1 /* 2 * QEMU System Emulator 3 * 4 * Copyright (c) 2003-2008 Fabrice Bellard 5 * Copyright (c) 2011-2015 Red Hat Inc 6 * 7 * Authors: 8 * Juan Quintela <quintela@redhat.com> 9 * 10 * Permission is hereby granted, free of charge, to any person obtaining a copy 11 * of this software and associated documentation files (the "Software"), to deal 12 * in the Software without restriction, including without limitation the rights 13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 14 * copies of the Software, and to permit persons to whom the Software is 15 * furnished to do so, subject to the following conditions: 16 * 17 * The above copyright notice and this permission notice shall be included in 18 * all copies or substantial portions of the Software. 19 * 20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 26 * THE SOFTWARE. 27 */ 28 29 #include "qemu/osdep.h" 30 #include "cpu.h" 31 #include <zlib.h> 32 #include "qemu/cutils.h" 33 #include "qemu/bitops.h" 34 #include "qemu/bitmap.h" 35 #include "qemu/main-loop.h" 36 #include "qemu/pmem.h" 37 #include "xbzrle.h" 38 #include "ram.h" 39 #include "migration.h" 40 #include "socket.h" 41 #include "migration/register.h" 42 #include "migration/misc.h" 43 #include "qemu-file.h" 44 #include "postcopy-ram.h" 45 #include "page_cache.h" 46 #include "qemu/error-report.h" 47 #include "qapi/error.h" 48 #include "qapi/qapi-events-migration.h" 49 #include "qapi/qmp/qerror.h" 50 #include "trace.h" 51 #include "exec/ram_addr.h" 52 #include "exec/target_page.h" 53 #include "qemu/rcu_queue.h" 54 #include "migration/colo.h" 55 #include "block.h" 56 #include "sysemu/sysemu.h" 57 #include "qemu/uuid.h" 58 #include "savevm.h" 59 #include "qemu/iov.h" 60 61 /***********************************************************/ 62 /* ram save/restore */ 63 64 /* RAM_SAVE_FLAG_ZERO used to be named RAM_SAVE_FLAG_COMPRESS, it 65 * worked for pages that where filled with the same char. We switched 66 * it to only search for the zero value. And to avoid confusion with 67 * RAM_SSAVE_FLAG_COMPRESS_PAGE just rename it. 68 */ 69 70 #define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */ 71 #define RAM_SAVE_FLAG_ZERO 0x02 72 #define RAM_SAVE_FLAG_MEM_SIZE 0x04 73 #define RAM_SAVE_FLAG_PAGE 0x08 74 #define RAM_SAVE_FLAG_EOS 0x10 75 #define RAM_SAVE_FLAG_CONTINUE 0x20 76 #define RAM_SAVE_FLAG_XBZRLE 0x40 77 /* 0x80 is reserved in migration.h start with 0x100 next */ 78 #define RAM_SAVE_FLAG_COMPRESS_PAGE 0x100 79 80 static inline bool is_zero_range(uint8_t *p, uint64_t size) 81 { 82 return buffer_is_zero(p, size); 83 } 84 85 XBZRLECacheStats xbzrle_counters; 86 87 /* struct contains XBZRLE cache and a static page 88 used by the compression */ 89 static struct { 90 /* buffer used for XBZRLE encoding */ 91 uint8_t *encoded_buf; 92 /* buffer for storing page content */ 93 uint8_t *current_buf; 94 /* Cache for XBZRLE, Protected by lock. */ 95 PageCache *cache; 96 QemuMutex lock; 97 /* it will store a page full of zeros */ 98 uint8_t *zero_target_page; 99 /* buffer used for XBZRLE decoding */ 100 uint8_t *decoded_buf; 101 } XBZRLE; 102 103 static void XBZRLE_cache_lock(void) 104 { 105 if (migrate_use_xbzrle()) 106 qemu_mutex_lock(&XBZRLE.lock); 107 } 108 109 static void XBZRLE_cache_unlock(void) 110 { 111 if (migrate_use_xbzrle()) 112 qemu_mutex_unlock(&XBZRLE.lock); 113 } 114 115 /** 116 * xbzrle_cache_resize: resize the xbzrle cache 117 * 118 * This function is called from qmp_migrate_set_cache_size in main 119 * thread, possibly while a migration is in progress. A running 120 * migration may be using the cache and might finish during this call, 121 * hence changes to the cache are protected by XBZRLE.lock(). 122 * 123 * Returns 0 for success or -1 for error 124 * 125 * @new_size: new cache size 126 * @errp: set *errp if the check failed, with reason 127 */ 128 int xbzrle_cache_resize(int64_t new_size, Error **errp) 129 { 130 PageCache *new_cache; 131 int64_t ret = 0; 132 133 /* Check for truncation */ 134 if (new_size != (size_t)new_size) { 135 error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cache size", 136 "exceeding address space"); 137 return -1; 138 } 139 140 if (new_size == migrate_xbzrle_cache_size()) { 141 /* nothing to do */ 142 return 0; 143 } 144 145 XBZRLE_cache_lock(); 146 147 if (XBZRLE.cache != NULL) { 148 new_cache = cache_init(new_size, TARGET_PAGE_SIZE, errp); 149 if (!new_cache) { 150 ret = -1; 151 goto out; 152 } 153 154 cache_fini(XBZRLE.cache); 155 XBZRLE.cache = new_cache; 156 } 157 out: 158 XBZRLE_cache_unlock(); 159 return ret; 160 } 161 162 static bool ramblock_is_ignored(RAMBlock *block) 163 { 164 return !qemu_ram_is_migratable(block) || 165 (migrate_ignore_shared() && qemu_ram_is_shared(block)); 166 } 167 168 /* Should be holding either ram_list.mutex, or the RCU lock. */ 169 #define RAMBLOCK_FOREACH_NOT_IGNORED(block) \ 170 INTERNAL_RAMBLOCK_FOREACH(block) \ 171 if (ramblock_is_ignored(block)) {} else 172 173 #define RAMBLOCK_FOREACH_MIGRATABLE(block) \ 174 INTERNAL_RAMBLOCK_FOREACH(block) \ 175 if (!qemu_ram_is_migratable(block)) {} else 176 177 #undef RAMBLOCK_FOREACH 178 179 int foreach_not_ignored_block(RAMBlockIterFunc func, void *opaque) 180 { 181 RAMBlock *block; 182 int ret = 0; 183 184 rcu_read_lock(); 185 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 186 ret = func(block, opaque); 187 if (ret) { 188 break; 189 } 190 } 191 rcu_read_unlock(); 192 return ret; 193 } 194 195 static void ramblock_recv_map_init(void) 196 { 197 RAMBlock *rb; 198 199 RAMBLOCK_FOREACH_NOT_IGNORED(rb) { 200 assert(!rb->receivedmap); 201 rb->receivedmap = bitmap_new(rb->max_length >> qemu_target_page_bits()); 202 } 203 } 204 205 int ramblock_recv_bitmap_test(RAMBlock *rb, void *host_addr) 206 { 207 return test_bit(ramblock_recv_bitmap_offset(host_addr, rb), 208 rb->receivedmap); 209 } 210 211 bool ramblock_recv_bitmap_test_byte_offset(RAMBlock *rb, uint64_t byte_offset) 212 { 213 return test_bit(byte_offset >> TARGET_PAGE_BITS, rb->receivedmap); 214 } 215 216 void ramblock_recv_bitmap_set(RAMBlock *rb, void *host_addr) 217 { 218 set_bit_atomic(ramblock_recv_bitmap_offset(host_addr, rb), rb->receivedmap); 219 } 220 221 void ramblock_recv_bitmap_set_range(RAMBlock *rb, void *host_addr, 222 size_t nr) 223 { 224 bitmap_set_atomic(rb->receivedmap, 225 ramblock_recv_bitmap_offset(host_addr, rb), 226 nr); 227 } 228 229 #define RAMBLOCK_RECV_BITMAP_ENDING (0x0123456789abcdefULL) 230 231 /* 232 * Format: bitmap_size (8 bytes) + whole_bitmap (N bytes). 233 * 234 * Returns >0 if success with sent bytes, or <0 if error. 235 */ 236 int64_t ramblock_recv_bitmap_send(QEMUFile *file, 237 const char *block_name) 238 { 239 RAMBlock *block = qemu_ram_block_by_name(block_name); 240 unsigned long *le_bitmap, nbits; 241 uint64_t size; 242 243 if (!block) { 244 error_report("%s: invalid block name: %s", __func__, block_name); 245 return -1; 246 } 247 248 nbits = block->used_length >> TARGET_PAGE_BITS; 249 250 /* 251 * Make sure the tmp bitmap buffer is big enough, e.g., on 32bit 252 * machines we may need 4 more bytes for padding (see below 253 * comment). So extend it a bit before hand. 254 */ 255 le_bitmap = bitmap_new(nbits + BITS_PER_LONG); 256 257 /* 258 * Always use little endian when sending the bitmap. This is 259 * required that when source and destination VMs are not using the 260 * same endianess. (Note: big endian won't work.) 261 */ 262 bitmap_to_le(le_bitmap, block->receivedmap, nbits); 263 264 /* Size of the bitmap, in bytes */ 265 size = DIV_ROUND_UP(nbits, 8); 266 267 /* 268 * size is always aligned to 8 bytes for 64bit machines, but it 269 * may not be true for 32bit machines. We need this padding to 270 * make sure the migration can survive even between 32bit and 271 * 64bit machines. 272 */ 273 size = ROUND_UP(size, 8); 274 275 qemu_put_be64(file, size); 276 qemu_put_buffer(file, (const uint8_t *)le_bitmap, size); 277 /* 278 * Mark as an end, in case the middle part is screwed up due to 279 * some "misterious" reason. 280 */ 281 qemu_put_be64(file, RAMBLOCK_RECV_BITMAP_ENDING); 282 qemu_fflush(file); 283 284 g_free(le_bitmap); 285 286 if (qemu_file_get_error(file)) { 287 return qemu_file_get_error(file); 288 } 289 290 return size + sizeof(size); 291 } 292 293 /* 294 * An outstanding page request, on the source, having been received 295 * and queued 296 */ 297 struct RAMSrcPageRequest { 298 RAMBlock *rb; 299 hwaddr offset; 300 hwaddr len; 301 302 QSIMPLEQ_ENTRY(RAMSrcPageRequest) next_req; 303 }; 304 305 /* State of RAM for migration */ 306 struct RAMState { 307 /* QEMUFile used for this migration */ 308 QEMUFile *f; 309 /* Last block that we have visited searching for dirty pages */ 310 RAMBlock *last_seen_block; 311 /* Last block from where we have sent data */ 312 RAMBlock *last_sent_block; 313 /* Last dirty target page we have sent */ 314 ram_addr_t last_page; 315 /* last ram version we have seen */ 316 uint32_t last_version; 317 /* We are in the first round */ 318 bool ram_bulk_stage; 319 /* The free page optimization is enabled */ 320 bool fpo_enabled; 321 /* How many times we have dirty too many pages */ 322 int dirty_rate_high_cnt; 323 /* these variables are used for bitmap sync */ 324 /* last time we did a full bitmap_sync */ 325 int64_t time_last_bitmap_sync; 326 /* bytes transferred at start_time */ 327 uint64_t bytes_xfer_prev; 328 /* number of dirty pages since start_time */ 329 uint64_t num_dirty_pages_period; 330 /* xbzrle misses since the beginning of the period */ 331 uint64_t xbzrle_cache_miss_prev; 332 333 /* compression statistics since the beginning of the period */ 334 /* amount of count that no free thread to compress data */ 335 uint64_t compress_thread_busy_prev; 336 /* amount bytes after compression */ 337 uint64_t compressed_size_prev; 338 /* amount of compressed pages */ 339 uint64_t compress_pages_prev; 340 341 /* total handled target pages at the beginning of period */ 342 uint64_t target_page_count_prev; 343 /* total handled target pages since start */ 344 uint64_t target_page_count; 345 /* number of dirty bits in the bitmap */ 346 uint64_t migration_dirty_pages; 347 /* Protects modification of the bitmap and migration dirty pages */ 348 QemuMutex bitmap_mutex; 349 /* The RAMBlock used in the last src_page_requests */ 350 RAMBlock *last_req_rb; 351 /* Queue of outstanding page requests from the destination */ 352 QemuMutex src_page_req_mutex; 353 QSIMPLEQ_HEAD(, RAMSrcPageRequest) src_page_requests; 354 }; 355 typedef struct RAMState RAMState; 356 357 static RAMState *ram_state; 358 359 static NotifierWithReturnList precopy_notifier_list; 360 361 void precopy_infrastructure_init(void) 362 { 363 notifier_with_return_list_init(&precopy_notifier_list); 364 } 365 366 void precopy_add_notifier(NotifierWithReturn *n) 367 { 368 notifier_with_return_list_add(&precopy_notifier_list, n); 369 } 370 371 void precopy_remove_notifier(NotifierWithReturn *n) 372 { 373 notifier_with_return_remove(n); 374 } 375 376 int precopy_notify(PrecopyNotifyReason reason, Error **errp) 377 { 378 PrecopyNotifyData pnd; 379 pnd.reason = reason; 380 pnd.errp = errp; 381 382 return notifier_with_return_list_notify(&precopy_notifier_list, &pnd); 383 } 384 385 void precopy_enable_free_page_optimization(void) 386 { 387 if (!ram_state) { 388 return; 389 } 390 391 ram_state->fpo_enabled = true; 392 } 393 394 uint64_t ram_bytes_remaining(void) 395 { 396 return ram_state ? (ram_state->migration_dirty_pages * TARGET_PAGE_SIZE) : 397 0; 398 } 399 400 MigrationStats ram_counters; 401 402 /* used by the search for pages to send */ 403 struct PageSearchStatus { 404 /* Current block being searched */ 405 RAMBlock *block; 406 /* Current page to search from */ 407 unsigned long page; 408 /* Set once we wrap around */ 409 bool complete_round; 410 }; 411 typedef struct PageSearchStatus PageSearchStatus; 412 413 CompressionStats compression_counters; 414 415 struct CompressParam { 416 bool done; 417 bool quit; 418 bool zero_page; 419 QEMUFile *file; 420 QemuMutex mutex; 421 QemuCond cond; 422 RAMBlock *block; 423 ram_addr_t offset; 424 425 /* internally used fields */ 426 z_stream stream; 427 uint8_t *originbuf; 428 }; 429 typedef struct CompressParam CompressParam; 430 431 struct DecompressParam { 432 bool done; 433 bool quit; 434 QemuMutex mutex; 435 QemuCond cond; 436 void *des; 437 uint8_t *compbuf; 438 int len; 439 z_stream stream; 440 }; 441 typedef struct DecompressParam DecompressParam; 442 443 static CompressParam *comp_param; 444 static QemuThread *compress_threads; 445 /* comp_done_cond is used to wake up the migration thread when 446 * one of the compression threads has finished the compression. 447 * comp_done_lock is used to co-work with comp_done_cond. 448 */ 449 static QemuMutex comp_done_lock; 450 static QemuCond comp_done_cond; 451 /* The empty QEMUFileOps will be used by file in CompressParam */ 452 static const QEMUFileOps empty_ops = { }; 453 454 static QEMUFile *decomp_file; 455 static DecompressParam *decomp_param; 456 static QemuThread *decompress_threads; 457 static QemuMutex decomp_done_lock; 458 static QemuCond decomp_done_cond; 459 460 static bool do_compress_ram_page(QEMUFile *f, z_stream *stream, RAMBlock *block, 461 ram_addr_t offset, uint8_t *source_buf); 462 463 static void *do_data_compress(void *opaque) 464 { 465 CompressParam *param = opaque; 466 RAMBlock *block; 467 ram_addr_t offset; 468 bool zero_page; 469 470 qemu_mutex_lock(¶m->mutex); 471 while (!param->quit) { 472 if (param->block) { 473 block = param->block; 474 offset = param->offset; 475 param->block = NULL; 476 qemu_mutex_unlock(¶m->mutex); 477 478 zero_page = do_compress_ram_page(param->file, ¶m->stream, 479 block, offset, param->originbuf); 480 481 qemu_mutex_lock(&comp_done_lock); 482 param->done = true; 483 param->zero_page = zero_page; 484 qemu_cond_signal(&comp_done_cond); 485 qemu_mutex_unlock(&comp_done_lock); 486 487 qemu_mutex_lock(¶m->mutex); 488 } else { 489 qemu_cond_wait(¶m->cond, ¶m->mutex); 490 } 491 } 492 qemu_mutex_unlock(¶m->mutex); 493 494 return NULL; 495 } 496 497 static void compress_threads_save_cleanup(void) 498 { 499 int i, thread_count; 500 501 if (!migrate_use_compression() || !comp_param) { 502 return; 503 } 504 505 thread_count = migrate_compress_threads(); 506 for (i = 0; i < thread_count; i++) { 507 /* 508 * we use it as a indicator which shows if the thread is 509 * properly init'd or not 510 */ 511 if (!comp_param[i].file) { 512 break; 513 } 514 515 qemu_mutex_lock(&comp_param[i].mutex); 516 comp_param[i].quit = true; 517 qemu_cond_signal(&comp_param[i].cond); 518 qemu_mutex_unlock(&comp_param[i].mutex); 519 520 qemu_thread_join(compress_threads + i); 521 qemu_mutex_destroy(&comp_param[i].mutex); 522 qemu_cond_destroy(&comp_param[i].cond); 523 deflateEnd(&comp_param[i].stream); 524 g_free(comp_param[i].originbuf); 525 qemu_fclose(comp_param[i].file); 526 comp_param[i].file = NULL; 527 } 528 qemu_mutex_destroy(&comp_done_lock); 529 qemu_cond_destroy(&comp_done_cond); 530 g_free(compress_threads); 531 g_free(comp_param); 532 compress_threads = NULL; 533 comp_param = NULL; 534 } 535 536 static int compress_threads_save_setup(void) 537 { 538 int i, thread_count; 539 540 if (!migrate_use_compression()) { 541 return 0; 542 } 543 thread_count = migrate_compress_threads(); 544 compress_threads = g_new0(QemuThread, thread_count); 545 comp_param = g_new0(CompressParam, thread_count); 546 qemu_cond_init(&comp_done_cond); 547 qemu_mutex_init(&comp_done_lock); 548 for (i = 0; i < thread_count; i++) { 549 comp_param[i].originbuf = g_try_malloc(TARGET_PAGE_SIZE); 550 if (!comp_param[i].originbuf) { 551 goto exit; 552 } 553 554 if (deflateInit(&comp_param[i].stream, 555 migrate_compress_level()) != Z_OK) { 556 g_free(comp_param[i].originbuf); 557 goto exit; 558 } 559 560 /* comp_param[i].file is just used as a dummy buffer to save data, 561 * set its ops to empty. 562 */ 563 comp_param[i].file = qemu_fopen_ops(NULL, &empty_ops); 564 comp_param[i].done = true; 565 comp_param[i].quit = false; 566 qemu_mutex_init(&comp_param[i].mutex); 567 qemu_cond_init(&comp_param[i].cond); 568 qemu_thread_create(compress_threads + i, "compress", 569 do_data_compress, comp_param + i, 570 QEMU_THREAD_JOINABLE); 571 } 572 return 0; 573 574 exit: 575 compress_threads_save_cleanup(); 576 return -1; 577 } 578 579 /* Multiple fd's */ 580 581 #define MULTIFD_MAGIC 0x11223344U 582 #define MULTIFD_VERSION 1 583 584 #define MULTIFD_FLAG_SYNC (1 << 0) 585 586 /* This value needs to be a multiple of qemu_target_page_size() */ 587 #define MULTIFD_PACKET_SIZE (512 * 1024) 588 589 typedef struct { 590 uint32_t magic; 591 uint32_t version; 592 unsigned char uuid[16]; /* QemuUUID */ 593 uint8_t id; 594 uint8_t unused1[7]; /* Reserved for future use */ 595 uint64_t unused2[4]; /* Reserved for future use */ 596 } __attribute__((packed)) MultiFDInit_t; 597 598 typedef struct { 599 uint32_t magic; 600 uint32_t version; 601 uint32_t flags; 602 /* maximum number of allocated pages */ 603 uint32_t pages_alloc; 604 uint32_t pages_used; 605 /* size of the next packet that contains pages */ 606 uint32_t next_packet_size; 607 uint64_t packet_num; 608 uint64_t unused[4]; /* Reserved for future use */ 609 char ramblock[256]; 610 uint64_t offset[]; 611 } __attribute__((packed)) MultiFDPacket_t; 612 613 typedef struct { 614 /* number of used pages */ 615 uint32_t used; 616 /* number of allocated pages */ 617 uint32_t allocated; 618 /* global number of generated multifd packets */ 619 uint64_t packet_num; 620 /* offset of each page */ 621 ram_addr_t *offset; 622 /* pointer to each page */ 623 struct iovec *iov; 624 RAMBlock *block; 625 } MultiFDPages_t; 626 627 typedef struct { 628 /* this fields are not changed once the thread is created */ 629 /* channel number */ 630 uint8_t id; 631 /* channel thread name */ 632 char *name; 633 /* channel thread id */ 634 QemuThread thread; 635 /* communication channel */ 636 QIOChannel *c; 637 /* sem where to wait for more work */ 638 QemuSemaphore sem; 639 /* this mutex protects the following parameters */ 640 QemuMutex mutex; 641 /* is this channel thread running */ 642 bool running; 643 /* should this thread finish */ 644 bool quit; 645 /* thread has work to do */ 646 int pending_job; 647 /* array of pages to sent */ 648 MultiFDPages_t *pages; 649 /* packet allocated len */ 650 uint32_t packet_len; 651 /* pointer to the packet */ 652 MultiFDPacket_t *packet; 653 /* multifd flags for each packet */ 654 uint32_t flags; 655 /* size of the next packet that contains pages */ 656 uint32_t next_packet_size; 657 /* global number of generated multifd packets */ 658 uint64_t packet_num; 659 /* thread local variables */ 660 /* packets sent through this channel */ 661 uint64_t num_packets; 662 /* pages sent through this channel */ 663 uint64_t num_pages; 664 } MultiFDSendParams; 665 666 typedef struct { 667 /* this fields are not changed once the thread is created */ 668 /* channel number */ 669 uint8_t id; 670 /* channel thread name */ 671 char *name; 672 /* channel thread id */ 673 QemuThread thread; 674 /* communication channel */ 675 QIOChannel *c; 676 /* this mutex protects the following parameters */ 677 QemuMutex mutex; 678 /* is this channel thread running */ 679 bool running; 680 /* array of pages to receive */ 681 MultiFDPages_t *pages; 682 /* packet allocated len */ 683 uint32_t packet_len; 684 /* pointer to the packet */ 685 MultiFDPacket_t *packet; 686 /* multifd flags for each packet */ 687 uint32_t flags; 688 /* global number of generated multifd packets */ 689 uint64_t packet_num; 690 /* thread local variables */ 691 /* size of the next packet that contains pages */ 692 uint32_t next_packet_size; 693 /* packets sent through this channel */ 694 uint64_t num_packets; 695 /* pages sent through this channel */ 696 uint64_t num_pages; 697 /* syncs main thread and channels */ 698 QemuSemaphore sem_sync; 699 } MultiFDRecvParams; 700 701 static int multifd_send_initial_packet(MultiFDSendParams *p, Error **errp) 702 { 703 MultiFDInit_t msg; 704 int ret; 705 706 msg.magic = cpu_to_be32(MULTIFD_MAGIC); 707 msg.version = cpu_to_be32(MULTIFD_VERSION); 708 msg.id = p->id; 709 memcpy(msg.uuid, &qemu_uuid.data, sizeof(msg.uuid)); 710 711 ret = qio_channel_write_all(p->c, (char *)&msg, sizeof(msg), errp); 712 if (ret != 0) { 713 return -1; 714 } 715 return 0; 716 } 717 718 static int multifd_recv_initial_packet(QIOChannel *c, Error **errp) 719 { 720 MultiFDInit_t msg; 721 int ret; 722 723 ret = qio_channel_read_all(c, (char *)&msg, sizeof(msg), errp); 724 if (ret != 0) { 725 return -1; 726 } 727 728 msg.magic = be32_to_cpu(msg.magic); 729 msg.version = be32_to_cpu(msg.version); 730 731 if (msg.magic != MULTIFD_MAGIC) { 732 error_setg(errp, "multifd: received packet magic %x " 733 "expected %x", msg.magic, MULTIFD_MAGIC); 734 return -1; 735 } 736 737 if (msg.version != MULTIFD_VERSION) { 738 error_setg(errp, "multifd: received packet version %d " 739 "expected %d", msg.version, MULTIFD_VERSION); 740 return -1; 741 } 742 743 if (memcmp(msg.uuid, &qemu_uuid, sizeof(qemu_uuid))) { 744 char *uuid = qemu_uuid_unparse_strdup(&qemu_uuid); 745 char *msg_uuid = qemu_uuid_unparse_strdup((const QemuUUID *)msg.uuid); 746 747 error_setg(errp, "multifd: received uuid '%s' and expected " 748 "uuid '%s' for channel %hhd", msg_uuid, uuid, msg.id); 749 g_free(uuid); 750 g_free(msg_uuid); 751 return -1; 752 } 753 754 if (msg.id > migrate_multifd_channels()) { 755 error_setg(errp, "multifd: received channel version %d " 756 "expected %d", msg.version, MULTIFD_VERSION); 757 return -1; 758 } 759 760 return msg.id; 761 } 762 763 static MultiFDPages_t *multifd_pages_init(size_t size) 764 { 765 MultiFDPages_t *pages = g_new0(MultiFDPages_t, 1); 766 767 pages->allocated = size; 768 pages->iov = g_new0(struct iovec, size); 769 pages->offset = g_new0(ram_addr_t, size); 770 771 return pages; 772 } 773 774 static void multifd_pages_clear(MultiFDPages_t *pages) 775 { 776 pages->used = 0; 777 pages->allocated = 0; 778 pages->packet_num = 0; 779 pages->block = NULL; 780 g_free(pages->iov); 781 pages->iov = NULL; 782 g_free(pages->offset); 783 pages->offset = NULL; 784 g_free(pages); 785 } 786 787 static void multifd_send_fill_packet(MultiFDSendParams *p) 788 { 789 MultiFDPacket_t *packet = p->packet; 790 uint32_t page_max = MULTIFD_PACKET_SIZE / qemu_target_page_size(); 791 int i; 792 793 packet->magic = cpu_to_be32(MULTIFD_MAGIC); 794 packet->version = cpu_to_be32(MULTIFD_VERSION); 795 packet->flags = cpu_to_be32(p->flags); 796 packet->pages_alloc = cpu_to_be32(page_max); 797 packet->pages_used = cpu_to_be32(p->pages->used); 798 packet->next_packet_size = cpu_to_be32(p->next_packet_size); 799 packet->packet_num = cpu_to_be64(p->packet_num); 800 801 if (p->pages->block) { 802 strncpy(packet->ramblock, p->pages->block->idstr, 256); 803 } 804 805 for (i = 0; i < p->pages->used; i++) { 806 packet->offset[i] = cpu_to_be64(p->pages->offset[i]); 807 } 808 } 809 810 static int multifd_recv_unfill_packet(MultiFDRecvParams *p, Error **errp) 811 { 812 MultiFDPacket_t *packet = p->packet; 813 uint32_t pages_max = MULTIFD_PACKET_SIZE / qemu_target_page_size(); 814 RAMBlock *block; 815 int i; 816 817 packet->magic = be32_to_cpu(packet->magic); 818 if (packet->magic != MULTIFD_MAGIC) { 819 error_setg(errp, "multifd: received packet " 820 "magic %x and expected magic %x", 821 packet->magic, MULTIFD_MAGIC); 822 return -1; 823 } 824 825 packet->version = be32_to_cpu(packet->version); 826 if (packet->version != MULTIFD_VERSION) { 827 error_setg(errp, "multifd: received packet " 828 "version %d and expected version %d", 829 packet->version, MULTIFD_VERSION); 830 return -1; 831 } 832 833 p->flags = be32_to_cpu(packet->flags); 834 835 packet->pages_alloc = be32_to_cpu(packet->pages_alloc); 836 /* 837 * If we recevied a packet that is 100 times bigger than expected 838 * just stop migration. It is a magic number. 839 */ 840 if (packet->pages_alloc > pages_max * 100) { 841 error_setg(errp, "multifd: received packet " 842 "with size %d and expected a maximum size of %d", 843 packet->pages_alloc, pages_max * 100) ; 844 return -1; 845 } 846 /* 847 * We received a packet that is bigger than expected but inside 848 * reasonable limits (see previous comment). Just reallocate. 849 */ 850 if (packet->pages_alloc > p->pages->allocated) { 851 multifd_pages_clear(p->pages); 852 p->pages = multifd_pages_init(packet->pages_alloc); 853 } 854 855 p->pages->used = be32_to_cpu(packet->pages_used); 856 if (p->pages->used > packet->pages_alloc) { 857 error_setg(errp, "multifd: received packet " 858 "with %d pages and expected maximum pages are %d", 859 p->pages->used, packet->pages_alloc) ; 860 return -1; 861 } 862 863 p->next_packet_size = be32_to_cpu(packet->next_packet_size); 864 p->packet_num = be64_to_cpu(packet->packet_num); 865 866 if (p->pages->used) { 867 /* make sure that ramblock is 0 terminated */ 868 packet->ramblock[255] = 0; 869 block = qemu_ram_block_by_name(packet->ramblock); 870 if (!block) { 871 error_setg(errp, "multifd: unknown ram block %s", 872 packet->ramblock); 873 return -1; 874 } 875 } 876 877 for (i = 0; i < p->pages->used; i++) { 878 ram_addr_t offset = be64_to_cpu(packet->offset[i]); 879 880 if (offset > (block->used_length - TARGET_PAGE_SIZE)) { 881 error_setg(errp, "multifd: offset too long " RAM_ADDR_FMT 882 " (max " RAM_ADDR_FMT ")", 883 offset, block->max_length); 884 return -1; 885 } 886 p->pages->iov[i].iov_base = block->host + offset; 887 p->pages->iov[i].iov_len = TARGET_PAGE_SIZE; 888 } 889 890 return 0; 891 } 892 893 struct { 894 MultiFDSendParams *params; 895 /* array of pages to sent */ 896 MultiFDPages_t *pages; 897 /* syncs main thread and channels */ 898 QemuSemaphore sem_sync; 899 /* global number of generated multifd packets */ 900 uint64_t packet_num; 901 /* send channels ready */ 902 QemuSemaphore channels_ready; 903 } *multifd_send_state; 904 905 /* 906 * How we use multifd_send_state->pages and channel->pages? 907 * 908 * We create a pages for each channel, and a main one. Each time that 909 * we need to send a batch of pages we interchange the ones between 910 * multifd_send_state and the channel that is sending it. There are 911 * two reasons for that: 912 * - to not have to do so many mallocs during migration 913 * - to make easier to know what to free at the end of migration 914 * 915 * This way we always know who is the owner of each "pages" struct, 916 * and we don't need any locking. It belongs to the migration thread 917 * or to the channel thread. Switching is safe because the migration 918 * thread is using the channel mutex when changing it, and the channel 919 * have to had finish with its own, otherwise pending_job can't be 920 * false. 921 */ 922 923 static void multifd_send_pages(void) 924 { 925 int i; 926 static int next_channel; 927 MultiFDSendParams *p = NULL; /* make happy gcc */ 928 MultiFDPages_t *pages = multifd_send_state->pages; 929 uint64_t transferred; 930 931 qemu_sem_wait(&multifd_send_state->channels_ready); 932 for (i = next_channel;; i = (i + 1) % migrate_multifd_channels()) { 933 p = &multifd_send_state->params[i]; 934 935 qemu_mutex_lock(&p->mutex); 936 if (!p->pending_job) { 937 p->pending_job++; 938 next_channel = (i + 1) % migrate_multifd_channels(); 939 break; 940 } 941 qemu_mutex_unlock(&p->mutex); 942 } 943 p->pages->used = 0; 944 945 p->packet_num = multifd_send_state->packet_num++; 946 p->pages->block = NULL; 947 multifd_send_state->pages = p->pages; 948 p->pages = pages; 949 transferred = ((uint64_t) pages->used) * TARGET_PAGE_SIZE + p->packet_len; 950 ram_counters.multifd_bytes += transferred; 951 ram_counters.transferred += transferred;; 952 qemu_mutex_unlock(&p->mutex); 953 qemu_sem_post(&p->sem); 954 } 955 956 static void multifd_queue_page(RAMBlock *block, ram_addr_t offset) 957 { 958 MultiFDPages_t *pages = multifd_send_state->pages; 959 960 if (!pages->block) { 961 pages->block = block; 962 } 963 964 if (pages->block == block) { 965 pages->offset[pages->used] = offset; 966 pages->iov[pages->used].iov_base = block->host + offset; 967 pages->iov[pages->used].iov_len = TARGET_PAGE_SIZE; 968 pages->used++; 969 970 if (pages->used < pages->allocated) { 971 return; 972 } 973 } 974 975 multifd_send_pages(); 976 977 if (pages->block != block) { 978 multifd_queue_page(block, offset); 979 } 980 } 981 982 static void multifd_send_terminate_threads(Error *err) 983 { 984 int i; 985 986 if (err) { 987 MigrationState *s = migrate_get_current(); 988 migrate_set_error(s, err); 989 if (s->state == MIGRATION_STATUS_SETUP || 990 s->state == MIGRATION_STATUS_PRE_SWITCHOVER || 991 s->state == MIGRATION_STATUS_DEVICE || 992 s->state == MIGRATION_STATUS_ACTIVE) { 993 migrate_set_state(&s->state, s->state, 994 MIGRATION_STATUS_FAILED); 995 } 996 } 997 998 for (i = 0; i < migrate_multifd_channels(); i++) { 999 MultiFDSendParams *p = &multifd_send_state->params[i]; 1000 1001 qemu_mutex_lock(&p->mutex); 1002 p->quit = true; 1003 qemu_sem_post(&p->sem); 1004 qemu_mutex_unlock(&p->mutex); 1005 } 1006 } 1007 1008 void multifd_save_cleanup(void) 1009 { 1010 int i; 1011 1012 if (!migrate_use_multifd()) { 1013 return; 1014 } 1015 multifd_send_terminate_threads(NULL); 1016 for (i = 0; i < migrate_multifd_channels(); i++) { 1017 MultiFDSendParams *p = &multifd_send_state->params[i]; 1018 1019 if (p->running) { 1020 qemu_thread_join(&p->thread); 1021 } 1022 socket_send_channel_destroy(p->c); 1023 p->c = NULL; 1024 qemu_mutex_destroy(&p->mutex); 1025 qemu_sem_destroy(&p->sem); 1026 g_free(p->name); 1027 p->name = NULL; 1028 multifd_pages_clear(p->pages); 1029 p->pages = NULL; 1030 p->packet_len = 0; 1031 g_free(p->packet); 1032 p->packet = NULL; 1033 } 1034 qemu_sem_destroy(&multifd_send_state->channels_ready); 1035 qemu_sem_destroy(&multifd_send_state->sem_sync); 1036 g_free(multifd_send_state->params); 1037 multifd_send_state->params = NULL; 1038 multifd_pages_clear(multifd_send_state->pages); 1039 multifd_send_state->pages = NULL; 1040 g_free(multifd_send_state); 1041 multifd_send_state = NULL; 1042 } 1043 1044 static void multifd_send_sync_main(void) 1045 { 1046 int i; 1047 1048 if (!migrate_use_multifd()) { 1049 return; 1050 } 1051 if (multifd_send_state->pages->used) { 1052 multifd_send_pages(); 1053 } 1054 for (i = 0; i < migrate_multifd_channels(); i++) { 1055 MultiFDSendParams *p = &multifd_send_state->params[i]; 1056 1057 trace_multifd_send_sync_main_signal(p->id); 1058 1059 qemu_mutex_lock(&p->mutex); 1060 1061 p->packet_num = multifd_send_state->packet_num++; 1062 p->flags |= MULTIFD_FLAG_SYNC; 1063 p->pending_job++; 1064 qemu_mutex_unlock(&p->mutex); 1065 qemu_sem_post(&p->sem); 1066 } 1067 for (i = 0; i < migrate_multifd_channels(); i++) { 1068 MultiFDSendParams *p = &multifd_send_state->params[i]; 1069 1070 trace_multifd_send_sync_main_wait(p->id); 1071 qemu_sem_wait(&multifd_send_state->sem_sync); 1072 } 1073 trace_multifd_send_sync_main(multifd_send_state->packet_num); 1074 } 1075 1076 static void *multifd_send_thread(void *opaque) 1077 { 1078 MultiFDSendParams *p = opaque; 1079 Error *local_err = NULL; 1080 int ret; 1081 1082 trace_multifd_send_thread_start(p->id); 1083 rcu_register_thread(); 1084 1085 if (multifd_send_initial_packet(p, &local_err) < 0) { 1086 goto out; 1087 } 1088 /* initial packet */ 1089 p->num_packets = 1; 1090 1091 while (true) { 1092 qemu_sem_wait(&p->sem); 1093 qemu_mutex_lock(&p->mutex); 1094 1095 if (p->pending_job) { 1096 uint32_t used = p->pages->used; 1097 uint64_t packet_num = p->packet_num; 1098 uint32_t flags = p->flags; 1099 1100 p->next_packet_size = used * qemu_target_page_size(); 1101 multifd_send_fill_packet(p); 1102 p->flags = 0; 1103 p->num_packets++; 1104 p->num_pages += used; 1105 p->pages->used = 0; 1106 qemu_mutex_unlock(&p->mutex); 1107 1108 trace_multifd_send(p->id, packet_num, used, flags, 1109 p->next_packet_size); 1110 1111 ret = qio_channel_write_all(p->c, (void *)p->packet, 1112 p->packet_len, &local_err); 1113 if (ret != 0) { 1114 break; 1115 } 1116 1117 if (used) { 1118 ret = qio_channel_writev_all(p->c, p->pages->iov, 1119 used, &local_err); 1120 if (ret != 0) { 1121 break; 1122 } 1123 } 1124 1125 qemu_mutex_lock(&p->mutex); 1126 p->pending_job--; 1127 qemu_mutex_unlock(&p->mutex); 1128 1129 if (flags & MULTIFD_FLAG_SYNC) { 1130 qemu_sem_post(&multifd_send_state->sem_sync); 1131 } 1132 qemu_sem_post(&multifd_send_state->channels_ready); 1133 } else if (p->quit) { 1134 qemu_mutex_unlock(&p->mutex); 1135 break; 1136 } else { 1137 qemu_mutex_unlock(&p->mutex); 1138 /* sometimes there are spurious wakeups */ 1139 } 1140 } 1141 1142 out: 1143 if (local_err) { 1144 multifd_send_terminate_threads(local_err); 1145 } 1146 1147 qemu_mutex_lock(&p->mutex); 1148 p->running = false; 1149 qemu_mutex_unlock(&p->mutex); 1150 1151 rcu_unregister_thread(); 1152 trace_multifd_send_thread_end(p->id, p->num_packets, p->num_pages); 1153 1154 return NULL; 1155 } 1156 1157 static void multifd_new_send_channel_async(QIOTask *task, gpointer opaque) 1158 { 1159 MultiFDSendParams *p = opaque; 1160 QIOChannel *sioc = QIO_CHANNEL(qio_task_get_source(task)); 1161 Error *local_err = NULL; 1162 1163 if (qio_task_propagate_error(task, &local_err)) { 1164 migrate_set_error(migrate_get_current(), local_err); 1165 multifd_save_cleanup(); 1166 } else { 1167 p->c = QIO_CHANNEL(sioc); 1168 qio_channel_set_delay(p->c, false); 1169 p->running = true; 1170 qemu_thread_create(&p->thread, p->name, multifd_send_thread, p, 1171 QEMU_THREAD_JOINABLE); 1172 } 1173 } 1174 1175 int multifd_save_setup(void) 1176 { 1177 int thread_count; 1178 uint32_t page_count = MULTIFD_PACKET_SIZE / qemu_target_page_size(); 1179 uint8_t i; 1180 1181 if (!migrate_use_multifd()) { 1182 return 0; 1183 } 1184 thread_count = migrate_multifd_channels(); 1185 multifd_send_state = g_malloc0(sizeof(*multifd_send_state)); 1186 multifd_send_state->params = g_new0(MultiFDSendParams, thread_count); 1187 multifd_send_state->pages = multifd_pages_init(page_count); 1188 qemu_sem_init(&multifd_send_state->sem_sync, 0); 1189 qemu_sem_init(&multifd_send_state->channels_ready, 0); 1190 1191 for (i = 0; i < thread_count; i++) { 1192 MultiFDSendParams *p = &multifd_send_state->params[i]; 1193 1194 qemu_mutex_init(&p->mutex); 1195 qemu_sem_init(&p->sem, 0); 1196 p->quit = false; 1197 p->pending_job = 0; 1198 p->id = i; 1199 p->pages = multifd_pages_init(page_count); 1200 p->packet_len = sizeof(MultiFDPacket_t) 1201 + sizeof(ram_addr_t) * page_count; 1202 p->packet = g_malloc0(p->packet_len); 1203 p->name = g_strdup_printf("multifdsend_%d", i); 1204 socket_send_channel_create(multifd_new_send_channel_async, p); 1205 } 1206 return 0; 1207 } 1208 1209 struct { 1210 MultiFDRecvParams *params; 1211 /* number of created threads */ 1212 int count; 1213 /* syncs main thread and channels */ 1214 QemuSemaphore sem_sync; 1215 /* global number of generated multifd packets */ 1216 uint64_t packet_num; 1217 } *multifd_recv_state; 1218 1219 static void multifd_recv_terminate_threads(Error *err) 1220 { 1221 int i; 1222 1223 if (err) { 1224 MigrationState *s = migrate_get_current(); 1225 migrate_set_error(s, err); 1226 if (s->state == MIGRATION_STATUS_SETUP || 1227 s->state == MIGRATION_STATUS_ACTIVE) { 1228 migrate_set_state(&s->state, s->state, 1229 MIGRATION_STATUS_FAILED); 1230 } 1231 } 1232 1233 for (i = 0; i < migrate_multifd_channels(); i++) { 1234 MultiFDRecvParams *p = &multifd_recv_state->params[i]; 1235 1236 qemu_mutex_lock(&p->mutex); 1237 /* We could arrive here for two reasons: 1238 - normal quit, i.e. everything went fine, just finished 1239 - error quit: We close the channels so the channel threads 1240 finish the qio_channel_read_all_eof() */ 1241 qio_channel_shutdown(p->c, QIO_CHANNEL_SHUTDOWN_BOTH, NULL); 1242 qemu_mutex_unlock(&p->mutex); 1243 } 1244 } 1245 1246 int multifd_load_cleanup(Error **errp) 1247 { 1248 int i; 1249 int ret = 0; 1250 1251 if (!migrate_use_multifd()) { 1252 return 0; 1253 } 1254 multifd_recv_terminate_threads(NULL); 1255 for (i = 0; i < migrate_multifd_channels(); i++) { 1256 MultiFDRecvParams *p = &multifd_recv_state->params[i]; 1257 1258 if (p->running) { 1259 qemu_thread_join(&p->thread); 1260 } 1261 object_unref(OBJECT(p->c)); 1262 p->c = NULL; 1263 qemu_mutex_destroy(&p->mutex); 1264 qemu_sem_destroy(&p->sem_sync); 1265 g_free(p->name); 1266 p->name = NULL; 1267 multifd_pages_clear(p->pages); 1268 p->pages = NULL; 1269 p->packet_len = 0; 1270 g_free(p->packet); 1271 p->packet = NULL; 1272 } 1273 qemu_sem_destroy(&multifd_recv_state->sem_sync); 1274 g_free(multifd_recv_state->params); 1275 multifd_recv_state->params = NULL; 1276 g_free(multifd_recv_state); 1277 multifd_recv_state = NULL; 1278 1279 return ret; 1280 } 1281 1282 static void multifd_recv_sync_main(void) 1283 { 1284 int i; 1285 1286 if (!migrate_use_multifd()) { 1287 return; 1288 } 1289 for (i = 0; i < migrate_multifd_channels(); i++) { 1290 MultiFDRecvParams *p = &multifd_recv_state->params[i]; 1291 1292 trace_multifd_recv_sync_main_wait(p->id); 1293 qemu_sem_wait(&multifd_recv_state->sem_sync); 1294 } 1295 for (i = 0; i < migrate_multifd_channels(); i++) { 1296 MultiFDRecvParams *p = &multifd_recv_state->params[i]; 1297 1298 qemu_mutex_lock(&p->mutex); 1299 if (multifd_recv_state->packet_num < p->packet_num) { 1300 multifd_recv_state->packet_num = p->packet_num; 1301 } 1302 qemu_mutex_unlock(&p->mutex); 1303 trace_multifd_recv_sync_main_signal(p->id); 1304 qemu_sem_post(&p->sem_sync); 1305 } 1306 trace_multifd_recv_sync_main(multifd_recv_state->packet_num); 1307 } 1308 1309 static void *multifd_recv_thread(void *opaque) 1310 { 1311 MultiFDRecvParams *p = opaque; 1312 Error *local_err = NULL; 1313 int ret; 1314 1315 trace_multifd_recv_thread_start(p->id); 1316 rcu_register_thread(); 1317 1318 while (true) { 1319 uint32_t used; 1320 uint32_t flags; 1321 1322 ret = qio_channel_read_all_eof(p->c, (void *)p->packet, 1323 p->packet_len, &local_err); 1324 if (ret == 0) { /* EOF */ 1325 break; 1326 } 1327 if (ret == -1) { /* Error */ 1328 break; 1329 } 1330 1331 qemu_mutex_lock(&p->mutex); 1332 ret = multifd_recv_unfill_packet(p, &local_err); 1333 if (ret) { 1334 qemu_mutex_unlock(&p->mutex); 1335 break; 1336 } 1337 1338 used = p->pages->used; 1339 flags = p->flags; 1340 trace_multifd_recv(p->id, p->packet_num, used, flags, 1341 p->next_packet_size); 1342 p->num_packets++; 1343 p->num_pages += used; 1344 qemu_mutex_unlock(&p->mutex); 1345 1346 if (used) { 1347 ret = qio_channel_readv_all(p->c, p->pages->iov, 1348 used, &local_err); 1349 if (ret != 0) { 1350 break; 1351 } 1352 } 1353 1354 if (flags & MULTIFD_FLAG_SYNC) { 1355 qemu_sem_post(&multifd_recv_state->sem_sync); 1356 qemu_sem_wait(&p->sem_sync); 1357 } 1358 } 1359 1360 if (local_err) { 1361 multifd_recv_terminate_threads(local_err); 1362 } 1363 qemu_mutex_lock(&p->mutex); 1364 p->running = false; 1365 qemu_mutex_unlock(&p->mutex); 1366 1367 rcu_unregister_thread(); 1368 trace_multifd_recv_thread_end(p->id, p->num_packets, p->num_pages); 1369 1370 return NULL; 1371 } 1372 1373 int multifd_load_setup(void) 1374 { 1375 int thread_count; 1376 uint32_t page_count = MULTIFD_PACKET_SIZE / qemu_target_page_size(); 1377 uint8_t i; 1378 1379 if (!migrate_use_multifd()) { 1380 return 0; 1381 } 1382 thread_count = migrate_multifd_channels(); 1383 multifd_recv_state = g_malloc0(sizeof(*multifd_recv_state)); 1384 multifd_recv_state->params = g_new0(MultiFDRecvParams, thread_count); 1385 atomic_set(&multifd_recv_state->count, 0); 1386 qemu_sem_init(&multifd_recv_state->sem_sync, 0); 1387 1388 for (i = 0; i < thread_count; i++) { 1389 MultiFDRecvParams *p = &multifd_recv_state->params[i]; 1390 1391 qemu_mutex_init(&p->mutex); 1392 qemu_sem_init(&p->sem_sync, 0); 1393 p->id = i; 1394 p->pages = multifd_pages_init(page_count); 1395 p->packet_len = sizeof(MultiFDPacket_t) 1396 + sizeof(ram_addr_t) * page_count; 1397 p->packet = g_malloc0(p->packet_len); 1398 p->name = g_strdup_printf("multifdrecv_%d", i); 1399 } 1400 return 0; 1401 } 1402 1403 bool multifd_recv_all_channels_created(void) 1404 { 1405 int thread_count = migrate_multifd_channels(); 1406 1407 if (!migrate_use_multifd()) { 1408 return true; 1409 } 1410 1411 return thread_count == atomic_read(&multifd_recv_state->count); 1412 } 1413 1414 /* 1415 * Try to receive all multifd channels to get ready for the migration. 1416 * - Return true and do not set @errp when correctly receving all channels; 1417 * - Return false and do not set @errp when correctly receiving the current one; 1418 * - Return false and set @errp when failing to receive the current channel. 1419 */ 1420 bool multifd_recv_new_channel(QIOChannel *ioc, Error **errp) 1421 { 1422 MultiFDRecvParams *p; 1423 Error *local_err = NULL; 1424 int id; 1425 1426 id = multifd_recv_initial_packet(ioc, &local_err); 1427 if (id < 0) { 1428 multifd_recv_terminate_threads(local_err); 1429 error_propagate_prepend(errp, local_err, 1430 "failed to receive packet" 1431 " via multifd channel %d: ", 1432 atomic_read(&multifd_recv_state->count)); 1433 return false; 1434 } 1435 1436 p = &multifd_recv_state->params[id]; 1437 if (p->c != NULL) { 1438 error_setg(&local_err, "multifd: received id '%d' already setup'", 1439 id); 1440 multifd_recv_terminate_threads(local_err); 1441 error_propagate(errp, local_err); 1442 return false; 1443 } 1444 p->c = ioc; 1445 object_ref(OBJECT(ioc)); 1446 /* initial packet */ 1447 p->num_packets = 1; 1448 1449 p->running = true; 1450 qemu_thread_create(&p->thread, p->name, multifd_recv_thread, p, 1451 QEMU_THREAD_JOINABLE); 1452 atomic_inc(&multifd_recv_state->count); 1453 return atomic_read(&multifd_recv_state->count) == 1454 migrate_multifd_channels(); 1455 } 1456 1457 /** 1458 * save_page_header: write page header to wire 1459 * 1460 * If this is the 1st block, it also writes the block identification 1461 * 1462 * Returns the number of bytes written 1463 * 1464 * @f: QEMUFile where to send the data 1465 * @block: block that contains the page we want to send 1466 * @offset: offset inside the block for the page 1467 * in the lower bits, it contains flags 1468 */ 1469 static size_t save_page_header(RAMState *rs, QEMUFile *f, RAMBlock *block, 1470 ram_addr_t offset) 1471 { 1472 size_t size, len; 1473 1474 if (block == rs->last_sent_block) { 1475 offset |= RAM_SAVE_FLAG_CONTINUE; 1476 } 1477 qemu_put_be64(f, offset); 1478 size = 8; 1479 1480 if (!(offset & RAM_SAVE_FLAG_CONTINUE)) { 1481 len = strlen(block->idstr); 1482 qemu_put_byte(f, len); 1483 qemu_put_buffer(f, (uint8_t *)block->idstr, len); 1484 size += 1 + len; 1485 rs->last_sent_block = block; 1486 } 1487 return size; 1488 } 1489 1490 /** 1491 * mig_throttle_guest_down: throotle down the guest 1492 * 1493 * Reduce amount of guest cpu execution to hopefully slow down memory 1494 * writes. If guest dirty memory rate is reduced below the rate at 1495 * which we can transfer pages to the destination then we should be 1496 * able to complete migration. Some workloads dirty memory way too 1497 * fast and will not effectively converge, even with auto-converge. 1498 */ 1499 static void mig_throttle_guest_down(void) 1500 { 1501 MigrationState *s = migrate_get_current(); 1502 uint64_t pct_initial = s->parameters.cpu_throttle_initial; 1503 uint64_t pct_icrement = s->parameters.cpu_throttle_increment; 1504 int pct_max = s->parameters.max_cpu_throttle; 1505 1506 /* We have not started throttling yet. Let's start it. */ 1507 if (!cpu_throttle_active()) { 1508 cpu_throttle_set(pct_initial); 1509 } else { 1510 /* Throttling already on, just increase the rate */ 1511 cpu_throttle_set(MIN(cpu_throttle_get_percentage() + pct_icrement, 1512 pct_max)); 1513 } 1514 } 1515 1516 /** 1517 * xbzrle_cache_zero_page: insert a zero page in the XBZRLE cache 1518 * 1519 * @rs: current RAM state 1520 * @current_addr: address for the zero page 1521 * 1522 * Update the xbzrle cache to reflect a page that's been sent as all 0. 1523 * The important thing is that a stale (not-yet-0'd) page be replaced 1524 * by the new data. 1525 * As a bonus, if the page wasn't in the cache it gets added so that 1526 * when a small write is made into the 0'd page it gets XBZRLE sent. 1527 */ 1528 static void xbzrle_cache_zero_page(RAMState *rs, ram_addr_t current_addr) 1529 { 1530 if (rs->ram_bulk_stage || !migrate_use_xbzrle()) { 1531 return; 1532 } 1533 1534 /* We don't care if this fails to allocate a new cache page 1535 * as long as it updated an old one */ 1536 cache_insert(XBZRLE.cache, current_addr, XBZRLE.zero_target_page, 1537 ram_counters.dirty_sync_count); 1538 } 1539 1540 #define ENCODING_FLAG_XBZRLE 0x1 1541 1542 /** 1543 * save_xbzrle_page: compress and send current page 1544 * 1545 * Returns: 1 means that we wrote the page 1546 * 0 means that page is identical to the one already sent 1547 * -1 means that xbzrle would be longer than normal 1548 * 1549 * @rs: current RAM state 1550 * @current_data: pointer to the address of the page contents 1551 * @current_addr: addr of the page 1552 * @block: block that contains the page we want to send 1553 * @offset: offset inside the block for the page 1554 * @last_stage: if we are at the completion stage 1555 */ 1556 static int save_xbzrle_page(RAMState *rs, uint8_t **current_data, 1557 ram_addr_t current_addr, RAMBlock *block, 1558 ram_addr_t offset, bool last_stage) 1559 { 1560 int encoded_len = 0, bytes_xbzrle; 1561 uint8_t *prev_cached_page; 1562 1563 if (!cache_is_cached(XBZRLE.cache, current_addr, 1564 ram_counters.dirty_sync_count)) { 1565 xbzrle_counters.cache_miss++; 1566 if (!last_stage) { 1567 if (cache_insert(XBZRLE.cache, current_addr, *current_data, 1568 ram_counters.dirty_sync_count) == -1) { 1569 return -1; 1570 } else { 1571 /* update *current_data when the page has been 1572 inserted into cache */ 1573 *current_data = get_cached_data(XBZRLE.cache, current_addr); 1574 } 1575 } 1576 return -1; 1577 } 1578 1579 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr); 1580 1581 /* save current buffer into memory */ 1582 memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE); 1583 1584 /* XBZRLE encoding (if there is no overflow) */ 1585 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf, 1586 TARGET_PAGE_SIZE, XBZRLE.encoded_buf, 1587 TARGET_PAGE_SIZE); 1588 1589 /* 1590 * Update the cache contents, so that it corresponds to the data 1591 * sent, in all cases except where we skip the page. 1592 */ 1593 if (!last_stage && encoded_len != 0) { 1594 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE); 1595 /* 1596 * In the case where we couldn't compress, ensure that the caller 1597 * sends the data from the cache, since the guest might have 1598 * changed the RAM since we copied it. 1599 */ 1600 *current_data = prev_cached_page; 1601 } 1602 1603 if (encoded_len == 0) { 1604 trace_save_xbzrle_page_skipping(); 1605 return 0; 1606 } else if (encoded_len == -1) { 1607 trace_save_xbzrle_page_overflow(); 1608 xbzrle_counters.overflow++; 1609 return -1; 1610 } 1611 1612 /* Send XBZRLE based compressed page */ 1613 bytes_xbzrle = save_page_header(rs, rs->f, block, 1614 offset | RAM_SAVE_FLAG_XBZRLE); 1615 qemu_put_byte(rs->f, ENCODING_FLAG_XBZRLE); 1616 qemu_put_be16(rs->f, encoded_len); 1617 qemu_put_buffer(rs->f, XBZRLE.encoded_buf, encoded_len); 1618 bytes_xbzrle += encoded_len + 1 + 2; 1619 xbzrle_counters.pages++; 1620 xbzrle_counters.bytes += bytes_xbzrle; 1621 ram_counters.transferred += bytes_xbzrle; 1622 1623 return 1; 1624 } 1625 1626 /** 1627 * migration_bitmap_find_dirty: find the next dirty page from start 1628 * 1629 * Returns the page offset within memory region of the start of a dirty page 1630 * 1631 * @rs: current RAM state 1632 * @rb: RAMBlock where to search for dirty pages 1633 * @start: page where we start the search 1634 */ 1635 static inline 1636 unsigned long migration_bitmap_find_dirty(RAMState *rs, RAMBlock *rb, 1637 unsigned long start) 1638 { 1639 unsigned long size = rb->used_length >> TARGET_PAGE_BITS; 1640 unsigned long *bitmap = rb->bmap; 1641 unsigned long next; 1642 1643 if (ramblock_is_ignored(rb)) { 1644 return size; 1645 } 1646 1647 /* 1648 * When the free page optimization is enabled, we need to check the bitmap 1649 * to send the non-free pages rather than all the pages in the bulk stage. 1650 */ 1651 if (!rs->fpo_enabled && rs->ram_bulk_stage && start > 0) { 1652 next = start + 1; 1653 } else { 1654 next = find_next_bit(bitmap, size, start); 1655 } 1656 1657 return next; 1658 } 1659 1660 static inline bool migration_bitmap_clear_dirty(RAMState *rs, 1661 RAMBlock *rb, 1662 unsigned long page) 1663 { 1664 bool ret; 1665 1666 qemu_mutex_lock(&rs->bitmap_mutex); 1667 ret = test_and_clear_bit(page, rb->bmap); 1668 1669 if (ret) { 1670 rs->migration_dirty_pages--; 1671 } 1672 qemu_mutex_unlock(&rs->bitmap_mutex); 1673 1674 return ret; 1675 } 1676 1677 /* Called with RCU critical section */ 1678 static void migration_bitmap_sync_range(RAMState *rs, RAMBlock *rb, 1679 ram_addr_t length) 1680 { 1681 rs->migration_dirty_pages += 1682 cpu_physical_memory_sync_dirty_bitmap(rb, 0, length, 1683 &rs->num_dirty_pages_period); 1684 } 1685 1686 /** 1687 * ram_pagesize_summary: calculate all the pagesizes of a VM 1688 * 1689 * Returns a summary bitmap of the page sizes of all RAMBlocks 1690 * 1691 * For VMs with just normal pages this is equivalent to the host page 1692 * size. If it's got some huge pages then it's the OR of all the 1693 * different page sizes. 1694 */ 1695 uint64_t ram_pagesize_summary(void) 1696 { 1697 RAMBlock *block; 1698 uint64_t summary = 0; 1699 1700 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 1701 summary |= block->page_size; 1702 } 1703 1704 return summary; 1705 } 1706 1707 uint64_t ram_get_total_transferred_pages(void) 1708 { 1709 return ram_counters.normal + ram_counters.duplicate + 1710 compression_counters.pages + xbzrle_counters.pages; 1711 } 1712 1713 static void migration_update_rates(RAMState *rs, int64_t end_time) 1714 { 1715 uint64_t page_count = rs->target_page_count - rs->target_page_count_prev; 1716 double compressed_size; 1717 1718 /* calculate period counters */ 1719 ram_counters.dirty_pages_rate = rs->num_dirty_pages_period * 1000 1720 / (end_time - rs->time_last_bitmap_sync); 1721 1722 if (!page_count) { 1723 return; 1724 } 1725 1726 if (migrate_use_xbzrle()) { 1727 xbzrle_counters.cache_miss_rate = (double)(xbzrle_counters.cache_miss - 1728 rs->xbzrle_cache_miss_prev) / page_count; 1729 rs->xbzrle_cache_miss_prev = xbzrle_counters.cache_miss; 1730 } 1731 1732 if (migrate_use_compression()) { 1733 compression_counters.busy_rate = (double)(compression_counters.busy - 1734 rs->compress_thread_busy_prev) / page_count; 1735 rs->compress_thread_busy_prev = compression_counters.busy; 1736 1737 compressed_size = compression_counters.compressed_size - 1738 rs->compressed_size_prev; 1739 if (compressed_size) { 1740 double uncompressed_size = (compression_counters.pages - 1741 rs->compress_pages_prev) * TARGET_PAGE_SIZE; 1742 1743 /* Compression-Ratio = Uncompressed-size / Compressed-size */ 1744 compression_counters.compression_rate = 1745 uncompressed_size / compressed_size; 1746 1747 rs->compress_pages_prev = compression_counters.pages; 1748 rs->compressed_size_prev = compression_counters.compressed_size; 1749 } 1750 } 1751 } 1752 1753 static void migration_bitmap_sync(RAMState *rs) 1754 { 1755 RAMBlock *block; 1756 int64_t end_time; 1757 uint64_t bytes_xfer_now; 1758 1759 ram_counters.dirty_sync_count++; 1760 1761 if (!rs->time_last_bitmap_sync) { 1762 rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); 1763 } 1764 1765 trace_migration_bitmap_sync_start(); 1766 memory_global_dirty_log_sync(); 1767 1768 qemu_mutex_lock(&rs->bitmap_mutex); 1769 rcu_read_lock(); 1770 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 1771 migration_bitmap_sync_range(rs, block, block->used_length); 1772 } 1773 ram_counters.remaining = ram_bytes_remaining(); 1774 rcu_read_unlock(); 1775 qemu_mutex_unlock(&rs->bitmap_mutex); 1776 1777 trace_migration_bitmap_sync_end(rs->num_dirty_pages_period); 1778 1779 end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); 1780 1781 /* more than 1 second = 1000 millisecons */ 1782 if (end_time > rs->time_last_bitmap_sync + 1000) { 1783 bytes_xfer_now = ram_counters.transferred; 1784 1785 /* During block migration the auto-converge logic incorrectly detects 1786 * that ram migration makes no progress. Avoid this by disabling the 1787 * throttling logic during the bulk phase of block migration. */ 1788 if (migrate_auto_converge() && !blk_mig_bulk_active()) { 1789 /* The following detection logic can be refined later. For now: 1790 Check to see if the dirtied bytes is 50% more than the approx. 1791 amount of bytes that just got transferred since the last time we 1792 were in this routine. If that happens twice, start or increase 1793 throttling */ 1794 1795 if ((rs->num_dirty_pages_period * TARGET_PAGE_SIZE > 1796 (bytes_xfer_now - rs->bytes_xfer_prev) / 2) && 1797 (++rs->dirty_rate_high_cnt >= 2)) { 1798 trace_migration_throttle(); 1799 rs->dirty_rate_high_cnt = 0; 1800 mig_throttle_guest_down(); 1801 } 1802 } 1803 1804 migration_update_rates(rs, end_time); 1805 1806 rs->target_page_count_prev = rs->target_page_count; 1807 1808 /* reset period counters */ 1809 rs->time_last_bitmap_sync = end_time; 1810 rs->num_dirty_pages_period = 0; 1811 rs->bytes_xfer_prev = bytes_xfer_now; 1812 } 1813 if (migrate_use_events()) { 1814 qapi_event_send_migration_pass(ram_counters.dirty_sync_count); 1815 } 1816 } 1817 1818 static void migration_bitmap_sync_precopy(RAMState *rs) 1819 { 1820 Error *local_err = NULL; 1821 1822 /* 1823 * The current notifier usage is just an optimization to migration, so we 1824 * don't stop the normal migration process in the error case. 1825 */ 1826 if (precopy_notify(PRECOPY_NOTIFY_BEFORE_BITMAP_SYNC, &local_err)) { 1827 error_report_err(local_err); 1828 } 1829 1830 migration_bitmap_sync(rs); 1831 1832 if (precopy_notify(PRECOPY_NOTIFY_AFTER_BITMAP_SYNC, &local_err)) { 1833 error_report_err(local_err); 1834 } 1835 } 1836 1837 /** 1838 * save_zero_page_to_file: send the zero page to the file 1839 * 1840 * Returns the size of data written to the file, 0 means the page is not 1841 * a zero page 1842 * 1843 * @rs: current RAM state 1844 * @file: the file where the data is saved 1845 * @block: block that contains the page we want to send 1846 * @offset: offset inside the block for the page 1847 */ 1848 static int save_zero_page_to_file(RAMState *rs, QEMUFile *file, 1849 RAMBlock *block, ram_addr_t offset) 1850 { 1851 uint8_t *p = block->host + offset; 1852 int len = 0; 1853 1854 if (is_zero_range(p, TARGET_PAGE_SIZE)) { 1855 len += save_page_header(rs, file, block, offset | RAM_SAVE_FLAG_ZERO); 1856 qemu_put_byte(file, 0); 1857 len += 1; 1858 } 1859 return len; 1860 } 1861 1862 /** 1863 * save_zero_page: send the zero page to the stream 1864 * 1865 * Returns the number of pages written. 1866 * 1867 * @rs: current RAM state 1868 * @block: block that contains the page we want to send 1869 * @offset: offset inside the block for the page 1870 */ 1871 static int save_zero_page(RAMState *rs, RAMBlock *block, ram_addr_t offset) 1872 { 1873 int len = save_zero_page_to_file(rs, rs->f, block, offset); 1874 1875 if (len) { 1876 ram_counters.duplicate++; 1877 ram_counters.transferred += len; 1878 return 1; 1879 } 1880 return -1; 1881 } 1882 1883 static void ram_release_pages(const char *rbname, uint64_t offset, int pages) 1884 { 1885 if (!migrate_release_ram() || !migration_in_postcopy()) { 1886 return; 1887 } 1888 1889 ram_discard_range(rbname, offset, pages << TARGET_PAGE_BITS); 1890 } 1891 1892 /* 1893 * @pages: the number of pages written by the control path, 1894 * < 0 - error 1895 * > 0 - number of pages written 1896 * 1897 * Return true if the pages has been saved, otherwise false is returned. 1898 */ 1899 static bool control_save_page(RAMState *rs, RAMBlock *block, ram_addr_t offset, 1900 int *pages) 1901 { 1902 uint64_t bytes_xmit = 0; 1903 int ret; 1904 1905 *pages = -1; 1906 ret = ram_control_save_page(rs->f, block->offset, offset, TARGET_PAGE_SIZE, 1907 &bytes_xmit); 1908 if (ret == RAM_SAVE_CONTROL_NOT_SUPP) { 1909 return false; 1910 } 1911 1912 if (bytes_xmit) { 1913 ram_counters.transferred += bytes_xmit; 1914 *pages = 1; 1915 } 1916 1917 if (ret == RAM_SAVE_CONTROL_DELAYED) { 1918 return true; 1919 } 1920 1921 if (bytes_xmit > 0) { 1922 ram_counters.normal++; 1923 } else if (bytes_xmit == 0) { 1924 ram_counters.duplicate++; 1925 } 1926 1927 return true; 1928 } 1929 1930 /* 1931 * directly send the page to the stream 1932 * 1933 * Returns the number of pages written. 1934 * 1935 * @rs: current RAM state 1936 * @block: block that contains the page we want to send 1937 * @offset: offset inside the block for the page 1938 * @buf: the page to be sent 1939 * @async: send to page asyncly 1940 */ 1941 static int save_normal_page(RAMState *rs, RAMBlock *block, ram_addr_t offset, 1942 uint8_t *buf, bool async) 1943 { 1944 ram_counters.transferred += save_page_header(rs, rs->f, block, 1945 offset | RAM_SAVE_FLAG_PAGE); 1946 if (async) { 1947 qemu_put_buffer_async(rs->f, buf, TARGET_PAGE_SIZE, 1948 migrate_release_ram() & 1949 migration_in_postcopy()); 1950 } else { 1951 qemu_put_buffer(rs->f, buf, TARGET_PAGE_SIZE); 1952 } 1953 ram_counters.transferred += TARGET_PAGE_SIZE; 1954 ram_counters.normal++; 1955 return 1; 1956 } 1957 1958 /** 1959 * ram_save_page: send the given page to the stream 1960 * 1961 * Returns the number of pages written. 1962 * < 0 - error 1963 * >=0 - Number of pages written - this might legally be 0 1964 * if xbzrle noticed the page was the same. 1965 * 1966 * @rs: current RAM state 1967 * @block: block that contains the page we want to send 1968 * @offset: offset inside the block for the page 1969 * @last_stage: if we are at the completion stage 1970 */ 1971 static int ram_save_page(RAMState *rs, PageSearchStatus *pss, bool last_stage) 1972 { 1973 int pages = -1; 1974 uint8_t *p; 1975 bool send_async = true; 1976 RAMBlock *block = pss->block; 1977 ram_addr_t offset = pss->page << TARGET_PAGE_BITS; 1978 ram_addr_t current_addr = block->offset + offset; 1979 1980 p = block->host + offset; 1981 trace_ram_save_page(block->idstr, (uint64_t)offset, p); 1982 1983 XBZRLE_cache_lock(); 1984 if (!rs->ram_bulk_stage && !migration_in_postcopy() && 1985 migrate_use_xbzrle()) { 1986 pages = save_xbzrle_page(rs, &p, current_addr, block, 1987 offset, last_stage); 1988 if (!last_stage) { 1989 /* Can't send this cached data async, since the cache page 1990 * might get updated before it gets to the wire 1991 */ 1992 send_async = false; 1993 } 1994 } 1995 1996 /* XBZRLE overflow or normal page */ 1997 if (pages == -1) { 1998 pages = save_normal_page(rs, block, offset, p, send_async); 1999 } 2000 2001 XBZRLE_cache_unlock(); 2002 2003 return pages; 2004 } 2005 2006 static int ram_save_multifd_page(RAMState *rs, RAMBlock *block, 2007 ram_addr_t offset) 2008 { 2009 multifd_queue_page(block, offset); 2010 ram_counters.normal++; 2011 2012 return 1; 2013 } 2014 2015 static bool do_compress_ram_page(QEMUFile *f, z_stream *stream, RAMBlock *block, 2016 ram_addr_t offset, uint8_t *source_buf) 2017 { 2018 RAMState *rs = ram_state; 2019 uint8_t *p = block->host + (offset & TARGET_PAGE_MASK); 2020 bool zero_page = false; 2021 int ret; 2022 2023 if (save_zero_page_to_file(rs, f, block, offset)) { 2024 zero_page = true; 2025 goto exit; 2026 } 2027 2028 save_page_header(rs, f, block, offset | RAM_SAVE_FLAG_COMPRESS_PAGE); 2029 2030 /* 2031 * copy it to a internal buffer to avoid it being modified by VM 2032 * so that we can catch up the error during compression and 2033 * decompression 2034 */ 2035 memcpy(source_buf, p, TARGET_PAGE_SIZE); 2036 ret = qemu_put_compression_data(f, stream, source_buf, TARGET_PAGE_SIZE); 2037 if (ret < 0) { 2038 qemu_file_set_error(migrate_get_current()->to_dst_file, ret); 2039 error_report("compressed data failed!"); 2040 return false; 2041 } 2042 2043 exit: 2044 ram_release_pages(block->idstr, offset & TARGET_PAGE_MASK, 1); 2045 return zero_page; 2046 } 2047 2048 static void 2049 update_compress_thread_counts(const CompressParam *param, int bytes_xmit) 2050 { 2051 ram_counters.transferred += bytes_xmit; 2052 2053 if (param->zero_page) { 2054 ram_counters.duplicate++; 2055 return; 2056 } 2057 2058 /* 8 means a header with RAM_SAVE_FLAG_CONTINUE. */ 2059 compression_counters.compressed_size += bytes_xmit - 8; 2060 compression_counters.pages++; 2061 } 2062 2063 static bool save_page_use_compression(RAMState *rs); 2064 2065 static void flush_compressed_data(RAMState *rs) 2066 { 2067 int idx, len, thread_count; 2068 2069 if (!save_page_use_compression(rs)) { 2070 return; 2071 } 2072 thread_count = migrate_compress_threads(); 2073 2074 qemu_mutex_lock(&comp_done_lock); 2075 for (idx = 0; idx < thread_count; idx++) { 2076 while (!comp_param[idx].done) { 2077 qemu_cond_wait(&comp_done_cond, &comp_done_lock); 2078 } 2079 } 2080 qemu_mutex_unlock(&comp_done_lock); 2081 2082 for (idx = 0; idx < thread_count; idx++) { 2083 qemu_mutex_lock(&comp_param[idx].mutex); 2084 if (!comp_param[idx].quit) { 2085 len = qemu_put_qemu_file(rs->f, comp_param[idx].file); 2086 /* 2087 * it's safe to fetch zero_page without holding comp_done_lock 2088 * as there is no further request submitted to the thread, 2089 * i.e, the thread should be waiting for a request at this point. 2090 */ 2091 update_compress_thread_counts(&comp_param[idx], len); 2092 } 2093 qemu_mutex_unlock(&comp_param[idx].mutex); 2094 } 2095 } 2096 2097 static inline void set_compress_params(CompressParam *param, RAMBlock *block, 2098 ram_addr_t offset) 2099 { 2100 param->block = block; 2101 param->offset = offset; 2102 } 2103 2104 static int compress_page_with_multi_thread(RAMState *rs, RAMBlock *block, 2105 ram_addr_t offset) 2106 { 2107 int idx, thread_count, bytes_xmit = -1, pages = -1; 2108 bool wait = migrate_compress_wait_thread(); 2109 2110 thread_count = migrate_compress_threads(); 2111 qemu_mutex_lock(&comp_done_lock); 2112 retry: 2113 for (idx = 0; idx < thread_count; idx++) { 2114 if (comp_param[idx].done) { 2115 comp_param[idx].done = false; 2116 bytes_xmit = qemu_put_qemu_file(rs->f, comp_param[idx].file); 2117 qemu_mutex_lock(&comp_param[idx].mutex); 2118 set_compress_params(&comp_param[idx], block, offset); 2119 qemu_cond_signal(&comp_param[idx].cond); 2120 qemu_mutex_unlock(&comp_param[idx].mutex); 2121 pages = 1; 2122 update_compress_thread_counts(&comp_param[idx], bytes_xmit); 2123 break; 2124 } 2125 } 2126 2127 /* 2128 * wait for the free thread if the user specifies 'compress-wait-thread', 2129 * otherwise we will post the page out in the main thread as normal page. 2130 */ 2131 if (pages < 0 && wait) { 2132 qemu_cond_wait(&comp_done_cond, &comp_done_lock); 2133 goto retry; 2134 } 2135 qemu_mutex_unlock(&comp_done_lock); 2136 2137 return pages; 2138 } 2139 2140 /** 2141 * find_dirty_block: find the next dirty page and update any state 2142 * associated with the search process. 2143 * 2144 * Returns true if a page is found 2145 * 2146 * @rs: current RAM state 2147 * @pss: data about the state of the current dirty page scan 2148 * @again: set to false if the search has scanned the whole of RAM 2149 */ 2150 static bool find_dirty_block(RAMState *rs, PageSearchStatus *pss, bool *again) 2151 { 2152 pss->page = migration_bitmap_find_dirty(rs, pss->block, pss->page); 2153 if (pss->complete_round && pss->block == rs->last_seen_block && 2154 pss->page >= rs->last_page) { 2155 /* 2156 * We've been once around the RAM and haven't found anything. 2157 * Give up. 2158 */ 2159 *again = false; 2160 return false; 2161 } 2162 if ((pss->page << TARGET_PAGE_BITS) >= pss->block->used_length) { 2163 /* Didn't find anything in this RAM Block */ 2164 pss->page = 0; 2165 pss->block = QLIST_NEXT_RCU(pss->block, next); 2166 if (!pss->block) { 2167 /* 2168 * If memory migration starts over, we will meet a dirtied page 2169 * which may still exists in compression threads's ring, so we 2170 * should flush the compressed data to make sure the new page 2171 * is not overwritten by the old one in the destination. 2172 * 2173 * Also If xbzrle is on, stop using the data compression at this 2174 * point. In theory, xbzrle can do better than compression. 2175 */ 2176 flush_compressed_data(rs); 2177 2178 /* Hit the end of the list */ 2179 pss->block = QLIST_FIRST_RCU(&ram_list.blocks); 2180 /* Flag that we've looped */ 2181 pss->complete_round = true; 2182 rs->ram_bulk_stage = false; 2183 } 2184 /* Didn't find anything this time, but try again on the new block */ 2185 *again = true; 2186 return false; 2187 } else { 2188 /* Can go around again, but... */ 2189 *again = true; 2190 /* We've found something so probably don't need to */ 2191 return true; 2192 } 2193 } 2194 2195 /** 2196 * unqueue_page: gets a page of the queue 2197 * 2198 * Helper for 'get_queued_page' - gets a page off the queue 2199 * 2200 * Returns the block of the page (or NULL if none available) 2201 * 2202 * @rs: current RAM state 2203 * @offset: used to return the offset within the RAMBlock 2204 */ 2205 static RAMBlock *unqueue_page(RAMState *rs, ram_addr_t *offset) 2206 { 2207 RAMBlock *block = NULL; 2208 2209 if (QSIMPLEQ_EMPTY_ATOMIC(&rs->src_page_requests)) { 2210 return NULL; 2211 } 2212 2213 qemu_mutex_lock(&rs->src_page_req_mutex); 2214 if (!QSIMPLEQ_EMPTY(&rs->src_page_requests)) { 2215 struct RAMSrcPageRequest *entry = 2216 QSIMPLEQ_FIRST(&rs->src_page_requests); 2217 block = entry->rb; 2218 *offset = entry->offset; 2219 2220 if (entry->len > TARGET_PAGE_SIZE) { 2221 entry->len -= TARGET_PAGE_SIZE; 2222 entry->offset += TARGET_PAGE_SIZE; 2223 } else { 2224 memory_region_unref(block->mr); 2225 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req); 2226 g_free(entry); 2227 migration_consume_urgent_request(); 2228 } 2229 } 2230 qemu_mutex_unlock(&rs->src_page_req_mutex); 2231 2232 return block; 2233 } 2234 2235 /** 2236 * get_queued_page: unqueue a page from the postcopy requests 2237 * 2238 * Skips pages that are already sent (!dirty) 2239 * 2240 * Returns true if a queued page is found 2241 * 2242 * @rs: current RAM state 2243 * @pss: data about the state of the current dirty page scan 2244 */ 2245 static bool get_queued_page(RAMState *rs, PageSearchStatus *pss) 2246 { 2247 RAMBlock *block; 2248 ram_addr_t offset; 2249 bool dirty; 2250 2251 do { 2252 block = unqueue_page(rs, &offset); 2253 /* 2254 * We're sending this page, and since it's postcopy nothing else 2255 * will dirty it, and we must make sure it doesn't get sent again 2256 * even if this queue request was received after the background 2257 * search already sent it. 2258 */ 2259 if (block) { 2260 unsigned long page; 2261 2262 page = offset >> TARGET_PAGE_BITS; 2263 dirty = test_bit(page, block->bmap); 2264 if (!dirty) { 2265 trace_get_queued_page_not_dirty(block->idstr, (uint64_t)offset, 2266 page, test_bit(page, block->unsentmap)); 2267 } else { 2268 trace_get_queued_page(block->idstr, (uint64_t)offset, page); 2269 } 2270 } 2271 2272 } while (block && !dirty); 2273 2274 if (block) { 2275 /* 2276 * As soon as we start servicing pages out of order, then we have 2277 * to kill the bulk stage, since the bulk stage assumes 2278 * in (migration_bitmap_find_and_reset_dirty) that every page is 2279 * dirty, that's no longer true. 2280 */ 2281 rs->ram_bulk_stage = false; 2282 2283 /* 2284 * We want the background search to continue from the queued page 2285 * since the guest is likely to want other pages near to the page 2286 * it just requested. 2287 */ 2288 pss->block = block; 2289 pss->page = offset >> TARGET_PAGE_BITS; 2290 2291 /* 2292 * This unqueued page would break the "one round" check, even is 2293 * really rare. 2294 */ 2295 pss->complete_round = false; 2296 } 2297 2298 return !!block; 2299 } 2300 2301 /** 2302 * migration_page_queue_free: drop any remaining pages in the ram 2303 * request queue 2304 * 2305 * It should be empty at the end anyway, but in error cases there may 2306 * be some left. in case that there is any page left, we drop it. 2307 * 2308 */ 2309 static void migration_page_queue_free(RAMState *rs) 2310 { 2311 struct RAMSrcPageRequest *mspr, *next_mspr; 2312 /* This queue generally should be empty - but in the case of a failed 2313 * migration might have some droppings in. 2314 */ 2315 rcu_read_lock(); 2316 QSIMPLEQ_FOREACH_SAFE(mspr, &rs->src_page_requests, next_req, next_mspr) { 2317 memory_region_unref(mspr->rb->mr); 2318 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req); 2319 g_free(mspr); 2320 } 2321 rcu_read_unlock(); 2322 } 2323 2324 /** 2325 * ram_save_queue_pages: queue the page for transmission 2326 * 2327 * A request from postcopy destination for example. 2328 * 2329 * Returns zero on success or negative on error 2330 * 2331 * @rbname: Name of the RAMBLock of the request. NULL means the 2332 * same that last one. 2333 * @start: starting address from the start of the RAMBlock 2334 * @len: length (in bytes) to send 2335 */ 2336 int ram_save_queue_pages(const char *rbname, ram_addr_t start, ram_addr_t len) 2337 { 2338 RAMBlock *ramblock; 2339 RAMState *rs = ram_state; 2340 2341 ram_counters.postcopy_requests++; 2342 rcu_read_lock(); 2343 if (!rbname) { 2344 /* Reuse last RAMBlock */ 2345 ramblock = rs->last_req_rb; 2346 2347 if (!ramblock) { 2348 /* 2349 * Shouldn't happen, we can't reuse the last RAMBlock if 2350 * it's the 1st request. 2351 */ 2352 error_report("ram_save_queue_pages no previous block"); 2353 goto err; 2354 } 2355 } else { 2356 ramblock = qemu_ram_block_by_name(rbname); 2357 2358 if (!ramblock) { 2359 /* We shouldn't be asked for a non-existent RAMBlock */ 2360 error_report("ram_save_queue_pages no block '%s'", rbname); 2361 goto err; 2362 } 2363 rs->last_req_rb = ramblock; 2364 } 2365 trace_ram_save_queue_pages(ramblock->idstr, start, len); 2366 if (start+len > ramblock->used_length) { 2367 error_report("%s request overrun start=" RAM_ADDR_FMT " len=" 2368 RAM_ADDR_FMT " blocklen=" RAM_ADDR_FMT, 2369 __func__, start, len, ramblock->used_length); 2370 goto err; 2371 } 2372 2373 struct RAMSrcPageRequest *new_entry = 2374 g_malloc0(sizeof(struct RAMSrcPageRequest)); 2375 new_entry->rb = ramblock; 2376 new_entry->offset = start; 2377 new_entry->len = len; 2378 2379 memory_region_ref(ramblock->mr); 2380 qemu_mutex_lock(&rs->src_page_req_mutex); 2381 QSIMPLEQ_INSERT_TAIL(&rs->src_page_requests, new_entry, next_req); 2382 migration_make_urgent_request(); 2383 qemu_mutex_unlock(&rs->src_page_req_mutex); 2384 rcu_read_unlock(); 2385 2386 return 0; 2387 2388 err: 2389 rcu_read_unlock(); 2390 return -1; 2391 } 2392 2393 static bool save_page_use_compression(RAMState *rs) 2394 { 2395 if (!migrate_use_compression()) { 2396 return false; 2397 } 2398 2399 /* 2400 * If xbzrle is on, stop using the data compression after first 2401 * round of migration even if compression is enabled. In theory, 2402 * xbzrle can do better than compression. 2403 */ 2404 if (rs->ram_bulk_stage || !migrate_use_xbzrle()) { 2405 return true; 2406 } 2407 2408 return false; 2409 } 2410 2411 /* 2412 * try to compress the page before posting it out, return true if the page 2413 * has been properly handled by compression, otherwise needs other 2414 * paths to handle it 2415 */ 2416 static bool save_compress_page(RAMState *rs, RAMBlock *block, ram_addr_t offset) 2417 { 2418 if (!save_page_use_compression(rs)) { 2419 return false; 2420 } 2421 2422 /* 2423 * When starting the process of a new block, the first page of 2424 * the block should be sent out before other pages in the same 2425 * block, and all the pages in last block should have been sent 2426 * out, keeping this order is important, because the 'cont' flag 2427 * is used to avoid resending the block name. 2428 * 2429 * We post the fist page as normal page as compression will take 2430 * much CPU resource. 2431 */ 2432 if (block != rs->last_sent_block) { 2433 flush_compressed_data(rs); 2434 return false; 2435 } 2436 2437 if (compress_page_with_multi_thread(rs, block, offset) > 0) { 2438 return true; 2439 } 2440 2441 compression_counters.busy++; 2442 return false; 2443 } 2444 2445 /** 2446 * ram_save_target_page: save one target page 2447 * 2448 * Returns the number of pages written 2449 * 2450 * @rs: current RAM state 2451 * @pss: data about the page we want to send 2452 * @last_stage: if we are at the completion stage 2453 */ 2454 static int ram_save_target_page(RAMState *rs, PageSearchStatus *pss, 2455 bool last_stage) 2456 { 2457 RAMBlock *block = pss->block; 2458 ram_addr_t offset = pss->page << TARGET_PAGE_BITS; 2459 int res; 2460 2461 if (control_save_page(rs, block, offset, &res)) { 2462 return res; 2463 } 2464 2465 if (save_compress_page(rs, block, offset)) { 2466 return 1; 2467 } 2468 2469 res = save_zero_page(rs, block, offset); 2470 if (res > 0) { 2471 /* Must let xbzrle know, otherwise a previous (now 0'd) cached 2472 * page would be stale 2473 */ 2474 if (!save_page_use_compression(rs)) { 2475 XBZRLE_cache_lock(); 2476 xbzrle_cache_zero_page(rs, block->offset + offset); 2477 XBZRLE_cache_unlock(); 2478 } 2479 ram_release_pages(block->idstr, offset, res); 2480 return res; 2481 } 2482 2483 /* 2484 * do not use multifd for compression as the first page in the new 2485 * block should be posted out before sending the compressed page 2486 */ 2487 if (!save_page_use_compression(rs) && migrate_use_multifd()) { 2488 return ram_save_multifd_page(rs, block, offset); 2489 } 2490 2491 return ram_save_page(rs, pss, last_stage); 2492 } 2493 2494 /** 2495 * ram_save_host_page: save a whole host page 2496 * 2497 * Starting at *offset send pages up to the end of the current host 2498 * page. It's valid for the initial offset to point into the middle of 2499 * a host page in which case the remainder of the hostpage is sent. 2500 * Only dirty target pages are sent. Note that the host page size may 2501 * be a huge page for this block. 2502 * The saving stops at the boundary of the used_length of the block 2503 * if the RAMBlock isn't a multiple of the host page size. 2504 * 2505 * Returns the number of pages written or negative on error 2506 * 2507 * @rs: current RAM state 2508 * @ms: current migration state 2509 * @pss: data about the page we want to send 2510 * @last_stage: if we are at the completion stage 2511 */ 2512 static int ram_save_host_page(RAMState *rs, PageSearchStatus *pss, 2513 bool last_stage) 2514 { 2515 int tmppages, pages = 0; 2516 size_t pagesize_bits = 2517 qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS; 2518 2519 if (ramblock_is_ignored(pss->block)) { 2520 error_report("block %s should not be migrated !", pss->block->idstr); 2521 return 0; 2522 } 2523 2524 do { 2525 /* Check the pages is dirty and if it is send it */ 2526 if (!migration_bitmap_clear_dirty(rs, pss->block, pss->page)) { 2527 pss->page++; 2528 continue; 2529 } 2530 2531 tmppages = ram_save_target_page(rs, pss, last_stage); 2532 if (tmppages < 0) { 2533 return tmppages; 2534 } 2535 2536 pages += tmppages; 2537 if (pss->block->unsentmap) { 2538 clear_bit(pss->page, pss->block->unsentmap); 2539 } 2540 2541 pss->page++; 2542 } while ((pss->page & (pagesize_bits - 1)) && 2543 offset_in_ramblock(pss->block, pss->page << TARGET_PAGE_BITS)); 2544 2545 /* The offset we leave with is the last one we looked at */ 2546 pss->page--; 2547 return pages; 2548 } 2549 2550 /** 2551 * ram_find_and_save_block: finds a dirty page and sends it to f 2552 * 2553 * Called within an RCU critical section. 2554 * 2555 * Returns the number of pages written where zero means no dirty pages, 2556 * or negative on error 2557 * 2558 * @rs: current RAM state 2559 * @last_stage: if we are at the completion stage 2560 * 2561 * On systems where host-page-size > target-page-size it will send all the 2562 * pages in a host page that are dirty. 2563 */ 2564 2565 static int ram_find_and_save_block(RAMState *rs, bool last_stage) 2566 { 2567 PageSearchStatus pss; 2568 int pages = 0; 2569 bool again, found; 2570 2571 /* No dirty page as there is zero RAM */ 2572 if (!ram_bytes_total()) { 2573 return pages; 2574 } 2575 2576 pss.block = rs->last_seen_block; 2577 pss.page = rs->last_page; 2578 pss.complete_round = false; 2579 2580 if (!pss.block) { 2581 pss.block = QLIST_FIRST_RCU(&ram_list.blocks); 2582 } 2583 2584 do { 2585 again = true; 2586 found = get_queued_page(rs, &pss); 2587 2588 if (!found) { 2589 /* priority queue empty, so just search for something dirty */ 2590 found = find_dirty_block(rs, &pss, &again); 2591 } 2592 2593 if (found) { 2594 pages = ram_save_host_page(rs, &pss, last_stage); 2595 } 2596 } while (!pages && again); 2597 2598 rs->last_seen_block = pss.block; 2599 rs->last_page = pss.page; 2600 2601 return pages; 2602 } 2603 2604 void acct_update_position(QEMUFile *f, size_t size, bool zero) 2605 { 2606 uint64_t pages = size / TARGET_PAGE_SIZE; 2607 2608 if (zero) { 2609 ram_counters.duplicate += pages; 2610 } else { 2611 ram_counters.normal += pages; 2612 ram_counters.transferred += size; 2613 qemu_update_position(f, size); 2614 } 2615 } 2616 2617 static uint64_t ram_bytes_total_common(bool count_ignored) 2618 { 2619 RAMBlock *block; 2620 uint64_t total = 0; 2621 2622 rcu_read_lock(); 2623 if (count_ignored) { 2624 RAMBLOCK_FOREACH_MIGRATABLE(block) { 2625 total += block->used_length; 2626 } 2627 } else { 2628 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 2629 total += block->used_length; 2630 } 2631 } 2632 rcu_read_unlock(); 2633 return total; 2634 } 2635 2636 uint64_t ram_bytes_total(void) 2637 { 2638 return ram_bytes_total_common(false); 2639 } 2640 2641 static void xbzrle_load_setup(void) 2642 { 2643 XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE); 2644 } 2645 2646 static void xbzrle_load_cleanup(void) 2647 { 2648 g_free(XBZRLE.decoded_buf); 2649 XBZRLE.decoded_buf = NULL; 2650 } 2651 2652 static void ram_state_cleanup(RAMState **rsp) 2653 { 2654 if (*rsp) { 2655 migration_page_queue_free(*rsp); 2656 qemu_mutex_destroy(&(*rsp)->bitmap_mutex); 2657 qemu_mutex_destroy(&(*rsp)->src_page_req_mutex); 2658 g_free(*rsp); 2659 *rsp = NULL; 2660 } 2661 } 2662 2663 static void xbzrle_cleanup(void) 2664 { 2665 XBZRLE_cache_lock(); 2666 if (XBZRLE.cache) { 2667 cache_fini(XBZRLE.cache); 2668 g_free(XBZRLE.encoded_buf); 2669 g_free(XBZRLE.current_buf); 2670 g_free(XBZRLE.zero_target_page); 2671 XBZRLE.cache = NULL; 2672 XBZRLE.encoded_buf = NULL; 2673 XBZRLE.current_buf = NULL; 2674 XBZRLE.zero_target_page = NULL; 2675 } 2676 XBZRLE_cache_unlock(); 2677 } 2678 2679 static void ram_save_cleanup(void *opaque) 2680 { 2681 RAMState **rsp = opaque; 2682 RAMBlock *block; 2683 2684 /* caller have hold iothread lock or is in a bh, so there is 2685 * no writing race against the migration bitmap 2686 */ 2687 memory_global_dirty_log_stop(); 2688 2689 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 2690 g_free(block->bmap); 2691 block->bmap = NULL; 2692 g_free(block->unsentmap); 2693 block->unsentmap = NULL; 2694 } 2695 2696 xbzrle_cleanup(); 2697 compress_threads_save_cleanup(); 2698 ram_state_cleanup(rsp); 2699 } 2700 2701 static void ram_state_reset(RAMState *rs) 2702 { 2703 rs->last_seen_block = NULL; 2704 rs->last_sent_block = NULL; 2705 rs->last_page = 0; 2706 rs->last_version = ram_list.version; 2707 rs->ram_bulk_stage = true; 2708 rs->fpo_enabled = false; 2709 } 2710 2711 #define MAX_WAIT 50 /* ms, half buffered_file limit */ 2712 2713 /* 2714 * 'expected' is the value you expect the bitmap mostly to be full 2715 * of; it won't bother printing lines that are all this value. 2716 * If 'todump' is null the migration bitmap is dumped. 2717 */ 2718 void ram_debug_dump_bitmap(unsigned long *todump, bool expected, 2719 unsigned long pages) 2720 { 2721 int64_t cur; 2722 int64_t linelen = 128; 2723 char linebuf[129]; 2724 2725 for (cur = 0; cur < pages; cur += linelen) { 2726 int64_t curb; 2727 bool found = false; 2728 /* 2729 * Last line; catch the case where the line length 2730 * is longer than remaining ram 2731 */ 2732 if (cur + linelen > pages) { 2733 linelen = pages - cur; 2734 } 2735 for (curb = 0; curb < linelen; curb++) { 2736 bool thisbit = test_bit(cur + curb, todump); 2737 linebuf[curb] = thisbit ? '1' : '.'; 2738 found = found || (thisbit != expected); 2739 } 2740 if (found) { 2741 linebuf[curb] = '\0'; 2742 fprintf(stderr, "0x%08" PRIx64 " : %s\n", cur, linebuf); 2743 } 2744 } 2745 } 2746 2747 /* **** functions for postcopy ***** */ 2748 2749 void ram_postcopy_migrated_memory_release(MigrationState *ms) 2750 { 2751 struct RAMBlock *block; 2752 2753 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 2754 unsigned long *bitmap = block->bmap; 2755 unsigned long range = block->used_length >> TARGET_PAGE_BITS; 2756 unsigned long run_start = find_next_zero_bit(bitmap, range, 0); 2757 2758 while (run_start < range) { 2759 unsigned long run_end = find_next_bit(bitmap, range, run_start + 1); 2760 ram_discard_range(block->idstr, run_start << TARGET_PAGE_BITS, 2761 (run_end - run_start) << TARGET_PAGE_BITS); 2762 run_start = find_next_zero_bit(bitmap, range, run_end + 1); 2763 } 2764 } 2765 } 2766 2767 /** 2768 * postcopy_send_discard_bm_ram: discard a RAMBlock 2769 * 2770 * Returns zero on success 2771 * 2772 * Callback from postcopy_each_ram_send_discard for each RAMBlock 2773 * Note: At this point the 'unsentmap' is the processed bitmap combined 2774 * with the dirtymap; so a '1' means it's either dirty or unsent. 2775 * 2776 * @ms: current migration state 2777 * @pds: state for postcopy 2778 * @start: RAMBlock starting page 2779 * @length: RAMBlock size 2780 */ 2781 static int postcopy_send_discard_bm_ram(MigrationState *ms, 2782 PostcopyDiscardState *pds, 2783 RAMBlock *block) 2784 { 2785 unsigned long end = block->used_length >> TARGET_PAGE_BITS; 2786 unsigned long current; 2787 unsigned long *unsentmap = block->unsentmap; 2788 2789 for (current = 0; current < end; ) { 2790 unsigned long one = find_next_bit(unsentmap, end, current); 2791 2792 if (one <= end) { 2793 unsigned long zero = find_next_zero_bit(unsentmap, end, one + 1); 2794 unsigned long discard_length; 2795 2796 if (zero >= end) { 2797 discard_length = end - one; 2798 } else { 2799 discard_length = zero - one; 2800 } 2801 if (discard_length) { 2802 postcopy_discard_send_range(ms, pds, one, discard_length); 2803 } 2804 current = one + discard_length; 2805 } else { 2806 current = one; 2807 } 2808 } 2809 2810 return 0; 2811 } 2812 2813 /** 2814 * postcopy_each_ram_send_discard: discard all RAMBlocks 2815 * 2816 * Returns 0 for success or negative for error 2817 * 2818 * Utility for the outgoing postcopy code. 2819 * Calls postcopy_send_discard_bm_ram for each RAMBlock 2820 * passing it bitmap indexes and name. 2821 * (qemu_ram_foreach_block ends up passing unscaled lengths 2822 * which would mean postcopy code would have to deal with target page) 2823 * 2824 * @ms: current migration state 2825 */ 2826 static int postcopy_each_ram_send_discard(MigrationState *ms) 2827 { 2828 struct RAMBlock *block; 2829 int ret; 2830 2831 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 2832 PostcopyDiscardState *pds = 2833 postcopy_discard_send_init(ms, block->idstr); 2834 2835 /* 2836 * Postcopy sends chunks of bitmap over the wire, but it 2837 * just needs indexes at this point, avoids it having 2838 * target page specific code. 2839 */ 2840 ret = postcopy_send_discard_bm_ram(ms, pds, block); 2841 postcopy_discard_send_finish(ms, pds); 2842 if (ret) { 2843 return ret; 2844 } 2845 } 2846 2847 return 0; 2848 } 2849 2850 /** 2851 * postcopy_chunk_hostpages_pass: canocalize bitmap in hostpages 2852 * 2853 * Helper for postcopy_chunk_hostpages; it's called twice to 2854 * canonicalize the two bitmaps, that are similar, but one is 2855 * inverted. 2856 * 2857 * Postcopy requires that all target pages in a hostpage are dirty or 2858 * clean, not a mix. This function canonicalizes the bitmaps. 2859 * 2860 * @ms: current migration state 2861 * @unsent_pass: if true we need to canonicalize partially unsent host pages 2862 * otherwise we need to canonicalize partially dirty host pages 2863 * @block: block that contains the page we want to canonicalize 2864 * @pds: state for postcopy 2865 */ 2866 static void postcopy_chunk_hostpages_pass(MigrationState *ms, bool unsent_pass, 2867 RAMBlock *block, 2868 PostcopyDiscardState *pds) 2869 { 2870 RAMState *rs = ram_state; 2871 unsigned long *bitmap = block->bmap; 2872 unsigned long *unsentmap = block->unsentmap; 2873 unsigned int host_ratio = block->page_size / TARGET_PAGE_SIZE; 2874 unsigned long pages = block->used_length >> TARGET_PAGE_BITS; 2875 unsigned long run_start; 2876 2877 if (block->page_size == TARGET_PAGE_SIZE) { 2878 /* Easy case - TPS==HPS for a non-huge page RAMBlock */ 2879 return; 2880 } 2881 2882 if (unsent_pass) { 2883 /* Find a sent page */ 2884 run_start = find_next_zero_bit(unsentmap, pages, 0); 2885 } else { 2886 /* Find a dirty page */ 2887 run_start = find_next_bit(bitmap, pages, 0); 2888 } 2889 2890 while (run_start < pages) { 2891 bool do_fixup = false; 2892 unsigned long fixup_start_addr; 2893 unsigned long host_offset; 2894 2895 /* 2896 * If the start of this run of pages is in the middle of a host 2897 * page, then we need to fixup this host page. 2898 */ 2899 host_offset = run_start % host_ratio; 2900 if (host_offset) { 2901 do_fixup = true; 2902 run_start -= host_offset; 2903 fixup_start_addr = run_start; 2904 /* For the next pass */ 2905 run_start = run_start + host_ratio; 2906 } else { 2907 /* Find the end of this run */ 2908 unsigned long run_end; 2909 if (unsent_pass) { 2910 run_end = find_next_bit(unsentmap, pages, run_start + 1); 2911 } else { 2912 run_end = find_next_zero_bit(bitmap, pages, run_start + 1); 2913 } 2914 /* 2915 * If the end isn't at the start of a host page, then the 2916 * run doesn't finish at the end of a host page 2917 * and we need to discard. 2918 */ 2919 host_offset = run_end % host_ratio; 2920 if (host_offset) { 2921 do_fixup = true; 2922 fixup_start_addr = run_end - host_offset; 2923 /* 2924 * This host page has gone, the next loop iteration starts 2925 * from after the fixup 2926 */ 2927 run_start = fixup_start_addr + host_ratio; 2928 } else { 2929 /* 2930 * No discards on this iteration, next loop starts from 2931 * next sent/dirty page 2932 */ 2933 run_start = run_end + 1; 2934 } 2935 } 2936 2937 if (do_fixup) { 2938 unsigned long page; 2939 2940 /* Tell the destination to discard this page */ 2941 if (unsent_pass || !test_bit(fixup_start_addr, unsentmap)) { 2942 /* For the unsent_pass we: 2943 * discard partially sent pages 2944 * For the !unsent_pass (dirty) we: 2945 * discard partially dirty pages that were sent 2946 * (any partially sent pages were already discarded 2947 * by the previous unsent_pass) 2948 */ 2949 postcopy_discard_send_range(ms, pds, fixup_start_addr, 2950 host_ratio); 2951 } 2952 2953 /* Clean up the bitmap */ 2954 for (page = fixup_start_addr; 2955 page < fixup_start_addr + host_ratio; page++) { 2956 /* All pages in this host page are now not sent */ 2957 set_bit(page, unsentmap); 2958 2959 /* 2960 * Remark them as dirty, updating the count for any pages 2961 * that weren't previously dirty. 2962 */ 2963 rs->migration_dirty_pages += !test_and_set_bit(page, bitmap); 2964 } 2965 } 2966 2967 if (unsent_pass) { 2968 /* Find the next sent page for the next iteration */ 2969 run_start = find_next_zero_bit(unsentmap, pages, run_start); 2970 } else { 2971 /* Find the next dirty page for the next iteration */ 2972 run_start = find_next_bit(bitmap, pages, run_start); 2973 } 2974 } 2975 } 2976 2977 /** 2978 * postcopy_chuck_hostpages: discrad any partially sent host page 2979 * 2980 * Utility for the outgoing postcopy code. 2981 * 2982 * Discard any partially sent host-page size chunks, mark any partially 2983 * dirty host-page size chunks as all dirty. In this case the host-page 2984 * is the host-page for the particular RAMBlock, i.e. it might be a huge page 2985 * 2986 * Returns zero on success 2987 * 2988 * @ms: current migration state 2989 * @block: block we want to work with 2990 */ 2991 static int postcopy_chunk_hostpages(MigrationState *ms, RAMBlock *block) 2992 { 2993 PostcopyDiscardState *pds = 2994 postcopy_discard_send_init(ms, block->idstr); 2995 2996 /* First pass: Discard all partially sent host pages */ 2997 postcopy_chunk_hostpages_pass(ms, true, block, pds); 2998 /* 2999 * Second pass: Ensure that all partially dirty host pages are made 3000 * fully dirty. 3001 */ 3002 postcopy_chunk_hostpages_pass(ms, false, block, pds); 3003 3004 postcopy_discard_send_finish(ms, pds); 3005 return 0; 3006 } 3007 3008 /** 3009 * ram_postcopy_send_discard_bitmap: transmit the discard bitmap 3010 * 3011 * Returns zero on success 3012 * 3013 * Transmit the set of pages to be discarded after precopy to the target 3014 * these are pages that: 3015 * a) Have been previously transmitted but are now dirty again 3016 * b) Pages that have never been transmitted, this ensures that 3017 * any pages on the destination that have been mapped by background 3018 * tasks get discarded (transparent huge pages is the specific concern) 3019 * Hopefully this is pretty sparse 3020 * 3021 * @ms: current migration state 3022 */ 3023 int ram_postcopy_send_discard_bitmap(MigrationState *ms) 3024 { 3025 RAMState *rs = ram_state; 3026 RAMBlock *block; 3027 int ret; 3028 3029 rcu_read_lock(); 3030 3031 /* This should be our last sync, the src is now paused */ 3032 migration_bitmap_sync(rs); 3033 3034 /* Easiest way to make sure we don't resume in the middle of a host-page */ 3035 rs->last_seen_block = NULL; 3036 rs->last_sent_block = NULL; 3037 rs->last_page = 0; 3038 3039 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3040 unsigned long pages = block->used_length >> TARGET_PAGE_BITS; 3041 unsigned long *bitmap = block->bmap; 3042 unsigned long *unsentmap = block->unsentmap; 3043 3044 if (!unsentmap) { 3045 /* We don't have a safe way to resize the sentmap, so 3046 * if the bitmap was resized it will be NULL at this 3047 * point. 3048 */ 3049 error_report("migration ram resized during precopy phase"); 3050 rcu_read_unlock(); 3051 return -EINVAL; 3052 } 3053 /* Deal with TPS != HPS and huge pages */ 3054 ret = postcopy_chunk_hostpages(ms, block); 3055 if (ret) { 3056 rcu_read_unlock(); 3057 return ret; 3058 } 3059 3060 /* 3061 * Update the unsentmap to be unsentmap = unsentmap | dirty 3062 */ 3063 bitmap_or(unsentmap, unsentmap, bitmap, pages); 3064 #ifdef DEBUG_POSTCOPY 3065 ram_debug_dump_bitmap(unsentmap, true, pages); 3066 #endif 3067 } 3068 trace_ram_postcopy_send_discard_bitmap(); 3069 3070 ret = postcopy_each_ram_send_discard(ms); 3071 rcu_read_unlock(); 3072 3073 return ret; 3074 } 3075 3076 /** 3077 * ram_discard_range: discard dirtied pages at the beginning of postcopy 3078 * 3079 * Returns zero on success 3080 * 3081 * @rbname: name of the RAMBlock of the request. NULL means the 3082 * same that last one. 3083 * @start: RAMBlock starting page 3084 * @length: RAMBlock size 3085 */ 3086 int ram_discard_range(const char *rbname, uint64_t start, size_t length) 3087 { 3088 int ret = -1; 3089 3090 trace_ram_discard_range(rbname, start, length); 3091 3092 rcu_read_lock(); 3093 RAMBlock *rb = qemu_ram_block_by_name(rbname); 3094 3095 if (!rb) { 3096 error_report("ram_discard_range: Failed to find block '%s'", rbname); 3097 goto err; 3098 } 3099 3100 /* 3101 * On source VM, we don't need to update the received bitmap since 3102 * we don't even have one. 3103 */ 3104 if (rb->receivedmap) { 3105 bitmap_clear(rb->receivedmap, start >> qemu_target_page_bits(), 3106 length >> qemu_target_page_bits()); 3107 } 3108 3109 ret = ram_block_discard_range(rb, start, length); 3110 3111 err: 3112 rcu_read_unlock(); 3113 3114 return ret; 3115 } 3116 3117 /* 3118 * For every allocation, we will try not to crash the VM if the 3119 * allocation failed. 3120 */ 3121 static int xbzrle_init(void) 3122 { 3123 Error *local_err = NULL; 3124 3125 if (!migrate_use_xbzrle()) { 3126 return 0; 3127 } 3128 3129 XBZRLE_cache_lock(); 3130 3131 XBZRLE.zero_target_page = g_try_malloc0(TARGET_PAGE_SIZE); 3132 if (!XBZRLE.zero_target_page) { 3133 error_report("%s: Error allocating zero page", __func__); 3134 goto err_out; 3135 } 3136 3137 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size(), 3138 TARGET_PAGE_SIZE, &local_err); 3139 if (!XBZRLE.cache) { 3140 error_report_err(local_err); 3141 goto free_zero_page; 3142 } 3143 3144 XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE); 3145 if (!XBZRLE.encoded_buf) { 3146 error_report("%s: Error allocating encoded_buf", __func__); 3147 goto free_cache; 3148 } 3149 3150 XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE); 3151 if (!XBZRLE.current_buf) { 3152 error_report("%s: Error allocating current_buf", __func__); 3153 goto free_encoded_buf; 3154 } 3155 3156 /* We are all good */ 3157 XBZRLE_cache_unlock(); 3158 return 0; 3159 3160 free_encoded_buf: 3161 g_free(XBZRLE.encoded_buf); 3162 XBZRLE.encoded_buf = NULL; 3163 free_cache: 3164 cache_fini(XBZRLE.cache); 3165 XBZRLE.cache = NULL; 3166 free_zero_page: 3167 g_free(XBZRLE.zero_target_page); 3168 XBZRLE.zero_target_page = NULL; 3169 err_out: 3170 XBZRLE_cache_unlock(); 3171 return -ENOMEM; 3172 } 3173 3174 static int ram_state_init(RAMState **rsp) 3175 { 3176 *rsp = g_try_new0(RAMState, 1); 3177 3178 if (!*rsp) { 3179 error_report("%s: Init ramstate fail", __func__); 3180 return -1; 3181 } 3182 3183 qemu_mutex_init(&(*rsp)->bitmap_mutex); 3184 qemu_mutex_init(&(*rsp)->src_page_req_mutex); 3185 QSIMPLEQ_INIT(&(*rsp)->src_page_requests); 3186 3187 /* 3188 * This must match with the initial values of dirty bitmap. 3189 * Currently we initialize the dirty bitmap to all zeros so 3190 * here the total dirty page count is zero. 3191 */ 3192 (*rsp)->migration_dirty_pages = 0; 3193 ram_state_reset(*rsp); 3194 3195 return 0; 3196 } 3197 3198 static void ram_list_init_bitmaps(void) 3199 { 3200 RAMBlock *block; 3201 unsigned long pages; 3202 3203 /* Skip setting bitmap if there is no RAM */ 3204 if (ram_bytes_total()) { 3205 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3206 pages = block->max_length >> TARGET_PAGE_BITS; 3207 /* 3208 * The initial dirty bitmap for migration must be set with all 3209 * ones to make sure we'll migrate every guest RAM page to 3210 * destination. 3211 * Here we didn't set RAMBlock.bmap simply because it is already 3212 * set in ram_list.dirty_memory[DIRTY_MEMORY_MIGRATION] in 3213 * ram_block_add, and that's where we'll sync the dirty bitmaps. 3214 * Here setting RAMBlock.bmap would be fine too but not necessary. 3215 */ 3216 block->bmap = bitmap_new(pages); 3217 if (migrate_postcopy_ram()) { 3218 block->unsentmap = bitmap_new(pages); 3219 bitmap_set(block->unsentmap, 0, pages); 3220 } 3221 } 3222 } 3223 } 3224 3225 static void ram_init_bitmaps(RAMState *rs) 3226 { 3227 /* For memory_global_dirty_log_start below. */ 3228 qemu_mutex_lock_iothread(); 3229 qemu_mutex_lock_ramlist(); 3230 rcu_read_lock(); 3231 3232 ram_list_init_bitmaps(); 3233 memory_global_dirty_log_start(); 3234 migration_bitmap_sync_precopy(rs); 3235 3236 rcu_read_unlock(); 3237 qemu_mutex_unlock_ramlist(); 3238 qemu_mutex_unlock_iothread(); 3239 } 3240 3241 static int ram_init_all(RAMState **rsp) 3242 { 3243 if (ram_state_init(rsp)) { 3244 return -1; 3245 } 3246 3247 if (xbzrle_init()) { 3248 ram_state_cleanup(rsp); 3249 return -1; 3250 } 3251 3252 ram_init_bitmaps(*rsp); 3253 3254 return 0; 3255 } 3256 3257 static void ram_state_resume_prepare(RAMState *rs, QEMUFile *out) 3258 { 3259 RAMBlock *block; 3260 uint64_t pages = 0; 3261 3262 /* 3263 * Postcopy is not using xbzrle/compression, so no need for that. 3264 * Also, since source are already halted, we don't need to care 3265 * about dirty page logging as well. 3266 */ 3267 3268 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3269 pages += bitmap_count_one(block->bmap, 3270 block->used_length >> TARGET_PAGE_BITS); 3271 } 3272 3273 /* This may not be aligned with current bitmaps. Recalculate. */ 3274 rs->migration_dirty_pages = pages; 3275 3276 rs->last_seen_block = NULL; 3277 rs->last_sent_block = NULL; 3278 rs->last_page = 0; 3279 rs->last_version = ram_list.version; 3280 /* 3281 * Disable the bulk stage, otherwise we'll resend the whole RAM no 3282 * matter what we have sent. 3283 */ 3284 rs->ram_bulk_stage = false; 3285 3286 /* Update RAMState cache of output QEMUFile */ 3287 rs->f = out; 3288 3289 trace_ram_state_resume_prepare(pages); 3290 } 3291 3292 /* 3293 * This function clears bits of the free pages reported by the caller from the 3294 * migration dirty bitmap. @addr is the host address corresponding to the 3295 * start of the continuous guest free pages, and @len is the total bytes of 3296 * those pages. 3297 */ 3298 void qemu_guest_free_page_hint(void *addr, size_t len) 3299 { 3300 RAMBlock *block; 3301 ram_addr_t offset; 3302 size_t used_len, start, npages; 3303 MigrationState *s = migrate_get_current(); 3304 3305 /* This function is currently expected to be used during live migration */ 3306 if (!migration_is_setup_or_active(s->state)) { 3307 return; 3308 } 3309 3310 for (; len > 0; len -= used_len, addr += used_len) { 3311 block = qemu_ram_block_from_host(addr, false, &offset); 3312 if (unlikely(!block || offset >= block->used_length)) { 3313 /* 3314 * The implementation might not support RAMBlock resize during 3315 * live migration, but it could happen in theory with future 3316 * updates. So we add a check here to capture that case. 3317 */ 3318 error_report_once("%s unexpected error", __func__); 3319 return; 3320 } 3321 3322 if (len <= block->used_length - offset) { 3323 used_len = len; 3324 } else { 3325 used_len = block->used_length - offset; 3326 } 3327 3328 start = offset >> TARGET_PAGE_BITS; 3329 npages = used_len >> TARGET_PAGE_BITS; 3330 3331 qemu_mutex_lock(&ram_state->bitmap_mutex); 3332 ram_state->migration_dirty_pages -= 3333 bitmap_count_one_with_offset(block->bmap, start, npages); 3334 bitmap_clear(block->bmap, start, npages); 3335 qemu_mutex_unlock(&ram_state->bitmap_mutex); 3336 } 3337 } 3338 3339 /* 3340 * Each of ram_save_setup, ram_save_iterate and ram_save_complete has 3341 * long-running RCU critical section. When rcu-reclaims in the code 3342 * start to become numerous it will be necessary to reduce the 3343 * granularity of these critical sections. 3344 */ 3345 3346 /** 3347 * ram_save_setup: Setup RAM for migration 3348 * 3349 * Returns zero to indicate success and negative for error 3350 * 3351 * @f: QEMUFile where to send the data 3352 * @opaque: RAMState pointer 3353 */ 3354 static int ram_save_setup(QEMUFile *f, void *opaque) 3355 { 3356 RAMState **rsp = opaque; 3357 RAMBlock *block; 3358 3359 if (compress_threads_save_setup()) { 3360 return -1; 3361 } 3362 3363 /* migration has already setup the bitmap, reuse it. */ 3364 if (!migration_in_colo_state()) { 3365 if (ram_init_all(rsp) != 0) { 3366 compress_threads_save_cleanup(); 3367 return -1; 3368 } 3369 } 3370 (*rsp)->f = f; 3371 3372 rcu_read_lock(); 3373 3374 qemu_put_be64(f, ram_bytes_total_common(true) | RAM_SAVE_FLAG_MEM_SIZE); 3375 3376 RAMBLOCK_FOREACH_MIGRATABLE(block) { 3377 qemu_put_byte(f, strlen(block->idstr)); 3378 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr)); 3379 qemu_put_be64(f, block->used_length); 3380 if (migrate_postcopy_ram() && block->page_size != qemu_host_page_size) { 3381 qemu_put_be64(f, block->page_size); 3382 } 3383 if (migrate_ignore_shared()) { 3384 qemu_put_be64(f, block->mr->addr); 3385 qemu_put_byte(f, ramblock_is_ignored(block) ? 1 : 0); 3386 } 3387 } 3388 3389 rcu_read_unlock(); 3390 3391 ram_control_before_iterate(f, RAM_CONTROL_SETUP); 3392 ram_control_after_iterate(f, RAM_CONTROL_SETUP); 3393 3394 multifd_send_sync_main(); 3395 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 3396 qemu_fflush(f); 3397 3398 return 0; 3399 } 3400 3401 /** 3402 * ram_save_iterate: iterative stage for migration 3403 * 3404 * Returns zero to indicate success and negative for error 3405 * 3406 * @f: QEMUFile where to send the data 3407 * @opaque: RAMState pointer 3408 */ 3409 static int ram_save_iterate(QEMUFile *f, void *opaque) 3410 { 3411 RAMState **temp = opaque; 3412 RAMState *rs = *temp; 3413 int ret; 3414 int i; 3415 int64_t t0; 3416 int done = 0; 3417 3418 if (blk_mig_bulk_active()) { 3419 /* Avoid transferring ram during bulk phase of block migration as 3420 * the bulk phase will usually take a long time and transferring 3421 * ram updates during that time is pointless. */ 3422 goto out; 3423 } 3424 3425 rcu_read_lock(); 3426 if (ram_list.version != rs->last_version) { 3427 ram_state_reset(rs); 3428 } 3429 3430 /* Read version before ram_list.blocks */ 3431 smp_rmb(); 3432 3433 ram_control_before_iterate(f, RAM_CONTROL_ROUND); 3434 3435 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 3436 i = 0; 3437 while ((ret = qemu_file_rate_limit(f)) == 0 || 3438 !QSIMPLEQ_EMPTY(&rs->src_page_requests)) { 3439 int pages; 3440 3441 if (qemu_file_get_error(f)) { 3442 break; 3443 } 3444 3445 pages = ram_find_and_save_block(rs, false); 3446 /* no more pages to sent */ 3447 if (pages == 0) { 3448 done = 1; 3449 break; 3450 } 3451 3452 if (pages < 0) { 3453 qemu_file_set_error(f, pages); 3454 break; 3455 } 3456 3457 rs->target_page_count += pages; 3458 3459 /* we want to check in the 1st loop, just in case it was the 1st time 3460 and we had to sync the dirty bitmap. 3461 qemu_clock_get_ns() is a bit expensive, so we only check each some 3462 iterations 3463 */ 3464 if ((i & 63) == 0) { 3465 uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) / 1000000; 3466 if (t1 > MAX_WAIT) { 3467 trace_ram_save_iterate_big_wait(t1, i); 3468 break; 3469 } 3470 } 3471 i++; 3472 } 3473 rcu_read_unlock(); 3474 3475 /* 3476 * Must occur before EOS (or any QEMUFile operation) 3477 * because of RDMA protocol. 3478 */ 3479 ram_control_after_iterate(f, RAM_CONTROL_ROUND); 3480 3481 out: 3482 multifd_send_sync_main(); 3483 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 3484 qemu_fflush(f); 3485 ram_counters.transferred += 8; 3486 3487 ret = qemu_file_get_error(f); 3488 if (ret < 0) { 3489 return ret; 3490 } 3491 3492 return done; 3493 } 3494 3495 /** 3496 * ram_save_complete: function called to send the remaining amount of ram 3497 * 3498 * Returns zero to indicate success or negative on error 3499 * 3500 * Called with iothread lock 3501 * 3502 * @f: QEMUFile where to send the data 3503 * @opaque: RAMState pointer 3504 */ 3505 static int ram_save_complete(QEMUFile *f, void *opaque) 3506 { 3507 RAMState **temp = opaque; 3508 RAMState *rs = *temp; 3509 int ret = 0; 3510 3511 rcu_read_lock(); 3512 3513 if (!migration_in_postcopy()) { 3514 migration_bitmap_sync_precopy(rs); 3515 } 3516 3517 ram_control_before_iterate(f, RAM_CONTROL_FINISH); 3518 3519 /* try transferring iterative blocks of memory */ 3520 3521 /* flush all remaining blocks regardless of rate limiting */ 3522 while (true) { 3523 int pages; 3524 3525 pages = ram_find_and_save_block(rs, !migration_in_colo_state()); 3526 /* no more blocks to sent */ 3527 if (pages == 0) { 3528 break; 3529 } 3530 if (pages < 0) { 3531 ret = pages; 3532 break; 3533 } 3534 } 3535 3536 flush_compressed_data(rs); 3537 ram_control_after_iterate(f, RAM_CONTROL_FINISH); 3538 3539 rcu_read_unlock(); 3540 3541 multifd_send_sync_main(); 3542 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 3543 qemu_fflush(f); 3544 3545 return ret; 3546 } 3547 3548 static void ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size, 3549 uint64_t *res_precopy_only, 3550 uint64_t *res_compatible, 3551 uint64_t *res_postcopy_only) 3552 { 3553 RAMState **temp = opaque; 3554 RAMState *rs = *temp; 3555 uint64_t remaining_size; 3556 3557 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE; 3558 3559 if (!migration_in_postcopy() && 3560 remaining_size < max_size) { 3561 qemu_mutex_lock_iothread(); 3562 rcu_read_lock(); 3563 migration_bitmap_sync_precopy(rs); 3564 rcu_read_unlock(); 3565 qemu_mutex_unlock_iothread(); 3566 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE; 3567 } 3568 3569 if (migrate_postcopy_ram()) { 3570 /* We can do postcopy, and all the data is postcopiable */ 3571 *res_compatible += remaining_size; 3572 } else { 3573 *res_precopy_only += remaining_size; 3574 } 3575 } 3576 3577 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host) 3578 { 3579 unsigned int xh_len; 3580 int xh_flags; 3581 uint8_t *loaded_data; 3582 3583 /* extract RLE header */ 3584 xh_flags = qemu_get_byte(f); 3585 xh_len = qemu_get_be16(f); 3586 3587 if (xh_flags != ENCODING_FLAG_XBZRLE) { 3588 error_report("Failed to load XBZRLE page - wrong compression!"); 3589 return -1; 3590 } 3591 3592 if (xh_len > TARGET_PAGE_SIZE) { 3593 error_report("Failed to load XBZRLE page - len overflow!"); 3594 return -1; 3595 } 3596 loaded_data = XBZRLE.decoded_buf; 3597 /* load data and decode */ 3598 /* it can change loaded_data to point to an internal buffer */ 3599 qemu_get_buffer_in_place(f, &loaded_data, xh_len); 3600 3601 /* decode RLE */ 3602 if (xbzrle_decode_buffer(loaded_data, xh_len, host, 3603 TARGET_PAGE_SIZE) == -1) { 3604 error_report("Failed to load XBZRLE page - decode error!"); 3605 return -1; 3606 } 3607 3608 return 0; 3609 } 3610 3611 /** 3612 * ram_block_from_stream: read a RAMBlock id from the migration stream 3613 * 3614 * Must be called from within a rcu critical section. 3615 * 3616 * Returns a pointer from within the RCU-protected ram_list. 3617 * 3618 * @f: QEMUFile where to read the data from 3619 * @flags: Page flags (mostly to see if it's a continuation of previous block) 3620 */ 3621 static inline RAMBlock *ram_block_from_stream(QEMUFile *f, int flags) 3622 { 3623 static RAMBlock *block = NULL; 3624 char id[256]; 3625 uint8_t len; 3626 3627 if (flags & RAM_SAVE_FLAG_CONTINUE) { 3628 if (!block) { 3629 error_report("Ack, bad migration stream!"); 3630 return NULL; 3631 } 3632 return block; 3633 } 3634 3635 len = qemu_get_byte(f); 3636 qemu_get_buffer(f, (uint8_t *)id, len); 3637 id[len] = 0; 3638 3639 block = qemu_ram_block_by_name(id); 3640 if (!block) { 3641 error_report("Can't find block %s", id); 3642 return NULL; 3643 } 3644 3645 if (ramblock_is_ignored(block)) { 3646 error_report("block %s should not be migrated !", id); 3647 return NULL; 3648 } 3649 3650 return block; 3651 } 3652 3653 static inline void *host_from_ram_block_offset(RAMBlock *block, 3654 ram_addr_t offset) 3655 { 3656 if (!offset_in_ramblock(block, offset)) { 3657 return NULL; 3658 } 3659 3660 return block->host + offset; 3661 } 3662 3663 static inline void *colo_cache_from_block_offset(RAMBlock *block, 3664 ram_addr_t offset) 3665 { 3666 if (!offset_in_ramblock(block, offset)) { 3667 return NULL; 3668 } 3669 if (!block->colo_cache) { 3670 error_report("%s: colo_cache is NULL in block :%s", 3671 __func__, block->idstr); 3672 return NULL; 3673 } 3674 3675 /* 3676 * During colo checkpoint, we need bitmap of these migrated pages. 3677 * It help us to decide which pages in ram cache should be flushed 3678 * into VM's RAM later. 3679 */ 3680 if (!test_and_set_bit(offset >> TARGET_PAGE_BITS, block->bmap)) { 3681 ram_state->migration_dirty_pages++; 3682 } 3683 return block->colo_cache + offset; 3684 } 3685 3686 /** 3687 * ram_handle_compressed: handle the zero page case 3688 * 3689 * If a page (or a whole RDMA chunk) has been 3690 * determined to be zero, then zap it. 3691 * 3692 * @host: host address for the zero page 3693 * @ch: what the page is filled from. We only support zero 3694 * @size: size of the zero page 3695 */ 3696 void ram_handle_compressed(void *host, uint8_t ch, uint64_t size) 3697 { 3698 if (ch != 0 || !is_zero_range(host, size)) { 3699 memset(host, ch, size); 3700 } 3701 } 3702 3703 /* return the size after decompression, or negative value on error */ 3704 static int 3705 qemu_uncompress_data(z_stream *stream, uint8_t *dest, size_t dest_len, 3706 const uint8_t *source, size_t source_len) 3707 { 3708 int err; 3709 3710 err = inflateReset(stream); 3711 if (err != Z_OK) { 3712 return -1; 3713 } 3714 3715 stream->avail_in = source_len; 3716 stream->next_in = (uint8_t *)source; 3717 stream->avail_out = dest_len; 3718 stream->next_out = dest; 3719 3720 err = inflate(stream, Z_NO_FLUSH); 3721 if (err != Z_STREAM_END) { 3722 return -1; 3723 } 3724 3725 return stream->total_out; 3726 } 3727 3728 static void *do_data_decompress(void *opaque) 3729 { 3730 DecompressParam *param = opaque; 3731 unsigned long pagesize; 3732 uint8_t *des; 3733 int len, ret; 3734 3735 qemu_mutex_lock(¶m->mutex); 3736 while (!param->quit) { 3737 if (param->des) { 3738 des = param->des; 3739 len = param->len; 3740 param->des = 0; 3741 qemu_mutex_unlock(¶m->mutex); 3742 3743 pagesize = TARGET_PAGE_SIZE; 3744 3745 ret = qemu_uncompress_data(¶m->stream, des, pagesize, 3746 param->compbuf, len); 3747 if (ret < 0 && migrate_get_current()->decompress_error_check) { 3748 error_report("decompress data failed"); 3749 qemu_file_set_error(decomp_file, ret); 3750 } 3751 3752 qemu_mutex_lock(&decomp_done_lock); 3753 param->done = true; 3754 qemu_cond_signal(&decomp_done_cond); 3755 qemu_mutex_unlock(&decomp_done_lock); 3756 3757 qemu_mutex_lock(¶m->mutex); 3758 } else { 3759 qemu_cond_wait(¶m->cond, ¶m->mutex); 3760 } 3761 } 3762 qemu_mutex_unlock(¶m->mutex); 3763 3764 return NULL; 3765 } 3766 3767 static int wait_for_decompress_done(void) 3768 { 3769 int idx, thread_count; 3770 3771 if (!migrate_use_compression()) { 3772 return 0; 3773 } 3774 3775 thread_count = migrate_decompress_threads(); 3776 qemu_mutex_lock(&decomp_done_lock); 3777 for (idx = 0; idx < thread_count; idx++) { 3778 while (!decomp_param[idx].done) { 3779 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock); 3780 } 3781 } 3782 qemu_mutex_unlock(&decomp_done_lock); 3783 return qemu_file_get_error(decomp_file); 3784 } 3785 3786 static void compress_threads_load_cleanup(void) 3787 { 3788 int i, thread_count; 3789 3790 if (!migrate_use_compression()) { 3791 return; 3792 } 3793 thread_count = migrate_decompress_threads(); 3794 for (i = 0; i < thread_count; i++) { 3795 /* 3796 * we use it as a indicator which shows if the thread is 3797 * properly init'd or not 3798 */ 3799 if (!decomp_param[i].compbuf) { 3800 break; 3801 } 3802 3803 qemu_mutex_lock(&decomp_param[i].mutex); 3804 decomp_param[i].quit = true; 3805 qemu_cond_signal(&decomp_param[i].cond); 3806 qemu_mutex_unlock(&decomp_param[i].mutex); 3807 } 3808 for (i = 0; i < thread_count; i++) { 3809 if (!decomp_param[i].compbuf) { 3810 break; 3811 } 3812 3813 qemu_thread_join(decompress_threads + i); 3814 qemu_mutex_destroy(&decomp_param[i].mutex); 3815 qemu_cond_destroy(&decomp_param[i].cond); 3816 inflateEnd(&decomp_param[i].stream); 3817 g_free(decomp_param[i].compbuf); 3818 decomp_param[i].compbuf = NULL; 3819 } 3820 g_free(decompress_threads); 3821 g_free(decomp_param); 3822 decompress_threads = NULL; 3823 decomp_param = NULL; 3824 decomp_file = NULL; 3825 } 3826 3827 static int compress_threads_load_setup(QEMUFile *f) 3828 { 3829 int i, thread_count; 3830 3831 if (!migrate_use_compression()) { 3832 return 0; 3833 } 3834 3835 thread_count = migrate_decompress_threads(); 3836 decompress_threads = g_new0(QemuThread, thread_count); 3837 decomp_param = g_new0(DecompressParam, thread_count); 3838 qemu_mutex_init(&decomp_done_lock); 3839 qemu_cond_init(&decomp_done_cond); 3840 decomp_file = f; 3841 for (i = 0; i < thread_count; i++) { 3842 if (inflateInit(&decomp_param[i].stream) != Z_OK) { 3843 goto exit; 3844 } 3845 3846 decomp_param[i].compbuf = g_malloc0(compressBound(TARGET_PAGE_SIZE)); 3847 qemu_mutex_init(&decomp_param[i].mutex); 3848 qemu_cond_init(&decomp_param[i].cond); 3849 decomp_param[i].done = true; 3850 decomp_param[i].quit = false; 3851 qemu_thread_create(decompress_threads + i, "decompress", 3852 do_data_decompress, decomp_param + i, 3853 QEMU_THREAD_JOINABLE); 3854 } 3855 return 0; 3856 exit: 3857 compress_threads_load_cleanup(); 3858 return -1; 3859 } 3860 3861 static void decompress_data_with_multi_threads(QEMUFile *f, 3862 void *host, int len) 3863 { 3864 int idx, thread_count; 3865 3866 thread_count = migrate_decompress_threads(); 3867 qemu_mutex_lock(&decomp_done_lock); 3868 while (true) { 3869 for (idx = 0; idx < thread_count; idx++) { 3870 if (decomp_param[idx].done) { 3871 decomp_param[idx].done = false; 3872 qemu_mutex_lock(&decomp_param[idx].mutex); 3873 qemu_get_buffer(f, decomp_param[idx].compbuf, len); 3874 decomp_param[idx].des = host; 3875 decomp_param[idx].len = len; 3876 qemu_cond_signal(&decomp_param[idx].cond); 3877 qemu_mutex_unlock(&decomp_param[idx].mutex); 3878 break; 3879 } 3880 } 3881 if (idx < thread_count) { 3882 break; 3883 } else { 3884 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock); 3885 } 3886 } 3887 qemu_mutex_unlock(&decomp_done_lock); 3888 } 3889 3890 /* 3891 * colo cache: this is for secondary VM, we cache the whole 3892 * memory of the secondary VM, it is need to hold the global lock 3893 * to call this helper. 3894 */ 3895 int colo_init_ram_cache(void) 3896 { 3897 RAMBlock *block; 3898 3899 rcu_read_lock(); 3900 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3901 block->colo_cache = qemu_anon_ram_alloc(block->used_length, 3902 NULL, 3903 false); 3904 if (!block->colo_cache) { 3905 error_report("%s: Can't alloc memory for COLO cache of block %s," 3906 "size 0x" RAM_ADDR_FMT, __func__, block->idstr, 3907 block->used_length); 3908 goto out_locked; 3909 } 3910 memcpy(block->colo_cache, block->host, block->used_length); 3911 } 3912 rcu_read_unlock(); 3913 /* 3914 * Record the dirty pages that sent by PVM, we use this dirty bitmap together 3915 * with to decide which page in cache should be flushed into SVM's RAM. Here 3916 * we use the same name 'ram_bitmap' as for migration. 3917 */ 3918 if (ram_bytes_total()) { 3919 RAMBlock *block; 3920 3921 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3922 unsigned long pages = block->max_length >> TARGET_PAGE_BITS; 3923 3924 block->bmap = bitmap_new(pages); 3925 bitmap_set(block->bmap, 0, pages); 3926 } 3927 } 3928 ram_state = g_new0(RAMState, 1); 3929 ram_state->migration_dirty_pages = 0; 3930 qemu_mutex_init(&ram_state->bitmap_mutex); 3931 memory_global_dirty_log_start(); 3932 3933 return 0; 3934 3935 out_locked: 3936 3937 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3938 if (block->colo_cache) { 3939 qemu_anon_ram_free(block->colo_cache, block->used_length); 3940 block->colo_cache = NULL; 3941 } 3942 } 3943 3944 rcu_read_unlock(); 3945 return -errno; 3946 } 3947 3948 /* It is need to hold the global lock to call this helper */ 3949 void colo_release_ram_cache(void) 3950 { 3951 RAMBlock *block; 3952 3953 memory_global_dirty_log_stop(); 3954 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3955 g_free(block->bmap); 3956 block->bmap = NULL; 3957 } 3958 3959 rcu_read_lock(); 3960 3961 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3962 if (block->colo_cache) { 3963 qemu_anon_ram_free(block->colo_cache, block->used_length); 3964 block->colo_cache = NULL; 3965 } 3966 } 3967 3968 rcu_read_unlock(); 3969 qemu_mutex_destroy(&ram_state->bitmap_mutex); 3970 g_free(ram_state); 3971 ram_state = NULL; 3972 } 3973 3974 /** 3975 * ram_load_setup: Setup RAM for migration incoming side 3976 * 3977 * Returns zero to indicate success and negative for error 3978 * 3979 * @f: QEMUFile where to receive the data 3980 * @opaque: RAMState pointer 3981 */ 3982 static int ram_load_setup(QEMUFile *f, void *opaque) 3983 { 3984 if (compress_threads_load_setup(f)) { 3985 return -1; 3986 } 3987 3988 xbzrle_load_setup(); 3989 ramblock_recv_map_init(); 3990 3991 return 0; 3992 } 3993 3994 static int ram_load_cleanup(void *opaque) 3995 { 3996 RAMBlock *rb; 3997 3998 RAMBLOCK_FOREACH_NOT_IGNORED(rb) { 3999 if (ramblock_is_pmem(rb)) { 4000 pmem_persist(rb->host, rb->used_length); 4001 } 4002 } 4003 4004 xbzrle_load_cleanup(); 4005 compress_threads_load_cleanup(); 4006 4007 RAMBLOCK_FOREACH_NOT_IGNORED(rb) { 4008 g_free(rb->receivedmap); 4009 rb->receivedmap = NULL; 4010 } 4011 4012 return 0; 4013 } 4014 4015 /** 4016 * ram_postcopy_incoming_init: allocate postcopy data structures 4017 * 4018 * Returns 0 for success and negative if there was one error 4019 * 4020 * @mis: current migration incoming state 4021 * 4022 * Allocate data structures etc needed by incoming migration with 4023 * postcopy-ram. postcopy-ram's similarly names 4024 * postcopy_ram_incoming_init does the work. 4025 */ 4026 int ram_postcopy_incoming_init(MigrationIncomingState *mis) 4027 { 4028 return postcopy_ram_incoming_init(mis); 4029 } 4030 4031 /** 4032 * ram_load_postcopy: load a page in postcopy case 4033 * 4034 * Returns 0 for success or -errno in case of error 4035 * 4036 * Called in postcopy mode by ram_load(). 4037 * rcu_read_lock is taken prior to this being called. 4038 * 4039 * @f: QEMUFile where to send the data 4040 */ 4041 static int ram_load_postcopy(QEMUFile *f) 4042 { 4043 int flags = 0, ret = 0; 4044 bool place_needed = false; 4045 bool matches_target_page_size = false; 4046 MigrationIncomingState *mis = migration_incoming_get_current(); 4047 /* Temporary page that is later 'placed' */ 4048 void *postcopy_host_page = postcopy_get_tmp_page(mis); 4049 void *last_host = NULL; 4050 bool all_zero = false; 4051 4052 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) { 4053 ram_addr_t addr; 4054 void *host = NULL; 4055 void *page_buffer = NULL; 4056 void *place_source = NULL; 4057 RAMBlock *block = NULL; 4058 uint8_t ch; 4059 4060 addr = qemu_get_be64(f); 4061 4062 /* 4063 * If qemu file error, we should stop here, and then "addr" 4064 * may be invalid 4065 */ 4066 ret = qemu_file_get_error(f); 4067 if (ret) { 4068 break; 4069 } 4070 4071 flags = addr & ~TARGET_PAGE_MASK; 4072 addr &= TARGET_PAGE_MASK; 4073 4074 trace_ram_load_postcopy_loop((uint64_t)addr, flags); 4075 place_needed = false; 4076 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE)) { 4077 block = ram_block_from_stream(f, flags); 4078 4079 host = host_from_ram_block_offset(block, addr); 4080 if (!host) { 4081 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr); 4082 ret = -EINVAL; 4083 break; 4084 } 4085 matches_target_page_size = block->page_size == TARGET_PAGE_SIZE; 4086 /* 4087 * Postcopy requires that we place whole host pages atomically; 4088 * these may be huge pages for RAMBlocks that are backed by 4089 * hugetlbfs. 4090 * To make it atomic, the data is read into a temporary page 4091 * that's moved into place later. 4092 * The migration protocol uses, possibly smaller, target-pages 4093 * however the source ensures it always sends all the components 4094 * of a host page in order. 4095 */ 4096 page_buffer = postcopy_host_page + 4097 ((uintptr_t)host & (block->page_size - 1)); 4098 /* If all TP are zero then we can optimise the place */ 4099 if (!((uintptr_t)host & (block->page_size - 1))) { 4100 all_zero = true; 4101 } else { 4102 /* not the 1st TP within the HP */ 4103 if (host != (last_host + TARGET_PAGE_SIZE)) { 4104 error_report("Non-sequential target page %p/%p", 4105 host, last_host); 4106 ret = -EINVAL; 4107 break; 4108 } 4109 } 4110 4111 4112 /* 4113 * If it's the last part of a host page then we place the host 4114 * page 4115 */ 4116 place_needed = (((uintptr_t)host + TARGET_PAGE_SIZE) & 4117 (block->page_size - 1)) == 0; 4118 place_source = postcopy_host_page; 4119 } 4120 last_host = host; 4121 4122 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) { 4123 case RAM_SAVE_FLAG_ZERO: 4124 ch = qemu_get_byte(f); 4125 memset(page_buffer, ch, TARGET_PAGE_SIZE); 4126 if (ch) { 4127 all_zero = false; 4128 } 4129 break; 4130 4131 case RAM_SAVE_FLAG_PAGE: 4132 all_zero = false; 4133 if (!matches_target_page_size) { 4134 /* For huge pages, we always use temporary buffer */ 4135 qemu_get_buffer(f, page_buffer, TARGET_PAGE_SIZE); 4136 } else { 4137 /* 4138 * For small pages that matches target page size, we 4139 * avoid the qemu_file copy. Instead we directly use 4140 * the buffer of QEMUFile to place the page. Note: we 4141 * cannot do any QEMUFile operation before using that 4142 * buffer to make sure the buffer is valid when 4143 * placing the page. 4144 */ 4145 qemu_get_buffer_in_place(f, (uint8_t **)&place_source, 4146 TARGET_PAGE_SIZE); 4147 } 4148 break; 4149 case RAM_SAVE_FLAG_EOS: 4150 /* normal exit */ 4151 multifd_recv_sync_main(); 4152 break; 4153 default: 4154 error_report("Unknown combination of migration flags: %#x" 4155 " (postcopy mode)", flags); 4156 ret = -EINVAL; 4157 break; 4158 } 4159 4160 /* Detect for any possible file errors */ 4161 if (!ret && qemu_file_get_error(f)) { 4162 ret = qemu_file_get_error(f); 4163 } 4164 4165 if (!ret && place_needed) { 4166 /* This gets called at the last target page in the host page */ 4167 void *place_dest = host + TARGET_PAGE_SIZE - block->page_size; 4168 4169 if (all_zero) { 4170 ret = postcopy_place_page_zero(mis, place_dest, 4171 block); 4172 } else { 4173 ret = postcopy_place_page(mis, place_dest, 4174 place_source, block); 4175 } 4176 } 4177 } 4178 4179 return ret; 4180 } 4181 4182 static bool postcopy_is_advised(void) 4183 { 4184 PostcopyState ps = postcopy_state_get(); 4185 return ps >= POSTCOPY_INCOMING_ADVISE && ps < POSTCOPY_INCOMING_END; 4186 } 4187 4188 static bool postcopy_is_running(void) 4189 { 4190 PostcopyState ps = postcopy_state_get(); 4191 return ps >= POSTCOPY_INCOMING_LISTENING && ps < POSTCOPY_INCOMING_END; 4192 } 4193 4194 /* 4195 * Flush content of RAM cache into SVM's memory. 4196 * Only flush the pages that be dirtied by PVM or SVM or both. 4197 */ 4198 static void colo_flush_ram_cache(void) 4199 { 4200 RAMBlock *block = NULL; 4201 void *dst_host; 4202 void *src_host; 4203 unsigned long offset = 0; 4204 4205 memory_global_dirty_log_sync(); 4206 rcu_read_lock(); 4207 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 4208 migration_bitmap_sync_range(ram_state, block, block->used_length); 4209 } 4210 rcu_read_unlock(); 4211 4212 trace_colo_flush_ram_cache_begin(ram_state->migration_dirty_pages); 4213 rcu_read_lock(); 4214 block = QLIST_FIRST_RCU(&ram_list.blocks); 4215 4216 while (block) { 4217 offset = migration_bitmap_find_dirty(ram_state, block, offset); 4218 4219 if (offset << TARGET_PAGE_BITS >= block->used_length) { 4220 offset = 0; 4221 block = QLIST_NEXT_RCU(block, next); 4222 } else { 4223 migration_bitmap_clear_dirty(ram_state, block, offset); 4224 dst_host = block->host + (offset << TARGET_PAGE_BITS); 4225 src_host = block->colo_cache + (offset << TARGET_PAGE_BITS); 4226 memcpy(dst_host, src_host, TARGET_PAGE_SIZE); 4227 } 4228 } 4229 4230 rcu_read_unlock(); 4231 trace_colo_flush_ram_cache_end(); 4232 } 4233 4234 static int ram_load(QEMUFile *f, void *opaque, int version_id) 4235 { 4236 int flags = 0, ret = 0, invalid_flags = 0; 4237 static uint64_t seq_iter; 4238 int len = 0; 4239 /* 4240 * If system is running in postcopy mode, page inserts to host memory must 4241 * be atomic 4242 */ 4243 bool postcopy_running = postcopy_is_running(); 4244 /* ADVISE is earlier, it shows the source has the postcopy capability on */ 4245 bool postcopy_advised = postcopy_is_advised(); 4246 4247 seq_iter++; 4248 4249 if (version_id != 4) { 4250 ret = -EINVAL; 4251 } 4252 4253 if (!migrate_use_compression()) { 4254 invalid_flags |= RAM_SAVE_FLAG_COMPRESS_PAGE; 4255 } 4256 /* This RCU critical section can be very long running. 4257 * When RCU reclaims in the code start to become numerous, 4258 * it will be necessary to reduce the granularity of this 4259 * critical section. 4260 */ 4261 rcu_read_lock(); 4262 4263 if (postcopy_running) { 4264 ret = ram_load_postcopy(f); 4265 } 4266 4267 while (!postcopy_running && !ret && !(flags & RAM_SAVE_FLAG_EOS)) { 4268 ram_addr_t addr, total_ram_bytes; 4269 void *host = NULL; 4270 uint8_t ch; 4271 4272 addr = qemu_get_be64(f); 4273 flags = addr & ~TARGET_PAGE_MASK; 4274 addr &= TARGET_PAGE_MASK; 4275 4276 if (flags & invalid_flags) { 4277 if (flags & invalid_flags & RAM_SAVE_FLAG_COMPRESS_PAGE) { 4278 error_report("Received an unexpected compressed page"); 4279 } 4280 4281 ret = -EINVAL; 4282 break; 4283 } 4284 4285 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE | 4286 RAM_SAVE_FLAG_COMPRESS_PAGE | RAM_SAVE_FLAG_XBZRLE)) { 4287 RAMBlock *block = ram_block_from_stream(f, flags); 4288 4289 /* 4290 * After going into COLO, we should load the Page into colo_cache. 4291 */ 4292 if (migration_incoming_in_colo_state()) { 4293 host = colo_cache_from_block_offset(block, addr); 4294 } else { 4295 host = host_from_ram_block_offset(block, addr); 4296 } 4297 if (!host) { 4298 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr); 4299 ret = -EINVAL; 4300 break; 4301 } 4302 4303 if (!migration_incoming_in_colo_state()) { 4304 ramblock_recv_bitmap_set(block, host); 4305 } 4306 4307 trace_ram_load_loop(block->idstr, (uint64_t)addr, flags, host); 4308 } 4309 4310 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) { 4311 case RAM_SAVE_FLAG_MEM_SIZE: 4312 /* Synchronize RAM block list */ 4313 total_ram_bytes = addr; 4314 while (!ret && total_ram_bytes) { 4315 RAMBlock *block; 4316 char id[256]; 4317 ram_addr_t length; 4318 4319 len = qemu_get_byte(f); 4320 qemu_get_buffer(f, (uint8_t *)id, len); 4321 id[len] = 0; 4322 length = qemu_get_be64(f); 4323 4324 block = qemu_ram_block_by_name(id); 4325 if (block && !qemu_ram_is_migratable(block)) { 4326 error_report("block %s should not be migrated !", id); 4327 ret = -EINVAL; 4328 } else if (block) { 4329 if (length != block->used_length) { 4330 Error *local_err = NULL; 4331 4332 ret = qemu_ram_resize(block, length, 4333 &local_err); 4334 if (local_err) { 4335 error_report_err(local_err); 4336 } 4337 } 4338 /* For postcopy we need to check hugepage sizes match */ 4339 if (postcopy_advised && 4340 block->page_size != qemu_host_page_size) { 4341 uint64_t remote_page_size = qemu_get_be64(f); 4342 if (remote_page_size != block->page_size) { 4343 error_report("Mismatched RAM page size %s " 4344 "(local) %zd != %" PRId64, 4345 id, block->page_size, 4346 remote_page_size); 4347 ret = -EINVAL; 4348 } 4349 } 4350 if (migrate_ignore_shared()) { 4351 hwaddr addr = qemu_get_be64(f); 4352 bool ignored = qemu_get_byte(f); 4353 if (ignored != ramblock_is_ignored(block)) { 4354 error_report("RAM block %s should %s be migrated", 4355 id, ignored ? "" : "not"); 4356 ret = -EINVAL; 4357 } 4358 if (ramblock_is_ignored(block) && 4359 block->mr->addr != addr) { 4360 error_report("Mismatched GPAs for block %s " 4361 "%" PRId64 "!= %" PRId64, 4362 id, (uint64_t)addr, 4363 (uint64_t)block->mr->addr); 4364 ret = -EINVAL; 4365 } 4366 } 4367 ram_control_load_hook(f, RAM_CONTROL_BLOCK_REG, 4368 block->idstr); 4369 } else { 4370 error_report("Unknown ramblock \"%s\", cannot " 4371 "accept migration", id); 4372 ret = -EINVAL; 4373 } 4374 4375 total_ram_bytes -= length; 4376 } 4377 break; 4378 4379 case RAM_SAVE_FLAG_ZERO: 4380 ch = qemu_get_byte(f); 4381 ram_handle_compressed(host, ch, TARGET_PAGE_SIZE); 4382 break; 4383 4384 case RAM_SAVE_FLAG_PAGE: 4385 qemu_get_buffer(f, host, TARGET_PAGE_SIZE); 4386 break; 4387 4388 case RAM_SAVE_FLAG_COMPRESS_PAGE: 4389 len = qemu_get_be32(f); 4390 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) { 4391 error_report("Invalid compressed data length: %d", len); 4392 ret = -EINVAL; 4393 break; 4394 } 4395 decompress_data_with_multi_threads(f, host, len); 4396 break; 4397 4398 case RAM_SAVE_FLAG_XBZRLE: 4399 if (load_xbzrle(f, addr, host) < 0) { 4400 error_report("Failed to decompress XBZRLE page at " 4401 RAM_ADDR_FMT, addr); 4402 ret = -EINVAL; 4403 break; 4404 } 4405 break; 4406 case RAM_SAVE_FLAG_EOS: 4407 /* normal exit */ 4408 multifd_recv_sync_main(); 4409 break; 4410 default: 4411 if (flags & RAM_SAVE_FLAG_HOOK) { 4412 ram_control_load_hook(f, RAM_CONTROL_HOOK, NULL); 4413 } else { 4414 error_report("Unknown combination of migration flags: %#x", 4415 flags); 4416 ret = -EINVAL; 4417 } 4418 } 4419 if (!ret) { 4420 ret = qemu_file_get_error(f); 4421 } 4422 } 4423 4424 ret |= wait_for_decompress_done(); 4425 rcu_read_unlock(); 4426 trace_ram_load_complete(ret, seq_iter); 4427 4428 if (!ret && migration_incoming_in_colo_state()) { 4429 colo_flush_ram_cache(); 4430 } 4431 return ret; 4432 } 4433 4434 static bool ram_has_postcopy(void *opaque) 4435 { 4436 RAMBlock *rb; 4437 RAMBLOCK_FOREACH_NOT_IGNORED(rb) { 4438 if (ramblock_is_pmem(rb)) { 4439 info_report("Block: %s, host: %p is a nvdimm memory, postcopy" 4440 "is not supported now!", rb->idstr, rb->host); 4441 return false; 4442 } 4443 } 4444 4445 return migrate_postcopy_ram(); 4446 } 4447 4448 /* Sync all the dirty bitmap with destination VM. */ 4449 static int ram_dirty_bitmap_sync_all(MigrationState *s, RAMState *rs) 4450 { 4451 RAMBlock *block; 4452 QEMUFile *file = s->to_dst_file; 4453 int ramblock_count = 0; 4454 4455 trace_ram_dirty_bitmap_sync_start(); 4456 4457 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 4458 qemu_savevm_send_recv_bitmap(file, block->idstr); 4459 trace_ram_dirty_bitmap_request(block->idstr); 4460 ramblock_count++; 4461 } 4462 4463 trace_ram_dirty_bitmap_sync_wait(); 4464 4465 /* Wait until all the ramblocks' dirty bitmap synced */ 4466 while (ramblock_count--) { 4467 qemu_sem_wait(&s->rp_state.rp_sem); 4468 } 4469 4470 trace_ram_dirty_bitmap_sync_complete(); 4471 4472 return 0; 4473 } 4474 4475 static void ram_dirty_bitmap_reload_notify(MigrationState *s) 4476 { 4477 qemu_sem_post(&s->rp_state.rp_sem); 4478 } 4479 4480 /* 4481 * Read the received bitmap, revert it as the initial dirty bitmap. 4482 * This is only used when the postcopy migration is paused but wants 4483 * to resume from a middle point. 4484 */ 4485 int ram_dirty_bitmap_reload(MigrationState *s, RAMBlock *block) 4486 { 4487 int ret = -EINVAL; 4488 QEMUFile *file = s->rp_state.from_dst_file; 4489 unsigned long *le_bitmap, nbits = block->used_length >> TARGET_PAGE_BITS; 4490 uint64_t local_size = DIV_ROUND_UP(nbits, 8); 4491 uint64_t size, end_mark; 4492 4493 trace_ram_dirty_bitmap_reload_begin(block->idstr); 4494 4495 if (s->state != MIGRATION_STATUS_POSTCOPY_RECOVER) { 4496 error_report("%s: incorrect state %s", __func__, 4497 MigrationStatus_str(s->state)); 4498 return -EINVAL; 4499 } 4500 4501 /* 4502 * Note: see comments in ramblock_recv_bitmap_send() on why we 4503 * need the endianess convertion, and the paddings. 4504 */ 4505 local_size = ROUND_UP(local_size, 8); 4506 4507 /* Add paddings */ 4508 le_bitmap = bitmap_new(nbits + BITS_PER_LONG); 4509 4510 size = qemu_get_be64(file); 4511 4512 /* The size of the bitmap should match with our ramblock */ 4513 if (size != local_size) { 4514 error_report("%s: ramblock '%s' bitmap size mismatch " 4515 "(0x%"PRIx64" != 0x%"PRIx64")", __func__, 4516 block->idstr, size, local_size); 4517 ret = -EINVAL; 4518 goto out; 4519 } 4520 4521 size = qemu_get_buffer(file, (uint8_t *)le_bitmap, local_size); 4522 end_mark = qemu_get_be64(file); 4523 4524 ret = qemu_file_get_error(file); 4525 if (ret || size != local_size) { 4526 error_report("%s: read bitmap failed for ramblock '%s': %d" 4527 " (size 0x%"PRIx64", got: 0x%"PRIx64")", 4528 __func__, block->idstr, ret, local_size, size); 4529 ret = -EIO; 4530 goto out; 4531 } 4532 4533 if (end_mark != RAMBLOCK_RECV_BITMAP_ENDING) { 4534 error_report("%s: ramblock '%s' end mark incorrect: 0x%"PRIu64, 4535 __func__, block->idstr, end_mark); 4536 ret = -EINVAL; 4537 goto out; 4538 } 4539 4540 /* 4541 * Endianess convertion. We are during postcopy (though paused). 4542 * The dirty bitmap won't change. We can directly modify it. 4543 */ 4544 bitmap_from_le(block->bmap, le_bitmap, nbits); 4545 4546 /* 4547 * What we received is "received bitmap". Revert it as the initial 4548 * dirty bitmap for this ramblock. 4549 */ 4550 bitmap_complement(block->bmap, block->bmap, nbits); 4551 4552 trace_ram_dirty_bitmap_reload_complete(block->idstr); 4553 4554 /* 4555 * We succeeded to sync bitmap for current ramblock. If this is 4556 * the last one to sync, we need to notify the main send thread. 4557 */ 4558 ram_dirty_bitmap_reload_notify(s); 4559 4560 ret = 0; 4561 out: 4562 g_free(le_bitmap); 4563 return ret; 4564 } 4565 4566 static int ram_resume_prepare(MigrationState *s, void *opaque) 4567 { 4568 RAMState *rs = *(RAMState **)opaque; 4569 int ret; 4570 4571 ret = ram_dirty_bitmap_sync_all(s, rs); 4572 if (ret) { 4573 return ret; 4574 } 4575 4576 ram_state_resume_prepare(rs, s->to_dst_file); 4577 4578 return 0; 4579 } 4580 4581 static SaveVMHandlers savevm_ram_handlers = { 4582 .save_setup = ram_save_setup, 4583 .save_live_iterate = ram_save_iterate, 4584 .save_live_complete_postcopy = ram_save_complete, 4585 .save_live_complete_precopy = ram_save_complete, 4586 .has_postcopy = ram_has_postcopy, 4587 .save_live_pending = ram_save_pending, 4588 .load_state = ram_load, 4589 .save_cleanup = ram_save_cleanup, 4590 .load_setup = ram_load_setup, 4591 .load_cleanup = ram_load_cleanup, 4592 .resume_prepare = ram_resume_prepare, 4593 }; 4594 4595 void ram_mig_init(void) 4596 { 4597 qemu_mutex_init(&XBZRLE.lock); 4598 register_savevm_live(NULL, "ram", 0, 4, &savevm_ram_handlers, &ram_state); 4599 } 4600