1 /* 2 * QEMU System Emulator 3 * 4 * Copyright (c) 2003-2008 Fabrice Bellard 5 * Copyright (c) 2011-2015 Red Hat Inc 6 * 7 * Authors: 8 * Juan Quintela <quintela@redhat.com> 9 * 10 * Permission is hereby granted, free of charge, to any person obtaining a copy 11 * of this software and associated documentation files (the "Software"), to deal 12 * in the Software without restriction, including without limitation the rights 13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 14 * copies of the Software, and to permit persons to whom the Software is 15 * furnished to do so, subject to the following conditions: 16 * 17 * The above copyright notice and this permission notice shall be included in 18 * all copies or substantial portions of the Software. 19 * 20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 26 * THE SOFTWARE. 27 */ 28 29 #include "qemu/osdep.h" 30 #include "cpu.h" 31 #include <zlib.h> 32 #include "qemu/cutils.h" 33 #include "qemu/bitops.h" 34 #include "qemu/bitmap.h" 35 #include "qemu/main-loop.h" 36 #include "qemu/pmem.h" 37 #include "xbzrle.h" 38 #include "ram.h" 39 #include "migration.h" 40 #include "socket.h" 41 #include "migration/register.h" 42 #include "migration/misc.h" 43 #include "qemu-file.h" 44 #include "postcopy-ram.h" 45 #include "page_cache.h" 46 #include "qemu/error-report.h" 47 #include "qapi/error.h" 48 #include "qapi/qapi-events-migration.h" 49 #include "qapi/qmp/qerror.h" 50 #include "trace.h" 51 #include "exec/ram_addr.h" 52 #include "exec/target_page.h" 53 #include "qemu/rcu_queue.h" 54 #include "migration/colo.h" 55 #include "block.h" 56 #include "sysemu/sysemu.h" 57 #include "qemu/uuid.h" 58 #include "savevm.h" 59 #include "qemu/iov.h" 60 61 /***********************************************************/ 62 /* ram save/restore */ 63 64 /* RAM_SAVE_FLAG_ZERO used to be named RAM_SAVE_FLAG_COMPRESS, it 65 * worked for pages that where filled with the same char. We switched 66 * it to only search for the zero value. And to avoid confusion with 67 * RAM_SSAVE_FLAG_COMPRESS_PAGE just rename it. 68 */ 69 70 #define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */ 71 #define RAM_SAVE_FLAG_ZERO 0x02 72 #define RAM_SAVE_FLAG_MEM_SIZE 0x04 73 #define RAM_SAVE_FLAG_PAGE 0x08 74 #define RAM_SAVE_FLAG_EOS 0x10 75 #define RAM_SAVE_FLAG_CONTINUE 0x20 76 #define RAM_SAVE_FLAG_XBZRLE 0x40 77 /* 0x80 is reserved in migration.h start with 0x100 next */ 78 #define RAM_SAVE_FLAG_COMPRESS_PAGE 0x100 79 80 static inline bool is_zero_range(uint8_t *p, uint64_t size) 81 { 82 return buffer_is_zero(p, size); 83 } 84 85 XBZRLECacheStats xbzrle_counters; 86 87 /* struct contains XBZRLE cache and a static page 88 used by the compression */ 89 static struct { 90 /* buffer used for XBZRLE encoding */ 91 uint8_t *encoded_buf; 92 /* buffer for storing page content */ 93 uint8_t *current_buf; 94 /* Cache for XBZRLE, Protected by lock. */ 95 PageCache *cache; 96 QemuMutex lock; 97 /* it will store a page full of zeros */ 98 uint8_t *zero_target_page; 99 /* buffer used for XBZRLE decoding */ 100 uint8_t *decoded_buf; 101 } XBZRLE; 102 103 static void XBZRLE_cache_lock(void) 104 { 105 if (migrate_use_xbzrle()) 106 qemu_mutex_lock(&XBZRLE.lock); 107 } 108 109 static void XBZRLE_cache_unlock(void) 110 { 111 if (migrate_use_xbzrle()) 112 qemu_mutex_unlock(&XBZRLE.lock); 113 } 114 115 /** 116 * xbzrle_cache_resize: resize the xbzrle cache 117 * 118 * This function is called from qmp_migrate_set_cache_size in main 119 * thread, possibly while a migration is in progress. A running 120 * migration may be using the cache and might finish during this call, 121 * hence changes to the cache are protected by XBZRLE.lock(). 122 * 123 * Returns 0 for success or -1 for error 124 * 125 * @new_size: new cache size 126 * @errp: set *errp if the check failed, with reason 127 */ 128 int xbzrle_cache_resize(int64_t new_size, Error **errp) 129 { 130 PageCache *new_cache; 131 int64_t ret = 0; 132 133 /* Check for truncation */ 134 if (new_size != (size_t)new_size) { 135 error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cache size", 136 "exceeding address space"); 137 return -1; 138 } 139 140 if (new_size == migrate_xbzrle_cache_size()) { 141 /* nothing to do */ 142 return 0; 143 } 144 145 XBZRLE_cache_lock(); 146 147 if (XBZRLE.cache != NULL) { 148 new_cache = cache_init(new_size, TARGET_PAGE_SIZE, errp); 149 if (!new_cache) { 150 ret = -1; 151 goto out; 152 } 153 154 cache_fini(XBZRLE.cache); 155 XBZRLE.cache = new_cache; 156 } 157 out: 158 XBZRLE_cache_unlock(); 159 return ret; 160 } 161 162 /* Should be holding either ram_list.mutex, or the RCU lock. */ 163 #define RAMBLOCK_FOREACH_MIGRATABLE(block) \ 164 INTERNAL_RAMBLOCK_FOREACH(block) \ 165 if (!qemu_ram_is_migratable(block)) {} else 166 167 #undef RAMBLOCK_FOREACH 168 169 static void ramblock_recv_map_init(void) 170 { 171 RAMBlock *rb; 172 173 RAMBLOCK_FOREACH_MIGRATABLE(rb) { 174 assert(!rb->receivedmap); 175 rb->receivedmap = bitmap_new(rb->max_length >> qemu_target_page_bits()); 176 } 177 } 178 179 int ramblock_recv_bitmap_test(RAMBlock *rb, void *host_addr) 180 { 181 return test_bit(ramblock_recv_bitmap_offset(host_addr, rb), 182 rb->receivedmap); 183 } 184 185 bool ramblock_recv_bitmap_test_byte_offset(RAMBlock *rb, uint64_t byte_offset) 186 { 187 return test_bit(byte_offset >> TARGET_PAGE_BITS, rb->receivedmap); 188 } 189 190 void ramblock_recv_bitmap_set(RAMBlock *rb, void *host_addr) 191 { 192 set_bit_atomic(ramblock_recv_bitmap_offset(host_addr, rb), rb->receivedmap); 193 } 194 195 void ramblock_recv_bitmap_set_range(RAMBlock *rb, void *host_addr, 196 size_t nr) 197 { 198 bitmap_set_atomic(rb->receivedmap, 199 ramblock_recv_bitmap_offset(host_addr, rb), 200 nr); 201 } 202 203 #define RAMBLOCK_RECV_BITMAP_ENDING (0x0123456789abcdefULL) 204 205 /* 206 * Format: bitmap_size (8 bytes) + whole_bitmap (N bytes). 207 * 208 * Returns >0 if success with sent bytes, or <0 if error. 209 */ 210 int64_t ramblock_recv_bitmap_send(QEMUFile *file, 211 const char *block_name) 212 { 213 RAMBlock *block = qemu_ram_block_by_name(block_name); 214 unsigned long *le_bitmap, nbits; 215 uint64_t size; 216 217 if (!block) { 218 error_report("%s: invalid block name: %s", __func__, block_name); 219 return -1; 220 } 221 222 nbits = block->used_length >> TARGET_PAGE_BITS; 223 224 /* 225 * Make sure the tmp bitmap buffer is big enough, e.g., on 32bit 226 * machines we may need 4 more bytes for padding (see below 227 * comment). So extend it a bit before hand. 228 */ 229 le_bitmap = bitmap_new(nbits + BITS_PER_LONG); 230 231 /* 232 * Always use little endian when sending the bitmap. This is 233 * required that when source and destination VMs are not using the 234 * same endianess. (Note: big endian won't work.) 235 */ 236 bitmap_to_le(le_bitmap, block->receivedmap, nbits); 237 238 /* Size of the bitmap, in bytes */ 239 size = DIV_ROUND_UP(nbits, 8); 240 241 /* 242 * size is always aligned to 8 bytes for 64bit machines, but it 243 * may not be true for 32bit machines. We need this padding to 244 * make sure the migration can survive even between 32bit and 245 * 64bit machines. 246 */ 247 size = ROUND_UP(size, 8); 248 249 qemu_put_be64(file, size); 250 qemu_put_buffer(file, (const uint8_t *)le_bitmap, size); 251 /* 252 * Mark as an end, in case the middle part is screwed up due to 253 * some "misterious" reason. 254 */ 255 qemu_put_be64(file, RAMBLOCK_RECV_BITMAP_ENDING); 256 qemu_fflush(file); 257 258 g_free(le_bitmap); 259 260 if (qemu_file_get_error(file)) { 261 return qemu_file_get_error(file); 262 } 263 264 return size + sizeof(size); 265 } 266 267 /* 268 * An outstanding page request, on the source, having been received 269 * and queued 270 */ 271 struct RAMSrcPageRequest { 272 RAMBlock *rb; 273 hwaddr offset; 274 hwaddr len; 275 276 QSIMPLEQ_ENTRY(RAMSrcPageRequest) next_req; 277 }; 278 279 /* State of RAM for migration */ 280 struct RAMState { 281 /* QEMUFile used for this migration */ 282 QEMUFile *f; 283 /* Last block that we have visited searching for dirty pages */ 284 RAMBlock *last_seen_block; 285 /* Last block from where we have sent data */ 286 RAMBlock *last_sent_block; 287 /* Last dirty target page we have sent */ 288 ram_addr_t last_page; 289 /* last ram version we have seen */ 290 uint32_t last_version; 291 /* We are in the first round */ 292 bool ram_bulk_stage; 293 /* How many times we have dirty too many pages */ 294 int dirty_rate_high_cnt; 295 /* these variables are used for bitmap sync */ 296 /* last time we did a full bitmap_sync */ 297 int64_t time_last_bitmap_sync; 298 /* bytes transferred at start_time */ 299 uint64_t bytes_xfer_prev; 300 /* number of dirty pages since start_time */ 301 uint64_t num_dirty_pages_period; 302 /* xbzrle misses since the beginning of the period */ 303 uint64_t xbzrle_cache_miss_prev; 304 /* number of iterations at the beginning of period */ 305 uint64_t iterations_prev; 306 /* Iterations since start */ 307 uint64_t iterations; 308 /* number of dirty bits in the bitmap */ 309 uint64_t migration_dirty_pages; 310 /* protects modification of the bitmap */ 311 QemuMutex bitmap_mutex; 312 /* The RAMBlock used in the last src_page_requests */ 313 RAMBlock *last_req_rb; 314 /* Queue of outstanding page requests from the destination */ 315 QemuMutex src_page_req_mutex; 316 QSIMPLEQ_HEAD(src_page_requests, RAMSrcPageRequest) src_page_requests; 317 }; 318 typedef struct RAMState RAMState; 319 320 static RAMState *ram_state; 321 322 uint64_t ram_bytes_remaining(void) 323 { 324 return ram_state ? (ram_state->migration_dirty_pages * TARGET_PAGE_SIZE) : 325 0; 326 } 327 328 MigrationStats ram_counters; 329 330 /* used by the search for pages to send */ 331 struct PageSearchStatus { 332 /* Current block being searched */ 333 RAMBlock *block; 334 /* Current page to search from */ 335 unsigned long page; 336 /* Set once we wrap around */ 337 bool complete_round; 338 }; 339 typedef struct PageSearchStatus PageSearchStatus; 340 341 struct CompressParam { 342 bool done; 343 bool quit; 344 QEMUFile *file; 345 QemuMutex mutex; 346 QemuCond cond; 347 RAMBlock *block; 348 ram_addr_t offset; 349 350 /* internally used fields */ 351 z_stream stream; 352 uint8_t *originbuf; 353 }; 354 typedef struct CompressParam CompressParam; 355 356 struct DecompressParam { 357 bool done; 358 bool quit; 359 QemuMutex mutex; 360 QemuCond cond; 361 void *des; 362 uint8_t *compbuf; 363 int len; 364 z_stream stream; 365 }; 366 typedef struct DecompressParam DecompressParam; 367 368 static CompressParam *comp_param; 369 static QemuThread *compress_threads; 370 /* comp_done_cond is used to wake up the migration thread when 371 * one of the compression threads has finished the compression. 372 * comp_done_lock is used to co-work with comp_done_cond. 373 */ 374 static QemuMutex comp_done_lock; 375 static QemuCond comp_done_cond; 376 /* The empty QEMUFileOps will be used by file in CompressParam */ 377 static const QEMUFileOps empty_ops = { }; 378 379 static QEMUFile *decomp_file; 380 static DecompressParam *decomp_param; 381 static QemuThread *decompress_threads; 382 static QemuMutex decomp_done_lock; 383 static QemuCond decomp_done_cond; 384 385 static int do_compress_ram_page(QEMUFile *f, z_stream *stream, RAMBlock *block, 386 ram_addr_t offset, uint8_t *source_buf); 387 388 static void *do_data_compress(void *opaque) 389 { 390 CompressParam *param = opaque; 391 RAMBlock *block; 392 ram_addr_t offset; 393 394 qemu_mutex_lock(¶m->mutex); 395 while (!param->quit) { 396 if (param->block) { 397 block = param->block; 398 offset = param->offset; 399 param->block = NULL; 400 qemu_mutex_unlock(¶m->mutex); 401 402 do_compress_ram_page(param->file, ¶m->stream, block, offset, 403 param->originbuf); 404 405 qemu_mutex_lock(&comp_done_lock); 406 param->done = true; 407 qemu_cond_signal(&comp_done_cond); 408 qemu_mutex_unlock(&comp_done_lock); 409 410 qemu_mutex_lock(¶m->mutex); 411 } else { 412 qemu_cond_wait(¶m->cond, ¶m->mutex); 413 } 414 } 415 qemu_mutex_unlock(¶m->mutex); 416 417 return NULL; 418 } 419 420 static inline void terminate_compression_threads(void) 421 { 422 int idx, thread_count; 423 424 thread_count = migrate_compress_threads(); 425 426 for (idx = 0; idx < thread_count; idx++) { 427 qemu_mutex_lock(&comp_param[idx].mutex); 428 comp_param[idx].quit = true; 429 qemu_cond_signal(&comp_param[idx].cond); 430 qemu_mutex_unlock(&comp_param[idx].mutex); 431 } 432 } 433 434 static void compress_threads_save_cleanup(void) 435 { 436 int i, thread_count; 437 438 if (!migrate_use_compression()) { 439 return; 440 } 441 terminate_compression_threads(); 442 thread_count = migrate_compress_threads(); 443 for (i = 0; i < thread_count; i++) { 444 /* 445 * we use it as a indicator which shows if the thread is 446 * properly init'd or not 447 */ 448 if (!comp_param[i].file) { 449 break; 450 } 451 qemu_thread_join(compress_threads + i); 452 qemu_mutex_destroy(&comp_param[i].mutex); 453 qemu_cond_destroy(&comp_param[i].cond); 454 deflateEnd(&comp_param[i].stream); 455 g_free(comp_param[i].originbuf); 456 qemu_fclose(comp_param[i].file); 457 comp_param[i].file = NULL; 458 } 459 qemu_mutex_destroy(&comp_done_lock); 460 qemu_cond_destroy(&comp_done_cond); 461 g_free(compress_threads); 462 g_free(comp_param); 463 compress_threads = NULL; 464 comp_param = NULL; 465 } 466 467 static int compress_threads_save_setup(void) 468 { 469 int i, thread_count; 470 471 if (!migrate_use_compression()) { 472 return 0; 473 } 474 thread_count = migrate_compress_threads(); 475 compress_threads = g_new0(QemuThread, thread_count); 476 comp_param = g_new0(CompressParam, thread_count); 477 qemu_cond_init(&comp_done_cond); 478 qemu_mutex_init(&comp_done_lock); 479 for (i = 0; i < thread_count; i++) { 480 comp_param[i].originbuf = g_try_malloc(TARGET_PAGE_SIZE); 481 if (!comp_param[i].originbuf) { 482 goto exit; 483 } 484 485 if (deflateInit(&comp_param[i].stream, 486 migrate_compress_level()) != Z_OK) { 487 g_free(comp_param[i].originbuf); 488 goto exit; 489 } 490 491 /* comp_param[i].file is just used as a dummy buffer to save data, 492 * set its ops to empty. 493 */ 494 comp_param[i].file = qemu_fopen_ops(NULL, &empty_ops); 495 comp_param[i].done = true; 496 comp_param[i].quit = false; 497 qemu_mutex_init(&comp_param[i].mutex); 498 qemu_cond_init(&comp_param[i].cond); 499 qemu_thread_create(compress_threads + i, "compress", 500 do_data_compress, comp_param + i, 501 QEMU_THREAD_JOINABLE); 502 } 503 return 0; 504 505 exit: 506 compress_threads_save_cleanup(); 507 return -1; 508 } 509 510 /* Multiple fd's */ 511 512 #define MULTIFD_MAGIC 0x11223344U 513 #define MULTIFD_VERSION 1 514 515 #define MULTIFD_FLAG_SYNC (1 << 0) 516 517 typedef struct { 518 uint32_t magic; 519 uint32_t version; 520 unsigned char uuid[16]; /* QemuUUID */ 521 uint8_t id; 522 } __attribute__((packed)) MultiFDInit_t; 523 524 typedef struct { 525 uint32_t magic; 526 uint32_t version; 527 uint32_t flags; 528 uint32_t size; 529 uint32_t used; 530 uint64_t packet_num; 531 char ramblock[256]; 532 uint64_t offset[]; 533 } __attribute__((packed)) MultiFDPacket_t; 534 535 typedef struct { 536 /* number of used pages */ 537 uint32_t used; 538 /* number of allocated pages */ 539 uint32_t allocated; 540 /* global number of generated multifd packets */ 541 uint64_t packet_num; 542 /* offset of each page */ 543 ram_addr_t *offset; 544 /* pointer to each page */ 545 struct iovec *iov; 546 RAMBlock *block; 547 } MultiFDPages_t; 548 549 typedef struct { 550 /* this fields are not changed once the thread is created */ 551 /* channel number */ 552 uint8_t id; 553 /* channel thread name */ 554 char *name; 555 /* channel thread id */ 556 QemuThread thread; 557 /* communication channel */ 558 QIOChannel *c; 559 /* sem where to wait for more work */ 560 QemuSemaphore sem; 561 /* this mutex protects the following parameters */ 562 QemuMutex mutex; 563 /* is this channel thread running */ 564 bool running; 565 /* should this thread finish */ 566 bool quit; 567 /* thread has work to do */ 568 int pending_job; 569 /* array of pages to sent */ 570 MultiFDPages_t *pages; 571 /* packet allocated len */ 572 uint32_t packet_len; 573 /* pointer to the packet */ 574 MultiFDPacket_t *packet; 575 /* multifd flags for each packet */ 576 uint32_t flags; 577 /* global number of generated multifd packets */ 578 uint64_t packet_num; 579 /* thread local variables */ 580 /* packets sent through this channel */ 581 uint64_t num_packets; 582 /* pages sent through this channel */ 583 uint64_t num_pages; 584 /* syncs main thread and channels */ 585 QemuSemaphore sem_sync; 586 } MultiFDSendParams; 587 588 typedef struct { 589 /* this fields are not changed once the thread is created */ 590 /* channel number */ 591 uint8_t id; 592 /* channel thread name */ 593 char *name; 594 /* channel thread id */ 595 QemuThread thread; 596 /* communication channel */ 597 QIOChannel *c; 598 /* this mutex protects the following parameters */ 599 QemuMutex mutex; 600 /* is this channel thread running */ 601 bool running; 602 /* array of pages to receive */ 603 MultiFDPages_t *pages; 604 /* packet allocated len */ 605 uint32_t packet_len; 606 /* pointer to the packet */ 607 MultiFDPacket_t *packet; 608 /* multifd flags for each packet */ 609 uint32_t flags; 610 /* global number of generated multifd packets */ 611 uint64_t packet_num; 612 /* thread local variables */ 613 /* packets sent through this channel */ 614 uint64_t num_packets; 615 /* pages sent through this channel */ 616 uint64_t num_pages; 617 /* syncs main thread and channels */ 618 QemuSemaphore sem_sync; 619 } MultiFDRecvParams; 620 621 static int multifd_send_initial_packet(MultiFDSendParams *p, Error **errp) 622 { 623 MultiFDInit_t msg; 624 int ret; 625 626 msg.magic = cpu_to_be32(MULTIFD_MAGIC); 627 msg.version = cpu_to_be32(MULTIFD_VERSION); 628 msg.id = p->id; 629 memcpy(msg.uuid, &qemu_uuid.data, sizeof(msg.uuid)); 630 631 ret = qio_channel_write_all(p->c, (char *)&msg, sizeof(msg), errp); 632 if (ret != 0) { 633 return -1; 634 } 635 return 0; 636 } 637 638 static int multifd_recv_initial_packet(QIOChannel *c, Error **errp) 639 { 640 MultiFDInit_t msg; 641 int ret; 642 643 ret = qio_channel_read_all(c, (char *)&msg, sizeof(msg), errp); 644 if (ret != 0) { 645 return -1; 646 } 647 648 be32_to_cpus(&msg.magic); 649 be32_to_cpus(&msg.version); 650 651 if (msg.magic != MULTIFD_MAGIC) { 652 error_setg(errp, "multifd: received packet magic %x " 653 "expected %x", msg.magic, MULTIFD_MAGIC); 654 return -1; 655 } 656 657 if (msg.version != MULTIFD_VERSION) { 658 error_setg(errp, "multifd: received packet version %d " 659 "expected %d", msg.version, MULTIFD_VERSION); 660 return -1; 661 } 662 663 if (memcmp(msg.uuid, &qemu_uuid, sizeof(qemu_uuid))) { 664 char *uuid = qemu_uuid_unparse_strdup(&qemu_uuid); 665 char *msg_uuid = qemu_uuid_unparse_strdup((const QemuUUID *)msg.uuid); 666 667 error_setg(errp, "multifd: received uuid '%s' and expected " 668 "uuid '%s' for channel %hhd", msg_uuid, uuid, msg.id); 669 g_free(uuid); 670 g_free(msg_uuid); 671 return -1; 672 } 673 674 if (msg.id > migrate_multifd_channels()) { 675 error_setg(errp, "multifd: received channel version %d " 676 "expected %d", msg.version, MULTIFD_VERSION); 677 return -1; 678 } 679 680 return msg.id; 681 } 682 683 static MultiFDPages_t *multifd_pages_init(size_t size) 684 { 685 MultiFDPages_t *pages = g_new0(MultiFDPages_t, 1); 686 687 pages->allocated = size; 688 pages->iov = g_new0(struct iovec, size); 689 pages->offset = g_new0(ram_addr_t, size); 690 691 return pages; 692 } 693 694 static void multifd_pages_clear(MultiFDPages_t *pages) 695 { 696 pages->used = 0; 697 pages->allocated = 0; 698 pages->packet_num = 0; 699 pages->block = NULL; 700 g_free(pages->iov); 701 pages->iov = NULL; 702 g_free(pages->offset); 703 pages->offset = NULL; 704 g_free(pages); 705 } 706 707 static void multifd_send_fill_packet(MultiFDSendParams *p) 708 { 709 MultiFDPacket_t *packet = p->packet; 710 int i; 711 712 packet->magic = cpu_to_be32(MULTIFD_MAGIC); 713 packet->version = cpu_to_be32(MULTIFD_VERSION); 714 packet->flags = cpu_to_be32(p->flags); 715 packet->size = cpu_to_be32(migrate_multifd_page_count()); 716 packet->used = cpu_to_be32(p->pages->used); 717 packet->packet_num = cpu_to_be64(p->packet_num); 718 719 if (p->pages->block) { 720 strncpy(packet->ramblock, p->pages->block->idstr, 256); 721 } 722 723 for (i = 0; i < p->pages->used; i++) { 724 packet->offset[i] = cpu_to_be64(p->pages->offset[i]); 725 } 726 } 727 728 static int multifd_recv_unfill_packet(MultiFDRecvParams *p, Error **errp) 729 { 730 MultiFDPacket_t *packet = p->packet; 731 RAMBlock *block; 732 int i; 733 734 be32_to_cpus(&packet->magic); 735 if (packet->magic != MULTIFD_MAGIC) { 736 error_setg(errp, "multifd: received packet " 737 "magic %x and expected magic %x", 738 packet->magic, MULTIFD_MAGIC); 739 return -1; 740 } 741 742 be32_to_cpus(&packet->version); 743 if (packet->version != MULTIFD_VERSION) { 744 error_setg(errp, "multifd: received packet " 745 "version %d and expected version %d", 746 packet->version, MULTIFD_VERSION); 747 return -1; 748 } 749 750 p->flags = be32_to_cpu(packet->flags); 751 752 be32_to_cpus(&packet->size); 753 if (packet->size > migrate_multifd_page_count()) { 754 error_setg(errp, "multifd: received packet " 755 "with size %d and expected maximum size %d", 756 packet->size, migrate_multifd_page_count()) ; 757 return -1; 758 } 759 760 p->pages->used = be32_to_cpu(packet->used); 761 if (p->pages->used > packet->size) { 762 error_setg(errp, "multifd: received packet " 763 "with size %d and expected maximum size %d", 764 p->pages->used, packet->size) ; 765 return -1; 766 } 767 768 p->packet_num = be64_to_cpu(packet->packet_num); 769 770 if (p->pages->used) { 771 /* make sure that ramblock is 0 terminated */ 772 packet->ramblock[255] = 0; 773 block = qemu_ram_block_by_name(packet->ramblock); 774 if (!block) { 775 error_setg(errp, "multifd: unknown ram block %s", 776 packet->ramblock); 777 return -1; 778 } 779 } 780 781 for (i = 0; i < p->pages->used; i++) { 782 ram_addr_t offset = be64_to_cpu(packet->offset[i]); 783 784 if (offset > (block->used_length - TARGET_PAGE_SIZE)) { 785 error_setg(errp, "multifd: offset too long " RAM_ADDR_FMT 786 " (max " RAM_ADDR_FMT ")", 787 offset, block->max_length); 788 return -1; 789 } 790 p->pages->iov[i].iov_base = block->host + offset; 791 p->pages->iov[i].iov_len = TARGET_PAGE_SIZE; 792 } 793 794 return 0; 795 } 796 797 struct { 798 MultiFDSendParams *params; 799 /* number of created threads */ 800 int count; 801 /* array of pages to sent */ 802 MultiFDPages_t *pages; 803 /* syncs main thread and channels */ 804 QemuSemaphore sem_sync; 805 /* global number of generated multifd packets */ 806 uint64_t packet_num; 807 /* send channels ready */ 808 QemuSemaphore channels_ready; 809 } *multifd_send_state; 810 811 /* 812 * How we use multifd_send_state->pages and channel->pages? 813 * 814 * We create a pages for each channel, and a main one. Each time that 815 * we need to send a batch of pages we interchange the ones between 816 * multifd_send_state and the channel that is sending it. There are 817 * two reasons for that: 818 * - to not have to do so many mallocs during migration 819 * - to make easier to know what to free at the end of migration 820 * 821 * This way we always know who is the owner of each "pages" struct, 822 * and we don't need any loocking. It belongs to the migration thread 823 * or to the channel thread. Switching is safe because the migration 824 * thread is using the channel mutex when changing it, and the channel 825 * have to had finish with its own, otherwise pending_job can't be 826 * false. 827 */ 828 829 static void multifd_send_pages(void) 830 { 831 int i; 832 static int next_channel; 833 MultiFDSendParams *p = NULL; /* make happy gcc */ 834 MultiFDPages_t *pages = multifd_send_state->pages; 835 uint64_t transferred; 836 837 qemu_sem_wait(&multifd_send_state->channels_ready); 838 for (i = next_channel;; i = (i + 1) % migrate_multifd_channels()) { 839 p = &multifd_send_state->params[i]; 840 841 qemu_mutex_lock(&p->mutex); 842 if (!p->pending_job) { 843 p->pending_job++; 844 next_channel = (i + 1) % migrate_multifd_channels(); 845 break; 846 } 847 qemu_mutex_unlock(&p->mutex); 848 } 849 p->pages->used = 0; 850 851 p->packet_num = multifd_send_state->packet_num++; 852 p->pages->block = NULL; 853 multifd_send_state->pages = p->pages; 854 p->pages = pages; 855 transferred = ((uint64_t) pages->used) * TARGET_PAGE_SIZE + p->packet_len; 856 ram_counters.multifd_bytes += transferred; 857 ram_counters.transferred += transferred;; 858 qemu_mutex_unlock(&p->mutex); 859 qemu_sem_post(&p->sem); 860 } 861 862 static void multifd_queue_page(RAMBlock *block, ram_addr_t offset) 863 { 864 MultiFDPages_t *pages = multifd_send_state->pages; 865 866 if (!pages->block) { 867 pages->block = block; 868 } 869 870 if (pages->block == block) { 871 pages->offset[pages->used] = offset; 872 pages->iov[pages->used].iov_base = block->host + offset; 873 pages->iov[pages->used].iov_len = TARGET_PAGE_SIZE; 874 pages->used++; 875 876 if (pages->used < pages->allocated) { 877 return; 878 } 879 } 880 881 multifd_send_pages(); 882 883 if (pages->block != block) { 884 multifd_queue_page(block, offset); 885 } 886 } 887 888 static void multifd_send_terminate_threads(Error *err) 889 { 890 int i; 891 892 if (err) { 893 MigrationState *s = migrate_get_current(); 894 migrate_set_error(s, err); 895 if (s->state == MIGRATION_STATUS_SETUP || 896 s->state == MIGRATION_STATUS_PRE_SWITCHOVER || 897 s->state == MIGRATION_STATUS_DEVICE || 898 s->state == MIGRATION_STATUS_ACTIVE) { 899 migrate_set_state(&s->state, s->state, 900 MIGRATION_STATUS_FAILED); 901 } 902 } 903 904 for (i = 0; i < migrate_multifd_channels(); i++) { 905 MultiFDSendParams *p = &multifd_send_state->params[i]; 906 907 qemu_mutex_lock(&p->mutex); 908 p->quit = true; 909 qemu_sem_post(&p->sem); 910 qemu_mutex_unlock(&p->mutex); 911 } 912 } 913 914 int multifd_save_cleanup(Error **errp) 915 { 916 int i; 917 int ret = 0; 918 919 if (!migrate_use_multifd()) { 920 return 0; 921 } 922 multifd_send_terminate_threads(NULL); 923 for (i = 0; i < migrate_multifd_channels(); i++) { 924 MultiFDSendParams *p = &multifd_send_state->params[i]; 925 926 if (p->running) { 927 qemu_thread_join(&p->thread); 928 } 929 socket_send_channel_destroy(p->c); 930 p->c = NULL; 931 qemu_mutex_destroy(&p->mutex); 932 qemu_sem_destroy(&p->sem); 933 qemu_sem_destroy(&p->sem_sync); 934 g_free(p->name); 935 p->name = NULL; 936 multifd_pages_clear(p->pages); 937 p->pages = NULL; 938 p->packet_len = 0; 939 g_free(p->packet); 940 p->packet = NULL; 941 } 942 qemu_sem_destroy(&multifd_send_state->channels_ready); 943 qemu_sem_destroy(&multifd_send_state->sem_sync); 944 g_free(multifd_send_state->params); 945 multifd_send_state->params = NULL; 946 multifd_pages_clear(multifd_send_state->pages); 947 multifd_send_state->pages = NULL; 948 g_free(multifd_send_state); 949 multifd_send_state = NULL; 950 return ret; 951 } 952 953 static void multifd_send_sync_main(void) 954 { 955 int i; 956 957 if (!migrate_use_multifd()) { 958 return; 959 } 960 if (multifd_send_state->pages->used) { 961 multifd_send_pages(); 962 } 963 for (i = 0; i < migrate_multifd_channels(); i++) { 964 MultiFDSendParams *p = &multifd_send_state->params[i]; 965 966 trace_multifd_send_sync_main_signal(p->id); 967 968 qemu_mutex_lock(&p->mutex); 969 970 p->packet_num = multifd_send_state->packet_num++; 971 p->flags |= MULTIFD_FLAG_SYNC; 972 p->pending_job++; 973 qemu_mutex_unlock(&p->mutex); 974 qemu_sem_post(&p->sem); 975 } 976 for (i = 0; i < migrate_multifd_channels(); i++) { 977 MultiFDSendParams *p = &multifd_send_state->params[i]; 978 979 trace_multifd_send_sync_main_wait(p->id); 980 qemu_sem_wait(&multifd_send_state->sem_sync); 981 } 982 trace_multifd_send_sync_main(multifd_send_state->packet_num); 983 } 984 985 static void *multifd_send_thread(void *opaque) 986 { 987 MultiFDSendParams *p = opaque; 988 Error *local_err = NULL; 989 int ret; 990 991 trace_multifd_send_thread_start(p->id); 992 993 if (multifd_send_initial_packet(p, &local_err) < 0) { 994 goto out; 995 } 996 /* initial packet */ 997 p->num_packets = 1; 998 999 while (true) { 1000 qemu_sem_wait(&p->sem); 1001 qemu_mutex_lock(&p->mutex); 1002 1003 if (p->pending_job) { 1004 uint32_t used = p->pages->used; 1005 uint64_t packet_num = p->packet_num; 1006 uint32_t flags = p->flags; 1007 1008 multifd_send_fill_packet(p); 1009 p->flags = 0; 1010 p->num_packets++; 1011 p->num_pages += used; 1012 p->pages->used = 0; 1013 qemu_mutex_unlock(&p->mutex); 1014 1015 trace_multifd_send(p->id, packet_num, used, flags); 1016 1017 ret = qio_channel_write_all(p->c, (void *)p->packet, 1018 p->packet_len, &local_err); 1019 if (ret != 0) { 1020 break; 1021 } 1022 1023 ret = qio_channel_writev_all(p->c, p->pages->iov, used, &local_err); 1024 if (ret != 0) { 1025 break; 1026 } 1027 1028 qemu_mutex_lock(&p->mutex); 1029 p->pending_job--; 1030 qemu_mutex_unlock(&p->mutex); 1031 1032 if (flags & MULTIFD_FLAG_SYNC) { 1033 qemu_sem_post(&multifd_send_state->sem_sync); 1034 } 1035 qemu_sem_post(&multifd_send_state->channels_ready); 1036 } else if (p->quit) { 1037 qemu_mutex_unlock(&p->mutex); 1038 break; 1039 } else { 1040 qemu_mutex_unlock(&p->mutex); 1041 /* sometimes there are spurious wakeups */ 1042 } 1043 } 1044 1045 out: 1046 if (local_err) { 1047 multifd_send_terminate_threads(local_err); 1048 } 1049 1050 qemu_mutex_lock(&p->mutex); 1051 p->running = false; 1052 qemu_mutex_unlock(&p->mutex); 1053 1054 trace_multifd_send_thread_end(p->id, p->num_packets, p->num_pages); 1055 1056 return NULL; 1057 } 1058 1059 static void multifd_new_send_channel_async(QIOTask *task, gpointer opaque) 1060 { 1061 MultiFDSendParams *p = opaque; 1062 QIOChannel *sioc = QIO_CHANNEL(qio_task_get_source(task)); 1063 Error *local_err = NULL; 1064 1065 if (qio_task_propagate_error(task, &local_err)) { 1066 if (multifd_save_cleanup(&local_err) != 0) { 1067 migrate_set_error(migrate_get_current(), local_err); 1068 } 1069 } else { 1070 p->c = QIO_CHANNEL(sioc); 1071 qio_channel_set_delay(p->c, false); 1072 p->running = true; 1073 qemu_thread_create(&p->thread, p->name, multifd_send_thread, p, 1074 QEMU_THREAD_JOINABLE); 1075 1076 atomic_inc(&multifd_send_state->count); 1077 } 1078 } 1079 1080 int multifd_save_setup(void) 1081 { 1082 int thread_count; 1083 uint32_t page_count = migrate_multifd_page_count(); 1084 uint8_t i; 1085 1086 if (!migrate_use_multifd()) { 1087 return 0; 1088 } 1089 thread_count = migrate_multifd_channels(); 1090 multifd_send_state = g_malloc0(sizeof(*multifd_send_state)); 1091 multifd_send_state->params = g_new0(MultiFDSendParams, thread_count); 1092 atomic_set(&multifd_send_state->count, 0); 1093 multifd_send_state->pages = multifd_pages_init(page_count); 1094 qemu_sem_init(&multifd_send_state->sem_sync, 0); 1095 qemu_sem_init(&multifd_send_state->channels_ready, 0); 1096 1097 for (i = 0; i < thread_count; i++) { 1098 MultiFDSendParams *p = &multifd_send_state->params[i]; 1099 1100 qemu_mutex_init(&p->mutex); 1101 qemu_sem_init(&p->sem, 0); 1102 qemu_sem_init(&p->sem_sync, 0); 1103 p->quit = false; 1104 p->pending_job = 0; 1105 p->id = i; 1106 p->pages = multifd_pages_init(page_count); 1107 p->packet_len = sizeof(MultiFDPacket_t) 1108 + sizeof(ram_addr_t) * page_count; 1109 p->packet = g_malloc0(p->packet_len); 1110 p->name = g_strdup_printf("multifdsend_%d", i); 1111 socket_send_channel_create(multifd_new_send_channel_async, p); 1112 } 1113 return 0; 1114 } 1115 1116 struct { 1117 MultiFDRecvParams *params; 1118 /* number of created threads */ 1119 int count; 1120 /* syncs main thread and channels */ 1121 QemuSemaphore sem_sync; 1122 /* global number of generated multifd packets */ 1123 uint64_t packet_num; 1124 } *multifd_recv_state; 1125 1126 static void multifd_recv_terminate_threads(Error *err) 1127 { 1128 int i; 1129 1130 if (err) { 1131 MigrationState *s = migrate_get_current(); 1132 migrate_set_error(s, err); 1133 if (s->state == MIGRATION_STATUS_SETUP || 1134 s->state == MIGRATION_STATUS_ACTIVE) { 1135 migrate_set_state(&s->state, s->state, 1136 MIGRATION_STATUS_FAILED); 1137 } 1138 } 1139 1140 for (i = 0; i < migrate_multifd_channels(); i++) { 1141 MultiFDRecvParams *p = &multifd_recv_state->params[i]; 1142 1143 qemu_mutex_lock(&p->mutex); 1144 /* We could arrive here for two reasons: 1145 - normal quit, i.e. everything went fine, just finished 1146 - error quit: We close the channels so the channel threads 1147 finish the qio_channel_read_all_eof() */ 1148 qio_channel_shutdown(p->c, QIO_CHANNEL_SHUTDOWN_BOTH, NULL); 1149 qemu_mutex_unlock(&p->mutex); 1150 } 1151 } 1152 1153 int multifd_load_cleanup(Error **errp) 1154 { 1155 int i; 1156 int ret = 0; 1157 1158 if (!migrate_use_multifd()) { 1159 return 0; 1160 } 1161 multifd_recv_terminate_threads(NULL); 1162 for (i = 0; i < migrate_multifd_channels(); i++) { 1163 MultiFDRecvParams *p = &multifd_recv_state->params[i]; 1164 1165 if (p->running) { 1166 qemu_thread_join(&p->thread); 1167 } 1168 object_unref(OBJECT(p->c)); 1169 p->c = NULL; 1170 qemu_mutex_destroy(&p->mutex); 1171 qemu_sem_destroy(&p->sem_sync); 1172 g_free(p->name); 1173 p->name = NULL; 1174 multifd_pages_clear(p->pages); 1175 p->pages = NULL; 1176 p->packet_len = 0; 1177 g_free(p->packet); 1178 p->packet = NULL; 1179 } 1180 qemu_sem_destroy(&multifd_recv_state->sem_sync); 1181 g_free(multifd_recv_state->params); 1182 multifd_recv_state->params = NULL; 1183 g_free(multifd_recv_state); 1184 multifd_recv_state = NULL; 1185 1186 return ret; 1187 } 1188 1189 static void multifd_recv_sync_main(void) 1190 { 1191 int i; 1192 1193 if (!migrate_use_multifd()) { 1194 return; 1195 } 1196 for (i = 0; i < migrate_multifd_channels(); i++) { 1197 MultiFDRecvParams *p = &multifd_recv_state->params[i]; 1198 1199 trace_multifd_recv_sync_main_wait(p->id); 1200 qemu_sem_wait(&multifd_recv_state->sem_sync); 1201 qemu_mutex_lock(&p->mutex); 1202 if (multifd_recv_state->packet_num < p->packet_num) { 1203 multifd_recv_state->packet_num = p->packet_num; 1204 } 1205 qemu_mutex_unlock(&p->mutex); 1206 } 1207 for (i = 0; i < migrate_multifd_channels(); i++) { 1208 MultiFDRecvParams *p = &multifd_recv_state->params[i]; 1209 1210 trace_multifd_recv_sync_main_signal(p->id); 1211 qemu_sem_post(&p->sem_sync); 1212 } 1213 trace_multifd_recv_sync_main(multifd_recv_state->packet_num); 1214 } 1215 1216 static void *multifd_recv_thread(void *opaque) 1217 { 1218 MultiFDRecvParams *p = opaque; 1219 Error *local_err = NULL; 1220 int ret; 1221 1222 trace_multifd_recv_thread_start(p->id); 1223 1224 while (true) { 1225 uint32_t used; 1226 uint32_t flags; 1227 1228 ret = qio_channel_read_all_eof(p->c, (void *)p->packet, 1229 p->packet_len, &local_err); 1230 if (ret == 0) { /* EOF */ 1231 break; 1232 } 1233 if (ret == -1) { /* Error */ 1234 break; 1235 } 1236 1237 qemu_mutex_lock(&p->mutex); 1238 ret = multifd_recv_unfill_packet(p, &local_err); 1239 if (ret) { 1240 qemu_mutex_unlock(&p->mutex); 1241 break; 1242 } 1243 1244 used = p->pages->used; 1245 flags = p->flags; 1246 trace_multifd_recv(p->id, p->packet_num, used, flags); 1247 p->num_packets++; 1248 p->num_pages += used; 1249 qemu_mutex_unlock(&p->mutex); 1250 1251 ret = qio_channel_readv_all(p->c, p->pages->iov, used, &local_err); 1252 if (ret != 0) { 1253 break; 1254 } 1255 1256 if (flags & MULTIFD_FLAG_SYNC) { 1257 qemu_sem_post(&multifd_recv_state->sem_sync); 1258 qemu_sem_wait(&p->sem_sync); 1259 } 1260 } 1261 1262 if (local_err) { 1263 multifd_recv_terminate_threads(local_err); 1264 } 1265 qemu_mutex_lock(&p->mutex); 1266 p->running = false; 1267 qemu_mutex_unlock(&p->mutex); 1268 1269 trace_multifd_recv_thread_end(p->id, p->num_packets, p->num_pages); 1270 1271 return NULL; 1272 } 1273 1274 int multifd_load_setup(void) 1275 { 1276 int thread_count; 1277 uint32_t page_count = migrate_multifd_page_count(); 1278 uint8_t i; 1279 1280 if (!migrate_use_multifd()) { 1281 return 0; 1282 } 1283 thread_count = migrate_multifd_channels(); 1284 multifd_recv_state = g_malloc0(sizeof(*multifd_recv_state)); 1285 multifd_recv_state->params = g_new0(MultiFDRecvParams, thread_count); 1286 atomic_set(&multifd_recv_state->count, 0); 1287 qemu_sem_init(&multifd_recv_state->sem_sync, 0); 1288 1289 for (i = 0; i < thread_count; i++) { 1290 MultiFDRecvParams *p = &multifd_recv_state->params[i]; 1291 1292 qemu_mutex_init(&p->mutex); 1293 qemu_sem_init(&p->sem_sync, 0); 1294 p->id = i; 1295 p->pages = multifd_pages_init(page_count); 1296 p->packet_len = sizeof(MultiFDPacket_t) 1297 + sizeof(ram_addr_t) * page_count; 1298 p->packet = g_malloc0(p->packet_len); 1299 p->name = g_strdup_printf("multifdrecv_%d", i); 1300 } 1301 return 0; 1302 } 1303 1304 bool multifd_recv_all_channels_created(void) 1305 { 1306 int thread_count = migrate_multifd_channels(); 1307 1308 if (!migrate_use_multifd()) { 1309 return true; 1310 } 1311 1312 return thread_count == atomic_read(&multifd_recv_state->count); 1313 } 1314 1315 /* Return true if multifd is ready for the migration, otherwise false */ 1316 bool multifd_recv_new_channel(QIOChannel *ioc) 1317 { 1318 MultiFDRecvParams *p; 1319 Error *local_err = NULL; 1320 int id; 1321 1322 id = multifd_recv_initial_packet(ioc, &local_err); 1323 if (id < 0) { 1324 multifd_recv_terminate_threads(local_err); 1325 return false; 1326 } 1327 1328 p = &multifd_recv_state->params[id]; 1329 if (p->c != NULL) { 1330 error_setg(&local_err, "multifd: received id '%d' already setup'", 1331 id); 1332 multifd_recv_terminate_threads(local_err); 1333 return false; 1334 } 1335 p->c = ioc; 1336 object_ref(OBJECT(ioc)); 1337 /* initial packet */ 1338 p->num_packets = 1; 1339 1340 p->running = true; 1341 qemu_thread_create(&p->thread, p->name, multifd_recv_thread, p, 1342 QEMU_THREAD_JOINABLE); 1343 atomic_inc(&multifd_recv_state->count); 1344 return multifd_recv_state->count == migrate_multifd_channels(); 1345 } 1346 1347 /** 1348 * save_page_header: write page header to wire 1349 * 1350 * If this is the 1st block, it also writes the block identification 1351 * 1352 * Returns the number of bytes written 1353 * 1354 * @f: QEMUFile where to send the data 1355 * @block: block that contains the page we want to send 1356 * @offset: offset inside the block for the page 1357 * in the lower bits, it contains flags 1358 */ 1359 static size_t save_page_header(RAMState *rs, QEMUFile *f, RAMBlock *block, 1360 ram_addr_t offset) 1361 { 1362 size_t size, len; 1363 1364 if (block == rs->last_sent_block) { 1365 offset |= RAM_SAVE_FLAG_CONTINUE; 1366 } 1367 qemu_put_be64(f, offset); 1368 size = 8; 1369 1370 if (!(offset & RAM_SAVE_FLAG_CONTINUE)) { 1371 len = strlen(block->idstr); 1372 qemu_put_byte(f, len); 1373 qemu_put_buffer(f, (uint8_t *)block->idstr, len); 1374 size += 1 + len; 1375 rs->last_sent_block = block; 1376 } 1377 return size; 1378 } 1379 1380 /** 1381 * mig_throttle_guest_down: throotle down the guest 1382 * 1383 * Reduce amount of guest cpu execution to hopefully slow down memory 1384 * writes. If guest dirty memory rate is reduced below the rate at 1385 * which we can transfer pages to the destination then we should be 1386 * able to complete migration. Some workloads dirty memory way too 1387 * fast and will not effectively converge, even with auto-converge. 1388 */ 1389 static void mig_throttle_guest_down(void) 1390 { 1391 MigrationState *s = migrate_get_current(); 1392 uint64_t pct_initial = s->parameters.cpu_throttle_initial; 1393 uint64_t pct_icrement = s->parameters.cpu_throttle_increment; 1394 1395 /* We have not started throttling yet. Let's start it. */ 1396 if (!cpu_throttle_active()) { 1397 cpu_throttle_set(pct_initial); 1398 } else { 1399 /* Throttling already on, just increase the rate */ 1400 cpu_throttle_set(cpu_throttle_get_percentage() + pct_icrement); 1401 } 1402 } 1403 1404 /** 1405 * xbzrle_cache_zero_page: insert a zero page in the XBZRLE cache 1406 * 1407 * @rs: current RAM state 1408 * @current_addr: address for the zero page 1409 * 1410 * Update the xbzrle cache to reflect a page that's been sent as all 0. 1411 * The important thing is that a stale (not-yet-0'd) page be replaced 1412 * by the new data. 1413 * As a bonus, if the page wasn't in the cache it gets added so that 1414 * when a small write is made into the 0'd page it gets XBZRLE sent. 1415 */ 1416 static void xbzrle_cache_zero_page(RAMState *rs, ram_addr_t current_addr) 1417 { 1418 if (rs->ram_bulk_stage || !migrate_use_xbzrle()) { 1419 return; 1420 } 1421 1422 /* We don't care if this fails to allocate a new cache page 1423 * as long as it updated an old one */ 1424 cache_insert(XBZRLE.cache, current_addr, XBZRLE.zero_target_page, 1425 ram_counters.dirty_sync_count); 1426 } 1427 1428 #define ENCODING_FLAG_XBZRLE 0x1 1429 1430 /** 1431 * save_xbzrle_page: compress and send current page 1432 * 1433 * Returns: 1 means that we wrote the page 1434 * 0 means that page is identical to the one already sent 1435 * -1 means that xbzrle would be longer than normal 1436 * 1437 * @rs: current RAM state 1438 * @current_data: pointer to the address of the page contents 1439 * @current_addr: addr of the page 1440 * @block: block that contains the page we want to send 1441 * @offset: offset inside the block for the page 1442 * @last_stage: if we are at the completion stage 1443 */ 1444 static int save_xbzrle_page(RAMState *rs, uint8_t **current_data, 1445 ram_addr_t current_addr, RAMBlock *block, 1446 ram_addr_t offset, bool last_stage) 1447 { 1448 int encoded_len = 0, bytes_xbzrle; 1449 uint8_t *prev_cached_page; 1450 1451 if (!cache_is_cached(XBZRLE.cache, current_addr, 1452 ram_counters.dirty_sync_count)) { 1453 xbzrle_counters.cache_miss++; 1454 if (!last_stage) { 1455 if (cache_insert(XBZRLE.cache, current_addr, *current_data, 1456 ram_counters.dirty_sync_count) == -1) { 1457 return -1; 1458 } else { 1459 /* update *current_data when the page has been 1460 inserted into cache */ 1461 *current_data = get_cached_data(XBZRLE.cache, current_addr); 1462 } 1463 } 1464 return -1; 1465 } 1466 1467 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr); 1468 1469 /* save current buffer into memory */ 1470 memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE); 1471 1472 /* XBZRLE encoding (if there is no overflow) */ 1473 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf, 1474 TARGET_PAGE_SIZE, XBZRLE.encoded_buf, 1475 TARGET_PAGE_SIZE); 1476 if (encoded_len == 0) { 1477 trace_save_xbzrle_page_skipping(); 1478 return 0; 1479 } else if (encoded_len == -1) { 1480 trace_save_xbzrle_page_overflow(); 1481 xbzrle_counters.overflow++; 1482 /* update data in the cache */ 1483 if (!last_stage) { 1484 memcpy(prev_cached_page, *current_data, TARGET_PAGE_SIZE); 1485 *current_data = prev_cached_page; 1486 } 1487 return -1; 1488 } 1489 1490 /* we need to update the data in the cache, in order to get the same data */ 1491 if (!last_stage) { 1492 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE); 1493 } 1494 1495 /* Send XBZRLE based compressed page */ 1496 bytes_xbzrle = save_page_header(rs, rs->f, block, 1497 offset | RAM_SAVE_FLAG_XBZRLE); 1498 qemu_put_byte(rs->f, ENCODING_FLAG_XBZRLE); 1499 qemu_put_be16(rs->f, encoded_len); 1500 qemu_put_buffer(rs->f, XBZRLE.encoded_buf, encoded_len); 1501 bytes_xbzrle += encoded_len + 1 + 2; 1502 xbzrle_counters.pages++; 1503 xbzrle_counters.bytes += bytes_xbzrle; 1504 ram_counters.transferred += bytes_xbzrle; 1505 1506 return 1; 1507 } 1508 1509 /** 1510 * migration_bitmap_find_dirty: find the next dirty page from start 1511 * 1512 * Called with rcu_read_lock() to protect migration_bitmap 1513 * 1514 * Returns the byte offset within memory region of the start of a dirty page 1515 * 1516 * @rs: current RAM state 1517 * @rb: RAMBlock where to search for dirty pages 1518 * @start: page where we start the search 1519 */ 1520 static inline 1521 unsigned long migration_bitmap_find_dirty(RAMState *rs, RAMBlock *rb, 1522 unsigned long start) 1523 { 1524 unsigned long size = rb->used_length >> TARGET_PAGE_BITS; 1525 unsigned long *bitmap = rb->bmap; 1526 unsigned long next; 1527 1528 if (!qemu_ram_is_migratable(rb)) { 1529 return size; 1530 } 1531 1532 if (rs->ram_bulk_stage && start > 0) { 1533 next = start + 1; 1534 } else { 1535 next = find_next_bit(bitmap, size, start); 1536 } 1537 1538 return next; 1539 } 1540 1541 static inline bool migration_bitmap_clear_dirty(RAMState *rs, 1542 RAMBlock *rb, 1543 unsigned long page) 1544 { 1545 bool ret; 1546 1547 ret = test_and_clear_bit(page, rb->bmap); 1548 1549 if (ret) { 1550 rs->migration_dirty_pages--; 1551 } 1552 return ret; 1553 } 1554 1555 static void migration_bitmap_sync_range(RAMState *rs, RAMBlock *rb, 1556 ram_addr_t start, ram_addr_t length) 1557 { 1558 rs->migration_dirty_pages += 1559 cpu_physical_memory_sync_dirty_bitmap(rb, start, length, 1560 &rs->num_dirty_pages_period); 1561 } 1562 1563 /** 1564 * ram_pagesize_summary: calculate all the pagesizes of a VM 1565 * 1566 * Returns a summary bitmap of the page sizes of all RAMBlocks 1567 * 1568 * For VMs with just normal pages this is equivalent to the host page 1569 * size. If it's got some huge pages then it's the OR of all the 1570 * different page sizes. 1571 */ 1572 uint64_t ram_pagesize_summary(void) 1573 { 1574 RAMBlock *block; 1575 uint64_t summary = 0; 1576 1577 RAMBLOCK_FOREACH_MIGRATABLE(block) { 1578 summary |= block->page_size; 1579 } 1580 1581 return summary; 1582 } 1583 1584 static void migration_update_rates(RAMState *rs, int64_t end_time) 1585 { 1586 uint64_t iter_count = rs->iterations - rs->iterations_prev; 1587 1588 /* calculate period counters */ 1589 ram_counters.dirty_pages_rate = rs->num_dirty_pages_period * 1000 1590 / (end_time - rs->time_last_bitmap_sync); 1591 1592 if (!iter_count) { 1593 return; 1594 } 1595 1596 if (migrate_use_xbzrle()) { 1597 xbzrle_counters.cache_miss_rate = (double)(xbzrle_counters.cache_miss - 1598 rs->xbzrle_cache_miss_prev) / iter_count; 1599 rs->xbzrle_cache_miss_prev = xbzrle_counters.cache_miss; 1600 } 1601 } 1602 1603 static void migration_bitmap_sync(RAMState *rs) 1604 { 1605 RAMBlock *block; 1606 int64_t end_time; 1607 uint64_t bytes_xfer_now; 1608 1609 ram_counters.dirty_sync_count++; 1610 1611 if (!rs->time_last_bitmap_sync) { 1612 rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); 1613 } 1614 1615 trace_migration_bitmap_sync_start(); 1616 memory_global_dirty_log_sync(); 1617 1618 qemu_mutex_lock(&rs->bitmap_mutex); 1619 rcu_read_lock(); 1620 RAMBLOCK_FOREACH_MIGRATABLE(block) { 1621 migration_bitmap_sync_range(rs, block, 0, block->used_length); 1622 } 1623 ram_counters.remaining = ram_bytes_remaining(); 1624 rcu_read_unlock(); 1625 qemu_mutex_unlock(&rs->bitmap_mutex); 1626 1627 trace_migration_bitmap_sync_end(rs->num_dirty_pages_period); 1628 1629 end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); 1630 1631 /* more than 1 second = 1000 millisecons */ 1632 if (end_time > rs->time_last_bitmap_sync + 1000) { 1633 bytes_xfer_now = ram_counters.transferred; 1634 1635 /* During block migration the auto-converge logic incorrectly detects 1636 * that ram migration makes no progress. Avoid this by disabling the 1637 * throttling logic during the bulk phase of block migration. */ 1638 if (migrate_auto_converge() && !blk_mig_bulk_active()) { 1639 /* The following detection logic can be refined later. For now: 1640 Check to see if the dirtied bytes is 50% more than the approx. 1641 amount of bytes that just got transferred since the last time we 1642 were in this routine. If that happens twice, start or increase 1643 throttling */ 1644 1645 if ((rs->num_dirty_pages_period * TARGET_PAGE_SIZE > 1646 (bytes_xfer_now - rs->bytes_xfer_prev) / 2) && 1647 (++rs->dirty_rate_high_cnt >= 2)) { 1648 trace_migration_throttle(); 1649 rs->dirty_rate_high_cnt = 0; 1650 mig_throttle_guest_down(); 1651 } 1652 } 1653 1654 migration_update_rates(rs, end_time); 1655 1656 rs->iterations_prev = rs->iterations; 1657 1658 /* reset period counters */ 1659 rs->time_last_bitmap_sync = end_time; 1660 rs->num_dirty_pages_period = 0; 1661 rs->bytes_xfer_prev = bytes_xfer_now; 1662 } 1663 if (migrate_use_events()) { 1664 qapi_event_send_migration_pass(ram_counters.dirty_sync_count, NULL); 1665 } 1666 } 1667 1668 /** 1669 * save_zero_page: send the zero page to the stream 1670 * 1671 * Returns the number of pages written. 1672 * 1673 * @rs: current RAM state 1674 * @block: block that contains the page we want to send 1675 * @offset: offset inside the block for the page 1676 */ 1677 static int save_zero_page(RAMState *rs, RAMBlock *block, ram_addr_t offset) 1678 { 1679 uint8_t *p = block->host + offset; 1680 int pages = -1; 1681 1682 if (is_zero_range(p, TARGET_PAGE_SIZE)) { 1683 ram_counters.duplicate++; 1684 ram_counters.transferred += 1685 save_page_header(rs, rs->f, block, offset | RAM_SAVE_FLAG_ZERO); 1686 qemu_put_byte(rs->f, 0); 1687 ram_counters.transferred += 1; 1688 pages = 1; 1689 } 1690 1691 return pages; 1692 } 1693 1694 static void ram_release_pages(const char *rbname, uint64_t offset, int pages) 1695 { 1696 if (!migrate_release_ram() || !migration_in_postcopy()) { 1697 return; 1698 } 1699 1700 ram_discard_range(rbname, offset, pages << TARGET_PAGE_BITS); 1701 } 1702 1703 /* 1704 * @pages: the number of pages written by the control path, 1705 * < 0 - error 1706 * > 0 - number of pages written 1707 * 1708 * Return true if the pages has been saved, otherwise false is returned. 1709 */ 1710 static bool control_save_page(RAMState *rs, RAMBlock *block, ram_addr_t offset, 1711 int *pages) 1712 { 1713 uint64_t bytes_xmit = 0; 1714 int ret; 1715 1716 *pages = -1; 1717 ret = ram_control_save_page(rs->f, block->offset, offset, TARGET_PAGE_SIZE, 1718 &bytes_xmit); 1719 if (ret == RAM_SAVE_CONTROL_NOT_SUPP) { 1720 return false; 1721 } 1722 1723 if (bytes_xmit) { 1724 ram_counters.transferred += bytes_xmit; 1725 *pages = 1; 1726 } 1727 1728 if (ret == RAM_SAVE_CONTROL_DELAYED) { 1729 return true; 1730 } 1731 1732 if (bytes_xmit > 0) { 1733 ram_counters.normal++; 1734 } else if (bytes_xmit == 0) { 1735 ram_counters.duplicate++; 1736 } 1737 1738 return true; 1739 } 1740 1741 /* 1742 * directly send the page to the stream 1743 * 1744 * Returns the number of pages written. 1745 * 1746 * @rs: current RAM state 1747 * @block: block that contains the page we want to send 1748 * @offset: offset inside the block for the page 1749 * @buf: the page to be sent 1750 * @async: send to page asyncly 1751 */ 1752 static int save_normal_page(RAMState *rs, RAMBlock *block, ram_addr_t offset, 1753 uint8_t *buf, bool async) 1754 { 1755 ram_counters.transferred += save_page_header(rs, rs->f, block, 1756 offset | RAM_SAVE_FLAG_PAGE); 1757 if (async) { 1758 qemu_put_buffer_async(rs->f, buf, TARGET_PAGE_SIZE, 1759 migrate_release_ram() & 1760 migration_in_postcopy()); 1761 } else { 1762 qemu_put_buffer(rs->f, buf, TARGET_PAGE_SIZE); 1763 } 1764 ram_counters.transferred += TARGET_PAGE_SIZE; 1765 ram_counters.normal++; 1766 return 1; 1767 } 1768 1769 /** 1770 * ram_save_page: send the given page to the stream 1771 * 1772 * Returns the number of pages written. 1773 * < 0 - error 1774 * >=0 - Number of pages written - this might legally be 0 1775 * if xbzrle noticed the page was the same. 1776 * 1777 * @rs: current RAM state 1778 * @block: block that contains the page we want to send 1779 * @offset: offset inside the block for the page 1780 * @last_stage: if we are at the completion stage 1781 */ 1782 static int ram_save_page(RAMState *rs, PageSearchStatus *pss, bool last_stage) 1783 { 1784 int pages = -1; 1785 uint8_t *p; 1786 bool send_async = true; 1787 RAMBlock *block = pss->block; 1788 ram_addr_t offset = pss->page << TARGET_PAGE_BITS; 1789 ram_addr_t current_addr = block->offset + offset; 1790 1791 p = block->host + offset; 1792 trace_ram_save_page(block->idstr, (uint64_t)offset, p); 1793 1794 XBZRLE_cache_lock(); 1795 if (!rs->ram_bulk_stage && !migration_in_postcopy() && 1796 migrate_use_xbzrle()) { 1797 pages = save_xbzrle_page(rs, &p, current_addr, block, 1798 offset, last_stage); 1799 if (!last_stage) { 1800 /* Can't send this cached data async, since the cache page 1801 * might get updated before it gets to the wire 1802 */ 1803 send_async = false; 1804 } 1805 } 1806 1807 /* XBZRLE overflow or normal page */ 1808 if (pages == -1) { 1809 pages = save_normal_page(rs, block, offset, p, send_async); 1810 } 1811 1812 XBZRLE_cache_unlock(); 1813 1814 return pages; 1815 } 1816 1817 static int ram_save_multifd_page(RAMState *rs, RAMBlock *block, 1818 ram_addr_t offset) 1819 { 1820 multifd_queue_page(block, offset); 1821 ram_counters.normal++; 1822 1823 return 1; 1824 } 1825 1826 static int do_compress_ram_page(QEMUFile *f, z_stream *stream, RAMBlock *block, 1827 ram_addr_t offset, uint8_t *source_buf) 1828 { 1829 RAMState *rs = ram_state; 1830 int bytes_sent, blen; 1831 uint8_t *p = block->host + (offset & TARGET_PAGE_MASK); 1832 1833 bytes_sent = save_page_header(rs, f, block, offset | 1834 RAM_SAVE_FLAG_COMPRESS_PAGE); 1835 1836 /* 1837 * copy it to a internal buffer to avoid it being modified by VM 1838 * so that we can catch up the error during compression and 1839 * decompression 1840 */ 1841 memcpy(source_buf, p, TARGET_PAGE_SIZE); 1842 blen = qemu_put_compression_data(f, stream, source_buf, TARGET_PAGE_SIZE); 1843 if (blen < 0) { 1844 bytes_sent = 0; 1845 qemu_file_set_error(migrate_get_current()->to_dst_file, blen); 1846 error_report("compressed data failed!"); 1847 } else { 1848 bytes_sent += blen; 1849 ram_release_pages(block->idstr, offset & TARGET_PAGE_MASK, 1); 1850 } 1851 1852 return bytes_sent; 1853 } 1854 1855 static void flush_compressed_data(RAMState *rs) 1856 { 1857 int idx, len, thread_count; 1858 1859 if (!migrate_use_compression()) { 1860 return; 1861 } 1862 thread_count = migrate_compress_threads(); 1863 1864 qemu_mutex_lock(&comp_done_lock); 1865 for (idx = 0; idx < thread_count; idx++) { 1866 while (!comp_param[idx].done) { 1867 qemu_cond_wait(&comp_done_cond, &comp_done_lock); 1868 } 1869 } 1870 qemu_mutex_unlock(&comp_done_lock); 1871 1872 for (idx = 0; idx < thread_count; idx++) { 1873 qemu_mutex_lock(&comp_param[idx].mutex); 1874 if (!comp_param[idx].quit) { 1875 len = qemu_put_qemu_file(rs->f, comp_param[idx].file); 1876 ram_counters.transferred += len; 1877 } 1878 qemu_mutex_unlock(&comp_param[idx].mutex); 1879 } 1880 } 1881 1882 static inline void set_compress_params(CompressParam *param, RAMBlock *block, 1883 ram_addr_t offset) 1884 { 1885 param->block = block; 1886 param->offset = offset; 1887 } 1888 1889 static int compress_page_with_multi_thread(RAMState *rs, RAMBlock *block, 1890 ram_addr_t offset) 1891 { 1892 int idx, thread_count, bytes_xmit = -1, pages = -1; 1893 1894 thread_count = migrate_compress_threads(); 1895 qemu_mutex_lock(&comp_done_lock); 1896 while (true) { 1897 for (idx = 0; idx < thread_count; idx++) { 1898 if (comp_param[idx].done) { 1899 comp_param[idx].done = false; 1900 bytes_xmit = qemu_put_qemu_file(rs->f, comp_param[idx].file); 1901 qemu_mutex_lock(&comp_param[idx].mutex); 1902 set_compress_params(&comp_param[idx], block, offset); 1903 qemu_cond_signal(&comp_param[idx].cond); 1904 qemu_mutex_unlock(&comp_param[idx].mutex); 1905 pages = 1; 1906 ram_counters.normal++; 1907 ram_counters.transferred += bytes_xmit; 1908 break; 1909 } 1910 } 1911 if (pages > 0) { 1912 break; 1913 } else { 1914 qemu_cond_wait(&comp_done_cond, &comp_done_lock); 1915 } 1916 } 1917 qemu_mutex_unlock(&comp_done_lock); 1918 1919 return pages; 1920 } 1921 1922 /** 1923 * find_dirty_block: find the next dirty page and update any state 1924 * associated with the search process. 1925 * 1926 * Returns if a page is found 1927 * 1928 * @rs: current RAM state 1929 * @pss: data about the state of the current dirty page scan 1930 * @again: set to false if the search has scanned the whole of RAM 1931 */ 1932 static bool find_dirty_block(RAMState *rs, PageSearchStatus *pss, bool *again) 1933 { 1934 pss->page = migration_bitmap_find_dirty(rs, pss->block, pss->page); 1935 if (pss->complete_round && pss->block == rs->last_seen_block && 1936 pss->page >= rs->last_page) { 1937 /* 1938 * We've been once around the RAM and haven't found anything. 1939 * Give up. 1940 */ 1941 *again = false; 1942 return false; 1943 } 1944 if ((pss->page << TARGET_PAGE_BITS) >= pss->block->used_length) { 1945 /* Didn't find anything in this RAM Block */ 1946 pss->page = 0; 1947 pss->block = QLIST_NEXT_RCU(pss->block, next); 1948 if (!pss->block) { 1949 /* Hit the end of the list */ 1950 pss->block = QLIST_FIRST_RCU(&ram_list.blocks); 1951 /* Flag that we've looped */ 1952 pss->complete_round = true; 1953 rs->ram_bulk_stage = false; 1954 if (migrate_use_xbzrle()) { 1955 /* If xbzrle is on, stop using the data compression at this 1956 * point. In theory, xbzrle can do better than compression. 1957 */ 1958 flush_compressed_data(rs); 1959 } 1960 } 1961 /* Didn't find anything this time, but try again on the new block */ 1962 *again = true; 1963 return false; 1964 } else { 1965 /* Can go around again, but... */ 1966 *again = true; 1967 /* We've found something so probably don't need to */ 1968 return true; 1969 } 1970 } 1971 1972 /** 1973 * unqueue_page: gets a page of the queue 1974 * 1975 * Helper for 'get_queued_page' - gets a page off the queue 1976 * 1977 * Returns the block of the page (or NULL if none available) 1978 * 1979 * @rs: current RAM state 1980 * @offset: used to return the offset within the RAMBlock 1981 */ 1982 static RAMBlock *unqueue_page(RAMState *rs, ram_addr_t *offset) 1983 { 1984 RAMBlock *block = NULL; 1985 1986 qemu_mutex_lock(&rs->src_page_req_mutex); 1987 if (!QSIMPLEQ_EMPTY(&rs->src_page_requests)) { 1988 struct RAMSrcPageRequest *entry = 1989 QSIMPLEQ_FIRST(&rs->src_page_requests); 1990 block = entry->rb; 1991 *offset = entry->offset; 1992 1993 if (entry->len > TARGET_PAGE_SIZE) { 1994 entry->len -= TARGET_PAGE_SIZE; 1995 entry->offset += TARGET_PAGE_SIZE; 1996 } else { 1997 memory_region_unref(block->mr); 1998 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req); 1999 g_free(entry); 2000 migration_consume_urgent_request(); 2001 } 2002 } 2003 qemu_mutex_unlock(&rs->src_page_req_mutex); 2004 2005 return block; 2006 } 2007 2008 /** 2009 * get_queued_page: unqueue a page from the postocpy requests 2010 * 2011 * Skips pages that are already sent (!dirty) 2012 * 2013 * Returns if a queued page is found 2014 * 2015 * @rs: current RAM state 2016 * @pss: data about the state of the current dirty page scan 2017 */ 2018 static bool get_queued_page(RAMState *rs, PageSearchStatus *pss) 2019 { 2020 RAMBlock *block; 2021 ram_addr_t offset; 2022 bool dirty; 2023 2024 do { 2025 block = unqueue_page(rs, &offset); 2026 /* 2027 * We're sending this page, and since it's postcopy nothing else 2028 * will dirty it, and we must make sure it doesn't get sent again 2029 * even if this queue request was received after the background 2030 * search already sent it. 2031 */ 2032 if (block) { 2033 unsigned long page; 2034 2035 page = offset >> TARGET_PAGE_BITS; 2036 dirty = test_bit(page, block->bmap); 2037 if (!dirty) { 2038 trace_get_queued_page_not_dirty(block->idstr, (uint64_t)offset, 2039 page, test_bit(page, block->unsentmap)); 2040 } else { 2041 trace_get_queued_page(block->idstr, (uint64_t)offset, page); 2042 } 2043 } 2044 2045 } while (block && !dirty); 2046 2047 if (block) { 2048 /* 2049 * As soon as we start servicing pages out of order, then we have 2050 * to kill the bulk stage, since the bulk stage assumes 2051 * in (migration_bitmap_find_and_reset_dirty) that every page is 2052 * dirty, that's no longer true. 2053 */ 2054 rs->ram_bulk_stage = false; 2055 2056 /* 2057 * We want the background search to continue from the queued page 2058 * since the guest is likely to want other pages near to the page 2059 * it just requested. 2060 */ 2061 pss->block = block; 2062 pss->page = offset >> TARGET_PAGE_BITS; 2063 } 2064 2065 return !!block; 2066 } 2067 2068 /** 2069 * migration_page_queue_free: drop any remaining pages in the ram 2070 * request queue 2071 * 2072 * It should be empty at the end anyway, but in error cases there may 2073 * be some left. in case that there is any page left, we drop it. 2074 * 2075 */ 2076 static void migration_page_queue_free(RAMState *rs) 2077 { 2078 struct RAMSrcPageRequest *mspr, *next_mspr; 2079 /* This queue generally should be empty - but in the case of a failed 2080 * migration might have some droppings in. 2081 */ 2082 rcu_read_lock(); 2083 QSIMPLEQ_FOREACH_SAFE(mspr, &rs->src_page_requests, next_req, next_mspr) { 2084 memory_region_unref(mspr->rb->mr); 2085 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req); 2086 g_free(mspr); 2087 } 2088 rcu_read_unlock(); 2089 } 2090 2091 /** 2092 * ram_save_queue_pages: queue the page for transmission 2093 * 2094 * A request from postcopy destination for example. 2095 * 2096 * Returns zero on success or negative on error 2097 * 2098 * @rbname: Name of the RAMBLock of the request. NULL means the 2099 * same that last one. 2100 * @start: starting address from the start of the RAMBlock 2101 * @len: length (in bytes) to send 2102 */ 2103 int ram_save_queue_pages(const char *rbname, ram_addr_t start, ram_addr_t len) 2104 { 2105 RAMBlock *ramblock; 2106 RAMState *rs = ram_state; 2107 2108 ram_counters.postcopy_requests++; 2109 rcu_read_lock(); 2110 if (!rbname) { 2111 /* Reuse last RAMBlock */ 2112 ramblock = rs->last_req_rb; 2113 2114 if (!ramblock) { 2115 /* 2116 * Shouldn't happen, we can't reuse the last RAMBlock if 2117 * it's the 1st request. 2118 */ 2119 error_report("ram_save_queue_pages no previous block"); 2120 goto err; 2121 } 2122 } else { 2123 ramblock = qemu_ram_block_by_name(rbname); 2124 2125 if (!ramblock) { 2126 /* We shouldn't be asked for a non-existent RAMBlock */ 2127 error_report("ram_save_queue_pages no block '%s'", rbname); 2128 goto err; 2129 } 2130 rs->last_req_rb = ramblock; 2131 } 2132 trace_ram_save_queue_pages(ramblock->idstr, start, len); 2133 if (start+len > ramblock->used_length) { 2134 error_report("%s request overrun start=" RAM_ADDR_FMT " len=" 2135 RAM_ADDR_FMT " blocklen=" RAM_ADDR_FMT, 2136 __func__, start, len, ramblock->used_length); 2137 goto err; 2138 } 2139 2140 struct RAMSrcPageRequest *new_entry = 2141 g_malloc0(sizeof(struct RAMSrcPageRequest)); 2142 new_entry->rb = ramblock; 2143 new_entry->offset = start; 2144 new_entry->len = len; 2145 2146 memory_region_ref(ramblock->mr); 2147 qemu_mutex_lock(&rs->src_page_req_mutex); 2148 QSIMPLEQ_INSERT_TAIL(&rs->src_page_requests, new_entry, next_req); 2149 migration_make_urgent_request(); 2150 qemu_mutex_unlock(&rs->src_page_req_mutex); 2151 rcu_read_unlock(); 2152 2153 return 0; 2154 2155 err: 2156 rcu_read_unlock(); 2157 return -1; 2158 } 2159 2160 static bool save_page_use_compression(RAMState *rs) 2161 { 2162 if (!migrate_use_compression()) { 2163 return false; 2164 } 2165 2166 /* 2167 * If xbzrle is on, stop using the data compression after first 2168 * round of migration even if compression is enabled. In theory, 2169 * xbzrle can do better than compression. 2170 */ 2171 if (rs->ram_bulk_stage || !migrate_use_xbzrle()) { 2172 return true; 2173 } 2174 2175 return false; 2176 } 2177 2178 /** 2179 * ram_save_target_page: save one target page 2180 * 2181 * Returns the number of pages written 2182 * 2183 * @rs: current RAM state 2184 * @pss: data about the page we want to send 2185 * @last_stage: if we are at the completion stage 2186 */ 2187 static int ram_save_target_page(RAMState *rs, PageSearchStatus *pss, 2188 bool last_stage) 2189 { 2190 RAMBlock *block = pss->block; 2191 ram_addr_t offset = pss->page << TARGET_PAGE_BITS; 2192 int res; 2193 2194 if (control_save_page(rs, block, offset, &res)) { 2195 return res; 2196 } 2197 2198 /* 2199 * When starting the process of a new block, the first page of 2200 * the block should be sent out before other pages in the same 2201 * block, and all the pages in last block should have been sent 2202 * out, keeping this order is important, because the 'cont' flag 2203 * is used to avoid resending the block name. 2204 */ 2205 if (block != rs->last_sent_block && save_page_use_compression(rs)) { 2206 flush_compressed_data(rs); 2207 } 2208 2209 res = save_zero_page(rs, block, offset); 2210 if (res > 0) { 2211 /* Must let xbzrle know, otherwise a previous (now 0'd) cached 2212 * page would be stale 2213 */ 2214 if (!save_page_use_compression(rs)) { 2215 XBZRLE_cache_lock(); 2216 xbzrle_cache_zero_page(rs, block->offset + offset); 2217 XBZRLE_cache_unlock(); 2218 } 2219 ram_release_pages(block->idstr, offset, res); 2220 return res; 2221 } 2222 2223 /* 2224 * Make sure the first page is sent out before other pages. 2225 * 2226 * we post it as normal page as compression will take much 2227 * CPU resource. 2228 */ 2229 if (block == rs->last_sent_block && save_page_use_compression(rs)) { 2230 return compress_page_with_multi_thread(rs, block, offset); 2231 } else if (migrate_use_multifd()) { 2232 return ram_save_multifd_page(rs, block, offset); 2233 } 2234 2235 return ram_save_page(rs, pss, last_stage); 2236 } 2237 2238 /** 2239 * ram_save_host_page: save a whole host page 2240 * 2241 * Starting at *offset send pages up to the end of the current host 2242 * page. It's valid for the initial offset to point into the middle of 2243 * a host page in which case the remainder of the hostpage is sent. 2244 * Only dirty target pages are sent. Note that the host page size may 2245 * be a huge page for this block. 2246 * The saving stops at the boundary of the used_length of the block 2247 * if the RAMBlock isn't a multiple of the host page size. 2248 * 2249 * Returns the number of pages written or negative on error 2250 * 2251 * @rs: current RAM state 2252 * @ms: current migration state 2253 * @pss: data about the page we want to send 2254 * @last_stage: if we are at the completion stage 2255 */ 2256 static int ram_save_host_page(RAMState *rs, PageSearchStatus *pss, 2257 bool last_stage) 2258 { 2259 int tmppages, pages = 0; 2260 size_t pagesize_bits = 2261 qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS; 2262 2263 if (!qemu_ram_is_migratable(pss->block)) { 2264 error_report("block %s should not be migrated !", pss->block->idstr); 2265 return 0; 2266 } 2267 2268 do { 2269 /* Check the pages is dirty and if it is send it */ 2270 if (!migration_bitmap_clear_dirty(rs, pss->block, pss->page)) { 2271 pss->page++; 2272 continue; 2273 } 2274 2275 tmppages = ram_save_target_page(rs, pss, last_stage); 2276 if (tmppages < 0) { 2277 return tmppages; 2278 } 2279 2280 pages += tmppages; 2281 if (pss->block->unsentmap) { 2282 clear_bit(pss->page, pss->block->unsentmap); 2283 } 2284 2285 pss->page++; 2286 } while ((pss->page & (pagesize_bits - 1)) && 2287 offset_in_ramblock(pss->block, pss->page << TARGET_PAGE_BITS)); 2288 2289 /* The offset we leave with is the last one we looked at */ 2290 pss->page--; 2291 return pages; 2292 } 2293 2294 /** 2295 * ram_find_and_save_block: finds a dirty page and sends it to f 2296 * 2297 * Called within an RCU critical section. 2298 * 2299 * Returns the number of pages written where zero means no dirty pages 2300 * 2301 * @rs: current RAM state 2302 * @last_stage: if we are at the completion stage 2303 * 2304 * On systems where host-page-size > target-page-size it will send all the 2305 * pages in a host page that are dirty. 2306 */ 2307 2308 static int ram_find_and_save_block(RAMState *rs, bool last_stage) 2309 { 2310 PageSearchStatus pss; 2311 int pages = 0; 2312 bool again, found; 2313 2314 /* No dirty page as there is zero RAM */ 2315 if (!ram_bytes_total()) { 2316 return pages; 2317 } 2318 2319 pss.block = rs->last_seen_block; 2320 pss.page = rs->last_page; 2321 pss.complete_round = false; 2322 2323 if (!pss.block) { 2324 pss.block = QLIST_FIRST_RCU(&ram_list.blocks); 2325 } 2326 2327 do { 2328 again = true; 2329 found = get_queued_page(rs, &pss); 2330 2331 if (!found) { 2332 /* priority queue empty, so just search for something dirty */ 2333 found = find_dirty_block(rs, &pss, &again); 2334 } 2335 2336 if (found) { 2337 pages = ram_save_host_page(rs, &pss, last_stage); 2338 } 2339 } while (!pages && again); 2340 2341 rs->last_seen_block = pss.block; 2342 rs->last_page = pss.page; 2343 2344 return pages; 2345 } 2346 2347 void acct_update_position(QEMUFile *f, size_t size, bool zero) 2348 { 2349 uint64_t pages = size / TARGET_PAGE_SIZE; 2350 2351 if (zero) { 2352 ram_counters.duplicate += pages; 2353 } else { 2354 ram_counters.normal += pages; 2355 ram_counters.transferred += size; 2356 qemu_update_position(f, size); 2357 } 2358 } 2359 2360 uint64_t ram_bytes_total(void) 2361 { 2362 RAMBlock *block; 2363 uint64_t total = 0; 2364 2365 rcu_read_lock(); 2366 RAMBLOCK_FOREACH_MIGRATABLE(block) { 2367 total += block->used_length; 2368 } 2369 rcu_read_unlock(); 2370 return total; 2371 } 2372 2373 static void xbzrle_load_setup(void) 2374 { 2375 XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE); 2376 } 2377 2378 static void xbzrle_load_cleanup(void) 2379 { 2380 g_free(XBZRLE.decoded_buf); 2381 XBZRLE.decoded_buf = NULL; 2382 } 2383 2384 static void ram_state_cleanup(RAMState **rsp) 2385 { 2386 if (*rsp) { 2387 migration_page_queue_free(*rsp); 2388 qemu_mutex_destroy(&(*rsp)->bitmap_mutex); 2389 qemu_mutex_destroy(&(*rsp)->src_page_req_mutex); 2390 g_free(*rsp); 2391 *rsp = NULL; 2392 } 2393 } 2394 2395 static void xbzrle_cleanup(void) 2396 { 2397 XBZRLE_cache_lock(); 2398 if (XBZRLE.cache) { 2399 cache_fini(XBZRLE.cache); 2400 g_free(XBZRLE.encoded_buf); 2401 g_free(XBZRLE.current_buf); 2402 g_free(XBZRLE.zero_target_page); 2403 XBZRLE.cache = NULL; 2404 XBZRLE.encoded_buf = NULL; 2405 XBZRLE.current_buf = NULL; 2406 XBZRLE.zero_target_page = NULL; 2407 } 2408 XBZRLE_cache_unlock(); 2409 } 2410 2411 static void ram_save_cleanup(void *opaque) 2412 { 2413 RAMState **rsp = opaque; 2414 RAMBlock *block; 2415 2416 /* caller have hold iothread lock or is in a bh, so there is 2417 * no writing race against this migration_bitmap 2418 */ 2419 memory_global_dirty_log_stop(); 2420 2421 RAMBLOCK_FOREACH_MIGRATABLE(block) { 2422 g_free(block->bmap); 2423 block->bmap = NULL; 2424 g_free(block->unsentmap); 2425 block->unsentmap = NULL; 2426 } 2427 2428 xbzrle_cleanup(); 2429 compress_threads_save_cleanup(); 2430 ram_state_cleanup(rsp); 2431 } 2432 2433 static void ram_state_reset(RAMState *rs) 2434 { 2435 rs->last_seen_block = NULL; 2436 rs->last_sent_block = NULL; 2437 rs->last_page = 0; 2438 rs->last_version = ram_list.version; 2439 rs->ram_bulk_stage = true; 2440 } 2441 2442 #define MAX_WAIT 50 /* ms, half buffered_file limit */ 2443 2444 /* 2445 * 'expected' is the value you expect the bitmap mostly to be full 2446 * of; it won't bother printing lines that are all this value. 2447 * If 'todump' is null the migration bitmap is dumped. 2448 */ 2449 void ram_debug_dump_bitmap(unsigned long *todump, bool expected, 2450 unsigned long pages) 2451 { 2452 int64_t cur; 2453 int64_t linelen = 128; 2454 char linebuf[129]; 2455 2456 for (cur = 0; cur < pages; cur += linelen) { 2457 int64_t curb; 2458 bool found = false; 2459 /* 2460 * Last line; catch the case where the line length 2461 * is longer than remaining ram 2462 */ 2463 if (cur + linelen > pages) { 2464 linelen = pages - cur; 2465 } 2466 for (curb = 0; curb < linelen; curb++) { 2467 bool thisbit = test_bit(cur + curb, todump); 2468 linebuf[curb] = thisbit ? '1' : '.'; 2469 found = found || (thisbit != expected); 2470 } 2471 if (found) { 2472 linebuf[curb] = '\0'; 2473 fprintf(stderr, "0x%08" PRIx64 " : %s\n", cur, linebuf); 2474 } 2475 } 2476 } 2477 2478 /* **** functions for postcopy ***** */ 2479 2480 void ram_postcopy_migrated_memory_release(MigrationState *ms) 2481 { 2482 struct RAMBlock *block; 2483 2484 RAMBLOCK_FOREACH_MIGRATABLE(block) { 2485 unsigned long *bitmap = block->bmap; 2486 unsigned long range = block->used_length >> TARGET_PAGE_BITS; 2487 unsigned long run_start = find_next_zero_bit(bitmap, range, 0); 2488 2489 while (run_start < range) { 2490 unsigned long run_end = find_next_bit(bitmap, range, run_start + 1); 2491 ram_discard_range(block->idstr, run_start << TARGET_PAGE_BITS, 2492 (run_end - run_start) << TARGET_PAGE_BITS); 2493 run_start = find_next_zero_bit(bitmap, range, run_end + 1); 2494 } 2495 } 2496 } 2497 2498 /** 2499 * postcopy_send_discard_bm_ram: discard a RAMBlock 2500 * 2501 * Returns zero on success 2502 * 2503 * Callback from postcopy_each_ram_send_discard for each RAMBlock 2504 * Note: At this point the 'unsentmap' is the processed bitmap combined 2505 * with the dirtymap; so a '1' means it's either dirty or unsent. 2506 * 2507 * @ms: current migration state 2508 * @pds: state for postcopy 2509 * @start: RAMBlock starting page 2510 * @length: RAMBlock size 2511 */ 2512 static int postcopy_send_discard_bm_ram(MigrationState *ms, 2513 PostcopyDiscardState *pds, 2514 RAMBlock *block) 2515 { 2516 unsigned long end = block->used_length >> TARGET_PAGE_BITS; 2517 unsigned long current; 2518 unsigned long *unsentmap = block->unsentmap; 2519 2520 for (current = 0; current < end; ) { 2521 unsigned long one = find_next_bit(unsentmap, end, current); 2522 2523 if (one <= end) { 2524 unsigned long zero = find_next_zero_bit(unsentmap, end, one + 1); 2525 unsigned long discard_length; 2526 2527 if (zero >= end) { 2528 discard_length = end - one; 2529 } else { 2530 discard_length = zero - one; 2531 } 2532 if (discard_length) { 2533 postcopy_discard_send_range(ms, pds, one, discard_length); 2534 } 2535 current = one + discard_length; 2536 } else { 2537 current = one; 2538 } 2539 } 2540 2541 return 0; 2542 } 2543 2544 /** 2545 * postcopy_each_ram_send_discard: discard all RAMBlocks 2546 * 2547 * Returns 0 for success or negative for error 2548 * 2549 * Utility for the outgoing postcopy code. 2550 * Calls postcopy_send_discard_bm_ram for each RAMBlock 2551 * passing it bitmap indexes and name. 2552 * (qemu_ram_foreach_block ends up passing unscaled lengths 2553 * which would mean postcopy code would have to deal with target page) 2554 * 2555 * @ms: current migration state 2556 */ 2557 static int postcopy_each_ram_send_discard(MigrationState *ms) 2558 { 2559 struct RAMBlock *block; 2560 int ret; 2561 2562 RAMBLOCK_FOREACH_MIGRATABLE(block) { 2563 PostcopyDiscardState *pds = 2564 postcopy_discard_send_init(ms, block->idstr); 2565 2566 /* 2567 * Postcopy sends chunks of bitmap over the wire, but it 2568 * just needs indexes at this point, avoids it having 2569 * target page specific code. 2570 */ 2571 ret = postcopy_send_discard_bm_ram(ms, pds, block); 2572 postcopy_discard_send_finish(ms, pds); 2573 if (ret) { 2574 return ret; 2575 } 2576 } 2577 2578 return 0; 2579 } 2580 2581 /** 2582 * postcopy_chunk_hostpages_pass: canocalize bitmap in hostpages 2583 * 2584 * Helper for postcopy_chunk_hostpages; it's called twice to 2585 * canonicalize the two bitmaps, that are similar, but one is 2586 * inverted. 2587 * 2588 * Postcopy requires that all target pages in a hostpage are dirty or 2589 * clean, not a mix. This function canonicalizes the bitmaps. 2590 * 2591 * @ms: current migration state 2592 * @unsent_pass: if true we need to canonicalize partially unsent host pages 2593 * otherwise we need to canonicalize partially dirty host pages 2594 * @block: block that contains the page we want to canonicalize 2595 * @pds: state for postcopy 2596 */ 2597 static void postcopy_chunk_hostpages_pass(MigrationState *ms, bool unsent_pass, 2598 RAMBlock *block, 2599 PostcopyDiscardState *pds) 2600 { 2601 RAMState *rs = ram_state; 2602 unsigned long *bitmap = block->bmap; 2603 unsigned long *unsentmap = block->unsentmap; 2604 unsigned int host_ratio = block->page_size / TARGET_PAGE_SIZE; 2605 unsigned long pages = block->used_length >> TARGET_PAGE_BITS; 2606 unsigned long run_start; 2607 2608 if (block->page_size == TARGET_PAGE_SIZE) { 2609 /* Easy case - TPS==HPS for a non-huge page RAMBlock */ 2610 return; 2611 } 2612 2613 if (unsent_pass) { 2614 /* Find a sent page */ 2615 run_start = find_next_zero_bit(unsentmap, pages, 0); 2616 } else { 2617 /* Find a dirty page */ 2618 run_start = find_next_bit(bitmap, pages, 0); 2619 } 2620 2621 while (run_start < pages) { 2622 bool do_fixup = false; 2623 unsigned long fixup_start_addr; 2624 unsigned long host_offset; 2625 2626 /* 2627 * If the start of this run of pages is in the middle of a host 2628 * page, then we need to fixup this host page. 2629 */ 2630 host_offset = run_start % host_ratio; 2631 if (host_offset) { 2632 do_fixup = true; 2633 run_start -= host_offset; 2634 fixup_start_addr = run_start; 2635 /* For the next pass */ 2636 run_start = run_start + host_ratio; 2637 } else { 2638 /* Find the end of this run */ 2639 unsigned long run_end; 2640 if (unsent_pass) { 2641 run_end = find_next_bit(unsentmap, pages, run_start + 1); 2642 } else { 2643 run_end = find_next_zero_bit(bitmap, pages, run_start + 1); 2644 } 2645 /* 2646 * If the end isn't at the start of a host page, then the 2647 * run doesn't finish at the end of a host page 2648 * and we need to discard. 2649 */ 2650 host_offset = run_end % host_ratio; 2651 if (host_offset) { 2652 do_fixup = true; 2653 fixup_start_addr = run_end - host_offset; 2654 /* 2655 * This host page has gone, the next loop iteration starts 2656 * from after the fixup 2657 */ 2658 run_start = fixup_start_addr + host_ratio; 2659 } else { 2660 /* 2661 * No discards on this iteration, next loop starts from 2662 * next sent/dirty page 2663 */ 2664 run_start = run_end + 1; 2665 } 2666 } 2667 2668 if (do_fixup) { 2669 unsigned long page; 2670 2671 /* Tell the destination to discard this page */ 2672 if (unsent_pass || !test_bit(fixup_start_addr, unsentmap)) { 2673 /* For the unsent_pass we: 2674 * discard partially sent pages 2675 * For the !unsent_pass (dirty) we: 2676 * discard partially dirty pages that were sent 2677 * (any partially sent pages were already discarded 2678 * by the previous unsent_pass) 2679 */ 2680 postcopy_discard_send_range(ms, pds, fixup_start_addr, 2681 host_ratio); 2682 } 2683 2684 /* Clean up the bitmap */ 2685 for (page = fixup_start_addr; 2686 page < fixup_start_addr + host_ratio; page++) { 2687 /* All pages in this host page are now not sent */ 2688 set_bit(page, unsentmap); 2689 2690 /* 2691 * Remark them as dirty, updating the count for any pages 2692 * that weren't previously dirty. 2693 */ 2694 rs->migration_dirty_pages += !test_and_set_bit(page, bitmap); 2695 } 2696 } 2697 2698 if (unsent_pass) { 2699 /* Find the next sent page for the next iteration */ 2700 run_start = find_next_zero_bit(unsentmap, pages, run_start); 2701 } else { 2702 /* Find the next dirty page for the next iteration */ 2703 run_start = find_next_bit(bitmap, pages, run_start); 2704 } 2705 } 2706 } 2707 2708 /** 2709 * postcopy_chuck_hostpages: discrad any partially sent host page 2710 * 2711 * Utility for the outgoing postcopy code. 2712 * 2713 * Discard any partially sent host-page size chunks, mark any partially 2714 * dirty host-page size chunks as all dirty. In this case the host-page 2715 * is the host-page for the particular RAMBlock, i.e. it might be a huge page 2716 * 2717 * Returns zero on success 2718 * 2719 * @ms: current migration state 2720 * @block: block we want to work with 2721 */ 2722 static int postcopy_chunk_hostpages(MigrationState *ms, RAMBlock *block) 2723 { 2724 PostcopyDiscardState *pds = 2725 postcopy_discard_send_init(ms, block->idstr); 2726 2727 /* First pass: Discard all partially sent host pages */ 2728 postcopy_chunk_hostpages_pass(ms, true, block, pds); 2729 /* 2730 * Second pass: Ensure that all partially dirty host pages are made 2731 * fully dirty. 2732 */ 2733 postcopy_chunk_hostpages_pass(ms, false, block, pds); 2734 2735 postcopy_discard_send_finish(ms, pds); 2736 return 0; 2737 } 2738 2739 /** 2740 * ram_postcopy_send_discard_bitmap: transmit the discard bitmap 2741 * 2742 * Returns zero on success 2743 * 2744 * Transmit the set of pages to be discarded after precopy to the target 2745 * these are pages that: 2746 * a) Have been previously transmitted but are now dirty again 2747 * b) Pages that have never been transmitted, this ensures that 2748 * any pages on the destination that have been mapped by background 2749 * tasks get discarded (transparent huge pages is the specific concern) 2750 * Hopefully this is pretty sparse 2751 * 2752 * @ms: current migration state 2753 */ 2754 int ram_postcopy_send_discard_bitmap(MigrationState *ms) 2755 { 2756 RAMState *rs = ram_state; 2757 RAMBlock *block; 2758 int ret; 2759 2760 rcu_read_lock(); 2761 2762 /* This should be our last sync, the src is now paused */ 2763 migration_bitmap_sync(rs); 2764 2765 /* Easiest way to make sure we don't resume in the middle of a host-page */ 2766 rs->last_seen_block = NULL; 2767 rs->last_sent_block = NULL; 2768 rs->last_page = 0; 2769 2770 RAMBLOCK_FOREACH_MIGRATABLE(block) { 2771 unsigned long pages = block->used_length >> TARGET_PAGE_BITS; 2772 unsigned long *bitmap = block->bmap; 2773 unsigned long *unsentmap = block->unsentmap; 2774 2775 if (!unsentmap) { 2776 /* We don't have a safe way to resize the sentmap, so 2777 * if the bitmap was resized it will be NULL at this 2778 * point. 2779 */ 2780 error_report("migration ram resized during precopy phase"); 2781 rcu_read_unlock(); 2782 return -EINVAL; 2783 } 2784 /* Deal with TPS != HPS and huge pages */ 2785 ret = postcopy_chunk_hostpages(ms, block); 2786 if (ret) { 2787 rcu_read_unlock(); 2788 return ret; 2789 } 2790 2791 /* 2792 * Update the unsentmap to be unsentmap = unsentmap | dirty 2793 */ 2794 bitmap_or(unsentmap, unsentmap, bitmap, pages); 2795 #ifdef DEBUG_POSTCOPY 2796 ram_debug_dump_bitmap(unsentmap, true, pages); 2797 #endif 2798 } 2799 trace_ram_postcopy_send_discard_bitmap(); 2800 2801 ret = postcopy_each_ram_send_discard(ms); 2802 rcu_read_unlock(); 2803 2804 return ret; 2805 } 2806 2807 /** 2808 * ram_discard_range: discard dirtied pages at the beginning of postcopy 2809 * 2810 * Returns zero on success 2811 * 2812 * @rbname: name of the RAMBlock of the request. NULL means the 2813 * same that last one. 2814 * @start: RAMBlock starting page 2815 * @length: RAMBlock size 2816 */ 2817 int ram_discard_range(const char *rbname, uint64_t start, size_t length) 2818 { 2819 int ret = -1; 2820 2821 trace_ram_discard_range(rbname, start, length); 2822 2823 rcu_read_lock(); 2824 RAMBlock *rb = qemu_ram_block_by_name(rbname); 2825 2826 if (!rb) { 2827 error_report("ram_discard_range: Failed to find block '%s'", rbname); 2828 goto err; 2829 } 2830 2831 /* 2832 * On source VM, we don't need to update the received bitmap since 2833 * we don't even have one. 2834 */ 2835 if (rb->receivedmap) { 2836 bitmap_clear(rb->receivedmap, start >> qemu_target_page_bits(), 2837 length >> qemu_target_page_bits()); 2838 } 2839 2840 ret = ram_block_discard_range(rb, start, length); 2841 2842 err: 2843 rcu_read_unlock(); 2844 2845 return ret; 2846 } 2847 2848 /* 2849 * For every allocation, we will try not to crash the VM if the 2850 * allocation failed. 2851 */ 2852 static int xbzrle_init(void) 2853 { 2854 Error *local_err = NULL; 2855 2856 if (!migrate_use_xbzrle()) { 2857 return 0; 2858 } 2859 2860 XBZRLE_cache_lock(); 2861 2862 XBZRLE.zero_target_page = g_try_malloc0(TARGET_PAGE_SIZE); 2863 if (!XBZRLE.zero_target_page) { 2864 error_report("%s: Error allocating zero page", __func__); 2865 goto err_out; 2866 } 2867 2868 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size(), 2869 TARGET_PAGE_SIZE, &local_err); 2870 if (!XBZRLE.cache) { 2871 error_report_err(local_err); 2872 goto free_zero_page; 2873 } 2874 2875 XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE); 2876 if (!XBZRLE.encoded_buf) { 2877 error_report("%s: Error allocating encoded_buf", __func__); 2878 goto free_cache; 2879 } 2880 2881 XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE); 2882 if (!XBZRLE.current_buf) { 2883 error_report("%s: Error allocating current_buf", __func__); 2884 goto free_encoded_buf; 2885 } 2886 2887 /* We are all good */ 2888 XBZRLE_cache_unlock(); 2889 return 0; 2890 2891 free_encoded_buf: 2892 g_free(XBZRLE.encoded_buf); 2893 XBZRLE.encoded_buf = NULL; 2894 free_cache: 2895 cache_fini(XBZRLE.cache); 2896 XBZRLE.cache = NULL; 2897 free_zero_page: 2898 g_free(XBZRLE.zero_target_page); 2899 XBZRLE.zero_target_page = NULL; 2900 err_out: 2901 XBZRLE_cache_unlock(); 2902 return -ENOMEM; 2903 } 2904 2905 static int ram_state_init(RAMState **rsp) 2906 { 2907 *rsp = g_try_new0(RAMState, 1); 2908 2909 if (!*rsp) { 2910 error_report("%s: Init ramstate fail", __func__); 2911 return -1; 2912 } 2913 2914 qemu_mutex_init(&(*rsp)->bitmap_mutex); 2915 qemu_mutex_init(&(*rsp)->src_page_req_mutex); 2916 QSIMPLEQ_INIT(&(*rsp)->src_page_requests); 2917 2918 /* 2919 * Count the total number of pages used by ram blocks not including any 2920 * gaps due to alignment or unplugs. 2921 */ 2922 (*rsp)->migration_dirty_pages = ram_bytes_total() >> TARGET_PAGE_BITS; 2923 2924 ram_state_reset(*rsp); 2925 2926 return 0; 2927 } 2928 2929 static void ram_list_init_bitmaps(void) 2930 { 2931 RAMBlock *block; 2932 unsigned long pages; 2933 2934 /* Skip setting bitmap if there is no RAM */ 2935 if (ram_bytes_total()) { 2936 RAMBLOCK_FOREACH_MIGRATABLE(block) { 2937 pages = block->max_length >> TARGET_PAGE_BITS; 2938 block->bmap = bitmap_new(pages); 2939 bitmap_set(block->bmap, 0, pages); 2940 if (migrate_postcopy_ram()) { 2941 block->unsentmap = bitmap_new(pages); 2942 bitmap_set(block->unsentmap, 0, pages); 2943 } 2944 } 2945 } 2946 } 2947 2948 static void ram_init_bitmaps(RAMState *rs) 2949 { 2950 /* For memory_global_dirty_log_start below. */ 2951 qemu_mutex_lock_iothread(); 2952 qemu_mutex_lock_ramlist(); 2953 rcu_read_lock(); 2954 2955 ram_list_init_bitmaps(); 2956 memory_global_dirty_log_start(); 2957 migration_bitmap_sync(rs); 2958 2959 rcu_read_unlock(); 2960 qemu_mutex_unlock_ramlist(); 2961 qemu_mutex_unlock_iothread(); 2962 } 2963 2964 static int ram_init_all(RAMState **rsp) 2965 { 2966 if (ram_state_init(rsp)) { 2967 return -1; 2968 } 2969 2970 if (xbzrle_init()) { 2971 ram_state_cleanup(rsp); 2972 return -1; 2973 } 2974 2975 ram_init_bitmaps(*rsp); 2976 2977 return 0; 2978 } 2979 2980 static void ram_state_resume_prepare(RAMState *rs, QEMUFile *out) 2981 { 2982 RAMBlock *block; 2983 uint64_t pages = 0; 2984 2985 /* 2986 * Postcopy is not using xbzrle/compression, so no need for that. 2987 * Also, since source are already halted, we don't need to care 2988 * about dirty page logging as well. 2989 */ 2990 2991 RAMBLOCK_FOREACH_MIGRATABLE(block) { 2992 pages += bitmap_count_one(block->bmap, 2993 block->used_length >> TARGET_PAGE_BITS); 2994 } 2995 2996 /* This may not be aligned with current bitmaps. Recalculate. */ 2997 rs->migration_dirty_pages = pages; 2998 2999 rs->last_seen_block = NULL; 3000 rs->last_sent_block = NULL; 3001 rs->last_page = 0; 3002 rs->last_version = ram_list.version; 3003 /* 3004 * Disable the bulk stage, otherwise we'll resend the whole RAM no 3005 * matter what we have sent. 3006 */ 3007 rs->ram_bulk_stage = false; 3008 3009 /* Update RAMState cache of output QEMUFile */ 3010 rs->f = out; 3011 3012 trace_ram_state_resume_prepare(pages); 3013 } 3014 3015 /* 3016 * Each of ram_save_setup, ram_save_iterate and ram_save_complete has 3017 * long-running RCU critical section. When rcu-reclaims in the code 3018 * start to become numerous it will be necessary to reduce the 3019 * granularity of these critical sections. 3020 */ 3021 3022 /** 3023 * ram_save_setup: Setup RAM for migration 3024 * 3025 * Returns zero to indicate success and negative for error 3026 * 3027 * @f: QEMUFile where to send the data 3028 * @opaque: RAMState pointer 3029 */ 3030 static int ram_save_setup(QEMUFile *f, void *opaque) 3031 { 3032 RAMState **rsp = opaque; 3033 RAMBlock *block; 3034 3035 if (compress_threads_save_setup()) { 3036 return -1; 3037 } 3038 3039 /* migration has already setup the bitmap, reuse it. */ 3040 if (!migration_in_colo_state()) { 3041 if (ram_init_all(rsp) != 0) { 3042 compress_threads_save_cleanup(); 3043 return -1; 3044 } 3045 } 3046 (*rsp)->f = f; 3047 3048 rcu_read_lock(); 3049 3050 qemu_put_be64(f, ram_bytes_total() | RAM_SAVE_FLAG_MEM_SIZE); 3051 3052 RAMBLOCK_FOREACH_MIGRATABLE(block) { 3053 qemu_put_byte(f, strlen(block->idstr)); 3054 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr)); 3055 qemu_put_be64(f, block->used_length); 3056 if (migrate_postcopy_ram() && block->page_size != qemu_host_page_size) { 3057 qemu_put_be64(f, block->page_size); 3058 } 3059 } 3060 3061 rcu_read_unlock(); 3062 3063 ram_control_before_iterate(f, RAM_CONTROL_SETUP); 3064 ram_control_after_iterate(f, RAM_CONTROL_SETUP); 3065 3066 multifd_send_sync_main(); 3067 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 3068 qemu_fflush(f); 3069 3070 return 0; 3071 } 3072 3073 /** 3074 * ram_save_iterate: iterative stage for migration 3075 * 3076 * Returns zero to indicate success and negative for error 3077 * 3078 * @f: QEMUFile where to send the data 3079 * @opaque: RAMState pointer 3080 */ 3081 static int ram_save_iterate(QEMUFile *f, void *opaque) 3082 { 3083 RAMState **temp = opaque; 3084 RAMState *rs = *temp; 3085 int ret; 3086 int i; 3087 int64_t t0; 3088 int done = 0; 3089 3090 if (blk_mig_bulk_active()) { 3091 /* Avoid transferring ram during bulk phase of block migration as 3092 * the bulk phase will usually take a long time and transferring 3093 * ram updates during that time is pointless. */ 3094 goto out; 3095 } 3096 3097 rcu_read_lock(); 3098 if (ram_list.version != rs->last_version) { 3099 ram_state_reset(rs); 3100 } 3101 3102 /* Read version before ram_list.blocks */ 3103 smp_rmb(); 3104 3105 ram_control_before_iterate(f, RAM_CONTROL_ROUND); 3106 3107 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 3108 i = 0; 3109 while ((ret = qemu_file_rate_limit(f)) == 0 || 3110 !QSIMPLEQ_EMPTY(&rs->src_page_requests)) { 3111 int pages; 3112 3113 if (qemu_file_get_error(f)) { 3114 break; 3115 } 3116 3117 pages = ram_find_and_save_block(rs, false); 3118 /* no more pages to sent */ 3119 if (pages == 0) { 3120 done = 1; 3121 break; 3122 } 3123 rs->iterations++; 3124 3125 /* we want to check in the 1st loop, just in case it was the 1st time 3126 and we had to sync the dirty bitmap. 3127 qemu_get_clock_ns() is a bit expensive, so we only check each some 3128 iterations 3129 */ 3130 if ((i & 63) == 0) { 3131 uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) / 1000000; 3132 if (t1 > MAX_WAIT) { 3133 trace_ram_save_iterate_big_wait(t1, i); 3134 break; 3135 } 3136 } 3137 i++; 3138 } 3139 flush_compressed_data(rs); 3140 rcu_read_unlock(); 3141 3142 /* 3143 * Must occur before EOS (or any QEMUFile operation) 3144 * because of RDMA protocol. 3145 */ 3146 ram_control_after_iterate(f, RAM_CONTROL_ROUND); 3147 3148 multifd_send_sync_main(); 3149 out: 3150 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 3151 qemu_fflush(f); 3152 ram_counters.transferred += 8; 3153 3154 ret = qemu_file_get_error(f); 3155 if (ret < 0) { 3156 return ret; 3157 } 3158 3159 return done; 3160 } 3161 3162 /** 3163 * ram_save_complete: function called to send the remaining amount of ram 3164 * 3165 * Returns zero to indicate success 3166 * 3167 * Called with iothread lock 3168 * 3169 * @f: QEMUFile where to send the data 3170 * @opaque: RAMState pointer 3171 */ 3172 static int ram_save_complete(QEMUFile *f, void *opaque) 3173 { 3174 RAMState **temp = opaque; 3175 RAMState *rs = *temp; 3176 3177 rcu_read_lock(); 3178 3179 if (!migration_in_postcopy()) { 3180 migration_bitmap_sync(rs); 3181 } 3182 3183 ram_control_before_iterate(f, RAM_CONTROL_FINISH); 3184 3185 /* try transferring iterative blocks of memory */ 3186 3187 /* flush all remaining blocks regardless of rate limiting */ 3188 while (true) { 3189 int pages; 3190 3191 pages = ram_find_and_save_block(rs, !migration_in_colo_state()); 3192 /* no more blocks to sent */ 3193 if (pages == 0) { 3194 break; 3195 } 3196 } 3197 3198 flush_compressed_data(rs); 3199 ram_control_after_iterate(f, RAM_CONTROL_FINISH); 3200 3201 rcu_read_unlock(); 3202 3203 multifd_send_sync_main(); 3204 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 3205 qemu_fflush(f); 3206 3207 return 0; 3208 } 3209 3210 static void ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size, 3211 uint64_t *res_precopy_only, 3212 uint64_t *res_compatible, 3213 uint64_t *res_postcopy_only) 3214 { 3215 RAMState **temp = opaque; 3216 RAMState *rs = *temp; 3217 uint64_t remaining_size; 3218 3219 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE; 3220 3221 if (!migration_in_postcopy() && 3222 remaining_size < max_size) { 3223 qemu_mutex_lock_iothread(); 3224 rcu_read_lock(); 3225 migration_bitmap_sync(rs); 3226 rcu_read_unlock(); 3227 qemu_mutex_unlock_iothread(); 3228 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE; 3229 } 3230 3231 if (migrate_postcopy_ram()) { 3232 /* We can do postcopy, and all the data is postcopiable */ 3233 *res_compatible += remaining_size; 3234 } else { 3235 *res_precopy_only += remaining_size; 3236 } 3237 } 3238 3239 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host) 3240 { 3241 unsigned int xh_len; 3242 int xh_flags; 3243 uint8_t *loaded_data; 3244 3245 /* extract RLE header */ 3246 xh_flags = qemu_get_byte(f); 3247 xh_len = qemu_get_be16(f); 3248 3249 if (xh_flags != ENCODING_FLAG_XBZRLE) { 3250 error_report("Failed to load XBZRLE page - wrong compression!"); 3251 return -1; 3252 } 3253 3254 if (xh_len > TARGET_PAGE_SIZE) { 3255 error_report("Failed to load XBZRLE page - len overflow!"); 3256 return -1; 3257 } 3258 loaded_data = XBZRLE.decoded_buf; 3259 /* load data and decode */ 3260 /* it can change loaded_data to point to an internal buffer */ 3261 qemu_get_buffer_in_place(f, &loaded_data, xh_len); 3262 3263 /* decode RLE */ 3264 if (xbzrle_decode_buffer(loaded_data, xh_len, host, 3265 TARGET_PAGE_SIZE) == -1) { 3266 error_report("Failed to load XBZRLE page - decode error!"); 3267 return -1; 3268 } 3269 3270 return 0; 3271 } 3272 3273 /** 3274 * ram_block_from_stream: read a RAMBlock id from the migration stream 3275 * 3276 * Must be called from within a rcu critical section. 3277 * 3278 * Returns a pointer from within the RCU-protected ram_list. 3279 * 3280 * @f: QEMUFile where to read the data from 3281 * @flags: Page flags (mostly to see if it's a continuation of previous block) 3282 */ 3283 static inline RAMBlock *ram_block_from_stream(QEMUFile *f, int flags) 3284 { 3285 static RAMBlock *block = NULL; 3286 char id[256]; 3287 uint8_t len; 3288 3289 if (flags & RAM_SAVE_FLAG_CONTINUE) { 3290 if (!block) { 3291 error_report("Ack, bad migration stream!"); 3292 return NULL; 3293 } 3294 return block; 3295 } 3296 3297 len = qemu_get_byte(f); 3298 qemu_get_buffer(f, (uint8_t *)id, len); 3299 id[len] = 0; 3300 3301 block = qemu_ram_block_by_name(id); 3302 if (!block) { 3303 error_report("Can't find block %s", id); 3304 return NULL; 3305 } 3306 3307 if (!qemu_ram_is_migratable(block)) { 3308 error_report("block %s should not be migrated !", id); 3309 return NULL; 3310 } 3311 3312 return block; 3313 } 3314 3315 static inline void *host_from_ram_block_offset(RAMBlock *block, 3316 ram_addr_t offset) 3317 { 3318 if (!offset_in_ramblock(block, offset)) { 3319 return NULL; 3320 } 3321 3322 return block->host + offset; 3323 } 3324 3325 /** 3326 * ram_handle_compressed: handle the zero page case 3327 * 3328 * If a page (or a whole RDMA chunk) has been 3329 * determined to be zero, then zap it. 3330 * 3331 * @host: host address for the zero page 3332 * @ch: what the page is filled from. We only support zero 3333 * @size: size of the zero page 3334 */ 3335 void ram_handle_compressed(void *host, uint8_t ch, uint64_t size) 3336 { 3337 if (ch != 0 || !is_zero_range(host, size)) { 3338 memset(host, ch, size); 3339 } 3340 } 3341 3342 /* return the size after decompression, or negative value on error */ 3343 static int 3344 qemu_uncompress_data(z_stream *stream, uint8_t *dest, size_t dest_len, 3345 const uint8_t *source, size_t source_len) 3346 { 3347 int err; 3348 3349 err = inflateReset(stream); 3350 if (err != Z_OK) { 3351 return -1; 3352 } 3353 3354 stream->avail_in = source_len; 3355 stream->next_in = (uint8_t *)source; 3356 stream->avail_out = dest_len; 3357 stream->next_out = dest; 3358 3359 err = inflate(stream, Z_NO_FLUSH); 3360 if (err != Z_STREAM_END) { 3361 return -1; 3362 } 3363 3364 return stream->total_out; 3365 } 3366 3367 static void *do_data_decompress(void *opaque) 3368 { 3369 DecompressParam *param = opaque; 3370 unsigned long pagesize; 3371 uint8_t *des; 3372 int len, ret; 3373 3374 qemu_mutex_lock(¶m->mutex); 3375 while (!param->quit) { 3376 if (param->des) { 3377 des = param->des; 3378 len = param->len; 3379 param->des = 0; 3380 qemu_mutex_unlock(¶m->mutex); 3381 3382 pagesize = TARGET_PAGE_SIZE; 3383 3384 ret = qemu_uncompress_data(¶m->stream, des, pagesize, 3385 param->compbuf, len); 3386 if (ret < 0 && migrate_get_current()->decompress_error_check) { 3387 error_report("decompress data failed"); 3388 qemu_file_set_error(decomp_file, ret); 3389 } 3390 3391 qemu_mutex_lock(&decomp_done_lock); 3392 param->done = true; 3393 qemu_cond_signal(&decomp_done_cond); 3394 qemu_mutex_unlock(&decomp_done_lock); 3395 3396 qemu_mutex_lock(¶m->mutex); 3397 } else { 3398 qemu_cond_wait(¶m->cond, ¶m->mutex); 3399 } 3400 } 3401 qemu_mutex_unlock(¶m->mutex); 3402 3403 return NULL; 3404 } 3405 3406 static int wait_for_decompress_done(void) 3407 { 3408 int idx, thread_count; 3409 3410 if (!migrate_use_compression()) { 3411 return 0; 3412 } 3413 3414 thread_count = migrate_decompress_threads(); 3415 qemu_mutex_lock(&decomp_done_lock); 3416 for (idx = 0; idx < thread_count; idx++) { 3417 while (!decomp_param[idx].done) { 3418 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock); 3419 } 3420 } 3421 qemu_mutex_unlock(&decomp_done_lock); 3422 return qemu_file_get_error(decomp_file); 3423 } 3424 3425 static void compress_threads_load_cleanup(void) 3426 { 3427 int i, thread_count; 3428 3429 if (!migrate_use_compression()) { 3430 return; 3431 } 3432 thread_count = migrate_decompress_threads(); 3433 for (i = 0; i < thread_count; i++) { 3434 /* 3435 * we use it as a indicator which shows if the thread is 3436 * properly init'd or not 3437 */ 3438 if (!decomp_param[i].compbuf) { 3439 break; 3440 } 3441 3442 qemu_mutex_lock(&decomp_param[i].mutex); 3443 decomp_param[i].quit = true; 3444 qemu_cond_signal(&decomp_param[i].cond); 3445 qemu_mutex_unlock(&decomp_param[i].mutex); 3446 } 3447 for (i = 0; i < thread_count; i++) { 3448 if (!decomp_param[i].compbuf) { 3449 break; 3450 } 3451 3452 qemu_thread_join(decompress_threads + i); 3453 qemu_mutex_destroy(&decomp_param[i].mutex); 3454 qemu_cond_destroy(&decomp_param[i].cond); 3455 inflateEnd(&decomp_param[i].stream); 3456 g_free(decomp_param[i].compbuf); 3457 decomp_param[i].compbuf = NULL; 3458 } 3459 g_free(decompress_threads); 3460 g_free(decomp_param); 3461 decompress_threads = NULL; 3462 decomp_param = NULL; 3463 decomp_file = NULL; 3464 } 3465 3466 static int compress_threads_load_setup(QEMUFile *f) 3467 { 3468 int i, thread_count; 3469 3470 if (!migrate_use_compression()) { 3471 return 0; 3472 } 3473 3474 thread_count = migrate_decompress_threads(); 3475 decompress_threads = g_new0(QemuThread, thread_count); 3476 decomp_param = g_new0(DecompressParam, thread_count); 3477 qemu_mutex_init(&decomp_done_lock); 3478 qemu_cond_init(&decomp_done_cond); 3479 decomp_file = f; 3480 for (i = 0; i < thread_count; i++) { 3481 if (inflateInit(&decomp_param[i].stream) != Z_OK) { 3482 goto exit; 3483 } 3484 3485 decomp_param[i].compbuf = g_malloc0(compressBound(TARGET_PAGE_SIZE)); 3486 qemu_mutex_init(&decomp_param[i].mutex); 3487 qemu_cond_init(&decomp_param[i].cond); 3488 decomp_param[i].done = true; 3489 decomp_param[i].quit = false; 3490 qemu_thread_create(decompress_threads + i, "decompress", 3491 do_data_decompress, decomp_param + i, 3492 QEMU_THREAD_JOINABLE); 3493 } 3494 return 0; 3495 exit: 3496 compress_threads_load_cleanup(); 3497 return -1; 3498 } 3499 3500 static void decompress_data_with_multi_threads(QEMUFile *f, 3501 void *host, int len) 3502 { 3503 int idx, thread_count; 3504 3505 thread_count = migrate_decompress_threads(); 3506 qemu_mutex_lock(&decomp_done_lock); 3507 while (true) { 3508 for (idx = 0; idx < thread_count; idx++) { 3509 if (decomp_param[idx].done) { 3510 decomp_param[idx].done = false; 3511 qemu_mutex_lock(&decomp_param[idx].mutex); 3512 qemu_get_buffer(f, decomp_param[idx].compbuf, len); 3513 decomp_param[idx].des = host; 3514 decomp_param[idx].len = len; 3515 qemu_cond_signal(&decomp_param[idx].cond); 3516 qemu_mutex_unlock(&decomp_param[idx].mutex); 3517 break; 3518 } 3519 } 3520 if (idx < thread_count) { 3521 break; 3522 } else { 3523 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock); 3524 } 3525 } 3526 qemu_mutex_unlock(&decomp_done_lock); 3527 } 3528 3529 /** 3530 * ram_load_setup: Setup RAM for migration incoming side 3531 * 3532 * Returns zero to indicate success and negative for error 3533 * 3534 * @f: QEMUFile where to receive the data 3535 * @opaque: RAMState pointer 3536 */ 3537 static int ram_load_setup(QEMUFile *f, void *opaque) 3538 { 3539 if (compress_threads_load_setup(f)) { 3540 return -1; 3541 } 3542 3543 xbzrle_load_setup(); 3544 ramblock_recv_map_init(); 3545 return 0; 3546 } 3547 3548 static int ram_load_cleanup(void *opaque) 3549 { 3550 RAMBlock *rb; 3551 3552 RAMBLOCK_FOREACH_MIGRATABLE(rb) { 3553 if (ramblock_is_pmem(rb)) { 3554 pmem_persist(rb->host, rb->used_length); 3555 } 3556 } 3557 3558 xbzrle_load_cleanup(); 3559 compress_threads_load_cleanup(); 3560 3561 RAMBLOCK_FOREACH_MIGRATABLE(rb) { 3562 g_free(rb->receivedmap); 3563 rb->receivedmap = NULL; 3564 } 3565 return 0; 3566 } 3567 3568 /** 3569 * ram_postcopy_incoming_init: allocate postcopy data structures 3570 * 3571 * Returns 0 for success and negative if there was one error 3572 * 3573 * @mis: current migration incoming state 3574 * 3575 * Allocate data structures etc needed by incoming migration with 3576 * postcopy-ram. postcopy-ram's similarly names 3577 * postcopy_ram_incoming_init does the work. 3578 */ 3579 int ram_postcopy_incoming_init(MigrationIncomingState *mis) 3580 { 3581 return postcopy_ram_incoming_init(mis); 3582 } 3583 3584 /** 3585 * ram_load_postcopy: load a page in postcopy case 3586 * 3587 * Returns 0 for success or -errno in case of error 3588 * 3589 * Called in postcopy mode by ram_load(). 3590 * rcu_read_lock is taken prior to this being called. 3591 * 3592 * @f: QEMUFile where to send the data 3593 */ 3594 static int ram_load_postcopy(QEMUFile *f) 3595 { 3596 int flags = 0, ret = 0; 3597 bool place_needed = false; 3598 bool matches_target_page_size = false; 3599 MigrationIncomingState *mis = migration_incoming_get_current(); 3600 /* Temporary page that is later 'placed' */ 3601 void *postcopy_host_page = postcopy_get_tmp_page(mis); 3602 void *last_host = NULL; 3603 bool all_zero = false; 3604 3605 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) { 3606 ram_addr_t addr; 3607 void *host = NULL; 3608 void *page_buffer = NULL; 3609 void *place_source = NULL; 3610 RAMBlock *block = NULL; 3611 uint8_t ch; 3612 3613 addr = qemu_get_be64(f); 3614 3615 /* 3616 * If qemu file error, we should stop here, and then "addr" 3617 * may be invalid 3618 */ 3619 ret = qemu_file_get_error(f); 3620 if (ret) { 3621 break; 3622 } 3623 3624 flags = addr & ~TARGET_PAGE_MASK; 3625 addr &= TARGET_PAGE_MASK; 3626 3627 trace_ram_load_postcopy_loop((uint64_t)addr, flags); 3628 place_needed = false; 3629 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE)) { 3630 block = ram_block_from_stream(f, flags); 3631 3632 host = host_from_ram_block_offset(block, addr); 3633 if (!host) { 3634 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr); 3635 ret = -EINVAL; 3636 break; 3637 } 3638 matches_target_page_size = block->page_size == TARGET_PAGE_SIZE; 3639 /* 3640 * Postcopy requires that we place whole host pages atomically; 3641 * these may be huge pages for RAMBlocks that are backed by 3642 * hugetlbfs. 3643 * To make it atomic, the data is read into a temporary page 3644 * that's moved into place later. 3645 * The migration protocol uses, possibly smaller, target-pages 3646 * however the source ensures it always sends all the components 3647 * of a host page in order. 3648 */ 3649 page_buffer = postcopy_host_page + 3650 ((uintptr_t)host & (block->page_size - 1)); 3651 /* If all TP are zero then we can optimise the place */ 3652 if (!((uintptr_t)host & (block->page_size - 1))) { 3653 all_zero = true; 3654 } else { 3655 /* not the 1st TP within the HP */ 3656 if (host != (last_host + TARGET_PAGE_SIZE)) { 3657 error_report("Non-sequential target page %p/%p", 3658 host, last_host); 3659 ret = -EINVAL; 3660 break; 3661 } 3662 } 3663 3664 3665 /* 3666 * If it's the last part of a host page then we place the host 3667 * page 3668 */ 3669 place_needed = (((uintptr_t)host + TARGET_PAGE_SIZE) & 3670 (block->page_size - 1)) == 0; 3671 place_source = postcopy_host_page; 3672 } 3673 last_host = host; 3674 3675 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) { 3676 case RAM_SAVE_FLAG_ZERO: 3677 ch = qemu_get_byte(f); 3678 memset(page_buffer, ch, TARGET_PAGE_SIZE); 3679 if (ch) { 3680 all_zero = false; 3681 } 3682 break; 3683 3684 case RAM_SAVE_FLAG_PAGE: 3685 all_zero = false; 3686 if (!matches_target_page_size) { 3687 /* For huge pages, we always use temporary buffer */ 3688 qemu_get_buffer(f, page_buffer, TARGET_PAGE_SIZE); 3689 } else { 3690 /* 3691 * For small pages that matches target page size, we 3692 * avoid the qemu_file copy. Instead we directly use 3693 * the buffer of QEMUFile to place the page. Note: we 3694 * cannot do any QEMUFile operation before using that 3695 * buffer to make sure the buffer is valid when 3696 * placing the page. 3697 */ 3698 qemu_get_buffer_in_place(f, (uint8_t **)&place_source, 3699 TARGET_PAGE_SIZE); 3700 } 3701 break; 3702 case RAM_SAVE_FLAG_EOS: 3703 /* normal exit */ 3704 multifd_recv_sync_main(); 3705 break; 3706 default: 3707 error_report("Unknown combination of migration flags: %#x" 3708 " (postcopy mode)", flags); 3709 ret = -EINVAL; 3710 break; 3711 } 3712 3713 /* Detect for any possible file errors */ 3714 if (!ret && qemu_file_get_error(f)) { 3715 ret = qemu_file_get_error(f); 3716 } 3717 3718 if (!ret && place_needed) { 3719 /* This gets called at the last target page in the host page */ 3720 void *place_dest = host + TARGET_PAGE_SIZE - block->page_size; 3721 3722 if (all_zero) { 3723 ret = postcopy_place_page_zero(mis, place_dest, 3724 block); 3725 } else { 3726 ret = postcopy_place_page(mis, place_dest, 3727 place_source, block); 3728 } 3729 } 3730 } 3731 3732 return ret; 3733 } 3734 3735 static bool postcopy_is_advised(void) 3736 { 3737 PostcopyState ps = postcopy_state_get(); 3738 return ps >= POSTCOPY_INCOMING_ADVISE && ps < POSTCOPY_INCOMING_END; 3739 } 3740 3741 static bool postcopy_is_running(void) 3742 { 3743 PostcopyState ps = postcopy_state_get(); 3744 return ps >= POSTCOPY_INCOMING_LISTENING && ps < POSTCOPY_INCOMING_END; 3745 } 3746 3747 static int ram_load(QEMUFile *f, void *opaque, int version_id) 3748 { 3749 int flags = 0, ret = 0, invalid_flags = 0; 3750 static uint64_t seq_iter; 3751 int len = 0; 3752 /* 3753 * If system is running in postcopy mode, page inserts to host memory must 3754 * be atomic 3755 */ 3756 bool postcopy_running = postcopy_is_running(); 3757 /* ADVISE is earlier, it shows the source has the postcopy capability on */ 3758 bool postcopy_advised = postcopy_is_advised(); 3759 3760 seq_iter++; 3761 3762 if (version_id != 4) { 3763 ret = -EINVAL; 3764 } 3765 3766 if (!migrate_use_compression()) { 3767 invalid_flags |= RAM_SAVE_FLAG_COMPRESS_PAGE; 3768 } 3769 /* This RCU critical section can be very long running. 3770 * When RCU reclaims in the code start to become numerous, 3771 * it will be necessary to reduce the granularity of this 3772 * critical section. 3773 */ 3774 rcu_read_lock(); 3775 3776 if (postcopy_running) { 3777 ret = ram_load_postcopy(f); 3778 } 3779 3780 while (!postcopy_running && !ret && !(flags & RAM_SAVE_FLAG_EOS)) { 3781 ram_addr_t addr, total_ram_bytes; 3782 void *host = NULL; 3783 uint8_t ch; 3784 3785 addr = qemu_get_be64(f); 3786 flags = addr & ~TARGET_PAGE_MASK; 3787 addr &= TARGET_PAGE_MASK; 3788 3789 if (flags & invalid_flags) { 3790 if (flags & invalid_flags & RAM_SAVE_FLAG_COMPRESS_PAGE) { 3791 error_report("Received an unexpected compressed page"); 3792 } 3793 3794 ret = -EINVAL; 3795 break; 3796 } 3797 3798 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE | 3799 RAM_SAVE_FLAG_COMPRESS_PAGE | RAM_SAVE_FLAG_XBZRLE)) { 3800 RAMBlock *block = ram_block_from_stream(f, flags); 3801 3802 host = host_from_ram_block_offset(block, addr); 3803 if (!host) { 3804 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr); 3805 ret = -EINVAL; 3806 break; 3807 } 3808 ramblock_recv_bitmap_set(block, host); 3809 trace_ram_load_loop(block->idstr, (uint64_t)addr, flags, host); 3810 } 3811 3812 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) { 3813 case RAM_SAVE_FLAG_MEM_SIZE: 3814 /* Synchronize RAM block list */ 3815 total_ram_bytes = addr; 3816 while (!ret && total_ram_bytes) { 3817 RAMBlock *block; 3818 char id[256]; 3819 ram_addr_t length; 3820 3821 len = qemu_get_byte(f); 3822 qemu_get_buffer(f, (uint8_t *)id, len); 3823 id[len] = 0; 3824 length = qemu_get_be64(f); 3825 3826 block = qemu_ram_block_by_name(id); 3827 if (block && !qemu_ram_is_migratable(block)) { 3828 error_report("block %s should not be migrated !", id); 3829 ret = -EINVAL; 3830 } else if (block) { 3831 if (length != block->used_length) { 3832 Error *local_err = NULL; 3833 3834 ret = qemu_ram_resize(block, length, 3835 &local_err); 3836 if (local_err) { 3837 error_report_err(local_err); 3838 } 3839 } 3840 /* For postcopy we need to check hugepage sizes match */ 3841 if (postcopy_advised && 3842 block->page_size != qemu_host_page_size) { 3843 uint64_t remote_page_size = qemu_get_be64(f); 3844 if (remote_page_size != block->page_size) { 3845 error_report("Mismatched RAM page size %s " 3846 "(local) %zd != %" PRId64, 3847 id, block->page_size, 3848 remote_page_size); 3849 ret = -EINVAL; 3850 } 3851 } 3852 ram_control_load_hook(f, RAM_CONTROL_BLOCK_REG, 3853 block->idstr); 3854 } else { 3855 error_report("Unknown ramblock \"%s\", cannot " 3856 "accept migration", id); 3857 ret = -EINVAL; 3858 } 3859 3860 total_ram_bytes -= length; 3861 } 3862 break; 3863 3864 case RAM_SAVE_FLAG_ZERO: 3865 ch = qemu_get_byte(f); 3866 ram_handle_compressed(host, ch, TARGET_PAGE_SIZE); 3867 break; 3868 3869 case RAM_SAVE_FLAG_PAGE: 3870 qemu_get_buffer(f, host, TARGET_PAGE_SIZE); 3871 break; 3872 3873 case RAM_SAVE_FLAG_COMPRESS_PAGE: 3874 len = qemu_get_be32(f); 3875 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) { 3876 error_report("Invalid compressed data length: %d", len); 3877 ret = -EINVAL; 3878 break; 3879 } 3880 decompress_data_with_multi_threads(f, host, len); 3881 break; 3882 3883 case RAM_SAVE_FLAG_XBZRLE: 3884 if (load_xbzrle(f, addr, host) < 0) { 3885 error_report("Failed to decompress XBZRLE page at " 3886 RAM_ADDR_FMT, addr); 3887 ret = -EINVAL; 3888 break; 3889 } 3890 break; 3891 case RAM_SAVE_FLAG_EOS: 3892 /* normal exit */ 3893 multifd_recv_sync_main(); 3894 break; 3895 default: 3896 if (flags & RAM_SAVE_FLAG_HOOK) { 3897 ram_control_load_hook(f, RAM_CONTROL_HOOK, NULL); 3898 } else { 3899 error_report("Unknown combination of migration flags: %#x", 3900 flags); 3901 ret = -EINVAL; 3902 } 3903 } 3904 if (!ret) { 3905 ret = qemu_file_get_error(f); 3906 } 3907 } 3908 3909 ret |= wait_for_decompress_done(); 3910 rcu_read_unlock(); 3911 trace_ram_load_complete(ret, seq_iter); 3912 return ret; 3913 } 3914 3915 static bool ram_has_postcopy(void *opaque) 3916 { 3917 RAMBlock *rb; 3918 RAMBLOCK_FOREACH_MIGRATABLE(rb) { 3919 if (ramblock_is_pmem(rb)) { 3920 info_report("Block: %s, host: %p is a nvdimm memory, postcopy" 3921 "is not supported now!", rb->idstr, rb->host); 3922 return false; 3923 } 3924 } 3925 3926 return migrate_postcopy_ram(); 3927 } 3928 3929 /* Sync all the dirty bitmap with destination VM. */ 3930 static int ram_dirty_bitmap_sync_all(MigrationState *s, RAMState *rs) 3931 { 3932 RAMBlock *block; 3933 QEMUFile *file = s->to_dst_file; 3934 int ramblock_count = 0; 3935 3936 trace_ram_dirty_bitmap_sync_start(); 3937 3938 RAMBLOCK_FOREACH_MIGRATABLE(block) { 3939 qemu_savevm_send_recv_bitmap(file, block->idstr); 3940 trace_ram_dirty_bitmap_request(block->idstr); 3941 ramblock_count++; 3942 } 3943 3944 trace_ram_dirty_bitmap_sync_wait(); 3945 3946 /* Wait until all the ramblocks' dirty bitmap synced */ 3947 while (ramblock_count--) { 3948 qemu_sem_wait(&s->rp_state.rp_sem); 3949 } 3950 3951 trace_ram_dirty_bitmap_sync_complete(); 3952 3953 return 0; 3954 } 3955 3956 static void ram_dirty_bitmap_reload_notify(MigrationState *s) 3957 { 3958 qemu_sem_post(&s->rp_state.rp_sem); 3959 } 3960 3961 /* 3962 * Read the received bitmap, revert it as the initial dirty bitmap. 3963 * This is only used when the postcopy migration is paused but wants 3964 * to resume from a middle point. 3965 */ 3966 int ram_dirty_bitmap_reload(MigrationState *s, RAMBlock *block) 3967 { 3968 int ret = -EINVAL; 3969 QEMUFile *file = s->rp_state.from_dst_file; 3970 unsigned long *le_bitmap, nbits = block->used_length >> TARGET_PAGE_BITS; 3971 uint64_t local_size = DIV_ROUND_UP(nbits, 8); 3972 uint64_t size, end_mark; 3973 3974 trace_ram_dirty_bitmap_reload_begin(block->idstr); 3975 3976 if (s->state != MIGRATION_STATUS_POSTCOPY_RECOVER) { 3977 error_report("%s: incorrect state %s", __func__, 3978 MigrationStatus_str(s->state)); 3979 return -EINVAL; 3980 } 3981 3982 /* 3983 * Note: see comments in ramblock_recv_bitmap_send() on why we 3984 * need the endianess convertion, and the paddings. 3985 */ 3986 local_size = ROUND_UP(local_size, 8); 3987 3988 /* Add paddings */ 3989 le_bitmap = bitmap_new(nbits + BITS_PER_LONG); 3990 3991 size = qemu_get_be64(file); 3992 3993 /* The size of the bitmap should match with our ramblock */ 3994 if (size != local_size) { 3995 error_report("%s: ramblock '%s' bitmap size mismatch " 3996 "(0x%"PRIx64" != 0x%"PRIx64")", __func__, 3997 block->idstr, size, local_size); 3998 ret = -EINVAL; 3999 goto out; 4000 } 4001 4002 size = qemu_get_buffer(file, (uint8_t *)le_bitmap, local_size); 4003 end_mark = qemu_get_be64(file); 4004 4005 ret = qemu_file_get_error(file); 4006 if (ret || size != local_size) { 4007 error_report("%s: read bitmap failed for ramblock '%s': %d" 4008 " (size 0x%"PRIx64", got: 0x%"PRIx64")", 4009 __func__, block->idstr, ret, local_size, size); 4010 ret = -EIO; 4011 goto out; 4012 } 4013 4014 if (end_mark != RAMBLOCK_RECV_BITMAP_ENDING) { 4015 error_report("%s: ramblock '%s' end mark incorrect: 0x%"PRIu64, 4016 __func__, block->idstr, end_mark); 4017 ret = -EINVAL; 4018 goto out; 4019 } 4020 4021 /* 4022 * Endianess convertion. We are during postcopy (though paused). 4023 * The dirty bitmap won't change. We can directly modify it. 4024 */ 4025 bitmap_from_le(block->bmap, le_bitmap, nbits); 4026 4027 /* 4028 * What we received is "received bitmap". Revert it as the initial 4029 * dirty bitmap for this ramblock. 4030 */ 4031 bitmap_complement(block->bmap, block->bmap, nbits); 4032 4033 trace_ram_dirty_bitmap_reload_complete(block->idstr); 4034 4035 /* 4036 * We succeeded to sync bitmap for current ramblock. If this is 4037 * the last one to sync, we need to notify the main send thread. 4038 */ 4039 ram_dirty_bitmap_reload_notify(s); 4040 4041 ret = 0; 4042 out: 4043 g_free(le_bitmap); 4044 return ret; 4045 } 4046 4047 static int ram_resume_prepare(MigrationState *s, void *opaque) 4048 { 4049 RAMState *rs = *(RAMState **)opaque; 4050 int ret; 4051 4052 ret = ram_dirty_bitmap_sync_all(s, rs); 4053 if (ret) { 4054 return ret; 4055 } 4056 4057 ram_state_resume_prepare(rs, s->to_dst_file); 4058 4059 return 0; 4060 } 4061 4062 static SaveVMHandlers savevm_ram_handlers = { 4063 .save_setup = ram_save_setup, 4064 .save_live_iterate = ram_save_iterate, 4065 .save_live_complete_postcopy = ram_save_complete, 4066 .save_live_complete_precopy = ram_save_complete, 4067 .has_postcopy = ram_has_postcopy, 4068 .save_live_pending = ram_save_pending, 4069 .load_state = ram_load, 4070 .save_cleanup = ram_save_cleanup, 4071 .load_setup = ram_load_setup, 4072 .load_cleanup = ram_load_cleanup, 4073 .resume_prepare = ram_resume_prepare, 4074 }; 4075 4076 void ram_mig_init(void) 4077 { 4078 qemu_mutex_init(&XBZRLE.lock); 4079 register_savevm_live(NULL, "ram", 0, 4, &savevm_ram_handlers, &ram_state); 4080 } 4081