1 /* 2 * QEMU System Emulator 3 * 4 * Copyright (c) 2003-2008 Fabrice Bellard 5 * Copyright (c) 2011-2015 Red Hat Inc 6 * 7 * Authors: 8 * Juan Quintela <quintela@redhat.com> 9 * 10 * Permission is hereby granted, free of charge, to any person obtaining a copy 11 * of this software and associated documentation files (the "Software"), to deal 12 * in the Software without restriction, including without limitation the rights 13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 14 * copies of the Software, and to permit persons to whom the Software is 15 * furnished to do so, subject to the following conditions: 16 * 17 * The above copyright notice and this permission notice shall be included in 18 * all copies or substantial portions of the Software. 19 * 20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 26 * THE SOFTWARE. 27 */ 28 #include "qemu/osdep.h" 29 #include "cpu.h" 30 #include <zlib.h> 31 #include "qapi-event.h" 32 #include "qemu/cutils.h" 33 #include "qemu/bitops.h" 34 #include "qemu/bitmap.h" 35 #include "qemu/main-loop.h" 36 #include "xbzrle.h" 37 #include "ram.h" 38 #include "migration.h" 39 #include "migration/register.h" 40 #include "migration/misc.h" 41 #include "qemu-file.h" 42 #include "postcopy-ram.h" 43 #include "migration/page_cache.h" 44 #include "qemu/error-report.h" 45 #include "trace.h" 46 #include "exec/ram_addr.h" 47 #include "qemu/rcu_queue.h" 48 #include "migration/colo.h" 49 50 /***********************************************************/ 51 /* ram save/restore */ 52 53 /* RAM_SAVE_FLAG_ZERO used to be named RAM_SAVE_FLAG_COMPRESS, it 54 * worked for pages that where filled with the same char. We switched 55 * it to only search for the zero value. And to avoid confusion with 56 * RAM_SSAVE_FLAG_COMPRESS_PAGE just rename it. 57 */ 58 59 #define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */ 60 #define RAM_SAVE_FLAG_ZERO 0x02 61 #define RAM_SAVE_FLAG_MEM_SIZE 0x04 62 #define RAM_SAVE_FLAG_PAGE 0x08 63 #define RAM_SAVE_FLAG_EOS 0x10 64 #define RAM_SAVE_FLAG_CONTINUE 0x20 65 #define RAM_SAVE_FLAG_XBZRLE 0x40 66 /* 0x80 is reserved in migration.h start with 0x100 next */ 67 #define RAM_SAVE_FLAG_COMPRESS_PAGE 0x100 68 69 static inline bool is_zero_range(uint8_t *p, uint64_t size) 70 { 71 return buffer_is_zero(p, size); 72 } 73 74 XBZRLECacheStats xbzrle_counters; 75 76 /* struct contains XBZRLE cache and a static page 77 used by the compression */ 78 static struct { 79 /* buffer used for XBZRLE encoding */ 80 uint8_t *encoded_buf; 81 /* buffer for storing page content */ 82 uint8_t *current_buf; 83 /* Cache for XBZRLE, Protected by lock. */ 84 PageCache *cache; 85 QemuMutex lock; 86 /* it will store a page full of zeros */ 87 uint8_t *zero_target_page; 88 /* buffer used for XBZRLE decoding */ 89 uint8_t *decoded_buf; 90 } XBZRLE; 91 92 static void XBZRLE_cache_lock(void) 93 { 94 if (migrate_use_xbzrle()) 95 qemu_mutex_lock(&XBZRLE.lock); 96 } 97 98 static void XBZRLE_cache_unlock(void) 99 { 100 if (migrate_use_xbzrle()) 101 qemu_mutex_unlock(&XBZRLE.lock); 102 } 103 104 /** 105 * xbzrle_cache_resize: resize the xbzrle cache 106 * 107 * This function is called from qmp_migrate_set_cache_size in main 108 * thread, possibly while a migration is in progress. A running 109 * migration may be using the cache and might finish during this call, 110 * hence changes to the cache are protected by XBZRLE.lock(). 111 * 112 * Returns the new_size or negative in case of error. 113 * 114 * @new_size: new cache size 115 */ 116 int64_t xbzrle_cache_resize(int64_t new_size) 117 { 118 PageCache *new_cache; 119 int64_t ret; 120 121 if (new_size < TARGET_PAGE_SIZE) { 122 return -1; 123 } 124 125 XBZRLE_cache_lock(); 126 127 if (XBZRLE.cache != NULL) { 128 if (pow2floor(new_size) == migrate_xbzrle_cache_size()) { 129 goto out_new_size; 130 } 131 new_cache = cache_init(new_size / TARGET_PAGE_SIZE, 132 TARGET_PAGE_SIZE); 133 if (!new_cache) { 134 error_report("Error creating cache"); 135 ret = -1; 136 goto out; 137 } 138 139 cache_fini(XBZRLE.cache); 140 XBZRLE.cache = new_cache; 141 } 142 143 out_new_size: 144 ret = pow2floor(new_size); 145 out: 146 XBZRLE_cache_unlock(); 147 return ret; 148 } 149 150 /* 151 * An outstanding page request, on the source, having been received 152 * and queued 153 */ 154 struct RAMSrcPageRequest { 155 RAMBlock *rb; 156 hwaddr offset; 157 hwaddr len; 158 159 QSIMPLEQ_ENTRY(RAMSrcPageRequest) next_req; 160 }; 161 162 /* State of RAM for migration */ 163 struct RAMState { 164 /* QEMUFile used for this migration */ 165 QEMUFile *f; 166 /* Last block that we have visited searching for dirty pages */ 167 RAMBlock *last_seen_block; 168 /* Last block from where we have sent data */ 169 RAMBlock *last_sent_block; 170 /* Last dirty target page we have sent */ 171 ram_addr_t last_page; 172 /* last ram version we have seen */ 173 uint32_t last_version; 174 /* We are in the first round */ 175 bool ram_bulk_stage; 176 /* How many times we have dirty too many pages */ 177 int dirty_rate_high_cnt; 178 /* these variables are used for bitmap sync */ 179 /* last time we did a full bitmap_sync */ 180 int64_t time_last_bitmap_sync; 181 /* bytes transferred at start_time */ 182 uint64_t bytes_xfer_prev; 183 /* number of dirty pages since start_time */ 184 uint64_t num_dirty_pages_period; 185 /* xbzrle misses since the beginning of the period */ 186 uint64_t xbzrle_cache_miss_prev; 187 /* number of iterations at the beginning of period */ 188 uint64_t iterations_prev; 189 /* Iterations since start */ 190 uint64_t iterations; 191 /* number of dirty bits in the bitmap */ 192 uint64_t migration_dirty_pages; 193 /* protects modification of the bitmap */ 194 QemuMutex bitmap_mutex; 195 /* The RAMBlock used in the last src_page_requests */ 196 RAMBlock *last_req_rb; 197 /* Queue of outstanding page requests from the destination */ 198 QemuMutex src_page_req_mutex; 199 QSIMPLEQ_HEAD(src_page_requests, RAMSrcPageRequest) src_page_requests; 200 }; 201 typedef struct RAMState RAMState; 202 203 static RAMState *ram_state; 204 205 uint64_t ram_bytes_remaining(void) 206 { 207 return ram_state->migration_dirty_pages * TARGET_PAGE_SIZE; 208 } 209 210 MigrationStats ram_counters; 211 212 /* used by the search for pages to send */ 213 struct PageSearchStatus { 214 /* Current block being searched */ 215 RAMBlock *block; 216 /* Current page to search from */ 217 unsigned long page; 218 /* Set once we wrap around */ 219 bool complete_round; 220 }; 221 typedef struct PageSearchStatus PageSearchStatus; 222 223 struct CompressParam { 224 bool done; 225 bool quit; 226 QEMUFile *file; 227 QemuMutex mutex; 228 QemuCond cond; 229 RAMBlock *block; 230 ram_addr_t offset; 231 }; 232 typedef struct CompressParam CompressParam; 233 234 struct DecompressParam { 235 bool done; 236 bool quit; 237 QemuMutex mutex; 238 QemuCond cond; 239 void *des; 240 uint8_t *compbuf; 241 int len; 242 }; 243 typedef struct DecompressParam DecompressParam; 244 245 static CompressParam *comp_param; 246 static QemuThread *compress_threads; 247 /* comp_done_cond is used to wake up the migration thread when 248 * one of the compression threads has finished the compression. 249 * comp_done_lock is used to co-work with comp_done_cond. 250 */ 251 static QemuMutex comp_done_lock; 252 static QemuCond comp_done_cond; 253 /* The empty QEMUFileOps will be used by file in CompressParam */ 254 static const QEMUFileOps empty_ops = { }; 255 256 static DecompressParam *decomp_param; 257 static QemuThread *decompress_threads; 258 static QemuMutex decomp_done_lock; 259 static QemuCond decomp_done_cond; 260 261 static int do_compress_ram_page(QEMUFile *f, RAMBlock *block, 262 ram_addr_t offset); 263 264 static void *do_data_compress(void *opaque) 265 { 266 CompressParam *param = opaque; 267 RAMBlock *block; 268 ram_addr_t offset; 269 270 qemu_mutex_lock(¶m->mutex); 271 while (!param->quit) { 272 if (param->block) { 273 block = param->block; 274 offset = param->offset; 275 param->block = NULL; 276 qemu_mutex_unlock(¶m->mutex); 277 278 do_compress_ram_page(param->file, block, offset); 279 280 qemu_mutex_lock(&comp_done_lock); 281 param->done = true; 282 qemu_cond_signal(&comp_done_cond); 283 qemu_mutex_unlock(&comp_done_lock); 284 285 qemu_mutex_lock(¶m->mutex); 286 } else { 287 qemu_cond_wait(¶m->cond, ¶m->mutex); 288 } 289 } 290 qemu_mutex_unlock(¶m->mutex); 291 292 return NULL; 293 } 294 295 static inline void terminate_compression_threads(void) 296 { 297 int idx, thread_count; 298 299 thread_count = migrate_compress_threads(); 300 301 for (idx = 0; idx < thread_count; idx++) { 302 qemu_mutex_lock(&comp_param[idx].mutex); 303 comp_param[idx].quit = true; 304 qemu_cond_signal(&comp_param[idx].cond); 305 qemu_mutex_unlock(&comp_param[idx].mutex); 306 } 307 } 308 309 static void compress_threads_save_cleanup(void) 310 { 311 int i, thread_count; 312 313 if (!migrate_use_compression()) { 314 return; 315 } 316 terminate_compression_threads(); 317 thread_count = migrate_compress_threads(); 318 for (i = 0; i < thread_count; i++) { 319 qemu_thread_join(compress_threads + i); 320 qemu_fclose(comp_param[i].file); 321 qemu_mutex_destroy(&comp_param[i].mutex); 322 qemu_cond_destroy(&comp_param[i].cond); 323 } 324 qemu_mutex_destroy(&comp_done_lock); 325 qemu_cond_destroy(&comp_done_cond); 326 g_free(compress_threads); 327 g_free(comp_param); 328 compress_threads = NULL; 329 comp_param = NULL; 330 } 331 332 static void compress_threads_save_setup(void) 333 { 334 int i, thread_count; 335 336 if (!migrate_use_compression()) { 337 return; 338 } 339 thread_count = migrate_compress_threads(); 340 compress_threads = g_new0(QemuThread, thread_count); 341 comp_param = g_new0(CompressParam, thread_count); 342 qemu_cond_init(&comp_done_cond); 343 qemu_mutex_init(&comp_done_lock); 344 for (i = 0; i < thread_count; i++) { 345 /* comp_param[i].file is just used as a dummy buffer to save data, 346 * set its ops to empty. 347 */ 348 comp_param[i].file = qemu_fopen_ops(NULL, &empty_ops); 349 comp_param[i].done = true; 350 comp_param[i].quit = false; 351 qemu_mutex_init(&comp_param[i].mutex); 352 qemu_cond_init(&comp_param[i].cond); 353 qemu_thread_create(compress_threads + i, "compress", 354 do_data_compress, comp_param + i, 355 QEMU_THREAD_JOINABLE); 356 } 357 } 358 359 /* Multiple fd's */ 360 361 struct MultiFDSendParams { 362 uint8_t id; 363 char *name; 364 QemuThread thread; 365 QemuSemaphore sem; 366 QemuMutex mutex; 367 bool quit; 368 }; 369 typedef struct MultiFDSendParams MultiFDSendParams; 370 371 struct { 372 MultiFDSendParams *params; 373 /* number of created threads */ 374 int count; 375 } *multifd_send_state; 376 377 static void terminate_multifd_send_threads(Error *errp) 378 { 379 int i; 380 381 for (i = 0; i < multifd_send_state->count; i++) { 382 MultiFDSendParams *p = &multifd_send_state->params[i]; 383 384 qemu_mutex_lock(&p->mutex); 385 p->quit = true; 386 qemu_sem_post(&p->sem); 387 qemu_mutex_unlock(&p->mutex); 388 } 389 } 390 391 int multifd_save_cleanup(Error **errp) 392 { 393 int i; 394 int ret = 0; 395 396 if (!migrate_use_multifd()) { 397 return 0; 398 } 399 terminate_multifd_send_threads(NULL); 400 for (i = 0; i < multifd_send_state->count; i++) { 401 MultiFDSendParams *p = &multifd_send_state->params[i]; 402 403 qemu_thread_join(&p->thread); 404 qemu_mutex_destroy(&p->mutex); 405 qemu_sem_destroy(&p->sem); 406 g_free(p->name); 407 p->name = NULL; 408 } 409 g_free(multifd_send_state->params); 410 multifd_send_state->params = NULL; 411 g_free(multifd_send_state); 412 multifd_send_state = NULL; 413 return ret; 414 } 415 416 static void *multifd_send_thread(void *opaque) 417 { 418 MultiFDSendParams *p = opaque; 419 420 while (true) { 421 qemu_mutex_lock(&p->mutex); 422 if (p->quit) { 423 qemu_mutex_unlock(&p->mutex); 424 break; 425 } 426 qemu_mutex_unlock(&p->mutex); 427 qemu_sem_wait(&p->sem); 428 } 429 430 return NULL; 431 } 432 433 int multifd_save_setup(void) 434 { 435 int thread_count; 436 uint8_t i; 437 438 if (!migrate_use_multifd()) { 439 return 0; 440 } 441 thread_count = migrate_multifd_channels(); 442 multifd_send_state = g_malloc0(sizeof(*multifd_send_state)); 443 multifd_send_state->params = g_new0(MultiFDSendParams, thread_count); 444 multifd_send_state->count = 0; 445 for (i = 0; i < thread_count; i++) { 446 MultiFDSendParams *p = &multifd_send_state->params[i]; 447 448 qemu_mutex_init(&p->mutex); 449 qemu_sem_init(&p->sem, 0); 450 p->quit = false; 451 p->id = i; 452 p->name = g_strdup_printf("multifdsend_%d", i); 453 qemu_thread_create(&p->thread, p->name, multifd_send_thread, p, 454 QEMU_THREAD_JOINABLE); 455 456 multifd_send_state->count++; 457 } 458 return 0; 459 } 460 461 struct MultiFDRecvParams { 462 uint8_t id; 463 char *name; 464 QemuThread thread; 465 QemuSemaphore sem; 466 QemuMutex mutex; 467 bool quit; 468 }; 469 typedef struct MultiFDRecvParams MultiFDRecvParams; 470 471 struct { 472 MultiFDRecvParams *params; 473 /* number of created threads */ 474 int count; 475 } *multifd_recv_state; 476 477 static void terminate_multifd_recv_threads(Error *errp) 478 { 479 int i; 480 481 for (i = 0; i < multifd_recv_state->count; i++) { 482 MultiFDRecvParams *p = &multifd_recv_state->params[i]; 483 484 qemu_mutex_lock(&p->mutex); 485 p->quit = true; 486 qemu_sem_post(&p->sem); 487 qemu_mutex_unlock(&p->mutex); 488 } 489 } 490 491 int multifd_load_cleanup(Error **errp) 492 { 493 int i; 494 int ret = 0; 495 496 if (!migrate_use_multifd()) { 497 return 0; 498 } 499 terminate_multifd_recv_threads(NULL); 500 for (i = 0; i < multifd_recv_state->count; i++) { 501 MultiFDRecvParams *p = &multifd_recv_state->params[i]; 502 503 qemu_thread_join(&p->thread); 504 qemu_mutex_destroy(&p->mutex); 505 qemu_sem_destroy(&p->sem); 506 g_free(p->name); 507 p->name = NULL; 508 } 509 g_free(multifd_recv_state->params); 510 multifd_recv_state->params = NULL; 511 g_free(multifd_recv_state); 512 multifd_recv_state = NULL; 513 514 return ret; 515 } 516 517 static void *multifd_recv_thread(void *opaque) 518 { 519 MultiFDRecvParams *p = opaque; 520 521 while (true) { 522 qemu_mutex_lock(&p->mutex); 523 if (p->quit) { 524 qemu_mutex_unlock(&p->mutex); 525 break; 526 } 527 qemu_mutex_unlock(&p->mutex); 528 qemu_sem_wait(&p->sem); 529 } 530 531 return NULL; 532 } 533 534 int multifd_load_setup(void) 535 { 536 int thread_count; 537 uint8_t i; 538 539 if (!migrate_use_multifd()) { 540 return 0; 541 } 542 thread_count = migrate_multifd_channels(); 543 multifd_recv_state = g_malloc0(sizeof(*multifd_recv_state)); 544 multifd_recv_state->params = g_new0(MultiFDRecvParams, thread_count); 545 multifd_recv_state->count = 0; 546 for (i = 0; i < thread_count; i++) { 547 MultiFDRecvParams *p = &multifd_recv_state->params[i]; 548 549 qemu_mutex_init(&p->mutex); 550 qemu_sem_init(&p->sem, 0); 551 p->quit = false; 552 p->id = i; 553 p->name = g_strdup_printf("multifdrecv_%d", i); 554 qemu_thread_create(&p->thread, p->name, multifd_recv_thread, p, 555 QEMU_THREAD_JOINABLE); 556 multifd_recv_state->count++; 557 } 558 return 0; 559 } 560 561 /** 562 * save_page_header: write page header to wire 563 * 564 * If this is the 1st block, it also writes the block identification 565 * 566 * Returns the number of bytes written 567 * 568 * @f: QEMUFile where to send the data 569 * @block: block that contains the page we want to send 570 * @offset: offset inside the block for the page 571 * in the lower bits, it contains flags 572 */ 573 static size_t save_page_header(RAMState *rs, QEMUFile *f, RAMBlock *block, 574 ram_addr_t offset) 575 { 576 size_t size, len; 577 578 if (block == rs->last_sent_block) { 579 offset |= RAM_SAVE_FLAG_CONTINUE; 580 } 581 qemu_put_be64(f, offset); 582 size = 8; 583 584 if (!(offset & RAM_SAVE_FLAG_CONTINUE)) { 585 len = strlen(block->idstr); 586 qemu_put_byte(f, len); 587 qemu_put_buffer(f, (uint8_t *)block->idstr, len); 588 size += 1 + len; 589 rs->last_sent_block = block; 590 } 591 return size; 592 } 593 594 /** 595 * mig_throttle_guest_down: throotle down the guest 596 * 597 * Reduce amount of guest cpu execution to hopefully slow down memory 598 * writes. If guest dirty memory rate is reduced below the rate at 599 * which we can transfer pages to the destination then we should be 600 * able to complete migration. Some workloads dirty memory way too 601 * fast and will not effectively converge, even with auto-converge. 602 */ 603 static void mig_throttle_guest_down(void) 604 { 605 MigrationState *s = migrate_get_current(); 606 uint64_t pct_initial = s->parameters.cpu_throttle_initial; 607 uint64_t pct_icrement = s->parameters.cpu_throttle_increment; 608 609 /* We have not started throttling yet. Let's start it. */ 610 if (!cpu_throttle_active()) { 611 cpu_throttle_set(pct_initial); 612 } else { 613 /* Throttling already on, just increase the rate */ 614 cpu_throttle_set(cpu_throttle_get_percentage() + pct_icrement); 615 } 616 } 617 618 /** 619 * xbzrle_cache_zero_page: insert a zero page in the XBZRLE cache 620 * 621 * @rs: current RAM state 622 * @current_addr: address for the zero page 623 * 624 * Update the xbzrle cache to reflect a page that's been sent as all 0. 625 * The important thing is that a stale (not-yet-0'd) page be replaced 626 * by the new data. 627 * As a bonus, if the page wasn't in the cache it gets added so that 628 * when a small write is made into the 0'd page it gets XBZRLE sent. 629 */ 630 static void xbzrle_cache_zero_page(RAMState *rs, ram_addr_t current_addr) 631 { 632 if (rs->ram_bulk_stage || !migrate_use_xbzrle()) { 633 return; 634 } 635 636 /* We don't care if this fails to allocate a new cache page 637 * as long as it updated an old one */ 638 cache_insert(XBZRLE.cache, current_addr, XBZRLE.zero_target_page, 639 ram_counters.dirty_sync_count); 640 } 641 642 #define ENCODING_FLAG_XBZRLE 0x1 643 644 /** 645 * save_xbzrle_page: compress and send current page 646 * 647 * Returns: 1 means that we wrote the page 648 * 0 means that page is identical to the one already sent 649 * -1 means that xbzrle would be longer than normal 650 * 651 * @rs: current RAM state 652 * @current_data: pointer to the address of the page contents 653 * @current_addr: addr of the page 654 * @block: block that contains the page we want to send 655 * @offset: offset inside the block for the page 656 * @last_stage: if we are at the completion stage 657 */ 658 static int save_xbzrle_page(RAMState *rs, uint8_t **current_data, 659 ram_addr_t current_addr, RAMBlock *block, 660 ram_addr_t offset, bool last_stage) 661 { 662 int encoded_len = 0, bytes_xbzrle; 663 uint8_t *prev_cached_page; 664 665 if (!cache_is_cached(XBZRLE.cache, current_addr, 666 ram_counters.dirty_sync_count)) { 667 xbzrle_counters.cache_miss++; 668 if (!last_stage) { 669 if (cache_insert(XBZRLE.cache, current_addr, *current_data, 670 ram_counters.dirty_sync_count) == -1) { 671 return -1; 672 } else { 673 /* update *current_data when the page has been 674 inserted into cache */ 675 *current_data = get_cached_data(XBZRLE.cache, current_addr); 676 } 677 } 678 return -1; 679 } 680 681 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr); 682 683 /* save current buffer into memory */ 684 memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE); 685 686 /* XBZRLE encoding (if there is no overflow) */ 687 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf, 688 TARGET_PAGE_SIZE, XBZRLE.encoded_buf, 689 TARGET_PAGE_SIZE); 690 if (encoded_len == 0) { 691 trace_save_xbzrle_page_skipping(); 692 return 0; 693 } else if (encoded_len == -1) { 694 trace_save_xbzrle_page_overflow(); 695 xbzrle_counters.overflow++; 696 /* update data in the cache */ 697 if (!last_stage) { 698 memcpy(prev_cached_page, *current_data, TARGET_PAGE_SIZE); 699 *current_data = prev_cached_page; 700 } 701 return -1; 702 } 703 704 /* we need to update the data in the cache, in order to get the same data */ 705 if (!last_stage) { 706 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE); 707 } 708 709 /* Send XBZRLE based compressed page */ 710 bytes_xbzrle = save_page_header(rs, rs->f, block, 711 offset | RAM_SAVE_FLAG_XBZRLE); 712 qemu_put_byte(rs->f, ENCODING_FLAG_XBZRLE); 713 qemu_put_be16(rs->f, encoded_len); 714 qemu_put_buffer(rs->f, XBZRLE.encoded_buf, encoded_len); 715 bytes_xbzrle += encoded_len + 1 + 2; 716 xbzrle_counters.pages++; 717 xbzrle_counters.bytes += bytes_xbzrle; 718 ram_counters.transferred += bytes_xbzrle; 719 720 return 1; 721 } 722 723 /** 724 * migration_bitmap_find_dirty: find the next dirty page from start 725 * 726 * Called with rcu_read_lock() to protect migration_bitmap 727 * 728 * Returns the byte offset within memory region of the start of a dirty page 729 * 730 * @rs: current RAM state 731 * @rb: RAMBlock where to search for dirty pages 732 * @start: page where we start the search 733 */ 734 static inline 735 unsigned long migration_bitmap_find_dirty(RAMState *rs, RAMBlock *rb, 736 unsigned long start) 737 { 738 unsigned long size = rb->used_length >> TARGET_PAGE_BITS; 739 unsigned long *bitmap = rb->bmap; 740 unsigned long next; 741 742 if (rs->ram_bulk_stage && start > 0) { 743 next = start + 1; 744 } else { 745 next = find_next_bit(bitmap, size, start); 746 } 747 748 return next; 749 } 750 751 static inline bool migration_bitmap_clear_dirty(RAMState *rs, 752 RAMBlock *rb, 753 unsigned long page) 754 { 755 bool ret; 756 757 ret = test_and_clear_bit(page, rb->bmap); 758 759 if (ret) { 760 rs->migration_dirty_pages--; 761 } 762 return ret; 763 } 764 765 static void migration_bitmap_sync_range(RAMState *rs, RAMBlock *rb, 766 ram_addr_t start, ram_addr_t length) 767 { 768 rs->migration_dirty_pages += 769 cpu_physical_memory_sync_dirty_bitmap(rb, start, length, 770 &rs->num_dirty_pages_period); 771 } 772 773 /** 774 * ram_pagesize_summary: calculate all the pagesizes of a VM 775 * 776 * Returns a summary bitmap of the page sizes of all RAMBlocks 777 * 778 * For VMs with just normal pages this is equivalent to the host page 779 * size. If it's got some huge pages then it's the OR of all the 780 * different page sizes. 781 */ 782 uint64_t ram_pagesize_summary(void) 783 { 784 RAMBlock *block; 785 uint64_t summary = 0; 786 787 RAMBLOCK_FOREACH(block) { 788 summary |= block->page_size; 789 } 790 791 return summary; 792 } 793 794 static void migration_bitmap_sync(RAMState *rs) 795 { 796 RAMBlock *block; 797 int64_t end_time; 798 uint64_t bytes_xfer_now; 799 800 ram_counters.dirty_sync_count++; 801 802 if (!rs->time_last_bitmap_sync) { 803 rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); 804 } 805 806 trace_migration_bitmap_sync_start(); 807 memory_global_dirty_log_sync(); 808 809 qemu_mutex_lock(&rs->bitmap_mutex); 810 rcu_read_lock(); 811 RAMBLOCK_FOREACH(block) { 812 migration_bitmap_sync_range(rs, block, 0, block->used_length); 813 } 814 rcu_read_unlock(); 815 qemu_mutex_unlock(&rs->bitmap_mutex); 816 817 trace_migration_bitmap_sync_end(rs->num_dirty_pages_period); 818 819 end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); 820 821 /* more than 1 second = 1000 millisecons */ 822 if (end_time > rs->time_last_bitmap_sync + 1000) { 823 /* calculate period counters */ 824 ram_counters.dirty_pages_rate = rs->num_dirty_pages_period * 1000 825 / (end_time - rs->time_last_bitmap_sync); 826 bytes_xfer_now = ram_counters.transferred; 827 828 if (migrate_auto_converge()) { 829 /* The following detection logic can be refined later. For now: 830 Check to see if the dirtied bytes is 50% more than the approx. 831 amount of bytes that just got transferred since the last time we 832 were in this routine. If that happens twice, start or increase 833 throttling */ 834 835 if ((rs->num_dirty_pages_period * TARGET_PAGE_SIZE > 836 (bytes_xfer_now - rs->bytes_xfer_prev) / 2) && 837 (++rs->dirty_rate_high_cnt >= 2)) { 838 trace_migration_throttle(); 839 rs->dirty_rate_high_cnt = 0; 840 mig_throttle_guest_down(); 841 } 842 } 843 844 if (migrate_use_xbzrle()) { 845 if (rs->iterations_prev != rs->iterations) { 846 xbzrle_counters.cache_miss_rate = 847 (double)(xbzrle_counters.cache_miss - 848 rs->xbzrle_cache_miss_prev) / 849 (rs->iterations - rs->iterations_prev); 850 } 851 rs->iterations_prev = rs->iterations; 852 rs->xbzrle_cache_miss_prev = xbzrle_counters.cache_miss; 853 } 854 855 /* reset period counters */ 856 rs->time_last_bitmap_sync = end_time; 857 rs->num_dirty_pages_period = 0; 858 rs->bytes_xfer_prev = bytes_xfer_now; 859 } 860 if (migrate_use_events()) { 861 qapi_event_send_migration_pass(ram_counters.dirty_sync_count, NULL); 862 } 863 } 864 865 /** 866 * save_zero_page: send the zero page to the stream 867 * 868 * Returns the number of pages written. 869 * 870 * @rs: current RAM state 871 * @block: block that contains the page we want to send 872 * @offset: offset inside the block for the page 873 * @p: pointer to the page 874 */ 875 static int save_zero_page(RAMState *rs, RAMBlock *block, ram_addr_t offset, 876 uint8_t *p) 877 { 878 int pages = -1; 879 880 if (is_zero_range(p, TARGET_PAGE_SIZE)) { 881 ram_counters.duplicate++; 882 ram_counters.transferred += 883 save_page_header(rs, rs->f, block, offset | RAM_SAVE_FLAG_ZERO); 884 qemu_put_byte(rs->f, 0); 885 ram_counters.transferred += 1; 886 pages = 1; 887 } 888 889 return pages; 890 } 891 892 static void ram_release_pages(const char *rbname, uint64_t offset, int pages) 893 { 894 if (!migrate_release_ram() || !migration_in_postcopy()) { 895 return; 896 } 897 898 ram_discard_range(rbname, offset, pages << TARGET_PAGE_BITS); 899 } 900 901 /** 902 * ram_save_page: send the given page to the stream 903 * 904 * Returns the number of pages written. 905 * < 0 - error 906 * >=0 - Number of pages written - this might legally be 0 907 * if xbzrle noticed the page was the same. 908 * 909 * @rs: current RAM state 910 * @block: block that contains the page we want to send 911 * @offset: offset inside the block for the page 912 * @last_stage: if we are at the completion stage 913 */ 914 static int ram_save_page(RAMState *rs, PageSearchStatus *pss, bool last_stage) 915 { 916 int pages = -1; 917 uint64_t bytes_xmit; 918 ram_addr_t current_addr; 919 uint8_t *p; 920 int ret; 921 bool send_async = true; 922 RAMBlock *block = pss->block; 923 ram_addr_t offset = pss->page << TARGET_PAGE_BITS; 924 925 p = block->host + offset; 926 trace_ram_save_page(block->idstr, (uint64_t)offset, p); 927 928 /* In doubt sent page as normal */ 929 bytes_xmit = 0; 930 ret = ram_control_save_page(rs->f, block->offset, 931 offset, TARGET_PAGE_SIZE, &bytes_xmit); 932 if (bytes_xmit) { 933 ram_counters.transferred += bytes_xmit; 934 pages = 1; 935 } 936 937 XBZRLE_cache_lock(); 938 939 current_addr = block->offset + offset; 940 941 if (ret != RAM_SAVE_CONTROL_NOT_SUPP) { 942 if (ret != RAM_SAVE_CONTROL_DELAYED) { 943 if (bytes_xmit > 0) { 944 ram_counters.normal++; 945 } else if (bytes_xmit == 0) { 946 ram_counters.duplicate++; 947 } 948 } 949 } else { 950 pages = save_zero_page(rs, block, offset, p); 951 if (pages > 0) { 952 /* Must let xbzrle know, otherwise a previous (now 0'd) cached 953 * page would be stale 954 */ 955 xbzrle_cache_zero_page(rs, current_addr); 956 ram_release_pages(block->idstr, offset, pages); 957 } else if (!rs->ram_bulk_stage && 958 !migration_in_postcopy() && migrate_use_xbzrle()) { 959 pages = save_xbzrle_page(rs, &p, current_addr, block, 960 offset, last_stage); 961 if (!last_stage) { 962 /* Can't send this cached data async, since the cache page 963 * might get updated before it gets to the wire 964 */ 965 send_async = false; 966 } 967 } 968 } 969 970 /* XBZRLE overflow or normal page */ 971 if (pages == -1) { 972 ram_counters.transferred += 973 save_page_header(rs, rs->f, block, offset | RAM_SAVE_FLAG_PAGE); 974 if (send_async) { 975 qemu_put_buffer_async(rs->f, p, TARGET_PAGE_SIZE, 976 migrate_release_ram() & 977 migration_in_postcopy()); 978 } else { 979 qemu_put_buffer(rs->f, p, TARGET_PAGE_SIZE); 980 } 981 ram_counters.transferred += TARGET_PAGE_SIZE; 982 pages = 1; 983 ram_counters.normal++; 984 } 985 986 XBZRLE_cache_unlock(); 987 988 return pages; 989 } 990 991 static int do_compress_ram_page(QEMUFile *f, RAMBlock *block, 992 ram_addr_t offset) 993 { 994 RAMState *rs = ram_state; 995 int bytes_sent, blen; 996 uint8_t *p = block->host + (offset & TARGET_PAGE_MASK); 997 998 bytes_sent = save_page_header(rs, f, block, offset | 999 RAM_SAVE_FLAG_COMPRESS_PAGE); 1000 blen = qemu_put_compression_data(f, p, TARGET_PAGE_SIZE, 1001 migrate_compress_level()); 1002 if (blen < 0) { 1003 bytes_sent = 0; 1004 qemu_file_set_error(migrate_get_current()->to_dst_file, blen); 1005 error_report("compressed data failed!"); 1006 } else { 1007 bytes_sent += blen; 1008 ram_release_pages(block->idstr, offset & TARGET_PAGE_MASK, 1); 1009 } 1010 1011 return bytes_sent; 1012 } 1013 1014 static void flush_compressed_data(RAMState *rs) 1015 { 1016 int idx, len, thread_count; 1017 1018 if (!migrate_use_compression()) { 1019 return; 1020 } 1021 thread_count = migrate_compress_threads(); 1022 1023 qemu_mutex_lock(&comp_done_lock); 1024 for (idx = 0; idx < thread_count; idx++) { 1025 while (!comp_param[idx].done) { 1026 qemu_cond_wait(&comp_done_cond, &comp_done_lock); 1027 } 1028 } 1029 qemu_mutex_unlock(&comp_done_lock); 1030 1031 for (idx = 0; idx < thread_count; idx++) { 1032 qemu_mutex_lock(&comp_param[idx].mutex); 1033 if (!comp_param[idx].quit) { 1034 len = qemu_put_qemu_file(rs->f, comp_param[idx].file); 1035 ram_counters.transferred += len; 1036 } 1037 qemu_mutex_unlock(&comp_param[idx].mutex); 1038 } 1039 } 1040 1041 static inline void set_compress_params(CompressParam *param, RAMBlock *block, 1042 ram_addr_t offset) 1043 { 1044 param->block = block; 1045 param->offset = offset; 1046 } 1047 1048 static int compress_page_with_multi_thread(RAMState *rs, RAMBlock *block, 1049 ram_addr_t offset) 1050 { 1051 int idx, thread_count, bytes_xmit = -1, pages = -1; 1052 1053 thread_count = migrate_compress_threads(); 1054 qemu_mutex_lock(&comp_done_lock); 1055 while (true) { 1056 for (idx = 0; idx < thread_count; idx++) { 1057 if (comp_param[idx].done) { 1058 comp_param[idx].done = false; 1059 bytes_xmit = qemu_put_qemu_file(rs->f, comp_param[idx].file); 1060 qemu_mutex_lock(&comp_param[idx].mutex); 1061 set_compress_params(&comp_param[idx], block, offset); 1062 qemu_cond_signal(&comp_param[idx].cond); 1063 qemu_mutex_unlock(&comp_param[idx].mutex); 1064 pages = 1; 1065 ram_counters.normal++; 1066 ram_counters.transferred += bytes_xmit; 1067 break; 1068 } 1069 } 1070 if (pages > 0) { 1071 break; 1072 } else { 1073 qemu_cond_wait(&comp_done_cond, &comp_done_lock); 1074 } 1075 } 1076 qemu_mutex_unlock(&comp_done_lock); 1077 1078 return pages; 1079 } 1080 1081 /** 1082 * ram_save_compressed_page: compress the given page and send it to the stream 1083 * 1084 * Returns the number of pages written. 1085 * 1086 * @rs: current RAM state 1087 * @block: block that contains the page we want to send 1088 * @offset: offset inside the block for the page 1089 * @last_stage: if we are at the completion stage 1090 */ 1091 static int ram_save_compressed_page(RAMState *rs, PageSearchStatus *pss, 1092 bool last_stage) 1093 { 1094 int pages = -1; 1095 uint64_t bytes_xmit = 0; 1096 uint8_t *p; 1097 int ret, blen; 1098 RAMBlock *block = pss->block; 1099 ram_addr_t offset = pss->page << TARGET_PAGE_BITS; 1100 1101 p = block->host + offset; 1102 1103 ret = ram_control_save_page(rs->f, block->offset, 1104 offset, TARGET_PAGE_SIZE, &bytes_xmit); 1105 if (bytes_xmit) { 1106 ram_counters.transferred += bytes_xmit; 1107 pages = 1; 1108 } 1109 if (ret != RAM_SAVE_CONTROL_NOT_SUPP) { 1110 if (ret != RAM_SAVE_CONTROL_DELAYED) { 1111 if (bytes_xmit > 0) { 1112 ram_counters.normal++; 1113 } else if (bytes_xmit == 0) { 1114 ram_counters.duplicate++; 1115 } 1116 } 1117 } else { 1118 /* When starting the process of a new block, the first page of 1119 * the block should be sent out before other pages in the same 1120 * block, and all the pages in last block should have been sent 1121 * out, keeping this order is important, because the 'cont' flag 1122 * is used to avoid resending the block name. 1123 */ 1124 if (block != rs->last_sent_block) { 1125 flush_compressed_data(rs); 1126 pages = save_zero_page(rs, block, offset, p); 1127 if (pages == -1) { 1128 /* Make sure the first page is sent out before other pages */ 1129 bytes_xmit = save_page_header(rs, rs->f, block, offset | 1130 RAM_SAVE_FLAG_COMPRESS_PAGE); 1131 blen = qemu_put_compression_data(rs->f, p, TARGET_PAGE_SIZE, 1132 migrate_compress_level()); 1133 if (blen > 0) { 1134 ram_counters.transferred += bytes_xmit + blen; 1135 ram_counters.normal++; 1136 pages = 1; 1137 } else { 1138 qemu_file_set_error(rs->f, blen); 1139 error_report("compressed data failed!"); 1140 } 1141 } 1142 if (pages > 0) { 1143 ram_release_pages(block->idstr, offset, pages); 1144 } 1145 } else { 1146 pages = save_zero_page(rs, block, offset, p); 1147 if (pages == -1) { 1148 pages = compress_page_with_multi_thread(rs, block, offset); 1149 } else { 1150 ram_release_pages(block->idstr, offset, pages); 1151 } 1152 } 1153 } 1154 1155 return pages; 1156 } 1157 1158 /** 1159 * find_dirty_block: find the next dirty page and update any state 1160 * associated with the search process. 1161 * 1162 * Returns if a page is found 1163 * 1164 * @rs: current RAM state 1165 * @pss: data about the state of the current dirty page scan 1166 * @again: set to false if the search has scanned the whole of RAM 1167 */ 1168 static bool find_dirty_block(RAMState *rs, PageSearchStatus *pss, bool *again) 1169 { 1170 pss->page = migration_bitmap_find_dirty(rs, pss->block, pss->page); 1171 if (pss->complete_round && pss->block == rs->last_seen_block && 1172 pss->page >= rs->last_page) { 1173 /* 1174 * We've been once around the RAM and haven't found anything. 1175 * Give up. 1176 */ 1177 *again = false; 1178 return false; 1179 } 1180 if ((pss->page << TARGET_PAGE_BITS) >= pss->block->used_length) { 1181 /* Didn't find anything in this RAM Block */ 1182 pss->page = 0; 1183 pss->block = QLIST_NEXT_RCU(pss->block, next); 1184 if (!pss->block) { 1185 /* Hit the end of the list */ 1186 pss->block = QLIST_FIRST_RCU(&ram_list.blocks); 1187 /* Flag that we've looped */ 1188 pss->complete_round = true; 1189 rs->ram_bulk_stage = false; 1190 if (migrate_use_xbzrle()) { 1191 /* If xbzrle is on, stop using the data compression at this 1192 * point. In theory, xbzrle can do better than compression. 1193 */ 1194 flush_compressed_data(rs); 1195 } 1196 } 1197 /* Didn't find anything this time, but try again on the new block */ 1198 *again = true; 1199 return false; 1200 } else { 1201 /* Can go around again, but... */ 1202 *again = true; 1203 /* We've found something so probably don't need to */ 1204 return true; 1205 } 1206 } 1207 1208 /** 1209 * unqueue_page: gets a page of the queue 1210 * 1211 * Helper for 'get_queued_page' - gets a page off the queue 1212 * 1213 * Returns the block of the page (or NULL if none available) 1214 * 1215 * @rs: current RAM state 1216 * @offset: used to return the offset within the RAMBlock 1217 */ 1218 static RAMBlock *unqueue_page(RAMState *rs, ram_addr_t *offset) 1219 { 1220 RAMBlock *block = NULL; 1221 1222 qemu_mutex_lock(&rs->src_page_req_mutex); 1223 if (!QSIMPLEQ_EMPTY(&rs->src_page_requests)) { 1224 struct RAMSrcPageRequest *entry = 1225 QSIMPLEQ_FIRST(&rs->src_page_requests); 1226 block = entry->rb; 1227 *offset = entry->offset; 1228 1229 if (entry->len > TARGET_PAGE_SIZE) { 1230 entry->len -= TARGET_PAGE_SIZE; 1231 entry->offset += TARGET_PAGE_SIZE; 1232 } else { 1233 memory_region_unref(block->mr); 1234 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req); 1235 g_free(entry); 1236 } 1237 } 1238 qemu_mutex_unlock(&rs->src_page_req_mutex); 1239 1240 return block; 1241 } 1242 1243 /** 1244 * get_queued_page: unqueue a page from the postocpy requests 1245 * 1246 * Skips pages that are already sent (!dirty) 1247 * 1248 * Returns if a queued page is found 1249 * 1250 * @rs: current RAM state 1251 * @pss: data about the state of the current dirty page scan 1252 */ 1253 static bool get_queued_page(RAMState *rs, PageSearchStatus *pss) 1254 { 1255 RAMBlock *block; 1256 ram_addr_t offset; 1257 bool dirty; 1258 1259 do { 1260 block = unqueue_page(rs, &offset); 1261 /* 1262 * We're sending this page, and since it's postcopy nothing else 1263 * will dirty it, and we must make sure it doesn't get sent again 1264 * even if this queue request was received after the background 1265 * search already sent it. 1266 */ 1267 if (block) { 1268 unsigned long page; 1269 1270 page = offset >> TARGET_PAGE_BITS; 1271 dirty = test_bit(page, block->bmap); 1272 if (!dirty) { 1273 trace_get_queued_page_not_dirty(block->idstr, (uint64_t)offset, 1274 page, test_bit(page, block->unsentmap)); 1275 } else { 1276 trace_get_queued_page(block->idstr, (uint64_t)offset, page); 1277 } 1278 } 1279 1280 } while (block && !dirty); 1281 1282 if (block) { 1283 /* 1284 * As soon as we start servicing pages out of order, then we have 1285 * to kill the bulk stage, since the bulk stage assumes 1286 * in (migration_bitmap_find_and_reset_dirty) that every page is 1287 * dirty, that's no longer true. 1288 */ 1289 rs->ram_bulk_stage = false; 1290 1291 /* 1292 * We want the background search to continue from the queued page 1293 * since the guest is likely to want other pages near to the page 1294 * it just requested. 1295 */ 1296 pss->block = block; 1297 pss->page = offset >> TARGET_PAGE_BITS; 1298 } 1299 1300 return !!block; 1301 } 1302 1303 /** 1304 * migration_page_queue_free: drop any remaining pages in the ram 1305 * request queue 1306 * 1307 * It should be empty at the end anyway, but in error cases there may 1308 * be some left. in case that there is any page left, we drop it. 1309 * 1310 */ 1311 static void migration_page_queue_free(RAMState *rs) 1312 { 1313 struct RAMSrcPageRequest *mspr, *next_mspr; 1314 /* This queue generally should be empty - but in the case of a failed 1315 * migration might have some droppings in. 1316 */ 1317 rcu_read_lock(); 1318 QSIMPLEQ_FOREACH_SAFE(mspr, &rs->src_page_requests, next_req, next_mspr) { 1319 memory_region_unref(mspr->rb->mr); 1320 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req); 1321 g_free(mspr); 1322 } 1323 rcu_read_unlock(); 1324 } 1325 1326 /** 1327 * ram_save_queue_pages: queue the page for transmission 1328 * 1329 * A request from postcopy destination for example. 1330 * 1331 * Returns zero on success or negative on error 1332 * 1333 * @rbname: Name of the RAMBLock of the request. NULL means the 1334 * same that last one. 1335 * @start: starting address from the start of the RAMBlock 1336 * @len: length (in bytes) to send 1337 */ 1338 int ram_save_queue_pages(const char *rbname, ram_addr_t start, ram_addr_t len) 1339 { 1340 RAMBlock *ramblock; 1341 RAMState *rs = ram_state; 1342 1343 ram_counters.postcopy_requests++; 1344 rcu_read_lock(); 1345 if (!rbname) { 1346 /* Reuse last RAMBlock */ 1347 ramblock = rs->last_req_rb; 1348 1349 if (!ramblock) { 1350 /* 1351 * Shouldn't happen, we can't reuse the last RAMBlock if 1352 * it's the 1st request. 1353 */ 1354 error_report("ram_save_queue_pages no previous block"); 1355 goto err; 1356 } 1357 } else { 1358 ramblock = qemu_ram_block_by_name(rbname); 1359 1360 if (!ramblock) { 1361 /* We shouldn't be asked for a non-existent RAMBlock */ 1362 error_report("ram_save_queue_pages no block '%s'", rbname); 1363 goto err; 1364 } 1365 rs->last_req_rb = ramblock; 1366 } 1367 trace_ram_save_queue_pages(ramblock->idstr, start, len); 1368 if (start+len > ramblock->used_length) { 1369 error_report("%s request overrun start=" RAM_ADDR_FMT " len=" 1370 RAM_ADDR_FMT " blocklen=" RAM_ADDR_FMT, 1371 __func__, start, len, ramblock->used_length); 1372 goto err; 1373 } 1374 1375 struct RAMSrcPageRequest *new_entry = 1376 g_malloc0(sizeof(struct RAMSrcPageRequest)); 1377 new_entry->rb = ramblock; 1378 new_entry->offset = start; 1379 new_entry->len = len; 1380 1381 memory_region_ref(ramblock->mr); 1382 qemu_mutex_lock(&rs->src_page_req_mutex); 1383 QSIMPLEQ_INSERT_TAIL(&rs->src_page_requests, new_entry, next_req); 1384 qemu_mutex_unlock(&rs->src_page_req_mutex); 1385 rcu_read_unlock(); 1386 1387 return 0; 1388 1389 err: 1390 rcu_read_unlock(); 1391 return -1; 1392 } 1393 1394 /** 1395 * ram_save_target_page: save one target page 1396 * 1397 * Returns the number of pages written 1398 * 1399 * @rs: current RAM state 1400 * @ms: current migration state 1401 * @pss: data about the page we want to send 1402 * @last_stage: if we are at the completion stage 1403 */ 1404 static int ram_save_target_page(RAMState *rs, PageSearchStatus *pss, 1405 bool last_stage) 1406 { 1407 int res = 0; 1408 1409 /* Check the pages is dirty and if it is send it */ 1410 if (migration_bitmap_clear_dirty(rs, pss->block, pss->page)) { 1411 /* 1412 * If xbzrle is on, stop using the data compression after first 1413 * round of migration even if compression is enabled. In theory, 1414 * xbzrle can do better than compression. 1415 */ 1416 if (migrate_use_compression() && 1417 (rs->ram_bulk_stage || !migrate_use_xbzrle())) { 1418 res = ram_save_compressed_page(rs, pss, last_stage); 1419 } else { 1420 res = ram_save_page(rs, pss, last_stage); 1421 } 1422 1423 if (res < 0) { 1424 return res; 1425 } 1426 if (pss->block->unsentmap) { 1427 clear_bit(pss->page, pss->block->unsentmap); 1428 } 1429 } 1430 1431 return res; 1432 } 1433 1434 /** 1435 * ram_save_host_page: save a whole host page 1436 * 1437 * Starting at *offset send pages up to the end of the current host 1438 * page. It's valid for the initial offset to point into the middle of 1439 * a host page in which case the remainder of the hostpage is sent. 1440 * Only dirty target pages are sent. Note that the host page size may 1441 * be a huge page for this block. 1442 * The saving stops at the boundary of the used_length of the block 1443 * if the RAMBlock isn't a multiple of the host page size. 1444 * 1445 * Returns the number of pages written or negative on error 1446 * 1447 * @rs: current RAM state 1448 * @ms: current migration state 1449 * @pss: data about the page we want to send 1450 * @last_stage: if we are at the completion stage 1451 */ 1452 static int ram_save_host_page(RAMState *rs, PageSearchStatus *pss, 1453 bool last_stage) 1454 { 1455 int tmppages, pages = 0; 1456 size_t pagesize_bits = 1457 qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS; 1458 1459 do { 1460 tmppages = ram_save_target_page(rs, pss, last_stage); 1461 if (tmppages < 0) { 1462 return tmppages; 1463 } 1464 1465 pages += tmppages; 1466 pss->page++; 1467 } while ((pss->page & (pagesize_bits - 1)) && 1468 offset_in_ramblock(pss->block, pss->page << TARGET_PAGE_BITS)); 1469 1470 /* The offset we leave with is the last one we looked at */ 1471 pss->page--; 1472 return pages; 1473 } 1474 1475 /** 1476 * ram_find_and_save_block: finds a dirty page and sends it to f 1477 * 1478 * Called within an RCU critical section. 1479 * 1480 * Returns the number of pages written where zero means no dirty pages 1481 * 1482 * @rs: current RAM state 1483 * @last_stage: if we are at the completion stage 1484 * 1485 * On systems where host-page-size > target-page-size it will send all the 1486 * pages in a host page that are dirty. 1487 */ 1488 1489 static int ram_find_and_save_block(RAMState *rs, bool last_stage) 1490 { 1491 PageSearchStatus pss; 1492 int pages = 0; 1493 bool again, found; 1494 1495 /* No dirty page as there is zero RAM */ 1496 if (!ram_bytes_total()) { 1497 return pages; 1498 } 1499 1500 pss.block = rs->last_seen_block; 1501 pss.page = rs->last_page; 1502 pss.complete_round = false; 1503 1504 if (!pss.block) { 1505 pss.block = QLIST_FIRST_RCU(&ram_list.blocks); 1506 } 1507 1508 do { 1509 again = true; 1510 found = get_queued_page(rs, &pss); 1511 1512 if (!found) { 1513 /* priority queue empty, so just search for something dirty */ 1514 found = find_dirty_block(rs, &pss, &again); 1515 } 1516 1517 if (found) { 1518 pages = ram_save_host_page(rs, &pss, last_stage); 1519 } 1520 } while (!pages && again); 1521 1522 rs->last_seen_block = pss.block; 1523 rs->last_page = pss.page; 1524 1525 return pages; 1526 } 1527 1528 void acct_update_position(QEMUFile *f, size_t size, bool zero) 1529 { 1530 uint64_t pages = size / TARGET_PAGE_SIZE; 1531 1532 if (zero) { 1533 ram_counters.duplicate += pages; 1534 } else { 1535 ram_counters.normal += pages; 1536 ram_counters.transferred += size; 1537 qemu_update_position(f, size); 1538 } 1539 } 1540 1541 uint64_t ram_bytes_total(void) 1542 { 1543 RAMBlock *block; 1544 uint64_t total = 0; 1545 1546 rcu_read_lock(); 1547 RAMBLOCK_FOREACH(block) { 1548 total += block->used_length; 1549 } 1550 rcu_read_unlock(); 1551 return total; 1552 } 1553 1554 static void xbzrle_load_setup(void) 1555 { 1556 XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE); 1557 } 1558 1559 static void xbzrle_load_cleanup(void) 1560 { 1561 g_free(XBZRLE.decoded_buf); 1562 XBZRLE.decoded_buf = NULL; 1563 } 1564 1565 static void ram_save_cleanup(void *opaque) 1566 { 1567 RAMState **rsp = opaque; 1568 RAMBlock *block; 1569 1570 /* caller have hold iothread lock or is in a bh, so there is 1571 * no writing race against this migration_bitmap 1572 */ 1573 memory_global_dirty_log_stop(); 1574 1575 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { 1576 g_free(block->bmap); 1577 block->bmap = NULL; 1578 g_free(block->unsentmap); 1579 block->unsentmap = NULL; 1580 } 1581 1582 XBZRLE_cache_lock(); 1583 if (XBZRLE.cache) { 1584 cache_fini(XBZRLE.cache); 1585 g_free(XBZRLE.encoded_buf); 1586 g_free(XBZRLE.current_buf); 1587 g_free(XBZRLE.zero_target_page); 1588 XBZRLE.cache = NULL; 1589 XBZRLE.encoded_buf = NULL; 1590 XBZRLE.current_buf = NULL; 1591 XBZRLE.zero_target_page = NULL; 1592 } 1593 XBZRLE_cache_unlock(); 1594 migration_page_queue_free(*rsp); 1595 compress_threads_save_cleanup(); 1596 g_free(*rsp); 1597 *rsp = NULL; 1598 } 1599 1600 static void ram_state_reset(RAMState *rs) 1601 { 1602 rs->last_seen_block = NULL; 1603 rs->last_sent_block = NULL; 1604 rs->last_page = 0; 1605 rs->last_version = ram_list.version; 1606 rs->ram_bulk_stage = true; 1607 } 1608 1609 #define MAX_WAIT 50 /* ms, half buffered_file limit */ 1610 1611 /* 1612 * 'expected' is the value you expect the bitmap mostly to be full 1613 * of; it won't bother printing lines that are all this value. 1614 * If 'todump' is null the migration bitmap is dumped. 1615 */ 1616 void ram_debug_dump_bitmap(unsigned long *todump, bool expected, 1617 unsigned long pages) 1618 { 1619 int64_t cur; 1620 int64_t linelen = 128; 1621 char linebuf[129]; 1622 1623 for (cur = 0; cur < pages; cur += linelen) { 1624 int64_t curb; 1625 bool found = false; 1626 /* 1627 * Last line; catch the case where the line length 1628 * is longer than remaining ram 1629 */ 1630 if (cur + linelen > pages) { 1631 linelen = pages - cur; 1632 } 1633 for (curb = 0; curb < linelen; curb++) { 1634 bool thisbit = test_bit(cur + curb, todump); 1635 linebuf[curb] = thisbit ? '1' : '.'; 1636 found = found || (thisbit != expected); 1637 } 1638 if (found) { 1639 linebuf[curb] = '\0'; 1640 fprintf(stderr, "0x%08" PRIx64 " : %s\n", cur, linebuf); 1641 } 1642 } 1643 } 1644 1645 /* **** functions for postcopy ***** */ 1646 1647 void ram_postcopy_migrated_memory_release(MigrationState *ms) 1648 { 1649 struct RAMBlock *block; 1650 1651 RAMBLOCK_FOREACH(block) { 1652 unsigned long *bitmap = block->bmap; 1653 unsigned long range = block->used_length >> TARGET_PAGE_BITS; 1654 unsigned long run_start = find_next_zero_bit(bitmap, range, 0); 1655 1656 while (run_start < range) { 1657 unsigned long run_end = find_next_bit(bitmap, range, run_start + 1); 1658 ram_discard_range(block->idstr, run_start << TARGET_PAGE_BITS, 1659 (run_end - run_start) << TARGET_PAGE_BITS); 1660 run_start = find_next_zero_bit(bitmap, range, run_end + 1); 1661 } 1662 } 1663 } 1664 1665 /** 1666 * postcopy_send_discard_bm_ram: discard a RAMBlock 1667 * 1668 * Returns zero on success 1669 * 1670 * Callback from postcopy_each_ram_send_discard for each RAMBlock 1671 * Note: At this point the 'unsentmap' is the processed bitmap combined 1672 * with the dirtymap; so a '1' means it's either dirty or unsent. 1673 * 1674 * @ms: current migration state 1675 * @pds: state for postcopy 1676 * @start: RAMBlock starting page 1677 * @length: RAMBlock size 1678 */ 1679 static int postcopy_send_discard_bm_ram(MigrationState *ms, 1680 PostcopyDiscardState *pds, 1681 RAMBlock *block) 1682 { 1683 unsigned long end = block->used_length >> TARGET_PAGE_BITS; 1684 unsigned long current; 1685 unsigned long *unsentmap = block->unsentmap; 1686 1687 for (current = 0; current < end; ) { 1688 unsigned long one = find_next_bit(unsentmap, end, current); 1689 1690 if (one <= end) { 1691 unsigned long zero = find_next_zero_bit(unsentmap, end, one + 1); 1692 unsigned long discard_length; 1693 1694 if (zero >= end) { 1695 discard_length = end - one; 1696 } else { 1697 discard_length = zero - one; 1698 } 1699 if (discard_length) { 1700 postcopy_discard_send_range(ms, pds, one, discard_length); 1701 } 1702 current = one + discard_length; 1703 } else { 1704 current = one; 1705 } 1706 } 1707 1708 return 0; 1709 } 1710 1711 /** 1712 * postcopy_each_ram_send_discard: discard all RAMBlocks 1713 * 1714 * Returns 0 for success or negative for error 1715 * 1716 * Utility for the outgoing postcopy code. 1717 * Calls postcopy_send_discard_bm_ram for each RAMBlock 1718 * passing it bitmap indexes and name. 1719 * (qemu_ram_foreach_block ends up passing unscaled lengths 1720 * which would mean postcopy code would have to deal with target page) 1721 * 1722 * @ms: current migration state 1723 */ 1724 static int postcopy_each_ram_send_discard(MigrationState *ms) 1725 { 1726 struct RAMBlock *block; 1727 int ret; 1728 1729 RAMBLOCK_FOREACH(block) { 1730 PostcopyDiscardState *pds = 1731 postcopy_discard_send_init(ms, block->idstr); 1732 1733 /* 1734 * Postcopy sends chunks of bitmap over the wire, but it 1735 * just needs indexes at this point, avoids it having 1736 * target page specific code. 1737 */ 1738 ret = postcopy_send_discard_bm_ram(ms, pds, block); 1739 postcopy_discard_send_finish(ms, pds); 1740 if (ret) { 1741 return ret; 1742 } 1743 } 1744 1745 return 0; 1746 } 1747 1748 /** 1749 * postcopy_chunk_hostpages_pass: canocalize bitmap in hostpages 1750 * 1751 * Helper for postcopy_chunk_hostpages; it's called twice to 1752 * canonicalize the two bitmaps, that are similar, but one is 1753 * inverted. 1754 * 1755 * Postcopy requires that all target pages in a hostpage are dirty or 1756 * clean, not a mix. This function canonicalizes the bitmaps. 1757 * 1758 * @ms: current migration state 1759 * @unsent_pass: if true we need to canonicalize partially unsent host pages 1760 * otherwise we need to canonicalize partially dirty host pages 1761 * @block: block that contains the page we want to canonicalize 1762 * @pds: state for postcopy 1763 */ 1764 static void postcopy_chunk_hostpages_pass(MigrationState *ms, bool unsent_pass, 1765 RAMBlock *block, 1766 PostcopyDiscardState *pds) 1767 { 1768 RAMState *rs = ram_state; 1769 unsigned long *bitmap = block->bmap; 1770 unsigned long *unsentmap = block->unsentmap; 1771 unsigned int host_ratio = block->page_size / TARGET_PAGE_SIZE; 1772 unsigned long pages = block->used_length >> TARGET_PAGE_BITS; 1773 unsigned long run_start; 1774 1775 if (block->page_size == TARGET_PAGE_SIZE) { 1776 /* Easy case - TPS==HPS for a non-huge page RAMBlock */ 1777 return; 1778 } 1779 1780 if (unsent_pass) { 1781 /* Find a sent page */ 1782 run_start = find_next_zero_bit(unsentmap, pages, 0); 1783 } else { 1784 /* Find a dirty page */ 1785 run_start = find_next_bit(bitmap, pages, 0); 1786 } 1787 1788 while (run_start < pages) { 1789 bool do_fixup = false; 1790 unsigned long fixup_start_addr; 1791 unsigned long host_offset; 1792 1793 /* 1794 * If the start of this run of pages is in the middle of a host 1795 * page, then we need to fixup this host page. 1796 */ 1797 host_offset = run_start % host_ratio; 1798 if (host_offset) { 1799 do_fixup = true; 1800 run_start -= host_offset; 1801 fixup_start_addr = run_start; 1802 /* For the next pass */ 1803 run_start = run_start + host_ratio; 1804 } else { 1805 /* Find the end of this run */ 1806 unsigned long run_end; 1807 if (unsent_pass) { 1808 run_end = find_next_bit(unsentmap, pages, run_start + 1); 1809 } else { 1810 run_end = find_next_zero_bit(bitmap, pages, run_start + 1); 1811 } 1812 /* 1813 * If the end isn't at the start of a host page, then the 1814 * run doesn't finish at the end of a host page 1815 * and we need to discard. 1816 */ 1817 host_offset = run_end % host_ratio; 1818 if (host_offset) { 1819 do_fixup = true; 1820 fixup_start_addr = run_end - host_offset; 1821 /* 1822 * This host page has gone, the next loop iteration starts 1823 * from after the fixup 1824 */ 1825 run_start = fixup_start_addr + host_ratio; 1826 } else { 1827 /* 1828 * No discards on this iteration, next loop starts from 1829 * next sent/dirty page 1830 */ 1831 run_start = run_end + 1; 1832 } 1833 } 1834 1835 if (do_fixup) { 1836 unsigned long page; 1837 1838 /* Tell the destination to discard this page */ 1839 if (unsent_pass || !test_bit(fixup_start_addr, unsentmap)) { 1840 /* For the unsent_pass we: 1841 * discard partially sent pages 1842 * For the !unsent_pass (dirty) we: 1843 * discard partially dirty pages that were sent 1844 * (any partially sent pages were already discarded 1845 * by the previous unsent_pass) 1846 */ 1847 postcopy_discard_send_range(ms, pds, fixup_start_addr, 1848 host_ratio); 1849 } 1850 1851 /* Clean up the bitmap */ 1852 for (page = fixup_start_addr; 1853 page < fixup_start_addr + host_ratio; page++) { 1854 /* All pages in this host page are now not sent */ 1855 set_bit(page, unsentmap); 1856 1857 /* 1858 * Remark them as dirty, updating the count for any pages 1859 * that weren't previously dirty. 1860 */ 1861 rs->migration_dirty_pages += !test_and_set_bit(page, bitmap); 1862 } 1863 } 1864 1865 if (unsent_pass) { 1866 /* Find the next sent page for the next iteration */ 1867 run_start = find_next_zero_bit(unsentmap, pages, run_start); 1868 } else { 1869 /* Find the next dirty page for the next iteration */ 1870 run_start = find_next_bit(bitmap, pages, run_start); 1871 } 1872 } 1873 } 1874 1875 /** 1876 * postcopy_chuck_hostpages: discrad any partially sent host page 1877 * 1878 * Utility for the outgoing postcopy code. 1879 * 1880 * Discard any partially sent host-page size chunks, mark any partially 1881 * dirty host-page size chunks as all dirty. In this case the host-page 1882 * is the host-page for the particular RAMBlock, i.e. it might be a huge page 1883 * 1884 * Returns zero on success 1885 * 1886 * @ms: current migration state 1887 * @block: block we want to work with 1888 */ 1889 static int postcopy_chunk_hostpages(MigrationState *ms, RAMBlock *block) 1890 { 1891 PostcopyDiscardState *pds = 1892 postcopy_discard_send_init(ms, block->idstr); 1893 1894 /* First pass: Discard all partially sent host pages */ 1895 postcopy_chunk_hostpages_pass(ms, true, block, pds); 1896 /* 1897 * Second pass: Ensure that all partially dirty host pages are made 1898 * fully dirty. 1899 */ 1900 postcopy_chunk_hostpages_pass(ms, false, block, pds); 1901 1902 postcopy_discard_send_finish(ms, pds); 1903 return 0; 1904 } 1905 1906 /** 1907 * ram_postcopy_send_discard_bitmap: transmit the discard bitmap 1908 * 1909 * Returns zero on success 1910 * 1911 * Transmit the set of pages to be discarded after precopy to the target 1912 * these are pages that: 1913 * a) Have been previously transmitted but are now dirty again 1914 * b) Pages that have never been transmitted, this ensures that 1915 * any pages on the destination that have been mapped by background 1916 * tasks get discarded (transparent huge pages is the specific concern) 1917 * Hopefully this is pretty sparse 1918 * 1919 * @ms: current migration state 1920 */ 1921 int ram_postcopy_send_discard_bitmap(MigrationState *ms) 1922 { 1923 RAMState *rs = ram_state; 1924 RAMBlock *block; 1925 int ret; 1926 1927 rcu_read_lock(); 1928 1929 /* This should be our last sync, the src is now paused */ 1930 migration_bitmap_sync(rs); 1931 1932 /* Easiest way to make sure we don't resume in the middle of a host-page */ 1933 rs->last_seen_block = NULL; 1934 rs->last_sent_block = NULL; 1935 rs->last_page = 0; 1936 1937 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { 1938 unsigned long pages = block->used_length >> TARGET_PAGE_BITS; 1939 unsigned long *bitmap = block->bmap; 1940 unsigned long *unsentmap = block->unsentmap; 1941 1942 if (!unsentmap) { 1943 /* We don't have a safe way to resize the sentmap, so 1944 * if the bitmap was resized it will be NULL at this 1945 * point. 1946 */ 1947 error_report("migration ram resized during precopy phase"); 1948 rcu_read_unlock(); 1949 return -EINVAL; 1950 } 1951 /* Deal with TPS != HPS and huge pages */ 1952 ret = postcopy_chunk_hostpages(ms, block); 1953 if (ret) { 1954 rcu_read_unlock(); 1955 return ret; 1956 } 1957 1958 /* 1959 * Update the unsentmap to be unsentmap = unsentmap | dirty 1960 */ 1961 bitmap_or(unsentmap, unsentmap, bitmap, pages); 1962 #ifdef DEBUG_POSTCOPY 1963 ram_debug_dump_bitmap(unsentmap, true, pages); 1964 #endif 1965 } 1966 trace_ram_postcopy_send_discard_bitmap(); 1967 1968 ret = postcopy_each_ram_send_discard(ms); 1969 rcu_read_unlock(); 1970 1971 return ret; 1972 } 1973 1974 /** 1975 * ram_discard_range: discard dirtied pages at the beginning of postcopy 1976 * 1977 * Returns zero on success 1978 * 1979 * @rbname: name of the RAMBlock of the request. NULL means the 1980 * same that last one. 1981 * @start: RAMBlock starting page 1982 * @length: RAMBlock size 1983 */ 1984 int ram_discard_range(const char *rbname, uint64_t start, size_t length) 1985 { 1986 int ret = -1; 1987 1988 trace_ram_discard_range(rbname, start, length); 1989 1990 rcu_read_lock(); 1991 RAMBlock *rb = qemu_ram_block_by_name(rbname); 1992 1993 if (!rb) { 1994 error_report("ram_discard_range: Failed to find block '%s'", rbname); 1995 goto err; 1996 } 1997 1998 ret = ram_block_discard_range(rb, start, length); 1999 2000 err: 2001 rcu_read_unlock(); 2002 2003 return ret; 2004 } 2005 2006 static int ram_state_init(RAMState **rsp) 2007 { 2008 *rsp = g_new0(RAMState, 1); 2009 2010 qemu_mutex_init(&(*rsp)->bitmap_mutex); 2011 qemu_mutex_init(&(*rsp)->src_page_req_mutex); 2012 QSIMPLEQ_INIT(&(*rsp)->src_page_requests); 2013 2014 if (migrate_use_xbzrle()) { 2015 XBZRLE_cache_lock(); 2016 XBZRLE.zero_target_page = g_malloc0(TARGET_PAGE_SIZE); 2017 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size() / 2018 TARGET_PAGE_SIZE, 2019 TARGET_PAGE_SIZE); 2020 if (!XBZRLE.cache) { 2021 XBZRLE_cache_unlock(); 2022 error_report("Error creating cache"); 2023 g_free(*rsp); 2024 *rsp = NULL; 2025 return -1; 2026 } 2027 XBZRLE_cache_unlock(); 2028 2029 /* We prefer not to abort if there is no memory */ 2030 XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE); 2031 if (!XBZRLE.encoded_buf) { 2032 error_report("Error allocating encoded_buf"); 2033 g_free(*rsp); 2034 *rsp = NULL; 2035 return -1; 2036 } 2037 2038 XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE); 2039 if (!XBZRLE.current_buf) { 2040 error_report("Error allocating current_buf"); 2041 g_free(XBZRLE.encoded_buf); 2042 XBZRLE.encoded_buf = NULL; 2043 g_free(*rsp); 2044 *rsp = NULL; 2045 return -1; 2046 } 2047 } 2048 2049 /* For memory_global_dirty_log_start below. */ 2050 qemu_mutex_lock_iothread(); 2051 2052 qemu_mutex_lock_ramlist(); 2053 rcu_read_lock(); 2054 ram_state_reset(*rsp); 2055 2056 /* Skip setting bitmap if there is no RAM */ 2057 if (ram_bytes_total()) { 2058 RAMBlock *block; 2059 2060 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { 2061 unsigned long pages = block->max_length >> TARGET_PAGE_BITS; 2062 2063 block->bmap = bitmap_new(pages); 2064 bitmap_set(block->bmap, 0, pages); 2065 if (migrate_postcopy_ram()) { 2066 block->unsentmap = bitmap_new(pages); 2067 bitmap_set(block->unsentmap, 0, pages); 2068 } 2069 } 2070 } 2071 2072 /* 2073 * Count the total number of pages used by ram blocks not including any 2074 * gaps due to alignment or unplugs. 2075 */ 2076 (*rsp)->migration_dirty_pages = ram_bytes_total() >> TARGET_PAGE_BITS; 2077 2078 memory_global_dirty_log_start(); 2079 migration_bitmap_sync(*rsp); 2080 qemu_mutex_unlock_ramlist(); 2081 qemu_mutex_unlock_iothread(); 2082 rcu_read_unlock(); 2083 2084 return 0; 2085 } 2086 2087 /* 2088 * Each of ram_save_setup, ram_save_iterate and ram_save_complete has 2089 * long-running RCU critical section. When rcu-reclaims in the code 2090 * start to become numerous it will be necessary to reduce the 2091 * granularity of these critical sections. 2092 */ 2093 2094 /** 2095 * ram_save_setup: Setup RAM for migration 2096 * 2097 * Returns zero to indicate success and negative for error 2098 * 2099 * @f: QEMUFile where to send the data 2100 * @opaque: RAMState pointer 2101 */ 2102 static int ram_save_setup(QEMUFile *f, void *opaque) 2103 { 2104 RAMState **rsp = opaque; 2105 RAMBlock *block; 2106 2107 /* migration has already setup the bitmap, reuse it. */ 2108 if (!migration_in_colo_state()) { 2109 if (ram_state_init(rsp) != 0) { 2110 return -1; 2111 } 2112 } 2113 (*rsp)->f = f; 2114 2115 rcu_read_lock(); 2116 2117 qemu_put_be64(f, ram_bytes_total() | RAM_SAVE_FLAG_MEM_SIZE); 2118 2119 RAMBLOCK_FOREACH(block) { 2120 qemu_put_byte(f, strlen(block->idstr)); 2121 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr)); 2122 qemu_put_be64(f, block->used_length); 2123 if (migrate_postcopy_ram() && block->page_size != qemu_host_page_size) { 2124 qemu_put_be64(f, block->page_size); 2125 } 2126 } 2127 2128 rcu_read_unlock(); 2129 compress_threads_save_setup(); 2130 2131 ram_control_before_iterate(f, RAM_CONTROL_SETUP); 2132 ram_control_after_iterate(f, RAM_CONTROL_SETUP); 2133 2134 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 2135 2136 return 0; 2137 } 2138 2139 /** 2140 * ram_save_iterate: iterative stage for migration 2141 * 2142 * Returns zero to indicate success and negative for error 2143 * 2144 * @f: QEMUFile where to send the data 2145 * @opaque: RAMState pointer 2146 */ 2147 static int ram_save_iterate(QEMUFile *f, void *opaque) 2148 { 2149 RAMState **temp = opaque; 2150 RAMState *rs = *temp; 2151 int ret; 2152 int i; 2153 int64_t t0; 2154 int done = 0; 2155 2156 rcu_read_lock(); 2157 if (ram_list.version != rs->last_version) { 2158 ram_state_reset(rs); 2159 } 2160 2161 /* Read version before ram_list.blocks */ 2162 smp_rmb(); 2163 2164 ram_control_before_iterate(f, RAM_CONTROL_ROUND); 2165 2166 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 2167 i = 0; 2168 while ((ret = qemu_file_rate_limit(f)) == 0) { 2169 int pages; 2170 2171 pages = ram_find_and_save_block(rs, false); 2172 /* no more pages to sent */ 2173 if (pages == 0) { 2174 done = 1; 2175 break; 2176 } 2177 rs->iterations++; 2178 2179 /* we want to check in the 1st loop, just in case it was the 1st time 2180 and we had to sync the dirty bitmap. 2181 qemu_get_clock_ns() is a bit expensive, so we only check each some 2182 iterations 2183 */ 2184 if ((i & 63) == 0) { 2185 uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) / 1000000; 2186 if (t1 > MAX_WAIT) { 2187 trace_ram_save_iterate_big_wait(t1, i); 2188 break; 2189 } 2190 } 2191 i++; 2192 } 2193 flush_compressed_data(rs); 2194 rcu_read_unlock(); 2195 2196 /* 2197 * Must occur before EOS (or any QEMUFile operation) 2198 * because of RDMA protocol. 2199 */ 2200 ram_control_after_iterate(f, RAM_CONTROL_ROUND); 2201 2202 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 2203 ram_counters.transferred += 8; 2204 2205 ret = qemu_file_get_error(f); 2206 if (ret < 0) { 2207 return ret; 2208 } 2209 2210 return done; 2211 } 2212 2213 /** 2214 * ram_save_complete: function called to send the remaining amount of ram 2215 * 2216 * Returns zero to indicate success 2217 * 2218 * Called with iothread lock 2219 * 2220 * @f: QEMUFile where to send the data 2221 * @opaque: RAMState pointer 2222 */ 2223 static int ram_save_complete(QEMUFile *f, void *opaque) 2224 { 2225 RAMState **temp = opaque; 2226 RAMState *rs = *temp; 2227 2228 rcu_read_lock(); 2229 2230 if (!migration_in_postcopy()) { 2231 migration_bitmap_sync(rs); 2232 } 2233 2234 ram_control_before_iterate(f, RAM_CONTROL_FINISH); 2235 2236 /* try transferring iterative blocks of memory */ 2237 2238 /* flush all remaining blocks regardless of rate limiting */ 2239 while (true) { 2240 int pages; 2241 2242 pages = ram_find_and_save_block(rs, !migration_in_colo_state()); 2243 /* no more blocks to sent */ 2244 if (pages == 0) { 2245 break; 2246 } 2247 } 2248 2249 flush_compressed_data(rs); 2250 ram_control_after_iterate(f, RAM_CONTROL_FINISH); 2251 2252 rcu_read_unlock(); 2253 2254 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 2255 2256 return 0; 2257 } 2258 2259 static void ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size, 2260 uint64_t *non_postcopiable_pending, 2261 uint64_t *postcopiable_pending) 2262 { 2263 RAMState **temp = opaque; 2264 RAMState *rs = *temp; 2265 uint64_t remaining_size; 2266 2267 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE; 2268 2269 if (!migration_in_postcopy() && 2270 remaining_size < max_size) { 2271 qemu_mutex_lock_iothread(); 2272 rcu_read_lock(); 2273 migration_bitmap_sync(rs); 2274 rcu_read_unlock(); 2275 qemu_mutex_unlock_iothread(); 2276 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE; 2277 } 2278 2279 if (migrate_postcopy_ram()) { 2280 /* We can do postcopy, and all the data is postcopiable */ 2281 *postcopiable_pending += remaining_size; 2282 } else { 2283 *non_postcopiable_pending += remaining_size; 2284 } 2285 } 2286 2287 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host) 2288 { 2289 unsigned int xh_len; 2290 int xh_flags; 2291 uint8_t *loaded_data; 2292 2293 /* extract RLE header */ 2294 xh_flags = qemu_get_byte(f); 2295 xh_len = qemu_get_be16(f); 2296 2297 if (xh_flags != ENCODING_FLAG_XBZRLE) { 2298 error_report("Failed to load XBZRLE page - wrong compression!"); 2299 return -1; 2300 } 2301 2302 if (xh_len > TARGET_PAGE_SIZE) { 2303 error_report("Failed to load XBZRLE page - len overflow!"); 2304 return -1; 2305 } 2306 loaded_data = XBZRLE.decoded_buf; 2307 /* load data and decode */ 2308 /* it can change loaded_data to point to an internal buffer */ 2309 qemu_get_buffer_in_place(f, &loaded_data, xh_len); 2310 2311 /* decode RLE */ 2312 if (xbzrle_decode_buffer(loaded_data, xh_len, host, 2313 TARGET_PAGE_SIZE) == -1) { 2314 error_report("Failed to load XBZRLE page - decode error!"); 2315 return -1; 2316 } 2317 2318 return 0; 2319 } 2320 2321 /** 2322 * ram_block_from_stream: read a RAMBlock id from the migration stream 2323 * 2324 * Must be called from within a rcu critical section. 2325 * 2326 * Returns a pointer from within the RCU-protected ram_list. 2327 * 2328 * @f: QEMUFile where to read the data from 2329 * @flags: Page flags (mostly to see if it's a continuation of previous block) 2330 */ 2331 static inline RAMBlock *ram_block_from_stream(QEMUFile *f, int flags) 2332 { 2333 static RAMBlock *block = NULL; 2334 char id[256]; 2335 uint8_t len; 2336 2337 if (flags & RAM_SAVE_FLAG_CONTINUE) { 2338 if (!block) { 2339 error_report("Ack, bad migration stream!"); 2340 return NULL; 2341 } 2342 return block; 2343 } 2344 2345 len = qemu_get_byte(f); 2346 qemu_get_buffer(f, (uint8_t *)id, len); 2347 id[len] = 0; 2348 2349 block = qemu_ram_block_by_name(id); 2350 if (!block) { 2351 error_report("Can't find block %s", id); 2352 return NULL; 2353 } 2354 2355 return block; 2356 } 2357 2358 static inline void *host_from_ram_block_offset(RAMBlock *block, 2359 ram_addr_t offset) 2360 { 2361 if (!offset_in_ramblock(block, offset)) { 2362 return NULL; 2363 } 2364 2365 return block->host + offset; 2366 } 2367 2368 /** 2369 * ram_handle_compressed: handle the zero page case 2370 * 2371 * If a page (or a whole RDMA chunk) has been 2372 * determined to be zero, then zap it. 2373 * 2374 * @host: host address for the zero page 2375 * @ch: what the page is filled from. We only support zero 2376 * @size: size of the zero page 2377 */ 2378 void ram_handle_compressed(void *host, uint8_t ch, uint64_t size) 2379 { 2380 if (ch != 0 || !is_zero_range(host, size)) { 2381 memset(host, ch, size); 2382 } 2383 } 2384 2385 static void *do_data_decompress(void *opaque) 2386 { 2387 DecompressParam *param = opaque; 2388 unsigned long pagesize; 2389 uint8_t *des; 2390 int len; 2391 2392 qemu_mutex_lock(¶m->mutex); 2393 while (!param->quit) { 2394 if (param->des) { 2395 des = param->des; 2396 len = param->len; 2397 param->des = 0; 2398 qemu_mutex_unlock(¶m->mutex); 2399 2400 pagesize = TARGET_PAGE_SIZE; 2401 /* uncompress() will return failed in some case, especially 2402 * when the page is dirted when doing the compression, it's 2403 * not a problem because the dirty page will be retransferred 2404 * and uncompress() won't break the data in other pages. 2405 */ 2406 uncompress((Bytef *)des, &pagesize, 2407 (const Bytef *)param->compbuf, len); 2408 2409 qemu_mutex_lock(&decomp_done_lock); 2410 param->done = true; 2411 qemu_cond_signal(&decomp_done_cond); 2412 qemu_mutex_unlock(&decomp_done_lock); 2413 2414 qemu_mutex_lock(¶m->mutex); 2415 } else { 2416 qemu_cond_wait(¶m->cond, ¶m->mutex); 2417 } 2418 } 2419 qemu_mutex_unlock(¶m->mutex); 2420 2421 return NULL; 2422 } 2423 2424 static void wait_for_decompress_done(void) 2425 { 2426 int idx, thread_count; 2427 2428 if (!migrate_use_compression()) { 2429 return; 2430 } 2431 2432 thread_count = migrate_decompress_threads(); 2433 qemu_mutex_lock(&decomp_done_lock); 2434 for (idx = 0; idx < thread_count; idx++) { 2435 while (!decomp_param[idx].done) { 2436 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock); 2437 } 2438 } 2439 qemu_mutex_unlock(&decomp_done_lock); 2440 } 2441 2442 static void compress_threads_load_setup(void) 2443 { 2444 int i, thread_count; 2445 2446 if (!migrate_use_compression()) { 2447 return; 2448 } 2449 thread_count = migrate_decompress_threads(); 2450 decompress_threads = g_new0(QemuThread, thread_count); 2451 decomp_param = g_new0(DecompressParam, thread_count); 2452 qemu_mutex_init(&decomp_done_lock); 2453 qemu_cond_init(&decomp_done_cond); 2454 for (i = 0; i < thread_count; i++) { 2455 qemu_mutex_init(&decomp_param[i].mutex); 2456 qemu_cond_init(&decomp_param[i].cond); 2457 decomp_param[i].compbuf = g_malloc0(compressBound(TARGET_PAGE_SIZE)); 2458 decomp_param[i].done = true; 2459 decomp_param[i].quit = false; 2460 qemu_thread_create(decompress_threads + i, "decompress", 2461 do_data_decompress, decomp_param + i, 2462 QEMU_THREAD_JOINABLE); 2463 } 2464 } 2465 2466 static void compress_threads_load_cleanup(void) 2467 { 2468 int i, thread_count; 2469 2470 if (!migrate_use_compression()) { 2471 return; 2472 } 2473 thread_count = migrate_decompress_threads(); 2474 for (i = 0; i < thread_count; i++) { 2475 qemu_mutex_lock(&decomp_param[i].mutex); 2476 decomp_param[i].quit = true; 2477 qemu_cond_signal(&decomp_param[i].cond); 2478 qemu_mutex_unlock(&decomp_param[i].mutex); 2479 } 2480 for (i = 0; i < thread_count; i++) { 2481 qemu_thread_join(decompress_threads + i); 2482 qemu_mutex_destroy(&decomp_param[i].mutex); 2483 qemu_cond_destroy(&decomp_param[i].cond); 2484 g_free(decomp_param[i].compbuf); 2485 } 2486 g_free(decompress_threads); 2487 g_free(decomp_param); 2488 decompress_threads = NULL; 2489 decomp_param = NULL; 2490 } 2491 2492 static void decompress_data_with_multi_threads(QEMUFile *f, 2493 void *host, int len) 2494 { 2495 int idx, thread_count; 2496 2497 thread_count = migrate_decompress_threads(); 2498 qemu_mutex_lock(&decomp_done_lock); 2499 while (true) { 2500 for (idx = 0; idx < thread_count; idx++) { 2501 if (decomp_param[idx].done) { 2502 decomp_param[idx].done = false; 2503 qemu_mutex_lock(&decomp_param[idx].mutex); 2504 qemu_get_buffer(f, decomp_param[idx].compbuf, len); 2505 decomp_param[idx].des = host; 2506 decomp_param[idx].len = len; 2507 qemu_cond_signal(&decomp_param[idx].cond); 2508 qemu_mutex_unlock(&decomp_param[idx].mutex); 2509 break; 2510 } 2511 } 2512 if (idx < thread_count) { 2513 break; 2514 } else { 2515 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock); 2516 } 2517 } 2518 qemu_mutex_unlock(&decomp_done_lock); 2519 } 2520 2521 /** 2522 * ram_load_setup: Setup RAM for migration incoming side 2523 * 2524 * Returns zero to indicate success and negative for error 2525 * 2526 * @f: QEMUFile where to receive the data 2527 * @opaque: RAMState pointer 2528 */ 2529 static int ram_load_setup(QEMUFile *f, void *opaque) 2530 { 2531 xbzrle_load_setup(); 2532 compress_threads_load_setup(); 2533 return 0; 2534 } 2535 2536 static int ram_load_cleanup(void *opaque) 2537 { 2538 xbzrle_load_cleanup(); 2539 compress_threads_load_cleanup(); 2540 return 0; 2541 } 2542 2543 /** 2544 * ram_postcopy_incoming_init: allocate postcopy data structures 2545 * 2546 * Returns 0 for success and negative if there was one error 2547 * 2548 * @mis: current migration incoming state 2549 * 2550 * Allocate data structures etc needed by incoming migration with 2551 * postcopy-ram. postcopy-ram's similarly names 2552 * postcopy_ram_incoming_init does the work. 2553 */ 2554 int ram_postcopy_incoming_init(MigrationIncomingState *mis) 2555 { 2556 unsigned long ram_pages = last_ram_page(); 2557 2558 return postcopy_ram_incoming_init(mis, ram_pages); 2559 } 2560 2561 /** 2562 * ram_load_postcopy: load a page in postcopy case 2563 * 2564 * Returns 0 for success or -errno in case of error 2565 * 2566 * Called in postcopy mode by ram_load(). 2567 * rcu_read_lock is taken prior to this being called. 2568 * 2569 * @f: QEMUFile where to send the data 2570 */ 2571 static int ram_load_postcopy(QEMUFile *f) 2572 { 2573 int flags = 0, ret = 0; 2574 bool place_needed = false; 2575 bool matching_page_sizes = false; 2576 MigrationIncomingState *mis = migration_incoming_get_current(); 2577 /* Temporary page that is later 'placed' */ 2578 void *postcopy_host_page = postcopy_get_tmp_page(mis); 2579 void *last_host = NULL; 2580 bool all_zero = false; 2581 2582 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) { 2583 ram_addr_t addr; 2584 void *host = NULL; 2585 void *page_buffer = NULL; 2586 void *place_source = NULL; 2587 RAMBlock *block = NULL; 2588 uint8_t ch; 2589 2590 addr = qemu_get_be64(f); 2591 flags = addr & ~TARGET_PAGE_MASK; 2592 addr &= TARGET_PAGE_MASK; 2593 2594 trace_ram_load_postcopy_loop((uint64_t)addr, flags); 2595 place_needed = false; 2596 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE)) { 2597 block = ram_block_from_stream(f, flags); 2598 2599 host = host_from_ram_block_offset(block, addr); 2600 if (!host) { 2601 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr); 2602 ret = -EINVAL; 2603 break; 2604 } 2605 matching_page_sizes = block->page_size == TARGET_PAGE_SIZE; 2606 /* 2607 * Postcopy requires that we place whole host pages atomically; 2608 * these may be huge pages for RAMBlocks that are backed by 2609 * hugetlbfs. 2610 * To make it atomic, the data is read into a temporary page 2611 * that's moved into place later. 2612 * The migration protocol uses, possibly smaller, target-pages 2613 * however the source ensures it always sends all the components 2614 * of a host page in order. 2615 */ 2616 page_buffer = postcopy_host_page + 2617 ((uintptr_t)host & (block->page_size - 1)); 2618 /* If all TP are zero then we can optimise the place */ 2619 if (!((uintptr_t)host & (block->page_size - 1))) { 2620 all_zero = true; 2621 } else { 2622 /* not the 1st TP within the HP */ 2623 if (host != (last_host + TARGET_PAGE_SIZE)) { 2624 error_report("Non-sequential target page %p/%p", 2625 host, last_host); 2626 ret = -EINVAL; 2627 break; 2628 } 2629 } 2630 2631 2632 /* 2633 * If it's the last part of a host page then we place the host 2634 * page 2635 */ 2636 place_needed = (((uintptr_t)host + TARGET_PAGE_SIZE) & 2637 (block->page_size - 1)) == 0; 2638 place_source = postcopy_host_page; 2639 } 2640 last_host = host; 2641 2642 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) { 2643 case RAM_SAVE_FLAG_ZERO: 2644 ch = qemu_get_byte(f); 2645 memset(page_buffer, ch, TARGET_PAGE_SIZE); 2646 if (ch) { 2647 all_zero = false; 2648 } 2649 break; 2650 2651 case RAM_SAVE_FLAG_PAGE: 2652 all_zero = false; 2653 if (!place_needed || !matching_page_sizes) { 2654 qemu_get_buffer(f, page_buffer, TARGET_PAGE_SIZE); 2655 } else { 2656 /* Avoids the qemu_file copy during postcopy, which is 2657 * going to do a copy later; can only do it when we 2658 * do this read in one go (matching page sizes) 2659 */ 2660 qemu_get_buffer_in_place(f, (uint8_t **)&place_source, 2661 TARGET_PAGE_SIZE); 2662 } 2663 break; 2664 case RAM_SAVE_FLAG_EOS: 2665 /* normal exit */ 2666 break; 2667 default: 2668 error_report("Unknown combination of migration flags: %#x" 2669 " (postcopy mode)", flags); 2670 ret = -EINVAL; 2671 } 2672 2673 if (place_needed) { 2674 /* This gets called at the last target page in the host page */ 2675 void *place_dest = host + TARGET_PAGE_SIZE - block->page_size; 2676 2677 if (all_zero) { 2678 ret = postcopy_place_page_zero(mis, place_dest, 2679 block->page_size); 2680 } else { 2681 ret = postcopy_place_page(mis, place_dest, 2682 place_source, block->page_size); 2683 } 2684 } 2685 if (!ret) { 2686 ret = qemu_file_get_error(f); 2687 } 2688 } 2689 2690 return ret; 2691 } 2692 2693 static int ram_load(QEMUFile *f, void *opaque, int version_id) 2694 { 2695 int flags = 0, ret = 0, invalid_flags = 0; 2696 static uint64_t seq_iter; 2697 int len = 0; 2698 /* 2699 * If system is running in postcopy mode, page inserts to host memory must 2700 * be atomic 2701 */ 2702 bool postcopy_running = postcopy_state_get() >= POSTCOPY_INCOMING_LISTENING; 2703 /* ADVISE is earlier, it shows the source has the postcopy capability on */ 2704 bool postcopy_advised = postcopy_state_get() >= POSTCOPY_INCOMING_ADVISE; 2705 2706 seq_iter++; 2707 2708 if (version_id != 4) { 2709 ret = -EINVAL; 2710 } 2711 2712 if (!migrate_use_compression()) { 2713 invalid_flags |= RAM_SAVE_FLAG_COMPRESS_PAGE; 2714 } 2715 /* This RCU critical section can be very long running. 2716 * When RCU reclaims in the code start to become numerous, 2717 * it will be necessary to reduce the granularity of this 2718 * critical section. 2719 */ 2720 rcu_read_lock(); 2721 2722 if (postcopy_running) { 2723 ret = ram_load_postcopy(f); 2724 } 2725 2726 while (!postcopy_running && !ret && !(flags & RAM_SAVE_FLAG_EOS)) { 2727 ram_addr_t addr, total_ram_bytes; 2728 void *host = NULL; 2729 uint8_t ch; 2730 2731 addr = qemu_get_be64(f); 2732 flags = addr & ~TARGET_PAGE_MASK; 2733 addr &= TARGET_PAGE_MASK; 2734 2735 if (flags & invalid_flags) { 2736 if (flags & invalid_flags & RAM_SAVE_FLAG_COMPRESS_PAGE) { 2737 error_report("Received an unexpected compressed page"); 2738 } 2739 2740 ret = -EINVAL; 2741 break; 2742 } 2743 2744 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE | 2745 RAM_SAVE_FLAG_COMPRESS_PAGE | RAM_SAVE_FLAG_XBZRLE)) { 2746 RAMBlock *block = ram_block_from_stream(f, flags); 2747 2748 host = host_from_ram_block_offset(block, addr); 2749 if (!host) { 2750 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr); 2751 ret = -EINVAL; 2752 break; 2753 } 2754 trace_ram_load_loop(block->idstr, (uint64_t)addr, flags, host); 2755 } 2756 2757 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) { 2758 case RAM_SAVE_FLAG_MEM_SIZE: 2759 /* Synchronize RAM block list */ 2760 total_ram_bytes = addr; 2761 while (!ret && total_ram_bytes) { 2762 RAMBlock *block; 2763 char id[256]; 2764 ram_addr_t length; 2765 2766 len = qemu_get_byte(f); 2767 qemu_get_buffer(f, (uint8_t *)id, len); 2768 id[len] = 0; 2769 length = qemu_get_be64(f); 2770 2771 block = qemu_ram_block_by_name(id); 2772 if (block) { 2773 if (length != block->used_length) { 2774 Error *local_err = NULL; 2775 2776 ret = qemu_ram_resize(block, length, 2777 &local_err); 2778 if (local_err) { 2779 error_report_err(local_err); 2780 } 2781 } 2782 /* For postcopy we need to check hugepage sizes match */ 2783 if (postcopy_advised && 2784 block->page_size != qemu_host_page_size) { 2785 uint64_t remote_page_size = qemu_get_be64(f); 2786 if (remote_page_size != block->page_size) { 2787 error_report("Mismatched RAM page size %s " 2788 "(local) %zd != %" PRId64, 2789 id, block->page_size, 2790 remote_page_size); 2791 ret = -EINVAL; 2792 } 2793 } 2794 ram_control_load_hook(f, RAM_CONTROL_BLOCK_REG, 2795 block->idstr); 2796 } else { 2797 error_report("Unknown ramblock \"%s\", cannot " 2798 "accept migration", id); 2799 ret = -EINVAL; 2800 } 2801 2802 total_ram_bytes -= length; 2803 } 2804 break; 2805 2806 case RAM_SAVE_FLAG_ZERO: 2807 ch = qemu_get_byte(f); 2808 ram_handle_compressed(host, ch, TARGET_PAGE_SIZE); 2809 break; 2810 2811 case RAM_SAVE_FLAG_PAGE: 2812 qemu_get_buffer(f, host, TARGET_PAGE_SIZE); 2813 break; 2814 2815 case RAM_SAVE_FLAG_COMPRESS_PAGE: 2816 len = qemu_get_be32(f); 2817 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) { 2818 error_report("Invalid compressed data length: %d", len); 2819 ret = -EINVAL; 2820 break; 2821 } 2822 decompress_data_with_multi_threads(f, host, len); 2823 break; 2824 2825 case RAM_SAVE_FLAG_XBZRLE: 2826 if (load_xbzrle(f, addr, host) < 0) { 2827 error_report("Failed to decompress XBZRLE page at " 2828 RAM_ADDR_FMT, addr); 2829 ret = -EINVAL; 2830 break; 2831 } 2832 break; 2833 case RAM_SAVE_FLAG_EOS: 2834 /* normal exit */ 2835 break; 2836 default: 2837 if (flags & RAM_SAVE_FLAG_HOOK) { 2838 ram_control_load_hook(f, RAM_CONTROL_HOOK, NULL); 2839 } else { 2840 error_report("Unknown combination of migration flags: %#x", 2841 flags); 2842 ret = -EINVAL; 2843 } 2844 } 2845 if (!ret) { 2846 ret = qemu_file_get_error(f); 2847 } 2848 } 2849 2850 wait_for_decompress_done(); 2851 rcu_read_unlock(); 2852 trace_ram_load_complete(ret, seq_iter); 2853 return ret; 2854 } 2855 2856 static bool ram_has_postcopy(void *opaque) 2857 { 2858 return migrate_postcopy_ram(); 2859 } 2860 2861 static SaveVMHandlers savevm_ram_handlers = { 2862 .save_setup = ram_save_setup, 2863 .save_live_iterate = ram_save_iterate, 2864 .save_live_complete_postcopy = ram_save_complete, 2865 .save_live_complete_precopy = ram_save_complete, 2866 .has_postcopy = ram_has_postcopy, 2867 .save_live_pending = ram_save_pending, 2868 .load_state = ram_load, 2869 .save_cleanup = ram_save_cleanup, 2870 .load_setup = ram_load_setup, 2871 .load_cleanup = ram_load_cleanup, 2872 }; 2873 2874 void ram_mig_init(void) 2875 { 2876 qemu_mutex_init(&XBZRLE.lock); 2877 register_savevm_live(NULL, "ram", 0, 4, &savevm_ram_handlers, &ram_state); 2878 } 2879