520 block->bmap); 3521 } 3522 qemu_mutex_unlock(&ram_state->bitmap_mutex); 3523 } 3524 3525 static inline void *colo_cache_from_block_offset(RAMBlock *block, 3526 ram_addr_t offset, bool record_bitmap) 3527 { 3528 if (!offset_in_ramblock(block, offset)) { 3529 return NULL; 3530 } 3531 if (!block->colo_cache) { 3532 error_report("%s: colo_cache is NULL in block :%s", 3533 __func__, block->idstr); 3534 return NULL; 3535 } 3536 3537 /* 3538 * During colo checkpoint, we need bitmap of these migrated pages. 3539 * It help us to decide which pages in ram cache should be flushed 3540 * into VM's RAM later. 3541 */ 3542 if (record_bitmap) { 3543 colo_record_bitmap(block, &offset, 1); 3544 } 3545 return block->colo_cache + offset; 3546 } 3547 3548 /** 3549 * ram_handle_zero: handle the zero page case 3550 * 3551 * If a page (or a whole RDMA chunk) has been 3552 * determined to be zero, then zap it. 3553 * 3554 * @host: host address for the zero page 3555 * @ch: what the page is filled from. We only support zero 3556 * @size: size of the zero page 3557 */ 3558 void ram_handle_zero(void *host, uint64_t size) 3559 { 3560 if (!buffer_is_zero(host, size)) { 3561 memset(host, 0, size); 3562 } 3563 } 3564 3565 static void colo_init_ram_state(void) 3566 { 3567 Error *local_err = NULL; 3568 3569 if (!ram_state_init(&ram_state, &local_err)) { 3570 error_report_err(local_err); 3571 } 3572 } 3573 3574 /* 3575 * colo cache: this is for secondary VM, we cache the whole 3576 * memory of the secondary VM, it is need to hold the global lock 3577 * to call this helper. 3578 */ 3579 int colo_init_ram_cache(void) 3580 { 3581 RAMBlock *block; 3582 3583 WITH_RCU_READ_LOCK_GUARD() { 3584 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3585 block->colo_cache = qemu_anon_ram_alloc(block->used_length, 3586 NULL, false, false); 3587 if (!block->colo_cache) { 3588 error_report("%s: Can't alloc memory for COLO cache of block %s," 3589 "size 0x" RAM_ADDR_FMT, __func__, block->idstr, 3590 block->used_length); 3591 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3592 if (block->colo_cache) { 3593 qemu_anon_ram_free(block->colo_cache, block->used_length); 3594 block->colo_cache = NULL; 3595 } 3596 } 3597 return -errno; 3598 } 3599 if (!machine_dump_guest_core(current_machine)) { 3600 qemu_madvise(block->colo_cache, block->used_length, 3601 QEMU_MADV_DONTDUMP); 3602 } 3603 } 3604 } 3605 3606 /* 3607 * Record the dirty pages that sent by PVM, we use this dirty bitmap together 3608 * with to decide which page in cache should be flushed into SVM's RAM. Here 3609 * we use the same name 'ram_bitmap' as for migration. 3610 */ 3611 if (ram_bytes_total()) { 3612 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3613 unsigned long pages = block->max_length >> TARGET_PAGE_BITS; 3614 block->bmap = bitmap_new(pages); 3615 } 3616 } 3617 3618 colo_init_ram_state(); 3619 return 0; 3620 } 3621 3622 /* TODO: duplicated with ram_init_bitmaps */ 3623 void colo_incoming_start_dirty_log(void) 3624 { 3625 RAMBlock *block = NULL; 3626 Error *local_err = NULL; 3627 3628 /* For memory_global_dirty_log_start below. */ 3629 bql_lock(); 3630 qemu_mutex_lock_ramlist(); 3631 3632 memory_global_dirty_log_sync(false); 3633 WITH_RCU_READ_LOCK_GUARD() { 3634 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3635 ramblock_sync_dirty_bitmap(ram_state, block); 3636 /* Discard this dirty bitmap record */ 3637 bitmap_zero(block->bmap, block->max_length >> TARGET_PAGE_BITS); 3638 } 3639 if (!memory_global_dirty_log_start(GLOBAL_DIRTY_MIGRATION, 3640 &local_err)) { 3641 error_report_err(local_err); 3642 } 3643 } 3644 ram_state->migration_dirty_pages = 0; 3645 qemu_mutex_unlock_ramlist(); 3646 bql_unlock(); 3647 } 3648 3649 /* It is need to hold the global lock to call this helper */ 3650 void colo_release_ram_cache(void) 3651 { 3652 RAMBlock *block; 3653 3654 memory_global_dirty_log_stop(GLOBAL_DIRTY_MIGRATION); 3655 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3656 g_free(block->bmap); 3657 block->bmap = NULL; 3658 } 3659 3660 WITH_RCU_READ_LOCK_GUARD() { 3661 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3662 if (block->colo_cache) { 3663 qemu_anon_ram_free(block->colo_cache, block->used_length); 3664 block->colo_cache = NULL; 3665 } 3666 } 3667 } 3668 ram_state_cleanup(&ram_state); 3669 } 3670 3671 /** 3672 * ram_load_setup: Setup RAM for migration incoming side 3673 * 3674 * Returns zero to indicate success and negative for error 3675 * 3676 * @f: QEMUFile where to receive the data 3677 * @opaque: RAMState pointer 3678 * @errp: pointer to Error*, to store an error if it happens. 3679 */ 3680 static int ram_load_setup(QEMUFile *f, void *opaque, Error **errp) 3681 { 3682 xbzrle_load_setup(); 3683 ramblock_recv_map_init(); 3684 3685 return 0; 3686 } 3687 3688 static int ram_load_cleanup(void *opaque) 3689 { 3690 RAMBlock *rb; 3691 3692 RAMBLOCK_FOREACH_NOT_IGNORED(rb) { 3693 if (memory_region_is_nonvolatile(rb->mr)) { 3694 qemu_ram_block_writeback(rb); 3695 } 3696 } 3697 3698 xbzrle_load_cleanup(); 3699 3700 RAMBLOCK_FOREACH_NOT_IGNORED(rb) { 3701 g_free(rb->receivedmap); 3702 rb->receivedmap = NULL; 3703 } 3704 3705 return 0; 3706 } 3707 3708 /** 3709 * ram_postcopy_incoming_init: allocate postcopy data structures 3710 * 3711 * Returns 0 for success and negative if there was one error 3712 * 3713 * @mis: current migration incoming state 3714 * 3715 * Allocate data structures etc needed by incoming migration with 3716 * postcopy-ram. postcopy-ram's similarly names 3717 * postcopy_ram_incoming_init does the work. 3718 */ 3719 int ram_postcopy_incoming_init(MigrationIncomingState *mis) 3720 { 3721 return postcopy_ram_incoming_init(mis); 3722 } 3723 3724 /** 3725 * ram_load_postcopy: load a page in postcopy case 3726 * 3727 * Returns 0 for success or -errno in case of error 3728 * 3729 * Called in postcopy mode by ram_load(). 3730 * rcu_read_lock is taken prior to this being called. 3731 * 3732 * @f: QEMUFile where to send the data 3733 * @channel: the channel to use for loading 3734 */ 3735 int ram_load_postcopy(QEMUFile *f, int channel) 3736 { 3737 int flags = 0, ret = 0; 3738 bool place_needed = false; 3739 bool matches_target_page_size = false; 3740 MigrationIncomingState *mis = migration_incoming_get_current(); 3741 PostcopyTmpPage *tmp_page = &mis->postcopy_tmp_pages[channel]; 3742 3743 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) { 3744 ram_addr_t addr; 3745 void *page_buffer = NULL; 3746 void *place_source = NULL; 3747 RAMBlock *block = NULL; 3748 uint8_t ch; 3749 3750 addr = qemu_get_be64(f); 3751 3752 /* 3753 * If qemu file error, we should stop here, and then "addr" 3754 * may be invalid 3755 */ 3756 ret = qemu_file_get_error(f); 3757 if (ret) { 3758 break; 3759 } 3760 3761 flags = addr & ~TARGET_PAGE_MASK; 3762 addr &= TARGET_PAGE_MASK; 3763 3764 trace_ram_load_postcopy_loop(channel, (uint64_t)addr, flags); 3765 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE)) { 3766 block = ram_block_from_stream(mis, f, flags, channel); 3767 if (!block) { 3768 ret = -EINVAL; 3769 break; 3770 } 3771 3772 /* 3773 * Relying on used_length is racy and can result in false positives. 3774 * We might place pages beyond used_length in case RAM was shrunk 3775 * while in postcopy, which is fine - trying to place via 3776 * UFFDIO_COPY/UFFDIO_ZEROPAGE will never segfault. 3777 */ 3778 if (!block->host || addr >= block->postcopy_length) { 3779 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr); 3780 ret = -EINVAL; 3781 break; 3782 } 3783 tmp_page->target_pages++; 3784 matches_target_page_size = block->page_size == TARGET_PAGE_SIZE; 3785 /* 3786 * Postcopy requires that we place whole host pages atomically; 3787 * these may be huge pages for RAMBlocks that are backed by 3788 * hugetlbfs. 3789 * To make it atomic, the data is read into a temporary page 3790 * that's moved into place later. 3791 * The migration protocol uses, possibly smaller, target-pages 3792 * however the source ensures it always sends all the components 3793 * of a host page in one chunk. 3794 */ 3795 page_buffer = tmp_page->tmp_huge_page + 3796 host_page_offset_from_ram_block_offset(block, addr); 3797 /* If all TP are zero then we can optimise the place */ 3798 if (tmp_page->target_pages == 1) { 3799 tmp_page->host_addr = 3800 host_page_from_ram_block_offset(block, addr); 3801 } else if (tmp_page->host_addr != 3802 host_page_from_ram_block_offset(block, addr)) { 3803 /* not the 1st TP within the HP */ 3804 error_report("Non-same host page detected on channel %d: " 3805 "Target host page %p, received host page %p " 3806 "(rb %s offset 0x"RAM_ADDR_FMT" target_pages %d)", 3807 channel, tmp_page->host_addr, 3808 host_page_from_ram_block_offset(block, addr), 3809 block->idstr, addr, tmp_page->target_pages); 3810 ret = -EINVAL; 3811 break; 3812 } 3813 3814 /* 3815 * If it's the last part of a host page then we place the host 3816 * page 3817 */ 3818 if (tmp_page->target_pages == 3819 (block->page_size / TARGET_PAGE_SIZE)) { 3820 place_needed = true; 3821 } 3822 place_source = tmp_page->tmp_huge_page; 3823 } 3824 3825 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) { 3826 case RAM_SAVE_FLAG_ZERO: 3827 ch = qemu_get_byte(f); 3828 if (ch != 0) { 3829 error_report("Found a zero page with value %d", ch); 3830 ret = -EINVAL; 3831 break; 3832 } 3833 /* 3834 * Can skip to set page_buffer when 3835 * this is a zero page and (block->page_size == TARGET_PAGE_SIZE). 3836 */ 3837 if (!matches_target_page_size) { 3838 memset(page_buffer, ch, TARGET_PAGE_SIZE); 3839 } 3840 break; 3841 3842 case RAM_SAVE_FLAG_PAGE: 3843 tmp_page->all_zero = false; 3844 if (!matches_target_page_size) { 3845 /* For huge pages, we always use temporary buffer */ 3846 qemu_get_buffer(f, page_buffer, TARGET_PAGE_SIZE); 3847 } else { 3848 /* 3849 * For small pages that matches target page size, we 3850 * avoid the qemu_file copy. Instead we directly use 3851 * the buffer of QEMUFile to place the page. Note: we 3852 * cannot do any QEMUFile operation before using that 3853 * buffer to make sure the buffer is valid when 3854 * placing the page. 3855 */ 3856 qemu_get_buffer_in_place(f, (uint8_t **)&place_source, 3857 TARGET_PAGE_SIZE); 3858 } 3859 break; 3860 case RAM_SAVE_FLAG_EOS: 3861 break; 3862 default: 3863 error_report("Unknown combination of migration flags: 0x%x" 3864 " (postcopy mode)", flags); 3865 ret = -EINVAL; 3866 break; 3867 } 3868 3869 /* Detect for any possible file errors */ 3870 if (!ret && qemu_file_get_error(f)) { 3871 ret = qemu_file_get_error(f); 3872 } 3873 3874 if (!ret && place_needed) { 3875 if (tmp_page->all_zero) { 3876 ret = postcopy_place_page_zero(mis, tmp_page->host_addr, block); 3877 } else { 3878 ret = postcopy_place_page(mis, tmp_page->host_addr, 3879 place_source, block); 3880 } 3881 place_needed = false; 3882 postcopy_temp_page_reset(tmp_page); 3883 } 3884 } 3885 3886 return ret; 3887 } 3888 3889 static bool postcopy_is_running(void) 3890 { 3891 PostcopyState ps = postcopy_state_get(); 3892 return ps >= POSTCOPY_INCOMING_LISTENING && ps < POSTCOPY_INCOMING_END; 3893 } 3894 3895 /* 3896 * Flush content of RAM cache into SVM's memory. 3897 * Only flush the pages that be dirtied by PVM or SVM or both. 3898 */ 3899 void colo_flush_ram_cache(void) 3900 { 3901 RAMBlock *block = NULL; 3902 void *dst_host; 3903 void *src_host; 3904 unsigned long offset = 0; 3905 3906 memory_global_dirty_log_sync(false); 3907 qemu_mutex_lock(&ram_state->bitmap_mutex); 3908 WITH_RCU_READ_LOCK_GUARD() { 3909 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3910 ramblock_sync_dirty_bitmap(ram_state, block); 3911 } 3912 } 3913 3914 trace_colo_flush_ram_cache_begin(ram_state->migration_dirty_pages); 3915 WITH_RCU_READ_LOCK_GUARD() { 3916 block = QLIST_FIRST_RCU(&ram_list.blocks); 3917 3918 while (block) { 3919 unsigned long num = 0; 3920 3921 offset = colo_bitmap_find_dirty(ram_state, block, offset, &num); 3922 if (!offset_in_ramblock(block, 3923 ((ram_addr_t)offset) << TARGET_PAGE_BITS)) { 3924 offset = 0; 3925 num = 0; 3926 block = QLIST_NEXT_RCU(block, next); 3927 } else { 3928 unsigned long i = 0; 3929 3930 for (i = 0; i < num; i++) { 3931 migration_bitmap_clear_dirty(ram_state, block, offset + i); 3932 } 3933 dst_host = block->host 3934 + (((ram_addr_t)offset) << TARGET_PAGE_BITS); 3935 src_host = block->colo_cache 3936 + (((ram_addr_t)offset) << TARGET_PAGE_BITS); 3937 memcpy(dst_host, src_host, TARGET_PAGE_SIZE * num); 3938 offset += num; 3939 } 3940 } 3941 } 3942 qemu_mutex_unlock(&ram_state->bitmap_mutex); 3943 trace_colo_flush_ram_cache_end(); 3944 } 3945 3946 static size_t ram_load_multifd_pages(void *host_addr, size_t size, 3947 uint64_t offset) 3948 { 3949 MultiFDRecvData *data = multifd_get_recv_data(); 3950 3951 data->opaque = host_addr; 3952 data->file_offset = offset; 3953 data->size = size; 3954 3955 if (!multifd_recv()) { 3956 return 0; 3957 } 3958 3959 return size; 3960 } 3961 3962 static bool read_ramblock_mapped_ram(QEMUFile *f, RAMBlock *block, 3963 long num_pages, unsigned long *bitmap, 3964 Error **errp) 3965 { 3966 ERRP_GUARD(); 3967 unsigned long set_bit_idx, clear_bit_idx; 3968 ram_addr_t offset; 3969 void *host; 3970 size_t read, unread, size; 3971 3972 for (set_bit_idx = find_first_bit(bitmap, num_pages); 3973 set_bit_idx < num_pages; 3974 set_bit_idx = find_next_bit(bitmap, num_pages, clear_bit_idx + 1)) { 3975 3976 clear_bit_idx = find_next_zero_bit(bitmap, num_pages, set_bit_idx + 1); 3977 3978 unread = TARGET_PAGE_SIZE * (clear_bit_idx - set_bit_idx); 3979 offset = set_bit_idx << TARGET_PAGE_BITS; 3980 3981 while (unread > 0) { 3982 host = host_from_ram_block_offset(block, offset); 3983 if (!host) { 3984 error_setg(errp, "page outside of ramblock %s range", 3985 block->idstr); 3986 return false; 3987 } 3988 3989 size = MIN(unread, MAPPED_RAM_LOAD_BUF_SIZE); 3990 3991 if (migrate_multifd()) { 3992 read = ram_load_multifd_pages(host, size, 3993 block->pages_offset + offset); 3994 } else { 3995 read = qemu_get_buffer_at(f, host, size, 3996 block->pages_offset + offset); 3997 } 3998 3999 if (!read) { 4000 goto err; 4001 } 4002 offset += read; 4003 unread -= read; 4004 } 4005 } 4006 4007 return true; 4008 4009 err: 4010 qemu_file_get_error_obj(f, errp); 4011 error_prepend(errp, "(%s) failed to read page " RAM_ADDR_FMT 4012 "from file offset %" PRIx64 ": ", block->idstr, offset, 4013 block->pages_offset + offset); 4014 return false; 4015 } 4016 4017 static void parse_ramblock_mapped_ram(QEMUFile *f, RAMBlock *block, 4018 ram_addr_t length, Error **errp) 4019 { 4020 g_autofree unsigned long *bitmap = NULL; 4021 MappedRamHeader header; 4022 size_t bitmap_size; 4023 long num_pages; 4024 4025 if (!mapped_ram_read_header(f, &header, errp)) { 4026 return; 4027 } 4028 4029 block->pages_offset = header.pages_offset; 4030 4031 /* 4032 * Check the alignment of the file region that contains pages. We 4033 * don't enforce MAPPED_RAM_FILE_OFFSET_ALIGNMENT to allow that 4034 * value to change in the future. Do only a sanity check with page 4035 * size alignment. 4036 */ 4037 if (!QEMU_IS_ALIGNED(block->pages_offset, TARGET_PAGE_SIZE)) { 4038 error_setg(errp, 4039 "Error reading ramblock %s pages, region has bad alignment", 4040 block->idstr); 4041 return; 4042 } 4043 4044 num_pages = length / header.page_size; 4045 bitmap_size = BITS_TO_LONGS(num_pages) * sizeof(unsigned long); 4046 4047 bitmap = g_malloc0(bitmap_size); 4048 if (qemu_get_buffer_at(f, (uint8_t *)bitmap, bitmap_size, 4049 header.bitmap_offset) != bitmap_size) { 4050 error_setg(errp, "Error reading dirty bitmap"); 4051 return; 4052 } 4053 4054 if (!read_ramblock_mapped_ram(f, block, num_pages, bitmap, errp)) { 4055 return; 4056 } 4057 4058 /* Skip pages array */ 4059 qemu_set_offset(f, block->pages_offset + length, SEEK_SET); 4060 } 4061 4062 static int parse_ramblock(QEMUFile *f, RAMBlock *block, ram_addr_t length) 4063 { 4064 int ret = 0; 4065 /* ADVISE is earlier, it shows the source has the postcopy capability on */ 4066 bool postcopy_advised = migration_incoming_postcopy_advised(); 4067 int max_hg_page_size; 4068 Error *local_err = NULL; 4069 4070 assert(block); 4071 4072 if (migrate_mapped_ram()) { 4073 parse_ramblock_mapped_ram(f, block, length, &local_err); 4074 if (local_err) { 4075 error_report_err(local_err); 4076 return -EINVAL; 4077 } 4078 return 0; 4079 } 4080 4081 if (!qemu_ram_is_migratable(block)) { 4082 error_report("block %s should not be migrated !", block->idstr); 4083 return -EINVAL; 4084 } 4085 4086 if (length != block->used_length) { 4087 ret = qemu_ram_resize(block, length, &local_err); 4088 if (local_err) { 4089 error_report_err(local_err); 4090 return ret; 4091 } 4092 } 4093 4094 /* 4095 * ??? Mirrors the previous value of qemu_host_page_size, 4096 * but is this really what was intended for the migration? 4097 */ 4098 max_hg_page_size = MAX(qemu_real_host_page_size(), TARGET_PAGE_SIZE); 4099 4100 /* For postcopy we need to check hugepage sizes match */ 4101 if (postcopy_advised && migrate_postcopy_ram() && 4102 block->page_size != max_hg_page_size) { 4103 uint64_t remote_page_size = qemu_get_be64(f); 4104 if (remote_page_size != block->page_size) { 4105 error_report("Mismatched RAM page size %s " 4106 "(local) %zd != %" PRId64, block->idstr, 4107 block->page_size, remote_page_size); 4108 return -EINVAL; 4109 } 4110 } 4111 if (migrate_ignore_shared()) { 4112 hwaddr addr = qemu_get_be64(f); 4113 if (migrate_ram_is_ignored(block) && 4114 block->mr->addr != addr) { 4115 error_report("Mismatched GPAs for block %s " 4116 "%" PRId64 "!= %" PRId64, block->idstr, 4117 (uint64_t)addr, (uint64_t)block->mr->addr); 4118 return -EINVAL; 4119 } 4120 } 4121 ret = rdma_block_notification_handle(f, block->idstr); 4122 if (ret < 0) { 4123 qemu_file_set_error(f, ret); 4124 } 4125 4126 return ret; 4127 } 4128 4129 static int parse_ramblocks(QEMUFile *f, ram_addr_t total_ram_bytes) 4130 { 4131 int ret = 0; 4132 4133 /* Synchronize RAM block list */ 4134 while (!ret && total_ram_bytes) { 4135 RAMBlock *block; 4136 char id[256]; 4137 ram_addr_t length; 4138 int len = qemu_get_byte(f); 4139 4140 qemu_get_buffer(f, (uint8_t *)id, len); 4141 id[len] = 0; 4142 length = qemu_get_be64(f); 4143 4144 block = qemu_ram_block_by_name(id); 4145 if (block) { 4146 ret = parse_ramblock(f, block, length); 4147 } else { 4148 error_report("Unknown ramblock \"%s\", cannot accept " 4149 "migration", id); 4150 ret = -EINVAL; 4151 } 4152 total_ram_bytes -= length; 4153 } 4154 4155 return ret; 4156 } 4157 4158 /** 4159 * ram_load_precopy: load pages in precopy case 4160 * 4161 * Returns 0 for success or -errno in case of error 4162 * 4163 * Called in precopy mode by ram_load(). 4164 * rcu_read_lock is taken prior to this being called. 4165 * 4166 * @f: QEMUFile where to send the data 4167 */ 4168 static int ram_load_precopy(QEMUFile *f) 4169 { 4170 MigrationIncomingState *mis = migration_incoming_get_current(); 4171 int flags = 0, ret = 0, invalid_flags = 0, i = 0; 4172 4173 if (migrate_mapped_ram()) { 4174 invalid_flags |= (RAM_SAVE_FLAG_HOOK | RAM_SAVE_FLAG_MULTIFD_FLUSH | 4175 RAM_SAVE_FLAG_PAGE | RAM_SAVE_FLAG_XBZRLE | 4176 RAM_SAVE_FLAG_ZERO); 4177 } 4178 4179 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) { 4180 ram_addr_t addr; 4181 void *host = NULL, *host_bak = NULL; 4182 uint8_t ch; 4183 4184 /* 4185 * Yield periodically to let main loop run, but an iteration of 4186 * the main loop is expensive, so do it each some iterations 4187 */ 4188 if ((i & 32767) == 0 && qemu_in_coroutine()) { 4189 aio_co_schedule(qemu_get_current_aio_context(), 4190 qemu_coroutine_self()); 4191 qemu_coroutine_yield(); 4192 } 4193 i++; 4194 4195 addr = qemu_get_be64(f); 4196 ret = qemu_file_get_error(f); 4197 if (ret) { 4198 error_report("Getting RAM address failed"); 4199 break; 4200 } 4201 4202 flags = addr & ~TARGET_PAGE_MASK; 4203 addr &= TARGET_PAGE_MASK; 4204 4205 if (flags & invalid_flags) { 4206 error_report("Unexpected RAM flags: %d", flags & invalid_flags); 4207 4208 ret = -EINVAL; 4209 break; 4210 } 4211 4212 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE | 4213 RAM_SAVE_FLAG_XBZRLE)) { 4214 RAMBlock *block = ram_block_from_stream(mis, f, flags, 4215 RAM_CHANNEL_PRECOPY); 4216 4217 host = host_from_ram_block_offset(block, addr); 4218 /* 4219 * After going into COLO stage, we should not load the page 4220 * into SVM's memory directly, we put them into colo_cache firstly. 4221 * NOTE: We need to keep a copy of SVM's ram in colo_cache. 4222 * Previously, we copied all these memory in preparing stage of COLO 4223 * while we need to stop VM, which is a time-consuming process. 4224 * Here we optimize it by a trick, back-up every page while in 4225 * migration process while COLO is enabled, though it affects the 4226 * speed of the migration, but it obviously reduce the downtime of 4227 * back-up all SVM'S memory in COLO preparing stage. 4228 */ 4229 if (migration_incoming_colo_enabled()) { 4230 if (migration_incoming_in_colo_state()) { 4231 /* In COLO stage, put all pages into cache temporarily */ 4232 host = colo_cache_from_block_offset(block, addr, true); 4233 } else { 4234 /* 4235 * In migration stage but before COLO stage, 4236 * Put all pages into both cache and SVM's memory. 4237 */ 4238 host_bak = colo_cache_from_block_offset(block, addr, false); 4239 } 4240 } 4241 if (!host) { 4242 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr); 4243 ret = -EINVAL; 4244 break; 4245 } 4246 if (!migration_incoming_in_colo_state()) { 4247 ramblock_recv_bitmap_set(block, host); 4248 } 4249 4250 trace_ram_load_loop(block->idstr, (uint64_t)addr, flags, host); 4251 } 4252 4253 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) { 4254 case RAM_SAVE_FLAG_MEM_SIZE: 4255 ret = parse_ramblocks(f, addr); 4256 /* 4257 * For mapped-ram migration (to a file) using multifd, we sync 4258 * once and for all here to make sure all tasks we queued to 4259 * multifd threads are completed, so that all the ramblocks 4260 * (including all the guest memory pages within) are fully 4261 * loaded after this sync returns. 4262 */ 4263 if (migrate_mapped_ram()) { 4264 multifd_recv_sync_main(); 4265 } 4266 break; 4267 4268 case RAM_SAVE_FLAG_ZERO: 4269 ch = qemu_get_byte(f); 4270 if (ch != 0) { 4271 error_report("Found a zero page with value %d", ch); 4272 ret = -EINVAL; 4273 break; 4274 } 4275 ram_handle_zero(host, TARGET_PAGE_SIZE); 4276 break; 4277 4278 case RAM_SAVE_FLAG_PAGE: 4279 qemu_get_buffer(f, host, TARGET_PAGE_SIZE); 4280 break; 4281 4282 case RAM_SAVE_FLAG_XBZRLE: 4283 if (load_xbzrle(f, addr, host) < 0) { 4284 error_report("Failed to decompress XBZRLE page at " 4285 RAM_ADDR_FMT, addr); 4286 ret = -EINVAL; 4287 break; 4288 } 4289 break; 4290 case RAM_SAVE_FLAG_MULTIFD_FLUSH: 4291 multifd_recv_sync_main(); 4292 break; 4293 case RAM_SAVE_FLAG_EOS: 4294 /* normal exit */ 4295 if (migrate_multifd() && 4296 migrate_multifd_flush_after_each_section() && 4297 /* 4298 * Mapped-ram migration flushes once and for all after 4299 * parsing ramblocks. Always ignore EOS for it. 4300 */ 4301 !migrate_mapped_ram()) { 4302 multifd_recv_sync_main(); 4303 } 4304 break; 4305 case RAM_SAVE_FLAG_HOOK: 4306 ret = rdma_registration_handle(f); 4307 if (ret < 0) { 4308 qemu_file_set_error(f, ret); 4309 } 4310 break; 4311 default: 4312 error_report("Unknown combination of migration flags: 0x%x", flags); 4313 ret = -EINVAL; 4314 } 4315 if (!ret) { 4316 ret = qemu_file_get_error(f); 4317 } 4318 if (!ret && host_bak) { 4319 memcpy(host_bak, host, TARGET_PAGE_SIZE); 4320 } 4321 } 4322 4323 return ret; 4324 } 4325 4326 static int ram_load(QEMUFile *f, void *opaque, int version_id) 4327 { 4328 int ret = 0; 4329 static uint64_t seq_iter; 4330 /* 4331 * If system is running in postcopy mode, page inserts to host memory must 4332 * be atomic 4333 */ 4334 bool postcopy_running = postcopy_is_running(); 4335 4336 seq_iter++; 4337 4338 if (version_id != 4) { 4339 return -EINVAL; 4340 } 4341 4342 /* 4343 * This RCU critical section can be very long running. 4344 * When RCU reclaims in the code start to become numerous, 4345 * it will be necessary to reduce the granularity of this 4346 * critical section. 4347 */ 4348 trace_ram_load_start(); 4349 WITH_RCU_READ_LOCK_GUARD() { 4350 if (postcopy_running) { 4351 /* 4352 * Note! Here RAM_CHANNEL_PRECOPY is the precopy channel of 4353 * postcopy migration, we have another RAM_CHANNEL_POSTCOPY to 4354 * service fast page faults. 4355 */ 4356 ret = ram_load_postcopy(f, RAM_CHANNEL_PRECOPY); 4357 } else { 4358 ret = ram_load_precopy(f); 4359 } 4360 } 4361 trace_ram_load_complete(ret, seq_iter); 4362 4363 return ret; 4364 } 4365 4366 static bool ram_has_postcopy(void *opaque) 4367 { 4368 RAMBlock *rb; 4369 RAMBLOCK_FOREACH_NOT_IGNORED(rb) { 4370 if (ramblock_is_pmem(rb)) { 4371 info_report("Block: %s, host: %p is a nvdimm memory, postcopy" 4372 "is not supported now!", rb->idstr, rb->host); 4373 return false; 4374 } 4375 } 4376 4377 return migrate_postcopy_ram(); 4378 } 4379 4380 /* Sync all the dirty bitmap with destination VM. */ 4381 static int ram_dirty_bitmap_sync_all(MigrationState *s, RAMState *rs) 4382 { 4383 RAMBlock *block; 4384 QEMUFile *file = s->to_dst_file; 4385 4386 trace_ram_dirty_bitmap_sync_start(); 4387 4388 qatomic_set(&rs->postcopy_bmap_sync_requested, 0); 4389 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 4390 qemu_savevm_send_recv_bitmap(file, block->idstr); 4391 trace_ram_dirty_bitmap_request(block->idstr); 4392 qatomic_inc(&rs->postcopy_bmap_sync_requested); 4393 } 4394 4395 trace_ram_dirty_bitmap_sync_wait(); 4396 4397 /* Wait until all the ramblocks' dirty bitmap synced */ 4398 while (qatomic_read(&rs->postcopy_bmap_sync_requested)) { 4399 if (migration_rp_wait(s)) { 4400 return -1; 4401 } 4402 } 4403 4404 trace_ram_dirty_bitmap_sync_complete(); 4405 4406 return 0; 4407 } 4408 4409 /* 4410 * Read the received bitmap, revert it as the initial dirty bitmap. 4411 * This is only used when the postcopy migration is paused but wants 4412 * to resume from a middle point. 4413 * 4414 * Returns true if succeeded, false for errors. 4415 */ 4416 bool ram_dirty_bitmap_reload(MigrationState *s, RAMBlock *block, Error **errp) 4417 { 4418 /* from_dst_file is always valid because we're within rp_thread */ 4419 QEMUFile *file = s->rp_state.from_dst_file; 4420 g_autofree unsigned long *le_bitmap = NULL; 4421 unsigned long nbits = block->used_length >> TARGET_PAGE_BITS; 4422 uint64_t local_size = DIV_ROUND_UP(nbits, 8); 4423 uint64_t size, end_mark; 4424 RAMState *rs = ram_state; 4425 4426 trace_ram_dirty_bitmap_reload_begin(block->idstr); 4427 4428 if (s->state != MIGRATION_STATUS_POSTCOPY_RECOVER) { 4429 error_setg(errp, "Reload bitmap in incorrect state %s", 4430 MigrationStatus_str(s->state)); 4431 return false; 4432 } 4433 4434 /* 4435 * Note: see comments in ramblock_recv_bitmap_send() on why we 4436 * need the endianness conversion, and the paddings. 4437 */ 4438 local_size = ROUND_UP(local_size, 8); 4439 4440 /* Add paddings */ 4441 le_bitmap = bitmap_new(nbits + BITS_PER_LONG); 4442 4443 size = qemu_get_be64(file); 4444 4445 /* The size of the bitmap should match with our ramblock */ 4446 if (size != local_size) { 4447 error_setg(errp, "ramblock '%s' bitmap size mismatch (0x%"PRIx64 4448 " != 0x%"PRIx64")", block->idstr, size, local_size); 4449 return false; 4450 } 4451 4452 size = qemu_get_buffer(file, (uint8_t *)le_bitmap, local_size); 4453 end_mark = qemu_get_be64(file); 4454 4455 if (qemu_file_get_error(file) || size != local_size) { 4456 error_setg(errp, "read bitmap failed for ramblock '%s': " 4457 "(size 0x%"PRIx64", got: 0x%"PRIx64")", 4458 block->idstr, local_size, size); 4459 return false; 4460 } 4461 4462 if (end_mark != RAMBLOCK_RECV_BITMAP_ENDING) { 4463 error_setg(errp, "ramblock '%s' end mark incorrect: 0x%"PRIx64, 4464 block->idstr, end_mark); 4465 return false; 4466 } 4467 4468 /* 4469 * Endianness conversion. We are during postcopy (though paused). 4470 * The dirty bitmap won't change. We can directly modify it. 4471 */ 4472 bitmap_from_le(block->bmap, le_bitmap, nbits); 4473 4474 /* 4475 * What we received is "received bitmap". Revert it as the initial 4476 * dirty bitmap for this ramblock. 4477 */ 4478 bitmap_complement(block->bmap, block->bmap, nbits); 4479 4480 /* Clear dirty bits of discarded ranges that we don't want to migrate. */ 4481 ramblock_dirty_bitmap_clear_discarded_pages(block); 4482 4483 /* We'll recalculate migration_dirty_pages in ram_state_resume_prepare(). */ 4484 trace_ram_dirty_bitmap_reload_complete(block->idstr); 4485 4486 qatomic_dec(&rs->postcopy_bmap_sync_requested); 4487 4488 /* 4489 * We succeeded to sync bitmap for current ramblock. Always kick the 4490 * migration thread to check whether all requested bitmaps are 4491 * reloaded. NOTE: it's racy to only kick when requested==0, because 4492 * we don't know whether the migration thread may still be increasing 4493 * it. 4494 */ 4495 migration_rp_kick(s); 4496 4497 return true; 4498 } 4499 4500 static int ram_resume_prepare(MigrationState *s, void *opaque) 4501 { 4502 RAMState *rs = *(RAMState **)opaque; 4503 int ret; 4504 4505 ret = ram_dirty_bitmap_sync_all(s, rs); 4506 if (ret) { 4507 return ret; 4508 } 4509 4510 ram_state_resume_prepare(rs, s->to_dst_file); 4511 4512 return 0; 4513 } 4514 4515 static bool ram_save_postcopy_prepare(QEMUFile *f, void *opaque, Error **errp) 4516 { 4517 int ret; 4518 4519 if (migrate_multifd()) { 4520 /* 4521 * When multifd is enabled, source QEMU needs to make sure all the 4522 * pages queued before postcopy starts have been flushed. 4523 * 4524 * The load of these pages must happen before switching to postcopy. 4525 * It's because loading of guest pages (so far) in multifd recv 4526 * threads is still non-atomic, so the load cannot happen with vCPUs 4527 * running on the destination side. 4528 * 4529 * This flush and sync will guarantee that those pages are loaded 4530 * _before_ postcopy starts on the destination. The rationale is, 4531 * this happens before VM stops (and before source QEMU sends all 4532 * the rest of the postcopy messages). So when the destination QEMU 4533 * receives the postcopy messages, it must have received the sync 4534 * message on the main channel (either RAM_SAVE_FLAG_MULTIFD_FLUSH, 4535 * or RAM_SAVE_FLAG_EOS), and such message would guarantee that 4536 * all previous guest pages queued in the multifd channels are 4537 * completely loaded. 4538 */ 4539 ret = multifd_ram_flush_and_sync(f); 4540 if (ret < 0) { 4541 error_setg(errp, "%s: multifd flush and sync failed", __func__); 4542 return false; 4543 } 4544 } 4545 4546 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 4547 4548 return true; 4549 } 4550 4551 void postcopy_preempt_shutdown_file(MigrationState *s) 4552 { 4553 qemu_put_be64(s->postcopy_qemufile_src, RAM_SAVE_FLAG_EOS); 4554 qemu_fflush(s->postcopy_qemufile_src); 4555 } 4556 4557 static SaveVMHandlers savevm_ram_handlers = { 4558 .save_setup = ram_save_setup, 4559 .save_live_iterate = ram_save_iterate, 4560 .save_complete = ram_save_complete, 4561 .has_postcopy = ram_has_postcopy, 4562 .state_pending_exact = ram_state_pending_exact, 4563 .state_pending_estimate = ram_state_pending_estimate, 4564 .load_state = ram_load, 4565 .save_cleanup = ram_save_cleanup, 4566 .load_setup = ram_load_setup, 4567 .load_cleanup = ram_load_cleanup, 4568 .resume_prepare = ram_resume_prepare, 4569 .save_postcopy_prepare = ram_save_postcopy_prepare, 4570 }; 4571 4572 static void ram_mig_ram_block_resized(RAMBlockNotifier *n, void *host, 4573 size_t old_size, size_t new_size) 4574 { 4575 PostcopyState ps = postcopy_state_get(); 4576 ram_addr_t offset; 4577 RAMBlock *rb = qemu_ram_block_from_host(host, false, &offset); 4578 Error *err = NULL; 4579 4580 if (!rb) { 4581 error_report("RAM block not found"); 4582 return; 4583 } 4584 4585 if (migrate_ram_is_ignored(rb)) { 4586 return; 4587 } 4588 4589 if (migration_is_running()) { 4590 /* 4591 * Precopy code on the source cannot deal with the size of RAM blocks 4592 * changing at random points in time - especially after sending the 4593 * RAM block sizes in the migration stream, they must no longer change. 4594 * Abort and indicate a proper reason. 4595 */ 4596 error_setg(&err, "RAM block '%s' resized during precopy.", rb->idstr); 4597 migrate_set_error(migrate_get_current(), err); 4598 error_free(err); 4599 4600 migration_cancel(); 4601 } 4602 4603 switch (ps) { 4604 case POSTCOPY_INCOMING_ADVISE: 4605 /* 4606 * Update what ram_postcopy_incoming_init()->init_range() does at the 4607 * time postcopy was advised. Syncing RAM blocks with the source will 4608 * result in RAM resizes. 4609 */ 4610 if (old_size < new_size) { 4611 if (ram_discard_range(rb->idstr, old_size, new_size - old_size)) { 4612 error_report("RAM block '%s' discard of resized RAM failed", 4613 rb->idstr); 4614 } 4615 } 4616 rb->postcopy_length = new_size; 4617 break; 4618 case POSTCOPY_INCOMING_NONE: 4619 case POSTCOPY_INCOMING_RUNNING: 4620 case POSTCOPY_INCOMING_END: 4621 /* 4622 * Once our guest is running, postcopy does no longer care about 4623 * resizes. When growing, the new memory was not available on the 4624 * source, no handler needed. 4625 */ 4626 break; 4627 default: 4628 error_report("RAM block '%s' resized during postcopy state: %d", 4629 rb->idstr, ps); 4630 exit(-1); 4631 } 4632 } 4633 4634 static RAMBlockNotifier ram_mig_ram_notifier = { 4635 .ram_block_resized = ram_mig_ram_block_resized, 4636 }; 4637 4638 void ram_mig_init(void) 4639 { 4640 qemu_mutex_init(&XBZRLE.lock); 4641 register_savevm_live("ram", 0, 4, &savevm_ram_handlers, &ram_state); 4642 ram_block_notifier_add(&ram_mig_ram_notifier); 4643 } 4644