1 /* 2 * QEMU System Emulator 3 * 4 * Copyright (c) 2003-2008 Fabrice Bellard 5 * Copyright (c) 2011-2015 Red Hat Inc 6 * 7 * Authors: 8 * Juan Quintela <quintela@redhat.com> 9 * 10 * Permission is hereby granted, free of charge, to any person obtaining a copy 11 * of this software and associated documentation files (the "Software"), to deal 12 * in the Software without restriction, including without limitation the rights 13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 14 * copies of the Software, and to permit persons to whom the Software is 15 * furnished to do so, subject to the following conditions: 16 * 17 * The above copyright notice and this permission notice shall be included in 18 * all copies or substantial portions of the Software. 19 * 20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 26 * THE SOFTWARE. 27 */ 28 29 #include "qemu/osdep.h" 30 #include "qemu/cutils.h" 31 #include "qemu/bitops.h" 32 #include "qemu/bitmap.h" 33 #include "qemu/madvise.h" 34 #include "qemu/main-loop.h" 35 #include "xbzrle.h" 36 #include "ram-compress.h" 37 #include "ram.h" 38 #include "migration.h" 39 #include "migration-stats.h" 40 #include "migration/register.h" 41 #include "migration/misc.h" 42 #include "qemu-file.h" 43 #include "postcopy-ram.h" 44 #include "page_cache.h" 45 #include "qemu/error-report.h" 46 #include "qapi/error.h" 47 #include "qapi/qapi-types-migration.h" 48 #include "qapi/qapi-events-migration.h" 49 #include "qapi/qapi-commands-migration.h" 50 #include "qapi/qmp/qerror.h" 51 #include "trace.h" 52 #include "exec/ram_addr.h" 53 #include "exec/target_page.h" 54 #include "qemu/rcu_queue.h" 55 #include "migration/colo.h" 56 #include "block.h" 57 #include "sysemu/cpu-throttle.h" 58 #include "savevm.h" 59 #include "qemu/iov.h" 60 #include "multifd.h" 61 #include "sysemu/runstate.h" 62 #include "options.h" 63 #include "sysemu/dirtylimit.h" 64 #include "sysemu/kvm.h" 65 66 #include "hw/boards.h" /* for machine_dump_guest_core() */ 67 68 #if defined(__linux__) 69 #include "qemu/userfaultfd.h" 70 #endif /* defined(__linux__) */ 71 72 /***********************************************************/ 73 /* ram save/restore */ 74 75 /* 76 * RAM_SAVE_FLAG_ZERO used to be named RAM_SAVE_FLAG_COMPRESS, it 77 * worked for pages that were filled with the same char. We switched 78 * it to only search for the zero value. And to avoid confusion with 79 * RAM_SAVE_FLAG_COMPRESS_PAGE just rename it. 80 */ 81 /* 82 * RAM_SAVE_FLAG_FULL was obsoleted in 2009, it can be reused now 83 */ 84 #define RAM_SAVE_FLAG_FULL 0x01 85 #define RAM_SAVE_FLAG_ZERO 0x02 86 #define RAM_SAVE_FLAG_MEM_SIZE 0x04 87 #define RAM_SAVE_FLAG_PAGE 0x08 88 #define RAM_SAVE_FLAG_EOS 0x10 89 #define RAM_SAVE_FLAG_CONTINUE 0x20 90 #define RAM_SAVE_FLAG_XBZRLE 0x40 91 /* 0x80 is reserved in qemu-file.h for RAM_SAVE_FLAG_HOOK */ 92 #define RAM_SAVE_FLAG_COMPRESS_PAGE 0x100 93 #define RAM_SAVE_FLAG_MULTIFD_FLUSH 0x200 94 /* We can't use any flag that is bigger than 0x200 */ 95 96 XBZRLECacheStats xbzrle_counters; 97 98 /* used by the search for pages to send */ 99 struct PageSearchStatus { 100 /* The migration channel used for a specific host page */ 101 QEMUFile *pss_channel; 102 /* Last block from where we have sent data */ 103 RAMBlock *last_sent_block; 104 /* Current block being searched */ 105 RAMBlock *block; 106 /* Current page to search from */ 107 unsigned long page; 108 /* Set once we wrap around */ 109 bool complete_round; 110 /* Whether we're sending a host page */ 111 bool host_page_sending; 112 /* The start/end of current host page. Invalid if host_page_sending==false */ 113 unsigned long host_page_start; 114 unsigned long host_page_end; 115 }; 116 typedef struct PageSearchStatus PageSearchStatus; 117 118 /* struct contains XBZRLE cache and a static page 119 used by the compression */ 120 static struct { 121 /* buffer used for XBZRLE encoding */ 122 uint8_t *encoded_buf; 123 /* buffer for storing page content */ 124 uint8_t *current_buf; 125 /* Cache for XBZRLE, Protected by lock. */ 126 PageCache *cache; 127 QemuMutex lock; 128 /* it will store a page full of zeros */ 129 uint8_t *zero_target_page; 130 /* buffer used for XBZRLE decoding */ 131 uint8_t *decoded_buf; 132 } XBZRLE; 133 134 static void XBZRLE_cache_lock(void) 135 { 136 if (migrate_xbzrle()) { 137 qemu_mutex_lock(&XBZRLE.lock); 138 } 139 } 140 141 static void XBZRLE_cache_unlock(void) 142 { 143 if (migrate_xbzrle()) { 144 qemu_mutex_unlock(&XBZRLE.lock); 145 } 146 } 147 148 /** 149 * xbzrle_cache_resize: resize the xbzrle cache 150 * 151 * This function is called from migrate_params_apply in main 152 * thread, possibly while a migration is in progress. A running 153 * migration may be using the cache and might finish during this call, 154 * hence changes to the cache are protected by XBZRLE.lock(). 155 * 156 * Returns 0 for success or -1 for error 157 * 158 * @new_size: new cache size 159 * @errp: set *errp if the check failed, with reason 160 */ 161 int xbzrle_cache_resize(uint64_t new_size, Error **errp) 162 { 163 PageCache *new_cache; 164 int64_t ret = 0; 165 166 /* Check for truncation */ 167 if (new_size != (size_t)new_size) { 168 error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cache size", 169 "exceeding address space"); 170 return -1; 171 } 172 173 if (new_size == migrate_xbzrle_cache_size()) { 174 /* nothing to do */ 175 return 0; 176 } 177 178 XBZRLE_cache_lock(); 179 180 if (XBZRLE.cache != NULL) { 181 new_cache = cache_init(new_size, TARGET_PAGE_SIZE, errp); 182 if (!new_cache) { 183 ret = -1; 184 goto out; 185 } 186 187 cache_fini(XBZRLE.cache); 188 XBZRLE.cache = new_cache; 189 } 190 out: 191 XBZRLE_cache_unlock(); 192 return ret; 193 } 194 195 static bool postcopy_preempt_active(void) 196 { 197 return migrate_postcopy_preempt() && migration_in_postcopy(); 198 } 199 200 bool migrate_ram_is_ignored(RAMBlock *block) 201 { 202 return !qemu_ram_is_migratable(block) || 203 (migrate_ignore_shared() && qemu_ram_is_shared(block) 204 && qemu_ram_is_named_file(block)); 205 } 206 207 #undef RAMBLOCK_FOREACH 208 209 int foreach_not_ignored_block(RAMBlockIterFunc func, void *opaque) 210 { 211 RAMBlock *block; 212 int ret = 0; 213 214 RCU_READ_LOCK_GUARD(); 215 216 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 217 ret = func(block, opaque); 218 if (ret) { 219 break; 220 } 221 } 222 return ret; 223 } 224 225 static void ramblock_recv_map_init(void) 226 { 227 RAMBlock *rb; 228 229 RAMBLOCK_FOREACH_NOT_IGNORED(rb) { 230 assert(!rb->receivedmap); 231 rb->receivedmap = bitmap_new(rb->max_length >> qemu_target_page_bits()); 232 } 233 } 234 235 int ramblock_recv_bitmap_test(RAMBlock *rb, void *host_addr) 236 { 237 return test_bit(ramblock_recv_bitmap_offset(host_addr, rb), 238 rb->receivedmap); 239 } 240 241 bool ramblock_recv_bitmap_test_byte_offset(RAMBlock *rb, uint64_t byte_offset) 242 { 243 return test_bit(byte_offset >> TARGET_PAGE_BITS, rb->receivedmap); 244 } 245 246 void ramblock_recv_bitmap_set(RAMBlock *rb, void *host_addr) 247 { 248 set_bit_atomic(ramblock_recv_bitmap_offset(host_addr, rb), rb->receivedmap); 249 } 250 251 void ramblock_recv_bitmap_set_range(RAMBlock *rb, void *host_addr, 252 size_t nr) 253 { 254 bitmap_set_atomic(rb->receivedmap, 255 ramblock_recv_bitmap_offset(host_addr, rb), 256 nr); 257 } 258 259 #define RAMBLOCK_RECV_BITMAP_ENDING (0x0123456789abcdefULL) 260 261 /* 262 * Format: bitmap_size (8 bytes) + whole_bitmap (N bytes). 263 * 264 * Returns >0 if success with sent bytes, or <0 if error. 265 */ 266 int64_t ramblock_recv_bitmap_send(QEMUFile *file, 267 const char *block_name) 268 { 269 RAMBlock *block = qemu_ram_block_by_name(block_name); 270 unsigned long *le_bitmap, nbits; 271 uint64_t size; 272 273 if (!block) { 274 error_report("%s: invalid block name: %s", __func__, block_name); 275 return -1; 276 } 277 278 nbits = block->postcopy_length >> TARGET_PAGE_BITS; 279 280 /* 281 * Make sure the tmp bitmap buffer is big enough, e.g., on 32bit 282 * machines we may need 4 more bytes for padding (see below 283 * comment). So extend it a bit before hand. 284 */ 285 le_bitmap = bitmap_new(nbits + BITS_PER_LONG); 286 287 /* 288 * Always use little endian when sending the bitmap. This is 289 * required that when source and destination VMs are not using the 290 * same endianness. (Note: big endian won't work.) 291 */ 292 bitmap_to_le(le_bitmap, block->receivedmap, nbits); 293 294 /* Size of the bitmap, in bytes */ 295 size = DIV_ROUND_UP(nbits, 8); 296 297 /* 298 * size is always aligned to 8 bytes for 64bit machines, but it 299 * may not be true for 32bit machines. We need this padding to 300 * make sure the migration can survive even between 32bit and 301 * 64bit machines. 302 */ 303 size = ROUND_UP(size, 8); 304 305 qemu_put_be64(file, size); 306 qemu_put_buffer(file, (const uint8_t *)le_bitmap, size); 307 /* 308 * Mark as an end, in case the middle part is screwed up due to 309 * some "mysterious" reason. 310 */ 311 qemu_put_be64(file, RAMBLOCK_RECV_BITMAP_ENDING); 312 qemu_fflush(file); 313 314 g_free(le_bitmap); 315 316 if (qemu_file_get_error(file)) { 317 return qemu_file_get_error(file); 318 } 319 320 return size + sizeof(size); 321 } 322 323 /* 324 * An outstanding page request, on the source, having been received 325 * and queued 326 */ 327 struct RAMSrcPageRequest { 328 RAMBlock *rb; 329 hwaddr offset; 330 hwaddr len; 331 332 QSIMPLEQ_ENTRY(RAMSrcPageRequest) next_req; 333 }; 334 335 /* State of RAM for migration */ 336 struct RAMState { 337 /* 338 * PageSearchStatus structures for the channels when send pages. 339 * Protected by the bitmap_mutex. 340 */ 341 PageSearchStatus pss[RAM_CHANNEL_MAX]; 342 /* UFFD file descriptor, used in 'write-tracking' migration */ 343 int uffdio_fd; 344 /* total ram size in bytes */ 345 uint64_t ram_bytes_total; 346 /* Last block that we have visited searching for dirty pages */ 347 RAMBlock *last_seen_block; 348 /* Last dirty target page we have sent */ 349 ram_addr_t last_page; 350 /* last ram version we have seen */ 351 uint32_t last_version; 352 /* How many times we have dirty too many pages */ 353 int dirty_rate_high_cnt; 354 /* these variables are used for bitmap sync */ 355 /* last time we did a full bitmap_sync */ 356 int64_t time_last_bitmap_sync; 357 /* bytes transferred at start_time */ 358 uint64_t bytes_xfer_prev; 359 /* number of dirty pages since start_time */ 360 uint64_t num_dirty_pages_period; 361 /* xbzrle misses since the beginning of the period */ 362 uint64_t xbzrle_cache_miss_prev; 363 /* Amount of xbzrle pages since the beginning of the period */ 364 uint64_t xbzrle_pages_prev; 365 /* Amount of xbzrle encoded bytes since the beginning of the period */ 366 uint64_t xbzrle_bytes_prev; 367 /* Are we really using XBZRLE (e.g., after the first round). */ 368 bool xbzrle_started; 369 /* Are we on the last stage of migration */ 370 bool last_stage; 371 /* compression statistics since the beginning of the period */ 372 /* amount of count that no free thread to compress data */ 373 uint64_t compress_thread_busy_prev; 374 /* amount bytes after compression */ 375 uint64_t compressed_size_prev; 376 /* amount of compressed pages */ 377 uint64_t compress_pages_prev; 378 379 /* total handled target pages at the beginning of period */ 380 uint64_t target_page_count_prev; 381 /* total handled target pages since start */ 382 uint64_t target_page_count; 383 /* number of dirty bits in the bitmap */ 384 uint64_t migration_dirty_pages; 385 /* 386 * Protects: 387 * - dirty/clear bitmap 388 * - migration_dirty_pages 389 * - pss structures 390 */ 391 QemuMutex bitmap_mutex; 392 /* The RAMBlock used in the last src_page_requests */ 393 RAMBlock *last_req_rb; 394 /* Queue of outstanding page requests from the destination */ 395 QemuMutex src_page_req_mutex; 396 QSIMPLEQ_HEAD(, RAMSrcPageRequest) src_page_requests; 397 }; 398 typedef struct RAMState RAMState; 399 400 static RAMState *ram_state; 401 402 static NotifierWithReturnList precopy_notifier_list; 403 404 /* Whether postcopy has queued requests? */ 405 static bool postcopy_has_request(RAMState *rs) 406 { 407 return !QSIMPLEQ_EMPTY_ATOMIC(&rs->src_page_requests); 408 } 409 410 void precopy_infrastructure_init(void) 411 { 412 notifier_with_return_list_init(&precopy_notifier_list); 413 } 414 415 void precopy_add_notifier(NotifierWithReturn *n) 416 { 417 notifier_with_return_list_add(&precopy_notifier_list, n); 418 } 419 420 void precopy_remove_notifier(NotifierWithReturn *n) 421 { 422 notifier_with_return_remove(n); 423 } 424 425 int precopy_notify(PrecopyNotifyReason reason, Error **errp) 426 { 427 PrecopyNotifyData pnd; 428 pnd.reason = reason; 429 pnd.errp = errp; 430 431 return notifier_with_return_list_notify(&precopy_notifier_list, &pnd); 432 } 433 434 uint64_t ram_bytes_remaining(void) 435 { 436 return ram_state ? (ram_state->migration_dirty_pages * TARGET_PAGE_SIZE) : 437 0; 438 } 439 440 void ram_transferred_add(uint64_t bytes) 441 { 442 if (runstate_is_running()) { 443 stat64_add(&mig_stats.precopy_bytes, bytes); 444 } else if (migration_in_postcopy()) { 445 stat64_add(&mig_stats.postcopy_bytes, bytes); 446 } else { 447 stat64_add(&mig_stats.downtime_bytes, bytes); 448 } 449 stat64_add(&mig_stats.transferred, bytes); 450 } 451 452 struct MigrationOps { 453 int (*ram_save_target_page)(RAMState *rs, PageSearchStatus *pss); 454 }; 455 typedef struct MigrationOps MigrationOps; 456 457 MigrationOps *migration_ops; 458 459 static int ram_save_host_page_urgent(PageSearchStatus *pss); 460 461 /* NOTE: page is the PFN not real ram_addr_t. */ 462 static void pss_init(PageSearchStatus *pss, RAMBlock *rb, ram_addr_t page) 463 { 464 pss->block = rb; 465 pss->page = page; 466 pss->complete_round = false; 467 } 468 469 /* 470 * Check whether two PSSs are actively sending the same page. Return true 471 * if it is, false otherwise. 472 */ 473 static bool pss_overlap(PageSearchStatus *pss1, PageSearchStatus *pss2) 474 { 475 return pss1->host_page_sending && pss2->host_page_sending && 476 (pss1->host_page_start == pss2->host_page_start); 477 } 478 479 /** 480 * save_page_header: write page header to wire 481 * 482 * If this is the 1st block, it also writes the block identification 483 * 484 * Returns the number of bytes written 485 * 486 * @pss: current PSS channel status 487 * @block: block that contains the page we want to send 488 * @offset: offset inside the block for the page 489 * in the lower bits, it contains flags 490 */ 491 static size_t save_page_header(PageSearchStatus *pss, QEMUFile *f, 492 RAMBlock *block, ram_addr_t offset) 493 { 494 size_t size, len; 495 bool same_block = (block == pss->last_sent_block); 496 497 if (same_block) { 498 offset |= RAM_SAVE_FLAG_CONTINUE; 499 } 500 qemu_put_be64(f, offset); 501 size = 8; 502 503 if (!same_block) { 504 len = strlen(block->idstr); 505 qemu_put_byte(f, len); 506 qemu_put_buffer(f, (uint8_t *)block->idstr, len); 507 size += 1 + len; 508 pss->last_sent_block = block; 509 } 510 return size; 511 } 512 513 /** 514 * mig_throttle_guest_down: throttle down the guest 515 * 516 * Reduce amount of guest cpu execution to hopefully slow down memory 517 * writes. If guest dirty memory rate is reduced below the rate at 518 * which we can transfer pages to the destination then we should be 519 * able to complete migration. Some workloads dirty memory way too 520 * fast and will not effectively converge, even with auto-converge. 521 */ 522 static void mig_throttle_guest_down(uint64_t bytes_dirty_period, 523 uint64_t bytes_dirty_threshold) 524 { 525 uint64_t pct_initial = migrate_cpu_throttle_initial(); 526 uint64_t pct_increment = migrate_cpu_throttle_increment(); 527 bool pct_tailslow = migrate_cpu_throttle_tailslow(); 528 int pct_max = migrate_max_cpu_throttle(); 529 530 uint64_t throttle_now = cpu_throttle_get_percentage(); 531 uint64_t cpu_now, cpu_ideal, throttle_inc; 532 533 /* We have not started throttling yet. Let's start it. */ 534 if (!cpu_throttle_active()) { 535 cpu_throttle_set(pct_initial); 536 } else { 537 /* Throttling already on, just increase the rate */ 538 if (!pct_tailslow) { 539 throttle_inc = pct_increment; 540 } else { 541 /* Compute the ideal CPU percentage used by Guest, which may 542 * make the dirty rate match the dirty rate threshold. */ 543 cpu_now = 100 - throttle_now; 544 cpu_ideal = cpu_now * (bytes_dirty_threshold * 1.0 / 545 bytes_dirty_period); 546 throttle_inc = MIN(cpu_now - cpu_ideal, pct_increment); 547 } 548 cpu_throttle_set(MIN(throttle_now + throttle_inc, pct_max)); 549 } 550 } 551 552 void mig_throttle_counter_reset(void) 553 { 554 RAMState *rs = ram_state; 555 556 rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); 557 rs->num_dirty_pages_period = 0; 558 rs->bytes_xfer_prev = stat64_get(&mig_stats.transferred); 559 } 560 561 /** 562 * xbzrle_cache_zero_page: insert a zero page in the XBZRLE cache 563 * 564 * @rs: current RAM state 565 * @current_addr: address for the zero page 566 * 567 * Update the xbzrle cache to reflect a page that's been sent as all 0. 568 * The important thing is that a stale (not-yet-0'd) page be replaced 569 * by the new data. 570 * As a bonus, if the page wasn't in the cache it gets added so that 571 * when a small write is made into the 0'd page it gets XBZRLE sent. 572 */ 573 static void xbzrle_cache_zero_page(RAMState *rs, ram_addr_t current_addr) 574 { 575 /* We don't care if this fails to allocate a new cache page 576 * as long as it updated an old one */ 577 cache_insert(XBZRLE.cache, current_addr, XBZRLE.zero_target_page, 578 stat64_get(&mig_stats.dirty_sync_count)); 579 } 580 581 #define ENCODING_FLAG_XBZRLE 0x1 582 583 /** 584 * save_xbzrle_page: compress and send current page 585 * 586 * Returns: 1 means that we wrote the page 587 * 0 means that page is identical to the one already sent 588 * -1 means that xbzrle would be longer than normal 589 * 590 * @rs: current RAM state 591 * @pss: current PSS channel 592 * @current_data: pointer to the address of the page contents 593 * @current_addr: addr of the page 594 * @block: block that contains the page we want to send 595 * @offset: offset inside the block for the page 596 */ 597 static int save_xbzrle_page(RAMState *rs, PageSearchStatus *pss, 598 uint8_t **current_data, ram_addr_t current_addr, 599 RAMBlock *block, ram_addr_t offset) 600 { 601 int encoded_len = 0, bytes_xbzrle; 602 uint8_t *prev_cached_page; 603 QEMUFile *file = pss->pss_channel; 604 uint64_t generation = stat64_get(&mig_stats.dirty_sync_count); 605 606 if (!cache_is_cached(XBZRLE.cache, current_addr, generation)) { 607 xbzrle_counters.cache_miss++; 608 if (!rs->last_stage) { 609 if (cache_insert(XBZRLE.cache, current_addr, *current_data, 610 generation) == -1) { 611 return -1; 612 } else { 613 /* update *current_data when the page has been 614 inserted into cache */ 615 *current_data = get_cached_data(XBZRLE.cache, current_addr); 616 } 617 } 618 return -1; 619 } 620 621 /* 622 * Reaching here means the page has hit the xbzrle cache, no matter what 623 * encoding result it is (normal encoding, overflow or skipping the page), 624 * count the page as encoded. This is used to calculate the encoding rate. 625 * 626 * Example: 2 pages (8KB) being encoded, first page encoding generates 2KB, 627 * 2nd page turns out to be skipped (i.e. no new bytes written to the 628 * page), the overall encoding rate will be 8KB / 2KB = 4, which has the 629 * skipped page included. In this way, the encoding rate can tell if the 630 * guest page is good for xbzrle encoding. 631 */ 632 xbzrle_counters.pages++; 633 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr); 634 635 /* save current buffer into memory */ 636 memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE); 637 638 /* XBZRLE encoding (if there is no overflow) */ 639 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf, 640 TARGET_PAGE_SIZE, XBZRLE.encoded_buf, 641 TARGET_PAGE_SIZE); 642 643 /* 644 * Update the cache contents, so that it corresponds to the data 645 * sent, in all cases except where we skip the page. 646 */ 647 if (!rs->last_stage && encoded_len != 0) { 648 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE); 649 /* 650 * In the case where we couldn't compress, ensure that the caller 651 * sends the data from the cache, since the guest might have 652 * changed the RAM since we copied it. 653 */ 654 *current_data = prev_cached_page; 655 } 656 657 if (encoded_len == 0) { 658 trace_save_xbzrle_page_skipping(); 659 return 0; 660 } else if (encoded_len == -1) { 661 trace_save_xbzrle_page_overflow(); 662 xbzrle_counters.overflow++; 663 xbzrle_counters.bytes += TARGET_PAGE_SIZE; 664 return -1; 665 } 666 667 /* Send XBZRLE based compressed page */ 668 bytes_xbzrle = save_page_header(pss, pss->pss_channel, block, 669 offset | RAM_SAVE_FLAG_XBZRLE); 670 qemu_put_byte(file, ENCODING_FLAG_XBZRLE); 671 qemu_put_be16(file, encoded_len); 672 qemu_put_buffer(file, XBZRLE.encoded_buf, encoded_len); 673 bytes_xbzrle += encoded_len + 1 + 2; 674 /* 675 * Like compressed_size (please see update_compress_thread_counts), 676 * the xbzrle encoded bytes don't count the 8 byte header with 677 * RAM_SAVE_FLAG_CONTINUE. 678 */ 679 xbzrle_counters.bytes += bytes_xbzrle - 8; 680 ram_transferred_add(bytes_xbzrle); 681 682 return 1; 683 } 684 685 /** 686 * pss_find_next_dirty: find the next dirty page of current ramblock 687 * 688 * This function updates pss->page to point to the next dirty page index 689 * within the ramblock to migrate, or the end of ramblock when nothing 690 * found. Note that when pss->host_page_sending==true it means we're 691 * during sending a host page, so we won't look for dirty page that is 692 * outside the host page boundary. 693 * 694 * @pss: the current page search status 695 */ 696 static void pss_find_next_dirty(PageSearchStatus *pss) 697 { 698 RAMBlock *rb = pss->block; 699 unsigned long size = rb->used_length >> TARGET_PAGE_BITS; 700 unsigned long *bitmap = rb->bmap; 701 702 if (migrate_ram_is_ignored(rb)) { 703 /* Points directly to the end, so we know no dirty page */ 704 pss->page = size; 705 return; 706 } 707 708 /* 709 * If during sending a host page, only look for dirty pages within the 710 * current host page being send. 711 */ 712 if (pss->host_page_sending) { 713 assert(pss->host_page_end); 714 size = MIN(size, pss->host_page_end); 715 } 716 717 pss->page = find_next_bit(bitmap, size, pss->page); 718 } 719 720 static void migration_clear_memory_region_dirty_bitmap(RAMBlock *rb, 721 unsigned long page) 722 { 723 uint8_t shift; 724 hwaddr size, start; 725 726 if (!rb->clear_bmap || !clear_bmap_test_and_clear(rb, page)) { 727 return; 728 } 729 730 shift = rb->clear_bmap_shift; 731 /* 732 * CLEAR_BITMAP_SHIFT_MIN should always guarantee this... this 733 * can make things easier sometimes since then start address 734 * of the small chunk will always be 64 pages aligned so the 735 * bitmap will always be aligned to unsigned long. We should 736 * even be able to remove this restriction but I'm simply 737 * keeping it. 738 */ 739 assert(shift >= 6); 740 741 size = 1ULL << (TARGET_PAGE_BITS + shift); 742 start = QEMU_ALIGN_DOWN((ram_addr_t)page << TARGET_PAGE_BITS, size); 743 trace_migration_bitmap_clear_dirty(rb->idstr, start, size, page); 744 memory_region_clear_dirty_bitmap(rb->mr, start, size); 745 } 746 747 static void 748 migration_clear_memory_region_dirty_bitmap_range(RAMBlock *rb, 749 unsigned long start, 750 unsigned long npages) 751 { 752 unsigned long i, chunk_pages = 1UL << rb->clear_bmap_shift; 753 unsigned long chunk_start = QEMU_ALIGN_DOWN(start, chunk_pages); 754 unsigned long chunk_end = QEMU_ALIGN_UP(start + npages, chunk_pages); 755 756 /* 757 * Clear pages from start to start + npages - 1, so the end boundary is 758 * exclusive. 759 */ 760 for (i = chunk_start; i < chunk_end; i += chunk_pages) { 761 migration_clear_memory_region_dirty_bitmap(rb, i); 762 } 763 } 764 765 /* 766 * colo_bitmap_find_diry:find contiguous dirty pages from start 767 * 768 * Returns the page offset within memory region of the start of the contiguout 769 * dirty page 770 * 771 * @rs: current RAM state 772 * @rb: RAMBlock where to search for dirty pages 773 * @start: page where we start the search 774 * @num: the number of contiguous dirty pages 775 */ 776 static inline 777 unsigned long colo_bitmap_find_dirty(RAMState *rs, RAMBlock *rb, 778 unsigned long start, unsigned long *num) 779 { 780 unsigned long size = rb->used_length >> TARGET_PAGE_BITS; 781 unsigned long *bitmap = rb->bmap; 782 unsigned long first, next; 783 784 *num = 0; 785 786 if (migrate_ram_is_ignored(rb)) { 787 return size; 788 } 789 790 first = find_next_bit(bitmap, size, start); 791 if (first >= size) { 792 return first; 793 } 794 next = find_next_zero_bit(bitmap, size, first + 1); 795 assert(next >= first); 796 *num = next - first; 797 return first; 798 } 799 800 static inline bool migration_bitmap_clear_dirty(RAMState *rs, 801 RAMBlock *rb, 802 unsigned long page) 803 { 804 bool ret; 805 806 /* 807 * Clear dirty bitmap if needed. This _must_ be called before we 808 * send any of the page in the chunk because we need to make sure 809 * we can capture further page content changes when we sync dirty 810 * log the next time. So as long as we are going to send any of 811 * the page in the chunk we clear the remote dirty bitmap for all. 812 * Clearing it earlier won't be a problem, but too late will. 813 */ 814 migration_clear_memory_region_dirty_bitmap(rb, page); 815 816 ret = test_and_clear_bit(page, rb->bmap); 817 if (ret) { 818 rs->migration_dirty_pages--; 819 } 820 821 return ret; 822 } 823 824 static void dirty_bitmap_clear_section(MemoryRegionSection *section, 825 void *opaque) 826 { 827 const hwaddr offset = section->offset_within_region; 828 const hwaddr size = int128_get64(section->size); 829 const unsigned long start = offset >> TARGET_PAGE_BITS; 830 const unsigned long npages = size >> TARGET_PAGE_BITS; 831 RAMBlock *rb = section->mr->ram_block; 832 uint64_t *cleared_bits = opaque; 833 834 /* 835 * We don't grab ram_state->bitmap_mutex because we expect to run 836 * only when starting migration or during postcopy recovery where 837 * we don't have concurrent access. 838 */ 839 if (!migration_in_postcopy() && !migrate_background_snapshot()) { 840 migration_clear_memory_region_dirty_bitmap_range(rb, start, npages); 841 } 842 *cleared_bits += bitmap_count_one_with_offset(rb->bmap, start, npages); 843 bitmap_clear(rb->bmap, start, npages); 844 } 845 846 /* 847 * Exclude all dirty pages from migration that fall into a discarded range as 848 * managed by a RamDiscardManager responsible for the mapped memory region of 849 * the RAMBlock. Clear the corresponding bits in the dirty bitmaps. 850 * 851 * Discarded pages ("logically unplugged") have undefined content and must 852 * not get migrated, because even reading these pages for migration might 853 * result in undesired behavior. 854 * 855 * Returns the number of cleared bits in the RAMBlock dirty bitmap. 856 * 857 * Note: The result is only stable while migrating (precopy/postcopy). 858 */ 859 static uint64_t ramblock_dirty_bitmap_clear_discarded_pages(RAMBlock *rb) 860 { 861 uint64_t cleared_bits = 0; 862 863 if (rb->mr && rb->bmap && memory_region_has_ram_discard_manager(rb->mr)) { 864 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr); 865 MemoryRegionSection section = { 866 .mr = rb->mr, 867 .offset_within_region = 0, 868 .size = int128_make64(qemu_ram_get_used_length(rb)), 869 }; 870 871 ram_discard_manager_replay_discarded(rdm, §ion, 872 dirty_bitmap_clear_section, 873 &cleared_bits); 874 } 875 return cleared_bits; 876 } 877 878 /* 879 * Check if a host-page aligned page falls into a discarded range as managed by 880 * a RamDiscardManager responsible for the mapped memory region of the RAMBlock. 881 * 882 * Note: The result is only stable while migrating (precopy/postcopy). 883 */ 884 bool ramblock_page_is_discarded(RAMBlock *rb, ram_addr_t start) 885 { 886 if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) { 887 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr); 888 MemoryRegionSection section = { 889 .mr = rb->mr, 890 .offset_within_region = start, 891 .size = int128_make64(qemu_ram_pagesize(rb)), 892 }; 893 894 return !ram_discard_manager_is_populated(rdm, §ion); 895 } 896 return false; 897 } 898 899 /* Called with RCU critical section */ 900 static void ramblock_sync_dirty_bitmap(RAMState *rs, RAMBlock *rb) 901 { 902 uint64_t new_dirty_pages = 903 cpu_physical_memory_sync_dirty_bitmap(rb, 0, rb->used_length); 904 905 rs->migration_dirty_pages += new_dirty_pages; 906 rs->num_dirty_pages_period += new_dirty_pages; 907 } 908 909 /** 910 * ram_pagesize_summary: calculate all the pagesizes of a VM 911 * 912 * Returns a summary bitmap of the page sizes of all RAMBlocks 913 * 914 * For VMs with just normal pages this is equivalent to the host page 915 * size. If it's got some huge pages then it's the OR of all the 916 * different page sizes. 917 */ 918 uint64_t ram_pagesize_summary(void) 919 { 920 RAMBlock *block; 921 uint64_t summary = 0; 922 923 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 924 summary |= block->page_size; 925 } 926 927 return summary; 928 } 929 930 uint64_t ram_get_total_transferred_pages(void) 931 { 932 return stat64_get(&mig_stats.normal_pages) + 933 stat64_get(&mig_stats.zero_pages) + 934 compression_counters.pages + xbzrle_counters.pages; 935 } 936 937 static void migration_update_rates(RAMState *rs, int64_t end_time) 938 { 939 uint64_t page_count = rs->target_page_count - rs->target_page_count_prev; 940 double compressed_size; 941 942 /* calculate period counters */ 943 stat64_set(&mig_stats.dirty_pages_rate, 944 rs->num_dirty_pages_period * 1000 / 945 (end_time - rs->time_last_bitmap_sync)); 946 947 if (!page_count) { 948 return; 949 } 950 951 if (migrate_xbzrle()) { 952 double encoded_size, unencoded_size; 953 954 xbzrle_counters.cache_miss_rate = (double)(xbzrle_counters.cache_miss - 955 rs->xbzrle_cache_miss_prev) / page_count; 956 rs->xbzrle_cache_miss_prev = xbzrle_counters.cache_miss; 957 unencoded_size = (xbzrle_counters.pages - rs->xbzrle_pages_prev) * 958 TARGET_PAGE_SIZE; 959 encoded_size = xbzrle_counters.bytes - rs->xbzrle_bytes_prev; 960 if (xbzrle_counters.pages == rs->xbzrle_pages_prev || !encoded_size) { 961 xbzrle_counters.encoding_rate = 0; 962 } else { 963 xbzrle_counters.encoding_rate = unencoded_size / encoded_size; 964 } 965 rs->xbzrle_pages_prev = xbzrle_counters.pages; 966 rs->xbzrle_bytes_prev = xbzrle_counters.bytes; 967 } 968 969 if (migrate_compress()) { 970 compression_counters.busy_rate = (double)(compression_counters.busy - 971 rs->compress_thread_busy_prev) / page_count; 972 rs->compress_thread_busy_prev = compression_counters.busy; 973 974 compressed_size = compression_counters.compressed_size - 975 rs->compressed_size_prev; 976 if (compressed_size) { 977 double uncompressed_size = (compression_counters.pages - 978 rs->compress_pages_prev) * TARGET_PAGE_SIZE; 979 980 /* Compression-Ratio = Uncompressed-size / Compressed-size */ 981 compression_counters.compression_rate = 982 uncompressed_size / compressed_size; 983 984 rs->compress_pages_prev = compression_counters.pages; 985 rs->compressed_size_prev = compression_counters.compressed_size; 986 } 987 } 988 } 989 990 /* 991 * Enable dirty-limit to throttle down the guest 992 */ 993 static void migration_dirty_limit_guest(void) 994 { 995 /* 996 * dirty page rate quota for all vCPUs fetched from 997 * migration parameter 'vcpu_dirty_limit' 998 */ 999 static int64_t quota_dirtyrate; 1000 MigrationState *s = migrate_get_current(); 1001 1002 /* 1003 * If dirty limit already enabled and migration parameter 1004 * vcpu-dirty-limit untouched. 1005 */ 1006 if (dirtylimit_in_service() && 1007 quota_dirtyrate == s->parameters.vcpu_dirty_limit) { 1008 return; 1009 } 1010 1011 quota_dirtyrate = s->parameters.vcpu_dirty_limit; 1012 1013 /* 1014 * Set all vCPU a quota dirtyrate, note that the second 1015 * parameter will be ignored if setting all vCPU for the vm 1016 */ 1017 qmp_set_vcpu_dirty_limit(false, -1, quota_dirtyrate, NULL); 1018 trace_migration_dirty_limit_guest(quota_dirtyrate); 1019 } 1020 1021 static void migration_trigger_throttle(RAMState *rs) 1022 { 1023 uint64_t threshold = migrate_throttle_trigger_threshold(); 1024 uint64_t bytes_xfer_period = 1025 stat64_get(&mig_stats.transferred) - rs->bytes_xfer_prev; 1026 uint64_t bytes_dirty_period = rs->num_dirty_pages_period * TARGET_PAGE_SIZE; 1027 uint64_t bytes_dirty_threshold = bytes_xfer_period * threshold / 100; 1028 1029 /* During block migration the auto-converge logic incorrectly detects 1030 * that ram migration makes no progress. Avoid this by disabling the 1031 * throttling logic during the bulk phase of block migration. */ 1032 if (blk_mig_bulk_active()) { 1033 return; 1034 } 1035 1036 /* 1037 * The following detection logic can be refined later. For now: 1038 * Check to see if the ratio between dirtied bytes and the approx. 1039 * amount of bytes that just got transferred since the last time 1040 * we were in this routine reaches the threshold. If that happens 1041 * twice, start or increase throttling. 1042 */ 1043 if ((bytes_dirty_period > bytes_dirty_threshold) && 1044 (++rs->dirty_rate_high_cnt >= 2)) { 1045 rs->dirty_rate_high_cnt = 0; 1046 if (migrate_auto_converge()) { 1047 trace_migration_throttle(); 1048 mig_throttle_guest_down(bytes_dirty_period, 1049 bytes_dirty_threshold); 1050 } else if (migrate_dirty_limit()) { 1051 migration_dirty_limit_guest(); 1052 } 1053 } 1054 } 1055 1056 static void migration_bitmap_sync(RAMState *rs, bool last_stage) 1057 { 1058 RAMBlock *block; 1059 int64_t end_time; 1060 1061 stat64_add(&mig_stats.dirty_sync_count, 1); 1062 1063 if (!rs->time_last_bitmap_sync) { 1064 rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); 1065 } 1066 1067 trace_migration_bitmap_sync_start(); 1068 memory_global_dirty_log_sync(last_stage); 1069 1070 qemu_mutex_lock(&rs->bitmap_mutex); 1071 WITH_RCU_READ_LOCK_GUARD() { 1072 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 1073 ramblock_sync_dirty_bitmap(rs, block); 1074 } 1075 stat64_set(&mig_stats.dirty_bytes_last_sync, ram_bytes_remaining()); 1076 } 1077 qemu_mutex_unlock(&rs->bitmap_mutex); 1078 1079 memory_global_after_dirty_log_sync(); 1080 trace_migration_bitmap_sync_end(rs->num_dirty_pages_period); 1081 1082 end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); 1083 1084 /* more than 1 second = 1000 millisecons */ 1085 if (end_time > rs->time_last_bitmap_sync + 1000) { 1086 migration_trigger_throttle(rs); 1087 1088 migration_update_rates(rs, end_time); 1089 1090 rs->target_page_count_prev = rs->target_page_count; 1091 1092 /* reset period counters */ 1093 rs->time_last_bitmap_sync = end_time; 1094 rs->num_dirty_pages_period = 0; 1095 rs->bytes_xfer_prev = stat64_get(&mig_stats.transferred); 1096 } 1097 if (migrate_events()) { 1098 uint64_t generation = stat64_get(&mig_stats.dirty_sync_count); 1099 qapi_event_send_migration_pass(generation); 1100 } 1101 } 1102 1103 static void migration_bitmap_sync_precopy(RAMState *rs, bool last_stage) 1104 { 1105 Error *local_err = NULL; 1106 1107 /* 1108 * The current notifier usage is just an optimization to migration, so we 1109 * don't stop the normal migration process in the error case. 1110 */ 1111 if (precopy_notify(PRECOPY_NOTIFY_BEFORE_BITMAP_SYNC, &local_err)) { 1112 error_report_err(local_err); 1113 local_err = NULL; 1114 } 1115 1116 migration_bitmap_sync(rs, last_stage); 1117 1118 if (precopy_notify(PRECOPY_NOTIFY_AFTER_BITMAP_SYNC, &local_err)) { 1119 error_report_err(local_err); 1120 } 1121 } 1122 1123 void ram_release_page(const char *rbname, uint64_t offset) 1124 { 1125 if (!migrate_release_ram() || !migration_in_postcopy()) { 1126 return; 1127 } 1128 1129 ram_discard_range(rbname, offset, TARGET_PAGE_SIZE); 1130 } 1131 1132 /** 1133 * save_zero_page_to_file: send the zero page to the file 1134 * 1135 * Returns the size of data written to the file, 0 means the page is not 1136 * a zero page 1137 * 1138 * @pss: current PSS channel 1139 * @block: block that contains the page we want to send 1140 * @offset: offset inside the block for the page 1141 */ 1142 static int save_zero_page_to_file(PageSearchStatus *pss, QEMUFile *file, 1143 RAMBlock *block, ram_addr_t offset) 1144 { 1145 uint8_t *p = block->host + offset; 1146 int len = 0; 1147 1148 if (buffer_is_zero(p, TARGET_PAGE_SIZE)) { 1149 len += save_page_header(pss, file, block, offset | RAM_SAVE_FLAG_ZERO); 1150 qemu_put_byte(file, 0); 1151 len += 1; 1152 ram_release_page(block->idstr, offset); 1153 } 1154 return len; 1155 } 1156 1157 /** 1158 * save_zero_page: send the zero page to the stream 1159 * 1160 * Returns the number of pages written. 1161 * 1162 * @pss: current PSS channel 1163 * @block: block that contains the page we want to send 1164 * @offset: offset inside the block for the page 1165 */ 1166 static int save_zero_page(PageSearchStatus *pss, QEMUFile *f, RAMBlock *block, 1167 ram_addr_t offset) 1168 { 1169 int len = save_zero_page_to_file(pss, f, block, offset); 1170 1171 if (len) { 1172 stat64_add(&mig_stats.zero_pages, 1); 1173 ram_transferred_add(len); 1174 return 1; 1175 } 1176 return -1; 1177 } 1178 1179 /* 1180 * @pages: the number of pages written by the control path, 1181 * < 0 - error 1182 * > 0 - number of pages written 1183 * 1184 * Return true if the pages has been saved, otherwise false is returned. 1185 */ 1186 static bool control_save_page(PageSearchStatus *pss, RAMBlock *block, 1187 ram_addr_t offset, int *pages) 1188 { 1189 int ret; 1190 1191 ret = ram_control_save_page(pss->pss_channel, block->offset, offset, 1192 TARGET_PAGE_SIZE); 1193 if (ret == RAM_SAVE_CONTROL_NOT_SUPP) { 1194 return false; 1195 } 1196 1197 if (ret == RAM_SAVE_CONTROL_DELAYED) { 1198 *pages = 1; 1199 return true; 1200 } 1201 *pages = ret; 1202 return true; 1203 } 1204 1205 /* 1206 * directly send the page to the stream 1207 * 1208 * Returns the number of pages written. 1209 * 1210 * @pss: current PSS channel 1211 * @block: block that contains the page we want to send 1212 * @offset: offset inside the block for the page 1213 * @buf: the page to be sent 1214 * @async: send to page asyncly 1215 */ 1216 static int save_normal_page(PageSearchStatus *pss, RAMBlock *block, 1217 ram_addr_t offset, uint8_t *buf, bool async) 1218 { 1219 QEMUFile *file = pss->pss_channel; 1220 1221 ram_transferred_add(save_page_header(pss, pss->pss_channel, block, 1222 offset | RAM_SAVE_FLAG_PAGE)); 1223 if (async) { 1224 qemu_put_buffer_async(file, buf, TARGET_PAGE_SIZE, 1225 migrate_release_ram() && 1226 migration_in_postcopy()); 1227 } else { 1228 qemu_put_buffer(file, buf, TARGET_PAGE_SIZE); 1229 } 1230 ram_transferred_add(TARGET_PAGE_SIZE); 1231 stat64_add(&mig_stats.normal_pages, 1); 1232 return 1; 1233 } 1234 1235 /** 1236 * ram_save_page: send the given page to the stream 1237 * 1238 * Returns the number of pages written. 1239 * < 0 - error 1240 * >=0 - Number of pages written - this might legally be 0 1241 * if xbzrle noticed the page was the same. 1242 * 1243 * @rs: current RAM state 1244 * @block: block that contains the page we want to send 1245 * @offset: offset inside the block for the page 1246 */ 1247 static int ram_save_page(RAMState *rs, PageSearchStatus *pss) 1248 { 1249 int pages = -1; 1250 uint8_t *p; 1251 bool send_async = true; 1252 RAMBlock *block = pss->block; 1253 ram_addr_t offset = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS; 1254 ram_addr_t current_addr = block->offset + offset; 1255 1256 p = block->host + offset; 1257 trace_ram_save_page(block->idstr, (uint64_t)offset, p); 1258 1259 XBZRLE_cache_lock(); 1260 if (rs->xbzrle_started && !migration_in_postcopy()) { 1261 pages = save_xbzrle_page(rs, pss, &p, current_addr, 1262 block, offset); 1263 if (!rs->last_stage) { 1264 /* Can't send this cached data async, since the cache page 1265 * might get updated before it gets to the wire 1266 */ 1267 send_async = false; 1268 } 1269 } 1270 1271 /* XBZRLE overflow or normal page */ 1272 if (pages == -1) { 1273 pages = save_normal_page(pss, block, offset, p, send_async); 1274 } 1275 1276 XBZRLE_cache_unlock(); 1277 1278 return pages; 1279 } 1280 1281 static int ram_save_multifd_page(QEMUFile *file, RAMBlock *block, 1282 ram_addr_t offset) 1283 { 1284 if (multifd_queue_page(file, block, offset) < 0) { 1285 return -1; 1286 } 1287 stat64_add(&mig_stats.normal_pages, 1); 1288 1289 return 1; 1290 } 1291 1292 static void 1293 update_compress_thread_counts(const CompressParam *param, int bytes_xmit) 1294 { 1295 ram_transferred_add(bytes_xmit); 1296 1297 if (param->result == RES_ZEROPAGE) { 1298 stat64_add(&mig_stats.zero_pages, 1); 1299 return; 1300 } 1301 1302 /* 8 means a header with RAM_SAVE_FLAG_CONTINUE. */ 1303 compression_counters.compressed_size += bytes_xmit - 8; 1304 compression_counters.pages++; 1305 } 1306 1307 static bool save_page_use_compression(RAMState *rs); 1308 1309 static int send_queued_data(CompressParam *param) 1310 { 1311 PageSearchStatus *pss = &ram_state->pss[RAM_CHANNEL_PRECOPY]; 1312 MigrationState *ms = migrate_get_current(); 1313 QEMUFile *file = ms->to_dst_file; 1314 int len = 0; 1315 1316 RAMBlock *block = param->block; 1317 ram_addr_t offset = param->offset; 1318 1319 if (param->result == RES_NONE) { 1320 return 0; 1321 } 1322 1323 assert(block == pss->last_sent_block); 1324 1325 if (param->result == RES_ZEROPAGE) { 1326 assert(qemu_file_buffer_empty(param->file)); 1327 len += save_page_header(pss, file, block, offset | RAM_SAVE_FLAG_ZERO); 1328 qemu_put_byte(file, 0); 1329 len += 1; 1330 ram_release_page(block->idstr, offset); 1331 } else if (param->result == RES_COMPRESS) { 1332 assert(!qemu_file_buffer_empty(param->file)); 1333 len += save_page_header(pss, file, block, 1334 offset | RAM_SAVE_FLAG_COMPRESS_PAGE); 1335 len += qemu_put_qemu_file(file, param->file); 1336 } else { 1337 abort(); 1338 } 1339 1340 update_compress_thread_counts(param, len); 1341 1342 return len; 1343 } 1344 1345 static void ram_flush_compressed_data(RAMState *rs) 1346 { 1347 if (!save_page_use_compression(rs)) { 1348 return; 1349 } 1350 1351 flush_compressed_data(send_queued_data); 1352 } 1353 1354 #define PAGE_ALL_CLEAN 0 1355 #define PAGE_TRY_AGAIN 1 1356 #define PAGE_DIRTY_FOUND 2 1357 /** 1358 * find_dirty_block: find the next dirty page and update any state 1359 * associated with the search process. 1360 * 1361 * Returns: 1362 * <0: An error happened 1363 * PAGE_ALL_CLEAN: no dirty page found, give up 1364 * PAGE_TRY_AGAIN: no dirty page found, retry for next block 1365 * PAGE_DIRTY_FOUND: dirty page found 1366 * 1367 * @rs: current RAM state 1368 * @pss: data about the state of the current dirty page scan 1369 * @again: set to false if the search has scanned the whole of RAM 1370 */ 1371 static int find_dirty_block(RAMState *rs, PageSearchStatus *pss) 1372 { 1373 /* Update pss->page for the next dirty bit in ramblock */ 1374 pss_find_next_dirty(pss); 1375 1376 if (pss->complete_round && pss->block == rs->last_seen_block && 1377 pss->page >= rs->last_page) { 1378 /* 1379 * We've been once around the RAM and haven't found anything. 1380 * Give up. 1381 */ 1382 return PAGE_ALL_CLEAN; 1383 } 1384 if (!offset_in_ramblock(pss->block, 1385 ((ram_addr_t)pss->page) << TARGET_PAGE_BITS)) { 1386 /* Didn't find anything in this RAM Block */ 1387 pss->page = 0; 1388 pss->block = QLIST_NEXT_RCU(pss->block, next); 1389 if (!pss->block) { 1390 if (!migrate_multifd_flush_after_each_section()) { 1391 QEMUFile *f = rs->pss[RAM_CHANNEL_PRECOPY].pss_channel; 1392 int ret = multifd_send_sync_main(f); 1393 if (ret < 0) { 1394 return ret; 1395 } 1396 qemu_put_be64(f, RAM_SAVE_FLAG_MULTIFD_FLUSH); 1397 qemu_fflush(f); 1398 } 1399 /* 1400 * If memory migration starts over, we will meet a dirtied page 1401 * which may still exists in compression threads's ring, so we 1402 * should flush the compressed data to make sure the new page 1403 * is not overwritten by the old one in the destination. 1404 * 1405 * Also If xbzrle is on, stop using the data compression at this 1406 * point. In theory, xbzrle can do better than compression. 1407 */ 1408 ram_flush_compressed_data(rs); 1409 1410 /* Hit the end of the list */ 1411 pss->block = QLIST_FIRST_RCU(&ram_list.blocks); 1412 /* Flag that we've looped */ 1413 pss->complete_round = true; 1414 /* After the first round, enable XBZRLE. */ 1415 if (migrate_xbzrle()) { 1416 rs->xbzrle_started = true; 1417 } 1418 } 1419 /* Didn't find anything this time, but try again on the new block */ 1420 return PAGE_TRY_AGAIN; 1421 } else { 1422 /* We've found something */ 1423 return PAGE_DIRTY_FOUND; 1424 } 1425 } 1426 1427 /** 1428 * unqueue_page: gets a page of the queue 1429 * 1430 * Helper for 'get_queued_page' - gets a page off the queue 1431 * 1432 * Returns the block of the page (or NULL if none available) 1433 * 1434 * @rs: current RAM state 1435 * @offset: used to return the offset within the RAMBlock 1436 */ 1437 static RAMBlock *unqueue_page(RAMState *rs, ram_addr_t *offset) 1438 { 1439 struct RAMSrcPageRequest *entry; 1440 RAMBlock *block = NULL; 1441 1442 if (!postcopy_has_request(rs)) { 1443 return NULL; 1444 } 1445 1446 QEMU_LOCK_GUARD(&rs->src_page_req_mutex); 1447 1448 /* 1449 * This should _never_ change even after we take the lock, because no one 1450 * should be taking anything off the request list other than us. 1451 */ 1452 assert(postcopy_has_request(rs)); 1453 1454 entry = QSIMPLEQ_FIRST(&rs->src_page_requests); 1455 block = entry->rb; 1456 *offset = entry->offset; 1457 1458 if (entry->len > TARGET_PAGE_SIZE) { 1459 entry->len -= TARGET_PAGE_SIZE; 1460 entry->offset += TARGET_PAGE_SIZE; 1461 } else { 1462 memory_region_unref(block->mr); 1463 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req); 1464 g_free(entry); 1465 migration_consume_urgent_request(); 1466 } 1467 1468 return block; 1469 } 1470 1471 #if defined(__linux__) 1472 /** 1473 * poll_fault_page: try to get next UFFD write fault page and, if pending fault 1474 * is found, return RAM block pointer and page offset 1475 * 1476 * Returns pointer to the RAMBlock containing faulting page, 1477 * NULL if no write faults are pending 1478 * 1479 * @rs: current RAM state 1480 * @offset: page offset from the beginning of the block 1481 */ 1482 static RAMBlock *poll_fault_page(RAMState *rs, ram_addr_t *offset) 1483 { 1484 struct uffd_msg uffd_msg; 1485 void *page_address; 1486 RAMBlock *block; 1487 int res; 1488 1489 if (!migrate_background_snapshot()) { 1490 return NULL; 1491 } 1492 1493 res = uffd_read_events(rs->uffdio_fd, &uffd_msg, 1); 1494 if (res <= 0) { 1495 return NULL; 1496 } 1497 1498 page_address = (void *)(uintptr_t) uffd_msg.arg.pagefault.address; 1499 block = qemu_ram_block_from_host(page_address, false, offset); 1500 assert(block && (block->flags & RAM_UF_WRITEPROTECT) != 0); 1501 return block; 1502 } 1503 1504 /** 1505 * ram_save_release_protection: release UFFD write protection after 1506 * a range of pages has been saved 1507 * 1508 * @rs: current RAM state 1509 * @pss: page-search-status structure 1510 * @start_page: index of the first page in the range relative to pss->block 1511 * 1512 * Returns 0 on success, negative value in case of an error 1513 */ 1514 static int ram_save_release_protection(RAMState *rs, PageSearchStatus *pss, 1515 unsigned long start_page) 1516 { 1517 int res = 0; 1518 1519 /* Check if page is from UFFD-managed region. */ 1520 if (pss->block->flags & RAM_UF_WRITEPROTECT) { 1521 void *page_address = pss->block->host + (start_page << TARGET_PAGE_BITS); 1522 uint64_t run_length = (pss->page - start_page) << TARGET_PAGE_BITS; 1523 1524 /* Flush async buffers before un-protect. */ 1525 qemu_fflush(pss->pss_channel); 1526 /* Un-protect memory range. */ 1527 res = uffd_change_protection(rs->uffdio_fd, page_address, run_length, 1528 false, false); 1529 } 1530 1531 return res; 1532 } 1533 1534 /* ram_write_tracking_available: check if kernel supports required UFFD features 1535 * 1536 * Returns true if supports, false otherwise 1537 */ 1538 bool ram_write_tracking_available(void) 1539 { 1540 uint64_t uffd_features; 1541 int res; 1542 1543 res = uffd_query_features(&uffd_features); 1544 return (res == 0 && 1545 (uffd_features & UFFD_FEATURE_PAGEFAULT_FLAG_WP) != 0); 1546 } 1547 1548 /* ram_write_tracking_compatible: check if guest configuration is 1549 * compatible with 'write-tracking' 1550 * 1551 * Returns true if compatible, false otherwise 1552 */ 1553 bool ram_write_tracking_compatible(void) 1554 { 1555 const uint64_t uffd_ioctls_mask = BIT(_UFFDIO_WRITEPROTECT); 1556 int uffd_fd; 1557 RAMBlock *block; 1558 bool ret = false; 1559 1560 /* Open UFFD file descriptor */ 1561 uffd_fd = uffd_create_fd(UFFD_FEATURE_PAGEFAULT_FLAG_WP, false); 1562 if (uffd_fd < 0) { 1563 return false; 1564 } 1565 1566 RCU_READ_LOCK_GUARD(); 1567 1568 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 1569 uint64_t uffd_ioctls; 1570 1571 /* Nothing to do with read-only and MMIO-writable regions */ 1572 if (block->mr->readonly || block->mr->rom_device) { 1573 continue; 1574 } 1575 /* Try to register block memory via UFFD-IO to track writes */ 1576 if (uffd_register_memory(uffd_fd, block->host, block->max_length, 1577 UFFDIO_REGISTER_MODE_WP, &uffd_ioctls)) { 1578 goto out; 1579 } 1580 if ((uffd_ioctls & uffd_ioctls_mask) != uffd_ioctls_mask) { 1581 goto out; 1582 } 1583 } 1584 ret = true; 1585 1586 out: 1587 uffd_close_fd(uffd_fd); 1588 return ret; 1589 } 1590 1591 static inline void populate_read_range(RAMBlock *block, ram_addr_t offset, 1592 ram_addr_t size) 1593 { 1594 const ram_addr_t end = offset + size; 1595 1596 /* 1597 * We read one byte of each page; this will preallocate page tables if 1598 * required and populate the shared zeropage on MAP_PRIVATE anonymous memory 1599 * where no page was populated yet. This might require adaption when 1600 * supporting other mappings, like shmem. 1601 */ 1602 for (; offset < end; offset += block->page_size) { 1603 char tmp = *((char *)block->host + offset); 1604 1605 /* Don't optimize the read out */ 1606 asm volatile("" : "+r" (tmp)); 1607 } 1608 } 1609 1610 static inline int populate_read_section(MemoryRegionSection *section, 1611 void *opaque) 1612 { 1613 const hwaddr size = int128_get64(section->size); 1614 hwaddr offset = section->offset_within_region; 1615 RAMBlock *block = section->mr->ram_block; 1616 1617 populate_read_range(block, offset, size); 1618 return 0; 1619 } 1620 1621 /* 1622 * ram_block_populate_read: preallocate page tables and populate pages in the 1623 * RAM block by reading a byte of each page. 1624 * 1625 * Since it's solely used for userfault_fd WP feature, here we just 1626 * hardcode page size to qemu_real_host_page_size. 1627 * 1628 * @block: RAM block to populate 1629 */ 1630 static void ram_block_populate_read(RAMBlock *rb) 1631 { 1632 /* 1633 * Skip populating all pages that fall into a discarded range as managed by 1634 * a RamDiscardManager responsible for the mapped memory region of the 1635 * RAMBlock. Such discarded ("logically unplugged") parts of a RAMBlock 1636 * must not get populated automatically. We don't have to track 1637 * modifications via userfaultfd WP reliably, because these pages will 1638 * not be part of the migration stream either way -- see 1639 * ramblock_dirty_bitmap_exclude_discarded_pages(). 1640 * 1641 * Note: The result is only stable while migrating (precopy/postcopy). 1642 */ 1643 if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) { 1644 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr); 1645 MemoryRegionSection section = { 1646 .mr = rb->mr, 1647 .offset_within_region = 0, 1648 .size = rb->mr->size, 1649 }; 1650 1651 ram_discard_manager_replay_populated(rdm, §ion, 1652 populate_read_section, NULL); 1653 } else { 1654 populate_read_range(rb, 0, rb->used_length); 1655 } 1656 } 1657 1658 /* 1659 * ram_write_tracking_prepare: prepare for UFFD-WP memory tracking 1660 */ 1661 void ram_write_tracking_prepare(void) 1662 { 1663 RAMBlock *block; 1664 1665 RCU_READ_LOCK_GUARD(); 1666 1667 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 1668 /* Nothing to do with read-only and MMIO-writable regions */ 1669 if (block->mr->readonly || block->mr->rom_device) { 1670 continue; 1671 } 1672 1673 /* 1674 * Populate pages of the RAM block before enabling userfault_fd 1675 * write protection. 1676 * 1677 * This stage is required since ioctl(UFFDIO_WRITEPROTECT) with 1678 * UFFDIO_WRITEPROTECT_MODE_WP mode setting would silently skip 1679 * pages with pte_none() entries in page table. 1680 */ 1681 ram_block_populate_read(block); 1682 } 1683 } 1684 1685 static inline int uffd_protect_section(MemoryRegionSection *section, 1686 void *opaque) 1687 { 1688 const hwaddr size = int128_get64(section->size); 1689 const hwaddr offset = section->offset_within_region; 1690 RAMBlock *rb = section->mr->ram_block; 1691 int uffd_fd = (uintptr_t)opaque; 1692 1693 return uffd_change_protection(uffd_fd, rb->host + offset, size, true, 1694 false); 1695 } 1696 1697 static int ram_block_uffd_protect(RAMBlock *rb, int uffd_fd) 1698 { 1699 assert(rb->flags & RAM_UF_WRITEPROTECT); 1700 1701 /* See ram_block_populate_read() */ 1702 if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) { 1703 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr); 1704 MemoryRegionSection section = { 1705 .mr = rb->mr, 1706 .offset_within_region = 0, 1707 .size = rb->mr->size, 1708 }; 1709 1710 return ram_discard_manager_replay_populated(rdm, §ion, 1711 uffd_protect_section, 1712 (void *)(uintptr_t)uffd_fd); 1713 } 1714 return uffd_change_protection(uffd_fd, rb->host, 1715 rb->used_length, true, false); 1716 } 1717 1718 /* 1719 * ram_write_tracking_start: start UFFD-WP memory tracking 1720 * 1721 * Returns 0 for success or negative value in case of error 1722 */ 1723 int ram_write_tracking_start(void) 1724 { 1725 int uffd_fd; 1726 RAMState *rs = ram_state; 1727 RAMBlock *block; 1728 1729 /* Open UFFD file descriptor */ 1730 uffd_fd = uffd_create_fd(UFFD_FEATURE_PAGEFAULT_FLAG_WP, true); 1731 if (uffd_fd < 0) { 1732 return uffd_fd; 1733 } 1734 rs->uffdio_fd = uffd_fd; 1735 1736 RCU_READ_LOCK_GUARD(); 1737 1738 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 1739 /* Nothing to do with read-only and MMIO-writable regions */ 1740 if (block->mr->readonly || block->mr->rom_device) { 1741 continue; 1742 } 1743 1744 /* Register block memory with UFFD to track writes */ 1745 if (uffd_register_memory(rs->uffdio_fd, block->host, 1746 block->max_length, UFFDIO_REGISTER_MODE_WP, NULL)) { 1747 goto fail; 1748 } 1749 block->flags |= RAM_UF_WRITEPROTECT; 1750 memory_region_ref(block->mr); 1751 1752 /* Apply UFFD write protection to the block memory range */ 1753 if (ram_block_uffd_protect(block, uffd_fd)) { 1754 goto fail; 1755 } 1756 1757 trace_ram_write_tracking_ramblock_start(block->idstr, block->page_size, 1758 block->host, block->max_length); 1759 } 1760 1761 return 0; 1762 1763 fail: 1764 error_report("ram_write_tracking_start() failed: restoring initial memory state"); 1765 1766 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 1767 if ((block->flags & RAM_UF_WRITEPROTECT) == 0) { 1768 continue; 1769 } 1770 uffd_unregister_memory(rs->uffdio_fd, block->host, block->max_length); 1771 /* Cleanup flags and remove reference */ 1772 block->flags &= ~RAM_UF_WRITEPROTECT; 1773 memory_region_unref(block->mr); 1774 } 1775 1776 uffd_close_fd(uffd_fd); 1777 rs->uffdio_fd = -1; 1778 return -1; 1779 } 1780 1781 /** 1782 * ram_write_tracking_stop: stop UFFD-WP memory tracking and remove protection 1783 */ 1784 void ram_write_tracking_stop(void) 1785 { 1786 RAMState *rs = ram_state; 1787 RAMBlock *block; 1788 1789 RCU_READ_LOCK_GUARD(); 1790 1791 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 1792 if ((block->flags & RAM_UF_WRITEPROTECT) == 0) { 1793 continue; 1794 } 1795 uffd_unregister_memory(rs->uffdio_fd, block->host, block->max_length); 1796 1797 trace_ram_write_tracking_ramblock_stop(block->idstr, block->page_size, 1798 block->host, block->max_length); 1799 1800 /* Cleanup flags and remove reference */ 1801 block->flags &= ~RAM_UF_WRITEPROTECT; 1802 memory_region_unref(block->mr); 1803 } 1804 1805 /* Finally close UFFD file descriptor */ 1806 uffd_close_fd(rs->uffdio_fd); 1807 rs->uffdio_fd = -1; 1808 } 1809 1810 #else 1811 /* No target OS support, stubs just fail or ignore */ 1812 1813 static RAMBlock *poll_fault_page(RAMState *rs, ram_addr_t *offset) 1814 { 1815 (void) rs; 1816 (void) offset; 1817 1818 return NULL; 1819 } 1820 1821 static int ram_save_release_protection(RAMState *rs, PageSearchStatus *pss, 1822 unsigned long start_page) 1823 { 1824 (void) rs; 1825 (void) pss; 1826 (void) start_page; 1827 1828 return 0; 1829 } 1830 1831 bool ram_write_tracking_available(void) 1832 { 1833 return false; 1834 } 1835 1836 bool ram_write_tracking_compatible(void) 1837 { 1838 assert(0); 1839 return false; 1840 } 1841 1842 int ram_write_tracking_start(void) 1843 { 1844 assert(0); 1845 return -1; 1846 } 1847 1848 void ram_write_tracking_stop(void) 1849 { 1850 assert(0); 1851 } 1852 #endif /* defined(__linux__) */ 1853 1854 /** 1855 * get_queued_page: unqueue a page from the postcopy requests 1856 * 1857 * Skips pages that are already sent (!dirty) 1858 * 1859 * Returns true if a queued page is found 1860 * 1861 * @rs: current RAM state 1862 * @pss: data about the state of the current dirty page scan 1863 */ 1864 static bool get_queued_page(RAMState *rs, PageSearchStatus *pss) 1865 { 1866 RAMBlock *block; 1867 ram_addr_t offset; 1868 bool dirty; 1869 1870 do { 1871 block = unqueue_page(rs, &offset); 1872 /* 1873 * We're sending this page, and since it's postcopy nothing else 1874 * will dirty it, and we must make sure it doesn't get sent again 1875 * even if this queue request was received after the background 1876 * search already sent it. 1877 */ 1878 if (block) { 1879 unsigned long page; 1880 1881 page = offset >> TARGET_PAGE_BITS; 1882 dirty = test_bit(page, block->bmap); 1883 if (!dirty) { 1884 trace_get_queued_page_not_dirty(block->idstr, (uint64_t)offset, 1885 page); 1886 } else { 1887 trace_get_queued_page(block->idstr, (uint64_t)offset, page); 1888 } 1889 } 1890 1891 } while (block && !dirty); 1892 1893 if (!block) { 1894 /* 1895 * Poll write faults too if background snapshot is enabled; that's 1896 * when we have vcpus got blocked by the write protected pages. 1897 */ 1898 block = poll_fault_page(rs, &offset); 1899 } 1900 1901 if (block) { 1902 /* 1903 * We want the background search to continue from the queued page 1904 * since the guest is likely to want other pages near to the page 1905 * it just requested. 1906 */ 1907 pss->block = block; 1908 pss->page = offset >> TARGET_PAGE_BITS; 1909 1910 /* 1911 * This unqueued page would break the "one round" check, even is 1912 * really rare. 1913 */ 1914 pss->complete_round = false; 1915 } 1916 1917 return !!block; 1918 } 1919 1920 /** 1921 * migration_page_queue_free: drop any remaining pages in the ram 1922 * request queue 1923 * 1924 * It should be empty at the end anyway, but in error cases there may 1925 * be some left. in case that there is any page left, we drop it. 1926 * 1927 */ 1928 static void migration_page_queue_free(RAMState *rs) 1929 { 1930 struct RAMSrcPageRequest *mspr, *next_mspr; 1931 /* This queue generally should be empty - but in the case of a failed 1932 * migration might have some droppings in. 1933 */ 1934 RCU_READ_LOCK_GUARD(); 1935 QSIMPLEQ_FOREACH_SAFE(mspr, &rs->src_page_requests, next_req, next_mspr) { 1936 memory_region_unref(mspr->rb->mr); 1937 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req); 1938 g_free(mspr); 1939 } 1940 } 1941 1942 /** 1943 * ram_save_queue_pages: queue the page for transmission 1944 * 1945 * A request from postcopy destination for example. 1946 * 1947 * Returns zero on success or negative on error 1948 * 1949 * @rbname: Name of the RAMBLock of the request. NULL means the 1950 * same that last one. 1951 * @start: starting address from the start of the RAMBlock 1952 * @len: length (in bytes) to send 1953 */ 1954 int ram_save_queue_pages(const char *rbname, ram_addr_t start, ram_addr_t len) 1955 { 1956 RAMBlock *ramblock; 1957 RAMState *rs = ram_state; 1958 1959 stat64_add(&mig_stats.postcopy_requests, 1); 1960 RCU_READ_LOCK_GUARD(); 1961 1962 if (!rbname) { 1963 /* Reuse last RAMBlock */ 1964 ramblock = rs->last_req_rb; 1965 1966 if (!ramblock) { 1967 /* 1968 * Shouldn't happen, we can't reuse the last RAMBlock if 1969 * it's the 1st request. 1970 */ 1971 error_report("ram_save_queue_pages no previous block"); 1972 return -1; 1973 } 1974 } else { 1975 ramblock = qemu_ram_block_by_name(rbname); 1976 1977 if (!ramblock) { 1978 /* We shouldn't be asked for a non-existent RAMBlock */ 1979 error_report("ram_save_queue_pages no block '%s'", rbname); 1980 return -1; 1981 } 1982 rs->last_req_rb = ramblock; 1983 } 1984 trace_ram_save_queue_pages(ramblock->idstr, start, len); 1985 if (!offset_in_ramblock(ramblock, start + len - 1)) { 1986 error_report("%s request overrun start=" RAM_ADDR_FMT " len=" 1987 RAM_ADDR_FMT " blocklen=" RAM_ADDR_FMT, 1988 __func__, start, len, ramblock->used_length); 1989 return -1; 1990 } 1991 1992 /* 1993 * When with postcopy preempt, we send back the page directly in the 1994 * rp-return thread. 1995 */ 1996 if (postcopy_preempt_active()) { 1997 ram_addr_t page_start = start >> TARGET_PAGE_BITS; 1998 size_t page_size = qemu_ram_pagesize(ramblock); 1999 PageSearchStatus *pss = &ram_state->pss[RAM_CHANNEL_POSTCOPY]; 2000 int ret = 0; 2001 2002 qemu_mutex_lock(&rs->bitmap_mutex); 2003 2004 pss_init(pss, ramblock, page_start); 2005 /* 2006 * Always use the preempt channel, and make sure it's there. It's 2007 * safe to access without lock, because when rp-thread is running 2008 * we should be the only one who operates on the qemufile 2009 */ 2010 pss->pss_channel = migrate_get_current()->postcopy_qemufile_src; 2011 assert(pss->pss_channel); 2012 2013 /* 2014 * It must be either one or multiple of host page size. Just 2015 * assert; if something wrong we're mostly split brain anyway. 2016 */ 2017 assert(len % page_size == 0); 2018 while (len) { 2019 if (ram_save_host_page_urgent(pss)) { 2020 error_report("%s: ram_save_host_page_urgent() failed: " 2021 "ramblock=%s, start_addr=0x"RAM_ADDR_FMT, 2022 __func__, ramblock->idstr, start); 2023 ret = -1; 2024 break; 2025 } 2026 /* 2027 * NOTE: after ram_save_host_page_urgent() succeeded, pss->page 2028 * will automatically be moved and point to the next host page 2029 * we're going to send, so no need to update here. 2030 * 2031 * Normally QEMU never sends >1 host page in requests, so 2032 * logically we don't even need that as the loop should only 2033 * run once, but just to be consistent. 2034 */ 2035 len -= page_size; 2036 }; 2037 qemu_mutex_unlock(&rs->bitmap_mutex); 2038 2039 return ret; 2040 } 2041 2042 struct RAMSrcPageRequest *new_entry = 2043 g_new0(struct RAMSrcPageRequest, 1); 2044 new_entry->rb = ramblock; 2045 new_entry->offset = start; 2046 new_entry->len = len; 2047 2048 memory_region_ref(ramblock->mr); 2049 qemu_mutex_lock(&rs->src_page_req_mutex); 2050 QSIMPLEQ_INSERT_TAIL(&rs->src_page_requests, new_entry, next_req); 2051 migration_make_urgent_request(); 2052 qemu_mutex_unlock(&rs->src_page_req_mutex); 2053 2054 return 0; 2055 } 2056 2057 static bool save_page_use_compression(RAMState *rs) 2058 { 2059 if (!migrate_compress()) { 2060 return false; 2061 } 2062 2063 /* 2064 * If xbzrle is enabled (e.g., after first round of migration), stop 2065 * using the data compression. In theory, xbzrle can do better than 2066 * compression. 2067 */ 2068 if (rs->xbzrle_started) { 2069 return false; 2070 } 2071 2072 return true; 2073 } 2074 2075 /* 2076 * try to compress the page before posting it out, return true if the page 2077 * has been properly handled by compression, otherwise needs other 2078 * paths to handle it 2079 */ 2080 static bool save_compress_page(RAMState *rs, PageSearchStatus *pss, 2081 RAMBlock *block, ram_addr_t offset) 2082 { 2083 if (!save_page_use_compression(rs)) { 2084 return false; 2085 } 2086 2087 /* 2088 * When starting the process of a new block, the first page of 2089 * the block should be sent out before other pages in the same 2090 * block, and all the pages in last block should have been sent 2091 * out, keeping this order is important, because the 'cont' flag 2092 * is used to avoid resending the block name. 2093 * 2094 * We post the fist page as normal page as compression will take 2095 * much CPU resource. 2096 */ 2097 if (block != pss->last_sent_block) { 2098 ram_flush_compressed_data(rs); 2099 return false; 2100 } 2101 2102 if (compress_page_with_multi_thread(block, offset, send_queued_data) > 0) { 2103 return true; 2104 } 2105 2106 compression_counters.busy++; 2107 return false; 2108 } 2109 2110 /** 2111 * ram_save_target_page_legacy: save one target page 2112 * 2113 * Returns the number of pages written 2114 * 2115 * @rs: current RAM state 2116 * @pss: data about the page we want to send 2117 */ 2118 static int ram_save_target_page_legacy(RAMState *rs, PageSearchStatus *pss) 2119 { 2120 RAMBlock *block = pss->block; 2121 ram_addr_t offset = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS; 2122 int res; 2123 2124 if (control_save_page(pss, block, offset, &res)) { 2125 return res; 2126 } 2127 2128 if (save_compress_page(rs, pss, block, offset)) { 2129 return 1; 2130 } 2131 2132 res = save_zero_page(pss, pss->pss_channel, block, offset); 2133 if (res > 0) { 2134 /* Must let xbzrle know, otherwise a previous (now 0'd) cached 2135 * page would be stale 2136 */ 2137 if (rs->xbzrle_started) { 2138 XBZRLE_cache_lock(); 2139 xbzrle_cache_zero_page(rs, block->offset + offset); 2140 XBZRLE_cache_unlock(); 2141 } 2142 return res; 2143 } 2144 2145 /* 2146 * Do not use multifd in postcopy as one whole host page should be 2147 * placed. Meanwhile postcopy requires atomic update of pages, so even 2148 * if host page size == guest page size the dest guest during run may 2149 * still see partially copied pages which is data corruption. 2150 */ 2151 if (migrate_multifd() && !migration_in_postcopy()) { 2152 return ram_save_multifd_page(pss->pss_channel, block, offset); 2153 } 2154 2155 return ram_save_page(rs, pss); 2156 } 2157 2158 /* Should be called before sending a host page */ 2159 static void pss_host_page_prepare(PageSearchStatus *pss) 2160 { 2161 /* How many guest pages are there in one host page? */ 2162 size_t guest_pfns = qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS; 2163 2164 pss->host_page_sending = true; 2165 if (guest_pfns <= 1) { 2166 /* 2167 * This covers both when guest psize == host psize, or when guest 2168 * has larger psize than the host (guest_pfns==0). 2169 * 2170 * For the latter, we always send one whole guest page per 2171 * iteration of the host page (example: an Alpha VM on x86 host 2172 * will have guest psize 8K while host psize 4K). 2173 */ 2174 pss->host_page_start = pss->page; 2175 pss->host_page_end = pss->page + 1; 2176 } else { 2177 /* 2178 * The host page spans over multiple guest pages, we send them 2179 * within the same host page iteration. 2180 */ 2181 pss->host_page_start = ROUND_DOWN(pss->page, guest_pfns); 2182 pss->host_page_end = ROUND_UP(pss->page + 1, guest_pfns); 2183 } 2184 } 2185 2186 /* 2187 * Whether the page pointed by PSS is within the host page being sent. 2188 * Must be called after a previous pss_host_page_prepare(). 2189 */ 2190 static bool pss_within_range(PageSearchStatus *pss) 2191 { 2192 ram_addr_t ram_addr; 2193 2194 assert(pss->host_page_sending); 2195 2196 /* Over host-page boundary? */ 2197 if (pss->page >= pss->host_page_end) { 2198 return false; 2199 } 2200 2201 ram_addr = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS; 2202 2203 return offset_in_ramblock(pss->block, ram_addr); 2204 } 2205 2206 static void pss_host_page_finish(PageSearchStatus *pss) 2207 { 2208 pss->host_page_sending = false; 2209 /* This is not needed, but just to reset it */ 2210 pss->host_page_start = pss->host_page_end = 0; 2211 } 2212 2213 /* 2214 * Send an urgent host page specified by `pss'. Need to be called with 2215 * bitmap_mutex held. 2216 * 2217 * Returns 0 if save host page succeeded, false otherwise. 2218 */ 2219 static int ram_save_host_page_urgent(PageSearchStatus *pss) 2220 { 2221 bool page_dirty, sent = false; 2222 RAMState *rs = ram_state; 2223 int ret = 0; 2224 2225 trace_postcopy_preempt_send_host_page(pss->block->idstr, pss->page); 2226 pss_host_page_prepare(pss); 2227 2228 /* 2229 * If precopy is sending the same page, let it be done in precopy, or 2230 * we could send the same page in two channels and none of them will 2231 * receive the whole page. 2232 */ 2233 if (pss_overlap(pss, &ram_state->pss[RAM_CHANNEL_PRECOPY])) { 2234 trace_postcopy_preempt_hit(pss->block->idstr, 2235 pss->page << TARGET_PAGE_BITS); 2236 return 0; 2237 } 2238 2239 do { 2240 page_dirty = migration_bitmap_clear_dirty(rs, pss->block, pss->page); 2241 2242 if (page_dirty) { 2243 /* Be strict to return code; it must be 1, or what else? */ 2244 if (migration_ops->ram_save_target_page(rs, pss) != 1) { 2245 error_report_once("%s: ram_save_target_page failed", __func__); 2246 ret = -1; 2247 goto out; 2248 } 2249 sent = true; 2250 } 2251 pss_find_next_dirty(pss); 2252 } while (pss_within_range(pss)); 2253 out: 2254 pss_host_page_finish(pss); 2255 /* For urgent requests, flush immediately if sent */ 2256 if (sent) { 2257 qemu_fflush(pss->pss_channel); 2258 } 2259 return ret; 2260 } 2261 2262 /** 2263 * ram_save_host_page: save a whole host page 2264 * 2265 * Starting at *offset send pages up to the end of the current host 2266 * page. It's valid for the initial offset to point into the middle of 2267 * a host page in which case the remainder of the hostpage is sent. 2268 * Only dirty target pages are sent. Note that the host page size may 2269 * be a huge page for this block. 2270 * 2271 * The saving stops at the boundary of the used_length of the block 2272 * if the RAMBlock isn't a multiple of the host page size. 2273 * 2274 * The caller must be with ram_state.bitmap_mutex held to call this 2275 * function. Note that this function can temporarily release the lock, but 2276 * when the function is returned it'll make sure the lock is still held. 2277 * 2278 * Returns the number of pages written or negative on error 2279 * 2280 * @rs: current RAM state 2281 * @pss: data about the page we want to send 2282 */ 2283 static int ram_save_host_page(RAMState *rs, PageSearchStatus *pss) 2284 { 2285 bool page_dirty, preempt_active = postcopy_preempt_active(); 2286 int tmppages, pages = 0; 2287 size_t pagesize_bits = 2288 qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS; 2289 unsigned long start_page = pss->page; 2290 int res; 2291 2292 if (migrate_ram_is_ignored(pss->block)) { 2293 error_report("block %s should not be migrated !", pss->block->idstr); 2294 return 0; 2295 } 2296 2297 /* Update host page boundary information */ 2298 pss_host_page_prepare(pss); 2299 2300 do { 2301 page_dirty = migration_bitmap_clear_dirty(rs, pss->block, pss->page); 2302 2303 /* Check the pages is dirty and if it is send it */ 2304 if (page_dirty) { 2305 /* 2306 * Properly yield the lock only in postcopy preempt mode 2307 * because both migration thread and rp-return thread can 2308 * operate on the bitmaps. 2309 */ 2310 if (preempt_active) { 2311 qemu_mutex_unlock(&rs->bitmap_mutex); 2312 } 2313 tmppages = migration_ops->ram_save_target_page(rs, pss); 2314 if (tmppages >= 0) { 2315 pages += tmppages; 2316 /* 2317 * Allow rate limiting to happen in the middle of huge pages if 2318 * something is sent in the current iteration. 2319 */ 2320 if (pagesize_bits > 1 && tmppages > 0) { 2321 migration_rate_limit(); 2322 } 2323 } 2324 if (preempt_active) { 2325 qemu_mutex_lock(&rs->bitmap_mutex); 2326 } 2327 } else { 2328 tmppages = 0; 2329 } 2330 2331 if (tmppages < 0) { 2332 pss_host_page_finish(pss); 2333 return tmppages; 2334 } 2335 2336 pss_find_next_dirty(pss); 2337 } while (pss_within_range(pss)); 2338 2339 pss_host_page_finish(pss); 2340 2341 res = ram_save_release_protection(rs, pss, start_page); 2342 return (res < 0 ? res : pages); 2343 } 2344 2345 /** 2346 * ram_find_and_save_block: finds a dirty page and sends it to f 2347 * 2348 * Called within an RCU critical section. 2349 * 2350 * Returns the number of pages written where zero means no dirty pages, 2351 * or negative on error 2352 * 2353 * @rs: current RAM state 2354 * 2355 * On systems where host-page-size > target-page-size it will send all the 2356 * pages in a host page that are dirty. 2357 */ 2358 static int ram_find_and_save_block(RAMState *rs) 2359 { 2360 PageSearchStatus *pss = &rs->pss[RAM_CHANNEL_PRECOPY]; 2361 int pages = 0; 2362 2363 /* No dirty page as there is zero RAM */ 2364 if (!rs->ram_bytes_total) { 2365 return pages; 2366 } 2367 2368 /* 2369 * Always keep last_seen_block/last_page valid during this procedure, 2370 * because find_dirty_block() relies on these values (e.g., we compare 2371 * last_seen_block with pss.block to see whether we searched all the 2372 * ramblocks) to detect the completion of migration. Having NULL value 2373 * of last_seen_block can conditionally cause below loop to run forever. 2374 */ 2375 if (!rs->last_seen_block) { 2376 rs->last_seen_block = QLIST_FIRST_RCU(&ram_list.blocks); 2377 rs->last_page = 0; 2378 } 2379 2380 pss_init(pss, rs->last_seen_block, rs->last_page); 2381 2382 while (true){ 2383 if (!get_queued_page(rs, pss)) { 2384 /* priority queue empty, so just search for something dirty */ 2385 int res = find_dirty_block(rs, pss); 2386 if (res != PAGE_DIRTY_FOUND) { 2387 if (res == PAGE_ALL_CLEAN) { 2388 break; 2389 } else if (res == PAGE_TRY_AGAIN) { 2390 continue; 2391 } else if (res < 0) { 2392 pages = res; 2393 break; 2394 } 2395 } 2396 } 2397 pages = ram_save_host_page(rs, pss); 2398 if (pages) { 2399 break; 2400 } 2401 } 2402 2403 rs->last_seen_block = pss->block; 2404 rs->last_page = pss->page; 2405 2406 return pages; 2407 } 2408 2409 static uint64_t ram_bytes_total_with_ignored(void) 2410 { 2411 RAMBlock *block; 2412 uint64_t total = 0; 2413 2414 RCU_READ_LOCK_GUARD(); 2415 2416 RAMBLOCK_FOREACH_MIGRATABLE(block) { 2417 total += block->used_length; 2418 } 2419 return total; 2420 } 2421 2422 uint64_t ram_bytes_total(void) 2423 { 2424 RAMBlock *block; 2425 uint64_t total = 0; 2426 2427 RCU_READ_LOCK_GUARD(); 2428 2429 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 2430 total += block->used_length; 2431 } 2432 return total; 2433 } 2434 2435 static void xbzrle_load_setup(void) 2436 { 2437 XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE); 2438 } 2439 2440 static void xbzrle_load_cleanup(void) 2441 { 2442 g_free(XBZRLE.decoded_buf); 2443 XBZRLE.decoded_buf = NULL; 2444 } 2445 2446 static void ram_state_cleanup(RAMState **rsp) 2447 { 2448 if (*rsp) { 2449 migration_page_queue_free(*rsp); 2450 qemu_mutex_destroy(&(*rsp)->bitmap_mutex); 2451 qemu_mutex_destroy(&(*rsp)->src_page_req_mutex); 2452 g_free(*rsp); 2453 *rsp = NULL; 2454 } 2455 } 2456 2457 static void xbzrle_cleanup(void) 2458 { 2459 XBZRLE_cache_lock(); 2460 if (XBZRLE.cache) { 2461 cache_fini(XBZRLE.cache); 2462 g_free(XBZRLE.encoded_buf); 2463 g_free(XBZRLE.current_buf); 2464 g_free(XBZRLE.zero_target_page); 2465 XBZRLE.cache = NULL; 2466 XBZRLE.encoded_buf = NULL; 2467 XBZRLE.current_buf = NULL; 2468 XBZRLE.zero_target_page = NULL; 2469 } 2470 XBZRLE_cache_unlock(); 2471 } 2472 2473 static void ram_save_cleanup(void *opaque) 2474 { 2475 RAMState **rsp = opaque; 2476 RAMBlock *block; 2477 2478 /* We don't use dirty log with background snapshots */ 2479 if (!migrate_background_snapshot()) { 2480 /* caller have hold iothread lock or is in a bh, so there is 2481 * no writing race against the migration bitmap 2482 */ 2483 if (global_dirty_tracking & GLOBAL_DIRTY_MIGRATION) { 2484 /* 2485 * do not stop dirty log without starting it, since 2486 * memory_global_dirty_log_stop will assert that 2487 * memory_global_dirty_log_start/stop used in pairs 2488 */ 2489 memory_global_dirty_log_stop(GLOBAL_DIRTY_MIGRATION); 2490 } 2491 } 2492 2493 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 2494 g_free(block->clear_bmap); 2495 block->clear_bmap = NULL; 2496 g_free(block->bmap); 2497 block->bmap = NULL; 2498 } 2499 2500 xbzrle_cleanup(); 2501 compress_threads_save_cleanup(); 2502 ram_state_cleanup(rsp); 2503 g_free(migration_ops); 2504 migration_ops = NULL; 2505 } 2506 2507 static void ram_state_reset(RAMState *rs) 2508 { 2509 int i; 2510 2511 for (i = 0; i < RAM_CHANNEL_MAX; i++) { 2512 rs->pss[i].last_sent_block = NULL; 2513 } 2514 2515 rs->last_seen_block = NULL; 2516 rs->last_page = 0; 2517 rs->last_version = ram_list.version; 2518 rs->xbzrle_started = false; 2519 } 2520 2521 #define MAX_WAIT 50 /* ms, half buffered_file limit */ 2522 2523 /* **** functions for postcopy ***** */ 2524 2525 void ram_postcopy_migrated_memory_release(MigrationState *ms) 2526 { 2527 struct RAMBlock *block; 2528 2529 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 2530 unsigned long *bitmap = block->bmap; 2531 unsigned long range = block->used_length >> TARGET_PAGE_BITS; 2532 unsigned long run_start = find_next_zero_bit(bitmap, range, 0); 2533 2534 while (run_start < range) { 2535 unsigned long run_end = find_next_bit(bitmap, range, run_start + 1); 2536 ram_discard_range(block->idstr, 2537 ((ram_addr_t)run_start) << TARGET_PAGE_BITS, 2538 ((ram_addr_t)(run_end - run_start)) 2539 << TARGET_PAGE_BITS); 2540 run_start = find_next_zero_bit(bitmap, range, run_end + 1); 2541 } 2542 } 2543 } 2544 2545 /** 2546 * postcopy_send_discard_bm_ram: discard a RAMBlock 2547 * 2548 * Callback from postcopy_each_ram_send_discard for each RAMBlock 2549 * 2550 * @ms: current migration state 2551 * @block: RAMBlock to discard 2552 */ 2553 static void postcopy_send_discard_bm_ram(MigrationState *ms, RAMBlock *block) 2554 { 2555 unsigned long end = block->used_length >> TARGET_PAGE_BITS; 2556 unsigned long current; 2557 unsigned long *bitmap = block->bmap; 2558 2559 for (current = 0; current < end; ) { 2560 unsigned long one = find_next_bit(bitmap, end, current); 2561 unsigned long zero, discard_length; 2562 2563 if (one >= end) { 2564 break; 2565 } 2566 2567 zero = find_next_zero_bit(bitmap, end, one + 1); 2568 2569 if (zero >= end) { 2570 discard_length = end - one; 2571 } else { 2572 discard_length = zero - one; 2573 } 2574 postcopy_discard_send_range(ms, one, discard_length); 2575 current = one + discard_length; 2576 } 2577 } 2578 2579 static void postcopy_chunk_hostpages_pass(MigrationState *ms, RAMBlock *block); 2580 2581 /** 2582 * postcopy_each_ram_send_discard: discard all RAMBlocks 2583 * 2584 * Utility for the outgoing postcopy code. 2585 * Calls postcopy_send_discard_bm_ram for each RAMBlock 2586 * passing it bitmap indexes and name. 2587 * (qemu_ram_foreach_block ends up passing unscaled lengths 2588 * which would mean postcopy code would have to deal with target page) 2589 * 2590 * @ms: current migration state 2591 */ 2592 static void postcopy_each_ram_send_discard(MigrationState *ms) 2593 { 2594 struct RAMBlock *block; 2595 2596 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 2597 postcopy_discard_send_init(ms, block->idstr); 2598 2599 /* 2600 * Deal with TPS != HPS and huge pages. It discard any partially sent 2601 * host-page size chunks, mark any partially dirty host-page size 2602 * chunks as all dirty. In this case the host-page is the host-page 2603 * for the particular RAMBlock, i.e. it might be a huge page. 2604 */ 2605 postcopy_chunk_hostpages_pass(ms, block); 2606 2607 /* 2608 * Postcopy sends chunks of bitmap over the wire, but it 2609 * just needs indexes at this point, avoids it having 2610 * target page specific code. 2611 */ 2612 postcopy_send_discard_bm_ram(ms, block); 2613 postcopy_discard_send_finish(ms); 2614 } 2615 } 2616 2617 /** 2618 * postcopy_chunk_hostpages_pass: canonicalize bitmap in hostpages 2619 * 2620 * Helper for postcopy_chunk_hostpages; it's called twice to 2621 * canonicalize the two bitmaps, that are similar, but one is 2622 * inverted. 2623 * 2624 * Postcopy requires that all target pages in a hostpage are dirty or 2625 * clean, not a mix. This function canonicalizes the bitmaps. 2626 * 2627 * @ms: current migration state 2628 * @block: block that contains the page we want to canonicalize 2629 */ 2630 static void postcopy_chunk_hostpages_pass(MigrationState *ms, RAMBlock *block) 2631 { 2632 RAMState *rs = ram_state; 2633 unsigned long *bitmap = block->bmap; 2634 unsigned int host_ratio = block->page_size / TARGET_PAGE_SIZE; 2635 unsigned long pages = block->used_length >> TARGET_PAGE_BITS; 2636 unsigned long run_start; 2637 2638 if (block->page_size == TARGET_PAGE_SIZE) { 2639 /* Easy case - TPS==HPS for a non-huge page RAMBlock */ 2640 return; 2641 } 2642 2643 /* Find a dirty page */ 2644 run_start = find_next_bit(bitmap, pages, 0); 2645 2646 while (run_start < pages) { 2647 2648 /* 2649 * If the start of this run of pages is in the middle of a host 2650 * page, then we need to fixup this host page. 2651 */ 2652 if (QEMU_IS_ALIGNED(run_start, host_ratio)) { 2653 /* Find the end of this run */ 2654 run_start = find_next_zero_bit(bitmap, pages, run_start + 1); 2655 /* 2656 * If the end isn't at the start of a host page, then the 2657 * run doesn't finish at the end of a host page 2658 * and we need to discard. 2659 */ 2660 } 2661 2662 if (!QEMU_IS_ALIGNED(run_start, host_ratio)) { 2663 unsigned long page; 2664 unsigned long fixup_start_addr = QEMU_ALIGN_DOWN(run_start, 2665 host_ratio); 2666 run_start = QEMU_ALIGN_UP(run_start, host_ratio); 2667 2668 /* Clean up the bitmap */ 2669 for (page = fixup_start_addr; 2670 page < fixup_start_addr + host_ratio; page++) { 2671 /* 2672 * Remark them as dirty, updating the count for any pages 2673 * that weren't previously dirty. 2674 */ 2675 rs->migration_dirty_pages += !test_and_set_bit(page, bitmap); 2676 } 2677 } 2678 2679 /* Find the next dirty page for the next iteration */ 2680 run_start = find_next_bit(bitmap, pages, run_start); 2681 } 2682 } 2683 2684 /** 2685 * ram_postcopy_send_discard_bitmap: transmit the discard bitmap 2686 * 2687 * Transmit the set of pages to be discarded after precopy to the target 2688 * these are pages that: 2689 * a) Have been previously transmitted but are now dirty again 2690 * b) Pages that have never been transmitted, this ensures that 2691 * any pages on the destination that have been mapped by background 2692 * tasks get discarded (transparent huge pages is the specific concern) 2693 * Hopefully this is pretty sparse 2694 * 2695 * @ms: current migration state 2696 */ 2697 void ram_postcopy_send_discard_bitmap(MigrationState *ms) 2698 { 2699 RAMState *rs = ram_state; 2700 2701 RCU_READ_LOCK_GUARD(); 2702 2703 /* This should be our last sync, the src is now paused */ 2704 migration_bitmap_sync(rs, false); 2705 2706 /* Easiest way to make sure we don't resume in the middle of a host-page */ 2707 rs->pss[RAM_CHANNEL_PRECOPY].last_sent_block = NULL; 2708 rs->last_seen_block = NULL; 2709 rs->last_page = 0; 2710 2711 postcopy_each_ram_send_discard(ms); 2712 2713 trace_ram_postcopy_send_discard_bitmap(); 2714 } 2715 2716 /** 2717 * ram_discard_range: discard dirtied pages at the beginning of postcopy 2718 * 2719 * Returns zero on success 2720 * 2721 * @rbname: name of the RAMBlock of the request. NULL means the 2722 * same that last one. 2723 * @start: RAMBlock starting page 2724 * @length: RAMBlock size 2725 */ 2726 int ram_discard_range(const char *rbname, uint64_t start, size_t length) 2727 { 2728 trace_ram_discard_range(rbname, start, length); 2729 2730 RCU_READ_LOCK_GUARD(); 2731 RAMBlock *rb = qemu_ram_block_by_name(rbname); 2732 2733 if (!rb) { 2734 error_report("ram_discard_range: Failed to find block '%s'", rbname); 2735 return -1; 2736 } 2737 2738 /* 2739 * On source VM, we don't need to update the received bitmap since 2740 * we don't even have one. 2741 */ 2742 if (rb->receivedmap) { 2743 bitmap_clear(rb->receivedmap, start >> qemu_target_page_bits(), 2744 length >> qemu_target_page_bits()); 2745 } 2746 2747 return ram_block_discard_range(rb, start, length); 2748 } 2749 2750 /* 2751 * For every allocation, we will try not to crash the VM if the 2752 * allocation failed. 2753 */ 2754 static int xbzrle_init(void) 2755 { 2756 Error *local_err = NULL; 2757 2758 if (!migrate_xbzrle()) { 2759 return 0; 2760 } 2761 2762 XBZRLE_cache_lock(); 2763 2764 XBZRLE.zero_target_page = g_try_malloc0(TARGET_PAGE_SIZE); 2765 if (!XBZRLE.zero_target_page) { 2766 error_report("%s: Error allocating zero page", __func__); 2767 goto err_out; 2768 } 2769 2770 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size(), 2771 TARGET_PAGE_SIZE, &local_err); 2772 if (!XBZRLE.cache) { 2773 error_report_err(local_err); 2774 goto free_zero_page; 2775 } 2776 2777 XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE); 2778 if (!XBZRLE.encoded_buf) { 2779 error_report("%s: Error allocating encoded_buf", __func__); 2780 goto free_cache; 2781 } 2782 2783 XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE); 2784 if (!XBZRLE.current_buf) { 2785 error_report("%s: Error allocating current_buf", __func__); 2786 goto free_encoded_buf; 2787 } 2788 2789 /* We are all good */ 2790 XBZRLE_cache_unlock(); 2791 return 0; 2792 2793 free_encoded_buf: 2794 g_free(XBZRLE.encoded_buf); 2795 XBZRLE.encoded_buf = NULL; 2796 free_cache: 2797 cache_fini(XBZRLE.cache); 2798 XBZRLE.cache = NULL; 2799 free_zero_page: 2800 g_free(XBZRLE.zero_target_page); 2801 XBZRLE.zero_target_page = NULL; 2802 err_out: 2803 XBZRLE_cache_unlock(); 2804 return -ENOMEM; 2805 } 2806 2807 static int ram_state_init(RAMState **rsp) 2808 { 2809 *rsp = g_try_new0(RAMState, 1); 2810 2811 if (!*rsp) { 2812 error_report("%s: Init ramstate fail", __func__); 2813 return -1; 2814 } 2815 2816 qemu_mutex_init(&(*rsp)->bitmap_mutex); 2817 qemu_mutex_init(&(*rsp)->src_page_req_mutex); 2818 QSIMPLEQ_INIT(&(*rsp)->src_page_requests); 2819 (*rsp)->ram_bytes_total = ram_bytes_total(); 2820 2821 /* 2822 * Count the total number of pages used by ram blocks not including any 2823 * gaps due to alignment or unplugs. 2824 * This must match with the initial values of dirty bitmap. 2825 */ 2826 (*rsp)->migration_dirty_pages = (*rsp)->ram_bytes_total >> TARGET_PAGE_BITS; 2827 ram_state_reset(*rsp); 2828 2829 return 0; 2830 } 2831 2832 static void ram_list_init_bitmaps(void) 2833 { 2834 MigrationState *ms = migrate_get_current(); 2835 RAMBlock *block; 2836 unsigned long pages; 2837 uint8_t shift; 2838 2839 /* Skip setting bitmap if there is no RAM */ 2840 if (ram_bytes_total()) { 2841 shift = ms->clear_bitmap_shift; 2842 if (shift > CLEAR_BITMAP_SHIFT_MAX) { 2843 error_report("clear_bitmap_shift (%u) too big, using " 2844 "max value (%u)", shift, CLEAR_BITMAP_SHIFT_MAX); 2845 shift = CLEAR_BITMAP_SHIFT_MAX; 2846 } else if (shift < CLEAR_BITMAP_SHIFT_MIN) { 2847 error_report("clear_bitmap_shift (%u) too small, using " 2848 "min value (%u)", shift, CLEAR_BITMAP_SHIFT_MIN); 2849 shift = CLEAR_BITMAP_SHIFT_MIN; 2850 } 2851 2852 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 2853 pages = block->max_length >> TARGET_PAGE_BITS; 2854 /* 2855 * The initial dirty bitmap for migration must be set with all 2856 * ones to make sure we'll migrate every guest RAM page to 2857 * destination. 2858 * Here we set RAMBlock.bmap all to 1 because when rebegin a 2859 * new migration after a failed migration, ram_list. 2860 * dirty_memory[DIRTY_MEMORY_MIGRATION] don't include the whole 2861 * guest memory. 2862 */ 2863 block->bmap = bitmap_new(pages); 2864 bitmap_set(block->bmap, 0, pages); 2865 block->clear_bmap_shift = shift; 2866 block->clear_bmap = bitmap_new(clear_bmap_size(pages, shift)); 2867 } 2868 } 2869 } 2870 2871 static void migration_bitmap_clear_discarded_pages(RAMState *rs) 2872 { 2873 unsigned long pages; 2874 RAMBlock *rb; 2875 2876 RCU_READ_LOCK_GUARD(); 2877 2878 RAMBLOCK_FOREACH_NOT_IGNORED(rb) { 2879 pages = ramblock_dirty_bitmap_clear_discarded_pages(rb); 2880 rs->migration_dirty_pages -= pages; 2881 } 2882 } 2883 2884 static void ram_init_bitmaps(RAMState *rs) 2885 { 2886 /* For memory_global_dirty_log_start below. */ 2887 qemu_mutex_lock_iothread(); 2888 qemu_mutex_lock_ramlist(); 2889 2890 WITH_RCU_READ_LOCK_GUARD() { 2891 ram_list_init_bitmaps(); 2892 /* We don't use dirty log with background snapshots */ 2893 if (!migrate_background_snapshot()) { 2894 memory_global_dirty_log_start(GLOBAL_DIRTY_MIGRATION); 2895 migration_bitmap_sync_precopy(rs, false); 2896 } 2897 } 2898 qemu_mutex_unlock_ramlist(); 2899 qemu_mutex_unlock_iothread(); 2900 2901 /* 2902 * After an eventual first bitmap sync, fixup the initial bitmap 2903 * containing all 1s to exclude any discarded pages from migration. 2904 */ 2905 migration_bitmap_clear_discarded_pages(rs); 2906 } 2907 2908 static int ram_init_all(RAMState **rsp) 2909 { 2910 if (ram_state_init(rsp)) { 2911 return -1; 2912 } 2913 2914 if (xbzrle_init()) { 2915 ram_state_cleanup(rsp); 2916 return -1; 2917 } 2918 2919 ram_init_bitmaps(*rsp); 2920 2921 return 0; 2922 } 2923 2924 static void ram_state_resume_prepare(RAMState *rs, QEMUFile *out) 2925 { 2926 RAMBlock *block; 2927 uint64_t pages = 0; 2928 2929 /* 2930 * Postcopy is not using xbzrle/compression, so no need for that. 2931 * Also, since source are already halted, we don't need to care 2932 * about dirty page logging as well. 2933 */ 2934 2935 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 2936 pages += bitmap_count_one(block->bmap, 2937 block->used_length >> TARGET_PAGE_BITS); 2938 } 2939 2940 /* This may not be aligned with current bitmaps. Recalculate. */ 2941 rs->migration_dirty_pages = pages; 2942 2943 ram_state_reset(rs); 2944 2945 /* Update RAMState cache of output QEMUFile */ 2946 rs->pss[RAM_CHANNEL_PRECOPY].pss_channel = out; 2947 2948 trace_ram_state_resume_prepare(pages); 2949 } 2950 2951 /* 2952 * This function clears bits of the free pages reported by the caller from the 2953 * migration dirty bitmap. @addr is the host address corresponding to the 2954 * start of the continuous guest free pages, and @len is the total bytes of 2955 * those pages. 2956 */ 2957 void qemu_guest_free_page_hint(void *addr, size_t len) 2958 { 2959 RAMBlock *block; 2960 ram_addr_t offset; 2961 size_t used_len, start, npages; 2962 MigrationState *s = migrate_get_current(); 2963 2964 /* This function is currently expected to be used during live migration */ 2965 if (!migration_is_setup_or_active(s->state)) { 2966 return; 2967 } 2968 2969 for (; len > 0; len -= used_len, addr += used_len) { 2970 block = qemu_ram_block_from_host(addr, false, &offset); 2971 if (unlikely(!block || offset >= block->used_length)) { 2972 /* 2973 * The implementation might not support RAMBlock resize during 2974 * live migration, but it could happen in theory with future 2975 * updates. So we add a check here to capture that case. 2976 */ 2977 error_report_once("%s unexpected error", __func__); 2978 return; 2979 } 2980 2981 if (len <= block->used_length - offset) { 2982 used_len = len; 2983 } else { 2984 used_len = block->used_length - offset; 2985 } 2986 2987 start = offset >> TARGET_PAGE_BITS; 2988 npages = used_len >> TARGET_PAGE_BITS; 2989 2990 qemu_mutex_lock(&ram_state->bitmap_mutex); 2991 /* 2992 * The skipped free pages are equavalent to be sent from clear_bmap's 2993 * perspective, so clear the bits from the memory region bitmap which 2994 * are initially set. Otherwise those skipped pages will be sent in 2995 * the next round after syncing from the memory region bitmap. 2996 */ 2997 migration_clear_memory_region_dirty_bitmap_range(block, start, npages); 2998 ram_state->migration_dirty_pages -= 2999 bitmap_count_one_with_offset(block->bmap, start, npages); 3000 bitmap_clear(block->bmap, start, npages); 3001 qemu_mutex_unlock(&ram_state->bitmap_mutex); 3002 } 3003 } 3004 3005 /* 3006 * Each of ram_save_setup, ram_save_iterate and ram_save_complete has 3007 * long-running RCU critical section. When rcu-reclaims in the code 3008 * start to become numerous it will be necessary to reduce the 3009 * granularity of these critical sections. 3010 */ 3011 3012 /** 3013 * ram_save_setup: Setup RAM for migration 3014 * 3015 * Returns zero to indicate success and negative for error 3016 * 3017 * @f: QEMUFile where to send the data 3018 * @opaque: RAMState pointer 3019 */ 3020 static int ram_save_setup(QEMUFile *f, void *opaque) 3021 { 3022 RAMState **rsp = opaque; 3023 RAMBlock *block; 3024 int ret; 3025 3026 if (compress_threads_save_setup()) { 3027 return -1; 3028 } 3029 3030 /* migration has already setup the bitmap, reuse it. */ 3031 if (!migration_in_colo_state()) { 3032 if (ram_init_all(rsp) != 0) { 3033 compress_threads_save_cleanup(); 3034 return -1; 3035 } 3036 } 3037 (*rsp)->pss[RAM_CHANNEL_PRECOPY].pss_channel = f; 3038 3039 WITH_RCU_READ_LOCK_GUARD() { 3040 qemu_put_be64(f, ram_bytes_total_with_ignored() 3041 | RAM_SAVE_FLAG_MEM_SIZE); 3042 3043 RAMBLOCK_FOREACH_MIGRATABLE(block) { 3044 qemu_put_byte(f, strlen(block->idstr)); 3045 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr)); 3046 qemu_put_be64(f, block->used_length); 3047 if (migrate_postcopy_ram() && block->page_size != 3048 qemu_host_page_size) { 3049 qemu_put_be64(f, block->page_size); 3050 } 3051 if (migrate_ignore_shared()) { 3052 qemu_put_be64(f, block->mr->addr); 3053 } 3054 } 3055 } 3056 3057 ram_control_before_iterate(f, RAM_CONTROL_SETUP); 3058 ram_control_after_iterate(f, RAM_CONTROL_SETUP); 3059 3060 migration_ops = g_malloc0(sizeof(MigrationOps)); 3061 migration_ops->ram_save_target_page = ram_save_target_page_legacy; 3062 ret = multifd_send_sync_main(f); 3063 if (ret < 0) { 3064 return ret; 3065 } 3066 3067 if (!migrate_multifd_flush_after_each_section()) { 3068 qemu_put_be64(f, RAM_SAVE_FLAG_MULTIFD_FLUSH); 3069 } 3070 3071 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 3072 qemu_fflush(f); 3073 3074 return 0; 3075 } 3076 3077 /** 3078 * ram_save_iterate: iterative stage for migration 3079 * 3080 * Returns zero to indicate success and negative for error 3081 * 3082 * @f: QEMUFile where to send the data 3083 * @opaque: RAMState pointer 3084 */ 3085 static int ram_save_iterate(QEMUFile *f, void *opaque) 3086 { 3087 RAMState **temp = opaque; 3088 RAMState *rs = *temp; 3089 int ret = 0; 3090 int i; 3091 int64_t t0; 3092 int done = 0; 3093 3094 if (blk_mig_bulk_active()) { 3095 /* Avoid transferring ram during bulk phase of block migration as 3096 * the bulk phase will usually take a long time and transferring 3097 * ram updates during that time is pointless. */ 3098 goto out; 3099 } 3100 3101 /* 3102 * We'll take this lock a little bit long, but it's okay for two reasons. 3103 * Firstly, the only possible other thread to take it is who calls 3104 * qemu_guest_free_page_hint(), which should be rare; secondly, see 3105 * MAX_WAIT (if curious, further see commit 4508bd9ed8053ce) below, which 3106 * guarantees that we'll at least released it in a regular basis. 3107 */ 3108 qemu_mutex_lock(&rs->bitmap_mutex); 3109 WITH_RCU_READ_LOCK_GUARD() { 3110 if (ram_list.version != rs->last_version) { 3111 ram_state_reset(rs); 3112 } 3113 3114 /* Read version before ram_list.blocks */ 3115 smp_rmb(); 3116 3117 ram_control_before_iterate(f, RAM_CONTROL_ROUND); 3118 3119 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 3120 i = 0; 3121 while ((ret = migration_rate_exceeded(f)) == 0 || 3122 postcopy_has_request(rs)) { 3123 int pages; 3124 3125 if (qemu_file_get_error(f)) { 3126 break; 3127 } 3128 3129 pages = ram_find_and_save_block(rs); 3130 /* no more pages to sent */ 3131 if (pages == 0) { 3132 done = 1; 3133 break; 3134 } 3135 3136 if (pages < 0) { 3137 qemu_file_set_error(f, pages); 3138 break; 3139 } 3140 3141 rs->target_page_count += pages; 3142 3143 /* 3144 * During postcopy, it is necessary to make sure one whole host 3145 * page is sent in one chunk. 3146 */ 3147 if (migrate_postcopy_ram()) { 3148 ram_flush_compressed_data(rs); 3149 } 3150 3151 /* 3152 * we want to check in the 1st loop, just in case it was the 1st 3153 * time and we had to sync the dirty bitmap. 3154 * qemu_clock_get_ns() is a bit expensive, so we only check each 3155 * some iterations 3156 */ 3157 if ((i & 63) == 0) { 3158 uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) / 3159 1000000; 3160 if (t1 > MAX_WAIT) { 3161 trace_ram_save_iterate_big_wait(t1, i); 3162 break; 3163 } 3164 } 3165 i++; 3166 } 3167 } 3168 qemu_mutex_unlock(&rs->bitmap_mutex); 3169 3170 /* 3171 * Must occur before EOS (or any QEMUFile operation) 3172 * because of RDMA protocol. 3173 */ 3174 ram_control_after_iterate(f, RAM_CONTROL_ROUND); 3175 3176 out: 3177 if (ret >= 0 3178 && migration_is_setup_or_active(migrate_get_current()->state)) { 3179 if (migrate_multifd_flush_after_each_section()) { 3180 ret = multifd_send_sync_main(rs->pss[RAM_CHANNEL_PRECOPY].pss_channel); 3181 if (ret < 0) { 3182 return ret; 3183 } 3184 } 3185 3186 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 3187 qemu_fflush(f); 3188 ram_transferred_add(8); 3189 3190 ret = qemu_file_get_error(f); 3191 } 3192 if (ret < 0) { 3193 return ret; 3194 } 3195 3196 return done; 3197 } 3198 3199 /** 3200 * ram_save_complete: function called to send the remaining amount of ram 3201 * 3202 * Returns zero to indicate success or negative on error 3203 * 3204 * Called with iothread lock 3205 * 3206 * @f: QEMUFile where to send the data 3207 * @opaque: RAMState pointer 3208 */ 3209 static int ram_save_complete(QEMUFile *f, void *opaque) 3210 { 3211 RAMState **temp = opaque; 3212 RAMState *rs = *temp; 3213 int ret = 0; 3214 3215 rs->last_stage = !migration_in_colo_state(); 3216 3217 WITH_RCU_READ_LOCK_GUARD() { 3218 if (!migration_in_postcopy()) { 3219 migration_bitmap_sync_precopy(rs, true); 3220 } 3221 3222 ram_control_before_iterate(f, RAM_CONTROL_FINISH); 3223 3224 /* try transferring iterative blocks of memory */ 3225 3226 /* flush all remaining blocks regardless of rate limiting */ 3227 qemu_mutex_lock(&rs->bitmap_mutex); 3228 while (true) { 3229 int pages; 3230 3231 pages = ram_find_and_save_block(rs); 3232 /* no more blocks to sent */ 3233 if (pages == 0) { 3234 break; 3235 } 3236 if (pages < 0) { 3237 ret = pages; 3238 break; 3239 } 3240 } 3241 qemu_mutex_unlock(&rs->bitmap_mutex); 3242 3243 ram_flush_compressed_data(rs); 3244 ram_control_after_iterate(f, RAM_CONTROL_FINISH); 3245 } 3246 3247 if (ret < 0) { 3248 return ret; 3249 } 3250 3251 ret = multifd_send_sync_main(rs->pss[RAM_CHANNEL_PRECOPY].pss_channel); 3252 if (ret < 0) { 3253 return ret; 3254 } 3255 3256 if (!migrate_multifd_flush_after_each_section()) { 3257 qemu_put_be64(f, RAM_SAVE_FLAG_MULTIFD_FLUSH); 3258 } 3259 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 3260 qemu_fflush(f); 3261 3262 return 0; 3263 } 3264 3265 static void ram_state_pending_estimate(void *opaque, uint64_t *must_precopy, 3266 uint64_t *can_postcopy) 3267 { 3268 RAMState **temp = opaque; 3269 RAMState *rs = *temp; 3270 3271 uint64_t remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE; 3272 3273 if (migrate_postcopy_ram()) { 3274 /* We can do postcopy, and all the data is postcopiable */ 3275 *can_postcopy += remaining_size; 3276 } else { 3277 *must_precopy += remaining_size; 3278 } 3279 } 3280 3281 static void ram_state_pending_exact(void *opaque, uint64_t *must_precopy, 3282 uint64_t *can_postcopy) 3283 { 3284 MigrationState *s = migrate_get_current(); 3285 RAMState **temp = opaque; 3286 RAMState *rs = *temp; 3287 3288 uint64_t remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE; 3289 3290 if (!migration_in_postcopy() && remaining_size < s->threshold_size) { 3291 qemu_mutex_lock_iothread(); 3292 WITH_RCU_READ_LOCK_GUARD() { 3293 migration_bitmap_sync_precopy(rs, false); 3294 } 3295 qemu_mutex_unlock_iothread(); 3296 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE; 3297 } 3298 3299 if (migrate_postcopy_ram()) { 3300 /* We can do postcopy, and all the data is postcopiable */ 3301 *can_postcopy += remaining_size; 3302 } else { 3303 *must_precopy += remaining_size; 3304 } 3305 } 3306 3307 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host) 3308 { 3309 unsigned int xh_len; 3310 int xh_flags; 3311 uint8_t *loaded_data; 3312 3313 /* extract RLE header */ 3314 xh_flags = qemu_get_byte(f); 3315 xh_len = qemu_get_be16(f); 3316 3317 if (xh_flags != ENCODING_FLAG_XBZRLE) { 3318 error_report("Failed to load XBZRLE page - wrong compression!"); 3319 return -1; 3320 } 3321 3322 if (xh_len > TARGET_PAGE_SIZE) { 3323 error_report("Failed to load XBZRLE page - len overflow!"); 3324 return -1; 3325 } 3326 loaded_data = XBZRLE.decoded_buf; 3327 /* load data and decode */ 3328 /* it can change loaded_data to point to an internal buffer */ 3329 qemu_get_buffer_in_place(f, &loaded_data, xh_len); 3330 3331 /* decode RLE */ 3332 if (xbzrle_decode_buffer(loaded_data, xh_len, host, 3333 TARGET_PAGE_SIZE) == -1) { 3334 error_report("Failed to load XBZRLE page - decode error!"); 3335 return -1; 3336 } 3337 3338 return 0; 3339 } 3340 3341 /** 3342 * ram_block_from_stream: read a RAMBlock id from the migration stream 3343 * 3344 * Must be called from within a rcu critical section. 3345 * 3346 * Returns a pointer from within the RCU-protected ram_list. 3347 * 3348 * @mis: the migration incoming state pointer 3349 * @f: QEMUFile where to read the data from 3350 * @flags: Page flags (mostly to see if it's a continuation of previous block) 3351 * @channel: the channel we're using 3352 */ 3353 static inline RAMBlock *ram_block_from_stream(MigrationIncomingState *mis, 3354 QEMUFile *f, int flags, 3355 int channel) 3356 { 3357 RAMBlock *block = mis->last_recv_block[channel]; 3358 char id[256]; 3359 uint8_t len; 3360 3361 if (flags & RAM_SAVE_FLAG_CONTINUE) { 3362 if (!block) { 3363 error_report("Ack, bad migration stream!"); 3364 return NULL; 3365 } 3366 return block; 3367 } 3368 3369 len = qemu_get_byte(f); 3370 qemu_get_buffer(f, (uint8_t *)id, len); 3371 id[len] = 0; 3372 3373 block = qemu_ram_block_by_name(id); 3374 if (!block) { 3375 error_report("Can't find block %s", id); 3376 return NULL; 3377 } 3378 3379 if (migrate_ram_is_ignored(block)) { 3380 error_report("block %s should not be migrated !", id); 3381 return NULL; 3382 } 3383 3384 mis->last_recv_block[channel] = block; 3385 3386 return block; 3387 } 3388 3389 static inline void *host_from_ram_block_offset(RAMBlock *block, 3390 ram_addr_t offset) 3391 { 3392 if (!offset_in_ramblock(block, offset)) { 3393 return NULL; 3394 } 3395 3396 return block->host + offset; 3397 } 3398 3399 static void *host_page_from_ram_block_offset(RAMBlock *block, 3400 ram_addr_t offset) 3401 { 3402 /* Note: Explicitly no check against offset_in_ramblock(). */ 3403 return (void *)QEMU_ALIGN_DOWN((uintptr_t)(block->host + offset), 3404 block->page_size); 3405 } 3406 3407 static ram_addr_t host_page_offset_from_ram_block_offset(RAMBlock *block, 3408 ram_addr_t offset) 3409 { 3410 return ((uintptr_t)block->host + offset) & (block->page_size - 1); 3411 } 3412 3413 void colo_record_bitmap(RAMBlock *block, ram_addr_t *normal, uint32_t pages) 3414 { 3415 qemu_mutex_lock(&ram_state->bitmap_mutex); 3416 for (int i = 0; i < pages; i++) { 3417 ram_addr_t offset = normal[i]; 3418 ram_state->migration_dirty_pages += !test_and_set_bit( 3419 offset >> TARGET_PAGE_BITS, 3420 block->bmap); 3421 } 3422 qemu_mutex_unlock(&ram_state->bitmap_mutex); 3423 } 3424 3425 static inline void *colo_cache_from_block_offset(RAMBlock *block, 3426 ram_addr_t offset, bool record_bitmap) 3427 { 3428 if (!offset_in_ramblock(block, offset)) { 3429 return NULL; 3430 } 3431 if (!block->colo_cache) { 3432 error_report("%s: colo_cache is NULL in block :%s", 3433 __func__, block->idstr); 3434 return NULL; 3435 } 3436 3437 /* 3438 * During colo checkpoint, we need bitmap of these migrated pages. 3439 * It help us to decide which pages in ram cache should be flushed 3440 * into VM's RAM later. 3441 */ 3442 if (record_bitmap) { 3443 colo_record_bitmap(block, &offset, 1); 3444 } 3445 return block->colo_cache + offset; 3446 } 3447 3448 /** 3449 * ram_handle_compressed: handle the zero page case 3450 * 3451 * If a page (or a whole RDMA chunk) has been 3452 * determined to be zero, then zap it. 3453 * 3454 * @host: host address for the zero page 3455 * @ch: what the page is filled from. We only support zero 3456 * @size: size of the zero page 3457 */ 3458 void ram_handle_compressed(void *host, uint8_t ch, uint64_t size) 3459 { 3460 if (ch != 0 || !buffer_is_zero(host, size)) { 3461 memset(host, ch, size); 3462 } 3463 } 3464 3465 static void colo_init_ram_state(void) 3466 { 3467 ram_state_init(&ram_state); 3468 } 3469 3470 /* 3471 * colo cache: this is for secondary VM, we cache the whole 3472 * memory of the secondary VM, it is need to hold the global lock 3473 * to call this helper. 3474 */ 3475 int colo_init_ram_cache(void) 3476 { 3477 RAMBlock *block; 3478 3479 WITH_RCU_READ_LOCK_GUARD() { 3480 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3481 block->colo_cache = qemu_anon_ram_alloc(block->used_length, 3482 NULL, false, false); 3483 if (!block->colo_cache) { 3484 error_report("%s: Can't alloc memory for COLO cache of block %s," 3485 "size 0x" RAM_ADDR_FMT, __func__, block->idstr, 3486 block->used_length); 3487 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3488 if (block->colo_cache) { 3489 qemu_anon_ram_free(block->colo_cache, block->used_length); 3490 block->colo_cache = NULL; 3491 } 3492 } 3493 return -errno; 3494 } 3495 if (!machine_dump_guest_core(current_machine)) { 3496 qemu_madvise(block->colo_cache, block->used_length, 3497 QEMU_MADV_DONTDUMP); 3498 } 3499 } 3500 } 3501 3502 /* 3503 * Record the dirty pages that sent by PVM, we use this dirty bitmap together 3504 * with to decide which page in cache should be flushed into SVM's RAM. Here 3505 * we use the same name 'ram_bitmap' as for migration. 3506 */ 3507 if (ram_bytes_total()) { 3508 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3509 unsigned long pages = block->max_length >> TARGET_PAGE_BITS; 3510 block->bmap = bitmap_new(pages); 3511 } 3512 } 3513 3514 colo_init_ram_state(); 3515 return 0; 3516 } 3517 3518 /* TODO: duplicated with ram_init_bitmaps */ 3519 void colo_incoming_start_dirty_log(void) 3520 { 3521 RAMBlock *block = NULL; 3522 /* For memory_global_dirty_log_start below. */ 3523 qemu_mutex_lock_iothread(); 3524 qemu_mutex_lock_ramlist(); 3525 3526 memory_global_dirty_log_sync(false); 3527 WITH_RCU_READ_LOCK_GUARD() { 3528 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3529 ramblock_sync_dirty_bitmap(ram_state, block); 3530 /* Discard this dirty bitmap record */ 3531 bitmap_zero(block->bmap, block->max_length >> TARGET_PAGE_BITS); 3532 } 3533 memory_global_dirty_log_start(GLOBAL_DIRTY_MIGRATION); 3534 } 3535 ram_state->migration_dirty_pages = 0; 3536 qemu_mutex_unlock_ramlist(); 3537 qemu_mutex_unlock_iothread(); 3538 } 3539 3540 /* It is need to hold the global lock to call this helper */ 3541 void colo_release_ram_cache(void) 3542 { 3543 RAMBlock *block; 3544 3545 memory_global_dirty_log_stop(GLOBAL_DIRTY_MIGRATION); 3546 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3547 g_free(block->bmap); 3548 block->bmap = NULL; 3549 } 3550 3551 WITH_RCU_READ_LOCK_GUARD() { 3552 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3553 if (block->colo_cache) { 3554 qemu_anon_ram_free(block->colo_cache, block->used_length); 3555 block->colo_cache = NULL; 3556 } 3557 } 3558 } 3559 ram_state_cleanup(&ram_state); 3560 } 3561 3562 /** 3563 * ram_load_setup: Setup RAM for migration incoming side 3564 * 3565 * Returns zero to indicate success and negative for error 3566 * 3567 * @f: QEMUFile where to receive the data 3568 * @opaque: RAMState pointer 3569 */ 3570 static int ram_load_setup(QEMUFile *f, void *opaque) 3571 { 3572 xbzrle_load_setup(); 3573 ramblock_recv_map_init(); 3574 3575 return 0; 3576 } 3577 3578 static int ram_load_cleanup(void *opaque) 3579 { 3580 RAMBlock *rb; 3581 3582 RAMBLOCK_FOREACH_NOT_IGNORED(rb) { 3583 qemu_ram_block_writeback(rb); 3584 } 3585 3586 xbzrle_load_cleanup(); 3587 3588 RAMBLOCK_FOREACH_NOT_IGNORED(rb) { 3589 g_free(rb->receivedmap); 3590 rb->receivedmap = NULL; 3591 } 3592 3593 return 0; 3594 } 3595 3596 /** 3597 * ram_postcopy_incoming_init: allocate postcopy data structures 3598 * 3599 * Returns 0 for success and negative if there was one error 3600 * 3601 * @mis: current migration incoming state 3602 * 3603 * Allocate data structures etc needed by incoming migration with 3604 * postcopy-ram. postcopy-ram's similarly names 3605 * postcopy_ram_incoming_init does the work. 3606 */ 3607 int ram_postcopy_incoming_init(MigrationIncomingState *mis) 3608 { 3609 return postcopy_ram_incoming_init(mis); 3610 } 3611 3612 /** 3613 * ram_load_postcopy: load a page in postcopy case 3614 * 3615 * Returns 0 for success or -errno in case of error 3616 * 3617 * Called in postcopy mode by ram_load(). 3618 * rcu_read_lock is taken prior to this being called. 3619 * 3620 * @f: QEMUFile where to send the data 3621 * @channel: the channel to use for loading 3622 */ 3623 int ram_load_postcopy(QEMUFile *f, int channel) 3624 { 3625 int flags = 0, ret = 0; 3626 bool place_needed = false; 3627 bool matches_target_page_size = false; 3628 MigrationIncomingState *mis = migration_incoming_get_current(); 3629 PostcopyTmpPage *tmp_page = &mis->postcopy_tmp_pages[channel]; 3630 3631 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) { 3632 ram_addr_t addr; 3633 void *page_buffer = NULL; 3634 void *place_source = NULL; 3635 RAMBlock *block = NULL; 3636 uint8_t ch; 3637 int len; 3638 3639 addr = qemu_get_be64(f); 3640 3641 /* 3642 * If qemu file error, we should stop here, and then "addr" 3643 * may be invalid 3644 */ 3645 ret = qemu_file_get_error(f); 3646 if (ret) { 3647 break; 3648 } 3649 3650 flags = addr & ~TARGET_PAGE_MASK; 3651 addr &= TARGET_PAGE_MASK; 3652 3653 trace_ram_load_postcopy_loop(channel, (uint64_t)addr, flags); 3654 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE | 3655 RAM_SAVE_FLAG_COMPRESS_PAGE)) { 3656 block = ram_block_from_stream(mis, f, flags, channel); 3657 if (!block) { 3658 ret = -EINVAL; 3659 break; 3660 } 3661 3662 /* 3663 * Relying on used_length is racy and can result in false positives. 3664 * We might place pages beyond used_length in case RAM was shrunk 3665 * while in postcopy, which is fine - trying to place via 3666 * UFFDIO_COPY/UFFDIO_ZEROPAGE will never segfault. 3667 */ 3668 if (!block->host || addr >= block->postcopy_length) { 3669 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr); 3670 ret = -EINVAL; 3671 break; 3672 } 3673 tmp_page->target_pages++; 3674 matches_target_page_size = block->page_size == TARGET_PAGE_SIZE; 3675 /* 3676 * Postcopy requires that we place whole host pages atomically; 3677 * these may be huge pages for RAMBlocks that are backed by 3678 * hugetlbfs. 3679 * To make it atomic, the data is read into a temporary page 3680 * that's moved into place later. 3681 * The migration protocol uses, possibly smaller, target-pages 3682 * however the source ensures it always sends all the components 3683 * of a host page in one chunk. 3684 */ 3685 page_buffer = tmp_page->tmp_huge_page + 3686 host_page_offset_from_ram_block_offset(block, addr); 3687 /* If all TP are zero then we can optimise the place */ 3688 if (tmp_page->target_pages == 1) { 3689 tmp_page->host_addr = 3690 host_page_from_ram_block_offset(block, addr); 3691 } else if (tmp_page->host_addr != 3692 host_page_from_ram_block_offset(block, addr)) { 3693 /* not the 1st TP within the HP */ 3694 error_report("Non-same host page detected on channel %d: " 3695 "Target host page %p, received host page %p " 3696 "(rb %s offset 0x"RAM_ADDR_FMT" target_pages %d)", 3697 channel, tmp_page->host_addr, 3698 host_page_from_ram_block_offset(block, addr), 3699 block->idstr, addr, tmp_page->target_pages); 3700 ret = -EINVAL; 3701 break; 3702 } 3703 3704 /* 3705 * If it's the last part of a host page then we place the host 3706 * page 3707 */ 3708 if (tmp_page->target_pages == 3709 (block->page_size / TARGET_PAGE_SIZE)) { 3710 place_needed = true; 3711 } 3712 place_source = tmp_page->tmp_huge_page; 3713 } 3714 3715 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) { 3716 case RAM_SAVE_FLAG_ZERO: 3717 ch = qemu_get_byte(f); 3718 /* 3719 * Can skip to set page_buffer when 3720 * this is a zero page and (block->page_size == TARGET_PAGE_SIZE). 3721 */ 3722 if (ch || !matches_target_page_size) { 3723 memset(page_buffer, ch, TARGET_PAGE_SIZE); 3724 } 3725 if (ch) { 3726 tmp_page->all_zero = false; 3727 } 3728 break; 3729 3730 case RAM_SAVE_FLAG_PAGE: 3731 tmp_page->all_zero = false; 3732 if (!matches_target_page_size) { 3733 /* For huge pages, we always use temporary buffer */ 3734 qemu_get_buffer(f, page_buffer, TARGET_PAGE_SIZE); 3735 } else { 3736 /* 3737 * For small pages that matches target page size, we 3738 * avoid the qemu_file copy. Instead we directly use 3739 * the buffer of QEMUFile to place the page. Note: we 3740 * cannot do any QEMUFile operation before using that 3741 * buffer to make sure the buffer is valid when 3742 * placing the page. 3743 */ 3744 qemu_get_buffer_in_place(f, (uint8_t **)&place_source, 3745 TARGET_PAGE_SIZE); 3746 } 3747 break; 3748 case RAM_SAVE_FLAG_COMPRESS_PAGE: 3749 tmp_page->all_zero = false; 3750 len = qemu_get_be32(f); 3751 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) { 3752 error_report("Invalid compressed data length: %d", len); 3753 ret = -EINVAL; 3754 break; 3755 } 3756 decompress_data_with_multi_threads(f, page_buffer, len); 3757 break; 3758 case RAM_SAVE_FLAG_MULTIFD_FLUSH: 3759 multifd_recv_sync_main(); 3760 break; 3761 case RAM_SAVE_FLAG_EOS: 3762 /* normal exit */ 3763 if (migrate_multifd_flush_after_each_section()) { 3764 multifd_recv_sync_main(); 3765 } 3766 break; 3767 default: 3768 error_report("Unknown combination of migration flags: 0x%x" 3769 " (postcopy mode)", flags); 3770 ret = -EINVAL; 3771 break; 3772 } 3773 3774 /* Got the whole host page, wait for decompress before placing. */ 3775 if (place_needed) { 3776 ret |= wait_for_decompress_done(); 3777 } 3778 3779 /* Detect for any possible file errors */ 3780 if (!ret && qemu_file_get_error(f)) { 3781 ret = qemu_file_get_error(f); 3782 } 3783 3784 if (!ret && place_needed) { 3785 if (tmp_page->all_zero) { 3786 ret = postcopy_place_page_zero(mis, tmp_page->host_addr, block); 3787 } else { 3788 ret = postcopy_place_page(mis, tmp_page->host_addr, 3789 place_source, block); 3790 } 3791 place_needed = false; 3792 postcopy_temp_page_reset(tmp_page); 3793 } 3794 } 3795 3796 return ret; 3797 } 3798 3799 static bool postcopy_is_running(void) 3800 { 3801 PostcopyState ps = postcopy_state_get(); 3802 return ps >= POSTCOPY_INCOMING_LISTENING && ps < POSTCOPY_INCOMING_END; 3803 } 3804 3805 /* 3806 * Flush content of RAM cache into SVM's memory. 3807 * Only flush the pages that be dirtied by PVM or SVM or both. 3808 */ 3809 void colo_flush_ram_cache(void) 3810 { 3811 RAMBlock *block = NULL; 3812 void *dst_host; 3813 void *src_host; 3814 unsigned long offset = 0; 3815 3816 memory_global_dirty_log_sync(false); 3817 qemu_mutex_lock(&ram_state->bitmap_mutex); 3818 WITH_RCU_READ_LOCK_GUARD() { 3819 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3820 ramblock_sync_dirty_bitmap(ram_state, block); 3821 } 3822 } 3823 3824 trace_colo_flush_ram_cache_begin(ram_state->migration_dirty_pages); 3825 WITH_RCU_READ_LOCK_GUARD() { 3826 block = QLIST_FIRST_RCU(&ram_list.blocks); 3827 3828 while (block) { 3829 unsigned long num = 0; 3830 3831 offset = colo_bitmap_find_dirty(ram_state, block, offset, &num); 3832 if (!offset_in_ramblock(block, 3833 ((ram_addr_t)offset) << TARGET_PAGE_BITS)) { 3834 offset = 0; 3835 num = 0; 3836 block = QLIST_NEXT_RCU(block, next); 3837 } else { 3838 unsigned long i = 0; 3839 3840 for (i = 0; i < num; i++) { 3841 migration_bitmap_clear_dirty(ram_state, block, offset + i); 3842 } 3843 dst_host = block->host 3844 + (((ram_addr_t)offset) << TARGET_PAGE_BITS); 3845 src_host = block->colo_cache 3846 + (((ram_addr_t)offset) << TARGET_PAGE_BITS); 3847 memcpy(dst_host, src_host, TARGET_PAGE_SIZE * num); 3848 offset += num; 3849 } 3850 } 3851 } 3852 qemu_mutex_unlock(&ram_state->bitmap_mutex); 3853 trace_colo_flush_ram_cache_end(); 3854 } 3855 3856 /** 3857 * ram_load_precopy: load pages in precopy case 3858 * 3859 * Returns 0 for success or -errno in case of error 3860 * 3861 * Called in precopy mode by ram_load(). 3862 * rcu_read_lock is taken prior to this being called. 3863 * 3864 * @f: QEMUFile where to send the data 3865 */ 3866 static int ram_load_precopy(QEMUFile *f) 3867 { 3868 MigrationIncomingState *mis = migration_incoming_get_current(); 3869 int flags = 0, ret = 0, invalid_flags = 0, len = 0, i = 0; 3870 /* ADVISE is earlier, it shows the source has the postcopy capability on */ 3871 bool postcopy_advised = migration_incoming_postcopy_advised(); 3872 if (!migrate_compress()) { 3873 invalid_flags |= RAM_SAVE_FLAG_COMPRESS_PAGE; 3874 } 3875 3876 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) { 3877 ram_addr_t addr, total_ram_bytes; 3878 void *host = NULL, *host_bak = NULL; 3879 uint8_t ch; 3880 3881 /* 3882 * Yield periodically to let main loop run, but an iteration of 3883 * the main loop is expensive, so do it each some iterations 3884 */ 3885 if ((i & 32767) == 0 && qemu_in_coroutine()) { 3886 aio_co_schedule(qemu_get_current_aio_context(), 3887 qemu_coroutine_self()); 3888 qemu_coroutine_yield(); 3889 } 3890 i++; 3891 3892 addr = qemu_get_be64(f); 3893 flags = addr & ~TARGET_PAGE_MASK; 3894 addr &= TARGET_PAGE_MASK; 3895 3896 if (flags & invalid_flags) { 3897 if (flags & invalid_flags & RAM_SAVE_FLAG_COMPRESS_PAGE) { 3898 error_report("Received an unexpected compressed page"); 3899 } 3900 3901 ret = -EINVAL; 3902 break; 3903 } 3904 3905 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE | 3906 RAM_SAVE_FLAG_COMPRESS_PAGE | RAM_SAVE_FLAG_XBZRLE)) { 3907 RAMBlock *block = ram_block_from_stream(mis, f, flags, 3908 RAM_CHANNEL_PRECOPY); 3909 3910 host = host_from_ram_block_offset(block, addr); 3911 /* 3912 * After going into COLO stage, we should not load the page 3913 * into SVM's memory directly, we put them into colo_cache firstly. 3914 * NOTE: We need to keep a copy of SVM's ram in colo_cache. 3915 * Previously, we copied all these memory in preparing stage of COLO 3916 * while we need to stop VM, which is a time-consuming process. 3917 * Here we optimize it by a trick, back-up every page while in 3918 * migration process while COLO is enabled, though it affects the 3919 * speed of the migration, but it obviously reduce the downtime of 3920 * back-up all SVM'S memory in COLO preparing stage. 3921 */ 3922 if (migration_incoming_colo_enabled()) { 3923 if (migration_incoming_in_colo_state()) { 3924 /* In COLO stage, put all pages into cache temporarily */ 3925 host = colo_cache_from_block_offset(block, addr, true); 3926 } else { 3927 /* 3928 * In migration stage but before COLO stage, 3929 * Put all pages into both cache and SVM's memory. 3930 */ 3931 host_bak = colo_cache_from_block_offset(block, addr, false); 3932 } 3933 } 3934 if (!host) { 3935 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr); 3936 ret = -EINVAL; 3937 break; 3938 } 3939 if (!migration_incoming_in_colo_state()) { 3940 ramblock_recv_bitmap_set(block, host); 3941 } 3942 3943 trace_ram_load_loop(block->idstr, (uint64_t)addr, flags, host); 3944 } 3945 3946 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) { 3947 case RAM_SAVE_FLAG_MEM_SIZE: 3948 /* Synchronize RAM block list */ 3949 total_ram_bytes = addr; 3950 while (!ret && total_ram_bytes) { 3951 RAMBlock *block; 3952 char id[256]; 3953 ram_addr_t length; 3954 3955 len = qemu_get_byte(f); 3956 qemu_get_buffer(f, (uint8_t *)id, len); 3957 id[len] = 0; 3958 length = qemu_get_be64(f); 3959 3960 block = qemu_ram_block_by_name(id); 3961 if (block && !qemu_ram_is_migratable(block)) { 3962 error_report("block %s should not be migrated !", id); 3963 ret = -EINVAL; 3964 } else if (block) { 3965 if (length != block->used_length) { 3966 Error *local_err = NULL; 3967 3968 ret = qemu_ram_resize(block, length, 3969 &local_err); 3970 if (local_err) { 3971 error_report_err(local_err); 3972 } 3973 } 3974 /* For postcopy we need to check hugepage sizes match */ 3975 if (postcopy_advised && migrate_postcopy_ram() && 3976 block->page_size != qemu_host_page_size) { 3977 uint64_t remote_page_size = qemu_get_be64(f); 3978 if (remote_page_size != block->page_size) { 3979 error_report("Mismatched RAM page size %s " 3980 "(local) %zd != %" PRId64, 3981 id, block->page_size, 3982 remote_page_size); 3983 ret = -EINVAL; 3984 } 3985 } 3986 if (migrate_ignore_shared()) { 3987 hwaddr addr2 = qemu_get_be64(f); 3988 if (migrate_ram_is_ignored(block) && 3989 block->mr->addr != addr2) { 3990 error_report("Mismatched GPAs for block %s " 3991 "%" PRId64 "!= %" PRId64, 3992 id, (uint64_t)addr2, 3993 (uint64_t)block->mr->addr); 3994 ret = -EINVAL; 3995 } 3996 } 3997 ram_control_load_hook(f, RAM_CONTROL_BLOCK_REG, 3998 block->idstr); 3999 } else { 4000 error_report("Unknown ramblock \"%s\", cannot " 4001 "accept migration", id); 4002 ret = -EINVAL; 4003 } 4004 4005 total_ram_bytes -= length; 4006 } 4007 break; 4008 4009 case RAM_SAVE_FLAG_ZERO: 4010 ch = qemu_get_byte(f); 4011 ram_handle_compressed(host, ch, TARGET_PAGE_SIZE); 4012 break; 4013 4014 case RAM_SAVE_FLAG_PAGE: 4015 qemu_get_buffer(f, host, TARGET_PAGE_SIZE); 4016 break; 4017 4018 case RAM_SAVE_FLAG_COMPRESS_PAGE: 4019 len = qemu_get_be32(f); 4020 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) { 4021 error_report("Invalid compressed data length: %d", len); 4022 ret = -EINVAL; 4023 break; 4024 } 4025 decompress_data_with_multi_threads(f, host, len); 4026 break; 4027 4028 case RAM_SAVE_FLAG_XBZRLE: 4029 if (load_xbzrle(f, addr, host) < 0) { 4030 error_report("Failed to decompress XBZRLE page at " 4031 RAM_ADDR_FMT, addr); 4032 ret = -EINVAL; 4033 break; 4034 } 4035 break; 4036 case RAM_SAVE_FLAG_MULTIFD_FLUSH: 4037 multifd_recv_sync_main(); 4038 break; 4039 case RAM_SAVE_FLAG_EOS: 4040 /* normal exit */ 4041 if (migrate_multifd_flush_after_each_section()) { 4042 multifd_recv_sync_main(); 4043 } 4044 break; 4045 case RAM_SAVE_FLAG_HOOK: 4046 ram_control_load_hook(f, RAM_CONTROL_HOOK, NULL); 4047 break; 4048 default: 4049 error_report("Unknown combination of migration flags: 0x%x", flags); 4050 ret = -EINVAL; 4051 } 4052 if (!ret) { 4053 ret = qemu_file_get_error(f); 4054 } 4055 if (!ret && host_bak) { 4056 memcpy(host_bak, host, TARGET_PAGE_SIZE); 4057 } 4058 } 4059 4060 ret |= wait_for_decompress_done(); 4061 return ret; 4062 } 4063 4064 static int ram_load(QEMUFile *f, void *opaque, int version_id) 4065 { 4066 int ret = 0; 4067 static uint64_t seq_iter; 4068 /* 4069 * If system is running in postcopy mode, page inserts to host memory must 4070 * be atomic 4071 */ 4072 bool postcopy_running = postcopy_is_running(); 4073 4074 seq_iter++; 4075 4076 if (version_id != 4) { 4077 return -EINVAL; 4078 } 4079 4080 /* 4081 * This RCU critical section can be very long running. 4082 * When RCU reclaims in the code start to become numerous, 4083 * it will be necessary to reduce the granularity of this 4084 * critical section. 4085 */ 4086 WITH_RCU_READ_LOCK_GUARD() { 4087 if (postcopy_running) { 4088 /* 4089 * Note! Here RAM_CHANNEL_PRECOPY is the precopy channel of 4090 * postcopy migration, we have another RAM_CHANNEL_POSTCOPY to 4091 * service fast page faults. 4092 */ 4093 ret = ram_load_postcopy(f, RAM_CHANNEL_PRECOPY); 4094 } else { 4095 ret = ram_load_precopy(f); 4096 } 4097 } 4098 trace_ram_load_complete(ret, seq_iter); 4099 4100 return ret; 4101 } 4102 4103 static bool ram_has_postcopy(void *opaque) 4104 { 4105 RAMBlock *rb; 4106 RAMBLOCK_FOREACH_NOT_IGNORED(rb) { 4107 if (ramblock_is_pmem(rb)) { 4108 info_report("Block: %s, host: %p is a nvdimm memory, postcopy" 4109 "is not supported now!", rb->idstr, rb->host); 4110 return false; 4111 } 4112 } 4113 4114 return migrate_postcopy_ram(); 4115 } 4116 4117 /* Sync all the dirty bitmap with destination VM. */ 4118 static int ram_dirty_bitmap_sync_all(MigrationState *s, RAMState *rs) 4119 { 4120 RAMBlock *block; 4121 QEMUFile *file = s->to_dst_file; 4122 int ramblock_count = 0; 4123 4124 trace_ram_dirty_bitmap_sync_start(); 4125 4126 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 4127 qemu_savevm_send_recv_bitmap(file, block->idstr); 4128 trace_ram_dirty_bitmap_request(block->idstr); 4129 ramblock_count++; 4130 } 4131 4132 trace_ram_dirty_bitmap_sync_wait(); 4133 4134 /* Wait until all the ramblocks' dirty bitmap synced */ 4135 while (ramblock_count--) { 4136 qemu_sem_wait(&s->rp_state.rp_sem); 4137 } 4138 4139 trace_ram_dirty_bitmap_sync_complete(); 4140 4141 return 0; 4142 } 4143 4144 static void ram_dirty_bitmap_reload_notify(MigrationState *s) 4145 { 4146 qemu_sem_post(&s->rp_state.rp_sem); 4147 } 4148 4149 /* 4150 * Read the received bitmap, revert it as the initial dirty bitmap. 4151 * This is only used when the postcopy migration is paused but wants 4152 * to resume from a middle point. 4153 */ 4154 int ram_dirty_bitmap_reload(MigrationState *s, RAMBlock *block) 4155 { 4156 int ret = -EINVAL; 4157 /* from_dst_file is always valid because we're within rp_thread */ 4158 QEMUFile *file = s->rp_state.from_dst_file; 4159 unsigned long *le_bitmap, nbits = block->used_length >> TARGET_PAGE_BITS; 4160 uint64_t local_size = DIV_ROUND_UP(nbits, 8); 4161 uint64_t size, end_mark; 4162 4163 trace_ram_dirty_bitmap_reload_begin(block->idstr); 4164 4165 if (s->state != MIGRATION_STATUS_POSTCOPY_RECOVER) { 4166 error_report("%s: incorrect state %s", __func__, 4167 MigrationStatus_str(s->state)); 4168 return -EINVAL; 4169 } 4170 4171 /* 4172 * Note: see comments in ramblock_recv_bitmap_send() on why we 4173 * need the endianness conversion, and the paddings. 4174 */ 4175 local_size = ROUND_UP(local_size, 8); 4176 4177 /* Add paddings */ 4178 le_bitmap = bitmap_new(nbits + BITS_PER_LONG); 4179 4180 size = qemu_get_be64(file); 4181 4182 /* The size of the bitmap should match with our ramblock */ 4183 if (size != local_size) { 4184 error_report("%s: ramblock '%s' bitmap size mismatch " 4185 "(0x%"PRIx64" != 0x%"PRIx64")", __func__, 4186 block->idstr, size, local_size); 4187 ret = -EINVAL; 4188 goto out; 4189 } 4190 4191 size = qemu_get_buffer(file, (uint8_t *)le_bitmap, local_size); 4192 end_mark = qemu_get_be64(file); 4193 4194 ret = qemu_file_get_error(file); 4195 if (ret || size != local_size) { 4196 error_report("%s: read bitmap failed for ramblock '%s': %d" 4197 " (size 0x%"PRIx64", got: 0x%"PRIx64")", 4198 __func__, block->idstr, ret, local_size, size); 4199 ret = -EIO; 4200 goto out; 4201 } 4202 4203 if (end_mark != RAMBLOCK_RECV_BITMAP_ENDING) { 4204 error_report("%s: ramblock '%s' end mark incorrect: 0x%"PRIx64, 4205 __func__, block->idstr, end_mark); 4206 ret = -EINVAL; 4207 goto out; 4208 } 4209 4210 /* 4211 * Endianness conversion. We are during postcopy (though paused). 4212 * The dirty bitmap won't change. We can directly modify it. 4213 */ 4214 bitmap_from_le(block->bmap, le_bitmap, nbits); 4215 4216 /* 4217 * What we received is "received bitmap". Revert it as the initial 4218 * dirty bitmap for this ramblock. 4219 */ 4220 bitmap_complement(block->bmap, block->bmap, nbits); 4221 4222 /* Clear dirty bits of discarded ranges that we don't want to migrate. */ 4223 ramblock_dirty_bitmap_clear_discarded_pages(block); 4224 4225 /* We'll recalculate migration_dirty_pages in ram_state_resume_prepare(). */ 4226 trace_ram_dirty_bitmap_reload_complete(block->idstr); 4227 4228 /* 4229 * We succeeded to sync bitmap for current ramblock. If this is 4230 * the last one to sync, we need to notify the main send thread. 4231 */ 4232 ram_dirty_bitmap_reload_notify(s); 4233 4234 ret = 0; 4235 out: 4236 g_free(le_bitmap); 4237 return ret; 4238 } 4239 4240 static int ram_resume_prepare(MigrationState *s, void *opaque) 4241 { 4242 RAMState *rs = *(RAMState **)opaque; 4243 int ret; 4244 4245 ret = ram_dirty_bitmap_sync_all(s, rs); 4246 if (ret) { 4247 return ret; 4248 } 4249 4250 ram_state_resume_prepare(rs, s->to_dst_file); 4251 4252 return 0; 4253 } 4254 4255 void postcopy_preempt_shutdown_file(MigrationState *s) 4256 { 4257 qemu_put_be64(s->postcopy_qemufile_src, RAM_SAVE_FLAG_EOS); 4258 qemu_fflush(s->postcopy_qemufile_src); 4259 } 4260 4261 static SaveVMHandlers savevm_ram_handlers = { 4262 .save_setup = ram_save_setup, 4263 .save_live_iterate = ram_save_iterate, 4264 .save_live_complete_postcopy = ram_save_complete, 4265 .save_live_complete_precopy = ram_save_complete, 4266 .has_postcopy = ram_has_postcopy, 4267 .state_pending_exact = ram_state_pending_exact, 4268 .state_pending_estimate = ram_state_pending_estimate, 4269 .load_state = ram_load, 4270 .save_cleanup = ram_save_cleanup, 4271 .load_setup = ram_load_setup, 4272 .load_cleanup = ram_load_cleanup, 4273 .resume_prepare = ram_resume_prepare, 4274 }; 4275 4276 static void ram_mig_ram_block_resized(RAMBlockNotifier *n, void *host, 4277 size_t old_size, size_t new_size) 4278 { 4279 PostcopyState ps = postcopy_state_get(); 4280 ram_addr_t offset; 4281 RAMBlock *rb = qemu_ram_block_from_host(host, false, &offset); 4282 Error *err = NULL; 4283 4284 if (migrate_ram_is_ignored(rb)) { 4285 return; 4286 } 4287 4288 if (!migration_is_idle()) { 4289 /* 4290 * Precopy code on the source cannot deal with the size of RAM blocks 4291 * changing at random points in time - especially after sending the 4292 * RAM block sizes in the migration stream, they must no longer change. 4293 * Abort and indicate a proper reason. 4294 */ 4295 error_setg(&err, "RAM block '%s' resized during precopy.", rb->idstr); 4296 migration_cancel(err); 4297 error_free(err); 4298 } 4299 4300 switch (ps) { 4301 case POSTCOPY_INCOMING_ADVISE: 4302 /* 4303 * Update what ram_postcopy_incoming_init()->init_range() does at the 4304 * time postcopy was advised. Syncing RAM blocks with the source will 4305 * result in RAM resizes. 4306 */ 4307 if (old_size < new_size) { 4308 if (ram_discard_range(rb->idstr, old_size, new_size - old_size)) { 4309 error_report("RAM block '%s' discard of resized RAM failed", 4310 rb->idstr); 4311 } 4312 } 4313 rb->postcopy_length = new_size; 4314 break; 4315 case POSTCOPY_INCOMING_NONE: 4316 case POSTCOPY_INCOMING_RUNNING: 4317 case POSTCOPY_INCOMING_END: 4318 /* 4319 * Once our guest is running, postcopy does no longer care about 4320 * resizes. When growing, the new memory was not available on the 4321 * source, no handler needed. 4322 */ 4323 break; 4324 default: 4325 error_report("RAM block '%s' resized during postcopy state: %d", 4326 rb->idstr, ps); 4327 exit(-1); 4328 } 4329 } 4330 4331 static RAMBlockNotifier ram_mig_ram_notifier = { 4332 .ram_block_resized = ram_mig_ram_block_resized, 4333 }; 4334 4335 void ram_mig_init(void) 4336 { 4337 qemu_mutex_init(&XBZRLE.lock); 4338 register_savevm_live("ram", 0, 4, &savevm_ram_handlers, &ram_state); 4339 ram_block_notifier_add(&ram_mig_ram_notifier); 4340 } 4341