1 /* 2 * QEMU System Emulator 3 * 4 * Copyright (c) 2003-2008 Fabrice Bellard 5 * Copyright (c) 2011-2015 Red Hat Inc 6 * 7 * Authors: 8 * Juan Quintela <quintela@redhat.com> 9 * 10 * Permission is hereby granted, free of charge, to any person obtaining a copy 11 * of this software and associated documentation files (the "Software"), to deal 12 * in the Software without restriction, including without limitation the rights 13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 14 * copies of the Software, and to permit persons to whom the Software is 15 * furnished to do so, subject to the following conditions: 16 * 17 * The above copyright notice and this permission notice shall be included in 18 * all copies or substantial portions of the Software. 19 * 20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 26 * THE SOFTWARE. 27 */ 28 29 #include "qemu/osdep.h" 30 #include "cpu.h" 31 #include <zlib.h> 32 #include "qemu/cutils.h" 33 #include "qemu/bitops.h" 34 #include "qemu/bitmap.h" 35 #include "qemu/main-loop.h" 36 #include "qemu/pmem.h" 37 #include "xbzrle.h" 38 #include "ram.h" 39 #include "migration.h" 40 #include "socket.h" 41 #include "migration/register.h" 42 #include "migration/misc.h" 43 #include "qemu-file.h" 44 #include "postcopy-ram.h" 45 #include "page_cache.h" 46 #include "qemu/error-report.h" 47 #include "qapi/error.h" 48 #include "qapi/qapi-events-migration.h" 49 #include "qapi/qmp/qerror.h" 50 #include "trace.h" 51 #include "exec/ram_addr.h" 52 #include "exec/target_page.h" 53 #include "qemu/rcu_queue.h" 54 #include "migration/colo.h" 55 #include "block.h" 56 #include "sysemu/sysemu.h" 57 #include "qemu/uuid.h" 58 #include "savevm.h" 59 #include "qemu/iov.h" 60 61 /***********************************************************/ 62 /* ram save/restore */ 63 64 /* RAM_SAVE_FLAG_ZERO used to be named RAM_SAVE_FLAG_COMPRESS, it 65 * worked for pages that where filled with the same char. We switched 66 * it to only search for the zero value. And to avoid confusion with 67 * RAM_SSAVE_FLAG_COMPRESS_PAGE just rename it. 68 */ 69 70 #define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */ 71 #define RAM_SAVE_FLAG_ZERO 0x02 72 #define RAM_SAVE_FLAG_MEM_SIZE 0x04 73 #define RAM_SAVE_FLAG_PAGE 0x08 74 #define RAM_SAVE_FLAG_EOS 0x10 75 #define RAM_SAVE_FLAG_CONTINUE 0x20 76 #define RAM_SAVE_FLAG_XBZRLE 0x40 77 /* 0x80 is reserved in migration.h start with 0x100 next */ 78 #define RAM_SAVE_FLAG_COMPRESS_PAGE 0x100 79 80 static inline bool is_zero_range(uint8_t *p, uint64_t size) 81 { 82 return buffer_is_zero(p, size); 83 } 84 85 XBZRLECacheStats xbzrle_counters; 86 87 /* struct contains XBZRLE cache and a static page 88 used by the compression */ 89 static struct { 90 /* buffer used for XBZRLE encoding */ 91 uint8_t *encoded_buf; 92 /* buffer for storing page content */ 93 uint8_t *current_buf; 94 /* Cache for XBZRLE, Protected by lock. */ 95 PageCache *cache; 96 QemuMutex lock; 97 /* it will store a page full of zeros */ 98 uint8_t *zero_target_page; 99 /* buffer used for XBZRLE decoding */ 100 uint8_t *decoded_buf; 101 } XBZRLE; 102 103 static void XBZRLE_cache_lock(void) 104 { 105 if (migrate_use_xbzrle()) 106 qemu_mutex_lock(&XBZRLE.lock); 107 } 108 109 static void XBZRLE_cache_unlock(void) 110 { 111 if (migrate_use_xbzrle()) 112 qemu_mutex_unlock(&XBZRLE.lock); 113 } 114 115 /** 116 * xbzrle_cache_resize: resize the xbzrle cache 117 * 118 * This function is called from qmp_migrate_set_cache_size in main 119 * thread, possibly while a migration is in progress. A running 120 * migration may be using the cache and might finish during this call, 121 * hence changes to the cache are protected by XBZRLE.lock(). 122 * 123 * Returns 0 for success or -1 for error 124 * 125 * @new_size: new cache size 126 * @errp: set *errp if the check failed, with reason 127 */ 128 int xbzrle_cache_resize(int64_t new_size, Error **errp) 129 { 130 PageCache *new_cache; 131 int64_t ret = 0; 132 133 /* Check for truncation */ 134 if (new_size != (size_t)new_size) { 135 error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cache size", 136 "exceeding address space"); 137 return -1; 138 } 139 140 if (new_size == migrate_xbzrle_cache_size()) { 141 /* nothing to do */ 142 return 0; 143 } 144 145 XBZRLE_cache_lock(); 146 147 if (XBZRLE.cache != NULL) { 148 new_cache = cache_init(new_size, TARGET_PAGE_SIZE, errp); 149 if (!new_cache) { 150 ret = -1; 151 goto out; 152 } 153 154 cache_fini(XBZRLE.cache); 155 XBZRLE.cache = new_cache; 156 } 157 out: 158 XBZRLE_cache_unlock(); 159 return ret; 160 } 161 162 static bool ramblock_is_ignored(RAMBlock *block) 163 { 164 return !qemu_ram_is_migratable(block) || 165 (migrate_ignore_shared() && qemu_ram_is_shared(block)); 166 } 167 168 /* Should be holding either ram_list.mutex, or the RCU lock. */ 169 #define RAMBLOCK_FOREACH_NOT_IGNORED(block) \ 170 INTERNAL_RAMBLOCK_FOREACH(block) \ 171 if (ramblock_is_ignored(block)) {} else 172 173 #define RAMBLOCK_FOREACH_MIGRATABLE(block) \ 174 INTERNAL_RAMBLOCK_FOREACH(block) \ 175 if (!qemu_ram_is_migratable(block)) {} else 176 177 #undef RAMBLOCK_FOREACH 178 179 int foreach_not_ignored_block(RAMBlockIterFunc func, void *opaque) 180 { 181 RAMBlock *block; 182 int ret = 0; 183 184 RCU_READ_LOCK_GUARD(); 185 186 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 187 ret = func(block, opaque); 188 if (ret) { 189 break; 190 } 191 } 192 return ret; 193 } 194 195 static void ramblock_recv_map_init(void) 196 { 197 RAMBlock *rb; 198 199 RAMBLOCK_FOREACH_NOT_IGNORED(rb) { 200 assert(!rb->receivedmap); 201 rb->receivedmap = bitmap_new(rb->max_length >> qemu_target_page_bits()); 202 } 203 } 204 205 int ramblock_recv_bitmap_test(RAMBlock *rb, void *host_addr) 206 { 207 return test_bit(ramblock_recv_bitmap_offset(host_addr, rb), 208 rb->receivedmap); 209 } 210 211 bool ramblock_recv_bitmap_test_byte_offset(RAMBlock *rb, uint64_t byte_offset) 212 { 213 return test_bit(byte_offset >> TARGET_PAGE_BITS, rb->receivedmap); 214 } 215 216 void ramblock_recv_bitmap_set(RAMBlock *rb, void *host_addr) 217 { 218 set_bit_atomic(ramblock_recv_bitmap_offset(host_addr, rb), rb->receivedmap); 219 } 220 221 void ramblock_recv_bitmap_set_range(RAMBlock *rb, void *host_addr, 222 size_t nr) 223 { 224 bitmap_set_atomic(rb->receivedmap, 225 ramblock_recv_bitmap_offset(host_addr, rb), 226 nr); 227 } 228 229 #define RAMBLOCK_RECV_BITMAP_ENDING (0x0123456789abcdefULL) 230 231 /* 232 * Format: bitmap_size (8 bytes) + whole_bitmap (N bytes). 233 * 234 * Returns >0 if success with sent bytes, or <0 if error. 235 */ 236 int64_t ramblock_recv_bitmap_send(QEMUFile *file, 237 const char *block_name) 238 { 239 RAMBlock *block = qemu_ram_block_by_name(block_name); 240 unsigned long *le_bitmap, nbits; 241 uint64_t size; 242 243 if (!block) { 244 error_report("%s: invalid block name: %s", __func__, block_name); 245 return -1; 246 } 247 248 nbits = block->used_length >> TARGET_PAGE_BITS; 249 250 /* 251 * Make sure the tmp bitmap buffer is big enough, e.g., on 32bit 252 * machines we may need 4 more bytes for padding (see below 253 * comment). So extend it a bit before hand. 254 */ 255 le_bitmap = bitmap_new(nbits + BITS_PER_LONG); 256 257 /* 258 * Always use little endian when sending the bitmap. This is 259 * required that when source and destination VMs are not using the 260 * same endianess. (Note: big endian won't work.) 261 */ 262 bitmap_to_le(le_bitmap, block->receivedmap, nbits); 263 264 /* Size of the bitmap, in bytes */ 265 size = DIV_ROUND_UP(nbits, 8); 266 267 /* 268 * size is always aligned to 8 bytes for 64bit machines, but it 269 * may not be true for 32bit machines. We need this padding to 270 * make sure the migration can survive even between 32bit and 271 * 64bit machines. 272 */ 273 size = ROUND_UP(size, 8); 274 275 qemu_put_be64(file, size); 276 qemu_put_buffer(file, (const uint8_t *)le_bitmap, size); 277 /* 278 * Mark as an end, in case the middle part is screwed up due to 279 * some "misterious" reason. 280 */ 281 qemu_put_be64(file, RAMBLOCK_RECV_BITMAP_ENDING); 282 qemu_fflush(file); 283 284 g_free(le_bitmap); 285 286 if (qemu_file_get_error(file)) { 287 return qemu_file_get_error(file); 288 } 289 290 return size + sizeof(size); 291 } 292 293 /* 294 * An outstanding page request, on the source, having been received 295 * and queued 296 */ 297 struct RAMSrcPageRequest { 298 RAMBlock *rb; 299 hwaddr offset; 300 hwaddr len; 301 302 QSIMPLEQ_ENTRY(RAMSrcPageRequest) next_req; 303 }; 304 305 /* State of RAM for migration */ 306 struct RAMState { 307 /* QEMUFile used for this migration */ 308 QEMUFile *f; 309 /* Last block that we have visited searching for dirty pages */ 310 RAMBlock *last_seen_block; 311 /* Last block from where we have sent data */ 312 RAMBlock *last_sent_block; 313 /* Last dirty target page we have sent */ 314 ram_addr_t last_page; 315 /* last ram version we have seen */ 316 uint32_t last_version; 317 /* We are in the first round */ 318 bool ram_bulk_stage; 319 /* The free page optimization is enabled */ 320 bool fpo_enabled; 321 /* How many times we have dirty too many pages */ 322 int dirty_rate_high_cnt; 323 /* these variables are used for bitmap sync */ 324 /* last time we did a full bitmap_sync */ 325 int64_t time_last_bitmap_sync; 326 /* bytes transferred at start_time */ 327 uint64_t bytes_xfer_prev; 328 /* number of dirty pages since start_time */ 329 uint64_t num_dirty_pages_period; 330 /* xbzrle misses since the beginning of the period */ 331 uint64_t xbzrle_cache_miss_prev; 332 333 /* compression statistics since the beginning of the period */ 334 /* amount of count that no free thread to compress data */ 335 uint64_t compress_thread_busy_prev; 336 /* amount bytes after compression */ 337 uint64_t compressed_size_prev; 338 /* amount of compressed pages */ 339 uint64_t compress_pages_prev; 340 341 /* total handled target pages at the beginning of period */ 342 uint64_t target_page_count_prev; 343 /* total handled target pages since start */ 344 uint64_t target_page_count; 345 /* number of dirty bits in the bitmap */ 346 uint64_t migration_dirty_pages; 347 /* Protects modification of the bitmap and migration dirty pages */ 348 QemuMutex bitmap_mutex; 349 /* The RAMBlock used in the last src_page_requests */ 350 RAMBlock *last_req_rb; 351 /* Queue of outstanding page requests from the destination */ 352 QemuMutex src_page_req_mutex; 353 QSIMPLEQ_HEAD(, RAMSrcPageRequest) src_page_requests; 354 }; 355 typedef struct RAMState RAMState; 356 357 static RAMState *ram_state; 358 359 static NotifierWithReturnList precopy_notifier_list; 360 361 void precopy_infrastructure_init(void) 362 { 363 notifier_with_return_list_init(&precopy_notifier_list); 364 } 365 366 void precopy_add_notifier(NotifierWithReturn *n) 367 { 368 notifier_with_return_list_add(&precopy_notifier_list, n); 369 } 370 371 void precopy_remove_notifier(NotifierWithReturn *n) 372 { 373 notifier_with_return_remove(n); 374 } 375 376 int precopy_notify(PrecopyNotifyReason reason, Error **errp) 377 { 378 PrecopyNotifyData pnd; 379 pnd.reason = reason; 380 pnd.errp = errp; 381 382 return notifier_with_return_list_notify(&precopy_notifier_list, &pnd); 383 } 384 385 void precopy_enable_free_page_optimization(void) 386 { 387 if (!ram_state) { 388 return; 389 } 390 391 ram_state->fpo_enabled = true; 392 } 393 394 uint64_t ram_bytes_remaining(void) 395 { 396 return ram_state ? (ram_state->migration_dirty_pages * TARGET_PAGE_SIZE) : 397 0; 398 } 399 400 MigrationStats ram_counters; 401 402 /* used by the search for pages to send */ 403 struct PageSearchStatus { 404 /* Current block being searched */ 405 RAMBlock *block; 406 /* Current page to search from */ 407 unsigned long page; 408 /* Set once we wrap around */ 409 bool complete_round; 410 }; 411 typedef struct PageSearchStatus PageSearchStatus; 412 413 CompressionStats compression_counters; 414 415 struct CompressParam { 416 bool done; 417 bool quit; 418 bool zero_page; 419 QEMUFile *file; 420 QemuMutex mutex; 421 QemuCond cond; 422 RAMBlock *block; 423 ram_addr_t offset; 424 425 /* internally used fields */ 426 z_stream stream; 427 uint8_t *originbuf; 428 }; 429 typedef struct CompressParam CompressParam; 430 431 struct DecompressParam { 432 bool done; 433 bool quit; 434 QemuMutex mutex; 435 QemuCond cond; 436 void *des; 437 uint8_t *compbuf; 438 int len; 439 z_stream stream; 440 }; 441 typedef struct DecompressParam DecompressParam; 442 443 static CompressParam *comp_param; 444 static QemuThread *compress_threads; 445 /* comp_done_cond is used to wake up the migration thread when 446 * one of the compression threads has finished the compression. 447 * comp_done_lock is used to co-work with comp_done_cond. 448 */ 449 static QemuMutex comp_done_lock; 450 static QemuCond comp_done_cond; 451 /* The empty QEMUFileOps will be used by file in CompressParam */ 452 static const QEMUFileOps empty_ops = { }; 453 454 static QEMUFile *decomp_file; 455 static DecompressParam *decomp_param; 456 static QemuThread *decompress_threads; 457 static QemuMutex decomp_done_lock; 458 static QemuCond decomp_done_cond; 459 460 static bool do_compress_ram_page(QEMUFile *f, z_stream *stream, RAMBlock *block, 461 ram_addr_t offset, uint8_t *source_buf); 462 463 static void *do_data_compress(void *opaque) 464 { 465 CompressParam *param = opaque; 466 RAMBlock *block; 467 ram_addr_t offset; 468 bool zero_page; 469 470 qemu_mutex_lock(¶m->mutex); 471 while (!param->quit) { 472 if (param->block) { 473 block = param->block; 474 offset = param->offset; 475 param->block = NULL; 476 qemu_mutex_unlock(¶m->mutex); 477 478 zero_page = do_compress_ram_page(param->file, ¶m->stream, 479 block, offset, param->originbuf); 480 481 qemu_mutex_lock(&comp_done_lock); 482 param->done = true; 483 param->zero_page = zero_page; 484 qemu_cond_signal(&comp_done_cond); 485 qemu_mutex_unlock(&comp_done_lock); 486 487 qemu_mutex_lock(¶m->mutex); 488 } else { 489 qemu_cond_wait(¶m->cond, ¶m->mutex); 490 } 491 } 492 qemu_mutex_unlock(¶m->mutex); 493 494 return NULL; 495 } 496 497 static void compress_threads_save_cleanup(void) 498 { 499 int i, thread_count; 500 501 if (!migrate_use_compression() || !comp_param) { 502 return; 503 } 504 505 thread_count = migrate_compress_threads(); 506 for (i = 0; i < thread_count; i++) { 507 /* 508 * we use it as a indicator which shows if the thread is 509 * properly init'd or not 510 */ 511 if (!comp_param[i].file) { 512 break; 513 } 514 515 qemu_mutex_lock(&comp_param[i].mutex); 516 comp_param[i].quit = true; 517 qemu_cond_signal(&comp_param[i].cond); 518 qemu_mutex_unlock(&comp_param[i].mutex); 519 520 qemu_thread_join(compress_threads + i); 521 qemu_mutex_destroy(&comp_param[i].mutex); 522 qemu_cond_destroy(&comp_param[i].cond); 523 deflateEnd(&comp_param[i].stream); 524 g_free(comp_param[i].originbuf); 525 qemu_fclose(comp_param[i].file); 526 comp_param[i].file = NULL; 527 } 528 qemu_mutex_destroy(&comp_done_lock); 529 qemu_cond_destroy(&comp_done_cond); 530 g_free(compress_threads); 531 g_free(comp_param); 532 compress_threads = NULL; 533 comp_param = NULL; 534 } 535 536 static int compress_threads_save_setup(void) 537 { 538 int i, thread_count; 539 540 if (!migrate_use_compression()) { 541 return 0; 542 } 543 thread_count = migrate_compress_threads(); 544 compress_threads = g_new0(QemuThread, thread_count); 545 comp_param = g_new0(CompressParam, thread_count); 546 qemu_cond_init(&comp_done_cond); 547 qemu_mutex_init(&comp_done_lock); 548 for (i = 0; i < thread_count; i++) { 549 comp_param[i].originbuf = g_try_malloc(TARGET_PAGE_SIZE); 550 if (!comp_param[i].originbuf) { 551 goto exit; 552 } 553 554 if (deflateInit(&comp_param[i].stream, 555 migrate_compress_level()) != Z_OK) { 556 g_free(comp_param[i].originbuf); 557 goto exit; 558 } 559 560 /* comp_param[i].file is just used as a dummy buffer to save data, 561 * set its ops to empty. 562 */ 563 comp_param[i].file = qemu_fopen_ops(NULL, &empty_ops); 564 comp_param[i].done = true; 565 comp_param[i].quit = false; 566 qemu_mutex_init(&comp_param[i].mutex); 567 qemu_cond_init(&comp_param[i].cond); 568 qemu_thread_create(compress_threads + i, "compress", 569 do_data_compress, comp_param + i, 570 QEMU_THREAD_JOINABLE); 571 } 572 return 0; 573 574 exit: 575 compress_threads_save_cleanup(); 576 return -1; 577 } 578 579 /* Multiple fd's */ 580 581 #define MULTIFD_MAGIC 0x11223344U 582 #define MULTIFD_VERSION 1 583 584 #define MULTIFD_FLAG_SYNC (1 << 0) 585 586 /* This value needs to be a multiple of qemu_target_page_size() */ 587 #define MULTIFD_PACKET_SIZE (512 * 1024) 588 589 typedef struct { 590 uint32_t magic; 591 uint32_t version; 592 unsigned char uuid[16]; /* QemuUUID */ 593 uint8_t id; 594 uint8_t unused1[7]; /* Reserved for future use */ 595 uint64_t unused2[4]; /* Reserved for future use */ 596 } __attribute__((packed)) MultiFDInit_t; 597 598 typedef struct { 599 uint32_t magic; 600 uint32_t version; 601 uint32_t flags; 602 /* maximum number of allocated pages */ 603 uint32_t pages_alloc; 604 uint32_t pages_used; 605 /* size of the next packet that contains pages */ 606 uint32_t next_packet_size; 607 uint64_t packet_num; 608 uint64_t unused[4]; /* Reserved for future use */ 609 char ramblock[256]; 610 uint64_t offset[]; 611 } __attribute__((packed)) MultiFDPacket_t; 612 613 typedef struct { 614 /* number of used pages */ 615 uint32_t used; 616 /* number of allocated pages */ 617 uint32_t allocated; 618 /* global number of generated multifd packets */ 619 uint64_t packet_num; 620 /* offset of each page */ 621 ram_addr_t *offset; 622 /* pointer to each page */ 623 struct iovec *iov; 624 RAMBlock *block; 625 } MultiFDPages_t; 626 627 typedef struct { 628 /* this fields are not changed once the thread is created */ 629 /* channel number */ 630 uint8_t id; 631 /* channel thread name */ 632 char *name; 633 /* channel thread id */ 634 QemuThread thread; 635 /* communication channel */ 636 QIOChannel *c; 637 /* sem where to wait for more work */ 638 QemuSemaphore sem; 639 /* this mutex protects the following parameters */ 640 QemuMutex mutex; 641 /* is this channel thread running */ 642 bool running; 643 /* should this thread finish */ 644 bool quit; 645 /* thread has work to do */ 646 int pending_job; 647 /* array of pages to sent */ 648 MultiFDPages_t *pages; 649 /* packet allocated len */ 650 uint32_t packet_len; 651 /* pointer to the packet */ 652 MultiFDPacket_t *packet; 653 /* multifd flags for each packet */ 654 uint32_t flags; 655 /* size of the next packet that contains pages */ 656 uint32_t next_packet_size; 657 /* global number of generated multifd packets */ 658 uint64_t packet_num; 659 /* thread local variables */ 660 /* packets sent through this channel */ 661 uint64_t num_packets; 662 /* pages sent through this channel */ 663 uint64_t num_pages; 664 /* syncs main thread and channels */ 665 QemuSemaphore sem_sync; 666 } MultiFDSendParams; 667 668 typedef struct { 669 /* this fields are not changed once the thread is created */ 670 /* channel number */ 671 uint8_t id; 672 /* channel thread name */ 673 char *name; 674 /* channel thread id */ 675 QemuThread thread; 676 /* communication channel */ 677 QIOChannel *c; 678 /* this mutex protects the following parameters */ 679 QemuMutex mutex; 680 /* is this channel thread running */ 681 bool running; 682 /* should this thread finish */ 683 bool quit; 684 /* array of pages to receive */ 685 MultiFDPages_t *pages; 686 /* packet allocated len */ 687 uint32_t packet_len; 688 /* pointer to the packet */ 689 MultiFDPacket_t *packet; 690 /* multifd flags for each packet */ 691 uint32_t flags; 692 /* global number of generated multifd packets */ 693 uint64_t packet_num; 694 /* thread local variables */ 695 /* size of the next packet that contains pages */ 696 uint32_t next_packet_size; 697 /* packets sent through this channel */ 698 uint64_t num_packets; 699 /* pages sent through this channel */ 700 uint64_t num_pages; 701 /* syncs main thread and channels */ 702 QemuSemaphore sem_sync; 703 } MultiFDRecvParams; 704 705 static int multifd_send_initial_packet(MultiFDSendParams *p, Error **errp) 706 { 707 MultiFDInit_t msg; 708 int ret; 709 710 msg.magic = cpu_to_be32(MULTIFD_MAGIC); 711 msg.version = cpu_to_be32(MULTIFD_VERSION); 712 msg.id = p->id; 713 memcpy(msg.uuid, &qemu_uuid.data, sizeof(msg.uuid)); 714 715 ret = qio_channel_write_all(p->c, (char *)&msg, sizeof(msg), errp); 716 if (ret != 0) { 717 return -1; 718 } 719 return 0; 720 } 721 722 static int multifd_recv_initial_packet(QIOChannel *c, Error **errp) 723 { 724 MultiFDInit_t msg; 725 int ret; 726 727 ret = qio_channel_read_all(c, (char *)&msg, sizeof(msg), errp); 728 if (ret != 0) { 729 return -1; 730 } 731 732 msg.magic = be32_to_cpu(msg.magic); 733 msg.version = be32_to_cpu(msg.version); 734 735 if (msg.magic != MULTIFD_MAGIC) { 736 error_setg(errp, "multifd: received packet magic %x " 737 "expected %x", msg.magic, MULTIFD_MAGIC); 738 return -1; 739 } 740 741 if (msg.version != MULTIFD_VERSION) { 742 error_setg(errp, "multifd: received packet version %d " 743 "expected %d", msg.version, MULTIFD_VERSION); 744 return -1; 745 } 746 747 if (memcmp(msg.uuid, &qemu_uuid, sizeof(qemu_uuid))) { 748 char *uuid = qemu_uuid_unparse_strdup(&qemu_uuid); 749 char *msg_uuid = qemu_uuid_unparse_strdup((const QemuUUID *)msg.uuid); 750 751 error_setg(errp, "multifd: received uuid '%s' and expected " 752 "uuid '%s' for channel %hhd", msg_uuid, uuid, msg.id); 753 g_free(uuid); 754 g_free(msg_uuid); 755 return -1; 756 } 757 758 if (msg.id > migrate_multifd_channels()) { 759 error_setg(errp, "multifd: received channel version %d " 760 "expected %d", msg.version, MULTIFD_VERSION); 761 return -1; 762 } 763 764 return msg.id; 765 } 766 767 static MultiFDPages_t *multifd_pages_init(size_t size) 768 { 769 MultiFDPages_t *pages = g_new0(MultiFDPages_t, 1); 770 771 pages->allocated = size; 772 pages->iov = g_new0(struct iovec, size); 773 pages->offset = g_new0(ram_addr_t, size); 774 775 return pages; 776 } 777 778 static void multifd_pages_clear(MultiFDPages_t *pages) 779 { 780 pages->used = 0; 781 pages->allocated = 0; 782 pages->packet_num = 0; 783 pages->block = NULL; 784 g_free(pages->iov); 785 pages->iov = NULL; 786 g_free(pages->offset); 787 pages->offset = NULL; 788 g_free(pages); 789 } 790 791 static void multifd_send_fill_packet(MultiFDSendParams *p) 792 { 793 MultiFDPacket_t *packet = p->packet; 794 int i; 795 796 packet->flags = cpu_to_be32(p->flags); 797 packet->pages_alloc = cpu_to_be32(p->pages->allocated); 798 packet->pages_used = cpu_to_be32(p->pages->used); 799 packet->next_packet_size = cpu_to_be32(p->next_packet_size); 800 packet->packet_num = cpu_to_be64(p->packet_num); 801 802 if (p->pages->block) { 803 strncpy(packet->ramblock, p->pages->block->idstr, 256); 804 } 805 806 for (i = 0; i < p->pages->used; i++) { 807 packet->offset[i] = cpu_to_be64(p->pages->offset[i]); 808 } 809 } 810 811 static int multifd_recv_unfill_packet(MultiFDRecvParams *p, Error **errp) 812 { 813 MultiFDPacket_t *packet = p->packet; 814 uint32_t pages_max = MULTIFD_PACKET_SIZE / qemu_target_page_size(); 815 RAMBlock *block; 816 int i; 817 818 packet->magic = be32_to_cpu(packet->magic); 819 if (packet->magic != MULTIFD_MAGIC) { 820 error_setg(errp, "multifd: received packet " 821 "magic %x and expected magic %x", 822 packet->magic, MULTIFD_MAGIC); 823 return -1; 824 } 825 826 packet->version = be32_to_cpu(packet->version); 827 if (packet->version != MULTIFD_VERSION) { 828 error_setg(errp, "multifd: received packet " 829 "version %d and expected version %d", 830 packet->version, MULTIFD_VERSION); 831 return -1; 832 } 833 834 p->flags = be32_to_cpu(packet->flags); 835 836 packet->pages_alloc = be32_to_cpu(packet->pages_alloc); 837 /* 838 * If we received a packet that is 100 times bigger than expected 839 * just stop migration. It is a magic number. 840 */ 841 if (packet->pages_alloc > pages_max * 100) { 842 error_setg(errp, "multifd: received packet " 843 "with size %d and expected a maximum size of %d", 844 packet->pages_alloc, pages_max * 100) ; 845 return -1; 846 } 847 /* 848 * We received a packet that is bigger than expected but inside 849 * reasonable limits (see previous comment). Just reallocate. 850 */ 851 if (packet->pages_alloc > p->pages->allocated) { 852 multifd_pages_clear(p->pages); 853 p->pages = multifd_pages_init(packet->pages_alloc); 854 } 855 856 p->pages->used = be32_to_cpu(packet->pages_used); 857 if (p->pages->used > packet->pages_alloc) { 858 error_setg(errp, "multifd: received packet " 859 "with %d pages and expected maximum pages are %d", 860 p->pages->used, packet->pages_alloc) ; 861 return -1; 862 } 863 864 p->next_packet_size = be32_to_cpu(packet->next_packet_size); 865 p->packet_num = be64_to_cpu(packet->packet_num); 866 867 if (p->pages->used) { 868 /* make sure that ramblock is 0 terminated */ 869 packet->ramblock[255] = 0; 870 block = qemu_ram_block_by_name(packet->ramblock); 871 if (!block) { 872 error_setg(errp, "multifd: unknown ram block %s", 873 packet->ramblock); 874 return -1; 875 } 876 } 877 878 for (i = 0; i < p->pages->used; i++) { 879 ram_addr_t offset = be64_to_cpu(packet->offset[i]); 880 881 if (offset > (block->used_length - TARGET_PAGE_SIZE)) { 882 error_setg(errp, "multifd: offset too long " RAM_ADDR_FMT 883 " (max " RAM_ADDR_FMT ")", 884 offset, block->max_length); 885 return -1; 886 } 887 p->pages->iov[i].iov_base = block->host + offset; 888 p->pages->iov[i].iov_len = TARGET_PAGE_SIZE; 889 } 890 891 return 0; 892 } 893 894 struct { 895 MultiFDSendParams *params; 896 /* array of pages to sent */ 897 MultiFDPages_t *pages; 898 /* global number of generated multifd packets */ 899 uint64_t packet_num; 900 /* send channels ready */ 901 QemuSemaphore channels_ready; 902 } *multifd_send_state; 903 904 /* 905 * How we use multifd_send_state->pages and channel->pages? 906 * 907 * We create a pages for each channel, and a main one. Each time that 908 * we need to send a batch of pages we interchange the ones between 909 * multifd_send_state and the channel that is sending it. There are 910 * two reasons for that: 911 * - to not have to do so many mallocs during migration 912 * - to make easier to know what to free at the end of migration 913 * 914 * This way we always know who is the owner of each "pages" struct, 915 * and we don't need any locking. It belongs to the migration thread 916 * or to the channel thread. Switching is safe because the migration 917 * thread is using the channel mutex when changing it, and the channel 918 * have to had finish with its own, otherwise pending_job can't be 919 * false. 920 */ 921 922 static int multifd_send_pages(RAMState *rs) 923 { 924 int i; 925 static int next_channel; 926 MultiFDSendParams *p = NULL; /* make happy gcc */ 927 MultiFDPages_t *pages = multifd_send_state->pages; 928 uint64_t transferred; 929 930 qemu_sem_wait(&multifd_send_state->channels_ready); 931 for (i = next_channel;; i = (i + 1) % migrate_multifd_channels()) { 932 p = &multifd_send_state->params[i]; 933 934 qemu_mutex_lock(&p->mutex); 935 if (p->quit) { 936 error_report("%s: channel %d has already quit!", __func__, i); 937 qemu_mutex_unlock(&p->mutex); 938 return -1; 939 } 940 if (!p->pending_job) { 941 p->pending_job++; 942 next_channel = (i + 1) % migrate_multifd_channels(); 943 break; 944 } 945 qemu_mutex_unlock(&p->mutex); 946 } 947 p->pages->used = 0; 948 949 p->packet_num = multifd_send_state->packet_num++; 950 p->pages->block = NULL; 951 multifd_send_state->pages = p->pages; 952 p->pages = pages; 953 transferred = ((uint64_t) pages->used) * TARGET_PAGE_SIZE + p->packet_len; 954 qemu_file_update_transfer(rs->f, transferred); 955 ram_counters.multifd_bytes += transferred; 956 ram_counters.transferred += transferred;; 957 qemu_mutex_unlock(&p->mutex); 958 qemu_sem_post(&p->sem); 959 960 return 1; 961 } 962 963 static int multifd_queue_page(RAMState *rs, RAMBlock *block, ram_addr_t offset) 964 { 965 MultiFDPages_t *pages = multifd_send_state->pages; 966 967 if (!pages->block) { 968 pages->block = block; 969 } 970 971 if (pages->block == block) { 972 pages->offset[pages->used] = offset; 973 pages->iov[pages->used].iov_base = block->host + offset; 974 pages->iov[pages->used].iov_len = TARGET_PAGE_SIZE; 975 pages->used++; 976 977 if (pages->used < pages->allocated) { 978 return 1; 979 } 980 } 981 982 if (multifd_send_pages(rs) < 0) { 983 return -1; 984 } 985 986 if (pages->block != block) { 987 return multifd_queue_page(rs, block, offset); 988 } 989 990 return 1; 991 } 992 993 static void multifd_send_terminate_threads(Error *err) 994 { 995 int i; 996 997 trace_multifd_send_terminate_threads(err != NULL); 998 999 if (err) { 1000 MigrationState *s = migrate_get_current(); 1001 migrate_set_error(s, err); 1002 if (s->state == MIGRATION_STATUS_SETUP || 1003 s->state == MIGRATION_STATUS_PRE_SWITCHOVER || 1004 s->state == MIGRATION_STATUS_DEVICE || 1005 s->state == MIGRATION_STATUS_ACTIVE) { 1006 migrate_set_state(&s->state, s->state, 1007 MIGRATION_STATUS_FAILED); 1008 } 1009 } 1010 1011 for (i = 0; i < migrate_multifd_channels(); i++) { 1012 MultiFDSendParams *p = &multifd_send_state->params[i]; 1013 1014 qemu_mutex_lock(&p->mutex); 1015 p->quit = true; 1016 qemu_sem_post(&p->sem); 1017 qemu_mutex_unlock(&p->mutex); 1018 } 1019 } 1020 1021 void multifd_save_cleanup(void) 1022 { 1023 int i; 1024 1025 if (!migrate_use_multifd()) { 1026 return; 1027 } 1028 multifd_send_terminate_threads(NULL); 1029 for (i = 0; i < migrate_multifd_channels(); i++) { 1030 MultiFDSendParams *p = &multifd_send_state->params[i]; 1031 1032 if (p->running) { 1033 qemu_thread_join(&p->thread); 1034 } 1035 socket_send_channel_destroy(p->c); 1036 p->c = NULL; 1037 qemu_mutex_destroy(&p->mutex); 1038 qemu_sem_destroy(&p->sem); 1039 qemu_sem_destroy(&p->sem_sync); 1040 g_free(p->name); 1041 p->name = NULL; 1042 multifd_pages_clear(p->pages); 1043 p->pages = NULL; 1044 p->packet_len = 0; 1045 g_free(p->packet); 1046 p->packet = NULL; 1047 } 1048 qemu_sem_destroy(&multifd_send_state->channels_ready); 1049 g_free(multifd_send_state->params); 1050 multifd_send_state->params = NULL; 1051 multifd_pages_clear(multifd_send_state->pages); 1052 multifd_send_state->pages = NULL; 1053 g_free(multifd_send_state); 1054 multifd_send_state = NULL; 1055 } 1056 1057 static void multifd_send_sync_main(RAMState *rs) 1058 { 1059 int i; 1060 1061 if (!migrate_use_multifd()) { 1062 return; 1063 } 1064 if (multifd_send_state->pages->used) { 1065 if (multifd_send_pages(rs) < 0) { 1066 error_report("%s: multifd_send_pages fail", __func__); 1067 return; 1068 } 1069 } 1070 for (i = 0; i < migrate_multifd_channels(); i++) { 1071 MultiFDSendParams *p = &multifd_send_state->params[i]; 1072 1073 trace_multifd_send_sync_main_signal(p->id); 1074 1075 qemu_mutex_lock(&p->mutex); 1076 1077 if (p->quit) { 1078 error_report("%s: channel %d has already quit", __func__, i); 1079 qemu_mutex_unlock(&p->mutex); 1080 return; 1081 } 1082 1083 p->packet_num = multifd_send_state->packet_num++; 1084 p->flags |= MULTIFD_FLAG_SYNC; 1085 p->pending_job++; 1086 qemu_file_update_transfer(rs->f, p->packet_len); 1087 ram_counters.multifd_bytes += p->packet_len; 1088 ram_counters.transferred += p->packet_len; 1089 qemu_mutex_unlock(&p->mutex); 1090 qemu_sem_post(&p->sem); 1091 } 1092 for (i = 0; i < migrate_multifd_channels(); i++) { 1093 MultiFDSendParams *p = &multifd_send_state->params[i]; 1094 1095 trace_multifd_send_sync_main_wait(p->id); 1096 qemu_sem_wait(&p->sem_sync); 1097 } 1098 trace_multifd_send_sync_main(multifd_send_state->packet_num); 1099 } 1100 1101 static void *multifd_send_thread(void *opaque) 1102 { 1103 MultiFDSendParams *p = opaque; 1104 Error *local_err = NULL; 1105 int ret = 0; 1106 uint32_t flags = 0; 1107 1108 trace_multifd_send_thread_start(p->id); 1109 rcu_register_thread(); 1110 1111 if (multifd_send_initial_packet(p, &local_err) < 0) { 1112 ret = -1; 1113 goto out; 1114 } 1115 /* initial packet */ 1116 p->num_packets = 1; 1117 1118 while (true) { 1119 qemu_sem_wait(&p->sem); 1120 qemu_mutex_lock(&p->mutex); 1121 1122 if (p->pending_job) { 1123 uint32_t used = p->pages->used; 1124 uint64_t packet_num = p->packet_num; 1125 flags = p->flags; 1126 1127 p->next_packet_size = used * qemu_target_page_size(); 1128 multifd_send_fill_packet(p); 1129 p->flags = 0; 1130 p->num_packets++; 1131 p->num_pages += used; 1132 qemu_mutex_unlock(&p->mutex); 1133 1134 trace_multifd_send(p->id, packet_num, used, flags, 1135 p->next_packet_size); 1136 1137 ret = qio_channel_write_all(p->c, (void *)p->packet, 1138 p->packet_len, &local_err); 1139 if (ret != 0) { 1140 break; 1141 } 1142 1143 if (used) { 1144 ret = qio_channel_writev_all(p->c, p->pages->iov, 1145 used, &local_err); 1146 if (ret != 0) { 1147 break; 1148 } 1149 } 1150 1151 qemu_mutex_lock(&p->mutex); 1152 p->pending_job--; 1153 qemu_mutex_unlock(&p->mutex); 1154 1155 if (flags & MULTIFD_FLAG_SYNC) { 1156 qemu_sem_post(&p->sem_sync); 1157 } 1158 qemu_sem_post(&multifd_send_state->channels_ready); 1159 } else if (p->quit) { 1160 qemu_mutex_unlock(&p->mutex); 1161 break; 1162 } else { 1163 qemu_mutex_unlock(&p->mutex); 1164 /* sometimes there are spurious wakeups */ 1165 } 1166 } 1167 1168 out: 1169 if (local_err) { 1170 trace_multifd_send_error(p->id); 1171 multifd_send_terminate_threads(local_err); 1172 } 1173 1174 /* 1175 * Error happen, I will exit, but I can't just leave, tell 1176 * who pay attention to me. 1177 */ 1178 if (ret != 0) { 1179 qemu_sem_post(&p->sem_sync); 1180 qemu_sem_post(&multifd_send_state->channels_ready); 1181 } 1182 1183 qemu_mutex_lock(&p->mutex); 1184 p->running = false; 1185 qemu_mutex_unlock(&p->mutex); 1186 1187 rcu_unregister_thread(); 1188 trace_multifd_send_thread_end(p->id, p->num_packets, p->num_pages); 1189 1190 return NULL; 1191 } 1192 1193 static void multifd_new_send_channel_async(QIOTask *task, gpointer opaque) 1194 { 1195 MultiFDSendParams *p = opaque; 1196 QIOChannel *sioc = QIO_CHANNEL(qio_task_get_source(task)); 1197 Error *local_err = NULL; 1198 1199 trace_multifd_new_send_channel_async(p->id); 1200 if (qio_task_propagate_error(task, &local_err)) { 1201 migrate_set_error(migrate_get_current(), local_err); 1202 multifd_save_cleanup(); 1203 } else { 1204 p->c = QIO_CHANNEL(sioc); 1205 qio_channel_set_delay(p->c, false); 1206 p->running = true; 1207 qemu_thread_create(&p->thread, p->name, multifd_send_thread, p, 1208 QEMU_THREAD_JOINABLE); 1209 } 1210 } 1211 1212 int multifd_save_setup(void) 1213 { 1214 int thread_count; 1215 uint32_t page_count = MULTIFD_PACKET_SIZE / qemu_target_page_size(); 1216 uint8_t i; 1217 1218 if (!migrate_use_multifd()) { 1219 return 0; 1220 } 1221 thread_count = migrate_multifd_channels(); 1222 multifd_send_state = g_malloc0(sizeof(*multifd_send_state)); 1223 multifd_send_state->params = g_new0(MultiFDSendParams, thread_count); 1224 multifd_send_state->pages = multifd_pages_init(page_count); 1225 qemu_sem_init(&multifd_send_state->channels_ready, 0); 1226 1227 for (i = 0; i < thread_count; i++) { 1228 MultiFDSendParams *p = &multifd_send_state->params[i]; 1229 1230 qemu_mutex_init(&p->mutex); 1231 qemu_sem_init(&p->sem, 0); 1232 qemu_sem_init(&p->sem_sync, 0); 1233 p->quit = false; 1234 p->pending_job = 0; 1235 p->id = i; 1236 p->pages = multifd_pages_init(page_count); 1237 p->packet_len = sizeof(MultiFDPacket_t) 1238 + sizeof(ram_addr_t) * page_count; 1239 p->packet = g_malloc0(p->packet_len); 1240 p->packet->magic = cpu_to_be32(MULTIFD_MAGIC); 1241 p->packet->version = cpu_to_be32(MULTIFD_VERSION); 1242 p->name = g_strdup_printf("multifdsend_%d", i); 1243 socket_send_channel_create(multifd_new_send_channel_async, p); 1244 } 1245 return 0; 1246 } 1247 1248 struct { 1249 MultiFDRecvParams *params; 1250 /* number of created threads */ 1251 int count; 1252 /* syncs main thread and channels */ 1253 QemuSemaphore sem_sync; 1254 /* global number of generated multifd packets */ 1255 uint64_t packet_num; 1256 } *multifd_recv_state; 1257 1258 static void multifd_recv_terminate_threads(Error *err) 1259 { 1260 int i; 1261 1262 trace_multifd_recv_terminate_threads(err != NULL); 1263 1264 if (err) { 1265 MigrationState *s = migrate_get_current(); 1266 migrate_set_error(s, err); 1267 if (s->state == MIGRATION_STATUS_SETUP || 1268 s->state == MIGRATION_STATUS_ACTIVE) { 1269 migrate_set_state(&s->state, s->state, 1270 MIGRATION_STATUS_FAILED); 1271 } 1272 } 1273 1274 for (i = 0; i < migrate_multifd_channels(); i++) { 1275 MultiFDRecvParams *p = &multifd_recv_state->params[i]; 1276 1277 qemu_mutex_lock(&p->mutex); 1278 p->quit = true; 1279 /* We could arrive here for two reasons: 1280 - normal quit, i.e. everything went fine, just finished 1281 - error quit: We close the channels so the channel threads 1282 finish the qio_channel_read_all_eof() */ 1283 qio_channel_shutdown(p->c, QIO_CHANNEL_SHUTDOWN_BOTH, NULL); 1284 qemu_mutex_unlock(&p->mutex); 1285 } 1286 } 1287 1288 int multifd_load_cleanup(Error **errp) 1289 { 1290 int i; 1291 int ret = 0; 1292 1293 if (!migrate_use_multifd()) { 1294 return 0; 1295 } 1296 multifd_recv_terminate_threads(NULL); 1297 for (i = 0; i < migrate_multifd_channels(); i++) { 1298 MultiFDRecvParams *p = &multifd_recv_state->params[i]; 1299 1300 if (p->running) { 1301 p->quit = true; 1302 /* 1303 * multifd_recv_thread may hung at MULTIFD_FLAG_SYNC handle code, 1304 * however try to wakeup it without harm in cleanup phase. 1305 */ 1306 qemu_sem_post(&p->sem_sync); 1307 qemu_thread_join(&p->thread); 1308 } 1309 object_unref(OBJECT(p->c)); 1310 p->c = NULL; 1311 qemu_mutex_destroy(&p->mutex); 1312 qemu_sem_destroy(&p->sem_sync); 1313 g_free(p->name); 1314 p->name = NULL; 1315 multifd_pages_clear(p->pages); 1316 p->pages = NULL; 1317 p->packet_len = 0; 1318 g_free(p->packet); 1319 p->packet = NULL; 1320 } 1321 qemu_sem_destroy(&multifd_recv_state->sem_sync); 1322 g_free(multifd_recv_state->params); 1323 multifd_recv_state->params = NULL; 1324 g_free(multifd_recv_state); 1325 multifd_recv_state = NULL; 1326 1327 return ret; 1328 } 1329 1330 static void multifd_recv_sync_main(void) 1331 { 1332 int i; 1333 1334 if (!migrate_use_multifd()) { 1335 return; 1336 } 1337 for (i = 0; i < migrate_multifd_channels(); i++) { 1338 MultiFDRecvParams *p = &multifd_recv_state->params[i]; 1339 1340 trace_multifd_recv_sync_main_wait(p->id); 1341 qemu_sem_wait(&multifd_recv_state->sem_sync); 1342 } 1343 for (i = 0; i < migrate_multifd_channels(); i++) { 1344 MultiFDRecvParams *p = &multifd_recv_state->params[i]; 1345 1346 qemu_mutex_lock(&p->mutex); 1347 if (multifd_recv_state->packet_num < p->packet_num) { 1348 multifd_recv_state->packet_num = p->packet_num; 1349 } 1350 qemu_mutex_unlock(&p->mutex); 1351 trace_multifd_recv_sync_main_signal(p->id); 1352 qemu_sem_post(&p->sem_sync); 1353 } 1354 trace_multifd_recv_sync_main(multifd_recv_state->packet_num); 1355 } 1356 1357 static void *multifd_recv_thread(void *opaque) 1358 { 1359 MultiFDRecvParams *p = opaque; 1360 Error *local_err = NULL; 1361 int ret; 1362 1363 trace_multifd_recv_thread_start(p->id); 1364 rcu_register_thread(); 1365 1366 while (true) { 1367 uint32_t used; 1368 uint32_t flags; 1369 1370 if (p->quit) { 1371 break; 1372 } 1373 1374 ret = qio_channel_read_all_eof(p->c, (void *)p->packet, 1375 p->packet_len, &local_err); 1376 if (ret == 0) { /* EOF */ 1377 break; 1378 } 1379 if (ret == -1) { /* Error */ 1380 break; 1381 } 1382 1383 qemu_mutex_lock(&p->mutex); 1384 ret = multifd_recv_unfill_packet(p, &local_err); 1385 if (ret) { 1386 qemu_mutex_unlock(&p->mutex); 1387 break; 1388 } 1389 1390 used = p->pages->used; 1391 flags = p->flags; 1392 trace_multifd_recv(p->id, p->packet_num, used, flags, 1393 p->next_packet_size); 1394 p->num_packets++; 1395 p->num_pages += used; 1396 qemu_mutex_unlock(&p->mutex); 1397 1398 if (used) { 1399 ret = qio_channel_readv_all(p->c, p->pages->iov, 1400 used, &local_err); 1401 if (ret != 0) { 1402 break; 1403 } 1404 } 1405 1406 if (flags & MULTIFD_FLAG_SYNC) { 1407 qemu_sem_post(&multifd_recv_state->sem_sync); 1408 qemu_sem_wait(&p->sem_sync); 1409 } 1410 } 1411 1412 if (local_err) { 1413 multifd_recv_terminate_threads(local_err); 1414 } 1415 qemu_mutex_lock(&p->mutex); 1416 p->running = false; 1417 qemu_mutex_unlock(&p->mutex); 1418 1419 rcu_unregister_thread(); 1420 trace_multifd_recv_thread_end(p->id, p->num_packets, p->num_pages); 1421 1422 return NULL; 1423 } 1424 1425 int multifd_load_setup(void) 1426 { 1427 int thread_count; 1428 uint32_t page_count = MULTIFD_PACKET_SIZE / qemu_target_page_size(); 1429 uint8_t i; 1430 1431 if (!migrate_use_multifd()) { 1432 return 0; 1433 } 1434 thread_count = migrate_multifd_channels(); 1435 multifd_recv_state = g_malloc0(sizeof(*multifd_recv_state)); 1436 multifd_recv_state->params = g_new0(MultiFDRecvParams, thread_count); 1437 atomic_set(&multifd_recv_state->count, 0); 1438 qemu_sem_init(&multifd_recv_state->sem_sync, 0); 1439 1440 for (i = 0; i < thread_count; i++) { 1441 MultiFDRecvParams *p = &multifd_recv_state->params[i]; 1442 1443 qemu_mutex_init(&p->mutex); 1444 qemu_sem_init(&p->sem_sync, 0); 1445 p->quit = false; 1446 p->id = i; 1447 p->pages = multifd_pages_init(page_count); 1448 p->packet_len = sizeof(MultiFDPacket_t) 1449 + sizeof(ram_addr_t) * page_count; 1450 p->packet = g_malloc0(p->packet_len); 1451 p->name = g_strdup_printf("multifdrecv_%d", i); 1452 } 1453 return 0; 1454 } 1455 1456 bool multifd_recv_all_channels_created(void) 1457 { 1458 int thread_count = migrate_multifd_channels(); 1459 1460 if (!migrate_use_multifd()) { 1461 return true; 1462 } 1463 1464 return thread_count == atomic_read(&multifd_recv_state->count); 1465 } 1466 1467 /* 1468 * Try to receive all multifd channels to get ready for the migration. 1469 * - Return true and do not set @errp when correctly receving all channels; 1470 * - Return false and do not set @errp when correctly receiving the current one; 1471 * - Return false and set @errp when failing to receive the current channel. 1472 */ 1473 bool multifd_recv_new_channel(QIOChannel *ioc, Error **errp) 1474 { 1475 MultiFDRecvParams *p; 1476 Error *local_err = NULL; 1477 int id; 1478 1479 id = multifd_recv_initial_packet(ioc, &local_err); 1480 if (id < 0) { 1481 multifd_recv_terminate_threads(local_err); 1482 error_propagate_prepend(errp, local_err, 1483 "failed to receive packet" 1484 " via multifd channel %d: ", 1485 atomic_read(&multifd_recv_state->count)); 1486 return false; 1487 } 1488 trace_multifd_recv_new_channel(id); 1489 1490 p = &multifd_recv_state->params[id]; 1491 if (p->c != NULL) { 1492 error_setg(&local_err, "multifd: received id '%d' already setup'", 1493 id); 1494 multifd_recv_terminate_threads(local_err); 1495 error_propagate(errp, local_err); 1496 return false; 1497 } 1498 p->c = ioc; 1499 object_ref(OBJECT(ioc)); 1500 /* initial packet */ 1501 p->num_packets = 1; 1502 1503 p->running = true; 1504 qemu_thread_create(&p->thread, p->name, multifd_recv_thread, p, 1505 QEMU_THREAD_JOINABLE); 1506 atomic_inc(&multifd_recv_state->count); 1507 return atomic_read(&multifd_recv_state->count) == 1508 migrate_multifd_channels(); 1509 } 1510 1511 /** 1512 * save_page_header: write page header to wire 1513 * 1514 * If this is the 1st block, it also writes the block identification 1515 * 1516 * Returns the number of bytes written 1517 * 1518 * @f: QEMUFile where to send the data 1519 * @block: block that contains the page we want to send 1520 * @offset: offset inside the block for the page 1521 * in the lower bits, it contains flags 1522 */ 1523 static size_t save_page_header(RAMState *rs, QEMUFile *f, RAMBlock *block, 1524 ram_addr_t offset) 1525 { 1526 size_t size, len; 1527 1528 if (block == rs->last_sent_block) { 1529 offset |= RAM_SAVE_FLAG_CONTINUE; 1530 } 1531 qemu_put_be64(f, offset); 1532 size = 8; 1533 1534 if (!(offset & RAM_SAVE_FLAG_CONTINUE)) { 1535 len = strlen(block->idstr); 1536 qemu_put_byte(f, len); 1537 qemu_put_buffer(f, (uint8_t *)block->idstr, len); 1538 size += 1 + len; 1539 rs->last_sent_block = block; 1540 } 1541 return size; 1542 } 1543 1544 /** 1545 * mig_throttle_guest_down: throotle down the guest 1546 * 1547 * Reduce amount of guest cpu execution to hopefully slow down memory 1548 * writes. If guest dirty memory rate is reduced below the rate at 1549 * which we can transfer pages to the destination then we should be 1550 * able to complete migration. Some workloads dirty memory way too 1551 * fast and will not effectively converge, even with auto-converge. 1552 */ 1553 static void mig_throttle_guest_down(void) 1554 { 1555 MigrationState *s = migrate_get_current(); 1556 uint64_t pct_initial = s->parameters.cpu_throttle_initial; 1557 uint64_t pct_icrement = s->parameters.cpu_throttle_increment; 1558 int pct_max = s->parameters.max_cpu_throttle; 1559 1560 /* We have not started throttling yet. Let's start it. */ 1561 if (!cpu_throttle_active()) { 1562 cpu_throttle_set(pct_initial); 1563 } else { 1564 /* Throttling already on, just increase the rate */ 1565 cpu_throttle_set(MIN(cpu_throttle_get_percentage() + pct_icrement, 1566 pct_max)); 1567 } 1568 } 1569 1570 /** 1571 * xbzrle_cache_zero_page: insert a zero page in the XBZRLE cache 1572 * 1573 * @rs: current RAM state 1574 * @current_addr: address for the zero page 1575 * 1576 * Update the xbzrle cache to reflect a page that's been sent as all 0. 1577 * The important thing is that a stale (not-yet-0'd) page be replaced 1578 * by the new data. 1579 * As a bonus, if the page wasn't in the cache it gets added so that 1580 * when a small write is made into the 0'd page it gets XBZRLE sent. 1581 */ 1582 static void xbzrle_cache_zero_page(RAMState *rs, ram_addr_t current_addr) 1583 { 1584 if (rs->ram_bulk_stage || !migrate_use_xbzrle()) { 1585 return; 1586 } 1587 1588 /* We don't care if this fails to allocate a new cache page 1589 * as long as it updated an old one */ 1590 cache_insert(XBZRLE.cache, current_addr, XBZRLE.zero_target_page, 1591 ram_counters.dirty_sync_count); 1592 } 1593 1594 #define ENCODING_FLAG_XBZRLE 0x1 1595 1596 /** 1597 * save_xbzrle_page: compress and send current page 1598 * 1599 * Returns: 1 means that we wrote the page 1600 * 0 means that page is identical to the one already sent 1601 * -1 means that xbzrle would be longer than normal 1602 * 1603 * @rs: current RAM state 1604 * @current_data: pointer to the address of the page contents 1605 * @current_addr: addr of the page 1606 * @block: block that contains the page we want to send 1607 * @offset: offset inside the block for the page 1608 * @last_stage: if we are at the completion stage 1609 */ 1610 static int save_xbzrle_page(RAMState *rs, uint8_t **current_data, 1611 ram_addr_t current_addr, RAMBlock *block, 1612 ram_addr_t offset, bool last_stage) 1613 { 1614 int encoded_len = 0, bytes_xbzrle; 1615 uint8_t *prev_cached_page; 1616 1617 if (!cache_is_cached(XBZRLE.cache, current_addr, 1618 ram_counters.dirty_sync_count)) { 1619 xbzrle_counters.cache_miss++; 1620 if (!last_stage) { 1621 if (cache_insert(XBZRLE.cache, current_addr, *current_data, 1622 ram_counters.dirty_sync_count) == -1) { 1623 return -1; 1624 } else { 1625 /* update *current_data when the page has been 1626 inserted into cache */ 1627 *current_data = get_cached_data(XBZRLE.cache, current_addr); 1628 } 1629 } 1630 return -1; 1631 } 1632 1633 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr); 1634 1635 /* save current buffer into memory */ 1636 memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE); 1637 1638 /* XBZRLE encoding (if there is no overflow) */ 1639 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf, 1640 TARGET_PAGE_SIZE, XBZRLE.encoded_buf, 1641 TARGET_PAGE_SIZE); 1642 1643 /* 1644 * Update the cache contents, so that it corresponds to the data 1645 * sent, in all cases except where we skip the page. 1646 */ 1647 if (!last_stage && encoded_len != 0) { 1648 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE); 1649 /* 1650 * In the case where we couldn't compress, ensure that the caller 1651 * sends the data from the cache, since the guest might have 1652 * changed the RAM since we copied it. 1653 */ 1654 *current_data = prev_cached_page; 1655 } 1656 1657 if (encoded_len == 0) { 1658 trace_save_xbzrle_page_skipping(); 1659 return 0; 1660 } else if (encoded_len == -1) { 1661 trace_save_xbzrle_page_overflow(); 1662 xbzrle_counters.overflow++; 1663 return -1; 1664 } 1665 1666 /* Send XBZRLE based compressed page */ 1667 bytes_xbzrle = save_page_header(rs, rs->f, block, 1668 offset | RAM_SAVE_FLAG_XBZRLE); 1669 qemu_put_byte(rs->f, ENCODING_FLAG_XBZRLE); 1670 qemu_put_be16(rs->f, encoded_len); 1671 qemu_put_buffer(rs->f, XBZRLE.encoded_buf, encoded_len); 1672 bytes_xbzrle += encoded_len + 1 + 2; 1673 xbzrle_counters.pages++; 1674 xbzrle_counters.bytes += bytes_xbzrle; 1675 ram_counters.transferred += bytes_xbzrle; 1676 1677 return 1; 1678 } 1679 1680 /** 1681 * migration_bitmap_find_dirty: find the next dirty page from start 1682 * 1683 * Returns the page offset within memory region of the start of a dirty page 1684 * 1685 * @rs: current RAM state 1686 * @rb: RAMBlock where to search for dirty pages 1687 * @start: page where we start the search 1688 */ 1689 static inline 1690 unsigned long migration_bitmap_find_dirty(RAMState *rs, RAMBlock *rb, 1691 unsigned long start) 1692 { 1693 unsigned long size = rb->used_length >> TARGET_PAGE_BITS; 1694 unsigned long *bitmap = rb->bmap; 1695 unsigned long next; 1696 1697 if (ramblock_is_ignored(rb)) { 1698 return size; 1699 } 1700 1701 /* 1702 * When the free page optimization is enabled, we need to check the bitmap 1703 * to send the non-free pages rather than all the pages in the bulk stage. 1704 */ 1705 if (!rs->fpo_enabled && rs->ram_bulk_stage && start > 0) { 1706 next = start + 1; 1707 } else { 1708 next = find_next_bit(bitmap, size, start); 1709 } 1710 1711 return next; 1712 } 1713 1714 static inline bool migration_bitmap_clear_dirty(RAMState *rs, 1715 RAMBlock *rb, 1716 unsigned long page) 1717 { 1718 bool ret; 1719 1720 qemu_mutex_lock(&rs->bitmap_mutex); 1721 1722 /* 1723 * Clear dirty bitmap if needed. This _must_ be called before we 1724 * send any of the page in the chunk because we need to make sure 1725 * we can capture further page content changes when we sync dirty 1726 * log the next time. So as long as we are going to send any of 1727 * the page in the chunk we clear the remote dirty bitmap for all. 1728 * Clearing it earlier won't be a problem, but too late will. 1729 */ 1730 if (rb->clear_bmap && clear_bmap_test_and_clear(rb, page)) { 1731 uint8_t shift = rb->clear_bmap_shift; 1732 hwaddr size = 1ULL << (TARGET_PAGE_BITS + shift); 1733 hwaddr start = (page << TARGET_PAGE_BITS) & (-size); 1734 1735 /* 1736 * CLEAR_BITMAP_SHIFT_MIN should always guarantee this... this 1737 * can make things easier sometimes since then start address 1738 * of the small chunk will always be 64 pages aligned so the 1739 * bitmap will always be aligned to unsigned long. We should 1740 * even be able to remove this restriction but I'm simply 1741 * keeping it. 1742 */ 1743 assert(shift >= 6); 1744 trace_migration_bitmap_clear_dirty(rb->idstr, start, size, page); 1745 memory_region_clear_dirty_bitmap(rb->mr, start, size); 1746 } 1747 1748 ret = test_and_clear_bit(page, rb->bmap); 1749 1750 if (ret) { 1751 rs->migration_dirty_pages--; 1752 } 1753 qemu_mutex_unlock(&rs->bitmap_mutex); 1754 1755 return ret; 1756 } 1757 1758 /* Called with RCU critical section */ 1759 static void ramblock_sync_dirty_bitmap(RAMState *rs, RAMBlock *rb) 1760 { 1761 rs->migration_dirty_pages += 1762 cpu_physical_memory_sync_dirty_bitmap(rb, 0, rb->used_length, 1763 &rs->num_dirty_pages_period); 1764 } 1765 1766 /** 1767 * ram_pagesize_summary: calculate all the pagesizes of a VM 1768 * 1769 * Returns a summary bitmap of the page sizes of all RAMBlocks 1770 * 1771 * For VMs with just normal pages this is equivalent to the host page 1772 * size. If it's got some huge pages then it's the OR of all the 1773 * different page sizes. 1774 */ 1775 uint64_t ram_pagesize_summary(void) 1776 { 1777 RAMBlock *block; 1778 uint64_t summary = 0; 1779 1780 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 1781 summary |= block->page_size; 1782 } 1783 1784 return summary; 1785 } 1786 1787 uint64_t ram_get_total_transferred_pages(void) 1788 { 1789 return ram_counters.normal + ram_counters.duplicate + 1790 compression_counters.pages + xbzrle_counters.pages; 1791 } 1792 1793 static void migration_update_rates(RAMState *rs, int64_t end_time) 1794 { 1795 uint64_t page_count = rs->target_page_count - rs->target_page_count_prev; 1796 double compressed_size; 1797 1798 /* calculate period counters */ 1799 ram_counters.dirty_pages_rate = rs->num_dirty_pages_period * 1000 1800 / (end_time - rs->time_last_bitmap_sync); 1801 1802 if (!page_count) { 1803 return; 1804 } 1805 1806 if (migrate_use_xbzrle()) { 1807 xbzrle_counters.cache_miss_rate = (double)(xbzrle_counters.cache_miss - 1808 rs->xbzrle_cache_miss_prev) / page_count; 1809 rs->xbzrle_cache_miss_prev = xbzrle_counters.cache_miss; 1810 } 1811 1812 if (migrate_use_compression()) { 1813 compression_counters.busy_rate = (double)(compression_counters.busy - 1814 rs->compress_thread_busy_prev) / page_count; 1815 rs->compress_thread_busy_prev = compression_counters.busy; 1816 1817 compressed_size = compression_counters.compressed_size - 1818 rs->compressed_size_prev; 1819 if (compressed_size) { 1820 double uncompressed_size = (compression_counters.pages - 1821 rs->compress_pages_prev) * TARGET_PAGE_SIZE; 1822 1823 /* Compression-Ratio = Uncompressed-size / Compressed-size */ 1824 compression_counters.compression_rate = 1825 uncompressed_size / compressed_size; 1826 1827 rs->compress_pages_prev = compression_counters.pages; 1828 rs->compressed_size_prev = compression_counters.compressed_size; 1829 } 1830 } 1831 } 1832 1833 static void migration_bitmap_sync(RAMState *rs) 1834 { 1835 RAMBlock *block; 1836 int64_t end_time; 1837 uint64_t bytes_xfer_now; 1838 1839 ram_counters.dirty_sync_count++; 1840 1841 if (!rs->time_last_bitmap_sync) { 1842 rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); 1843 } 1844 1845 trace_migration_bitmap_sync_start(); 1846 memory_global_dirty_log_sync(); 1847 1848 qemu_mutex_lock(&rs->bitmap_mutex); 1849 WITH_RCU_READ_LOCK_GUARD() { 1850 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 1851 ramblock_sync_dirty_bitmap(rs, block); 1852 } 1853 ram_counters.remaining = ram_bytes_remaining(); 1854 } 1855 qemu_mutex_unlock(&rs->bitmap_mutex); 1856 1857 memory_global_after_dirty_log_sync(); 1858 trace_migration_bitmap_sync_end(rs->num_dirty_pages_period); 1859 1860 end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); 1861 1862 /* more than 1 second = 1000 millisecons */ 1863 if (end_time > rs->time_last_bitmap_sync + 1000) { 1864 bytes_xfer_now = ram_counters.transferred; 1865 1866 /* During block migration the auto-converge logic incorrectly detects 1867 * that ram migration makes no progress. Avoid this by disabling the 1868 * throttling logic during the bulk phase of block migration. */ 1869 if (migrate_auto_converge() && !blk_mig_bulk_active()) { 1870 /* The following detection logic can be refined later. For now: 1871 Check to see if the dirtied bytes is 50% more than the approx. 1872 amount of bytes that just got transferred since the last time we 1873 were in this routine. If that happens twice, start or increase 1874 throttling */ 1875 1876 if ((rs->num_dirty_pages_period * TARGET_PAGE_SIZE > 1877 (bytes_xfer_now - rs->bytes_xfer_prev) / 2) && 1878 (++rs->dirty_rate_high_cnt >= 2)) { 1879 trace_migration_throttle(); 1880 rs->dirty_rate_high_cnt = 0; 1881 mig_throttle_guest_down(); 1882 } 1883 } 1884 1885 migration_update_rates(rs, end_time); 1886 1887 rs->target_page_count_prev = rs->target_page_count; 1888 1889 /* reset period counters */ 1890 rs->time_last_bitmap_sync = end_time; 1891 rs->num_dirty_pages_period = 0; 1892 rs->bytes_xfer_prev = bytes_xfer_now; 1893 } 1894 if (migrate_use_events()) { 1895 qapi_event_send_migration_pass(ram_counters.dirty_sync_count); 1896 } 1897 } 1898 1899 static void migration_bitmap_sync_precopy(RAMState *rs) 1900 { 1901 Error *local_err = NULL; 1902 1903 /* 1904 * The current notifier usage is just an optimization to migration, so we 1905 * don't stop the normal migration process in the error case. 1906 */ 1907 if (precopy_notify(PRECOPY_NOTIFY_BEFORE_BITMAP_SYNC, &local_err)) { 1908 error_report_err(local_err); 1909 } 1910 1911 migration_bitmap_sync(rs); 1912 1913 if (precopy_notify(PRECOPY_NOTIFY_AFTER_BITMAP_SYNC, &local_err)) { 1914 error_report_err(local_err); 1915 } 1916 } 1917 1918 /** 1919 * save_zero_page_to_file: send the zero page to the file 1920 * 1921 * Returns the size of data written to the file, 0 means the page is not 1922 * a zero page 1923 * 1924 * @rs: current RAM state 1925 * @file: the file where the data is saved 1926 * @block: block that contains the page we want to send 1927 * @offset: offset inside the block for the page 1928 */ 1929 static int save_zero_page_to_file(RAMState *rs, QEMUFile *file, 1930 RAMBlock *block, ram_addr_t offset) 1931 { 1932 uint8_t *p = block->host + offset; 1933 int len = 0; 1934 1935 if (is_zero_range(p, TARGET_PAGE_SIZE)) { 1936 len += save_page_header(rs, file, block, offset | RAM_SAVE_FLAG_ZERO); 1937 qemu_put_byte(file, 0); 1938 len += 1; 1939 } 1940 return len; 1941 } 1942 1943 /** 1944 * save_zero_page: send the zero page to the stream 1945 * 1946 * Returns the number of pages written. 1947 * 1948 * @rs: current RAM state 1949 * @block: block that contains the page we want to send 1950 * @offset: offset inside the block for the page 1951 */ 1952 static int save_zero_page(RAMState *rs, RAMBlock *block, ram_addr_t offset) 1953 { 1954 int len = save_zero_page_to_file(rs, rs->f, block, offset); 1955 1956 if (len) { 1957 ram_counters.duplicate++; 1958 ram_counters.transferred += len; 1959 return 1; 1960 } 1961 return -1; 1962 } 1963 1964 static void ram_release_pages(const char *rbname, uint64_t offset, int pages) 1965 { 1966 if (!migrate_release_ram() || !migration_in_postcopy()) { 1967 return; 1968 } 1969 1970 ram_discard_range(rbname, offset, pages << TARGET_PAGE_BITS); 1971 } 1972 1973 /* 1974 * @pages: the number of pages written by the control path, 1975 * < 0 - error 1976 * > 0 - number of pages written 1977 * 1978 * Return true if the pages has been saved, otherwise false is returned. 1979 */ 1980 static bool control_save_page(RAMState *rs, RAMBlock *block, ram_addr_t offset, 1981 int *pages) 1982 { 1983 uint64_t bytes_xmit = 0; 1984 int ret; 1985 1986 *pages = -1; 1987 ret = ram_control_save_page(rs->f, block->offset, offset, TARGET_PAGE_SIZE, 1988 &bytes_xmit); 1989 if (ret == RAM_SAVE_CONTROL_NOT_SUPP) { 1990 return false; 1991 } 1992 1993 if (bytes_xmit) { 1994 ram_counters.transferred += bytes_xmit; 1995 *pages = 1; 1996 } 1997 1998 if (ret == RAM_SAVE_CONTROL_DELAYED) { 1999 return true; 2000 } 2001 2002 if (bytes_xmit > 0) { 2003 ram_counters.normal++; 2004 } else if (bytes_xmit == 0) { 2005 ram_counters.duplicate++; 2006 } 2007 2008 return true; 2009 } 2010 2011 /* 2012 * directly send the page to the stream 2013 * 2014 * Returns the number of pages written. 2015 * 2016 * @rs: current RAM state 2017 * @block: block that contains the page we want to send 2018 * @offset: offset inside the block for the page 2019 * @buf: the page to be sent 2020 * @async: send to page asyncly 2021 */ 2022 static int save_normal_page(RAMState *rs, RAMBlock *block, ram_addr_t offset, 2023 uint8_t *buf, bool async) 2024 { 2025 ram_counters.transferred += save_page_header(rs, rs->f, block, 2026 offset | RAM_SAVE_FLAG_PAGE); 2027 if (async) { 2028 qemu_put_buffer_async(rs->f, buf, TARGET_PAGE_SIZE, 2029 migrate_release_ram() & 2030 migration_in_postcopy()); 2031 } else { 2032 qemu_put_buffer(rs->f, buf, TARGET_PAGE_SIZE); 2033 } 2034 ram_counters.transferred += TARGET_PAGE_SIZE; 2035 ram_counters.normal++; 2036 return 1; 2037 } 2038 2039 /** 2040 * ram_save_page: send the given page to the stream 2041 * 2042 * Returns the number of pages written. 2043 * < 0 - error 2044 * >=0 - Number of pages written - this might legally be 0 2045 * if xbzrle noticed the page was the same. 2046 * 2047 * @rs: current RAM state 2048 * @block: block that contains the page we want to send 2049 * @offset: offset inside the block for the page 2050 * @last_stage: if we are at the completion stage 2051 */ 2052 static int ram_save_page(RAMState *rs, PageSearchStatus *pss, bool last_stage) 2053 { 2054 int pages = -1; 2055 uint8_t *p; 2056 bool send_async = true; 2057 RAMBlock *block = pss->block; 2058 ram_addr_t offset = pss->page << TARGET_PAGE_BITS; 2059 ram_addr_t current_addr = block->offset + offset; 2060 2061 p = block->host + offset; 2062 trace_ram_save_page(block->idstr, (uint64_t)offset, p); 2063 2064 XBZRLE_cache_lock(); 2065 if (!rs->ram_bulk_stage && !migration_in_postcopy() && 2066 migrate_use_xbzrle()) { 2067 pages = save_xbzrle_page(rs, &p, current_addr, block, 2068 offset, last_stage); 2069 if (!last_stage) { 2070 /* Can't send this cached data async, since the cache page 2071 * might get updated before it gets to the wire 2072 */ 2073 send_async = false; 2074 } 2075 } 2076 2077 /* XBZRLE overflow or normal page */ 2078 if (pages == -1) { 2079 pages = save_normal_page(rs, block, offset, p, send_async); 2080 } 2081 2082 XBZRLE_cache_unlock(); 2083 2084 return pages; 2085 } 2086 2087 static int ram_save_multifd_page(RAMState *rs, RAMBlock *block, 2088 ram_addr_t offset) 2089 { 2090 if (multifd_queue_page(rs, block, offset) < 0) { 2091 return -1; 2092 } 2093 ram_counters.normal++; 2094 2095 return 1; 2096 } 2097 2098 static bool do_compress_ram_page(QEMUFile *f, z_stream *stream, RAMBlock *block, 2099 ram_addr_t offset, uint8_t *source_buf) 2100 { 2101 RAMState *rs = ram_state; 2102 uint8_t *p = block->host + (offset & TARGET_PAGE_MASK); 2103 bool zero_page = false; 2104 int ret; 2105 2106 if (save_zero_page_to_file(rs, f, block, offset)) { 2107 zero_page = true; 2108 goto exit; 2109 } 2110 2111 save_page_header(rs, f, block, offset | RAM_SAVE_FLAG_COMPRESS_PAGE); 2112 2113 /* 2114 * copy it to a internal buffer to avoid it being modified by VM 2115 * so that we can catch up the error during compression and 2116 * decompression 2117 */ 2118 memcpy(source_buf, p, TARGET_PAGE_SIZE); 2119 ret = qemu_put_compression_data(f, stream, source_buf, TARGET_PAGE_SIZE); 2120 if (ret < 0) { 2121 qemu_file_set_error(migrate_get_current()->to_dst_file, ret); 2122 error_report("compressed data failed!"); 2123 return false; 2124 } 2125 2126 exit: 2127 ram_release_pages(block->idstr, offset & TARGET_PAGE_MASK, 1); 2128 return zero_page; 2129 } 2130 2131 static void 2132 update_compress_thread_counts(const CompressParam *param, int bytes_xmit) 2133 { 2134 ram_counters.transferred += bytes_xmit; 2135 2136 if (param->zero_page) { 2137 ram_counters.duplicate++; 2138 return; 2139 } 2140 2141 /* 8 means a header with RAM_SAVE_FLAG_CONTINUE. */ 2142 compression_counters.compressed_size += bytes_xmit - 8; 2143 compression_counters.pages++; 2144 } 2145 2146 static bool save_page_use_compression(RAMState *rs); 2147 2148 static void flush_compressed_data(RAMState *rs) 2149 { 2150 int idx, len, thread_count; 2151 2152 if (!save_page_use_compression(rs)) { 2153 return; 2154 } 2155 thread_count = migrate_compress_threads(); 2156 2157 qemu_mutex_lock(&comp_done_lock); 2158 for (idx = 0; idx < thread_count; idx++) { 2159 while (!comp_param[idx].done) { 2160 qemu_cond_wait(&comp_done_cond, &comp_done_lock); 2161 } 2162 } 2163 qemu_mutex_unlock(&comp_done_lock); 2164 2165 for (idx = 0; idx < thread_count; idx++) { 2166 qemu_mutex_lock(&comp_param[idx].mutex); 2167 if (!comp_param[idx].quit) { 2168 len = qemu_put_qemu_file(rs->f, comp_param[idx].file); 2169 /* 2170 * it's safe to fetch zero_page without holding comp_done_lock 2171 * as there is no further request submitted to the thread, 2172 * i.e, the thread should be waiting for a request at this point. 2173 */ 2174 update_compress_thread_counts(&comp_param[idx], len); 2175 } 2176 qemu_mutex_unlock(&comp_param[idx].mutex); 2177 } 2178 } 2179 2180 static inline void set_compress_params(CompressParam *param, RAMBlock *block, 2181 ram_addr_t offset) 2182 { 2183 param->block = block; 2184 param->offset = offset; 2185 } 2186 2187 static int compress_page_with_multi_thread(RAMState *rs, RAMBlock *block, 2188 ram_addr_t offset) 2189 { 2190 int idx, thread_count, bytes_xmit = -1, pages = -1; 2191 bool wait = migrate_compress_wait_thread(); 2192 2193 thread_count = migrate_compress_threads(); 2194 qemu_mutex_lock(&comp_done_lock); 2195 retry: 2196 for (idx = 0; idx < thread_count; idx++) { 2197 if (comp_param[idx].done) { 2198 comp_param[idx].done = false; 2199 bytes_xmit = qemu_put_qemu_file(rs->f, comp_param[idx].file); 2200 qemu_mutex_lock(&comp_param[idx].mutex); 2201 set_compress_params(&comp_param[idx], block, offset); 2202 qemu_cond_signal(&comp_param[idx].cond); 2203 qemu_mutex_unlock(&comp_param[idx].mutex); 2204 pages = 1; 2205 update_compress_thread_counts(&comp_param[idx], bytes_xmit); 2206 break; 2207 } 2208 } 2209 2210 /* 2211 * wait for the free thread if the user specifies 'compress-wait-thread', 2212 * otherwise we will post the page out in the main thread as normal page. 2213 */ 2214 if (pages < 0 && wait) { 2215 qemu_cond_wait(&comp_done_cond, &comp_done_lock); 2216 goto retry; 2217 } 2218 qemu_mutex_unlock(&comp_done_lock); 2219 2220 return pages; 2221 } 2222 2223 /** 2224 * find_dirty_block: find the next dirty page and update any state 2225 * associated with the search process. 2226 * 2227 * Returns true if a page is found 2228 * 2229 * @rs: current RAM state 2230 * @pss: data about the state of the current dirty page scan 2231 * @again: set to false if the search has scanned the whole of RAM 2232 */ 2233 static bool find_dirty_block(RAMState *rs, PageSearchStatus *pss, bool *again) 2234 { 2235 pss->page = migration_bitmap_find_dirty(rs, pss->block, pss->page); 2236 if (pss->complete_round && pss->block == rs->last_seen_block && 2237 pss->page >= rs->last_page) { 2238 /* 2239 * We've been once around the RAM and haven't found anything. 2240 * Give up. 2241 */ 2242 *again = false; 2243 return false; 2244 } 2245 if ((pss->page << TARGET_PAGE_BITS) >= pss->block->used_length) { 2246 /* Didn't find anything in this RAM Block */ 2247 pss->page = 0; 2248 pss->block = QLIST_NEXT_RCU(pss->block, next); 2249 if (!pss->block) { 2250 /* 2251 * If memory migration starts over, we will meet a dirtied page 2252 * which may still exists in compression threads's ring, so we 2253 * should flush the compressed data to make sure the new page 2254 * is not overwritten by the old one in the destination. 2255 * 2256 * Also If xbzrle is on, stop using the data compression at this 2257 * point. In theory, xbzrle can do better than compression. 2258 */ 2259 flush_compressed_data(rs); 2260 2261 /* Hit the end of the list */ 2262 pss->block = QLIST_FIRST_RCU(&ram_list.blocks); 2263 /* Flag that we've looped */ 2264 pss->complete_round = true; 2265 rs->ram_bulk_stage = false; 2266 } 2267 /* Didn't find anything this time, but try again on the new block */ 2268 *again = true; 2269 return false; 2270 } else { 2271 /* Can go around again, but... */ 2272 *again = true; 2273 /* We've found something so probably don't need to */ 2274 return true; 2275 } 2276 } 2277 2278 /** 2279 * unqueue_page: gets a page of the queue 2280 * 2281 * Helper for 'get_queued_page' - gets a page off the queue 2282 * 2283 * Returns the block of the page (or NULL if none available) 2284 * 2285 * @rs: current RAM state 2286 * @offset: used to return the offset within the RAMBlock 2287 */ 2288 static RAMBlock *unqueue_page(RAMState *rs, ram_addr_t *offset) 2289 { 2290 RAMBlock *block = NULL; 2291 2292 if (QSIMPLEQ_EMPTY_ATOMIC(&rs->src_page_requests)) { 2293 return NULL; 2294 } 2295 2296 qemu_mutex_lock(&rs->src_page_req_mutex); 2297 if (!QSIMPLEQ_EMPTY(&rs->src_page_requests)) { 2298 struct RAMSrcPageRequest *entry = 2299 QSIMPLEQ_FIRST(&rs->src_page_requests); 2300 block = entry->rb; 2301 *offset = entry->offset; 2302 2303 if (entry->len > TARGET_PAGE_SIZE) { 2304 entry->len -= TARGET_PAGE_SIZE; 2305 entry->offset += TARGET_PAGE_SIZE; 2306 } else { 2307 memory_region_unref(block->mr); 2308 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req); 2309 g_free(entry); 2310 migration_consume_urgent_request(); 2311 } 2312 } 2313 qemu_mutex_unlock(&rs->src_page_req_mutex); 2314 2315 return block; 2316 } 2317 2318 /** 2319 * get_queued_page: unqueue a page from the postcopy requests 2320 * 2321 * Skips pages that are already sent (!dirty) 2322 * 2323 * Returns true if a queued page is found 2324 * 2325 * @rs: current RAM state 2326 * @pss: data about the state of the current dirty page scan 2327 */ 2328 static bool get_queued_page(RAMState *rs, PageSearchStatus *pss) 2329 { 2330 RAMBlock *block; 2331 ram_addr_t offset; 2332 bool dirty; 2333 2334 do { 2335 block = unqueue_page(rs, &offset); 2336 /* 2337 * We're sending this page, and since it's postcopy nothing else 2338 * will dirty it, and we must make sure it doesn't get sent again 2339 * even if this queue request was received after the background 2340 * search already sent it. 2341 */ 2342 if (block) { 2343 unsigned long page; 2344 2345 page = offset >> TARGET_PAGE_BITS; 2346 dirty = test_bit(page, block->bmap); 2347 if (!dirty) { 2348 trace_get_queued_page_not_dirty(block->idstr, (uint64_t)offset, 2349 page); 2350 } else { 2351 trace_get_queued_page(block->idstr, (uint64_t)offset, page); 2352 } 2353 } 2354 2355 } while (block && !dirty); 2356 2357 if (block) { 2358 /* 2359 * As soon as we start servicing pages out of order, then we have 2360 * to kill the bulk stage, since the bulk stage assumes 2361 * in (migration_bitmap_find_and_reset_dirty) that every page is 2362 * dirty, that's no longer true. 2363 */ 2364 rs->ram_bulk_stage = false; 2365 2366 /* 2367 * We want the background search to continue from the queued page 2368 * since the guest is likely to want other pages near to the page 2369 * it just requested. 2370 */ 2371 pss->block = block; 2372 pss->page = offset >> TARGET_PAGE_BITS; 2373 2374 /* 2375 * This unqueued page would break the "one round" check, even is 2376 * really rare. 2377 */ 2378 pss->complete_round = false; 2379 } 2380 2381 return !!block; 2382 } 2383 2384 /** 2385 * migration_page_queue_free: drop any remaining pages in the ram 2386 * request queue 2387 * 2388 * It should be empty at the end anyway, but in error cases there may 2389 * be some left. in case that there is any page left, we drop it. 2390 * 2391 */ 2392 static void migration_page_queue_free(RAMState *rs) 2393 { 2394 struct RAMSrcPageRequest *mspr, *next_mspr; 2395 /* This queue generally should be empty - but in the case of a failed 2396 * migration might have some droppings in. 2397 */ 2398 RCU_READ_LOCK_GUARD(); 2399 QSIMPLEQ_FOREACH_SAFE(mspr, &rs->src_page_requests, next_req, next_mspr) { 2400 memory_region_unref(mspr->rb->mr); 2401 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req); 2402 g_free(mspr); 2403 } 2404 } 2405 2406 /** 2407 * ram_save_queue_pages: queue the page for transmission 2408 * 2409 * A request from postcopy destination for example. 2410 * 2411 * Returns zero on success or negative on error 2412 * 2413 * @rbname: Name of the RAMBLock of the request. NULL means the 2414 * same that last one. 2415 * @start: starting address from the start of the RAMBlock 2416 * @len: length (in bytes) to send 2417 */ 2418 int ram_save_queue_pages(const char *rbname, ram_addr_t start, ram_addr_t len) 2419 { 2420 RAMBlock *ramblock; 2421 RAMState *rs = ram_state; 2422 2423 ram_counters.postcopy_requests++; 2424 RCU_READ_LOCK_GUARD(); 2425 2426 if (!rbname) { 2427 /* Reuse last RAMBlock */ 2428 ramblock = rs->last_req_rb; 2429 2430 if (!ramblock) { 2431 /* 2432 * Shouldn't happen, we can't reuse the last RAMBlock if 2433 * it's the 1st request. 2434 */ 2435 error_report("ram_save_queue_pages no previous block"); 2436 goto err; 2437 } 2438 } else { 2439 ramblock = qemu_ram_block_by_name(rbname); 2440 2441 if (!ramblock) { 2442 /* We shouldn't be asked for a non-existent RAMBlock */ 2443 error_report("ram_save_queue_pages no block '%s'", rbname); 2444 goto err; 2445 } 2446 rs->last_req_rb = ramblock; 2447 } 2448 trace_ram_save_queue_pages(ramblock->idstr, start, len); 2449 if (start+len > ramblock->used_length) { 2450 error_report("%s request overrun start=" RAM_ADDR_FMT " len=" 2451 RAM_ADDR_FMT " blocklen=" RAM_ADDR_FMT, 2452 __func__, start, len, ramblock->used_length); 2453 goto err; 2454 } 2455 2456 struct RAMSrcPageRequest *new_entry = 2457 g_malloc0(sizeof(struct RAMSrcPageRequest)); 2458 new_entry->rb = ramblock; 2459 new_entry->offset = start; 2460 new_entry->len = len; 2461 2462 memory_region_ref(ramblock->mr); 2463 qemu_mutex_lock(&rs->src_page_req_mutex); 2464 QSIMPLEQ_INSERT_TAIL(&rs->src_page_requests, new_entry, next_req); 2465 migration_make_urgent_request(); 2466 qemu_mutex_unlock(&rs->src_page_req_mutex); 2467 2468 return 0; 2469 2470 err: 2471 return -1; 2472 } 2473 2474 static bool save_page_use_compression(RAMState *rs) 2475 { 2476 if (!migrate_use_compression()) { 2477 return false; 2478 } 2479 2480 /* 2481 * If xbzrle is on, stop using the data compression after first 2482 * round of migration even if compression is enabled. In theory, 2483 * xbzrle can do better than compression. 2484 */ 2485 if (rs->ram_bulk_stage || !migrate_use_xbzrle()) { 2486 return true; 2487 } 2488 2489 return false; 2490 } 2491 2492 /* 2493 * try to compress the page before posting it out, return true if the page 2494 * has been properly handled by compression, otherwise needs other 2495 * paths to handle it 2496 */ 2497 static bool save_compress_page(RAMState *rs, RAMBlock *block, ram_addr_t offset) 2498 { 2499 if (!save_page_use_compression(rs)) { 2500 return false; 2501 } 2502 2503 /* 2504 * When starting the process of a new block, the first page of 2505 * the block should be sent out before other pages in the same 2506 * block, and all the pages in last block should have been sent 2507 * out, keeping this order is important, because the 'cont' flag 2508 * is used to avoid resending the block name. 2509 * 2510 * We post the fist page as normal page as compression will take 2511 * much CPU resource. 2512 */ 2513 if (block != rs->last_sent_block) { 2514 flush_compressed_data(rs); 2515 return false; 2516 } 2517 2518 if (compress_page_with_multi_thread(rs, block, offset) > 0) { 2519 return true; 2520 } 2521 2522 compression_counters.busy++; 2523 return false; 2524 } 2525 2526 /** 2527 * ram_save_target_page: save one target page 2528 * 2529 * Returns the number of pages written 2530 * 2531 * @rs: current RAM state 2532 * @pss: data about the page we want to send 2533 * @last_stage: if we are at the completion stage 2534 */ 2535 static int ram_save_target_page(RAMState *rs, PageSearchStatus *pss, 2536 bool last_stage) 2537 { 2538 RAMBlock *block = pss->block; 2539 ram_addr_t offset = pss->page << TARGET_PAGE_BITS; 2540 int res; 2541 2542 if (control_save_page(rs, block, offset, &res)) { 2543 return res; 2544 } 2545 2546 if (save_compress_page(rs, block, offset)) { 2547 return 1; 2548 } 2549 2550 res = save_zero_page(rs, block, offset); 2551 if (res > 0) { 2552 /* Must let xbzrle know, otherwise a previous (now 0'd) cached 2553 * page would be stale 2554 */ 2555 if (!save_page_use_compression(rs)) { 2556 XBZRLE_cache_lock(); 2557 xbzrle_cache_zero_page(rs, block->offset + offset); 2558 XBZRLE_cache_unlock(); 2559 } 2560 ram_release_pages(block->idstr, offset, res); 2561 return res; 2562 } 2563 2564 /* 2565 * do not use multifd for compression as the first page in the new 2566 * block should be posted out before sending the compressed page 2567 */ 2568 if (!save_page_use_compression(rs) && migrate_use_multifd()) { 2569 return ram_save_multifd_page(rs, block, offset); 2570 } 2571 2572 return ram_save_page(rs, pss, last_stage); 2573 } 2574 2575 /** 2576 * ram_save_host_page: save a whole host page 2577 * 2578 * Starting at *offset send pages up to the end of the current host 2579 * page. It's valid for the initial offset to point into the middle of 2580 * a host page in which case the remainder of the hostpage is sent. 2581 * Only dirty target pages are sent. Note that the host page size may 2582 * be a huge page for this block. 2583 * The saving stops at the boundary of the used_length of the block 2584 * if the RAMBlock isn't a multiple of the host page size. 2585 * 2586 * Returns the number of pages written or negative on error 2587 * 2588 * @rs: current RAM state 2589 * @ms: current migration state 2590 * @pss: data about the page we want to send 2591 * @last_stage: if we are at the completion stage 2592 */ 2593 static int ram_save_host_page(RAMState *rs, PageSearchStatus *pss, 2594 bool last_stage) 2595 { 2596 int tmppages, pages = 0; 2597 size_t pagesize_bits = 2598 qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS; 2599 2600 if (ramblock_is_ignored(pss->block)) { 2601 error_report("block %s should not be migrated !", pss->block->idstr); 2602 return 0; 2603 } 2604 2605 do { 2606 /* Check the pages is dirty and if it is send it */ 2607 if (!migration_bitmap_clear_dirty(rs, pss->block, pss->page)) { 2608 pss->page++; 2609 continue; 2610 } 2611 2612 tmppages = ram_save_target_page(rs, pss, last_stage); 2613 if (tmppages < 0) { 2614 return tmppages; 2615 } 2616 2617 pages += tmppages; 2618 pss->page++; 2619 } while ((pss->page & (pagesize_bits - 1)) && 2620 offset_in_ramblock(pss->block, pss->page << TARGET_PAGE_BITS)); 2621 2622 /* The offset we leave with is the last one we looked at */ 2623 pss->page--; 2624 return pages; 2625 } 2626 2627 /** 2628 * ram_find_and_save_block: finds a dirty page and sends it to f 2629 * 2630 * Called within an RCU critical section. 2631 * 2632 * Returns the number of pages written where zero means no dirty pages, 2633 * or negative on error 2634 * 2635 * @rs: current RAM state 2636 * @last_stage: if we are at the completion stage 2637 * 2638 * On systems where host-page-size > target-page-size it will send all the 2639 * pages in a host page that are dirty. 2640 */ 2641 2642 static int ram_find_and_save_block(RAMState *rs, bool last_stage) 2643 { 2644 PageSearchStatus pss; 2645 int pages = 0; 2646 bool again, found; 2647 2648 /* No dirty page as there is zero RAM */ 2649 if (!ram_bytes_total()) { 2650 return pages; 2651 } 2652 2653 pss.block = rs->last_seen_block; 2654 pss.page = rs->last_page; 2655 pss.complete_round = false; 2656 2657 if (!pss.block) { 2658 pss.block = QLIST_FIRST_RCU(&ram_list.blocks); 2659 } 2660 2661 do { 2662 again = true; 2663 found = get_queued_page(rs, &pss); 2664 2665 if (!found) { 2666 /* priority queue empty, so just search for something dirty */ 2667 found = find_dirty_block(rs, &pss, &again); 2668 } 2669 2670 if (found) { 2671 pages = ram_save_host_page(rs, &pss, last_stage); 2672 } 2673 } while (!pages && again); 2674 2675 rs->last_seen_block = pss.block; 2676 rs->last_page = pss.page; 2677 2678 return pages; 2679 } 2680 2681 void acct_update_position(QEMUFile *f, size_t size, bool zero) 2682 { 2683 uint64_t pages = size / TARGET_PAGE_SIZE; 2684 2685 if (zero) { 2686 ram_counters.duplicate += pages; 2687 } else { 2688 ram_counters.normal += pages; 2689 ram_counters.transferred += size; 2690 qemu_update_position(f, size); 2691 } 2692 } 2693 2694 static uint64_t ram_bytes_total_common(bool count_ignored) 2695 { 2696 RAMBlock *block; 2697 uint64_t total = 0; 2698 2699 RCU_READ_LOCK_GUARD(); 2700 2701 if (count_ignored) { 2702 RAMBLOCK_FOREACH_MIGRATABLE(block) { 2703 total += block->used_length; 2704 } 2705 } else { 2706 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 2707 total += block->used_length; 2708 } 2709 } 2710 return total; 2711 } 2712 2713 uint64_t ram_bytes_total(void) 2714 { 2715 return ram_bytes_total_common(false); 2716 } 2717 2718 static void xbzrle_load_setup(void) 2719 { 2720 XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE); 2721 } 2722 2723 static void xbzrle_load_cleanup(void) 2724 { 2725 g_free(XBZRLE.decoded_buf); 2726 XBZRLE.decoded_buf = NULL; 2727 } 2728 2729 static void ram_state_cleanup(RAMState **rsp) 2730 { 2731 if (*rsp) { 2732 migration_page_queue_free(*rsp); 2733 qemu_mutex_destroy(&(*rsp)->bitmap_mutex); 2734 qemu_mutex_destroy(&(*rsp)->src_page_req_mutex); 2735 g_free(*rsp); 2736 *rsp = NULL; 2737 } 2738 } 2739 2740 static void xbzrle_cleanup(void) 2741 { 2742 XBZRLE_cache_lock(); 2743 if (XBZRLE.cache) { 2744 cache_fini(XBZRLE.cache); 2745 g_free(XBZRLE.encoded_buf); 2746 g_free(XBZRLE.current_buf); 2747 g_free(XBZRLE.zero_target_page); 2748 XBZRLE.cache = NULL; 2749 XBZRLE.encoded_buf = NULL; 2750 XBZRLE.current_buf = NULL; 2751 XBZRLE.zero_target_page = NULL; 2752 } 2753 XBZRLE_cache_unlock(); 2754 } 2755 2756 static void ram_save_cleanup(void *opaque) 2757 { 2758 RAMState **rsp = opaque; 2759 RAMBlock *block; 2760 2761 /* caller have hold iothread lock or is in a bh, so there is 2762 * no writing race against the migration bitmap 2763 */ 2764 memory_global_dirty_log_stop(); 2765 2766 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 2767 g_free(block->clear_bmap); 2768 block->clear_bmap = NULL; 2769 g_free(block->bmap); 2770 block->bmap = NULL; 2771 } 2772 2773 xbzrle_cleanup(); 2774 compress_threads_save_cleanup(); 2775 ram_state_cleanup(rsp); 2776 } 2777 2778 static void ram_state_reset(RAMState *rs) 2779 { 2780 rs->last_seen_block = NULL; 2781 rs->last_sent_block = NULL; 2782 rs->last_page = 0; 2783 rs->last_version = ram_list.version; 2784 rs->ram_bulk_stage = true; 2785 rs->fpo_enabled = false; 2786 } 2787 2788 #define MAX_WAIT 50 /* ms, half buffered_file limit */ 2789 2790 /* 2791 * 'expected' is the value you expect the bitmap mostly to be full 2792 * of; it won't bother printing lines that are all this value. 2793 * If 'todump' is null the migration bitmap is dumped. 2794 */ 2795 void ram_debug_dump_bitmap(unsigned long *todump, bool expected, 2796 unsigned long pages) 2797 { 2798 int64_t cur; 2799 int64_t linelen = 128; 2800 char linebuf[129]; 2801 2802 for (cur = 0; cur < pages; cur += linelen) { 2803 int64_t curb; 2804 bool found = false; 2805 /* 2806 * Last line; catch the case where the line length 2807 * is longer than remaining ram 2808 */ 2809 if (cur + linelen > pages) { 2810 linelen = pages - cur; 2811 } 2812 for (curb = 0; curb < linelen; curb++) { 2813 bool thisbit = test_bit(cur + curb, todump); 2814 linebuf[curb] = thisbit ? '1' : '.'; 2815 found = found || (thisbit != expected); 2816 } 2817 if (found) { 2818 linebuf[curb] = '\0'; 2819 fprintf(stderr, "0x%08" PRIx64 " : %s\n", cur, linebuf); 2820 } 2821 } 2822 } 2823 2824 /* **** functions for postcopy ***** */ 2825 2826 void ram_postcopy_migrated_memory_release(MigrationState *ms) 2827 { 2828 struct RAMBlock *block; 2829 2830 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 2831 unsigned long *bitmap = block->bmap; 2832 unsigned long range = block->used_length >> TARGET_PAGE_BITS; 2833 unsigned long run_start = find_next_zero_bit(bitmap, range, 0); 2834 2835 while (run_start < range) { 2836 unsigned long run_end = find_next_bit(bitmap, range, run_start + 1); 2837 ram_discard_range(block->idstr, run_start << TARGET_PAGE_BITS, 2838 (run_end - run_start) << TARGET_PAGE_BITS); 2839 run_start = find_next_zero_bit(bitmap, range, run_end + 1); 2840 } 2841 } 2842 } 2843 2844 /** 2845 * postcopy_send_discard_bm_ram: discard a RAMBlock 2846 * 2847 * Returns zero on success 2848 * 2849 * Callback from postcopy_each_ram_send_discard for each RAMBlock 2850 * 2851 * @ms: current migration state 2852 * @block: RAMBlock to discard 2853 */ 2854 static int postcopy_send_discard_bm_ram(MigrationState *ms, RAMBlock *block) 2855 { 2856 unsigned long end = block->used_length >> TARGET_PAGE_BITS; 2857 unsigned long current; 2858 unsigned long *bitmap = block->bmap; 2859 2860 for (current = 0; current < end; ) { 2861 unsigned long one = find_next_bit(bitmap, end, current); 2862 unsigned long zero, discard_length; 2863 2864 if (one >= end) { 2865 break; 2866 } 2867 2868 zero = find_next_zero_bit(bitmap, end, one + 1); 2869 2870 if (zero >= end) { 2871 discard_length = end - one; 2872 } else { 2873 discard_length = zero - one; 2874 } 2875 postcopy_discard_send_range(ms, one, discard_length); 2876 current = one + discard_length; 2877 } 2878 2879 return 0; 2880 } 2881 2882 /** 2883 * postcopy_each_ram_send_discard: discard all RAMBlocks 2884 * 2885 * Returns 0 for success or negative for error 2886 * 2887 * Utility for the outgoing postcopy code. 2888 * Calls postcopy_send_discard_bm_ram for each RAMBlock 2889 * passing it bitmap indexes and name. 2890 * (qemu_ram_foreach_block ends up passing unscaled lengths 2891 * which would mean postcopy code would have to deal with target page) 2892 * 2893 * @ms: current migration state 2894 */ 2895 static int postcopy_each_ram_send_discard(MigrationState *ms) 2896 { 2897 struct RAMBlock *block; 2898 int ret; 2899 2900 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 2901 postcopy_discard_send_init(ms, block->idstr); 2902 2903 /* 2904 * Postcopy sends chunks of bitmap over the wire, but it 2905 * just needs indexes at this point, avoids it having 2906 * target page specific code. 2907 */ 2908 ret = postcopy_send_discard_bm_ram(ms, block); 2909 postcopy_discard_send_finish(ms); 2910 if (ret) { 2911 return ret; 2912 } 2913 } 2914 2915 return 0; 2916 } 2917 2918 /** 2919 * postcopy_chunk_hostpages_pass: canonicalize bitmap in hostpages 2920 * 2921 * Helper for postcopy_chunk_hostpages; it's called twice to 2922 * canonicalize the two bitmaps, that are similar, but one is 2923 * inverted. 2924 * 2925 * Postcopy requires that all target pages in a hostpage are dirty or 2926 * clean, not a mix. This function canonicalizes the bitmaps. 2927 * 2928 * @ms: current migration state 2929 * @block: block that contains the page we want to canonicalize 2930 */ 2931 static void postcopy_chunk_hostpages_pass(MigrationState *ms, RAMBlock *block) 2932 { 2933 RAMState *rs = ram_state; 2934 unsigned long *bitmap = block->bmap; 2935 unsigned int host_ratio = block->page_size / TARGET_PAGE_SIZE; 2936 unsigned long pages = block->used_length >> TARGET_PAGE_BITS; 2937 unsigned long run_start; 2938 2939 if (block->page_size == TARGET_PAGE_SIZE) { 2940 /* Easy case - TPS==HPS for a non-huge page RAMBlock */ 2941 return; 2942 } 2943 2944 /* Find a dirty page */ 2945 run_start = find_next_bit(bitmap, pages, 0); 2946 2947 while (run_start < pages) { 2948 2949 /* 2950 * If the start of this run of pages is in the middle of a host 2951 * page, then we need to fixup this host page. 2952 */ 2953 if (QEMU_IS_ALIGNED(run_start, host_ratio)) { 2954 /* Find the end of this run */ 2955 run_start = find_next_zero_bit(bitmap, pages, run_start + 1); 2956 /* 2957 * If the end isn't at the start of a host page, then the 2958 * run doesn't finish at the end of a host page 2959 * and we need to discard. 2960 */ 2961 } 2962 2963 if (!QEMU_IS_ALIGNED(run_start, host_ratio)) { 2964 unsigned long page; 2965 unsigned long fixup_start_addr = QEMU_ALIGN_DOWN(run_start, 2966 host_ratio); 2967 run_start = QEMU_ALIGN_UP(run_start, host_ratio); 2968 2969 /* Clean up the bitmap */ 2970 for (page = fixup_start_addr; 2971 page < fixup_start_addr + host_ratio; page++) { 2972 /* 2973 * Remark them as dirty, updating the count for any pages 2974 * that weren't previously dirty. 2975 */ 2976 rs->migration_dirty_pages += !test_and_set_bit(page, bitmap); 2977 } 2978 } 2979 2980 /* Find the next dirty page for the next iteration */ 2981 run_start = find_next_bit(bitmap, pages, run_start); 2982 } 2983 } 2984 2985 /** 2986 * postcopy_chunk_hostpages: discard any partially sent host page 2987 * 2988 * Utility for the outgoing postcopy code. 2989 * 2990 * Discard any partially sent host-page size chunks, mark any partially 2991 * dirty host-page size chunks as all dirty. In this case the host-page 2992 * is the host-page for the particular RAMBlock, i.e. it might be a huge page 2993 * 2994 * Returns zero on success 2995 * 2996 * @ms: current migration state 2997 * @block: block we want to work with 2998 */ 2999 static int postcopy_chunk_hostpages(MigrationState *ms, RAMBlock *block) 3000 { 3001 postcopy_discard_send_init(ms, block->idstr); 3002 3003 /* 3004 * Ensure that all partially dirty host pages are made fully dirty. 3005 */ 3006 postcopy_chunk_hostpages_pass(ms, block); 3007 3008 postcopy_discard_send_finish(ms); 3009 return 0; 3010 } 3011 3012 /** 3013 * ram_postcopy_send_discard_bitmap: transmit the discard bitmap 3014 * 3015 * Returns zero on success 3016 * 3017 * Transmit the set of pages to be discarded after precopy to the target 3018 * these are pages that: 3019 * a) Have been previously transmitted but are now dirty again 3020 * b) Pages that have never been transmitted, this ensures that 3021 * any pages on the destination that have been mapped by background 3022 * tasks get discarded (transparent huge pages is the specific concern) 3023 * Hopefully this is pretty sparse 3024 * 3025 * @ms: current migration state 3026 */ 3027 int ram_postcopy_send_discard_bitmap(MigrationState *ms) 3028 { 3029 RAMState *rs = ram_state; 3030 RAMBlock *block; 3031 int ret; 3032 3033 RCU_READ_LOCK_GUARD(); 3034 3035 /* This should be our last sync, the src is now paused */ 3036 migration_bitmap_sync(rs); 3037 3038 /* Easiest way to make sure we don't resume in the middle of a host-page */ 3039 rs->last_seen_block = NULL; 3040 rs->last_sent_block = NULL; 3041 rs->last_page = 0; 3042 3043 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3044 /* Deal with TPS != HPS and huge pages */ 3045 ret = postcopy_chunk_hostpages(ms, block); 3046 if (ret) { 3047 return ret; 3048 } 3049 3050 #ifdef DEBUG_POSTCOPY 3051 ram_debug_dump_bitmap(block->bmap, true, 3052 block->used_length >> TARGET_PAGE_BITS); 3053 #endif 3054 } 3055 trace_ram_postcopy_send_discard_bitmap(); 3056 3057 ret = postcopy_each_ram_send_discard(ms); 3058 3059 return ret; 3060 } 3061 3062 /** 3063 * ram_discard_range: discard dirtied pages at the beginning of postcopy 3064 * 3065 * Returns zero on success 3066 * 3067 * @rbname: name of the RAMBlock of the request. NULL means the 3068 * same that last one. 3069 * @start: RAMBlock starting page 3070 * @length: RAMBlock size 3071 */ 3072 int ram_discard_range(const char *rbname, uint64_t start, size_t length) 3073 { 3074 int ret = -1; 3075 3076 trace_ram_discard_range(rbname, start, length); 3077 3078 RCU_READ_LOCK_GUARD(); 3079 RAMBlock *rb = qemu_ram_block_by_name(rbname); 3080 3081 if (!rb) { 3082 error_report("ram_discard_range: Failed to find block '%s'", rbname); 3083 goto err; 3084 } 3085 3086 /* 3087 * On source VM, we don't need to update the received bitmap since 3088 * we don't even have one. 3089 */ 3090 if (rb->receivedmap) { 3091 bitmap_clear(rb->receivedmap, start >> qemu_target_page_bits(), 3092 length >> qemu_target_page_bits()); 3093 } 3094 3095 ret = ram_block_discard_range(rb, start, length); 3096 3097 err: 3098 return ret; 3099 } 3100 3101 /* 3102 * For every allocation, we will try not to crash the VM if the 3103 * allocation failed. 3104 */ 3105 static int xbzrle_init(void) 3106 { 3107 Error *local_err = NULL; 3108 3109 if (!migrate_use_xbzrle()) { 3110 return 0; 3111 } 3112 3113 XBZRLE_cache_lock(); 3114 3115 XBZRLE.zero_target_page = g_try_malloc0(TARGET_PAGE_SIZE); 3116 if (!XBZRLE.zero_target_page) { 3117 error_report("%s: Error allocating zero page", __func__); 3118 goto err_out; 3119 } 3120 3121 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size(), 3122 TARGET_PAGE_SIZE, &local_err); 3123 if (!XBZRLE.cache) { 3124 error_report_err(local_err); 3125 goto free_zero_page; 3126 } 3127 3128 XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE); 3129 if (!XBZRLE.encoded_buf) { 3130 error_report("%s: Error allocating encoded_buf", __func__); 3131 goto free_cache; 3132 } 3133 3134 XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE); 3135 if (!XBZRLE.current_buf) { 3136 error_report("%s: Error allocating current_buf", __func__); 3137 goto free_encoded_buf; 3138 } 3139 3140 /* We are all good */ 3141 XBZRLE_cache_unlock(); 3142 return 0; 3143 3144 free_encoded_buf: 3145 g_free(XBZRLE.encoded_buf); 3146 XBZRLE.encoded_buf = NULL; 3147 free_cache: 3148 cache_fini(XBZRLE.cache); 3149 XBZRLE.cache = NULL; 3150 free_zero_page: 3151 g_free(XBZRLE.zero_target_page); 3152 XBZRLE.zero_target_page = NULL; 3153 err_out: 3154 XBZRLE_cache_unlock(); 3155 return -ENOMEM; 3156 } 3157 3158 static int ram_state_init(RAMState **rsp) 3159 { 3160 *rsp = g_try_new0(RAMState, 1); 3161 3162 if (!*rsp) { 3163 error_report("%s: Init ramstate fail", __func__); 3164 return -1; 3165 } 3166 3167 qemu_mutex_init(&(*rsp)->bitmap_mutex); 3168 qemu_mutex_init(&(*rsp)->src_page_req_mutex); 3169 QSIMPLEQ_INIT(&(*rsp)->src_page_requests); 3170 3171 /* 3172 * Count the total number of pages used by ram blocks not including any 3173 * gaps due to alignment or unplugs. 3174 * This must match with the initial values of dirty bitmap. 3175 */ 3176 (*rsp)->migration_dirty_pages = ram_bytes_total() >> TARGET_PAGE_BITS; 3177 ram_state_reset(*rsp); 3178 3179 return 0; 3180 } 3181 3182 static void ram_list_init_bitmaps(void) 3183 { 3184 MigrationState *ms = migrate_get_current(); 3185 RAMBlock *block; 3186 unsigned long pages; 3187 uint8_t shift; 3188 3189 /* Skip setting bitmap if there is no RAM */ 3190 if (ram_bytes_total()) { 3191 shift = ms->clear_bitmap_shift; 3192 if (shift > CLEAR_BITMAP_SHIFT_MAX) { 3193 error_report("clear_bitmap_shift (%u) too big, using " 3194 "max value (%u)", shift, CLEAR_BITMAP_SHIFT_MAX); 3195 shift = CLEAR_BITMAP_SHIFT_MAX; 3196 } else if (shift < CLEAR_BITMAP_SHIFT_MIN) { 3197 error_report("clear_bitmap_shift (%u) too small, using " 3198 "min value (%u)", shift, CLEAR_BITMAP_SHIFT_MIN); 3199 shift = CLEAR_BITMAP_SHIFT_MIN; 3200 } 3201 3202 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3203 pages = block->max_length >> TARGET_PAGE_BITS; 3204 /* 3205 * The initial dirty bitmap for migration must be set with all 3206 * ones to make sure we'll migrate every guest RAM page to 3207 * destination. 3208 * Here we set RAMBlock.bmap all to 1 because when rebegin a 3209 * new migration after a failed migration, ram_list. 3210 * dirty_memory[DIRTY_MEMORY_MIGRATION] don't include the whole 3211 * guest memory. 3212 */ 3213 block->bmap = bitmap_new(pages); 3214 bitmap_set(block->bmap, 0, pages); 3215 block->clear_bmap_shift = shift; 3216 block->clear_bmap = bitmap_new(clear_bmap_size(pages, shift)); 3217 } 3218 } 3219 } 3220 3221 static void ram_init_bitmaps(RAMState *rs) 3222 { 3223 /* For memory_global_dirty_log_start below. */ 3224 qemu_mutex_lock_iothread(); 3225 qemu_mutex_lock_ramlist(); 3226 3227 WITH_RCU_READ_LOCK_GUARD() { 3228 ram_list_init_bitmaps(); 3229 memory_global_dirty_log_start(); 3230 migration_bitmap_sync_precopy(rs); 3231 } 3232 qemu_mutex_unlock_ramlist(); 3233 qemu_mutex_unlock_iothread(); 3234 } 3235 3236 static int ram_init_all(RAMState **rsp) 3237 { 3238 if (ram_state_init(rsp)) { 3239 return -1; 3240 } 3241 3242 if (xbzrle_init()) { 3243 ram_state_cleanup(rsp); 3244 return -1; 3245 } 3246 3247 ram_init_bitmaps(*rsp); 3248 3249 return 0; 3250 } 3251 3252 static void ram_state_resume_prepare(RAMState *rs, QEMUFile *out) 3253 { 3254 RAMBlock *block; 3255 uint64_t pages = 0; 3256 3257 /* 3258 * Postcopy is not using xbzrle/compression, so no need for that. 3259 * Also, since source are already halted, we don't need to care 3260 * about dirty page logging as well. 3261 */ 3262 3263 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3264 pages += bitmap_count_one(block->bmap, 3265 block->used_length >> TARGET_PAGE_BITS); 3266 } 3267 3268 /* This may not be aligned with current bitmaps. Recalculate. */ 3269 rs->migration_dirty_pages = pages; 3270 3271 rs->last_seen_block = NULL; 3272 rs->last_sent_block = NULL; 3273 rs->last_page = 0; 3274 rs->last_version = ram_list.version; 3275 /* 3276 * Disable the bulk stage, otherwise we'll resend the whole RAM no 3277 * matter what we have sent. 3278 */ 3279 rs->ram_bulk_stage = false; 3280 3281 /* Update RAMState cache of output QEMUFile */ 3282 rs->f = out; 3283 3284 trace_ram_state_resume_prepare(pages); 3285 } 3286 3287 /* 3288 * This function clears bits of the free pages reported by the caller from the 3289 * migration dirty bitmap. @addr is the host address corresponding to the 3290 * start of the continuous guest free pages, and @len is the total bytes of 3291 * those pages. 3292 */ 3293 void qemu_guest_free_page_hint(void *addr, size_t len) 3294 { 3295 RAMBlock *block; 3296 ram_addr_t offset; 3297 size_t used_len, start, npages; 3298 MigrationState *s = migrate_get_current(); 3299 3300 /* This function is currently expected to be used during live migration */ 3301 if (!migration_is_setup_or_active(s->state)) { 3302 return; 3303 } 3304 3305 for (; len > 0; len -= used_len, addr += used_len) { 3306 block = qemu_ram_block_from_host(addr, false, &offset); 3307 if (unlikely(!block || offset >= block->used_length)) { 3308 /* 3309 * The implementation might not support RAMBlock resize during 3310 * live migration, but it could happen in theory with future 3311 * updates. So we add a check here to capture that case. 3312 */ 3313 error_report_once("%s unexpected error", __func__); 3314 return; 3315 } 3316 3317 if (len <= block->used_length - offset) { 3318 used_len = len; 3319 } else { 3320 used_len = block->used_length - offset; 3321 } 3322 3323 start = offset >> TARGET_PAGE_BITS; 3324 npages = used_len >> TARGET_PAGE_BITS; 3325 3326 qemu_mutex_lock(&ram_state->bitmap_mutex); 3327 ram_state->migration_dirty_pages -= 3328 bitmap_count_one_with_offset(block->bmap, start, npages); 3329 bitmap_clear(block->bmap, start, npages); 3330 qemu_mutex_unlock(&ram_state->bitmap_mutex); 3331 } 3332 } 3333 3334 /* 3335 * Each of ram_save_setup, ram_save_iterate and ram_save_complete has 3336 * long-running RCU critical section. When rcu-reclaims in the code 3337 * start to become numerous it will be necessary to reduce the 3338 * granularity of these critical sections. 3339 */ 3340 3341 /** 3342 * ram_save_setup: Setup RAM for migration 3343 * 3344 * Returns zero to indicate success and negative for error 3345 * 3346 * @f: QEMUFile where to send the data 3347 * @opaque: RAMState pointer 3348 */ 3349 static int ram_save_setup(QEMUFile *f, void *opaque) 3350 { 3351 RAMState **rsp = opaque; 3352 RAMBlock *block; 3353 3354 if (compress_threads_save_setup()) { 3355 return -1; 3356 } 3357 3358 /* migration has already setup the bitmap, reuse it. */ 3359 if (!migration_in_colo_state()) { 3360 if (ram_init_all(rsp) != 0) { 3361 compress_threads_save_cleanup(); 3362 return -1; 3363 } 3364 } 3365 (*rsp)->f = f; 3366 3367 WITH_RCU_READ_LOCK_GUARD() { 3368 qemu_put_be64(f, ram_bytes_total_common(true) | RAM_SAVE_FLAG_MEM_SIZE); 3369 3370 RAMBLOCK_FOREACH_MIGRATABLE(block) { 3371 qemu_put_byte(f, strlen(block->idstr)); 3372 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr)); 3373 qemu_put_be64(f, block->used_length); 3374 if (migrate_postcopy_ram() && block->page_size != 3375 qemu_host_page_size) { 3376 qemu_put_be64(f, block->page_size); 3377 } 3378 if (migrate_ignore_shared()) { 3379 qemu_put_be64(f, block->mr->addr); 3380 } 3381 } 3382 } 3383 3384 ram_control_before_iterate(f, RAM_CONTROL_SETUP); 3385 ram_control_after_iterate(f, RAM_CONTROL_SETUP); 3386 3387 multifd_send_sync_main(*rsp); 3388 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 3389 qemu_fflush(f); 3390 3391 return 0; 3392 } 3393 3394 /** 3395 * ram_save_iterate: iterative stage for migration 3396 * 3397 * Returns zero to indicate success and negative for error 3398 * 3399 * @f: QEMUFile where to send the data 3400 * @opaque: RAMState pointer 3401 */ 3402 static int ram_save_iterate(QEMUFile *f, void *opaque) 3403 { 3404 RAMState **temp = opaque; 3405 RAMState *rs = *temp; 3406 int ret; 3407 int i; 3408 int64_t t0; 3409 int done = 0; 3410 3411 if (blk_mig_bulk_active()) { 3412 /* Avoid transferring ram during bulk phase of block migration as 3413 * the bulk phase will usually take a long time and transferring 3414 * ram updates during that time is pointless. */ 3415 goto out; 3416 } 3417 3418 WITH_RCU_READ_LOCK_GUARD() { 3419 if (ram_list.version != rs->last_version) { 3420 ram_state_reset(rs); 3421 } 3422 3423 /* Read version before ram_list.blocks */ 3424 smp_rmb(); 3425 3426 ram_control_before_iterate(f, RAM_CONTROL_ROUND); 3427 3428 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 3429 i = 0; 3430 while ((ret = qemu_file_rate_limit(f)) == 0 || 3431 !QSIMPLEQ_EMPTY(&rs->src_page_requests)) { 3432 int pages; 3433 3434 if (qemu_file_get_error(f)) { 3435 break; 3436 } 3437 3438 pages = ram_find_and_save_block(rs, false); 3439 /* no more pages to sent */ 3440 if (pages == 0) { 3441 done = 1; 3442 break; 3443 } 3444 3445 if (pages < 0) { 3446 qemu_file_set_error(f, pages); 3447 break; 3448 } 3449 3450 rs->target_page_count += pages; 3451 3452 /* 3453 * we want to check in the 1st loop, just in case it was the 1st 3454 * time and we had to sync the dirty bitmap. 3455 * qemu_clock_get_ns() is a bit expensive, so we only check each 3456 * some iterations 3457 */ 3458 if ((i & 63) == 0) { 3459 uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) / 3460 1000000; 3461 if (t1 > MAX_WAIT) { 3462 trace_ram_save_iterate_big_wait(t1, i); 3463 break; 3464 } 3465 } 3466 i++; 3467 } 3468 } 3469 3470 /* 3471 * Must occur before EOS (or any QEMUFile operation) 3472 * because of RDMA protocol. 3473 */ 3474 ram_control_after_iterate(f, RAM_CONTROL_ROUND); 3475 3476 out: 3477 multifd_send_sync_main(rs); 3478 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 3479 qemu_fflush(f); 3480 ram_counters.transferred += 8; 3481 3482 ret = qemu_file_get_error(f); 3483 if (ret < 0) { 3484 return ret; 3485 } 3486 3487 return done; 3488 } 3489 3490 /** 3491 * ram_save_complete: function called to send the remaining amount of ram 3492 * 3493 * Returns zero to indicate success or negative on error 3494 * 3495 * Called with iothread lock 3496 * 3497 * @f: QEMUFile where to send the data 3498 * @opaque: RAMState pointer 3499 */ 3500 static int ram_save_complete(QEMUFile *f, void *opaque) 3501 { 3502 RAMState **temp = opaque; 3503 RAMState *rs = *temp; 3504 int ret = 0; 3505 3506 WITH_RCU_READ_LOCK_GUARD() { 3507 if (!migration_in_postcopy()) { 3508 migration_bitmap_sync_precopy(rs); 3509 } 3510 3511 ram_control_before_iterate(f, RAM_CONTROL_FINISH); 3512 3513 /* try transferring iterative blocks of memory */ 3514 3515 /* flush all remaining blocks regardless of rate limiting */ 3516 while (true) { 3517 int pages; 3518 3519 pages = ram_find_and_save_block(rs, !migration_in_colo_state()); 3520 /* no more blocks to sent */ 3521 if (pages == 0) { 3522 break; 3523 } 3524 if (pages < 0) { 3525 ret = pages; 3526 break; 3527 } 3528 } 3529 3530 flush_compressed_data(rs); 3531 ram_control_after_iterate(f, RAM_CONTROL_FINISH); 3532 } 3533 3534 multifd_send_sync_main(rs); 3535 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 3536 qemu_fflush(f); 3537 3538 return ret; 3539 } 3540 3541 static void ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size, 3542 uint64_t *res_precopy_only, 3543 uint64_t *res_compatible, 3544 uint64_t *res_postcopy_only) 3545 { 3546 RAMState **temp = opaque; 3547 RAMState *rs = *temp; 3548 uint64_t remaining_size; 3549 3550 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE; 3551 3552 if (!migration_in_postcopy() && 3553 remaining_size < max_size) { 3554 qemu_mutex_lock_iothread(); 3555 WITH_RCU_READ_LOCK_GUARD() { 3556 migration_bitmap_sync_precopy(rs); 3557 } 3558 qemu_mutex_unlock_iothread(); 3559 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE; 3560 } 3561 3562 if (migrate_postcopy_ram()) { 3563 /* We can do postcopy, and all the data is postcopiable */ 3564 *res_compatible += remaining_size; 3565 } else { 3566 *res_precopy_only += remaining_size; 3567 } 3568 } 3569 3570 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host) 3571 { 3572 unsigned int xh_len; 3573 int xh_flags; 3574 uint8_t *loaded_data; 3575 3576 /* extract RLE header */ 3577 xh_flags = qemu_get_byte(f); 3578 xh_len = qemu_get_be16(f); 3579 3580 if (xh_flags != ENCODING_FLAG_XBZRLE) { 3581 error_report("Failed to load XBZRLE page - wrong compression!"); 3582 return -1; 3583 } 3584 3585 if (xh_len > TARGET_PAGE_SIZE) { 3586 error_report("Failed to load XBZRLE page - len overflow!"); 3587 return -1; 3588 } 3589 loaded_data = XBZRLE.decoded_buf; 3590 /* load data and decode */ 3591 /* it can change loaded_data to point to an internal buffer */ 3592 qemu_get_buffer_in_place(f, &loaded_data, xh_len); 3593 3594 /* decode RLE */ 3595 if (xbzrle_decode_buffer(loaded_data, xh_len, host, 3596 TARGET_PAGE_SIZE) == -1) { 3597 error_report("Failed to load XBZRLE page - decode error!"); 3598 return -1; 3599 } 3600 3601 return 0; 3602 } 3603 3604 /** 3605 * ram_block_from_stream: read a RAMBlock id from the migration stream 3606 * 3607 * Must be called from within a rcu critical section. 3608 * 3609 * Returns a pointer from within the RCU-protected ram_list. 3610 * 3611 * @f: QEMUFile where to read the data from 3612 * @flags: Page flags (mostly to see if it's a continuation of previous block) 3613 */ 3614 static inline RAMBlock *ram_block_from_stream(QEMUFile *f, int flags) 3615 { 3616 static RAMBlock *block = NULL; 3617 char id[256]; 3618 uint8_t len; 3619 3620 if (flags & RAM_SAVE_FLAG_CONTINUE) { 3621 if (!block) { 3622 error_report("Ack, bad migration stream!"); 3623 return NULL; 3624 } 3625 return block; 3626 } 3627 3628 len = qemu_get_byte(f); 3629 qemu_get_buffer(f, (uint8_t *)id, len); 3630 id[len] = 0; 3631 3632 block = qemu_ram_block_by_name(id); 3633 if (!block) { 3634 error_report("Can't find block %s", id); 3635 return NULL; 3636 } 3637 3638 if (ramblock_is_ignored(block)) { 3639 error_report("block %s should not be migrated !", id); 3640 return NULL; 3641 } 3642 3643 return block; 3644 } 3645 3646 static inline void *host_from_ram_block_offset(RAMBlock *block, 3647 ram_addr_t offset) 3648 { 3649 if (!offset_in_ramblock(block, offset)) { 3650 return NULL; 3651 } 3652 3653 return block->host + offset; 3654 } 3655 3656 static inline void *colo_cache_from_block_offset(RAMBlock *block, 3657 ram_addr_t offset) 3658 { 3659 if (!offset_in_ramblock(block, offset)) { 3660 return NULL; 3661 } 3662 if (!block->colo_cache) { 3663 error_report("%s: colo_cache is NULL in block :%s", 3664 __func__, block->idstr); 3665 return NULL; 3666 } 3667 3668 /* 3669 * During colo checkpoint, we need bitmap of these migrated pages. 3670 * It help us to decide which pages in ram cache should be flushed 3671 * into VM's RAM later. 3672 */ 3673 if (!test_and_set_bit(offset >> TARGET_PAGE_BITS, block->bmap)) { 3674 ram_state->migration_dirty_pages++; 3675 } 3676 return block->colo_cache + offset; 3677 } 3678 3679 /** 3680 * ram_handle_compressed: handle the zero page case 3681 * 3682 * If a page (or a whole RDMA chunk) has been 3683 * determined to be zero, then zap it. 3684 * 3685 * @host: host address for the zero page 3686 * @ch: what the page is filled from. We only support zero 3687 * @size: size of the zero page 3688 */ 3689 void ram_handle_compressed(void *host, uint8_t ch, uint64_t size) 3690 { 3691 if (ch != 0 || !is_zero_range(host, size)) { 3692 memset(host, ch, size); 3693 } 3694 } 3695 3696 /* return the size after decompression, or negative value on error */ 3697 static int 3698 qemu_uncompress_data(z_stream *stream, uint8_t *dest, size_t dest_len, 3699 const uint8_t *source, size_t source_len) 3700 { 3701 int err; 3702 3703 err = inflateReset(stream); 3704 if (err != Z_OK) { 3705 return -1; 3706 } 3707 3708 stream->avail_in = source_len; 3709 stream->next_in = (uint8_t *)source; 3710 stream->avail_out = dest_len; 3711 stream->next_out = dest; 3712 3713 err = inflate(stream, Z_NO_FLUSH); 3714 if (err != Z_STREAM_END) { 3715 return -1; 3716 } 3717 3718 return stream->total_out; 3719 } 3720 3721 static void *do_data_decompress(void *opaque) 3722 { 3723 DecompressParam *param = opaque; 3724 unsigned long pagesize; 3725 uint8_t *des; 3726 int len, ret; 3727 3728 qemu_mutex_lock(¶m->mutex); 3729 while (!param->quit) { 3730 if (param->des) { 3731 des = param->des; 3732 len = param->len; 3733 param->des = 0; 3734 qemu_mutex_unlock(¶m->mutex); 3735 3736 pagesize = TARGET_PAGE_SIZE; 3737 3738 ret = qemu_uncompress_data(¶m->stream, des, pagesize, 3739 param->compbuf, len); 3740 if (ret < 0 && migrate_get_current()->decompress_error_check) { 3741 error_report("decompress data failed"); 3742 qemu_file_set_error(decomp_file, ret); 3743 } 3744 3745 qemu_mutex_lock(&decomp_done_lock); 3746 param->done = true; 3747 qemu_cond_signal(&decomp_done_cond); 3748 qemu_mutex_unlock(&decomp_done_lock); 3749 3750 qemu_mutex_lock(¶m->mutex); 3751 } else { 3752 qemu_cond_wait(¶m->cond, ¶m->mutex); 3753 } 3754 } 3755 qemu_mutex_unlock(¶m->mutex); 3756 3757 return NULL; 3758 } 3759 3760 static int wait_for_decompress_done(void) 3761 { 3762 int idx, thread_count; 3763 3764 if (!migrate_use_compression()) { 3765 return 0; 3766 } 3767 3768 thread_count = migrate_decompress_threads(); 3769 qemu_mutex_lock(&decomp_done_lock); 3770 for (idx = 0; idx < thread_count; idx++) { 3771 while (!decomp_param[idx].done) { 3772 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock); 3773 } 3774 } 3775 qemu_mutex_unlock(&decomp_done_lock); 3776 return qemu_file_get_error(decomp_file); 3777 } 3778 3779 static void compress_threads_load_cleanup(void) 3780 { 3781 int i, thread_count; 3782 3783 if (!migrate_use_compression()) { 3784 return; 3785 } 3786 thread_count = migrate_decompress_threads(); 3787 for (i = 0; i < thread_count; i++) { 3788 /* 3789 * we use it as a indicator which shows if the thread is 3790 * properly init'd or not 3791 */ 3792 if (!decomp_param[i].compbuf) { 3793 break; 3794 } 3795 3796 qemu_mutex_lock(&decomp_param[i].mutex); 3797 decomp_param[i].quit = true; 3798 qemu_cond_signal(&decomp_param[i].cond); 3799 qemu_mutex_unlock(&decomp_param[i].mutex); 3800 } 3801 for (i = 0; i < thread_count; i++) { 3802 if (!decomp_param[i].compbuf) { 3803 break; 3804 } 3805 3806 qemu_thread_join(decompress_threads + i); 3807 qemu_mutex_destroy(&decomp_param[i].mutex); 3808 qemu_cond_destroy(&decomp_param[i].cond); 3809 inflateEnd(&decomp_param[i].stream); 3810 g_free(decomp_param[i].compbuf); 3811 decomp_param[i].compbuf = NULL; 3812 } 3813 g_free(decompress_threads); 3814 g_free(decomp_param); 3815 decompress_threads = NULL; 3816 decomp_param = NULL; 3817 decomp_file = NULL; 3818 } 3819 3820 static int compress_threads_load_setup(QEMUFile *f) 3821 { 3822 int i, thread_count; 3823 3824 if (!migrate_use_compression()) { 3825 return 0; 3826 } 3827 3828 thread_count = migrate_decompress_threads(); 3829 decompress_threads = g_new0(QemuThread, thread_count); 3830 decomp_param = g_new0(DecompressParam, thread_count); 3831 qemu_mutex_init(&decomp_done_lock); 3832 qemu_cond_init(&decomp_done_cond); 3833 decomp_file = f; 3834 for (i = 0; i < thread_count; i++) { 3835 if (inflateInit(&decomp_param[i].stream) != Z_OK) { 3836 goto exit; 3837 } 3838 3839 decomp_param[i].compbuf = g_malloc0(compressBound(TARGET_PAGE_SIZE)); 3840 qemu_mutex_init(&decomp_param[i].mutex); 3841 qemu_cond_init(&decomp_param[i].cond); 3842 decomp_param[i].done = true; 3843 decomp_param[i].quit = false; 3844 qemu_thread_create(decompress_threads + i, "decompress", 3845 do_data_decompress, decomp_param + i, 3846 QEMU_THREAD_JOINABLE); 3847 } 3848 return 0; 3849 exit: 3850 compress_threads_load_cleanup(); 3851 return -1; 3852 } 3853 3854 static void decompress_data_with_multi_threads(QEMUFile *f, 3855 void *host, int len) 3856 { 3857 int idx, thread_count; 3858 3859 thread_count = migrate_decompress_threads(); 3860 qemu_mutex_lock(&decomp_done_lock); 3861 while (true) { 3862 for (idx = 0; idx < thread_count; idx++) { 3863 if (decomp_param[idx].done) { 3864 decomp_param[idx].done = false; 3865 qemu_mutex_lock(&decomp_param[idx].mutex); 3866 qemu_get_buffer(f, decomp_param[idx].compbuf, len); 3867 decomp_param[idx].des = host; 3868 decomp_param[idx].len = len; 3869 qemu_cond_signal(&decomp_param[idx].cond); 3870 qemu_mutex_unlock(&decomp_param[idx].mutex); 3871 break; 3872 } 3873 } 3874 if (idx < thread_count) { 3875 break; 3876 } else { 3877 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock); 3878 } 3879 } 3880 qemu_mutex_unlock(&decomp_done_lock); 3881 } 3882 3883 /* 3884 * colo cache: this is for secondary VM, we cache the whole 3885 * memory of the secondary VM, it is need to hold the global lock 3886 * to call this helper. 3887 */ 3888 int colo_init_ram_cache(void) 3889 { 3890 RAMBlock *block; 3891 3892 rcu_read_lock(); 3893 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3894 block->colo_cache = qemu_anon_ram_alloc(block->used_length, 3895 NULL, 3896 false); 3897 if (!block->colo_cache) { 3898 error_report("%s: Can't alloc memory for COLO cache of block %s," 3899 "size 0x" RAM_ADDR_FMT, __func__, block->idstr, 3900 block->used_length); 3901 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3902 if (block->colo_cache) { 3903 qemu_anon_ram_free(block->colo_cache, block->used_length); 3904 block->colo_cache = NULL; 3905 } 3906 } 3907 return -errno; 3908 } 3909 memcpy(block->colo_cache, block->host, block->used_length); 3910 } 3911 rcu_read_unlock(); 3912 /* 3913 * Record the dirty pages that sent by PVM, we use this dirty bitmap together 3914 * with to decide which page in cache should be flushed into SVM's RAM. Here 3915 * we use the same name 'ram_bitmap' as for migration. 3916 */ 3917 if (ram_bytes_total()) { 3918 RAMBlock *block; 3919 3920 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3921 unsigned long pages = block->max_length >> TARGET_PAGE_BITS; 3922 3923 block->bmap = bitmap_new(pages); 3924 bitmap_set(block->bmap, 0, pages); 3925 } 3926 } 3927 ram_state = g_new0(RAMState, 1); 3928 ram_state->migration_dirty_pages = 0; 3929 qemu_mutex_init(&ram_state->bitmap_mutex); 3930 memory_global_dirty_log_start(); 3931 3932 return 0; 3933 } 3934 3935 /* It is need to hold the global lock to call this helper */ 3936 void colo_release_ram_cache(void) 3937 { 3938 RAMBlock *block; 3939 3940 memory_global_dirty_log_stop(); 3941 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3942 g_free(block->bmap); 3943 block->bmap = NULL; 3944 } 3945 3946 WITH_RCU_READ_LOCK_GUARD() { 3947 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3948 if (block->colo_cache) { 3949 qemu_anon_ram_free(block->colo_cache, block->used_length); 3950 block->colo_cache = NULL; 3951 } 3952 } 3953 } 3954 qemu_mutex_destroy(&ram_state->bitmap_mutex); 3955 g_free(ram_state); 3956 ram_state = NULL; 3957 } 3958 3959 /** 3960 * ram_load_setup: Setup RAM for migration incoming side 3961 * 3962 * Returns zero to indicate success and negative for error 3963 * 3964 * @f: QEMUFile where to receive the data 3965 * @opaque: RAMState pointer 3966 */ 3967 static int ram_load_setup(QEMUFile *f, void *opaque) 3968 { 3969 if (compress_threads_load_setup(f)) { 3970 return -1; 3971 } 3972 3973 xbzrle_load_setup(); 3974 ramblock_recv_map_init(); 3975 3976 return 0; 3977 } 3978 3979 static int ram_load_cleanup(void *opaque) 3980 { 3981 RAMBlock *rb; 3982 3983 RAMBLOCK_FOREACH_NOT_IGNORED(rb) { 3984 if (ramblock_is_pmem(rb)) { 3985 pmem_persist(rb->host, rb->used_length); 3986 } 3987 } 3988 3989 xbzrle_load_cleanup(); 3990 compress_threads_load_cleanup(); 3991 3992 RAMBLOCK_FOREACH_NOT_IGNORED(rb) { 3993 g_free(rb->receivedmap); 3994 rb->receivedmap = NULL; 3995 } 3996 3997 return 0; 3998 } 3999 4000 /** 4001 * ram_postcopy_incoming_init: allocate postcopy data structures 4002 * 4003 * Returns 0 for success and negative if there was one error 4004 * 4005 * @mis: current migration incoming state 4006 * 4007 * Allocate data structures etc needed by incoming migration with 4008 * postcopy-ram. postcopy-ram's similarly names 4009 * postcopy_ram_incoming_init does the work. 4010 */ 4011 int ram_postcopy_incoming_init(MigrationIncomingState *mis) 4012 { 4013 return postcopy_ram_incoming_init(mis); 4014 } 4015 4016 /** 4017 * ram_load_postcopy: load a page in postcopy case 4018 * 4019 * Returns 0 for success or -errno in case of error 4020 * 4021 * Called in postcopy mode by ram_load(). 4022 * rcu_read_lock is taken prior to this being called. 4023 * 4024 * @f: QEMUFile where to send the data 4025 */ 4026 static int ram_load_postcopy(QEMUFile *f) 4027 { 4028 int flags = 0, ret = 0; 4029 bool place_needed = false; 4030 bool matches_target_page_size = false; 4031 MigrationIncomingState *mis = migration_incoming_get_current(); 4032 /* Temporary page that is later 'placed' */ 4033 void *postcopy_host_page = mis->postcopy_tmp_page; 4034 void *last_host = NULL; 4035 bool all_zero = false; 4036 4037 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) { 4038 ram_addr_t addr; 4039 void *host = NULL; 4040 void *page_buffer = NULL; 4041 void *place_source = NULL; 4042 RAMBlock *block = NULL; 4043 uint8_t ch; 4044 4045 addr = qemu_get_be64(f); 4046 4047 /* 4048 * If qemu file error, we should stop here, and then "addr" 4049 * may be invalid 4050 */ 4051 ret = qemu_file_get_error(f); 4052 if (ret) { 4053 break; 4054 } 4055 4056 flags = addr & ~TARGET_PAGE_MASK; 4057 addr &= TARGET_PAGE_MASK; 4058 4059 trace_ram_load_postcopy_loop((uint64_t)addr, flags); 4060 place_needed = false; 4061 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE)) { 4062 block = ram_block_from_stream(f, flags); 4063 4064 host = host_from_ram_block_offset(block, addr); 4065 if (!host) { 4066 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr); 4067 ret = -EINVAL; 4068 break; 4069 } 4070 matches_target_page_size = block->page_size == TARGET_PAGE_SIZE; 4071 /* 4072 * Postcopy requires that we place whole host pages atomically; 4073 * these may be huge pages for RAMBlocks that are backed by 4074 * hugetlbfs. 4075 * To make it atomic, the data is read into a temporary page 4076 * that's moved into place later. 4077 * The migration protocol uses, possibly smaller, target-pages 4078 * however the source ensures it always sends all the components 4079 * of a host page in order. 4080 */ 4081 page_buffer = postcopy_host_page + 4082 ((uintptr_t)host & (block->page_size - 1)); 4083 /* If all TP are zero then we can optimise the place */ 4084 if (!((uintptr_t)host & (block->page_size - 1))) { 4085 all_zero = true; 4086 } else { 4087 /* not the 1st TP within the HP */ 4088 if (host != (last_host + TARGET_PAGE_SIZE)) { 4089 error_report("Non-sequential target page %p/%p", 4090 host, last_host); 4091 ret = -EINVAL; 4092 break; 4093 } 4094 } 4095 4096 4097 /* 4098 * If it's the last part of a host page then we place the host 4099 * page 4100 */ 4101 place_needed = (((uintptr_t)host + TARGET_PAGE_SIZE) & 4102 (block->page_size - 1)) == 0; 4103 place_source = postcopy_host_page; 4104 } 4105 last_host = host; 4106 4107 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) { 4108 case RAM_SAVE_FLAG_ZERO: 4109 ch = qemu_get_byte(f); 4110 memset(page_buffer, ch, TARGET_PAGE_SIZE); 4111 if (ch) { 4112 all_zero = false; 4113 } 4114 break; 4115 4116 case RAM_SAVE_FLAG_PAGE: 4117 all_zero = false; 4118 if (!matches_target_page_size) { 4119 /* For huge pages, we always use temporary buffer */ 4120 qemu_get_buffer(f, page_buffer, TARGET_PAGE_SIZE); 4121 } else { 4122 /* 4123 * For small pages that matches target page size, we 4124 * avoid the qemu_file copy. Instead we directly use 4125 * the buffer of QEMUFile to place the page. Note: we 4126 * cannot do any QEMUFile operation before using that 4127 * buffer to make sure the buffer is valid when 4128 * placing the page. 4129 */ 4130 qemu_get_buffer_in_place(f, (uint8_t **)&place_source, 4131 TARGET_PAGE_SIZE); 4132 } 4133 break; 4134 case RAM_SAVE_FLAG_EOS: 4135 /* normal exit */ 4136 multifd_recv_sync_main(); 4137 break; 4138 default: 4139 error_report("Unknown combination of migration flags: %#x" 4140 " (postcopy mode)", flags); 4141 ret = -EINVAL; 4142 break; 4143 } 4144 4145 /* Detect for any possible file errors */ 4146 if (!ret && qemu_file_get_error(f)) { 4147 ret = qemu_file_get_error(f); 4148 } 4149 4150 if (!ret && place_needed) { 4151 /* This gets called at the last target page in the host page */ 4152 void *place_dest = host + TARGET_PAGE_SIZE - block->page_size; 4153 4154 if (all_zero) { 4155 ret = postcopy_place_page_zero(mis, place_dest, 4156 block); 4157 } else { 4158 ret = postcopy_place_page(mis, place_dest, 4159 place_source, block); 4160 } 4161 } 4162 } 4163 4164 return ret; 4165 } 4166 4167 static bool postcopy_is_advised(void) 4168 { 4169 PostcopyState ps = postcopy_state_get(); 4170 return ps >= POSTCOPY_INCOMING_ADVISE && ps < POSTCOPY_INCOMING_END; 4171 } 4172 4173 static bool postcopy_is_running(void) 4174 { 4175 PostcopyState ps = postcopy_state_get(); 4176 return ps >= POSTCOPY_INCOMING_LISTENING && ps < POSTCOPY_INCOMING_END; 4177 } 4178 4179 /* 4180 * Flush content of RAM cache into SVM's memory. 4181 * Only flush the pages that be dirtied by PVM or SVM or both. 4182 */ 4183 static void colo_flush_ram_cache(void) 4184 { 4185 RAMBlock *block = NULL; 4186 void *dst_host; 4187 void *src_host; 4188 unsigned long offset = 0; 4189 4190 memory_global_dirty_log_sync(); 4191 WITH_RCU_READ_LOCK_GUARD() { 4192 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 4193 ramblock_sync_dirty_bitmap(ram_state, block); 4194 } 4195 } 4196 4197 trace_colo_flush_ram_cache_begin(ram_state->migration_dirty_pages); 4198 WITH_RCU_READ_LOCK_GUARD() { 4199 block = QLIST_FIRST_RCU(&ram_list.blocks); 4200 4201 while (block) { 4202 offset = migration_bitmap_find_dirty(ram_state, block, offset); 4203 4204 if (offset << TARGET_PAGE_BITS >= block->used_length) { 4205 offset = 0; 4206 block = QLIST_NEXT_RCU(block, next); 4207 } else { 4208 migration_bitmap_clear_dirty(ram_state, block, offset); 4209 dst_host = block->host + (offset << TARGET_PAGE_BITS); 4210 src_host = block->colo_cache + (offset << TARGET_PAGE_BITS); 4211 memcpy(dst_host, src_host, TARGET_PAGE_SIZE); 4212 } 4213 } 4214 } 4215 trace_colo_flush_ram_cache_end(); 4216 } 4217 4218 /** 4219 * ram_load_precopy: load pages in precopy case 4220 * 4221 * Returns 0 for success or -errno in case of error 4222 * 4223 * Called in precopy mode by ram_load(). 4224 * rcu_read_lock is taken prior to this being called. 4225 * 4226 * @f: QEMUFile where to send the data 4227 */ 4228 static int ram_load_precopy(QEMUFile *f) 4229 { 4230 int flags = 0, ret = 0, invalid_flags = 0, len = 0; 4231 /* ADVISE is earlier, it shows the source has the postcopy capability on */ 4232 bool postcopy_advised = postcopy_is_advised(); 4233 if (!migrate_use_compression()) { 4234 invalid_flags |= RAM_SAVE_FLAG_COMPRESS_PAGE; 4235 } 4236 4237 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) { 4238 ram_addr_t addr, total_ram_bytes; 4239 void *host = NULL; 4240 uint8_t ch; 4241 4242 addr = qemu_get_be64(f); 4243 flags = addr & ~TARGET_PAGE_MASK; 4244 addr &= TARGET_PAGE_MASK; 4245 4246 if (flags & invalid_flags) { 4247 if (flags & invalid_flags & RAM_SAVE_FLAG_COMPRESS_PAGE) { 4248 error_report("Received an unexpected compressed page"); 4249 } 4250 4251 ret = -EINVAL; 4252 break; 4253 } 4254 4255 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE | 4256 RAM_SAVE_FLAG_COMPRESS_PAGE | RAM_SAVE_FLAG_XBZRLE)) { 4257 RAMBlock *block = ram_block_from_stream(f, flags); 4258 4259 /* 4260 * After going into COLO, we should load the Page into colo_cache. 4261 */ 4262 if (migration_incoming_in_colo_state()) { 4263 host = colo_cache_from_block_offset(block, addr); 4264 } else { 4265 host = host_from_ram_block_offset(block, addr); 4266 } 4267 if (!host) { 4268 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr); 4269 ret = -EINVAL; 4270 break; 4271 } 4272 4273 if (!migration_incoming_in_colo_state()) { 4274 ramblock_recv_bitmap_set(block, host); 4275 } 4276 4277 trace_ram_load_loop(block->idstr, (uint64_t)addr, flags, host); 4278 } 4279 4280 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) { 4281 case RAM_SAVE_FLAG_MEM_SIZE: 4282 /* Synchronize RAM block list */ 4283 total_ram_bytes = addr; 4284 while (!ret && total_ram_bytes) { 4285 RAMBlock *block; 4286 char id[256]; 4287 ram_addr_t length; 4288 4289 len = qemu_get_byte(f); 4290 qemu_get_buffer(f, (uint8_t *)id, len); 4291 id[len] = 0; 4292 length = qemu_get_be64(f); 4293 4294 block = qemu_ram_block_by_name(id); 4295 if (block && !qemu_ram_is_migratable(block)) { 4296 error_report("block %s should not be migrated !", id); 4297 ret = -EINVAL; 4298 } else if (block) { 4299 if (length != block->used_length) { 4300 Error *local_err = NULL; 4301 4302 ret = qemu_ram_resize(block, length, 4303 &local_err); 4304 if (local_err) { 4305 error_report_err(local_err); 4306 } 4307 } 4308 /* For postcopy we need to check hugepage sizes match */ 4309 if (postcopy_advised && 4310 block->page_size != qemu_host_page_size) { 4311 uint64_t remote_page_size = qemu_get_be64(f); 4312 if (remote_page_size != block->page_size) { 4313 error_report("Mismatched RAM page size %s " 4314 "(local) %zd != %" PRId64, 4315 id, block->page_size, 4316 remote_page_size); 4317 ret = -EINVAL; 4318 } 4319 } 4320 if (migrate_ignore_shared()) { 4321 hwaddr addr = qemu_get_be64(f); 4322 if (ramblock_is_ignored(block) && 4323 block->mr->addr != addr) { 4324 error_report("Mismatched GPAs for block %s " 4325 "%" PRId64 "!= %" PRId64, 4326 id, (uint64_t)addr, 4327 (uint64_t)block->mr->addr); 4328 ret = -EINVAL; 4329 } 4330 } 4331 ram_control_load_hook(f, RAM_CONTROL_BLOCK_REG, 4332 block->idstr); 4333 } else { 4334 error_report("Unknown ramblock \"%s\", cannot " 4335 "accept migration", id); 4336 ret = -EINVAL; 4337 } 4338 4339 total_ram_bytes -= length; 4340 } 4341 break; 4342 4343 case RAM_SAVE_FLAG_ZERO: 4344 ch = qemu_get_byte(f); 4345 ram_handle_compressed(host, ch, TARGET_PAGE_SIZE); 4346 break; 4347 4348 case RAM_SAVE_FLAG_PAGE: 4349 qemu_get_buffer(f, host, TARGET_PAGE_SIZE); 4350 break; 4351 4352 case RAM_SAVE_FLAG_COMPRESS_PAGE: 4353 len = qemu_get_be32(f); 4354 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) { 4355 error_report("Invalid compressed data length: %d", len); 4356 ret = -EINVAL; 4357 break; 4358 } 4359 decompress_data_with_multi_threads(f, host, len); 4360 break; 4361 4362 case RAM_SAVE_FLAG_XBZRLE: 4363 if (load_xbzrle(f, addr, host) < 0) { 4364 error_report("Failed to decompress XBZRLE page at " 4365 RAM_ADDR_FMT, addr); 4366 ret = -EINVAL; 4367 break; 4368 } 4369 break; 4370 case RAM_SAVE_FLAG_EOS: 4371 /* normal exit */ 4372 multifd_recv_sync_main(); 4373 break; 4374 default: 4375 if (flags & RAM_SAVE_FLAG_HOOK) { 4376 ram_control_load_hook(f, RAM_CONTROL_HOOK, NULL); 4377 } else { 4378 error_report("Unknown combination of migration flags: %#x", 4379 flags); 4380 ret = -EINVAL; 4381 } 4382 } 4383 if (!ret) { 4384 ret = qemu_file_get_error(f); 4385 } 4386 } 4387 4388 return ret; 4389 } 4390 4391 static int ram_load(QEMUFile *f, void *opaque, int version_id) 4392 { 4393 int ret = 0; 4394 static uint64_t seq_iter; 4395 /* 4396 * If system is running in postcopy mode, page inserts to host memory must 4397 * be atomic 4398 */ 4399 bool postcopy_running = postcopy_is_running(); 4400 4401 seq_iter++; 4402 4403 if (version_id != 4) { 4404 return -EINVAL; 4405 } 4406 4407 /* 4408 * This RCU critical section can be very long running. 4409 * When RCU reclaims in the code start to become numerous, 4410 * it will be necessary to reduce the granularity of this 4411 * critical section. 4412 */ 4413 WITH_RCU_READ_LOCK_GUARD() { 4414 if (postcopy_running) { 4415 ret = ram_load_postcopy(f); 4416 } else { 4417 ret = ram_load_precopy(f); 4418 } 4419 4420 ret |= wait_for_decompress_done(); 4421 } 4422 trace_ram_load_complete(ret, seq_iter); 4423 4424 if (!ret && migration_incoming_in_colo_state()) { 4425 colo_flush_ram_cache(); 4426 } 4427 return ret; 4428 } 4429 4430 static bool ram_has_postcopy(void *opaque) 4431 { 4432 RAMBlock *rb; 4433 RAMBLOCK_FOREACH_NOT_IGNORED(rb) { 4434 if (ramblock_is_pmem(rb)) { 4435 info_report("Block: %s, host: %p is a nvdimm memory, postcopy" 4436 "is not supported now!", rb->idstr, rb->host); 4437 return false; 4438 } 4439 } 4440 4441 return migrate_postcopy_ram(); 4442 } 4443 4444 /* Sync all the dirty bitmap with destination VM. */ 4445 static int ram_dirty_bitmap_sync_all(MigrationState *s, RAMState *rs) 4446 { 4447 RAMBlock *block; 4448 QEMUFile *file = s->to_dst_file; 4449 int ramblock_count = 0; 4450 4451 trace_ram_dirty_bitmap_sync_start(); 4452 4453 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 4454 qemu_savevm_send_recv_bitmap(file, block->idstr); 4455 trace_ram_dirty_bitmap_request(block->idstr); 4456 ramblock_count++; 4457 } 4458 4459 trace_ram_dirty_bitmap_sync_wait(); 4460 4461 /* Wait until all the ramblocks' dirty bitmap synced */ 4462 while (ramblock_count--) { 4463 qemu_sem_wait(&s->rp_state.rp_sem); 4464 } 4465 4466 trace_ram_dirty_bitmap_sync_complete(); 4467 4468 return 0; 4469 } 4470 4471 static void ram_dirty_bitmap_reload_notify(MigrationState *s) 4472 { 4473 qemu_sem_post(&s->rp_state.rp_sem); 4474 } 4475 4476 /* 4477 * Read the received bitmap, revert it as the initial dirty bitmap. 4478 * This is only used when the postcopy migration is paused but wants 4479 * to resume from a middle point. 4480 */ 4481 int ram_dirty_bitmap_reload(MigrationState *s, RAMBlock *block) 4482 { 4483 int ret = -EINVAL; 4484 QEMUFile *file = s->rp_state.from_dst_file; 4485 unsigned long *le_bitmap, nbits = block->used_length >> TARGET_PAGE_BITS; 4486 uint64_t local_size = DIV_ROUND_UP(nbits, 8); 4487 uint64_t size, end_mark; 4488 4489 trace_ram_dirty_bitmap_reload_begin(block->idstr); 4490 4491 if (s->state != MIGRATION_STATUS_POSTCOPY_RECOVER) { 4492 error_report("%s: incorrect state %s", __func__, 4493 MigrationStatus_str(s->state)); 4494 return -EINVAL; 4495 } 4496 4497 /* 4498 * Note: see comments in ramblock_recv_bitmap_send() on why we 4499 * need the endianess convertion, and the paddings. 4500 */ 4501 local_size = ROUND_UP(local_size, 8); 4502 4503 /* Add paddings */ 4504 le_bitmap = bitmap_new(nbits + BITS_PER_LONG); 4505 4506 size = qemu_get_be64(file); 4507 4508 /* The size of the bitmap should match with our ramblock */ 4509 if (size != local_size) { 4510 error_report("%s: ramblock '%s' bitmap size mismatch " 4511 "(0x%"PRIx64" != 0x%"PRIx64")", __func__, 4512 block->idstr, size, local_size); 4513 ret = -EINVAL; 4514 goto out; 4515 } 4516 4517 size = qemu_get_buffer(file, (uint8_t *)le_bitmap, local_size); 4518 end_mark = qemu_get_be64(file); 4519 4520 ret = qemu_file_get_error(file); 4521 if (ret || size != local_size) { 4522 error_report("%s: read bitmap failed for ramblock '%s': %d" 4523 " (size 0x%"PRIx64", got: 0x%"PRIx64")", 4524 __func__, block->idstr, ret, local_size, size); 4525 ret = -EIO; 4526 goto out; 4527 } 4528 4529 if (end_mark != RAMBLOCK_RECV_BITMAP_ENDING) { 4530 error_report("%s: ramblock '%s' end mark incorrect: 0x%"PRIu64, 4531 __func__, block->idstr, end_mark); 4532 ret = -EINVAL; 4533 goto out; 4534 } 4535 4536 /* 4537 * Endianess convertion. We are during postcopy (though paused). 4538 * The dirty bitmap won't change. We can directly modify it. 4539 */ 4540 bitmap_from_le(block->bmap, le_bitmap, nbits); 4541 4542 /* 4543 * What we received is "received bitmap". Revert it as the initial 4544 * dirty bitmap for this ramblock. 4545 */ 4546 bitmap_complement(block->bmap, block->bmap, nbits); 4547 4548 trace_ram_dirty_bitmap_reload_complete(block->idstr); 4549 4550 /* 4551 * We succeeded to sync bitmap for current ramblock. If this is 4552 * the last one to sync, we need to notify the main send thread. 4553 */ 4554 ram_dirty_bitmap_reload_notify(s); 4555 4556 ret = 0; 4557 out: 4558 g_free(le_bitmap); 4559 return ret; 4560 } 4561 4562 static int ram_resume_prepare(MigrationState *s, void *opaque) 4563 { 4564 RAMState *rs = *(RAMState **)opaque; 4565 int ret; 4566 4567 ret = ram_dirty_bitmap_sync_all(s, rs); 4568 if (ret) { 4569 return ret; 4570 } 4571 4572 ram_state_resume_prepare(rs, s->to_dst_file); 4573 4574 return 0; 4575 } 4576 4577 static SaveVMHandlers savevm_ram_handlers = { 4578 .save_setup = ram_save_setup, 4579 .save_live_iterate = ram_save_iterate, 4580 .save_live_complete_postcopy = ram_save_complete, 4581 .save_live_complete_precopy = ram_save_complete, 4582 .has_postcopy = ram_has_postcopy, 4583 .save_live_pending = ram_save_pending, 4584 .load_state = ram_load, 4585 .save_cleanup = ram_save_cleanup, 4586 .load_setup = ram_load_setup, 4587 .load_cleanup = ram_load_cleanup, 4588 .resume_prepare = ram_resume_prepare, 4589 }; 4590 4591 void ram_mig_init(void) 4592 { 4593 qemu_mutex_init(&XBZRLE.lock); 4594 register_savevm_live("ram", 0, 4, &savevm_ram_handlers, &ram_state); 4595 } 4596