1 /* 2 * QEMU System Emulator 3 * 4 * Copyright (c) 2003-2008 Fabrice Bellard 5 * Copyright (c) 2011-2015 Red Hat Inc 6 * 7 * Authors: 8 * Juan Quintela <quintela@redhat.com> 9 * 10 * Permission is hereby granted, free of charge, to any person obtaining a copy 11 * of this software and associated documentation files (the "Software"), to deal 12 * in the Software without restriction, including without limitation the rights 13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 14 * copies of the Software, and to permit persons to whom the Software is 15 * furnished to do so, subject to the following conditions: 16 * 17 * The above copyright notice and this permission notice shall be included in 18 * all copies or substantial portions of the Software. 19 * 20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 26 * THE SOFTWARE. 27 */ 28 #include "qemu/osdep.h" 29 #include <zlib.h> 30 #include "qapi-event.h" 31 #include "qemu/bitops.h" 32 #include "qemu/bitmap.h" 33 #include "qemu/timer.h" 34 #include "qemu/main-loop.h" 35 #include "migration/migration.h" 36 #include "migration/postcopy-ram.h" 37 #include "exec/address-spaces.h" 38 #include "migration/page_cache.h" 39 #include "qemu/error-report.h" 40 #include "trace.h" 41 #include "exec/ram_addr.h" 42 #include "qemu/rcu_queue.h" 43 44 #ifdef DEBUG_MIGRATION_RAM 45 #define DPRINTF(fmt, ...) \ 46 do { fprintf(stdout, "migration_ram: " fmt, ## __VA_ARGS__); } while (0) 47 #else 48 #define DPRINTF(fmt, ...) \ 49 do { } while (0) 50 #endif 51 52 static int dirty_rate_high_cnt; 53 54 static uint64_t bitmap_sync_count; 55 56 /***********************************************************/ 57 /* ram save/restore */ 58 59 #define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */ 60 #define RAM_SAVE_FLAG_COMPRESS 0x02 61 #define RAM_SAVE_FLAG_MEM_SIZE 0x04 62 #define RAM_SAVE_FLAG_PAGE 0x08 63 #define RAM_SAVE_FLAG_EOS 0x10 64 #define RAM_SAVE_FLAG_CONTINUE 0x20 65 #define RAM_SAVE_FLAG_XBZRLE 0x40 66 /* 0x80 is reserved in migration.h start with 0x100 next */ 67 #define RAM_SAVE_FLAG_COMPRESS_PAGE 0x100 68 69 static const uint8_t ZERO_TARGET_PAGE[TARGET_PAGE_SIZE]; 70 71 static inline bool is_zero_range(uint8_t *p, uint64_t size) 72 { 73 return buffer_find_nonzero_offset(p, size) == size; 74 } 75 76 /* struct contains XBZRLE cache and a static page 77 used by the compression */ 78 static struct { 79 /* buffer used for XBZRLE encoding */ 80 uint8_t *encoded_buf; 81 /* buffer for storing page content */ 82 uint8_t *current_buf; 83 /* Cache for XBZRLE, Protected by lock. */ 84 PageCache *cache; 85 QemuMutex lock; 86 } XBZRLE; 87 88 /* buffer used for XBZRLE decoding */ 89 static uint8_t *xbzrle_decoded_buf; 90 91 static void XBZRLE_cache_lock(void) 92 { 93 if (migrate_use_xbzrle()) 94 qemu_mutex_lock(&XBZRLE.lock); 95 } 96 97 static void XBZRLE_cache_unlock(void) 98 { 99 if (migrate_use_xbzrle()) 100 qemu_mutex_unlock(&XBZRLE.lock); 101 } 102 103 /* 104 * called from qmp_migrate_set_cache_size in main thread, possibly while 105 * a migration is in progress. 106 * A running migration maybe using the cache and might finish during this 107 * call, hence changes to the cache are protected by XBZRLE.lock(). 108 */ 109 int64_t xbzrle_cache_resize(int64_t new_size) 110 { 111 PageCache *new_cache; 112 int64_t ret; 113 114 if (new_size < TARGET_PAGE_SIZE) { 115 return -1; 116 } 117 118 XBZRLE_cache_lock(); 119 120 if (XBZRLE.cache != NULL) { 121 if (pow2floor(new_size) == migrate_xbzrle_cache_size()) { 122 goto out_new_size; 123 } 124 new_cache = cache_init(new_size / TARGET_PAGE_SIZE, 125 TARGET_PAGE_SIZE); 126 if (!new_cache) { 127 error_report("Error creating cache"); 128 ret = -1; 129 goto out; 130 } 131 132 cache_fini(XBZRLE.cache); 133 XBZRLE.cache = new_cache; 134 } 135 136 out_new_size: 137 ret = pow2floor(new_size); 138 out: 139 XBZRLE_cache_unlock(); 140 return ret; 141 } 142 143 /* accounting for migration statistics */ 144 typedef struct AccountingInfo { 145 uint64_t dup_pages; 146 uint64_t skipped_pages; 147 uint64_t norm_pages; 148 uint64_t iterations; 149 uint64_t xbzrle_bytes; 150 uint64_t xbzrle_pages; 151 uint64_t xbzrle_cache_miss; 152 double xbzrle_cache_miss_rate; 153 uint64_t xbzrle_overflows; 154 } AccountingInfo; 155 156 static AccountingInfo acct_info; 157 158 static void acct_clear(void) 159 { 160 memset(&acct_info, 0, sizeof(acct_info)); 161 } 162 163 uint64_t dup_mig_bytes_transferred(void) 164 { 165 return acct_info.dup_pages * TARGET_PAGE_SIZE; 166 } 167 168 uint64_t dup_mig_pages_transferred(void) 169 { 170 return acct_info.dup_pages; 171 } 172 173 uint64_t skipped_mig_bytes_transferred(void) 174 { 175 return acct_info.skipped_pages * TARGET_PAGE_SIZE; 176 } 177 178 uint64_t skipped_mig_pages_transferred(void) 179 { 180 return acct_info.skipped_pages; 181 } 182 183 uint64_t norm_mig_bytes_transferred(void) 184 { 185 return acct_info.norm_pages * TARGET_PAGE_SIZE; 186 } 187 188 uint64_t norm_mig_pages_transferred(void) 189 { 190 return acct_info.norm_pages; 191 } 192 193 uint64_t xbzrle_mig_bytes_transferred(void) 194 { 195 return acct_info.xbzrle_bytes; 196 } 197 198 uint64_t xbzrle_mig_pages_transferred(void) 199 { 200 return acct_info.xbzrle_pages; 201 } 202 203 uint64_t xbzrle_mig_pages_cache_miss(void) 204 { 205 return acct_info.xbzrle_cache_miss; 206 } 207 208 double xbzrle_mig_cache_miss_rate(void) 209 { 210 return acct_info.xbzrle_cache_miss_rate; 211 } 212 213 uint64_t xbzrle_mig_pages_overflow(void) 214 { 215 return acct_info.xbzrle_overflows; 216 } 217 218 /* This is the last block that we have visited serching for dirty pages 219 */ 220 static RAMBlock *last_seen_block; 221 /* This is the last block from where we have sent data */ 222 static RAMBlock *last_sent_block; 223 static ram_addr_t last_offset; 224 static QemuMutex migration_bitmap_mutex; 225 static uint64_t migration_dirty_pages; 226 static uint32_t last_version; 227 static bool ram_bulk_stage; 228 229 /* used by the search for pages to send */ 230 struct PageSearchStatus { 231 /* Current block being searched */ 232 RAMBlock *block; 233 /* Current offset to search from */ 234 ram_addr_t offset; 235 /* Set once we wrap around */ 236 bool complete_round; 237 }; 238 typedef struct PageSearchStatus PageSearchStatus; 239 240 static struct BitmapRcu { 241 struct rcu_head rcu; 242 /* Main migration bitmap */ 243 unsigned long *bmap; 244 /* bitmap of pages that haven't been sent even once 245 * only maintained and used in postcopy at the moment 246 * where it's used to send the dirtymap at the start 247 * of the postcopy phase 248 */ 249 unsigned long *unsentmap; 250 } *migration_bitmap_rcu; 251 252 struct CompressParam { 253 bool start; 254 bool done; 255 QEMUFile *file; 256 QemuMutex mutex; 257 QemuCond cond; 258 RAMBlock *block; 259 ram_addr_t offset; 260 }; 261 typedef struct CompressParam CompressParam; 262 263 struct DecompressParam { 264 bool start; 265 QemuMutex mutex; 266 QemuCond cond; 267 void *des; 268 uint8_t *compbuf; 269 int len; 270 }; 271 typedef struct DecompressParam DecompressParam; 272 273 static CompressParam *comp_param; 274 static QemuThread *compress_threads; 275 /* comp_done_cond is used to wake up the migration thread when 276 * one of the compression threads has finished the compression. 277 * comp_done_lock is used to co-work with comp_done_cond. 278 */ 279 static QemuMutex *comp_done_lock; 280 static QemuCond *comp_done_cond; 281 /* The empty QEMUFileOps will be used by file in CompressParam */ 282 static const QEMUFileOps empty_ops = { }; 283 284 static bool compression_switch; 285 static bool quit_comp_thread; 286 static bool quit_decomp_thread; 287 static DecompressParam *decomp_param; 288 static QemuThread *decompress_threads; 289 290 static int do_compress_ram_page(CompressParam *param); 291 292 static void *do_data_compress(void *opaque) 293 { 294 CompressParam *param = opaque; 295 296 while (!quit_comp_thread) { 297 qemu_mutex_lock(¶m->mutex); 298 /* Re-check the quit_comp_thread in case of 299 * terminate_compression_threads is called just before 300 * qemu_mutex_lock(¶m->mutex) and after 301 * while(!quit_comp_thread), re-check it here can make 302 * sure the compression thread terminate as expected. 303 */ 304 while (!param->start && !quit_comp_thread) { 305 qemu_cond_wait(¶m->cond, ¶m->mutex); 306 } 307 if (!quit_comp_thread) { 308 do_compress_ram_page(param); 309 } 310 param->start = false; 311 qemu_mutex_unlock(¶m->mutex); 312 313 qemu_mutex_lock(comp_done_lock); 314 param->done = true; 315 qemu_cond_signal(comp_done_cond); 316 qemu_mutex_unlock(comp_done_lock); 317 } 318 319 return NULL; 320 } 321 322 static inline void terminate_compression_threads(void) 323 { 324 int idx, thread_count; 325 326 thread_count = migrate_compress_threads(); 327 quit_comp_thread = true; 328 for (idx = 0; idx < thread_count; idx++) { 329 qemu_mutex_lock(&comp_param[idx].mutex); 330 qemu_cond_signal(&comp_param[idx].cond); 331 qemu_mutex_unlock(&comp_param[idx].mutex); 332 } 333 } 334 335 void migrate_compress_threads_join(void) 336 { 337 int i, thread_count; 338 339 if (!migrate_use_compression()) { 340 return; 341 } 342 terminate_compression_threads(); 343 thread_count = migrate_compress_threads(); 344 for (i = 0; i < thread_count; i++) { 345 qemu_thread_join(compress_threads + i); 346 qemu_fclose(comp_param[i].file); 347 qemu_mutex_destroy(&comp_param[i].mutex); 348 qemu_cond_destroy(&comp_param[i].cond); 349 } 350 qemu_mutex_destroy(comp_done_lock); 351 qemu_cond_destroy(comp_done_cond); 352 g_free(compress_threads); 353 g_free(comp_param); 354 g_free(comp_done_cond); 355 g_free(comp_done_lock); 356 compress_threads = NULL; 357 comp_param = NULL; 358 comp_done_cond = NULL; 359 comp_done_lock = NULL; 360 } 361 362 void migrate_compress_threads_create(void) 363 { 364 int i, thread_count; 365 366 if (!migrate_use_compression()) { 367 return; 368 } 369 quit_comp_thread = false; 370 compression_switch = true; 371 thread_count = migrate_compress_threads(); 372 compress_threads = g_new0(QemuThread, thread_count); 373 comp_param = g_new0(CompressParam, thread_count); 374 comp_done_cond = g_new0(QemuCond, 1); 375 comp_done_lock = g_new0(QemuMutex, 1); 376 qemu_cond_init(comp_done_cond); 377 qemu_mutex_init(comp_done_lock); 378 for (i = 0; i < thread_count; i++) { 379 /* com_param[i].file is just used as a dummy buffer to save data, set 380 * it's ops to empty. 381 */ 382 comp_param[i].file = qemu_fopen_ops(NULL, &empty_ops); 383 comp_param[i].done = true; 384 qemu_mutex_init(&comp_param[i].mutex); 385 qemu_cond_init(&comp_param[i].cond); 386 qemu_thread_create(compress_threads + i, "compress", 387 do_data_compress, comp_param + i, 388 QEMU_THREAD_JOINABLE); 389 } 390 } 391 392 /** 393 * save_page_header: Write page header to wire 394 * 395 * If this is the 1st block, it also writes the block identification 396 * 397 * Returns: Number of bytes written 398 * 399 * @f: QEMUFile where to send the data 400 * @block: block that contains the page we want to send 401 * @offset: offset inside the block for the page 402 * in the lower bits, it contains flags 403 */ 404 static size_t save_page_header(QEMUFile *f, RAMBlock *block, ram_addr_t offset) 405 { 406 size_t size, len; 407 408 qemu_put_be64(f, offset); 409 size = 8; 410 411 if (!(offset & RAM_SAVE_FLAG_CONTINUE)) { 412 len = strlen(block->idstr); 413 qemu_put_byte(f, len); 414 qemu_put_buffer(f, (uint8_t *)block->idstr, len); 415 size += 1 + len; 416 } 417 return size; 418 } 419 420 /* Reduce amount of guest cpu execution to hopefully slow down memory writes. 421 * If guest dirty memory rate is reduced below the rate at which we can 422 * transfer pages to the destination then we should be able to complete 423 * migration. Some workloads dirty memory way too fast and will not effectively 424 * converge, even with auto-converge. 425 */ 426 static void mig_throttle_guest_down(void) 427 { 428 MigrationState *s = migrate_get_current(); 429 uint64_t pct_initial = 430 s->parameters[MIGRATION_PARAMETER_X_CPU_THROTTLE_INITIAL]; 431 uint64_t pct_icrement = 432 s->parameters[MIGRATION_PARAMETER_X_CPU_THROTTLE_INCREMENT]; 433 434 /* We have not started throttling yet. Let's start it. */ 435 if (!cpu_throttle_active()) { 436 cpu_throttle_set(pct_initial); 437 } else { 438 /* Throttling already on, just increase the rate */ 439 cpu_throttle_set(cpu_throttle_get_percentage() + pct_icrement); 440 } 441 } 442 443 /* Update the xbzrle cache to reflect a page that's been sent as all 0. 444 * The important thing is that a stale (not-yet-0'd) page be replaced 445 * by the new data. 446 * As a bonus, if the page wasn't in the cache it gets added so that 447 * when a small write is made into the 0'd page it gets XBZRLE sent 448 */ 449 static void xbzrle_cache_zero_page(ram_addr_t current_addr) 450 { 451 if (ram_bulk_stage || !migrate_use_xbzrle()) { 452 return; 453 } 454 455 /* We don't care if this fails to allocate a new cache page 456 * as long as it updated an old one */ 457 cache_insert(XBZRLE.cache, current_addr, ZERO_TARGET_PAGE, 458 bitmap_sync_count); 459 } 460 461 #define ENCODING_FLAG_XBZRLE 0x1 462 463 /** 464 * save_xbzrle_page: compress and send current page 465 * 466 * Returns: 1 means that we wrote the page 467 * 0 means that page is identical to the one already sent 468 * -1 means that xbzrle would be longer than normal 469 * 470 * @f: QEMUFile where to send the data 471 * @current_data: 472 * @current_addr: 473 * @block: block that contains the page we want to send 474 * @offset: offset inside the block for the page 475 * @last_stage: if we are at the completion stage 476 * @bytes_transferred: increase it with the number of transferred bytes 477 */ 478 static int save_xbzrle_page(QEMUFile *f, uint8_t **current_data, 479 ram_addr_t current_addr, RAMBlock *block, 480 ram_addr_t offset, bool last_stage, 481 uint64_t *bytes_transferred) 482 { 483 int encoded_len = 0, bytes_xbzrle; 484 uint8_t *prev_cached_page; 485 486 if (!cache_is_cached(XBZRLE.cache, current_addr, bitmap_sync_count)) { 487 acct_info.xbzrle_cache_miss++; 488 if (!last_stage) { 489 if (cache_insert(XBZRLE.cache, current_addr, *current_data, 490 bitmap_sync_count) == -1) { 491 return -1; 492 } else { 493 /* update *current_data when the page has been 494 inserted into cache */ 495 *current_data = get_cached_data(XBZRLE.cache, current_addr); 496 } 497 } 498 return -1; 499 } 500 501 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr); 502 503 /* save current buffer into memory */ 504 memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE); 505 506 /* XBZRLE encoding (if there is no overflow) */ 507 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf, 508 TARGET_PAGE_SIZE, XBZRLE.encoded_buf, 509 TARGET_PAGE_SIZE); 510 if (encoded_len == 0) { 511 DPRINTF("Skipping unmodified page\n"); 512 return 0; 513 } else if (encoded_len == -1) { 514 DPRINTF("Overflow\n"); 515 acct_info.xbzrle_overflows++; 516 /* update data in the cache */ 517 if (!last_stage) { 518 memcpy(prev_cached_page, *current_data, TARGET_PAGE_SIZE); 519 *current_data = prev_cached_page; 520 } 521 return -1; 522 } 523 524 /* we need to update the data in the cache, in order to get the same data */ 525 if (!last_stage) { 526 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE); 527 } 528 529 /* Send XBZRLE based compressed page */ 530 bytes_xbzrle = save_page_header(f, block, offset | RAM_SAVE_FLAG_XBZRLE); 531 qemu_put_byte(f, ENCODING_FLAG_XBZRLE); 532 qemu_put_be16(f, encoded_len); 533 qemu_put_buffer(f, XBZRLE.encoded_buf, encoded_len); 534 bytes_xbzrle += encoded_len + 1 + 2; 535 acct_info.xbzrle_pages++; 536 acct_info.xbzrle_bytes += bytes_xbzrle; 537 *bytes_transferred += bytes_xbzrle; 538 539 return 1; 540 } 541 542 /* Called with rcu_read_lock() to protect migration_bitmap 543 * rb: The RAMBlock to search for dirty pages in 544 * start: Start address (typically so we can continue from previous page) 545 * ram_addr_abs: Pointer into which to store the address of the dirty page 546 * within the global ram_addr space 547 * 548 * Returns: byte offset within memory region of the start of a dirty page 549 */ 550 static inline 551 ram_addr_t migration_bitmap_find_dirty(RAMBlock *rb, 552 ram_addr_t start, 553 ram_addr_t *ram_addr_abs) 554 { 555 unsigned long base = rb->offset >> TARGET_PAGE_BITS; 556 unsigned long nr = base + (start >> TARGET_PAGE_BITS); 557 uint64_t rb_size = rb->used_length; 558 unsigned long size = base + (rb_size >> TARGET_PAGE_BITS); 559 unsigned long *bitmap; 560 561 unsigned long next; 562 563 bitmap = atomic_rcu_read(&migration_bitmap_rcu)->bmap; 564 if (ram_bulk_stage && nr > base) { 565 next = nr + 1; 566 } else { 567 next = find_next_bit(bitmap, size, nr); 568 } 569 570 *ram_addr_abs = next << TARGET_PAGE_BITS; 571 return (next - base) << TARGET_PAGE_BITS; 572 } 573 574 static inline bool migration_bitmap_clear_dirty(ram_addr_t addr) 575 { 576 bool ret; 577 int nr = addr >> TARGET_PAGE_BITS; 578 unsigned long *bitmap = atomic_rcu_read(&migration_bitmap_rcu)->bmap; 579 580 ret = test_and_clear_bit(nr, bitmap); 581 582 if (ret) { 583 migration_dirty_pages--; 584 } 585 return ret; 586 } 587 588 static void migration_bitmap_sync_range(ram_addr_t start, ram_addr_t length) 589 { 590 unsigned long *bitmap; 591 bitmap = atomic_rcu_read(&migration_bitmap_rcu)->bmap; 592 migration_dirty_pages += 593 cpu_physical_memory_sync_dirty_bitmap(bitmap, start, length); 594 } 595 596 /* Fix me: there are too many global variables used in migration process. */ 597 static int64_t start_time; 598 static int64_t bytes_xfer_prev; 599 static int64_t num_dirty_pages_period; 600 static uint64_t xbzrle_cache_miss_prev; 601 static uint64_t iterations_prev; 602 603 static void migration_bitmap_sync_init(void) 604 { 605 start_time = 0; 606 bytes_xfer_prev = 0; 607 num_dirty_pages_period = 0; 608 xbzrle_cache_miss_prev = 0; 609 iterations_prev = 0; 610 } 611 612 /* Called with iothread lock held, to protect ram_list.dirty_memory[] */ 613 static void migration_bitmap_sync(void) 614 { 615 RAMBlock *block; 616 uint64_t num_dirty_pages_init = migration_dirty_pages; 617 MigrationState *s = migrate_get_current(); 618 int64_t end_time; 619 int64_t bytes_xfer_now; 620 621 bitmap_sync_count++; 622 623 if (!bytes_xfer_prev) { 624 bytes_xfer_prev = ram_bytes_transferred(); 625 } 626 627 if (!start_time) { 628 start_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); 629 } 630 631 trace_migration_bitmap_sync_start(); 632 address_space_sync_dirty_bitmap(&address_space_memory); 633 634 qemu_mutex_lock(&migration_bitmap_mutex); 635 rcu_read_lock(); 636 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { 637 migration_bitmap_sync_range(block->offset, block->used_length); 638 } 639 rcu_read_unlock(); 640 qemu_mutex_unlock(&migration_bitmap_mutex); 641 642 trace_migration_bitmap_sync_end(migration_dirty_pages 643 - num_dirty_pages_init); 644 num_dirty_pages_period += migration_dirty_pages - num_dirty_pages_init; 645 end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); 646 647 /* more than 1 second = 1000 millisecons */ 648 if (end_time > start_time + 1000) { 649 if (migrate_auto_converge()) { 650 /* The following detection logic can be refined later. For now: 651 Check to see if the dirtied bytes is 50% more than the approx. 652 amount of bytes that just got transferred since the last time we 653 were in this routine. If that happens twice, start or increase 654 throttling */ 655 bytes_xfer_now = ram_bytes_transferred(); 656 657 if (s->dirty_pages_rate && 658 (num_dirty_pages_period * TARGET_PAGE_SIZE > 659 (bytes_xfer_now - bytes_xfer_prev)/2) && 660 (dirty_rate_high_cnt++ >= 2)) { 661 trace_migration_throttle(); 662 dirty_rate_high_cnt = 0; 663 mig_throttle_guest_down(); 664 } 665 bytes_xfer_prev = bytes_xfer_now; 666 } 667 668 if (migrate_use_xbzrle()) { 669 if (iterations_prev != acct_info.iterations) { 670 acct_info.xbzrle_cache_miss_rate = 671 (double)(acct_info.xbzrle_cache_miss - 672 xbzrle_cache_miss_prev) / 673 (acct_info.iterations - iterations_prev); 674 } 675 iterations_prev = acct_info.iterations; 676 xbzrle_cache_miss_prev = acct_info.xbzrle_cache_miss; 677 } 678 s->dirty_pages_rate = num_dirty_pages_period * 1000 679 / (end_time - start_time); 680 s->dirty_bytes_rate = s->dirty_pages_rate * TARGET_PAGE_SIZE; 681 start_time = end_time; 682 num_dirty_pages_period = 0; 683 } 684 s->dirty_sync_count = bitmap_sync_count; 685 if (migrate_use_events()) { 686 qapi_event_send_migration_pass(bitmap_sync_count, NULL); 687 } 688 } 689 690 /** 691 * save_zero_page: Send the zero page to the stream 692 * 693 * Returns: Number of pages written. 694 * 695 * @f: QEMUFile where to send the data 696 * @block: block that contains the page we want to send 697 * @offset: offset inside the block for the page 698 * @p: pointer to the page 699 * @bytes_transferred: increase it with the number of transferred bytes 700 */ 701 static int save_zero_page(QEMUFile *f, RAMBlock *block, ram_addr_t offset, 702 uint8_t *p, uint64_t *bytes_transferred) 703 { 704 int pages = -1; 705 706 if (is_zero_range(p, TARGET_PAGE_SIZE)) { 707 acct_info.dup_pages++; 708 *bytes_transferred += save_page_header(f, block, 709 offset | RAM_SAVE_FLAG_COMPRESS); 710 qemu_put_byte(f, 0); 711 *bytes_transferred += 1; 712 pages = 1; 713 } 714 715 return pages; 716 } 717 718 /** 719 * ram_save_page: Send the given page to the stream 720 * 721 * Returns: Number of pages written. 722 * < 0 - error 723 * >=0 - Number of pages written - this might legally be 0 724 * if xbzrle noticed the page was the same. 725 * 726 * @f: QEMUFile where to send the data 727 * @block: block that contains the page we want to send 728 * @offset: offset inside the block for the page 729 * @last_stage: if we are at the completion stage 730 * @bytes_transferred: increase it with the number of transferred bytes 731 */ 732 static int ram_save_page(QEMUFile *f, RAMBlock* block, ram_addr_t offset, 733 bool last_stage, uint64_t *bytes_transferred) 734 { 735 int pages = -1; 736 uint64_t bytes_xmit; 737 ram_addr_t current_addr; 738 uint8_t *p; 739 int ret; 740 bool send_async = true; 741 742 p = block->host + offset; 743 744 /* In doubt sent page as normal */ 745 bytes_xmit = 0; 746 ret = ram_control_save_page(f, block->offset, 747 offset, TARGET_PAGE_SIZE, &bytes_xmit); 748 if (bytes_xmit) { 749 *bytes_transferred += bytes_xmit; 750 pages = 1; 751 } 752 753 XBZRLE_cache_lock(); 754 755 current_addr = block->offset + offset; 756 757 if (block == last_sent_block) { 758 offset |= RAM_SAVE_FLAG_CONTINUE; 759 } 760 if (ret != RAM_SAVE_CONTROL_NOT_SUPP) { 761 if (ret != RAM_SAVE_CONTROL_DELAYED) { 762 if (bytes_xmit > 0) { 763 acct_info.norm_pages++; 764 } else if (bytes_xmit == 0) { 765 acct_info.dup_pages++; 766 } 767 } 768 } else { 769 pages = save_zero_page(f, block, offset, p, bytes_transferred); 770 if (pages > 0) { 771 /* Must let xbzrle know, otherwise a previous (now 0'd) cached 772 * page would be stale 773 */ 774 xbzrle_cache_zero_page(current_addr); 775 } else if (!ram_bulk_stage && migrate_use_xbzrle()) { 776 pages = save_xbzrle_page(f, &p, current_addr, block, 777 offset, last_stage, bytes_transferred); 778 if (!last_stage) { 779 /* Can't send this cached data async, since the cache page 780 * might get updated before it gets to the wire 781 */ 782 send_async = false; 783 } 784 } 785 } 786 787 /* XBZRLE overflow or normal page */ 788 if (pages == -1) { 789 *bytes_transferred += save_page_header(f, block, 790 offset | RAM_SAVE_FLAG_PAGE); 791 if (send_async) { 792 qemu_put_buffer_async(f, p, TARGET_PAGE_SIZE); 793 } else { 794 qemu_put_buffer(f, p, TARGET_PAGE_SIZE); 795 } 796 *bytes_transferred += TARGET_PAGE_SIZE; 797 pages = 1; 798 acct_info.norm_pages++; 799 } 800 801 XBZRLE_cache_unlock(); 802 803 return pages; 804 } 805 806 static int do_compress_ram_page(CompressParam *param) 807 { 808 int bytes_sent, blen; 809 uint8_t *p; 810 RAMBlock *block = param->block; 811 ram_addr_t offset = param->offset; 812 813 p = block->host + (offset & TARGET_PAGE_MASK); 814 815 bytes_sent = save_page_header(param->file, block, offset | 816 RAM_SAVE_FLAG_COMPRESS_PAGE); 817 blen = qemu_put_compression_data(param->file, p, TARGET_PAGE_SIZE, 818 migrate_compress_level()); 819 bytes_sent += blen; 820 821 return bytes_sent; 822 } 823 824 static inline void start_compression(CompressParam *param) 825 { 826 param->done = false; 827 qemu_mutex_lock(¶m->mutex); 828 param->start = true; 829 qemu_cond_signal(¶m->cond); 830 qemu_mutex_unlock(¶m->mutex); 831 } 832 833 static inline void start_decompression(DecompressParam *param) 834 { 835 qemu_mutex_lock(¶m->mutex); 836 param->start = true; 837 qemu_cond_signal(¶m->cond); 838 qemu_mutex_unlock(¶m->mutex); 839 } 840 841 static uint64_t bytes_transferred; 842 843 static void flush_compressed_data(QEMUFile *f) 844 { 845 int idx, len, thread_count; 846 847 if (!migrate_use_compression()) { 848 return; 849 } 850 thread_count = migrate_compress_threads(); 851 for (idx = 0; idx < thread_count; idx++) { 852 if (!comp_param[idx].done) { 853 qemu_mutex_lock(comp_done_lock); 854 while (!comp_param[idx].done && !quit_comp_thread) { 855 qemu_cond_wait(comp_done_cond, comp_done_lock); 856 } 857 qemu_mutex_unlock(comp_done_lock); 858 } 859 if (!quit_comp_thread) { 860 len = qemu_put_qemu_file(f, comp_param[idx].file); 861 bytes_transferred += len; 862 } 863 } 864 } 865 866 static inline void set_compress_params(CompressParam *param, RAMBlock *block, 867 ram_addr_t offset) 868 { 869 param->block = block; 870 param->offset = offset; 871 } 872 873 static int compress_page_with_multi_thread(QEMUFile *f, RAMBlock *block, 874 ram_addr_t offset, 875 uint64_t *bytes_transferred) 876 { 877 int idx, thread_count, bytes_xmit = -1, pages = -1; 878 879 thread_count = migrate_compress_threads(); 880 qemu_mutex_lock(comp_done_lock); 881 while (true) { 882 for (idx = 0; idx < thread_count; idx++) { 883 if (comp_param[idx].done) { 884 bytes_xmit = qemu_put_qemu_file(f, comp_param[idx].file); 885 set_compress_params(&comp_param[idx], block, offset); 886 start_compression(&comp_param[idx]); 887 pages = 1; 888 acct_info.norm_pages++; 889 *bytes_transferred += bytes_xmit; 890 break; 891 } 892 } 893 if (pages > 0) { 894 break; 895 } else { 896 qemu_cond_wait(comp_done_cond, comp_done_lock); 897 } 898 } 899 qemu_mutex_unlock(comp_done_lock); 900 901 return pages; 902 } 903 904 /** 905 * ram_save_compressed_page: compress the given page and send it to the stream 906 * 907 * Returns: Number of pages written. 908 * 909 * @f: QEMUFile where to send the data 910 * @block: block that contains the page we want to send 911 * @offset: offset inside the block for the page 912 * @last_stage: if we are at the completion stage 913 * @bytes_transferred: increase it with the number of transferred bytes 914 */ 915 static int ram_save_compressed_page(QEMUFile *f, RAMBlock *block, 916 ram_addr_t offset, bool last_stage, 917 uint64_t *bytes_transferred) 918 { 919 int pages = -1; 920 uint64_t bytes_xmit; 921 uint8_t *p; 922 int ret; 923 924 p = block->host + offset; 925 926 bytes_xmit = 0; 927 ret = ram_control_save_page(f, block->offset, 928 offset, TARGET_PAGE_SIZE, &bytes_xmit); 929 if (bytes_xmit) { 930 *bytes_transferred += bytes_xmit; 931 pages = 1; 932 } 933 if (block == last_sent_block) { 934 offset |= RAM_SAVE_FLAG_CONTINUE; 935 } 936 if (ret != RAM_SAVE_CONTROL_NOT_SUPP) { 937 if (ret != RAM_SAVE_CONTROL_DELAYED) { 938 if (bytes_xmit > 0) { 939 acct_info.norm_pages++; 940 } else if (bytes_xmit == 0) { 941 acct_info.dup_pages++; 942 } 943 } 944 } else { 945 /* When starting the process of a new block, the first page of 946 * the block should be sent out before other pages in the same 947 * block, and all the pages in last block should have been sent 948 * out, keeping this order is important, because the 'cont' flag 949 * is used to avoid resending the block name. 950 */ 951 if (block != last_sent_block) { 952 flush_compressed_data(f); 953 pages = save_zero_page(f, block, offset, p, bytes_transferred); 954 if (pages == -1) { 955 set_compress_params(&comp_param[0], block, offset); 956 /* Use the qemu thread to compress the data to make sure the 957 * first page is sent out before other pages 958 */ 959 bytes_xmit = do_compress_ram_page(&comp_param[0]); 960 acct_info.norm_pages++; 961 qemu_put_qemu_file(f, comp_param[0].file); 962 *bytes_transferred += bytes_xmit; 963 pages = 1; 964 } 965 } else { 966 pages = save_zero_page(f, block, offset, p, bytes_transferred); 967 if (pages == -1) { 968 pages = compress_page_with_multi_thread(f, block, offset, 969 bytes_transferred); 970 } 971 } 972 } 973 974 return pages; 975 } 976 977 /* 978 * Find the next dirty page and update any state associated with 979 * the search process. 980 * 981 * Returns: True if a page is found 982 * 983 * @f: Current migration stream. 984 * @pss: Data about the state of the current dirty page scan. 985 * @*again: Set to false if the search has scanned the whole of RAM 986 * *ram_addr_abs: Pointer into which to store the address of the dirty page 987 * within the global ram_addr space 988 */ 989 static bool find_dirty_block(QEMUFile *f, PageSearchStatus *pss, 990 bool *again, ram_addr_t *ram_addr_abs) 991 { 992 pss->offset = migration_bitmap_find_dirty(pss->block, pss->offset, 993 ram_addr_abs); 994 if (pss->complete_round && pss->block == last_seen_block && 995 pss->offset >= last_offset) { 996 /* 997 * We've been once around the RAM and haven't found anything. 998 * Give up. 999 */ 1000 *again = false; 1001 return false; 1002 } 1003 if (pss->offset >= pss->block->used_length) { 1004 /* Didn't find anything in this RAM Block */ 1005 pss->offset = 0; 1006 pss->block = QLIST_NEXT_RCU(pss->block, next); 1007 if (!pss->block) { 1008 /* Hit the end of the list */ 1009 pss->block = QLIST_FIRST_RCU(&ram_list.blocks); 1010 /* Flag that we've looped */ 1011 pss->complete_round = true; 1012 ram_bulk_stage = false; 1013 if (migrate_use_xbzrle()) { 1014 /* If xbzrle is on, stop using the data compression at this 1015 * point. In theory, xbzrle can do better than compression. 1016 */ 1017 flush_compressed_data(f); 1018 compression_switch = false; 1019 } 1020 } 1021 /* Didn't find anything this time, but try again on the new block */ 1022 *again = true; 1023 return false; 1024 } else { 1025 /* Can go around again, but... */ 1026 *again = true; 1027 /* We've found something so probably don't need to */ 1028 return true; 1029 } 1030 } 1031 1032 /* 1033 * Helper for 'get_queued_page' - gets a page off the queue 1034 * ms: MigrationState in 1035 * *offset: Used to return the offset within the RAMBlock 1036 * ram_addr_abs: global offset in the dirty/sent bitmaps 1037 * 1038 * Returns: block (or NULL if none available) 1039 */ 1040 static RAMBlock *unqueue_page(MigrationState *ms, ram_addr_t *offset, 1041 ram_addr_t *ram_addr_abs) 1042 { 1043 RAMBlock *block = NULL; 1044 1045 qemu_mutex_lock(&ms->src_page_req_mutex); 1046 if (!QSIMPLEQ_EMPTY(&ms->src_page_requests)) { 1047 struct MigrationSrcPageRequest *entry = 1048 QSIMPLEQ_FIRST(&ms->src_page_requests); 1049 block = entry->rb; 1050 *offset = entry->offset; 1051 *ram_addr_abs = (entry->offset + entry->rb->offset) & 1052 TARGET_PAGE_MASK; 1053 1054 if (entry->len > TARGET_PAGE_SIZE) { 1055 entry->len -= TARGET_PAGE_SIZE; 1056 entry->offset += TARGET_PAGE_SIZE; 1057 } else { 1058 memory_region_unref(block->mr); 1059 QSIMPLEQ_REMOVE_HEAD(&ms->src_page_requests, next_req); 1060 g_free(entry); 1061 } 1062 } 1063 qemu_mutex_unlock(&ms->src_page_req_mutex); 1064 1065 return block; 1066 } 1067 1068 /* 1069 * Unqueue a page from the queue fed by postcopy page requests; skips pages 1070 * that are already sent (!dirty) 1071 * 1072 * ms: MigrationState in 1073 * pss: PageSearchStatus structure updated with found block/offset 1074 * ram_addr_abs: global offset in the dirty/sent bitmaps 1075 * 1076 * Returns: true if a queued page is found 1077 */ 1078 static bool get_queued_page(MigrationState *ms, PageSearchStatus *pss, 1079 ram_addr_t *ram_addr_abs) 1080 { 1081 RAMBlock *block; 1082 ram_addr_t offset; 1083 bool dirty; 1084 1085 do { 1086 block = unqueue_page(ms, &offset, ram_addr_abs); 1087 /* 1088 * We're sending this page, and since it's postcopy nothing else 1089 * will dirty it, and we must make sure it doesn't get sent again 1090 * even if this queue request was received after the background 1091 * search already sent it. 1092 */ 1093 if (block) { 1094 unsigned long *bitmap; 1095 bitmap = atomic_rcu_read(&migration_bitmap_rcu)->bmap; 1096 dirty = test_bit(*ram_addr_abs >> TARGET_PAGE_BITS, bitmap); 1097 if (!dirty) { 1098 trace_get_queued_page_not_dirty( 1099 block->idstr, (uint64_t)offset, 1100 (uint64_t)*ram_addr_abs, 1101 test_bit(*ram_addr_abs >> TARGET_PAGE_BITS, 1102 atomic_rcu_read(&migration_bitmap_rcu)->unsentmap)); 1103 } else { 1104 trace_get_queued_page(block->idstr, 1105 (uint64_t)offset, 1106 (uint64_t)*ram_addr_abs); 1107 } 1108 } 1109 1110 } while (block && !dirty); 1111 1112 if (block) { 1113 /* 1114 * As soon as we start servicing pages out of order, then we have 1115 * to kill the bulk stage, since the bulk stage assumes 1116 * in (migration_bitmap_find_and_reset_dirty) that every page is 1117 * dirty, that's no longer true. 1118 */ 1119 ram_bulk_stage = false; 1120 1121 /* 1122 * We want the background search to continue from the queued page 1123 * since the guest is likely to want other pages near to the page 1124 * it just requested. 1125 */ 1126 pss->block = block; 1127 pss->offset = offset; 1128 } 1129 1130 return !!block; 1131 } 1132 1133 /** 1134 * flush_page_queue: Flush any remaining pages in the ram request queue 1135 * it should be empty at the end anyway, but in error cases there may be 1136 * some left. 1137 * 1138 * ms: MigrationState 1139 */ 1140 void flush_page_queue(MigrationState *ms) 1141 { 1142 struct MigrationSrcPageRequest *mspr, *next_mspr; 1143 /* This queue generally should be empty - but in the case of a failed 1144 * migration might have some droppings in. 1145 */ 1146 rcu_read_lock(); 1147 QSIMPLEQ_FOREACH_SAFE(mspr, &ms->src_page_requests, next_req, next_mspr) { 1148 memory_region_unref(mspr->rb->mr); 1149 QSIMPLEQ_REMOVE_HEAD(&ms->src_page_requests, next_req); 1150 g_free(mspr); 1151 } 1152 rcu_read_unlock(); 1153 } 1154 1155 /** 1156 * Queue the pages for transmission, e.g. a request from postcopy destination 1157 * ms: MigrationStatus in which the queue is held 1158 * rbname: The RAMBlock the request is for - may be NULL (to mean reuse last) 1159 * start: Offset from the start of the RAMBlock 1160 * len: Length (in bytes) to send 1161 * Return: 0 on success 1162 */ 1163 int ram_save_queue_pages(MigrationState *ms, const char *rbname, 1164 ram_addr_t start, ram_addr_t len) 1165 { 1166 RAMBlock *ramblock; 1167 1168 rcu_read_lock(); 1169 if (!rbname) { 1170 /* Reuse last RAMBlock */ 1171 ramblock = ms->last_req_rb; 1172 1173 if (!ramblock) { 1174 /* 1175 * Shouldn't happen, we can't reuse the last RAMBlock if 1176 * it's the 1st request. 1177 */ 1178 error_report("ram_save_queue_pages no previous block"); 1179 goto err; 1180 } 1181 } else { 1182 ramblock = qemu_ram_block_by_name(rbname); 1183 1184 if (!ramblock) { 1185 /* We shouldn't be asked for a non-existent RAMBlock */ 1186 error_report("ram_save_queue_pages no block '%s'", rbname); 1187 goto err; 1188 } 1189 ms->last_req_rb = ramblock; 1190 } 1191 trace_ram_save_queue_pages(ramblock->idstr, start, len); 1192 if (start+len > ramblock->used_length) { 1193 error_report("%s request overrun start=" RAM_ADDR_FMT " len=" 1194 RAM_ADDR_FMT " blocklen=" RAM_ADDR_FMT, 1195 __func__, start, len, ramblock->used_length); 1196 goto err; 1197 } 1198 1199 struct MigrationSrcPageRequest *new_entry = 1200 g_malloc0(sizeof(struct MigrationSrcPageRequest)); 1201 new_entry->rb = ramblock; 1202 new_entry->offset = start; 1203 new_entry->len = len; 1204 1205 memory_region_ref(ramblock->mr); 1206 qemu_mutex_lock(&ms->src_page_req_mutex); 1207 QSIMPLEQ_INSERT_TAIL(&ms->src_page_requests, new_entry, next_req); 1208 qemu_mutex_unlock(&ms->src_page_req_mutex); 1209 rcu_read_unlock(); 1210 1211 return 0; 1212 1213 err: 1214 rcu_read_unlock(); 1215 return -1; 1216 } 1217 1218 /** 1219 * ram_save_target_page: Save one target page 1220 * 1221 * 1222 * @f: QEMUFile where to send the data 1223 * @block: pointer to block that contains the page we want to send 1224 * @offset: offset inside the block for the page; 1225 * @last_stage: if we are at the completion stage 1226 * @bytes_transferred: increase it with the number of transferred bytes 1227 * @dirty_ram_abs: Address of the start of the dirty page in ram_addr_t space 1228 * 1229 * Returns: Number of pages written. 1230 */ 1231 static int ram_save_target_page(MigrationState *ms, QEMUFile *f, 1232 RAMBlock *block, ram_addr_t offset, 1233 bool last_stage, 1234 uint64_t *bytes_transferred, 1235 ram_addr_t dirty_ram_abs) 1236 { 1237 int res = 0; 1238 1239 /* Check the pages is dirty and if it is send it */ 1240 if (migration_bitmap_clear_dirty(dirty_ram_abs)) { 1241 unsigned long *unsentmap; 1242 if (compression_switch && migrate_use_compression()) { 1243 res = ram_save_compressed_page(f, block, offset, 1244 last_stage, 1245 bytes_transferred); 1246 } else { 1247 res = ram_save_page(f, block, offset, last_stage, 1248 bytes_transferred); 1249 } 1250 1251 if (res < 0) { 1252 return res; 1253 } 1254 unsentmap = atomic_rcu_read(&migration_bitmap_rcu)->unsentmap; 1255 if (unsentmap) { 1256 clear_bit(dirty_ram_abs >> TARGET_PAGE_BITS, unsentmap); 1257 } 1258 /* Only update last_sent_block if a block was actually sent; xbzrle 1259 * might have decided the page was identical so didn't bother writing 1260 * to the stream. 1261 */ 1262 if (res > 0) { 1263 last_sent_block = block; 1264 } 1265 } 1266 1267 return res; 1268 } 1269 1270 /** 1271 * ram_save_host_page: Starting at *offset send pages upto the end 1272 * of the current host page. It's valid for the initial 1273 * offset to point into the middle of a host page 1274 * in which case the remainder of the hostpage is sent. 1275 * Only dirty target pages are sent. 1276 * 1277 * Returns: Number of pages written. 1278 * 1279 * @f: QEMUFile where to send the data 1280 * @block: pointer to block that contains the page we want to send 1281 * @offset: offset inside the block for the page; updated to last target page 1282 * sent 1283 * @last_stage: if we are at the completion stage 1284 * @bytes_transferred: increase it with the number of transferred bytes 1285 * @dirty_ram_abs: Address of the start of the dirty page in ram_addr_t space 1286 */ 1287 static int ram_save_host_page(MigrationState *ms, QEMUFile *f, RAMBlock *block, 1288 ram_addr_t *offset, bool last_stage, 1289 uint64_t *bytes_transferred, 1290 ram_addr_t dirty_ram_abs) 1291 { 1292 int tmppages, pages = 0; 1293 do { 1294 tmppages = ram_save_target_page(ms, f, block, *offset, last_stage, 1295 bytes_transferred, dirty_ram_abs); 1296 if (tmppages < 0) { 1297 return tmppages; 1298 } 1299 1300 pages += tmppages; 1301 *offset += TARGET_PAGE_SIZE; 1302 dirty_ram_abs += TARGET_PAGE_SIZE; 1303 } while (*offset & (qemu_host_page_size - 1)); 1304 1305 /* The offset we leave with is the last one we looked at */ 1306 *offset -= TARGET_PAGE_SIZE; 1307 return pages; 1308 } 1309 1310 /** 1311 * ram_find_and_save_block: Finds a dirty page and sends it to f 1312 * 1313 * Called within an RCU critical section. 1314 * 1315 * Returns: The number of pages written 1316 * 0 means no dirty pages 1317 * 1318 * @f: QEMUFile where to send the data 1319 * @last_stage: if we are at the completion stage 1320 * @bytes_transferred: increase it with the number of transferred bytes 1321 * 1322 * On systems where host-page-size > target-page-size it will send all the 1323 * pages in a host page that are dirty. 1324 */ 1325 1326 static int ram_find_and_save_block(QEMUFile *f, bool last_stage, 1327 uint64_t *bytes_transferred) 1328 { 1329 PageSearchStatus pss; 1330 MigrationState *ms = migrate_get_current(); 1331 int pages = 0; 1332 bool again, found; 1333 ram_addr_t dirty_ram_abs; /* Address of the start of the dirty page in 1334 ram_addr_t space */ 1335 1336 pss.block = last_seen_block; 1337 pss.offset = last_offset; 1338 pss.complete_round = false; 1339 1340 if (!pss.block) { 1341 pss.block = QLIST_FIRST_RCU(&ram_list.blocks); 1342 } 1343 1344 do { 1345 again = true; 1346 found = get_queued_page(ms, &pss, &dirty_ram_abs); 1347 1348 if (!found) { 1349 /* priority queue empty, so just search for something dirty */ 1350 found = find_dirty_block(f, &pss, &again, &dirty_ram_abs); 1351 } 1352 1353 if (found) { 1354 pages = ram_save_host_page(ms, f, pss.block, &pss.offset, 1355 last_stage, bytes_transferred, 1356 dirty_ram_abs); 1357 } 1358 } while (!pages && again); 1359 1360 last_seen_block = pss.block; 1361 last_offset = pss.offset; 1362 1363 return pages; 1364 } 1365 1366 void acct_update_position(QEMUFile *f, size_t size, bool zero) 1367 { 1368 uint64_t pages = size / TARGET_PAGE_SIZE; 1369 if (zero) { 1370 acct_info.dup_pages += pages; 1371 } else { 1372 acct_info.norm_pages += pages; 1373 bytes_transferred += size; 1374 qemu_update_position(f, size); 1375 } 1376 } 1377 1378 static ram_addr_t ram_save_remaining(void) 1379 { 1380 return migration_dirty_pages; 1381 } 1382 1383 uint64_t ram_bytes_remaining(void) 1384 { 1385 return ram_save_remaining() * TARGET_PAGE_SIZE; 1386 } 1387 1388 uint64_t ram_bytes_transferred(void) 1389 { 1390 return bytes_transferred; 1391 } 1392 1393 uint64_t ram_bytes_total(void) 1394 { 1395 RAMBlock *block; 1396 uint64_t total = 0; 1397 1398 rcu_read_lock(); 1399 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) 1400 total += block->used_length; 1401 rcu_read_unlock(); 1402 return total; 1403 } 1404 1405 void free_xbzrle_decoded_buf(void) 1406 { 1407 g_free(xbzrle_decoded_buf); 1408 xbzrle_decoded_buf = NULL; 1409 } 1410 1411 static void migration_bitmap_free(struct BitmapRcu *bmap) 1412 { 1413 g_free(bmap->bmap); 1414 g_free(bmap->unsentmap); 1415 g_free(bmap); 1416 } 1417 1418 static void ram_migration_cleanup(void *opaque) 1419 { 1420 /* caller have hold iothread lock or is in a bh, so there is 1421 * no writing race against this migration_bitmap 1422 */ 1423 struct BitmapRcu *bitmap = migration_bitmap_rcu; 1424 atomic_rcu_set(&migration_bitmap_rcu, NULL); 1425 if (bitmap) { 1426 memory_global_dirty_log_stop(); 1427 call_rcu(bitmap, migration_bitmap_free, rcu); 1428 } 1429 1430 XBZRLE_cache_lock(); 1431 if (XBZRLE.cache) { 1432 cache_fini(XBZRLE.cache); 1433 g_free(XBZRLE.encoded_buf); 1434 g_free(XBZRLE.current_buf); 1435 XBZRLE.cache = NULL; 1436 XBZRLE.encoded_buf = NULL; 1437 XBZRLE.current_buf = NULL; 1438 } 1439 XBZRLE_cache_unlock(); 1440 } 1441 1442 static void reset_ram_globals(void) 1443 { 1444 last_seen_block = NULL; 1445 last_sent_block = NULL; 1446 last_offset = 0; 1447 last_version = ram_list.version; 1448 ram_bulk_stage = true; 1449 } 1450 1451 #define MAX_WAIT 50 /* ms, half buffered_file limit */ 1452 1453 void migration_bitmap_extend(ram_addr_t old, ram_addr_t new) 1454 { 1455 /* called in qemu main thread, so there is 1456 * no writing race against this migration_bitmap 1457 */ 1458 if (migration_bitmap_rcu) { 1459 struct BitmapRcu *old_bitmap = migration_bitmap_rcu, *bitmap; 1460 bitmap = g_new(struct BitmapRcu, 1); 1461 bitmap->bmap = bitmap_new(new); 1462 1463 /* prevent migration_bitmap content from being set bit 1464 * by migration_bitmap_sync_range() at the same time. 1465 * it is safe to migration if migration_bitmap is cleared bit 1466 * at the same time. 1467 */ 1468 qemu_mutex_lock(&migration_bitmap_mutex); 1469 bitmap_copy(bitmap->bmap, old_bitmap->bmap, old); 1470 bitmap_set(bitmap->bmap, old, new - old); 1471 1472 /* We don't have a way to safely extend the sentmap 1473 * with RCU; so mark it as missing, entry to postcopy 1474 * will fail. 1475 */ 1476 bitmap->unsentmap = NULL; 1477 1478 atomic_rcu_set(&migration_bitmap_rcu, bitmap); 1479 qemu_mutex_unlock(&migration_bitmap_mutex); 1480 migration_dirty_pages += new - old; 1481 call_rcu(old_bitmap, migration_bitmap_free, rcu); 1482 } 1483 } 1484 1485 /* 1486 * 'expected' is the value you expect the bitmap mostly to be full 1487 * of; it won't bother printing lines that are all this value. 1488 * If 'todump' is null the migration bitmap is dumped. 1489 */ 1490 void ram_debug_dump_bitmap(unsigned long *todump, bool expected) 1491 { 1492 int64_t ram_pages = last_ram_offset() >> TARGET_PAGE_BITS; 1493 1494 int64_t cur; 1495 int64_t linelen = 128; 1496 char linebuf[129]; 1497 1498 if (!todump) { 1499 todump = atomic_rcu_read(&migration_bitmap_rcu)->bmap; 1500 } 1501 1502 for (cur = 0; cur < ram_pages; cur += linelen) { 1503 int64_t curb; 1504 bool found = false; 1505 /* 1506 * Last line; catch the case where the line length 1507 * is longer than remaining ram 1508 */ 1509 if (cur + linelen > ram_pages) { 1510 linelen = ram_pages - cur; 1511 } 1512 for (curb = 0; curb < linelen; curb++) { 1513 bool thisbit = test_bit(cur + curb, todump); 1514 linebuf[curb] = thisbit ? '1' : '.'; 1515 found = found || (thisbit != expected); 1516 } 1517 if (found) { 1518 linebuf[curb] = '\0'; 1519 fprintf(stderr, "0x%08" PRIx64 " : %s\n", cur, linebuf); 1520 } 1521 } 1522 } 1523 1524 /* **** functions for postcopy ***** */ 1525 1526 /* 1527 * Callback from postcopy_each_ram_send_discard for each RAMBlock 1528 * Note: At this point the 'unsentmap' is the processed bitmap combined 1529 * with the dirtymap; so a '1' means it's either dirty or unsent. 1530 * start,length: Indexes into the bitmap for the first bit 1531 * representing the named block and length in target-pages 1532 */ 1533 static int postcopy_send_discard_bm_ram(MigrationState *ms, 1534 PostcopyDiscardState *pds, 1535 unsigned long start, 1536 unsigned long length) 1537 { 1538 unsigned long end = start + length; /* one after the end */ 1539 unsigned long current; 1540 unsigned long *unsentmap; 1541 1542 unsentmap = atomic_rcu_read(&migration_bitmap_rcu)->unsentmap; 1543 for (current = start; current < end; ) { 1544 unsigned long one = find_next_bit(unsentmap, end, current); 1545 1546 if (one <= end) { 1547 unsigned long zero = find_next_zero_bit(unsentmap, end, one + 1); 1548 unsigned long discard_length; 1549 1550 if (zero >= end) { 1551 discard_length = end - one; 1552 } else { 1553 discard_length = zero - one; 1554 } 1555 postcopy_discard_send_range(ms, pds, one, discard_length); 1556 current = one + discard_length; 1557 } else { 1558 current = one; 1559 } 1560 } 1561 1562 return 0; 1563 } 1564 1565 /* 1566 * Utility for the outgoing postcopy code. 1567 * Calls postcopy_send_discard_bm_ram for each RAMBlock 1568 * passing it bitmap indexes and name. 1569 * Returns: 0 on success 1570 * (qemu_ram_foreach_block ends up passing unscaled lengths 1571 * which would mean postcopy code would have to deal with target page) 1572 */ 1573 static int postcopy_each_ram_send_discard(MigrationState *ms) 1574 { 1575 struct RAMBlock *block; 1576 int ret; 1577 1578 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { 1579 unsigned long first = block->offset >> TARGET_PAGE_BITS; 1580 PostcopyDiscardState *pds = postcopy_discard_send_init(ms, 1581 first, 1582 block->idstr); 1583 1584 /* 1585 * Postcopy sends chunks of bitmap over the wire, but it 1586 * just needs indexes at this point, avoids it having 1587 * target page specific code. 1588 */ 1589 ret = postcopy_send_discard_bm_ram(ms, pds, first, 1590 block->used_length >> TARGET_PAGE_BITS); 1591 postcopy_discard_send_finish(ms, pds); 1592 if (ret) { 1593 return ret; 1594 } 1595 } 1596 1597 return 0; 1598 } 1599 1600 /* 1601 * Helper for postcopy_chunk_hostpages; it's called twice to cleanup 1602 * the two bitmaps, that are similar, but one is inverted. 1603 * 1604 * We search for runs of target-pages that don't start or end on a 1605 * host page boundary; 1606 * unsent_pass=true: Cleans up partially unsent host pages by searching 1607 * the unsentmap 1608 * unsent_pass=false: Cleans up partially dirty host pages by searching 1609 * the main migration bitmap 1610 * 1611 */ 1612 static void postcopy_chunk_hostpages_pass(MigrationState *ms, bool unsent_pass, 1613 RAMBlock *block, 1614 PostcopyDiscardState *pds) 1615 { 1616 unsigned long *bitmap; 1617 unsigned long *unsentmap; 1618 unsigned int host_ratio = qemu_host_page_size / TARGET_PAGE_SIZE; 1619 unsigned long first = block->offset >> TARGET_PAGE_BITS; 1620 unsigned long len = block->used_length >> TARGET_PAGE_BITS; 1621 unsigned long last = first + (len - 1); 1622 unsigned long run_start; 1623 1624 bitmap = atomic_rcu_read(&migration_bitmap_rcu)->bmap; 1625 unsentmap = atomic_rcu_read(&migration_bitmap_rcu)->unsentmap; 1626 1627 if (unsent_pass) { 1628 /* Find a sent page */ 1629 run_start = find_next_zero_bit(unsentmap, last + 1, first); 1630 } else { 1631 /* Find a dirty page */ 1632 run_start = find_next_bit(bitmap, last + 1, first); 1633 } 1634 1635 while (run_start <= last) { 1636 bool do_fixup = false; 1637 unsigned long fixup_start_addr; 1638 unsigned long host_offset; 1639 1640 /* 1641 * If the start of this run of pages is in the middle of a host 1642 * page, then we need to fixup this host page. 1643 */ 1644 host_offset = run_start % host_ratio; 1645 if (host_offset) { 1646 do_fixup = true; 1647 run_start -= host_offset; 1648 fixup_start_addr = run_start; 1649 /* For the next pass */ 1650 run_start = run_start + host_ratio; 1651 } else { 1652 /* Find the end of this run */ 1653 unsigned long run_end; 1654 if (unsent_pass) { 1655 run_end = find_next_bit(unsentmap, last + 1, run_start + 1); 1656 } else { 1657 run_end = find_next_zero_bit(bitmap, last + 1, run_start + 1); 1658 } 1659 /* 1660 * If the end isn't at the start of a host page, then the 1661 * run doesn't finish at the end of a host page 1662 * and we need to discard. 1663 */ 1664 host_offset = run_end % host_ratio; 1665 if (host_offset) { 1666 do_fixup = true; 1667 fixup_start_addr = run_end - host_offset; 1668 /* 1669 * This host page has gone, the next loop iteration starts 1670 * from after the fixup 1671 */ 1672 run_start = fixup_start_addr + host_ratio; 1673 } else { 1674 /* 1675 * No discards on this iteration, next loop starts from 1676 * next sent/dirty page 1677 */ 1678 run_start = run_end + 1; 1679 } 1680 } 1681 1682 if (do_fixup) { 1683 unsigned long page; 1684 1685 /* Tell the destination to discard this page */ 1686 if (unsent_pass || !test_bit(fixup_start_addr, unsentmap)) { 1687 /* For the unsent_pass we: 1688 * discard partially sent pages 1689 * For the !unsent_pass (dirty) we: 1690 * discard partially dirty pages that were sent 1691 * (any partially sent pages were already discarded 1692 * by the previous unsent_pass) 1693 */ 1694 postcopy_discard_send_range(ms, pds, fixup_start_addr, 1695 host_ratio); 1696 } 1697 1698 /* Clean up the bitmap */ 1699 for (page = fixup_start_addr; 1700 page < fixup_start_addr + host_ratio; page++) { 1701 /* All pages in this host page are now not sent */ 1702 set_bit(page, unsentmap); 1703 1704 /* 1705 * Remark them as dirty, updating the count for any pages 1706 * that weren't previously dirty. 1707 */ 1708 migration_dirty_pages += !test_and_set_bit(page, bitmap); 1709 } 1710 } 1711 1712 if (unsent_pass) { 1713 /* Find the next sent page for the next iteration */ 1714 run_start = find_next_zero_bit(unsentmap, last + 1, 1715 run_start); 1716 } else { 1717 /* Find the next dirty page for the next iteration */ 1718 run_start = find_next_bit(bitmap, last + 1, run_start); 1719 } 1720 } 1721 } 1722 1723 /* 1724 * Utility for the outgoing postcopy code. 1725 * 1726 * Discard any partially sent host-page size chunks, mark any partially 1727 * dirty host-page size chunks as all dirty. 1728 * 1729 * Returns: 0 on success 1730 */ 1731 static int postcopy_chunk_hostpages(MigrationState *ms) 1732 { 1733 struct RAMBlock *block; 1734 1735 if (qemu_host_page_size == TARGET_PAGE_SIZE) { 1736 /* Easy case - TPS==HPS - nothing to be done */ 1737 return 0; 1738 } 1739 1740 /* Easiest way to make sure we don't resume in the middle of a host-page */ 1741 last_seen_block = NULL; 1742 last_sent_block = NULL; 1743 last_offset = 0; 1744 1745 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { 1746 unsigned long first = block->offset >> TARGET_PAGE_BITS; 1747 1748 PostcopyDiscardState *pds = 1749 postcopy_discard_send_init(ms, first, block->idstr); 1750 1751 /* First pass: Discard all partially sent host pages */ 1752 postcopy_chunk_hostpages_pass(ms, true, block, pds); 1753 /* 1754 * Second pass: Ensure that all partially dirty host pages are made 1755 * fully dirty. 1756 */ 1757 postcopy_chunk_hostpages_pass(ms, false, block, pds); 1758 1759 postcopy_discard_send_finish(ms, pds); 1760 } /* ram_list loop */ 1761 1762 return 0; 1763 } 1764 1765 /* 1766 * Transmit the set of pages to be discarded after precopy to the target 1767 * these are pages that: 1768 * a) Have been previously transmitted but are now dirty again 1769 * b) Pages that have never been transmitted, this ensures that 1770 * any pages on the destination that have been mapped by background 1771 * tasks get discarded (transparent huge pages is the specific concern) 1772 * Hopefully this is pretty sparse 1773 */ 1774 int ram_postcopy_send_discard_bitmap(MigrationState *ms) 1775 { 1776 int ret; 1777 unsigned long *bitmap, *unsentmap; 1778 1779 rcu_read_lock(); 1780 1781 /* This should be our last sync, the src is now paused */ 1782 migration_bitmap_sync(); 1783 1784 unsentmap = atomic_rcu_read(&migration_bitmap_rcu)->unsentmap; 1785 if (!unsentmap) { 1786 /* We don't have a safe way to resize the sentmap, so 1787 * if the bitmap was resized it will be NULL at this 1788 * point. 1789 */ 1790 error_report("migration ram resized during precopy phase"); 1791 rcu_read_unlock(); 1792 return -EINVAL; 1793 } 1794 1795 /* Deal with TPS != HPS */ 1796 ret = postcopy_chunk_hostpages(ms); 1797 if (ret) { 1798 rcu_read_unlock(); 1799 return ret; 1800 } 1801 1802 /* 1803 * Update the unsentmap to be unsentmap = unsentmap | dirty 1804 */ 1805 bitmap = atomic_rcu_read(&migration_bitmap_rcu)->bmap; 1806 bitmap_or(unsentmap, unsentmap, bitmap, 1807 last_ram_offset() >> TARGET_PAGE_BITS); 1808 1809 1810 trace_ram_postcopy_send_discard_bitmap(); 1811 #ifdef DEBUG_POSTCOPY 1812 ram_debug_dump_bitmap(unsentmap, true); 1813 #endif 1814 1815 ret = postcopy_each_ram_send_discard(ms); 1816 rcu_read_unlock(); 1817 1818 return ret; 1819 } 1820 1821 /* 1822 * At the start of the postcopy phase of migration, any now-dirty 1823 * precopied pages are discarded. 1824 * 1825 * start, length describe a byte address range within the RAMBlock 1826 * 1827 * Returns 0 on success. 1828 */ 1829 int ram_discard_range(MigrationIncomingState *mis, 1830 const char *block_name, 1831 uint64_t start, size_t length) 1832 { 1833 int ret = -1; 1834 1835 rcu_read_lock(); 1836 RAMBlock *rb = qemu_ram_block_by_name(block_name); 1837 1838 if (!rb) { 1839 error_report("ram_discard_range: Failed to find block '%s'", 1840 block_name); 1841 goto err; 1842 } 1843 1844 uint8_t *host_startaddr = rb->host + start; 1845 1846 if ((uintptr_t)host_startaddr & (qemu_host_page_size - 1)) { 1847 error_report("ram_discard_range: Unaligned start address: %p", 1848 host_startaddr); 1849 goto err; 1850 } 1851 1852 if ((start + length) <= rb->used_length) { 1853 uint8_t *host_endaddr = host_startaddr + length; 1854 if ((uintptr_t)host_endaddr & (qemu_host_page_size - 1)) { 1855 error_report("ram_discard_range: Unaligned end address: %p", 1856 host_endaddr); 1857 goto err; 1858 } 1859 ret = postcopy_ram_discard_range(mis, host_startaddr, length); 1860 } else { 1861 error_report("ram_discard_range: Overrun block '%s' (%" PRIu64 1862 "/%zx/" RAM_ADDR_FMT")", 1863 block_name, start, length, rb->used_length); 1864 } 1865 1866 err: 1867 rcu_read_unlock(); 1868 1869 return ret; 1870 } 1871 1872 1873 /* Each of ram_save_setup, ram_save_iterate and ram_save_complete has 1874 * long-running RCU critical section. When rcu-reclaims in the code 1875 * start to become numerous it will be necessary to reduce the 1876 * granularity of these critical sections. 1877 */ 1878 1879 static int ram_save_setup(QEMUFile *f, void *opaque) 1880 { 1881 RAMBlock *block; 1882 int64_t ram_bitmap_pages; /* Size of bitmap in pages, including gaps */ 1883 1884 dirty_rate_high_cnt = 0; 1885 bitmap_sync_count = 0; 1886 migration_bitmap_sync_init(); 1887 qemu_mutex_init(&migration_bitmap_mutex); 1888 1889 if (migrate_use_xbzrle()) { 1890 XBZRLE_cache_lock(); 1891 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size() / 1892 TARGET_PAGE_SIZE, 1893 TARGET_PAGE_SIZE); 1894 if (!XBZRLE.cache) { 1895 XBZRLE_cache_unlock(); 1896 error_report("Error creating cache"); 1897 return -1; 1898 } 1899 XBZRLE_cache_unlock(); 1900 1901 /* We prefer not to abort if there is no memory */ 1902 XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE); 1903 if (!XBZRLE.encoded_buf) { 1904 error_report("Error allocating encoded_buf"); 1905 return -1; 1906 } 1907 1908 XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE); 1909 if (!XBZRLE.current_buf) { 1910 error_report("Error allocating current_buf"); 1911 g_free(XBZRLE.encoded_buf); 1912 XBZRLE.encoded_buf = NULL; 1913 return -1; 1914 } 1915 1916 acct_clear(); 1917 } 1918 1919 /* iothread lock needed for ram_list.dirty_memory[] */ 1920 qemu_mutex_lock_iothread(); 1921 qemu_mutex_lock_ramlist(); 1922 rcu_read_lock(); 1923 bytes_transferred = 0; 1924 reset_ram_globals(); 1925 1926 ram_bitmap_pages = last_ram_offset() >> TARGET_PAGE_BITS; 1927 migration_bitmap_rcu = g_new0(struct BitmapRcu, 1); 1928 migration_bitmap_rcu->bmap = bitmap_new(ram_bitmap_pages); 1929 bitmap_set(migration_bitmap_rcu->bmap, 0, ram_bitmap_pages); 1930 1931 if (migrate_postcopy_ram()) { 1932 migration_bitmap_rcu->unsentmap = bitmap_new(ram_bitmap_pages); 1933 bitmap_set(migration_bitmap_rcu->unsentmap, 0, ram_bitmap_pages); 1934 } 1935 1936 /* 1937 * Count the total number of pages used by ram blocks not including any 1938 * gaps due to alignment or unplugs. 1939 */ 1940 migration_dirty_pages = ram_bytes_total() >> TARGET_PAGE_BITS; 1941 1942 memory_global_dirty_log_start(); 1943 migration_bitmap_sync(); 1944 qemu_mutex_unlock_ramlist(); 1945 qemu_mutex_unlock_iothread(); 1946 1947 qemu_put_be64(f, ram_bytes_total() | RAM_SAVE_FLAG_MEM_SIZE); 1948 1949 QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { 1950 qemu_put_byte(f, strlen(block->idstr)); 1951 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr)); 1952 qemu_put_be64(f, block->used_length); 1953 } 1954 1955 rcu_read_unlock(); 1956 1957 ram_control_before_iterate(f, RAM_CONTROL_SETUP); 1958 ram_control_after_iterate(f, RAM_CONTROL_SETUP); 1959 1960 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 1961 1962 return 0; 1963 } 1964 1965 static int ram_save_iterate(QEMUFile *f, void *opaque) 1966 { 1967 int ret; 1968 int i; 1969 int64_t t0; 1970 int pages_sent = 0; 1971 1972 rcu_read_lock(); 1973 if (ram_list.version != last_version) { 1974 reset_ram_globals(); 1975 } 1976 1977 /* Read version before ram_list.blocks */ 1978 smp_rmb(); 1979 1980 ram_control_before_iterate(f, RAM_CONTROL_ROUND); 1981 1982 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 1983 i = 0; 1984 while ((ret = qemu_file_rate_limit(f)) == 0) { 1985 int pages; 1986 1987 pages = ram_find_and_save_block(f, false, &bytes_transferred); 1988 /* no more pages to sent */ 1989 if (pages == 0) { 1990 break; 1991 } 1992 pages_sent += pages; 1993 acct_info.iterations++; 1994 1995 /* we want to check in the 1st loop, just in case it was the 1st time 1996 and we had to sync the dirty bitmap. 1997 qemu_get_clock_ns() is a bit expensive, so we only check each some 1998 iterations 1999 */ 2000 if ((i & 63) == 0) { 2001 uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) / 1000000; 2002 if (t1 > MAX_WAIT) { 2003 DPRINTF("big wait: %" PRIu64 " milliseconds, %d iterations\n", 2004 t1, i); 2005 break; 2006 } 2007 } 2008 i++; 2009 } 2010 flush_compressed_data(f); 2011 rcu_read_unlock(); 2012 2013 /* 2014 * Must occur before EOS (or any QEMUFile operation) 2015 * because of RDMA protocol. 2016 */ 2017 ram_control_after_iterate(f, RAM_CONTROL_ROUND); 2018 2019 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 2020 bytes_transferred += 8; 2021 2022 ret = qemu_file_get_error(f); 2023 if (ret < 0) { 2024 return ret; 2025 } 2026 2027 return pages_sent; 2028 } 2029 2030 /* Called with iothread lock */ 2031 static int ram_save_complete(QEMUFile *f, void *opaque) 2032 { 2033 rcu_read_lock(); 2034 2035 if (!migration_in_postcopy(migrate_get_current())) { 2036 migration_bitmap_sync(); 2037 } 2038 2039 ram_control_before_iterate(f, RAM_CONTROL_FINISH); 2040 2041 /* try transferring iterative blocks of memory */ 2042 2043 /* flush all remaining blocks regardless of rate limiting */ 2044 while (true) { 2045 int pages; 2046 2047 pages = ram_find_and_save_block(f, true, &bytes_transferred); 2048 /* no more blocks to sent */ 2049 if (pages == 0) { 2050 break; 2051 } 2052 } 2053 2054 flush_compressed_data(f); 2055 ram_control_after_iterate(f, RAM_CONTROL_FINISH); 2056 2057 rcu_read_unlock(); 2058 2059 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 2060 2061 return 0; 2062 } 2063 2064 static void ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size, 2065 uint64_t *non_postcopiable_pending, 2066 uint64_t *postcopiable_pending) 2067 { 2068 uint64_t remaining_size; 2069 2070 remaining_size = ram_save_remaining() * TARGET_PAGE_SIZE; 2071 2072 if (!migration_in_postcopy(migrate_get_current()) && 2073 remaining_size < max_size) { 2074 qemu_mutex_lock_iothread(); 2075 rcu_read_lock(); 2076 migration_bitmap_sync(); 2077 rcu_read_unlock(); 2078 qemu_mutex_unlock_iothread(); 2079 remaining_size = ram_save_remaining() * TARGET_PAGE_SIZE; 2080 } 2081 2082 /* We can do postcopy, and all the data is postcopiable */ 2083 *postcopiable_pending += remaining_size; 2084 } 2085 2086 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host) 2087 { 2088 unsigned int xh_len; 2089 int xh_flags; 2090 uint8_t *loaded_data; 2091 2092 if (!xbzrle_decoded_buf) { 2093 xbzrle_decoded_buf = g_malloc(TARGET_PAGE_SIZE); 2094 } 2095 loaded_data = xbzrle_decoded_buf; 2096 2097 /* extract RLE header */ 2098 xh_flags = qemu_get_byte(f); 2099 xh_len = qemu_get_be16(f); 2100 2101 if (xh_flags != ENCODING_FLAG_XBZRLE) { 2102 error_report("Failed to load XBZRLE page - wrong compression!"); 2103 return -1; 2104 } 2105 2106 if (xh_len > TARGET_PAGE_SIZE) { 2107 error_report("Failed to load XBZRLE page - len overflow!"); 2108 return -1; 2109 } 2110 /* load data and decode */ 2111 qemu_get_buffer_in_place(f, &loaded_data, xh_len); 2112 2113 /* decode RLE */ 2114 if (xbzrle_decode_buffer(loaded_data, xh_len, host, 2115 TARGET_PAGE_SIZE) == -1) { 2116 error_report("Failed to load XBZRLE page - decode error!"); 2117 return -1; 2118 } 2119 2120 return 0; 2121 } 2122 2123 /* Must be called from within a rcu critical section. 2124 * Returns a pointer from within the RCU-protected ram_list. 2125 */ 2126 /* 2127 * Read a RAMBlock ID from the stream f, find the host address of the 2128 * start of that block and add on 'offset' 2129 * 2130 * f: Stream to read from 2131 * offset: Offset within the block 2132 * flags: Page flags (mostly to see if it's a continuation of previous block) 2133 */ 2134 static inline void *host_from_stream_offset(QEMUFile *f, 2135 ram_addr_t offset, 2136 int flags) 2137 { 2138 static RAMBlock *block = NULL; 2139 char id[256]; 2140 uint8_t len; 2141 2142 if (flags & RAM_SAVE_FLAG_CONTINUE) { 2143 if (!block || block->max_length <= offset) { 2144 error_report("Ack, bad migration stream!"); 2145 return NULL; 2146 } 2147 2148 return block->host + offset; 2149 } 2150 2151 len = qemu_get_byte(f); 2152 qemu_get_buffer(f, (uint8_t *)id, len); 2153 id[len] = 0; 2154 2155 block = qemu_ram_block_by_name(id); 2156 if (block && block->max_length > offset) { 2157 return block->host + offset; 2158 } 2159 2160 error_report("Can't find block %s", id); 2161 return NULL; 2162 } 2163 2164 /* 2165 * If a page (or a whole RDMA chunk) has been 2166 * determined to be zero, then zap it. 2167 */ 2168 void ram_handle_compressed(void *host, uint8_t ch, uint64_t size) 2169 { 2170 if (ch != 0 || !is_zero_range(host, size)) { 2171 memset(host, ch, size); 2172 } 2173 } 2174 2175 static void *do_data_decompress(void *opaque) 2176 { 2177 DecompressParam *param = opaque; 2178 unsigned long pagesize; 2179 2180 while (!quit_decomp_thread) { 2181 qemu_mutex_lock(¶m->mutex); 2182 while (!param->start && !quit_decomp_thread) { 2183 qemu_cond_wait(¶m->cond, ¶m->mutex); 2184 pagesize = TARGET_PAGE_SIZE; 2185 if (!quit_decomp_thread) { 2186 /* uncompress() will return failed in some case, especially 2187 * when the page is dirted when doing the compression, it's 2188 * not a problem because the dirty page will be retransferred 2189 * and uncompress() won't break the data in other pages. 2190 */ 2191 uncompress((Bytef *)param->des, &pagesize, 2192 (const Bytef *)param->compbuf, param->len); 2193 } 2194 param->start = false; 2195 } 2196 qemu_mutex_unlock(¶m->mutex); 2197 } 2198 2199 return NULL; 2200 } 2201 2202 void migrate_decompress_threads_create(void) 2203 { 2204 int i, thread_count; 2205 2206 thread_count = migrate_decompress_threads(); 2207 decompress_threads = g_new0(QemuThread, thread_count); 2208 decomp_param = g_new0(DecompressParam, thread_count); 2209 quit_decomp_thread = false; 2210 for (i = 0; i < thread_count; i++) { 2211 qemu_mutex_init(&decomp_param[i].mutex); 2212 qemu_cond_init(&decomp_param[i].cond); 2213 decomp_param[i].compbuf = g_malloc0(compressBound(TARGET_PAGE_SIZE)); 2214 qemu_thread_create(decompress_threads + i, "decompress", 2215 do_data_decompress, decomp_param + i, 2216 QEMU_THREAD_JOINABLE); 2217 } 2218 } 2219 2220 void migrate_decompress_threads_join(void) 2221 { 2222 int i, thread_count; 2223 2224 quit_decomp_thread = true; 2225 thread_count = migrate_decompress_threads(); 2226 for (i = 0; i < thread_count; i++) { 2227 qemu_mutex_lock(&decomp_param[i].mutex); 2228 qemu_cond_signal(&decomp_param[i].cond); 2229 qemu_mutex_unlock(&decomp_param[i].mutex); 2230 } 2231 for (i = 0; i < thread_count; i++) { 2232 qemu_thread_join(decompress_threads + i); 2233 qemu_mutex_destroy(&decomp_param[i].mutex); 2234 qemu_cond_destroy(&decomp_param[i].cond); 2235 g_free(decomp_param[i].compbuf); 2236 } 2237 g_free(decompress_threads); 2238 g_free(decomp_param); 2239 decompress_threads = NULL; 2240 decomp_param = NULL; 2241 } 2242 2243 static void decompress_data_with_multi_threads(QEMUFile *f, 2244 void *host, int len) 2245 { 2246 int idx, thread_count; 2247 2248 thread_count = migrate_decompress_threads(); 2249 while (true) { 2250 for (idx = 0; idx < thread_count; idx++) { 2251 if (!decomp_param[idx].start) { 2252 qemu_get_buffer(f, decomp_param[idx].compbuf, len); 2253 decomp_param[idx].des = host; 2254 decomp_param[idx].len = len; 2255 start_decompression(&decomp_param[idx]); 2256 break; 2257 } 2258 } 2259 if (idx < thread_count) { 2260 break; 2261 } 2262 } 2263 } 2264 2265 /* 2266 * Allocate data structures etc needed by incoming migration with postcopy-ram 2267 * postcopy-ram's similarly names postcopy_ram_incoming_init does the work 2268 */ 2269 int ram_postcopy_incoming_init(MigrationIncomingState *mis) 2270 { 2271 size_t ram_pages = last_ram_offset() >> TARGET_PAGE_BITS; 2272 2273 return postcopy_ram_incoming_init(mis, ram_pages); 2274 } 2275 2276 /* 2277 * Called in postcopy mode by ram_load(). 2278 * rcu_read_lock is taken prior to this being called. 2279 */ 2280 static int ram_load_postcopy(QEMUFile *f) 2281 { 2282 int flags = 0, ret = 0; 2283 bool place_needed = false; 2284 bool matching_page_sizes = qemu_host_page_size == TARGET_PAGE_SIZE; 2285 MigrationIncomingState *mis = migration_incoming_get_current(); 2286 /* Temporary page that is later 'placed' */ 2287 void *postcopy_host_page = postcopy_get_tmp_page(mis); 2288 void *last_host = NULL; 2289 bool all_zero = false; 2290 2291 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) { 2292 ram_addr_t addr; 2293 void *host = NULL; 2294 void *page_buffer = NULL; 2295 void *place_source = NULL; 2296 uint8_t ch; 2297 2298 addr = qemu_get_be64(f); 2299 flags = addr & ~TARGET_PAGE_MASK; 2300 addr &= TARGET_PAGE_MASK; 2301 2302 trace_ram_load_postcopy_loop((uint64_t)addr, flags); 2303 place_needed = false; 2304 if (flags & (RAM_SAVE_FLAG_COMPRESS | RAM_SAVE_FLAG_PAGE)) { 2305 host = host_from_stream_offset(f, addr, flags); 2306 if (!host) { 2307 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr); 2308 ret = -EINVAL; 2309 break; 2310 } 2311 page_buffer = host; 2312 /* 2313 * Postcopy requires that we place whole host pages atomically. 2314 * To make it atomic, the data is read into a temporary page 2315 * that's moved into place later. 2316 * The migration protocol uses, possibly smaller, target-pages 2317 * however the source ensures it always sends all the components 2318 * of a host page in order. 2319 */ 2320 page_buffer = postcopy_host_page + 2321 ((uintptr_t)host & ~qemu_host_page_mask); 2322 /* If all TP are zero then we can optimise the place */ 2323 if (!((uintptr_t)host & ~qemu_host_page_mask)) { 2324 all_zero = true; 2325 } else { 2326 /* not the 1st TP within the HP */ 2327 if (host != (last_host + TARGET_PAGE_SIZE)) { 2328 error_report("Non-sequential target page %p/%p", 2329 host, last_host); 2330 ret = -EINVAL; 2331 break; 2332 } 2333 } 2334 2335 2336 /* 2337 * If it's the last part of a host page then we place the host 2338 * page 2339 */ 2340 place_needed = (((uintptr_t)host + TARGET_PAGE_SIZE) & 2341 ~qemu_host_page_mask) == 0; 2342 place_source = postcopy_host_page; 2343 } 2344 last_host = host; 2345 2346 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) { 2347 case RAM_SAVE_FLAG_COMPRESS: 2348 ch = qemu_get_byte(f); 2349 memset(page_buffer, ch, TARGET_PAGE_SIZE); 2350 if (ch) { 2351 all_zero = false; 2352 } 2353 break; 2354 2355 case RAM_SAVE_FLAG_PAGE: 2356 all_zero = false; 2357 if (!place_needed || !matching_page_sizes) { 2358 qemu_get_buffer(f, page_buffer, TARGET_PAGE_SIZE); 2359 } else { 2360 /* Avoids the qemu_file copy during postcopy, which is 2361 * going to do a copy later; can only do it when we 2362 * do this read in one go (matching page sizes) 2363 */ 2364 qemu_get_buffer_in_place(f, (uint8_t **)&place_source, 2365 TARGET_PAGE_SIZE); 2366 } 2367 break; 2368 case RAM_SAVE_FLAG_EOS: 2369 /* normal exit */ 2370 break; 2371 default: 2372 error_report("Unknown combination of migration flags: %#x" 2373 " (postcopy mode)", flags); 2374 ret = -EINVAL; 2375 } 2376 2377 if (place_needed) { 2378 /* This gets called at the last target page in the host page */ 2379 if (all_zero) { 2380 ret = postcopy_place_page_zero(mis, 2381 host + TARGET_PAGE_SIZE - 2382 qemu_host_page_size); 2383 } else { 2384 ret = postcopy_place_page(mis, host + TARGET_PAGE_SIZE - 2385 qemu_host_page_size, 2386 place_source); 2387 } 2388 } 2389 if (!ret) { 2390 ret = qemu_file_get_error(f); 2391 } 2392 } 2393 2394 return ret; 2395 } 2396 2397 static int ram_load(QEMUFile *f, void *opaque, int version_id) 2398 { 2399 int flags = 0, ret = 0; 2400 static uint64_t seq_iter; 2401 int len = 0; 2402 /* 2403 * If system is running in postcopy mode, page inserts to host memory must 2404 * be atomic 2405 */ 2406 bool postcopy_running = postcopy_state_get() >= POSTCOPY_INCOMING_LISTENING; 2407 2408 seq_iter++; 2409 2410 if (version_id != 4) { 2411 ret = -EINVAL; 2412 } 2413 2414 /* This RCU critical section can be very long running. 2415 * When RCU reclaims in the code start to become numerous, 2416 * it will be necessary to reduce the granularity of this 2417 * critical section. 2418 */ 2419 rcu_read_lock(); 2420 2421 if (postcopy_running) { 2422 ret = ram_load_postcopy(f); 2423 } 2424 2425 while (!postcopy_running && !ret && !(flags & RAM_SAVE_FLAG_EOS)) { 2426 ram_addr_t addr, total_ram_bytes; 2427 void *host = NULL; 2428 uint8_t ch; 2429 2430 addr = qemu_get_be64(f); 2431 flags = addr & ~TARGET_PAGE_MASK; 2432 addr &= TARGET_PAGE_MASK; 2433 2434 if (flags & (RAM_SAVE_FLAG_COMPRESS | RAM_SAVE_FLAG_PAGE | 2435 RAM_SAVE_FLAG_COMPRESS_PAGE | RAM_SAVE_FLAG_XBZRLE)) { 2436 host = host_from_stream_offset(f, addr, flags); 2437 if (!host) { 2438 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr); 2439 ret = -EINVAL; 2440 break; 2441 } 2442 } 2443 2444 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) { 2445 case RAM_SAVE_FLAG_MEM_SIZE: 2446 /* Synchronize RAM block list */ 2447 total_ram_bytes = addr; 2448 while (!ret && total_ram_bytes) { 2449 RAMBlock *block; 2450 char id[256]; 2451 ram_addr_t length; 2452 2453 len = qemu_get_byte(f); 2454 qemu_get_buffer(f, (uint8_t *)id, len); 2455 id[len] = 0; 2456 length = qemu_get_be64(f); 2457 2458 block = qemu_ram_block_by_name(id); 2459 if (block) { 2460 if (length != block->used_length) { 2461 Error *local_err = NULL; 2462 2463 ret = qemu_ram_resize(block->offset, length, 2464 &local_err); 2465 if (local_err) { 2466 error_report_err(local_err); 2467 } 2468 } 2469 ram_control_load_hook(f, RAM_CONTROL_BLOCK_REG, 2470 block->idstr); 2471 } else { 2472 error_report("Unknown ramblock \"%s\", cannot " 2473 "accept migration", id); 2474 ret = -EINVAL; 2475 } 2476 2477 total_ram_bytes -= length; 2478 } 2479 break; 2480 2481 case RAM_SAVE_FLAG_COMPRESS: 2482 ch = qemu_get_byte(f); 2483 ram_handle_compressed(host, ch, TARGET_PAGE_SIZE); 2484 break; 2485 2486 case RAM_SAVE_FLAG_PAGE: 2487 qemu_get_buffer(f, host, TARGET_PAGE_SIZE); 2488 break; 2489 2490 case RAM_SAVE_FLAG_COMPRESS_PAGE: 2491 len = qemu_get_be32(f); 2492 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) { 2493 error_report("Invalid compressed data length: %d", len); 2494 ret = -EINVAL; 2495 break; 2496 } 2497 decompress_data_with_multi_threads(f, host, len); 2498 break; 2499 2500 case RAM_SAVE_FLAG_XBZRLE: 2501 if (load_xbzrle(f, addr, host) < 0) { 2502 error_report("Failed to decompress XBZRLE page at " 2503 RAM_ADDR_FMT, addr); 2504 ret = -EINVAL; 2505 break; 2506 } 2507 break; 2508 case RAM_SAVE_FLAG_EOS: 2509 /* normal exit */ 2510 break; 2511 default: 2512 if (flags & RAM_SAVE_FLAG_HOOK) { 2513 ram_control_load_hook(f, RAM_CONTROL_HOOK, NULL); 2514 } else { 2515 error_report("Unknown combination of migration flags: %#x", 2516 flags); 2517 ret = -EINVAL; 2518 } 2519 } 2520 if (!ret) { 2521 ret = qemu_file_get_error(f); 2522 } 2523 } 2524 2525 rcu_read_unlock(); 2526 DPRINTF("Completed load of VM with exit code %d seq iteration " 2527 "%" PRIu64 "\n", ret, seq_iter); 2528 return ret; 2529 } 2530 2531 static SaveVMHandlers savevm_ram_handlers = { 2532 .save_live_setup = ram_save_setup, 2533 .save_live_iterate = ram_save_iterate, 2534 .save_live_complete_postcopy = ram_save_complete, 2535 .save_live_complete_precopy = ram_save_complete, 2536 .save_live_pending = ram_save_pending, 2537 .load_state = ram_load, 2538 .cleanup = ram_migration_cleanup, 2539 }; 2540 2541 void ram_mig_init(void) 2542 { 2543 qemu_mutex_init(&XBZRLE.lock); 2544 register_savevm_live(NULL, "ram", 0, 4, &savevm_ram_handlers, NULL); 2545 } 2546