xref: /openbmc/qemu/migration/ram.c (revision 40101f32)
1 /*
2  * QEMU System Emulator
3  *
4  * Copyright (c) 2003-2008 Fabrice Bellard
5  * Copyright (c) 2011-2015 Red Hat Inc
6  *
7  * Authors:
8  *  Juan Quintela <quintela@redhat.com>
9  *
10  * Permission is hereby granted, free of charge, to any person obtaining a copy
11  * of this software and associated documentation files (the "Software"), to deal
12  * in the Software without restriction, including without limitation the rights
13  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
14  * copies of the Software, and to permit persons to whom the Software is
15  * furnished to do so, subject to the following conditions:
16  *
17  * The above copyright notice and this permission notice shall be included in
18  * all copies or substantial portions of the Software.
19  *
20  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
25  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26  * THE SOFTWARE.
27  */
28 
29 #include "qemu/osdep.h"
30 #include "qemu/cutils.h"
31 #include "qemu/bitops.h"
32 #include "qemu/bitmap.h"
33 #include "qemu/madvise.h"
34 #include "qemu/main-loop.h"
35 #include "xbzrle.h"
36 #include "ram-compress.h"
37 #include "ram.h"
38 #include "migration.h"
39 #include "migration-stats.h"
40 #include "migration/register.h"
41 #include "migration/misc.h"
42 #include "qemu-file.h"
43 #include "postcopy-ram.h"
44 #include "page_cache.h"
45 #include "qemu/error-report.h"
46 #include "qapi/error.h"
47 #include "qapi/qapi-types-migration.h"
48 #include "qapi/qapi-events-migration.h"
49 #include "qapi/qapi-commands-migration.h"
50 #include "qapi/qmp/qerror.h"
51 #include "trace.h"
52 #include "exec/ram_addr.h"
53 #include "exec/target_page.h"
54 #include "qemu/rcu_queue.h"
55 #include "migration/colo.h"
56 #include "block.h"
57 #include "sysemu/cpu-throttle.h"
58 #include "savevm.h"
59 #include "qemu/iov.h"
60 #include "multifd.h"
61 #include "sysemu/runstate.h"
62 #include "rdma.h"
63 #include "options.h"
64 #include "sysemu/dirtylimit.h"
65 #include "sysemu/kvm.h"
66 
67 #include "hw/boards.h" /* for machine_dump_guest_core() */
68 
69 #if defined(__linux__)
70 #include "qemu/userfaultfd.h"
71 #endif /* defined(__linux__) */
72 
73 /***********************************************************/
74 /* ram save/restore */
75 
76 /*
77  * RAM_SAVE_FLAG_ZERO used to be named RAM_SAVE_FLAG_COMPRESS, it
78  * worked for pages that were filled with the same char.  We switched
79  * it to only search for the zero value.  And to avoid confusion with
80  * RAM_SAVE_FLAG_COMPRESS_PAGE just rename it.
81  */
82 /*
83  * RAM_SAVE_FLAG_FULL was obsoleted in 2009, it can be reused now
84  */
85 #define RAM_SAVE_FLAG_FULL     0x01
86 #define RAM_SAVE_FLAG_ZERO     0x02
87 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
88 #define RAM_SAVE_FLAG_PAGE     0x08
89 #define RAM_SAVE_FLAG_EOS      0x10
90 #define RAM_SAVE_FLAG_CONTINUE 0x20
91 #define RAM_SAVE_FLAG_XBZRLE   0x40
92 /* 0x80 is reserved in rdma.h for RAM_SAVE_FLAG_HOOK */
93 #define RAM_SAVE_FLAG_COMPRESS_PAGE    0x100
94 #define RAM_SAVE_FLAG_MULTIFD_FLUSH    0x200
95 /* We can't use any flag that is bigger than 0x200 */
96 
97 XBZRLECacheStats xbzrle_counters;
98 
99 /* used by the search for pages to send */
100 struct PageSearchStatus {
101     /* The migration channel used for a specific host page */
102     QEMUFile    *pss_channel;
103     /* Last block from where we have sent data */
104     RAMBlock *last_sent_block;
105     /* Current block being searched */
106     RAMBlock    *block;
107     /* Current page to search from */
108     unsigned long page;
109     /* Set once we wrap around */
110     bool         complete_round;
111     /* Whether we're sending a host page */
112     bool          host_page_sending;
113     /* The start/end of current host page.  Invalid if host_page_sending==false */
114     unsigned long host_page_start;
115     unsigned long host_page_end;
116 };
117 typedef struct PageSearchStatus PageSearchStatus;
118 
119 /* struct contains XBZRLE cache and a static page
120    used by the compression */
121 static struct {
122     /* buffer used for XBZRLE encoding */
123     uint8_t *encoded_buf;
124     /* buffer for storing page content */
125     uint8_t *current_buf;
126     /* Cache for XBZRLE, Protected by lock. */
127     PageCache *cache;
128     QemuMutex lock;
129     /* it will store a page full of zeros */
130     uint8_t *zero_target_page;
131     /* buffer used for XBZRLE decoding */
132     uint8_t *decoded_buf;
133 } XBZRLE;
134 
135 static void XBZRLE_cache_lock(void)
136 {
137     if (migrate_xbzrle()) {
138         qemu_mutex_lock(&XBZRLE.lock);
139     }
140 }
141 
142 static void XBZRLE_cache_unlock(void)
143 {
144     if (migrate_xbzrle()) {
145         qemu_mutex_unlock(&XBZRLE.lock);
146     }
147 }
148 
149 /**
150  * xbzrle_cache_resize: resize the xbzrle cache
151  *
152  * This function is called from migrate_params_apply in main
153  * thread, possibly while a migration is in progress.  A running
154  * migration may be using the cache and might finish during this call,
155  * hence changes to the cache are protected by XBZRLE.lock().
156  *
157  * Returns 0 for success or -1 for error
158  *
159  * @new_size: new cache size
160  * @errp: set *errp if the check failed, with reason
161  */
162 int xbzrle_cache_resize(uint64_t new_size, Error **errp)
163 {
164     PageCache *new_cache;
165     int64_t ret = 0;
166 
167     /* Check for truncation */
168     if (new_size != (size_t)new_size) {
169         error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cache size",
170                    "exceeding address space");
171         return -1;
172     }
173 
174     if (new_size == migrate_xbzrle_cache_size()) {
175         /* nothing to do */
176         return 0;
177     }
178 
179     XBZRLE_cache_lock();
180 
181     if (XBZRLE.cache != NULL) {
182         new_cache = cache_init(new_size, TARGET_PAGE_SIZE, errp);
183         if (!new_cache) {
184             ret = -1;
185             goto out;
186         }
187 
188         cache_fini(XBZRLE.cache);
189         XBZRLE.cache = new_cache;
190     }
191 out:
192     XBZRLE_cache_unlock();
193     return ret;
194 }
195 
196 static bool postcopy_preempt_active(void)
197 {
198     return migrate_postcopy_preempt() && migration_in_postcopy();
199 }
200 
201 bool migrate_ram_is_ignored(RAMBlock *block)
202 {
203     return !qemu_ram_is_migratable(block) ||
204            (migrate_ignore_shared() && qemu_ram_is_shared(block)
205                                     && qemu_ram_is_named_file(block));
206 }
207 
208 #undef RAMBLOCK_FOREACH
209 
210 int foreach_not_ignored_block(RAMBlockIterFunc func, void *opaque)
211 {
212     RAMBlock *block;
213     int ret = 0;
214 
215     RCU_READ_LOCK_GUARD();
216 
217     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
218         ret = func(block, opaque);
219         if (ret) {
220             break;
221         }
222     }
223     return ret;
224 }
225 
226 static void ramblock_recv_map_init(void)
227 {
228     RAMBlock *rb;
229 
230     RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
231         assert(!rb->receivedmap);
232         rb->receivedmap = bitmap_new(rb->max_length >> qemu_target_page_bits());
233     }
234 }
235 
236 int ramblock_recv_bitmap_test(RAMBlock *rb, void *host_addr)
237 {
238     return test_bit(ramblock_recv_bitmap_offset(host_addr, rb),
239                     rb->receivedmap);
240 }
241 
242 bool ramblock_recv_bitmap_test_byte_offset(RAMBlock *rb, uint64_t byte_offset)
243 {
244     return test_bit(byte_offset >> TARGET_PAGE_BITS, rb->receivedmap);
245 }
246 
247 void ramblock_recv_bitmap_set(RAMBlock *rb, void *host_addr)
248 {
249     set_bit_atomic(ramblock_recv_bitmap_offset(host_addr, rb), rb->receivedmap);
250 }
251 
252 void ramblock_recv_bitmap_set_range(RAMBlock *rb, void *host_addr,
253                                     size_t nr)
254 {
255     bitmap_set_atomic(rb->receivedmap,
256                       ramblock_recv_bitmap_offset(host_addr, rb),
257                       nr);
258 }
259 
260 #define  RAMBLOCK_RECV_BITMAP_ENDING  (0x0123456789abcdefULL)
261 
262 /*
263  * Format: bitmap_size (8 bytes) + whole_bitmap (N bytes).
264  *
265  * Returns >0 if success with sent bytes, or <0 if error.
266  */
267 int64_t ramblock_recv_bitmap_send(QEMUFile *file,
268                                   const char *block_name)
269 {
270     RAMBlock *block = qemu_ram_block_by_name(block_name);
271     unsigned long *le_bitmap, nbits;
272     uint64_t size;
273 
274     if (!block) {
275         error_report("%s: invalid block name: %s", __func__, block_name);
276         return -1;
277     }
278 
279     nbits = block->postcopy_length >> TARGET_PAGE_BITS;
280 
281     /*
282      * Make sure the tmp bitmap buffer is big enough, e.g., on 32bit
283      * machines we may need 4 more bytes for padding (see below
284      * comment). So extend it a bit before hand.
285      */
286     le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
287 
288     /*
289      * Always use little endian when sending the bitmap. This is
290      * required that when source and destination VMs are not using the
291      * same endianness. (Note: big endian won't work.)
292      */
293     bitmap_to_le(le_bitmap, block->receivedmap, nbits);
294 
295     /* Size of the bitmap, in bytes */
296     size = DIV_ROUND_UP(nbits, 8);
297 
298     /*
299      * size is always aligned to 8 bytes for 64bit machines, but it
300      * may not be true for 32bit machines. We need this padding to
301      * make sure the migration can survive even between 32bit and
302      * 64bit machines.
303      */
304     size = ROUND_UP(size, 8);
305 
306     qemu_put_be64(file, size);
307     qemu_put_buffer(file, (const uint8_t *)le_bitmap, size);
308     /*
309      * Mark as an end, in case the middle part is screwed up due to
310      * some "mysterious" reason.
311      */
312     qemu_put_be64(file, RAMBLOCK_RECV_BITMAP_ENDING);
313     qemu_fflush(file);
314 
315     g_free(le_bitmap);
316 
317     if (qemu_file_get_error(file)) {
318         return qemu_file_get_error(file);
319     }
320 
321     return size + sizeof(size);
322 }
323 
324 /*
325  * An outstanding page request, on the source, having been received
326  * and queued
327  */
328 struct RAMSrcPageRequest {
329     RAMBlock *rb;
330     hwaddr    offset;
331     hwaddr    len;
332 
333     QSIMPLEQ_ENTRY(RAMSrcPageRequest) next_req;
334 };
335 
336 /* State of RAM for migration */
337 struct RAMState {
338     /*
339      * PageSearchStatus structures for the channels when send pages.
340      * Protected by the bitmap_mutex.
341      */
342     PageSearchStatus pss[RAM_CHANNEL_MAX];
343     /* UFFD file descriptor, used in 'write-tracking' migration */
344     int uffdio_fd;
345     /* total ram size in bytes */
346     uint64_t ram_bytes_total;
347     /* Last block that we have visited searching for dirty pages */
348     RAMBlock *last_seen_block;
349     /* Last dirty target page we have sent */
350     ram_addr_t last_page;
351     /* last ram version we have seen */
352     uint32_t last_version;
353     /* How many times we have dirty too many pages */
354     int dirty_rate_high_cnt;
355     /* these variables are used for bitmap sync */
356     /* last time we did a full bitmap_sync */
357     int64_t time_last_bitmap_sync;
358     /* bytes transferred at start_time */
359     uint64_t bytes_xfer_prev;
360     /* number of dirty pages since start_time */
361     uint64_t num_dirty_pages_period;
362     /* xbzrle misses since the beginning of the period */
363     uint64_t xbzrle_cache_miss_prev;
364     /* Amount of xbzrle pages since the beginning of the period */
365     uint64_t xbzrle_pages_prev;
366     /* Amount of xbzrle encoded bytes since the beginning of the period */
367     uint64_t xbzrle_bytes_prev;
368     /* Are we really using XBZRLE (e.g., after the first round). */
369     bool xbzrle_started;
370     /* Are we on the last stage of migration */
371     bool last_stage;
372 
373     /* total handled target pages at the beginning of period */
374     uint64_t target_page_count_prev;
375     /* total handled target pages since start */
376     uint64_t target_page_count;
377     /* number of dirty bits in the bitmap */
378     uint64_t migration_dirty_pages;
379     /*
380      * Protects:
381      * - dirty/clear bitmap
382      * - migration_dirty_pages
383      * - pss structures
384      */
385     QemuMutex bitmap_mutex;
386     /* The RAMBlock used in the last src_page_requests */
387     RAMBlock *last_req_rb;
388     /* Queue of outstanding page requests from the destination */
389     QemuMutex src_page_req_mutex;
390     QSIMPLEQ_HEAD(, RAMSrcPageRequest) src_page_requests;
391 
392     /*
393      * This is only used when postcopy is in recovery phase, to communicate
394      * between the migration thread and the return path thread on dirty
395      * bitmap synchronizations.  This field is unused in other stages of
396      * RAM migration.
397      */
398     unsigned int postcopy_bmap_sync_requested;
399 };
400 typedef struct RAMState RAMState;
401 
402 static RAMState *ram_state;
403 
404 static NotifierWithReturnList precopy_notifier_list;
405 
406 /* Whether postcopy has queued requests? */
407 static bool postcopy_has_request(RAMState *rs)
408 {
409     return !QSIMPLEQ_EMPTY_ATOMIC(&rs->src_page_requests);
410 }
411 
412 void precopy_infrastructure_init(void)
413 {
414     notifier_with_return_list_init(&precopy_notifier_list);
415 }
416 
417 void precopy_add_notifier(NotifierWithReturn *n)
418 {
419     notifier_with_return_list_add(&precopy_notifier_list, n);
420 }
421 
422 void precopy_remove_notifier(NotifierWithReturn *n)
423 {
424     notifier_with_return_remove(n);
425 }
426 
427 int precopy_notify(PrecopyNotifyReason reason, Error **errp)
428 {
429     PrecopyNotifyData pnd;
430     pnd.reason = reason;
431     pnd.errp = errp;
432 
433     return notifier_with_return_list_notify(&precopy_notifier_list, &pnd);
434 }
435 
436 uint64_t ram_bytes_remaining(void)
437 {
438     return ram_state ? (ram_state->migration_dirty_pages * TARGET_PAGE_SIZE) :
439                        0;
440 }
441 
442 void ram_transferred_add(uint64_t bytes)
443 {
444     if (runstate_is_running()) {
445         stat64_add(&mig_stats.precopy_bytes, bytes);
446     } else if (migration_in_postcopy()) {
447         stat64_add(&mig_stats.postcopy_bytes, bytes);
448     } else {
449         stat64_add(&mig_stats.downtime_bytes, bytes);
450     }
451     stat64_add(&mig_stats.transferred, bytes);
452 }
453 
454 struct MigrationOps {
455     int (*ram_save_target_page)(RAMState *rs, PageSearchStatus *pss);
456 };
457 typedef struct MigrationOps MigrationOps;
458 
459 MigrationOps *migration_ops;
460 
461 static int ram_save_host_page_urgent(PageSearchStatus *pss);
462 
463 /* NOTE: page is the PFN not real ram_addr_t. */
464 static void pss_init(PageSearchStatus *pss, RAMBlock *rb, ram_addr_t page)
465 {
466     pss->block = rb;
467     pss->page = page;
468     pss->complete_round = false;
469 }
470 
471 /*
472  * Check whether two PSSs are actively sending the same page.  Return true
473  * if it is, false otherwise.
474  */
475 static bool pss_overlap(PageSearchStatus *pss1, PageSearchStatus *pss2)
476 {
477     return pss1->host_page_sending && pss2->host_page_sending &&
478         (pss1->host_page_start == pss2->host_page_start);
479 }
480 
481 /**
482  * save_page_header: write page header to wire
483  *
484  * If this is the 1st block, it also writes the block identification
485  *
486  * Returns the number of bytes written
487  *
488  * @pss: current PSS channel status
489  * @block: block that contains the page we want to send
490  * @offset: offset inside the block for the page
491  *          in the lower bits, it contains flags
492  */
493 static size_t save_page_header(PageSearchStatus *pss, QEMUFile *f,
494                                RAMBlock *block, ram_addr_t offset)
495 {
496     size_t size, len;
497     bool same_block = (block == pss->last_sent_block);
498 
499     if (same_block) {
500         offset |= RAM_SAVE_FLAG_CONTINUE;
501     }
502     qemu_put_be64(f, offset);
503     size = 8;
504 
505     if (!same_block) {
506         len = strlen(block->idstr);
507         qemu_put_byte(f, len);
508         qemu_put_buffer(f, (uint8_t *)block->idstr, len);
509         size += 1 + len;
510         pss->last_sent_block = block;
511     }
512     return size;
513 }
514 
515 /**
516  * mig_throttle_guest_down: throttle down the guest
517  *
518  * Reduce amount of guest cpu execution to hopefully slow down memory
519  * writes. If guest dirty memory rate is reduced below the rate at
520  * which we can transfer pages to the destination then we should be
521  * able to complete migration. Some workloads dirty memory way too
522  * fast and will not effectively converge, even with auto-converge.
523  */
524 static void mig_throttle_guest_down(uint64_t bytes_dirty_period,
525                                     uint64_t bytes_dirty_threshold)
526 {
527     uint64_t pct_initial = migrate_cpu_throttle_initial();
528     uint64_t pct_increment = migrate_cpu_throttle_increment();
529     bool pct_tailslow = migrate_cpu_throttle_tailslow();
530     int pct_max = migrate_max_cpu_throttle();
531 
532     uint64_t throttle_now = cpu_throttle_get_percentage();
533     uint64_t cpu_now, cpu_ideal, throttle_inc;
534 
535     /* We have not started throttling yet. Let's start it. */
536     if (!cpu_throttle_active()) {
537         cpu_throttle_set(pct_initial);
538     } else {
539         /* Throttling already on, just increase the rate */
540         if (!pct_tailslow) {
541             throttle_inc = pct_increment;
542         } else {
543             /* Compute the ideal CPU percentage used by Guest, which may
544              * make the dirty rate match the dirty rate threshold. */
545             cpu_now = 100 - throttle_now;
546             cpu_ideal = cpu_now * (bytes_dirty_threshold * 1.0 /
547                         bytes_dirty_period);
548             throttle_inc = MIN(cpu_now - cpu_ideal, pct_increment);
549         }
550         cpu_throttle_set(MIN(throttle_now + throttle_inc, pct_max));
551     }
552 }
553 
554 void mig_throttle_counter_reset(void)
555 {
556     RAMState *rs = ram_state;
557 
558     rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
559     rs->num_dirty_pages_period = 0;
560     rs->bytes_xfer_prev = stat64_get(&mig_stats.transferred);
561 }
562 
563 /**
564  * xbzrle_cache_zero_page: insert a zero page in the XBZRLE cache
565  *
566  * @current_addr: address for the zero page
567  *
568  * Update the xbzrle cache to reflect a page that's been sent as all 0.
569  * The important thing is that a stale (not-yet-0'd) page be replaced
570  * by the new data.
571  * As a bonus, if the page wasn't in the cache it gets added so that
572  * when a small write is made into the 0'd page it gets XBZRLE sent.
573  */
574 static void xbzrle_cache_zero_page(ram_addr_t current_addr)
575 {
576     /* We don't care if this fails to allocate a new cache page
577      * as long as it updated an old one */
578     cache_insert(XBZRLE.cache, current_addr, XBZRLE.zero_target_page,
579                  stat64_get(&mig_stats.dirty_sync_count));
580 }
581 
582 #define ENCODING_FLAG_XBZRLE 0x1
583 
584 /**
585  * save_xbzrle_page: compress and send current page
586  *
587  * Returns: 1 means that we wrote the page
588  *          0 means that page is identical to the one already sent
589  *          -1 means that xbzrle would be longer than normal
590  *
591  * @rs: current RAM state
592  * @pss: current PSS channel
593  * @current_data: pointer to the address of the page contents
594  * @current_addr: addr of the page
595  * @block: block that contains the page we want to send
596  * @offset: offset inside the block for the page
597  */
598 static int save_xbzrle_page(RAMState *rs, PageSearchStatus *pss,
599                             uint8_t **current_data, ram_addr_t current_addr,
600                             RAMBlock *block, ram_addr_t offset)
601 {
602     int encoded_len = 0, bytes_xbzrle;
603     uint8_t *prev_cached_page;
604     QEMUFile *file = pss->pss_channel;
605     uint64_t generation = stat64_get(&mig_stats.dirty_sync_count);
606 
607     if (!cache_is_cached(XBZRLE.cache, current_addr, generation)) {
608         xbzrle_counters.cache_miss++;
609         if (!rs->last_stage) {
610             if (cache_insert(XBZRLE.cache, current_addr, *current_data,
611                              generation) == -1) {
612                 return -1;
613             } else {
614                 /* update *current_data when the page has been
615                    inserted into cache */
616                 *current_data = get_cached_data(XBZRLE.cache, current_addr);
617             }
618         }
619         return -1;
620     }
621 
622     /*
623      * Reaching here means the page has hit the xbzrle cache, no matter what
624      * encoding result it is (normal encoding, overflow or skipping the page),
625      * count the page as encoded. This is used to calculate the encoding rate.
626      *
627      * Example: 2 pages (8KB) being encoded, first page encoding generates 2KB,
628      * 2nd page turns out to be skipped (i.e. no new bytes written to the
629      * page), the overall encoding rate will be 8KB / 2KB = 4, which has the
630      * skipped page included. In this way, the encoding rate can tell if the
631      * guest page is good for xbzrle encoding.
632      */
633     xbzrle_counters.pages++;
634     prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
635 
636     /* save current buffer into memory */
637     memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE);
638 
639     /* XBZRLE encoding (if there is no overflow) */
640     encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
641                                        TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
642                                        TARGET_PAGE_SIZE);
643 
644     /*
645      * Update the cache contents, so that it corresponds to the data
646      * sent, in all cases except where we skip the page.
647      */
648     if (!rs->last_stage && encoded_len != 0) {
649         memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
650         /*
651          * In the case where we couldn't compress, ensure that the caller
652          * sends the data from the cache, since the guest might have
653          * changed the RAM since we copied it.
654          */
655         *current_data = prev_cached_page;
656     }
657 
658     if (encoded_len == 0) {
659         trace_save_xbzrle_page_skipping();
660         return 0;
661     } else if (encoded_len == -1) {
662         trace_save_xbzrle_page_overflow();
663         xbzrle_counters.overflow++;
664         xbzrle_counters.bytes += TARGET_PAGE_SIZE;
665         return -1;
666     }
667 
668     /* Send XBZRLE based compressed page */
669     bytes_xbzrle = save_page_header(pss, pss->pss_channel, block,
670                                     offset | RAM_SAVE_FLAG_XBZRLE);
671     qemu_put_byte(file, ENCODING_FLAG_XBZRLE);
672     qemu_put_be16(file, encoded_len);
673     qemu_put_buffer(file, XBZRLE.encoded_buf, encoded_len);
674     bytes_xbzrle += encoded_len + 1 + 2;
675     /*
676      * Like compressed_size (please see update_compress_thread_counts),
677      * the xbzrle encoded bytes don't count the 8 byte header with
678      * RAM_SAVE_FLAG_CONTINUE.
679      */
680     xbzrle_counters.bytes += bytes_xbzrle - 8;
681     ram_transferred_add(bytes_xbzrle);
682 
683     return 1;
684 }
685 
686 /**
687  * pss_find_next_dirty: find the next dirty page of current ramblock
688  *
689  * This function updates pss->page to point to the next dirty page index
690  * within the ramblock to migrate, or the end of ramblock when nothing
691  * found.  Note that when pss->host_page_sending==true it means we're
692  * during sending a host page, so we won't look for dirty page that is
693  * outside the host page boundary.
694  *
695  * @pss: the current page search status
696  */
697 static void pss_find_next_dirty(PageSearchStatus *pss)
698 {
699     RAMBlock *rb = pss->block;
700     unsigned long size = rb->used_length >> TARGET_PAGE_BITS;
701     unsigned long *bitmap = rb->bmap;
702 
703     if (migrate_ram_is_ignored(rb)) {
704         /* Points directly to the end, so we know no dirty page */
705         pss->page = size;
706         return;
707     }
708 
709     /*
710      * If during sending a host page, only look for dirty pages within the
711      * current host page being send.
712      */
713     if (pss->host_page_sending) {
714         assert(pss->host_page_end);
715         size = MIN(size, pss->host_page_end);
716     }
717 
718     pss->page = find_next_bit(bitmap, size, pss->page);
719 }
720 
721 static void migration_clear_memory_region_dirty_bitmap(RAMBlock *rb,
722                                                        unsigned long page)
723 {
724     uint8_t shift;
725     hwaddr size, start;
726 
727     if (!rb->clear_bmap || !clear_bmap_test_and_clear(rb, page)) {
728         return;
729     }
730 
731     shift = rb->clear_bmap_shift;
732     /*
733      * CLEAR_BITMAP_SHIFT_MIN should always guarantee this... this
734      * can make things easier sometimes since then start address
735      * of the small chunk will always be 64 pages aligned so the
736      * bitmap will always be aligned to unsigned long. We should
737      * even be able to remove this restriction but I'm simply
738      * keeping it.
739      */
740     assert(shift >= 6);
741 
742     size = 1ULL << (TARGET_PAGE_BITS + shift);
743     start = QEMU_ALIGN_DOWN((ram_addr_t)page << TARGET_PAGE_BITS, size);
744     trace_migration_bitmap_clear_dirty(rb->idstr, start, size, page);
745     memory_region_clear_dirty_bitmap(rb->mr, start, size);
746 }
747 
748 static void
749 migration_clear_memory_region_dirty_bitmap_range(RAMBlock *rb,
750                                                  unsigned long start,
751                                                  unsigned long npages)
752 {
753     unsigned long i, chunk_pages = 1UL << rb->clear_bmap_shift;
754     unsigned long chunk_start = QEMU_ALIGN_DOWN(start, chunk_pages);
755     unsigned long chunk_end = QEMU_ALIGN_UP(start + npages, chunk_pages);
756 
757     /*
758      * Clear pages from start to start + npages - 1, so the end boundary is
759      * exclusive.
760      */
761     for (i = chunk_start; i < chunk_end; i += chunk_pages) {
762         migration_clear_memory_region_dirty_bitmap(rb, i);
763     }
764 }
765 
766 /*
767  * colo_bitmap_find_diry:find contiguous dirty pages from start
768  *
769  * Returns the page offset within memory region of the start of the contiguout
770  * dirty page
771  *
772  * @rs: current RAM state
773  * @rb: RAMBlock where to search for dirty pages
774  * @start: page where we start the search
775  * @num: the number of contiguous dirty pages
776  */
777 static inline
778 unsigned long colo_bitmap_find_dirty(RAMState *rs, RAMBlock *rb,
779                                      unsigned long start, unsigned long *num)
780 {
781     unsigned long size = rb->used_length >> TARGET_PAGE_BITS;
782     unsigned long *bitmap = rb->bmap;
783     unsigned long first, next;
784 
785     *num = 0;
786 
787     if (migrate_ram_is_ignored(rb)) {
788         return size;
789     }
790 
791     first = find_next_bit(bitmap, size, start);
792     if (first >= size) {
793         return first;
794     }
795     next = find_next_zero_bit(bitmap, size, first + 1);
796     assert(next >= first);
797     *num = next - first;
798     return first;
799 }
800 
801 static inline bool migration_bitmap_clear_dirty(RAMState *rs,
802                                                 RAMBlock *rb,
803                                                 unsigned long page)
804 {
805     bool ret;
806 
807     /*
808      * Clear dirty bitmap if needed.  This _must_ be called before we
809      * send any of the page in the chunk because we need to make sure
810      * we can capture further page content changes when we sync dirty
811      * log the next time.  So as long as we are going to send any of
812      * the page in the chunk we clear the remote dirty bitmap for all.
813      * Clearing it earlier won't be a problem, but too late will.
814      */
815     migration_clear_memory_region_dirty_bitmap(rb, page);
816 
817     ret = test_and_clear_bit(page, rb->bmap);
818     if (ret) {
819         rs->migration_dirty_pages--;
820     }
821 
822     return ret;
823 }
824 
825 static void dirty_bitmap_clear_section(MemoryRegionSection *section,
826                                        void *opaque)
827 {
828     const hwaddr offset = section->offset_within_region;
829     const hwaddr size = int128_get64(section->size);
830     const unsigned long start = offset >> TARGET_PAGE_BITS;
831     const unsigned long npages = size >> TARGET_PAGE_BITS;
832     RAMBlock *rb = section->mr->ram_block;
833     uint64_t *cleared_bits = opaque;
834 
835     /*
836      * We don't grab ram_state->bitmap_mutex because we expect to run
837      * only when starting migration or during postcopy recovery where
838      * we don't have concurrent access.
839      */
840     if (!migration_in_postcopy() && !migrate_background_snapshot()) {
841         migration_clear_memory_region_dirty_bitmap_range(rb, start, npages);
842     }
843     *cleared_bits += bitmap_count_one_with_offset(rb->bmap, start, npages);
844     bitmap_clear(rb->bmap, start, npages);
845 }
846 
847 /*
848  * Exclude all dirty pages from migration that fall into a discarded range as
849  * managed by a RamDiscardManager responsible for the mapped memory region of
850  * the RAMBlock. Clear the corresponding bits in the dirty bitmaps.
851  *
852  * Discarded pages ("logically unplugged") have undefined content and must
853  * not get migrated, because even reading these pages for migration might
854  * result in undesired behavior.
855  *
856  * Returns the number of cleared bits in the RAMBlock dirty bitmap.
857  *
858  * Note: The result is only stable while migrating (precopy/postcopy).
859  */
860 static uint64_t ramblock_dirty_bitmap_clear_discarded_pages(RAMBlock *rb)
861 {
862     uint64_t cleared_bits = 0;
863 
864     if (rb->mr && rb->bmap && memory_region_has_ram_discard_manager(rb->mr)) {
865         RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr);
866         MemoryRegionSection section = {
867             .mr = rb->mr,
868             .offset_within_region = 0,
869             .size = int128_make64(qemu_ram_get_used_length(rb)),
870         };
871 
872         ram_discard_manager_replay_discarded(rdm, &section,
873                                              dirty_bitmap_clear_section,
874                                              &cleared_bits);
875     }
876     return cleared_bits;
877 }
878 
879 /*
880  * Check if a host-page aligned page falls into a discarded range as managed by
881  * a RamDiscardManager responsible for the mapped memory region of the RAMBlock.
882  *
883  * Note: The result is only stable while migrating (precopy/postcopy).
884  */
885 bool ramblock_page_is_discarded(RAMBlock *rb, ram_addr_t start)
886 {
887     if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) {
888         RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr);
889         MemoryRegionSection section = {
890             .mr = rb->mr,
891             .offset_within_region = start,
892             .size = int128_make64(qemu_ram_pagesize(rb)),
893         };
894 
895         return !ram_discard_manager_is_populated(rdm, &section);
896     }
897     return false;
898 }
899 
900 /* Called with RCU critical section */
901 static void ramblock_sync_dirty_bitmap(RAMState *rs, RAMBlock *rb)
902 {
903     uint64_t new_dirty_pages =
904         cpu_physical_memory_sync_dirty_bitmap(rb, 0, rb->used_length);
905 
906     rs->migration_dirty_pages += new_dirty_pages;
907     rs->num_dirty_pages_period += new_dirty_pages;
908 }
909 
910 /**
911  * ram_pagesize_summary: calculate all the pagesizes of a VM
912  *
913  * Returns a summary bitmap of the page sizes of all RAMBlocks
914  *
915  * For VMs with just normal pages this is equivalent to the host page
916  * size. If it's got some huge pages then it's the OR of all the
917  * different page sizes.
918  */
919 uint64_t ram_pagesize_summary(void)
920 {
921     RAMBlock *block;
922     uint64_t summary = 0;
923 
924     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
925         summary |= block->page_size;
926     }
927 
928     return summary;
929 }
930 
931 uint64_t ram_get_total_transferred_pages(void)
932 {
933     return stat64_get(&mig_stats.normal_pages) +
934         stat64_get(&mig_stats.zero_pages) +
935         compress_ram_pages() + xbzrle_counters.pages;
936 }
937 
938 static void migration_update_rates(RAMState *rs, int64_t end_time)
939 {
940     uint64_t page_count = rs->target_page_count - rs->target_page_count_prev;
941 
942     /* calculate period counters */
943     stat64_set(&mig_stats.dirty_pages_rate,
944                rs->num_dirty_pages_period * 1000 /
945                (end_time - rs->time_last_bitmap_sync));
946 
947     if (!page_count) {
948         return;
949     }
950 
951     if (migrate_xbzrle()) {
952         double encoded_size, unencoded_size;
953 
954         xbzrle_counters.cache_miss_rate = (double)(xbzrle_counters.cache_miss -
955             rs->xbzrle_cache_miss_prev) / page_count;
956         rs->xbzrle_cache_miss_prev = xbzrle_counters.cache_miss;
957         unencoded_size = (xbzrle_counters.pages - rs->xbzrle_pages_prev) *
958                          TARGET_PAGE_SIZE;
959         encoded_size = xbzrle_counters.bytes - rs->xbzrle_bytes_prev;
960         if (xbzrle_counters.pages == rs->xbzrle_pages_prev || !encoded_size) {
961             xbzrle_counters.encoding_rate = 0;
962         } else {
963             xbzrle_counters.encoding_rate = unencoded_size / encoded_size;
964         }
965         rs->xbzrle_pages_prev = xbzrle_counters.pages;
966         rs->xbzrle_bytes_prev = xbzrle_counters.bytes;
967     }
968     compress_update_rates(page_count);
969 }
970 
971 /*
972  * Enable dirty-limit to throttle down the guest
973  */
974 static void migration_dirty_limit_guest(void)
975 {
976     /*
977      * dirty page rate quota for all vCPUs fetched from
978      * migration parameter 'vcpu_dirty_limit'
979      */
980     static int64_t quota_dirtyrate;
981     MigrationState *s = migrate_get_current();
982 
983     /*
984      * If dirty limit already enabled and migration parameter
985      * vcpu-dirty-limit untouched.
986      */
987     if (dirtylimit_in_service() &&
988         quota_dirtyrate == s->parameters.vcpu_dirty_limit) {
989         return;
990     }
991 
992     quota_dirtyrate = s->parameters.vcpu_dirty_limit;
993 
994     /*
995      * Set all vCPU a quota dirtyrate, note that the second
996      * parameter will be ignored if setting all vCPU for the vm
997      */
998     qmp_set_vcpu_dirty_limit(false, -1, quota_dirtyrate, NULL);
999     trace_migration_dirty_limit_guest(quota_dirtyrate);
1000 }
1001 
1002 static void migration_trigger_throttle(RAMState *rs)
1003 {
1004     uint64_t threshold = migrate_throttle_trigger_threshold();
1005     uint64_t bytes_xfer_period =
1006         stat64_get(&mig_stats.transferred) - rs->bytes_xfer_prev;
1007     uint64_t bytes_dirty_period = rs->num_dirty_pages_period * TARGET_PAGE_SIZE;
1008     uint64_t bytes_dirty_threshold = bytes_xfer_period * threshold / 100;
1009 
1010     /* During block migration the auto-converge logic incorrectly detects
1011      * that ram migration makes no progress. Avoid this by disabling the
1012      * throttling logic during the bulk phase of block migration. */
1013     if (blk_mig_bulk_active()) {
1014         return;
1015     }
1016 
1017     /*
1018      * The following detection logic can be refined later. For now:
1019      * Check to see if the ratio between dirtied bytes and the approx.
1020      * amount of bytes that just got transferred since the last time
1021      * we were in this routine reaches the threshold. If that happens
1022      * twice, start or increase throttling.
1023      */
1024     if ((bytes_dirty_period > bytes_dirty_threshold) &&
1025         (++rs->dirty_rate_high_cnt >= 2)) {
1026         rs->dirty_rate_high_cnt = 0;
1027         if (migrate_auto_converge()) {
1028             trace_migration_throttle();
1029             mig_throttle_guest_down(bytes_dirty_period,
1030                                     bytes_dirty_threshold);
1031         } else if (migrate_dirty_limit()) {
1032             migration_dirty_limit_guest();
1033         }
1034     }
1035 }
1036 
1037 static void migration_bitmap_sync(RAMState *rs, bool last_stage)
1038 {
1039     RAMBlock *block;
1040     int64_t end_time;
1041 
1042     stat64_add(&mig_stats.dirty_sync_count, 1);
1043 
1044     if (!rs->time_last_bitmap_sync) {
1045         rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
1046     }
1047 
1048     trace_migration_bitmap_sync_start();
1049     memory_global_dirty_log_sync(last_stage);
1050 
1051     qemu_mutex_lock(&rs->bitmap_mutex);
1052     WITH_RCU_READ_LOCK_GUARD() {
1053         RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1054             ramblock_sync_dirty_bitmap(rs, block);
1055         }
1056         stat64_set(&mig_stats.dirty_bytes_last_sync, ram_bytes_remaining());
1057     }
1058     qemu_mutex_unlock(&rs->bitmap_mutex);
1059 
1060     memory_global_after_dirty_log_sync();
1061     trace_migration_bitmap_sync_end(rs->num_dirty_pages_period);
1062 
1063     end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
1064 
1065     /* more than 1 second = 1000 millisecons */
1066     if (end_time > rs->time_last_bitmap_sync + 1000) {
1067         migration_trigger_throttle(rs);
1068 
1069         migration_update_rates(rs, end_time);
1070 
1071         rs->target_page_count_prev = rs->target_page_count;
1072 
1073         /* reset period counters */
1074         rs->time_last_bitmap_sync = end_time;
1075         rs->num_dirty_pages_period = 0;
1076         rs->bytes_xfer_prev = stat64_get(&mig_stats.transferred);
1077     }
1078     if (migrate_events()) {
1079         uint64_t generation = stat64_get(&mig_stats.dirty_sync_count);
1080         qapi_event_send_migration_pass(generation);
1081     }
1082 }
1083 
1084 static void migration_bitmap_sync_precopy(RAMState *rs, bool last_stage)
1085 {
1086     Error *local_err = NULL;
1087 
1088     /*
1089      * The current notifier usage is just an optimization to migration, so we
1090      * don't stop the normal migration process in the error case.
1091      */
1092     if (precopy_notify(PRECOPY_NOTIFY_BEFORE_BITMAP_SYNC, &local_err)) {
1093         error_report_err(local_err);
1094         local_err = NULL;
1095     }
1096 
1097     migration_bitmap_sync(rs, last_stage);
1098 
1099     if (precopy_notify(PRECOPY_NOTIFY_AFTER_BITMAP_SYNC, &local_err)) {
1100         error_report_err(local_err);
1101     }
1102 }
1103 
1104 void ram_release_page(const char *rbname, uint64_t offset)
1105 {
1106     if (!migrate_release_ram() || !migration_in_postcopy()) {
1107         return;
1108     }
1109 
1110     ram_discard_range(rbname, offset, TARGET_PAGE_SIZE);
1111 }
1112 
1113 /**
1114  * save_zero_page: send the zero page to the stream
1115  *
1116  * Returns the number of pages written.
1117  *
1118  * @rs: current RAM state
1119  * @pss: current PSS channel
1120  * @offset: offset inside the block for the page
1121  */
1122 static int save_zero_page(RAMState *rs, PageSearchStatus *pss,
1123                           ram_addr_t offset)
1124 {
1125     uint8_t *p = pss->block->host + offset;
1126     QEMUFile *file = pss->pss_channel;
1127     int len = 0;
1128 
1129     if (!buffer_is_zero(p, TARGET_PAGE_SIZE)) {
1130         return 0;
1131     }
1132 
1133     len += save_page_header(pss, file, pss->block, offset | RAM_SAVE_FLAG_ZERO);
1134     qemu_put_byte(file, 0);
1135     len += 1;
1136     ram_release_page(pss->block->idstr, offset);
1137 
1138     stat64_add(&mig_stats.zero_pages, 1);
1139     ram_transferred_add(len);
1140 
1141     /*
1142      * Must let xbzrle know, otherwise a previous (now 0'd) cached
1143      * page would be stale.
1144      */
1145     if (rs->xbzrle_started) {
1146         XBZRLE_cache_lock();
1147         xbzrle_cache_zero_page(pss->block->offset + offset);
1148         XBZRLE_cache_unlock();
1149     }
1150 
1151     return len;
1152 }
1153 
1154 /*
1155  * @pages: the number of pages written by the control path,
1156  *        < 0 - error
1157  *        > 0 - number of pages written
1158  *
1159  * Return true if the pages has been saved, otherwise false is returned.
1160  */
1161 static bool control_save_page(PageSearchStatus *pss,
1162                               ram_addr_t offset, int *pages)
1163 {
1164     int ret;
1165 
1166     ret = rdma_control_save_page(pss->pss_channel, pss->block->offset, offset,
1167                                  TARGET_PAGE_SIZE);
1168     if (ret == RAM_SAVE_CONTROL_NOT_SUPP) {
1169         return false;
1170     }
1171 
1172     if (ret == RAM_SAVE_CONTROL_DELAYED) {
1173         *pages = 1;
1174         return true;
1175     }
1176     *pages = ret;
1177     return true;
1178 }
1179 
1180 /*
1181  * directly send the page to the stream
1182  *
1183  * Returns the number of pages written.
1184  *
1185  * @pss: current PSS channel
1186  * @block: block that contains the page we want to send
1187  * @offset: offset inside the block for the page
1188  * @buf: the page to be sent
1189  * @async: send to page asyncly
1190  */
1191 static int save_normal_page(PageSearchStatus *pss, RAMBlock *block,
1192                             ram_addr_t offset, uint8_t *buf, bool async)
1193 {
1194     QEMUFile *file = pss->pss_channel;
1195 
1196     ram_transferred_add(save_page_header(pss, pss->pss_channel, block,
1197                                          offset | RAM_SAVE_FLAG_PAGE));
1198     if (async) {
1199         qemu_put_buffer_async(file, buf, TARGET_PAGE_SIZE,
1200                               migrate_release_ram() &&
1201                               migration_in_postcopy());
1202     } else {
1203         qemu_put_buffer(file, buf, TARGET_PAGE_SIZE);
1204     }
1205     ram_transferred_add(TARGET_PAGE_SIZE);
1206     stat64_add(&mig_stats.normal_pages, 1);
1207     return 1;
1208 }
1209 
1210 /**
1211  * ram_save_page: send the given page to the stream
1212  *
1213  * Returns the number of pages written.
1214  *          < 0 - error
1215  *          >=0 - Number of pages written - this might legally be 0
1216  *                if xbzrle noticed the page was the same.
1217  *
1218  * @rs: current RAM state
1219  * @block: block that contains the page we want to send
1220  * @offset: offset inside the block for the page
1221  */
1222 static int ram_save_page(RAMState *rs, PageSearchStatus *pss)
1223 {
1224     int pages = -1;
1225     uint8_t *p;
1226     bool send_async = true;
1227     RAMBlock *block = pss->block;
1228     ram_addr_t offset = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS;
1229     ram_addr_t current_addr = block->offset + offset;
1230 
1231     p = block->host + offset;
1232     trace_ram_save_page(block->idstr, (uint64_t)offset, p);
1233 
1234     XBZRLE_cache_lock();
1235     if (rs->xbzrle_started && !migration_in_postcopy()) {
1236         pages = save_xbzrle_page(rs, pss, &p, current_addr,
1237                                  block, offset);
1238         if (!rs->last_stage) {
1239             /* Can't send this cached data async, since the cache page
1240              * might get updated before it gets to the wire
1241              */
1242             send_async = false;
1243         }
1244     }
1245 
1246     /* XBZRLE overflow or normal page */
1247     if (pages == -1) {
1248         pages = save_normal_page(pss, block, offset, p, send_async);
1249     }
1250 
1251     XBZRLE_cache_unlock();
1252 
1253     return pages;
1254 }
1255 
1256 static int ram_save_multifd_page(QEMUFile *file, RAMBlock *block,
1257                                  ram_addr_t offset)
1258 {
1259     if (multifd_queue_page(file, block, offset) < 0) {
1260         return -1;
1261     }
1262     stat64_add(&mig_stats.normal_pages, 1);
1263 
1264     return 1;
1265 }
1266 
1267 int compress_send_queued_data(CompressParam *param)
1268 {
1269     PageSearchStatus *pss = &ram_state->pss[RAM_CHANNEL_PRECOPY];
1270     MigrationState *ms = migrate_get_current();
1271     QEMUFile *file = ms->to_dst_file;
1272     int len = 0;
1273 
1274     RAMBlock *block = param->block;
1275     ram_addr_t offset = param->offset;
1276 
1277     if (param->result == RES_NONE) {
1278         return 0;
1279     }
1280 
1281     assert(block == pss->last_sent_block);
1282 
1283     if (param->result == RES_ZEROPAGE) {
1284         assert(qemu_file_buffer_empty(param->file));
1285         len += save_page_header(pss, file, block, offset | RAM_SAVE_FLAG_ZERO);
1286         qemu_put_byte(file, 0);
1287         len += 1;
1288         ram_release_page(block->idstr, offset);
1289     } else if (param->result == RES_COMPRESS) {
1290         assert(!qemu_file_buffer_empty(param->file));
1291         len += save_page_header(pss, file, block,
1292                                 offset | RAM_SAVE_FLAG_COMPRESS_PAGE);
1293         len += qemu_put_qemu_file(file, param->file);
1294     } else {
1295         abort();
1296     }
1297 
1298     update_compress_thread_counts(param, len);
1299 
1300     return len;
1301 }
1302 
1303 #define PAGE_ALL_CLEAN 0
1304 #define PAGE_TRY_AGAIN 1
1305 #define PAGE_DIRTY_FOUND 2
1306 /**
1307  * find_dirty_block: find the next dirty page and update any state
1308  * associated with the search process.
1309  *
1310  * Returns:
1311  *         <0: An error happened
1312  *         PAGE_ALL_CLEAN: no dirty page found, give up
1313  *         PAGE_TRY_AGAIN: no dirty page found, retry for next block
1314  *         PAGE_DIRTY_FOUND: dirty page found
1315  *
1316  * @rs: current RAM state
1317  * @pss: data about the state of the current dirty page scan
1318  * @again: set to false if the search has scanned the whole of RAM
1319  */
1320 static int find_dirty_block(RAMState *rs, PageSearchStatus *pss)
1321 {
1322     /* Update pss->page for the next dirty bit in ramblock */
1323     pss_find_next_dirty(pss);
1324 
1325     if (pss->complete_round && pss->block == rs->last_seen_block &&
1326         pss->page >= rs->last_page) {
1327         /*
1328          * We've been once around the RAM and haven't found anything.
1329          * Give up.
1330          */
1331         return PAGE_ALL_CLEAN;
1332     }
1333     if (!offset_in_ramblock(pss->block,
1334                             ((ram_addr_t)pss->page) << TARGET_PAGE_BITS)) {
1335         /* Didn't find anything in this RAM Block */
1336         pss->page = 0;
1337         pss->block = QLIST_NEXT_RCU(pss->block, next);
1338         if (!pss->block) {
1339             if (migrate_multifd() &&
1340                 !migrate_multifd_flush_after_each_section()) {
1341                 QEMUFile *f = rs->pss[RAM_CHANNEL_PRECOPY].pss_channel;
1342                 int ret = multifd_send_sync_main(f);
1343                 if (ret < 0) {
1344                     return ret;
1345                 }
1346                 qemu_put_be64(f, RAM_SAVE_FLAG_MULTIFD_FLUSH);
1347                 qemu_fflush(f);
1348             }
1349             /*
1350              * If memory migration starts over, we will meet a dirtied page
1351              * which may still exists in compression threads's ring, so we
1352              * should flush the compressed data to make sure the new page
1353              * is not overwritten by the old one in the destination.
1354              *
1355              * Also If xbzrle is on, stop using the data compression at this
1356              * point. In theory, xbzrle can do better than compression.
1357              */
1358             compress_flush_data();
1359 
1360             /* Hit the end of the list */
1361             pss->block = QLIST_FIRST_RCU(&ram_list.blocks);
1362             /* Flag that we've looped */
1363             pss->complete_round = true;
1364             /* After the first round, enable XBZRLE. */
1365             if (migrate_xbzrle()) {
1366                 rs->xbzrle_started = true;
1367             }
1368         }
1369         /* Didn't find anything this time, but try again on the new block */
1370         return PAGE_TRY_AGAIN;
1371     } else {
1372         /* We've found something */
1373         return PAGE_DIRTY_FOUND;
1374     }
1375 }
1376 
1377 /**
1378  * unqueue_page: gets a page of the queue
1379  *
1380  * Helper for 'get_queued_page' - gets a page off the queue
1381  *
1382  * Returns the block of the page (or NULL if none available)
1383  *
1384  * @rs: current RAM state
1385  * @offset: used to return the offset within the RAMBlock
1386  */
1387 static RAMBlock *unqueue_page(RAMState *rs, ram_addr_t *offset)
1388 {
1389     struct RAMSrcPageRequest *entry;
1390     RAMBlock *block = NULL;
1391 
1392     if (!postcopy_has_request(rs)) {
1393         return NULL;
1394     }
1395 
1396     QEMU_LOCK_GUARD(&rs->src_page_req_mutex);
1397 
1398     /*
1399      * This should _never_ change even after we take the lock, because no one
1400      * should be taking anything off the request list other than us.
1401      */
1402     assert(postcopy_has_request(rs));
1403 
1404     entry = QSIMPLEQ_FIRST(&rs->src_page_requests);
1405     block = entry->rb;
1406     *offset = entry->offset;
1407 
1408     if (entry->len > TARGET_PAGE_SIZE) {
1409         entry->len -= TARGET_PAGE_SIZE;
1410         entry->offset += TARGET_PAGE_SIZE;
1411     } else {
1412         memory_region_unref(block->mr);
1413         QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
1414         g_free(entry);
1415         migration_consume_urgent_request();
1416     }
1417 
1418     return block;
1419 }
1420 
1421 #if defined(__linux__)
1422 /**
1423  * poll_fault_page: try to get next UFFD write fault page and, if pending fault
1424  *   is found, return RAM block pointer and page offset
1425  *
1426  * Returns pointer to the RAMBlock containing faulting page,
1427  *   NULL if no write faults are pending
1428  *
1429  * @rs: current RAM state
1430  * @offset: page offset from the beginning of the block
1431  */
1432 static RAMBlock *poll_fault_page(RAMState *rs, ram_addr_t *offset)
1433 {
1434     struct uffd_msg uffd_msg;
1435     void *page_address;
1436     RAMBlock *block;
1437     int res;
1438 
1439     if (!migrate_background_snapshot()) {
1440         return NULL;
1441     }
1442 
1443     res = uffd_read_events(rs->uffdio_fd, &uffd_msg, 1);
1444     if (res <= 0) {
1445         return NULL;
1446     }
1447 
1448     page_address = (void *)(uintptr_t) uffd_msg.arg.pagefault.address;
1449     block = qemu_ram_block_from_host(page_address, false, offset);
1450     assert(block && (block->flags & RAM_UF_WRITEPROTECT) != 0);
1451     return block;
1452 }
1453 
1454 /**
1455  * ram_save_release_protection: release UFFD write protection after
1456  *   a range of pages has been saved
1457  *
1458  * @rs: current RAM state
1459  * @pss: page-search-status structure
1460  * @start_page: index of the first page in the range relative to pss->block
1461  *
1462  * Returns 0 on success, negative value in case of an error
1463 */
1464 static int ram_save_release_protection(RAMState *rs, PageSearchStatus *pss,
1465         unsigned long start_page)
1466 {
1467     int res = 0;
1468 
1469     /* Check if page is from UFFD-managed region. */
1470     if (pss->block->flags & RAM_UF_WRITEPROTECT) {
1471         void *page_address = pss->block->host + (start_page << TARGET_PAGE_BITS);
1472         uint64_t run_length = (pss->page - start_page) << TARGET_PAGE_BITS;
1473 
1474         /* Flush async buffers before un-protect. */
1475         qemu_fflush(pss->pss_channel);
1476         /* Un-protect memory range. */
1477         res = uffd_change_protection(rs->uffdio_fd, page_address, run_length,
1478                 false, false);
1479     }
1480 
1481     return res;
1482 }
1483 
1484 /* ram_write_tracking_available: check if kernel supports required UFFD features
1485  *
1486  * Returns true if supports, false otherwise
1487  */
1488 bool ram_write_tracking_available(void)
1489 {
1490     uint64_t uffd_features;
1491     int res;
1492 
1493     res = uffd_query_features(&uffd_features);
1494     return (res == 0 &&
1495             (uffd_features & UFFD_FEATURE_PAGEFAULT_FLAG_WP) != 0);
1496 }
1497 
1498 /* ram_write_tracking_compatible: check if guest configuration is
1499  *   compatible with 'write-tracking'
1500  *
1501  * Returns true if compatible, false otherwise
1502  */
1503 bool ram_write_tracking_compatible(void)
1504 {
1505     const uint64_t uffd_ioctls_mask = BIT(_UFFDIO_WRITEPROTECT);
1506     int uffd_fd;
1507     RAMBlock *block;
1508     bool ret = false;
1509 
1510     /* Open UFFD file descriptor */
1511     uffd_fd = uffd_create_fd(UFFD_FEATURE_PAGEFAULT_FLAG_WP, false);
1512     if (uffd_fd < 0) {
1513         return false;
1514     }
1515 
1516     RCU_READ_LOCK_GUARD();
1517 
1518     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1519         uint64_t uffd_ioctls;
1520 
1521         /* Nothing to do with read-only and MMIO-writable regions */
1522         if (block->mr->readonly || block->mr->rom_device) {
1523             continue;
1524         }
1525         /* Try to register block memory via UFFD-IO to track writes */
1526         if (uffd_register_memory(uffd_fd, block->host, block->max_length,
1527                 UFFDIO_REGISTER_MODE_WP, &uffd_ioctls)) {
1528             goto out;
1529         }
1530         if ((uffd_ioctls & uffd_ioctls_mask) != uffd_ioctls_mask) {
1531             goto out;
1532         }
1533     }
1534     ret = true;
1535 
1536 out:
1537     uffd_close_fd(uffd_fd);
1538     return ret;
1539 }
1540 
1541 static inline void populate_read_range(RAMBlock *block, ram_addr_t offset,
1542                                        ram_addr_t size)
1543 {
1544     const ram_addr_t end = offset + size;
1545 
1546     /*
1547      * We read one byte of each page; this will preallocate page tables if
1548      * required and populate the shared zeropage on MAP_PRIVATE anonymous memory
1549      * where no page was populated yet. This might require adaption when
1550      * supporting other mappings, like shmem.
1551      */
1552     for (; offset < end; offset += block->page_size) {
1553         char tmp = *((char *)block->host + offset);
1554 
1555         /* Don't optimize the read out */
1556         asm volatile("" : "+r" (tmp));
1557     }
1558 }
1559 
1560 static inline int populate_read_section(MemoryRegionSection *section,
1561                                         void *opaque)
1562 {
1563     const hwaddr size = int128_get64(section->size);
1564     hwaddr offset = section->offset_within_region;
1565     RAMBlock *block = section->mr->ram_block;
1566 
1567     populate_read_range(block, offset, size);
1568     return 0;
1569 }
1570 
1571 /*
1572  * ram_block_populate_read: preallocate page tables and populate pages in the
1573  *   RAM block by reading a byte of each page.
1574  *
1575  * Since it's solely used for userfault_fd WP feature, here we just
1576  *   hardcode page size to qemu_real_host_page_size.
1577  *
1578  * @block: RAM block to populate
1579  */
1580 static void ram_block_populate_read(RAMBlock *rb)
1581 {
1582     /*
1583      * Skip populating all pages that fall into a discarded range as managed by
1584      * a RamDiscardManager responsible for the mapped memory region of the
1585      * RAMBlock. Such discarded ("logically unplugged") parts of a RAMBlock
1586      * must not get populated automatically. We don't have to track
1587      * modifications via userfaultfd WP reliably, because these pages will
1588      * not be part of the migration stream either way -- see
1589      * ramblock_dirty_bitmap_exclude_discarded_pages().
1590      *
1591      * Note: The result is only stable while migrating (precopy/postcopy).
1592      */
1593     if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) {
1594         RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr);
1595         MemoryRegionSection section = {
1596             .mr = rb->mr,
1597             .offset_within_region = 0,
1598             .size = rb->mr->size,
1599         };
1600 
1601         ram_discard_manager_replay_populated(rdm, &section,
1602                                              populate_read_section, NULL);
1603     } else {
1604         populate_read_range(rb, 0, rb->used_length);
1605     }
1606 }
1607 
1608 /*
1609  * ram_write_tracking_prepare: prepare for UFFD-WP memory tracking
1610  */
1611 void ram_write_tracking_prepare(void)
1612 {
1613     RAMBlock *block;
1614 
1615     RCU_READ_LOCK_GUARD();
1616 
1617     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1618         /* Nothing to do with read-only and MMIO-writable regions */
1619         if (block->mr->readonly || block->mr->rom_device) {
1620             continue;
1621         }
1622 
1623         /*
1624          * Populate pages of the RAM block before enabling userfault_fd
1625          * write protection.
1626          *
1627          * This stage is required since ioctl(UFFDIO_WRITEPROTECT) with
1628          * UFFDIO_WRITEPROTECT_MODE_WP mode setting would silently skip
1629          * pages with pte_none() entries in page table.
1630          */
1631         ram_block_populate_read(block);
1632     }
1633 }
1634 
1635 static inline int uffd_protect_section(MemoryRegionSection *section,
1636                                        void *opaque)
1637 {
1638     const hwaddr size = int128_get64(section->size);
1639     const hwaddr offset = section->offset_within_region;
1640     RAMBlock *rb = section->mr->ram_block;
1641     int uffd_fd = (uintptr_t)opaque;
1642 
1643     return uffd_change_protection(uffd_fd, rb->host + offset, size, true,
1644                                   false);
1645 }
1646 
1647 static int ram_block_uffd_protect(RAMBlock *rb, int uffd_fd)
1648 {
1649     assert(rb->flags & RAM_UF_WRITEPROTECT);
1650 
1651     /* See ram_block_populate_read() */
1652     if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) {
1653         RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr);
1654         MemoryRegionSection section = {
1655             .mr = rb->mr,
1656             .offset_within_region = 0,
1657             .size = rb->mr->size,
1658         };
1659 
1660         return ram_discard_manager_replay_populated(rdm, &section,
1661                                                     uffd_protect_section,
1662                                                     (void *)(uintptr_t)uffd_fd);
1663     }
1664     return uffd_change_protection(uffd_fd, rb->host,
1665                                   rb->used_length, true, false);
1666 }
1667 
1668 /*
1669  * ram_write_tracking_start: start UFFD-WP memory tracking
1670  *
1671  * Returns 0 for success or negative value in case of error
1672  */
1673 int ram_write_tracking_start(void)
1674 {
1675     int uffd_fd;
1676     RAMState *rs = ram_state;
1677     RAMBlock *block;
1678 
1679     /* Open UFFD file descriptor */
1680     uffd_fd = uffd_create_fd(UFFD_FEATURE_PAGEFAULT_FLAG_WP, true);
1681     if (uffd_fd < 0) {
1682         return uffd_fd;
1683     }
1684     rs->uffdio_fd = uffd_fd;
1685 
1686     RCU_READ_LOCK_GUARD();
1687 
1688     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1689         /* Nothing to do with read-only and MMIO-writable regions */
1690         if (block->mr->readonly || block->mr->rom_device) {
1691             continue;
1692         }
1693 
1694         /* Register block memory with UFFD to track writes */
1695         if (uffd_register_memory(rs->uffdio_fd, block->host,
1696                 block->max_length, UFFDIO_REGISTER_MODE_WP, NULL)) {
1697             goto fail;
1698         }
1699         block->flags |= RAM_UF_WRITEPROTECT;
1700         memory_region_ref(block->mr);
1701 
1702         /* Apply UFFD write protection to the block memory range */
1703         if (ram_block_uffd_protect(block, uffd_fd)) {
1704             goto fail;
1705         }
1706 
1707         trace_ram_write_tracking_ramblock_start(block->idstr, block->page_size,
1708                 block->host, block->max_length);
1709     }
1710 
1711     return 0;
1712 
1713 fail:
1714     error_report("ram_write_tracking_start() failed: restoring initial memory state");
1715 
1716     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1717         if ((block->flags & RAM_UF_WRITEPROTECT) == 0) {
1718             continue;
1719         }
1720         uffd_unregister_memory(rs->uffdio_fd, block->host, block->max_length);
1721         /* Cleanup flags and remove reference */
1722         block->flags &= ~RAM_UF_WRITEPROTECT;
1723         memory_region_unref(block->mr);
1724     }
1725 
1726     uffd_close_fd(uffd_fd);
1727     rs->uffdio_fd = -1;
1728     return -1;
1729 }
1730 
1731 /**
1732  * ram_write_tracking_stop: stop UFFD-WP memory tracking and remove protection
1733  */
1734 void ram_write_tracking_stop(void)
1735 {
1736     RAMState *rs = ram_state;
1737     RAMBlock *block;
1738 
1739     RCU_READ_LOCK_GUARD();
1740 
1741     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1742         if ((block->flags & RAM_UF_WRITEPROTECT) == 0) {
1743             continue;
1744         }
1745         uffd_unregister_memory(rs->uffdio_fd, block->host, block->max_length);
1746 
1747         trace_ram_write_tracking_ramblock_stop(block->idstr, block->page_size,
1748                 block->host, block->max_length);
1749 
1750         /* Cleanup flags and remove reference */
1751         block->flags &= ~RAM_UF_WRITEPROTECT;
1752         memory_region_unref(block->mr);
1753     }
1754 
1755     /* Finally close UFFD file descriptor */
1756     uffd_close_fd(rs->uffdio_fd);
1757     rs->uffdio_fd = -1;
1758 }
1759 
1760 #else
1761 /* No target OS support, stubs just fail or ignore */
1762 
1763 static RAMBlock *poll_fault_page(RAMState *rs, ram_addr_t *offset)
1764 {
1765     (void) rs;
1766     (void) offset;
1767 
1768     return NULL;
1769 }
1770 
1771 static int ram_save_release_protection(RAMState *rs, PageSearchStatus *pss,
1772         unsigned long start_page)
1773 {
1774     (void) rs;
1775     (void) pss;
1776     (void) start_page;
1777 
1778     return 0;
1779 }
1780 
1781 bool ram_write_tracking_available(void)
1782 {
1783     return false;
1784 }
1785 
1786 bool ram_write_tracking_compatible(void)
1787 {
1788     assert(0);
1789     return false;
1790 }
1791 
1792 int ram_write_tracking_start(void)
1793 {
1794     assert(0);
1795     return -1;
1796 }
1797 
1798 void ram_write_tracking_stop(void)
1799 {
1800     assert(0);
1801 }
1802 #endif /* defined(__linux__) */
1803 
1804 /**
1805  * get_queued_page: unqueue a page from the postcopy requests
1806  *
1807  * Skips pages that are already sent (!dirty)
1808  *
1809  * Returns true if a queued page is found
1810  *
1811  * @rs: current RAM state
1812  * @pss: data about the state of the current dirty page scan
1813  */
1814 static bool get_queued_page(RAMState *rs, PageSearchStatus *pss)
1815 {
1816     RAMBlock  *block;
1817     ram_addr_t offset;
1818     bool dirty;
1819 
1820     do {
1821         block = unqueue_page(rs, &offset);
1822         /*
1823          * We're sending this page, and since it's postcopy nothing else
1824          * will dirty it, and we must make sure it doesn't get sent again
1825          * even if this queue request was received after the background
1826          * search already sent it.
1827          */
1828         if (block) {
1829             unsigned long page;
1830 
1831             page = offset >> TARGET_PAGE_BITS;
1832             dirty = test_bit(page, block->bmap);
1833             if (!dirty) {
1834                 trace_get_queued_page_not_dirty(block->idstr, (uint64_t)offset,
1835                                                 page);
1836             } else {
1837                 trace_get_queued_page(block->idstr, (uint64_t)offset, page);
1838             }
1839         }
1840 
1841     } while (block && !dirty);
1842 
1843     if (!block) {
1844         /*
1845          * Poll write faults too if background snapshot is enabled; that's
1846          * when we have vcpus got blocked by the write protected pages.
1847          */
1848         block = poll_fault_page(rs, &offset);
1849     }
1850 
1851     if (block) {
1852         /*
1853          * We want the background search to continue from the queued page
1854          * since the guest is likely to want other pages near to the page
1855          * it just requested.
1856          */
1857         pss->block = block;
1858         pss->page = offset >> TARGET_PAGE_BITS;
1859 
1860         /*
1861          * This unqueued page would break the "one round" check, even is
1862          * really rare.
1863          */
1864         pss->complete_round = false;
1865     }
1866 
1867     return !!block;
1868 }
1869 
1870 /**
1871  * migration_page_queue_free: drop any remaining pages in the ram
1872  * request queue
1873  *
1874  * It should be empty at the end anyway, but in error cases there may
1875  * be some left.  in case that there is any page left, we drop it.
1876  *
1877  */
1878 static void migration_page_queue_free(RAMState *rs)
1879 {
1880     struct RAMSrcPageRequest *mspr, *next_mspr;
1881     /* This queue generally should be empty - but in the case of a failed
1882      * migration might have some droppings in.
1883      */
1884     RCU_READ_LOCK_GUARD();
1885     QSIMPLEQ_FOREACH_SAFE(mspr, &rs->src_page_requests, next_req, next_mspr) {
1886         memory_region_unref(mspr->rb->mr);
1887         QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
1888         g_free(mspr);
1889     }
1890 }
1891 
1892 /**
1893  * ram_save_queue_pages: queue the page for transmission
1894  *
1895  * A request from postcopy destination for example.
1896  *
1897  * Returns zero on success or negative on error
1898  *
1899  * @rbname: Name of the RAMBLock of the request. NULL means the
1900  *          same that last one.
1901  * @start: starting address from the start of the RAMBlock
1902  * @len: length (in bytes) to send
1903  */
1904 int ram_save_queue_pages(const char *rbname, ram_addr_t start, ram_addr_t len)
1905 {
1906     RAMBlock *ramblock;
1907     RAMState *rs = ram_state;
1908 
1909     stat64_add(&mig_stats.postcopy_requests, 1);
1910     RCU_READ_LOCK_GUARD();
1911 
1912     if (!rbname) {
1913         /* Reuse last RAMBlock */
1914         ramblock = rs->last_req_rb;
1915 
1916         if (!ramblock) {
1917             /*
1918              * Shouldn't happen, we can't reuse the last RAMBlock if
1919              * it's the 1st request.
1920              */
1921             error_report("ram_save_queue_pages no previous block");
1922             return -1;
1923         }
1924     } else {
1925         ramblock = qemu_ram_block_by_name(rbname);
1926 
1927         if (!ramblock) {
1928             /* We shouldn't be asked for a non-existent RAMBlock */
1929             error_report("ram_save_queue_pages no block '%s'", rbname);
1930             return -1;
1931         }
1932         rs->last_req_rb = ramblock;
1933     }
1934     trace_ram_save_queue_pages(ramblock->idstr, start, len);
1935     if (!offset_in_ramblock(ramblock, start + len - 1)) {
1936         error_report("%s request overrun start=" RAM_ADDR_FMT " len="
1937                      RAM_ADDR_FMT " blocklen=" RAM_ADDR_FMT,
1938                      __func__, start, len, ramblock->used_length);
1939         return -1;
1940     }
1941 
1942     /*
1943      * When with postcopy preempt, we send back the page directly in the
1944      * rp-return thread.
1945      */
1946     if (postcopy_preempt_active()) {
1947         ram_addr_t page_start = start >> TARGET_PAGE_BITS;
1948         size_t page_size = qemu_ram_pagesize(ramblock);
1949         PageSearchStatus *pss = &ram_state->pss[RAM_CHANNEL_POSTCOPY];
1950         int ret = 0;
1951 
1952         qemu_mutex_lock(&rs->bitmap_mutex);
1953 
1954         pss_init(pss, ramblock, page_start);
1955         /*
1956          * Always use the preempt channel, and make sure it's there.  It's
1957          * safe to access without lock, because when rp-thread is running
1958          * we should be the only one who operates on the qemufile
1959          */
1960         pss->pss_channel = migrate_get_current()->postcopy_qemufile_src;
1961         assert(pss->pss_channel);
1962 
1963         /*
1964          * It must be either one or multiple of host page size.  Just
1965          * assert; if something wrong we're mostly split brain anyway.
1966          */
1967         assert(len % page_size == 0);
1968         while (len) {
1969             if (ram_save_host_page_urgent(pss)) {
1970                 error_report("%s: ram_save_host_page_urgent() failed: "
1971                              "ramblock=%s, start_addr=0x"RAM_ADDR_FMT,
1972                              __func__, ramblock->idstr, start);
1973                 ret = -1;
1974                 break;
1975             }
1976             /*
1977              * NOTE: after ram_save_host_page_urgent() succeeded, pss->page
1978              * will automatically be moved and point to the next host page
1979              * we're going to send, so no need to update here.
1980              *
1981              * Normally QEMU never sends >1 host page in requests, so
1982              * logically we don't even need that as the loop should only
1983              * run once, but just to be consistent.
1984              */
1985             len -= page_size;
1986         };
1987         qemu_mutex_unlock(&rs->bitmap_mutex);
1988 
1989         return ret;
1990     }
1991 
1992     struct RAMSrcPageRequest *new_entry =
1993         g_new0(struct RAMSrcPageRequest, 1);
1994     new_entry->rb = ramblock;
1995     new_entry->offset = start;
1996     new_entry->len = len;
1997 
1998     memory_region_ref(ramblock->mr);
1999     qemu_mutex_lock(&rs->src_page_req_mutex);
2000     QSIMPLEQ_INSERT_TAIL(&rs->src_page_requests, new_entry, next_req);
2001     migration_make_urgent_request();
2002     qemu_mutex_unlock(&rs->src_page_req_mutex);
2003 
2004     return 0;
2005 }
2006 
2007 /*
2008  * try to compress the page before posting it out, return true if the page
2009  * has been properly handled by compression, otherwise needs other
2010  * paths to handle it
2011  */
2012 static bool save_compress_page(RAMState *rs, PageSearchStatus *pss,
2013                                ram_addr_t offset)
2014 {
2015     if (!migrate_compress()) {
2016         return false;
2017     }
2018 
2019     /*
2020      * When starting the process of a new block, the first page of
2021      * the block should be sent out before other pages in the same
2022      * block, and all the pages in last block should have been sent
2023      * out, keeping this order is important, because the 'cont' flag
2024      * is used to avoid resending the block name.
2025      *
2026      * We post the fist page as normal page as compression will take
2027      * much CPU resource.
2028      */
2029     if (pss->block != pss->last_sent_block) {
2030         compress_flush_data();
2031         return false;
2032     }
2033 
2034     return compress_page_with_multi_thread(pss->block, offset,
2035                                            compress_send_queued_data);
2036 }
2037 
2038 /**
2039  * ram_save_target_page_legacy: save one target page
2040  *
2041  * Returns the number of pages written
2042  *
2043  * @rs: current RAM state
2044  * @pss: data about the page we want to send
2045  */
2046 static int ram_save_target_page_legacy(RAMState *rs, PageSearchStatus *pss)
2047 {
2048     RAMBlock *block = pss->block;
2049     ram_addr_t offset = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS;
2050     int res;
2051 
2052     if (control_save_page(pss, offset, &res)) {
2053         return res;
2054     }
2055 
2056     if (save_compress_page(rs, pss, offset)) {
2057         return 1;
2058     }
2059 
2060     if (save_zero_page(rs, pss, offset)) {
2061         return 1;
2062     }
2063 
2064     /*
2065      * Do not use multifd in postcopy as one whole host page should be
2066      * placed.  Meanwhile postcopy requires atomic update of pages, so even
2067      * if host page size == guest page size the dest guest during run may
2068      * still see partially copied pages which is data corruption.
2069      */
2070     if (migrate_multifd() && !migration_in_postcopy()) {
2071         return ram_save_multifd_page(pss->pss_channel, block, offset);
2072     }
2073 
2074     return ram_save_page(rs, pss);
2075 }
2076 
2077 /* Should be called before sending a host page */
2078 static void pss_host_page_prepare(PageSearchStatus *pss)
2079 {
2080     /* How many guest pages are there in one host page? */
2081     size_t guest_pfns = qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS;
2082 
2083     pss->host_page_sending = true;
2084     if (guest_pfns <= 1) {
2085         /*
2086          * This covers both when guest psize == host psize, or when guest
2087          * has larger psize than the host (guest_pfns==0).
2088          *
2089          * For the latter, we always send one whole guest page per
2090          * iteration of the host page (example: an Alpha VM on x86 host
2091          * will have guest psize 8K while host psize 4K).
2092          */
2093         pss->host_page_start = pss->page;
2094         pss->host_page_end = pss->page + 1;
2095     } else {
2096         /*
2097          * The host page spans over multiple guest pages, we send them
2098          * within the same host page iteration.
2099          */
2100         pss->host_page_start = ROUND_DOWN(pss->page, guest_pfns);
2101         pss->host_page_end = ROUND_UP(pss->page + 1, guest_pfns);
2102     }
2103 }
2104 
2105 /*
2106  * Whether the page pointed by PSS is within the host page being sent.
2107  * Must be called after a previous pss_host_page_prepare().
2108  */
2109 static bool pss_within_range(PageSearchStatus *pss)
2110 {
2111     ram_addr_t ram_addr;
2112 
2113     assert(pss->host_page_sending);
2114 
2115     /* Over host-page boundary? */
2116     if (pss->page >= pss->host_page_end) {
2117         return false;
2118     }
2119 
2120     ram_addr = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS;
2121 
2122     return offset_in_ramblock(pss->block, ram_addr);
2123 }
2124 
2125 static void pss_host_page_finish(PageSearchStatus *pss)
2126 {
2127     pss->host_page_sending = false;
2128     /* This is not needed, but just to reset it */
2129     pss->host_page_start = pss->host_page_end = 0;
2130 }
2131 
2132 /*
2133  * Send an urgent host page specified by `pss'.  Need to be called with
2134  * bitmap_mutex held.
2135  *
2136  * Returns 0 if save host page succeeded, false otherwise.
2137  */
2138 static int ram_save_host_page_urgent(PageSearchStatus *pss)
2139 {
2140     bool page_dirty, sent = false;
2141     RAMState *rs = ram_state;
2142     int ret = 0;
2143 
2144     trace_postcopy_preempt_send_host_page(pss->block->idstr, pss->page);
2145     pss_host_page_prepare(pss);
2146 
2147     /*
2148      * If precopy is sending the same page, let it be done in precopy, or
2149      * we could send the same page in two channels and none of them will
2150      * receive the whole page.
2151      */
2152     if (pss_overlap(pss, &ram_state->pss[RAM_CHANNEL_PRECOPY])) {
2153         trace_postcopy_preempt_hit(pss->block->idstr,
2154                                    pss->page << TARGET_PAGE_BITS);
2155         return 0;
2156     }
2157 
2158     do {
2159         page_dirty = migration_bitmap_clear_dirty(rs, pss->block, pss->page);
2160 
2161         if (page_dirty) {
2162             /* Be strict to return code; it must be 1, or what else? */
2163             if (migration_ops->ram_save_target_page(rs, pss) != 1) {
2164                 error_report_once("%s: ram_save_target_page failed", __func__);
2165                 ret = -1;
2166                 goto out;
2167             }
2168             sent = true;
2169         }
2170         pss_find_next_dirty(pss);
2171     } while (pss_within_range(pss));
2172 out:
2173     pss_host_page_finish(pss);
2174     /* For urgent requests, flush immediately if sent */
2175     if (sent) {
2176         qemu_fflush(pss->pss_channel);
2177     }
2178     return ret;
2179 }
2180 
2181 /**
2182  * ram_save_host_page: save a whole host page
2183  *
2184  * Starting at *offset send pages up to the end of the current host
2185  * page. It's valid for the initial offset to point into the middle of
2186  * a host page in which case the remainder of the hostpage is sent.
2187  * Only dirty target pages are sent. Note that the host page size may
2188  * be a huge page for this block.
2189  *
2190  * The saving stops at the boundary of the used_length of the block
2191  * if the RAMBlock isn't a multiple of the host page size.
2192  *
2193  * The caller must be with ram_state.bitmap_mutex held to call this
2194  * function.  Note that this function can temporarily release the lock, but
2195  * when the function is returned it'll make sure the lock is still held.
2196  *
2197  * Returns the number of pages written or negative on error
2198  *
2199  * @rs: current RAM state
2200  * @pss: data about the page we want to send
2201  */
2202 static int ram_save_host_page(RAMState *rs, PageSearchStatus *pss)
2203 {
2204     bool page_dirty, preempt_active = postcopy_preempt_active();
2205     int tmppages, pages = 0;
2206     size_t pagesize_bits =
2207         qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS;
2208     unsigned long start_page = pss->page;
2209     int res;
2210 
2211     if (migrate_ram_is_ignored(pss->block)) {
2212         error_report("block %s should not be migrated !", pss->block->idstr);
2213         return 0;
2214     }
2215 
2216     /* Update host page boundary information */
2217     pss_host_page_prepare(pss);
2218 
2219     do {
2220         page_dirty = migration_bitmap_clear_dirty(rs, pss->block, pss->page);
2221 
2222         /* Check the pages is dirty and if it is send it */
2223         if (page_dirty) {
2224             /*
2225              * Properly yield the lock only in postcopy preempt mode
2226              * because both migration thread and rp-return thread can
2227              * operate on the bitmaps.
2228              */
2229             if (preempt_active) {
2230                 qemu_mutex_unlock(&rs->bitmap_mutex);
2231             }
2232             tmppages = migration_ops->ram_save_target_page(rs, pss);
2233             if (tmppages >= 0) {
2234                 pages += tmppages;
2235                 /*
2236                  * Allow rate limiting to happen in the middle of huge pages if
2237                  * something is sent in the current iteration.
2238                  */
2239                 if (pagesize_bits > 1 && tmppages > 0) {
2240                     migration_rate_limit();
2241                 }
2242             }
2243             if (preempt_active) {
2244                 qemu_mutex_lock(&rs->bitmap_mutex);
2245             }
2246         } else {
2247             tmppages = 0;
2248         }
2249 
2250         if (tmppages < 0) {
2251             pss_host_page_finish(pss);
2252             return tmppages;
2253         }
2254 
2255         pss_find_next_dirty(pss);
2256     } while (pss_within_range(pss));
2257 
2258     pss_host_page_finish(pss);
2259 
2260     res = ram_save_release_protection(rs, pss, start_page);
2261     return (res < 0 ? res : pages);
2262 }
2263 
2264 /**
2265  * ram_find_and_save_block: finds a dirty page and sends it to f
2266  *
2267  * Called within an RCU critical section.
2268  *
2269  * Returns the number of pages written where zero means no dirty pages,
2270  * or negative on error
2271  *
2272  * @rs: current RAM state
2273  *
2274  * On systems where host-page-size > target-page-size it will send all the
2275  * pages in a host page that are dirty.
2276  */
2277 static int ram_find_and_save_block(RAMState *rs)
2278 {
2279     PageSearchStatus *pss = &rs->pss[RAM_CHANNEL_PRECOPY];
2280     int pages = 0;
2281 
2282     /* No dirty page as there is zero RAM */
2283     if (!rs->ram_bytes_total) {
2284         return pages;
2285     }
2286 
2287     /*
2288      * Always keep last_seen_block/last_page valid during this procedure,
2289      * because find_dirty_block() relies on these values (e.g., we compare
2290      * last_seen_block with pss.block to see whether we searched all the
2291      * ramblocks) to detect the completion of migration.  Having NULL value
2292      * of last_seen_block can conditionally cause below loop to run forever.
2293      */
2294     if (!rs->last_seen_block) {
2295         rs->last_seen_block = QLIST_FIRST_RCU(&ram_list.blocks);
2296         rs->last_page = 0;
2297     }
2298 
2299     pss_init(pss, rs->last_seen_block, rs->last_page);
2300 
2301     while (true){
2302         if (!get_queued_page(rs, pss)) {
2303             /* priority queue empty, so just search for something dirty */
2304             int res = find_dirty_block(rs, pss);
2305             if (res != PAGE_DIRTY_FOUND) {
2306                 if (res == PAGE_ALL_CLEAN) {
2307                     break;
2308                 } else if (res == PAGE_TRY_AGAIN) {
2309                     continue;
2310                 } else if (res < 0) {
2311                     pages = res;
2312                     break;
2313                 }
2314             }
2315         }
2316         pages = ram_save_host_page(rs, pss);
2317         if (pages) {
2318             break;
2319         }
2320     }
2321 
2322     rs->last_seen_block = pss->block;
2323     rs->last_page = pss->page;
2324 
2325     return pages;
2326 }
2327 
2328 static uint64_t ram_bytes_total_with_ignored(void)
2329 {
2330     RAMBlock *block;
2331     uint64_t total = 0;
2332 
2333     RCU_READ_LOCK_GUARD();
2334 
2335     RAMBLOCK_FOREACH_MIGRATABLE(block) {
2336         total += block->used_length;
2337     }
2338     return total;
2339 }
2340 
2341 uint64_t ram_bytes_total(void)
2342 {
2343     RAMBlock *block;
2344     uint64_t total = 0;
2345 
2346     RCU_READ_LOCK_GUARD();
2347 
2348     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2349         total += block->used_length;
2350     }
2351     return total;
2352 }
2353 
2354 static void xbzrle_load_setup(void)
2355 {
2356     XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE);
2357 }
2358 
2359 static void xbzrle_load_cleanup(void)
2360 {
2361     g_free(XBZRLE.decoded_buf);
2362     XBZRLE.decoded_buf = NULL;
2363 }
2364 
2365 static void ram_state_cleanup(RAMState **rsp)
2366 {
2367     if (*rsp) {
2368         migration_page_queue_free(*rsp);
2369         qemu_mutex_destroy(&(*rsp)->bitmap_mutex);
2370         qemu_mutex_destroy(&(*rsp)->src_page_req_mutex);
2371         g_free(*rsp);
2372         *rsp = NULL;
2373     }
2374 }
2375 
2376 static void xbzrle_cleanup(void)
2377 {
2378     XBZRLE_cache_lock();
2379     if (XBZRLE.cache) {
2380         cache_fini(XBZRLE.cache);
2381         g_free(XBZRLE.encoded_buf);
2382         g_free(XBZRLE.current_buf);
2383         g_free(XBZRLE.zero_target_page);
2384         XBZRLE.cache = NULL;
2385         XBZRLE.encoded_buf = NULL;
2386         XBZRLE.current_buf = NULL;
2387         XBZRLE.zero_target_page = NULL;
2388     }
2389     XBZRLE_cache_unlock();
2390 }
2391 
2392 static void ram_save_cleanup(void *opaque)
2393 {
2394     RAMState **rsp = opaque;
2395     RAMBlock *block;
2396 
2397     /* We don't use dirty log with background snapshots */
2398     if (!migrate_background_snapshot()) {
2399         /* caller have hold iothread lock or is in a bh, so there is
2400          * no writing race against the migration bitmap
2401          */
2402         if (global_dirty_tracking & GLOBAL_DIRTY_MIGRATION) {
2403             /*
2404              * do not stop dirty log without starting it, since
2405              * memory_global_dirty_log_stop will assert that
2406              * memory_global_dirty_log_start/stop used in pairs
2407              */
2408             memory_global_dirty_log_stop(GLOBAL_DIRTY_MIGRATION);
2409         }
2410     }
2411 
2412     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2413         g_free(block->clear_bmap);
2414         block->clear_bmap = NULL;
2415         g_free(block->bmap);
2416         block->bmap = NULL;
2417     }
2418 
2419     xbzrle_cleanup();
2420     compress_threads_save_cleanup();
2421     ram_state_cleanup(rsp);
2422     g_free(migration_ops);
2423     migration_ops = NULL;
2424 }
2425 
2426 static void ram_state_reset(RAMState *rs)
2427 {
2428     int i;
2429 
2430     for (i = 0; i < RAM_CHANNEL_MAX; i++) {
2431         rs->pss[i].last_sent_block = NULL;
2432     }
2433 
2434     rs->last_seen_block = NULL;
2435     rs->last_page = 0;
2436     rs->last_version = ram_list.version;
2437     rs->xbzrle_started = false;
2438 }
2439 
2440 #define MAX_WAIT 50 /* ms, half buffered_file limit */
2441 
2442 /* **** functions for postcopy ***** */
2443 
2444 void ram_postcopy_migrated_memory_release(MigrationState *ms)
2445 {
2446     struct RAMBlock *block;
2447 
2448     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2449         unsigned long *bitmap = block->bmap;
2450         unsigned long range = block->used_length >> TARGET_PAGE_BITS;
2451         unsigned long run_start = find_next_zero_bit(bitmap, range, 0);
2452 
2453         while (run_start < range) {
2454             unsigned long run_end = find_next_bit(bitmap, range, run_start + 1);
2455             ram_discard_range(block->idstr,
2456                               ((ram_addr_t)run_start) << TARGET_PAGE_BITS,
2457                               ((ram_addr_t)(run_end - run_start))
2458                                 << TARGET_PAGE_BITS);
2459             run_start = find_next_zero_bit(bitmap, range, run_end + 1);
2460         }
2461     }
2462 }
2463 
2464 /**
2465  * postcopy_send_discard_bm_ram: discard a RAMBlock
2466  *
2467  * Callback from postcopy_each_ram_send_discard for each RAMBlock
2468  *
2469  * @ms: current migration state
2470  * @block: RAMBlock to discard
2471  */
2472 static void postcopy_send_discard_bm_ram(MigrationState *ms, RAMBlock *block)
2473 {
2474     unsigned long end = block->used_length >> TARGET_PAGE_BITS;
2475     unsigned long current;
2476     unsigned long *bitmap = block->bmap;
2477 
2478     for (current = 0; current < end; ) {
2479         unsigned long one = find_next_bit(bitmap, end, current);
2480         unsigned long zero, discard_length;
2481 
2482         if (one >= end) {
2483             break;
2484         }
2485 
2486         zero = find_next_zero_bit(bitmap, end, one + 1);
2487 
2488         if (zero >= end) {
2489             discard_length = end - one;
2490         } else {
2491             discard_length = zero - one;
2492         }
2493         postcopy_discard_send_range(ms, one, discard_length);
2494         current = one + discard_length;
2495     }
2496 }
2497 
2498 static void postcopy_chunk_hostpages_pass(MigrationState *ms, RAMBlock *block);
2499 
2500 /**
2501  * postcopy_each_ram_send_discard: discard all RAMBlocks
2502  *
2503  * Utility for the outgoing postcopy code.
2504  *   Calls postcopy_send_discard_bm_ram for each RAMBlock
2505  *   passing it bitmap indexes and name.
2506  * (qemu_ram_foreach_block ends up passing unscaled lengths
2507  *  which would mean postcopy code would have to deal with target page)
2508  *
2509  * @ms: current migration state
2510  */
2511 static void postcopy_each_ram_send_discard(MigrationState *ms)
2512 {
2513     struct RAMBlock *block;
2514 
2515     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2516         postcopy_discard_send_init(ms, block->idstr);
2517 
2518         /*
2519          * Deal with TPS != HPS and huge pages.  It discard any partially sent
2520          * host-page size chunks, mark any partially dirty host-page size
2521          * chunks as all dirty.  In this case the host-page is the host-page
2522          * for the particular RAMBlock, i.e. it might be a huge page.
2523          */
2524         postcopy_chunk_hostpages_pass(ms, block);
2525 
2526         /*
2527          * Postcopy sends chunks of bitmap over the wire, but it
2528          * just needs indexes at this point, avoids it having
2529          * target page specific code.
2530          */
2531         postcopy_send_discard_bm_ram(ms, block);
2532         postcopy_discard_send_finish(ms);
2533     }
2534 }
2535 
2536 /**
2537  * postcopy_chunk_hostpages_pass: canonicalize bitmap in hostpages
2538  *
2539  * Helper for postcopy_chunk_hostpages; it's called twice to
2540  * canonicalize the two bitmaps, that are similar, but one is
2541  * inverted.
2542  *
2543  * Postcopy requires that all target pages in a hostpage are dirty or
2544  * clean, not a mix.  This function canonicalizes the bitmaps.
2545  *
2546  * @ms: current migration state
2547  * @block: block that contains the page we want to canonicalize
2548  */
2549 static void postcopy_chunk_hostpages_pass(MigrationState *ms, RAMBlock *block)
2550 {
2551     RAMState *rs = ram_state;
2552     unsigned long *bitmap = block->bmap;
2553     unsigned int host_ratio = block->page_size / TARGET_PAGE_SIZE;
2554     unsigned long pages = block->used_length >> TARGET_PAGE_BITS;
2555     unsigned long run_start;
2556 
2557     if (block->page_size == TARGET_PAGE_SIZE) {
2558         /* Easy case - TPS==HPS for a non-huge page RAMBlock */
2559         return;
2560     }
2561 
2562     /* Find a dirty page */
2563     run_start = find_next_bit(bitmap, pages, 0);
2564 
2565     while (run_start < pages) {
2566 
2567         /*
2568          * If the start of this run of pages is in the middle of a host
2569          * page, then we need to fixup this host page.
2570          */
2571         if (QEMU_IS_ALIGNED(run_start, host_ratio)) {
2572             /* Find the end of this run */
2573             run_start = find_next_zero_bit(bitmap, pages, run_start + 1);
2574             /*
2575              * If the end isn't at the start of a host page, then the
2576              * run doesn't finish at the end of a host page
2577              * and we need to discard.
2578              */
2579         }
2580 
2581         if (!QEMU_IS_ALIGNED(run_start, host_ratio)) {
2582             unsigned long page;
2583             unsigned long fixup_start_addr = QEMU_ALIGN_DOWN(run_start,
2584                                                              host_ratio);
2585             run_start = QEMU_ALIGN_UP(run_start, host_ratio);
2586 
2587             /* Clean up the bitmap */
2588             for (page = fixup_start_addr;
2589                  page < fixup_start_addr + host_ratio; page++) {
2590                 /*
2591                  * Remark them as dirty, updating the count for any pages
2592                  * that weren't previously dirty.
2593                  */
2594                 rs->migration_dirty_pages += !test_and_set_bit(page, bitmap);
2595             }
2596         }
2597 
2598         /* Find the next dirty page for the next iteration */
2599         run_start = find_next_bit(bitmap, pages, run_start);
2600     }
2601 }
2602 
2603 /**
2604  * ram_postcopy_send_discard_bitmap: transmit the discard bitmap
2605  *
2606  * Transmit the set of pages to be discarded after precopy to the target
2607  * these are pages that:
2608  *     a) Have been previously transmitted but are now dirty again
2609  *     b) Pages that have never been transmitted, this ensures that
2610  *        any pages on the destination that have been mapped by background
2611  *        tasks get discarded (transparent huge pages is the specific concern)
2612  * Hopefully this is pretty sparse
2613  *
2614  * @ms: current migration state
2615  */
2616 void ram_postcopy_send_discard_bitmap(MigrationState *ms)
2617 {
2618     RAMState *rs = ram_state;
2619 
2620     RCU_READ_LOCK_GUARD();
2621 
2622     /* This should be our last sync, the src is now paused */
2623     migration_bitmap_sync(rs, false);
2624 
2625     /* Easiest way to make sure we don't resume in the middle of a host-page */
2626     rs->pss[RAM_CHANNEL_PRECOPY].last_sent_block = NULL;
2627     rs->last_seen_block = NULL;
2628     rs->last_page = 0;
2629 
2630     postcopy_each_ram_send_discard(ms);
2631 
2632     trace_ram_postcopy_send_discard_bitmap();
2633 }
2634 
2635 /**
2636  * ram_discard_range: discard dirtied pages at the beginning of postcopy
2637  *
2638  * Returns zero on success
2639  *
2640  * @rbname: name of the RAMBlock of the request. NULL means the
2641  *          same that last one.
2642  * @start: RAMBlock starting page
2643  * @length: RAMBlock size
2644  */
2645 int ram_discard_range(const char *rbname, uint64_t start, size_t length)
2646 {
2647     trace_ram_discard_range(rbname, start, length);
2648 
2649     RCU_READ_LOCK_GUARD();
2650     RAMBlock *rb = qemu_ram_block_by_name(rbname);
2651 
2652     if (!rb) {
2653         error_report("ram_discard_range: Failed to find block '%s'", rbname);
2654         return -1;
2655     }
2656 
2657     /*
2658      * On source VM, we don't need to update the received bitmap since
2659      * we don't even have one.
2660      */
2661     if (rb->receivedmap) {
2662         bitmap_clear(rb->receivedmap, start >> qemu_target_page_bits(),
2663                      length >> qemu_target_page_bits());
2664     }
2665 
2666     return ram_block_discard_range(rb, start, length);
2667 }
2668 
2669 /*
2670  * For every allocation, we will try not to crash the VM if the
2671  * allocation failed.
2672  */
2673 static int xbzrle_init(void)
2674 {
2675     Error *local_err = NULL;
2676 
2677     if (!migrate_xbzrle()) {
2678         return 0;
2679     }
2680 
2681     XBZRLE_cache_lock();
2682 
2683     XBZRLE.zero_target_page = g_try_malloc0(TARGET_PAGE_SIZE);
2684     if (!XBZRLE.zero_target_page) {
2685         error_report("%s: Error allocating zero page", __func__);
2686         goto err_out;
2687     }
2688 
2689     XBZRLE.cache = cache_init(migrate_xbzrle_cache_size(),
2690                               TARGET_PAGE_SIZE, &local_err);
2691     if (!XBZRLE.cache) {
2692         error_report_err(local_err);
2693         goto free_zero_page;
2694     }
2695 
2696     XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE);
2697     if (!XBZRLE.encoded_buf) {
2698         error_report("%s: Error allocating encoded_buf", __func__);
2699         goto free_cache;
2700     }
2701 
2702     XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE);
2703     if (!XBZRLE.current_buf) {
2704         error_report("%s: Error allocating current_buf", __func__);
2705         goto free_encoded_buf;
2706     }
2707 
2708     /* We are all good */
2709     XBZRLE_cache_unlock();
2710     return 0;
2711 
2712 free_encoded_buf:
2713     g_free(XBZRLE.encoded_buf);
2714     XBZRLE.encoded_buf = NULL;
2715 free_cache:
2716     cache_fini(XBZRLE.cache);
2717     XBZRLE.cache = NULL;
2718 free_zero_page:
2719     g_free(XBZRLE.zero_target_page);
2720     XBZRLE.zero_target_page = NULL;
2721 err_out:
2722     XBZRLE_cache_unlock();
2723     return -ENOMEM;
2724 }
2725 
2726 static int ram_state_init(RAMState **rsp)
2727 {
2728     *rsp = g_try_new0(RAMState, 1);
2729 
2730     if (!*rsp) {
2731         error_report("%s: Init ramstate fail", __func__);
2732         return -1;
2733     }
2734 
2735     qemu_mutex_init(&(*rsp)->bitmap_mutex);
2736     qemu_mutex_init(&(*rsp)->src_page_req_mutex);
2737     QSIMPLEQ_INIT(&(*rsp)->src_page_requests);
2738     (*rsp)->ram_bytes_total = ram_bytes_total();
2739 
2740     /*
2741      * Count the total number of pages used by ram blocks not including any
2742      * gaps due to alignment or unplugs.
2743      * This must match with the initial values of dirty bitmap.
2744      */
2745     (*rsp)->migration_dirty_pages = (*rsp)->ram_bytes_total >> TARGET_PAGE_BITS;
2746     ram_state_reset(*rsp);
2747 
2748     return 0;
2749 }
2750 
2751 static void ram_list_init_bitmaps(void)
2752 {
2753     MigrationState *ms = migrate_get_current();
2754     RAMBlock *block;
2755     unsigned long pages;
2756     uint8_t shift;
2757 
2758     /* Skip setting bitmap if there is no RAM */
2759     if (ram_bytes_total()) {
2760         shift = ms->clear_bitmap_shift;
2761         if (shift > CLEAR_BITMAP_SHIFT_MAX) {
2762             error_report("clear_bitmap_shift (%u) too big, using "
2763                          "max value (%u)", shift, CLEAR_BITMAP_SHIFT_MAX);
2764             shift = CLEAR_BITMAP_SHIFT_MAX;
2765         } else if (shift < CLEAR_BITMAP_SHIFT_MIN) {
2766             error_report("clear_bitmap_shift (%u) too small, using "
2767                          "min value (%u)", shift, CLEAR_BITMAP_SHIFT_MIN);
2768             shift = CLEAR_BITMAP_SHIFT_MIN;
2769         }
2770 
2771         RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2772             pages = block->max_length >> TARGET_PAGE_BITS;
2773             /*
2774              * The initial dirty bitmap for migration must be set with all
2775              * ones to make sure we'll migrate every guest RAM page to
2776              * destination.
2777              * Here we set RAMBlock.bmap all to 1 because when rebegin a
2778              * new migration after a failed migration, ram_list.
2779              * dirty_memory[DIRTY_MEMORY_MIGRATION] don't include the whole
2780              * guest memory.
2781              */
2782             block->bmap = bitmap_new(pages);
2783             bitmap_set(block->bmap, 0, pages);
2784             block->clear_bmap_shift = shift;
2785             block->clear_bmap = bitmap_new(clear_bmap_size(pages, shift));
2786         }
2787     }
2788 }
2789 
2790 static void migration_bitmap_clear_discarded_pages(RAMState *rs)
2791 {
2792     unsigned long pages;
2793     RAMBlock *rb;
2794 
2795     RCU_READ_LOCK_GUARD();
2796 
2797     RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
2798             pages = ramblock_dirty_bitmap_clear_discarded_pages(rb);
2799             rs->migration_dirty_pages -= pages;
2800     }
2801 }
2802 
2803 static void ram_init_bitmaps(RAMState *rs)
2804 {
2805     qemu_mutex_lock_ramlist();
2806 
2807     WITH_RCU_READ_LOCK_GUARD() {
2808         ram_list_init_bitmaps();
2809         /* We don't use dirty log with background snapshots */
2810         if (!migrate_background_snapshot()) {
2811             memory_global_dirty_log_start(GLOBAL_DIRTY_MIGRATION);
2812             migration_bitmap_sync_precopy(rs, false);
2813         }
2814     }
2815     qemu_mutex_unlock_ramlist();
2816 
2817     /*
2818      * After an eventual first bitmap sync, fixup the initial bitmap
2819      * containing all 1s to exclude any discarded pages from migration.
2820      */
2821     migration_bitmap_clear_discarded_pages(rs);
2822 }
2823 
2824 static int ram_init_all(RAMState **rsp)
2825 {
2826     if (ram_state_init(rsp)) {
2827         return -1;
2828     }
2829 
2830     if (xbzrle_init()) {
2831         ram_state_cleanup(rsp);
2832         return -1;
2833     }
2834 
2835     ram_init_bitmaps(*rsp);
2836 
2837     return 0;
2838 }
2839 
2840 static void ram_state_resume_prepare(RAMState *rs, QEMUFile *out)
2841 {
2842     RAMBlock *block;
2843     uint64_t pages = 0;
2844 
2845     /*
2846      * Postcopy is not using xbzrle/compression, so no need for that.
2847      * Also, since source are already halted, we don't need to care
2848      * about dirty page logging as well.
2849      */
2850 
2851     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2852         pages += bitmap_count_one(block->bmap,
2853                                   block->used_length >> TARGET_PAGE_BITS);
2854     }
2855 
2856     /* This may not be aligned with current bitmaps. Recalculate. */
2857     rs->migration_dirty_pages = pages;
2858 
2859     ram_state_reset(rs);
2860 
2861     /* Update RAMState cache of output QEMUFile */
2862     rs->pss[RAM_CHANNEL_PRECOPY].pss_channel = out;
2863 
2864     trace_ram_state_resume_prepare(pages);
2865 }
2866 
2867 /*
2868  * This function clears bits of the free pages reported by the caller from the
2869  * migration dirty bitmap. @addr is the host address corresponding to the
2870  * start of the continuous guest free pages, and @len is the total bytes of
2871  * those pages.
2872  */
2873 void qemu_guest_free_page_hint(void *addr, size_t len)
2874 {
2875     RAMBlock *block;
2876     ram_addr_t offset;
2877     size_t used_len, start, npages;
2878     MigrationState *s = migrate_get_current();
2879 
2880     /* This function is currently expected to be used during live migration */
2881     if (!migration_is_setup_or_active(s->state)) {
2882         return;
2883     }
2884 
2885     for (; len > 0; len -= used_len, addr += used_len) {
2886         block = qemu_ram_block_from_host(addr, false, &offset);
2887         if (unlikely(!block || offset >= block->used_length)) {
2888             /*
2889              * The implementation might not support RAMBlock resize during
2890              * live migration, but it could happen in theory with future
2891              * updates. So we add a check here to capture that case.
2892              */
2893             error_report_once("%s unexpected error", __func__);
2894             return;
2895         }
2896 
2897         if (len <= block->used_length - offset) {
2898             used_len = len;
2899         } else {
2900             used_len = block->used_length - offset;
2901         }
2902 
2903         start = offset >> TARGET_PAGE_BITS;
2904         npages = used_len >> TARGET_PAGE_BITS;
2905 
2906         qemu_mutex_lock(&ram_state->bitmap_mutex);
2907         /*
2908          * The skipped free pages are equavalent to be sent from clear_bmap's
2909          * perspective, so clear the bits from the memory region bitmap which
2910          * are initially set. Otherwise those skipped pages will be sent in
2911          * the next round after syncing from the memory region bitmap.
2912          */
2913         migration_clear_memory_region_dirty_bitmap_range(block, start, npages);
2914         ram_state->migration_dirty_pages -=
2915                       bitmap_count_one_with_offset(block->bmap, start, npages);
2916         bitmap_clear(block->bmap, start, npages);
2917         qemu_mutex_unlock(&ram_state->bitmap_mutex);
2918     }
2919 }
2920 
2921 /*
2922  * Each of ram_save_setup, ram_save_iterate and ram_save_complete has
2923  * long-running RCU critical section.  When rcu-reclaims in the code
2924  * start to become numerous it will be necessary to reduce the
2925  * granularity of these critical sections.
2926  */
2927 
2928 /**
2929  * ram_save_setup: Setup RAM for migration
2930  *
2931  * Returns zero to indicate success and negative for error
2932  *
2933  * @f: QEMUFile where to send the data
2934  * @opaque: RAMState pointer
2935  */
2936 static int ram_save_setup(QEMUFile *f, void *opaque)
2937 {
2938     RAMState **rsp = opaque;
2939     RAMBlock *block;
2940     int ret;
2941 
2942     if (compress_threads_save_setup()) {
2943         return -1;
2944     }
2945 
2946     /* migration has already setup the bitmap, reuse it. */
2947     if (!migration_in_colo_state()) {
2948         if (ram_init_all(rsp) != 0) {
2949             compress_threads_save_cleanup();
2950             return -1;
2951         }
2952     }
2953     (*rsp)->pss[RAM_CHANNEL_PRECOPY].pss_channel = f;
2954 
2955     WITH_RCU_READ_LOCK_GUARD() {
2956         qemu_put_be64(f, ram_bytes_total_with_ignored()
2957                          | RAM_SAVE_FLAG_MEM_SIZE);
2958 
2959         RAMBLOCK_FOREACH_MIGRATABLE(block) {
2960             qemu_put_byte(f, strlen(block->idstr));
2961             qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
2962             qemu_put_be64(f, block->used_length);
2963             if (migrate_postcopy_ram() && block->page_size !=
2964                                           qemu_host_page_size) {
2965                 qemu_put_be64(f, block->page_size);
2966             }
2967             if (migrate_ignore_shared()) {
2968                 qemu_put_be64(f, block->mr->addr);
2969             }
2970         }
2971     }
2972 
2973     ret = rdma_registration_start(f, RAM_CONTROL_SETUP);
2974     if (ret < 0) {
2975         qemu_file_set_error(f, ret);
2976     }
2977 
2978     ret = rdma_registration_stop(f, RAM_CONTROL_SETUP);
2979     if (ret < 0) {
2980         qemu_file_set_error(f, ret);
2981     }
2982 
2983     migration_ops = g_malloc0(sizeof(MigrationOps));
2984     migration_ops->ram_save_target_page = ram_save_target_page_legacy;
2985 
2986     qemu_mutex_unlock_iothread();
2987     ret = multifd_send_sync_main(f);
2988     qemu_mutex_lock_iothread();
2989     if (ret < 0) {
2990         return ret;
2991     }
2992 
2993     if (migrate_multifd() && !migrate_multifd_flush_after_each_section()) {
2994         qemu_put_be64(f, RAM_SAVE_FLAG_MULTIFD_FLUSH);
2995     }
2996 
2997     qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
2998     qemu_fflush(f);
2999 
3000     return 0;
3001 }
3002 
3003 /**
3004  * ram_save_iterate: iterative stage for migration
3005  *
3006  * Returns zero to indicate success and negative for error
3007  *
3008  * @f: QEMUFile where to send the data
3009  * @opaque: RAMState pointer
3010  */
3011 static int ram_save_iterate(QEMUFile *f, void *opaque)
3012 {
3013     RAMState **temp = opaque;
3014     RAMState *rs = *temp;
3015     int ret = 0;
3016     int i;
3017     int64_t t0;
3018     int done = 0;
3019 
3020     if (blk_mig_bulk_active()) {
3021         /* Avoid transferring ram during bulk phase of block migration as
3022          * the bulk phase will usually take a long time and transferring
3023          * ram updates during that time is pointless. */
3024         goto out;
3025     }
3026 
3027     /*
3028      * We'll take this lock a little bit long, but it's okay for two reasons.
3029      * Firstly, the only possible other thread to take it is who calls
3030      * qemu_guest_free_page_hint(), which should be rare; secondly, see
3031      * MAX_WAIT (if curious, further see commit 4508bd9ed8053ce) below, which
3032      * guarantees that we'll at least released it in a regular basis.
3033      */
3034     qemu_mutex_lock(&rs->bitmap_mutex);
3035     WITH_RCU_READ_LOCK_GUARD() {
3036         if (ram_list.version != rs->last_version) {
3037             ram_state_reset(rs);
3038         }
3039 
3040         /* Read version before ram_list.blocks */
3041         smp_rmb();
3042 
3043         ret = rdma_registration_start(f, RAM_CONTROL_ROUND);
3044         if (ret < 0) {
3045             qemu_file_set_error(f, ret);
3046         }
3047 
3048         t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
3049         i = 0;
3050         while ((ret = migration_rate_exceeded(f)) == 0 ||
3051                postcopy_has_request(rs)) {
3052             int pages;
3053 
3054             if (qemu_file_get_error(f)) {
3055                 break;
3056             }
3057 
3058             pages = ram_find_and_save_block(rs);
3059             /* no more pages to sent */
3060             if (pages == 0) {
3061                 done = 1;
3062                 break;
3063             }
3064 
3065             if (pages < 0) {
3066                 qemu_file_set_error(f, pages);
3067                 break;
3068             }
3069 
3070             rs->target_page_count += pages;
3071 
3072             /*
3073              * During postcopy, it is necessary to make sure one whole host
3074              * page is sent in one chunk.
3075              */
3076             if (migrate_postcopy_ram()) {
3077                 compress_flush_data();
3078             }
3079 
3080             /*
3081              * we want to check in the 1st loop, just in case it was the 1st
3082              * time and we had to sync the dirty bitmap.
3083              * qemu_clock_get_ns() is a bit expensive, so we only check each
3084              * some iterations
3085              */
3086             if ((i & 63) == 0) {
3087                 uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) /
3088                               1000000;
3089                 if (t1 > MAX_WAIT) {
3090                     trace_ram_save_iterate_big_wait(t1, i);
3091                     break;
3092                 }
3093             }
3094             i++;
3095         }
3096     }
3097     qemu_mutex_unlock(&rs->bitmap_mutex);
3098 
3099     /*
3100      * Must occur before EOS (or any QEMUFile operation)
3101      * because of RDMA protocol.
3102      */
3103     ret = rdma_registration_stop(f, RAM_CONTROL_ROUND);
3104     if (ret < 0) {
3105         qemu_file_set_error(f, ret);
3106     }
3107 
3108 out:
3109     if (ret >= 0
3110         && migration_is_setup_or_active(migrate_get_current()->state)) {
3111         if (migrate_multifd() && migrate_multifd_flush_after_each_section()) {
3112             ret = multifd_send_sync_main(rs->pss[RAM_CHANNEL_PRECOPY].pss_channel);
3113             if (ret < 0) {
3114                 return ret;
3115             }
3116         }
3117 
3118         qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3119         qemu_fflush(f);
3120         ram_transferred_add(8);
3121 
3122         ret = qemu_file_get_error(f);
3123     }
3124     if (ret < 0) {
3125         return ret;
3126     }
3127 
3128     return done;
3129 }
3130 
3131 /**
3132  * ram_save_complete: function called to send the remaining amount of ram
3133  *
3134  * Returns zero to indicate success or negative on error
3135  *
3136  * Called with iothread lock
3137  *
3138  * @f: QEMUFile where to send the data
3139  * @opaque: RAMState pointer
3140  */
3141 static int ram_save_complete(QEMUFile *f, void *opaque)
3142 {
3143     RAMState **temp = opaque;
3144     RAMState *rs = *temp;
3145     int ret = 0;
3146 
3147     rs->last_stage = !migration_in_colo_state();
3148 
3149     WITH_RCU_READ_LOCK_GUARD() {
3150         int rdma_reg_ret;
3151 
3152         if (!migration_in_postcopy()) {
3153             migration_bitmap_sync_precopy(rs, true);
3154         }
3155 
3156         ret = rdma_registration_start(f, RAM_CONTROL_FINISH);
3157         if (ret < 0) {
3158             qemu_file_set_error(f, ret);
3159         }
3160 
3161         /* try transferring iterative blocks of memory */
3162 
3163         /* flush all remaining blocks regardless of rate limiting */
3164         qemu_mutex_lock(&rs->bitmap_mutex);
3165         while (true) {
3166             int pages;
3167 
3168             pages = ram_find_and_save_block(rs);
3169             /* no more blocks to sent */
3170             if (pages == 0) {
3171                 break;
3172             }
3173             if (pages < 0) {
3174                 ret = pages;
3175                 break;
3176             }
3177         }
3178         qemu_mutex_unlock(&rs->bitmap_mutex);
3179 
3180         compress_flush_data();
3181 
3182         rdma_reg_ret = rdma_registration_stop(f, RAM_CONTROL_FINISH);
3183         if (rdma_reg_ret < 0) {
3184             qemu_file_set_error(f, rdma_reg_ret);
3185         }
3186     }
3187 
3188     if (ret < 0) {
3189         return ret;
3190     }
3191 
3192     ret = multifd_send_sync_main(rs->pss[RAM_CHANNEL_PRECOPY].pss_channel);
3193     if (ret < 0) {
3194         return ret;
3195     }
3196 
3197     if (migrate_multifd() && !migrate_multifd_flush_after_each_section()) {
3198         qemu_put_be64(f, RAM_SAVE_FLAG_MULTIFD_FLUSH);
3199     }
3200     qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3201     qemu_fflush(f);
3202 
3203     return 0;
3204 }
3205 
3206 static void ram_state_pending_estimate(void *opaque, uint64_t *must_precopy,
3207                                        uint64_t *can_postcopy)
3208 {
3209     RAMState **temp = opaque;
3210     RAMState *rs = *temp;
3211 
3212     uint64_t remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
3213 
3214     if (migrate_postcopy_ram()) {
3215         /* We can do postcopy, and all the data is postcopiable */
3216         *can_postcopy += remaining_size;
3217     } else {
3218         *must_precopy += remaining_size;
3219     }
3220 }
3221 
3222 static void ram_state_pending_exact(void *opaque, uint64_t *must_precopy,
3223                                     uint64_t *can_postcopy)
3224 {
3225     MigrationState *s = migrate_get_current();
3226     RAMState **temp = opaque;
3227     RAMState *rs = *temp;
3228 
3229     uint64_t remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
3230 
3231     if (!migration_in_postcopy() && remaining_size < s->threshold_size) {
3232         qemu_mutex_lock_iothread();
3233         WITH_RCU_READ_LOCK_GUARD() {
3234             migration_bitmap_sync_precopy(rs, false);
3235         }
3236         qemu_mutex_unlock_iothread();
3237         remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
3238     }
3239 
3240     if (migrate_postcopy_ram()) {
3241         /* We can do postcopy, and all the data is postcopiable */
3242         *can_postcopy += remaining_size;
3243     } else {
3244         *must_precopy += remaining_size;
3245     }
3246 }
3247 
3248 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
3249 {
3250     unsigned int xh_len;
3251     int xh_flags;
3252     uint8_t *loaded_data;
3253 
3254     /* extract RLE header */
3255     xh_flags = qemu_get_byte(f);
3256     xh_len = qemu_get_be16(f);
3257 
3258     if (xh_flags != ENCODING_FLAG_XBZRLE) {
3259         error_report("Failed to load XBZRLE page - wrong compression!");
3260         return -1;
3261     }
3262 
3263     if (xh_len > TARGET_PAGE_SIZE) {
3264         error_report("Failed to load XBZRLE page - len overflow!");
3265         return -1;
3266     }
3267     loaded_data = XBZRLE.decoded_buf;
3268     /* load data and decode */
3269     /* it can change loaded_data to point to an internal buffer */
3270     qemu_get_buffer_in_place(f, &loaded_data, xh_len);
3271 
3272     /* decode RLE */
3273     if (xbzrle_decode_buffer(loaded_data, xh_len, host,
3274                              TARGET_PAGE_SIZE) == -1) {
3275         error_report("Failed to load XBZRLE page - decode error!");
3276         return -1;
3277     }
3278 
3279     return 0;
3280 }
3281 
3282 /**
3283  * ram_block_from_stream: read a RAMBlock id from the migration stream
3284  *
3285  * Must be called from within a rcu critical section.
3286  *
3287  * Returns a pointer from within the RCU-protected ram_list.
3288  *
3289  * @mis: the migration incoming state pointer
3290  * @f: QEMUFile where to read the data from
3291  * @flags: Page flags (mostly to see if it's a continuation of previous block)
3292  * @channel: the channel we're using
3293  */
3294 static inline RAMBlock *ram_block_from_stream(MigrationIncomingState *mis,
3295                                               QEMUFile *f, int flags,
3296                                               int channel)
3297 {
3298     RAMBlock *block = mis->last_recv_block[channel];
3299     char id[256];
3300     uint8_t len;
3301 
3302     if (flags & RAM_SAVE_FLAG_CONTINUE) {
3303         if (!block) {
3304             error_report("Ack, bad migration stream!");
3305             return NULL;
3306         }
3307         return block;
3308     }
3309 
3310     len = qemu_get_byte(f);
3311     qemu_get_buffer(f, (uint8_t *)id, len);
3312     id[len] = 0;
3313 
3314     block = qemu_ram_block_by_name(id);
3315     if (!block) {
3316         error_report("Can't find block %s", id);
3317         return NULL;
3318     }
3319 
3320     if (migrate_ram_is_ignored(block)) {
3321         error_report("block %s should not be migrated !", id);
3322         return NULL;
3323     }
3324 
3325     mis->last_recv_block[channel] = block;
3326 
3327     return block;
3328 }
3329 
3330 static inline void *host_from_ram_block_offset(RAMBlock *block,
3331                                                ram_addr_t offset)
3332 {
3333     if (!offset_in_ramblock(block, offset)) {
3334         return NULL;
3335     }
3336 
3337     return block->host + offset;
3338 }
3339 
3340 static void *host_page_from_ram_block_offset(RAMBlock *block,
3341                                              ram_addr_t offset)
3342 {
3343     /* Note: Explicitly no check against offset_in_ramblock(). */
3344     return (void *)QEMU_ALIGN_DOWN((uintptr_t)(block->host + offset),
3345                                    block->page_size);
3346 }
3347 
3348 static ram_addr_t host_page_offset_from_ram_block_offset(RAMBlock *block,
3349                                                          ram_addr_t offset)
3350 {
3351     return ((uintptr_t)block->host + offset) & (block->page_size - 1);
3352 }
3353 
3354 void colo_record_bitmap(RAMBlock *block, ram_addr_t *normal, uint32_t pages)
3355 {
3356     qemu_mutex_lock(&ram_state->bitmap_mutex);
3357     for (int i = 0; i < pages; i++) {
3358         ram_addr_t offset = normal[i];
3359         ram_state->migration_dirty_pages += !test_and_set_bit(
3360                                                 offset >> TARGET_PAGE_BITS,
3361                                                 block->bmap);
3362     }
3363     qemu_mutex_unlock(&ram_state->bitmap_mutex);
3364 }
3365 
3366 static inline void *colo_cache_from_block_offset(RAMBlock *block,
3367                              ram_addr_t offset, bool record_bitmap)
3368 {
3369     if (!offset_in_ramblock(block, offset)) {
3370         return NULL;
3371     }
3372     if (!block->colo_cache) {
3373         error_report("%s: colo_cache is NULL in block :%s",
3374                      __func__, block->idstr);
3375         return NULL;
3376     }
3377 
3378     /*
3379     * During colo checkpoint, we need bitmap of these migrated pages.
3380     * It help us to decide which pages in ram cache should be flushed
3381     * into VM's RAM later.
3382     */
3383     if (record_bitmap) {
3384         colo_record_bitmap(block, &offset, 1);
3385     }
3386     return block->colo_cache + offset;
3387 }
3388 
3389 /**
3390  * ram_handle_zero: handle the zero page case
3391  *
3392  * If a page (or a whole RDMA chunk) has been
3393  * determined to be zero, then zap it.
3394  *
3395  * @host: host address for the zero page
3396  * @ch: what the page is filled from.  We only support zero
3397  * @size: size of the zero page
3398  */
3399 void ram_handle_zero(void *host, uint64_t size)
3400 {
3401     if (!buffer_is_zero(host, size)) {
3402         memset(host, 0, size);
3403     }
3404 }
3405 
3406 static void colo_init_ram_state(void)
3407 {
3408     ram_state_init(&ram_state);
3409 }
3410 
3411 /*
3412  * colo cache: this is for secondary VM, we cache the whole
3413  * memory of the secondary VM, it is need to hold the global lock
3414  * to call this helper.
3415  */
3416 int colo_init_ram_cache(void)
3417 {
3418     RAMBlock *block;
3419 
3420     WITH_RCU_READ_LOCK_GUARD() {
3421         RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3422             block->colo_cache = qemu_anon_ram_alloc(block->used_length,
3423                                                     NULL, false, false);
3424             if (!block->colo_cache) {
3425                 error_report("%s: Can't alloc memory for COLO cache of block %s,"
3426                              "size 0x" RAM_ADDR_FMT, __func__, block->idstr,
3427                              block->used_length);
3428                 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3429                     if (block->colo_cache) {
3430                         qemu_anon_ram_free(block->colo_cache, block->used_length);
3431                         block->colo_cache = NULL;
3432                     }
3433                 }
3434                 return -errno;
3435             }
3436             if (!machine_dump_guest_core(current_machine)) {
3437                 qemu_madvise(block->colo_cache, block->used_length,
3438                              QEMU_MADV_DONTDUMP);
3439             }
3440         }
3441     }
3442 
3443     /*
3444     * Record the dirty pages that sent by PVM, we use this dirty bitmap together
3445     * with to decide which page in cache should be flushed into SVM's RAM. Here
3446     * we use the same name 'ram_bitmap' as for migration.
3447     */
3448     if (ram_bytes_total()) {
3449         RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3450             unsigned long pages = block->max_length >> TARGET_PAGE_BITS;
3451             block->bmap = bitmap_new(pages);
3452         }
3453     }
3454 
3455     colo_init_ram_state();
3456     return 0;
3457 }
3458 
3459 /* TODO: duplicated with ram_init_bitmaps */
3460 void colo_incoming_start_dirty_log(void)
3461 {
3462     RAMBlock *block = NULL;
3463     /* For memory_global_dirty_log_start below. */
3464     qemu_mutex_lock_iothread();
3465     qemu_mutex_lock_ramlist();
3466 
3467     memory_global_dirty_log_sync(false);
3468     WITH_RCU_READ_LOCK_GUARD() {
3469         RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3470             ramblock_sync_dirty_bitmap(ram_state, block);
3471             /* Discard this dirty bitmap record */
3472             bitmap_zero(block->bmap, block->max_length >> TARGET_PAGE_BITS);
3473         }
3474         memory_global_dirty_log_start(GLOBAL_DIRTY_MIGRATION);
3475     }
3476     ram_state->migration_dirty_pages = 0;
3477     qemu_mutex_unlock_ramlist();
3478     qemu_mutex_unlock_iothread();
3479 }
3480 
3481 /* It is need to hold the global lock to call this helper */
3482 void colo_release_ram_cache(void)
3483 {
3484     RAMBlock *block;
3485 
3486     memory_global_dirty_log_stop(GLOBAL_DIRTY_MIGRATION);
3487     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3488         g_free(block->bmap);
3489         block->bmap = NULL;
3490     }
3491 
3492     WITH_RCU_READ_LOCK_GUARD() {
3493         RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3494             if (block->colo_cache) {
3495                 qemu_anon_ram_free(block->colo_cache, block->used_length);
3496                 block->colo_cache = NULL;
3497             }
3498         }
3499     }
3500     ram_state_cleanup(&ram_state);
3501 }
3502 
3503 /**
3504  * ram_load_setup: Setup RAM for migration incoming side
3505  *
3506  * Returns zero to indicate success and negative for error
3507  *
3508  * @f: QEMUFile where to receive the data
3509  * @opaque: RAMState pointer
3510  */
3511 static int ram_load_setup(QEMUFile *f, void *opaque)
3512 {
3513     xbzrle_load_setup();
3514     ramblock_recv_map_init();
3515 
3516     return 0;
3517 }
3518 
3519 static int ram_load_cleanup(void *opaque)
3520 {
3521     RAMBlock *rb;
3522 
3523     RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
3524         qemu_ram_block_writeback(rb);
3525     }
3526 
3527     xbzrle_load_cleanup();
3528 
3529     RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
3530         g_free(rb->receivedmap);
3531         rb->receivedmap = NULL;
3532     }
3533 
3534     return 0;
3535 }
3536 
3537 /**
3538  * ram_postcopy_incoming_init: allocate postcopy data structures
3539  *
3540  * Returns 0 for success and negative if there was one error
3541  *
3542  * @mis: current migration incoming state
3543  *
3544  * Allocate data structures etc needed by incoming migration with
3545  * postcopy-ram. postcopy-ram's similarly names
3546  * postcopy_ram_incoming_init does the work.
3547  */
3548 int ram_postcopy_incoming_init(MigrationIncomingState *mis)
3549 {
3550     return postcopy_ram_incoming_init(mis);
3551 }
3552 
3553 /**
3554  * ram_load_postcopy: load a page in postcopy case
3555  *
3556  * Returns 0 for success or -errno in case of error
3557  *
3558  * Called in postcopy mode by ram_load().
3559  * rcu_read_lock is taken prior to this being called.
3560  *
3561  * @f: QEMUFile where to send the data
3562  * @channel: the channel to use for loading
3563  */
3564 int ram_load_postcopy(QEMUFile *f, int channel)
3565 {
3566     int flags = 0, ret = 0;
3567     bool place_needed = false;
3568     bool matches_target_page_size = false;
3569     MigrationIncomingState *mis = migration_incoming_get_current();
3570     PostcopyTmpPage *tmp_page = &mis->postcopy_tmp_pages[channel];
3571 
3572     while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
3573         ram_addr_t addr;
3574         void *page_buffer = NULL;
3575         void *place_source = NULL;
3576         RAMBlock *block = NULL;
3577         uint8_t ch;
3578         int len;
3579 
3580         addr = qemu_get_be64(f);
3581 
3582         /*
3583          * If qemu file error, we should stop here, and then "addr"
3584          * may be invalid
3585          */
3586         ret = qemu_file_get_error(f);
3587         if (ret) {
3588             break;
3589         }
3590 
3591         flags = addr & ~TARGET_PAGE_MASK;
3592         addr &= TARGET_PAGE_MASK;
3593 
3594         trace_ram_load_postcopy_loop(channel, (uint64_t)addr, flags);
3595         if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE |
3596                      RAM_SAVE_FLAG_COMPRESS_PAGE)) {
3597             block = ram_block_from_stream(mis, f, flags, channel);
3598             if (!block) {
3599                 ret = -EINVAL;
3600                 break;
3601             }
3602 
3603             /*
3604              * Relying on used_length is racy and can result in false positives.
3605              * We might place pages beyond used_length in case RAM was shrunk
3606              * while in postcopy, which is fine - trying to place via
3607              * UFFDIO_COPY/UFFDIO_ZEROPAGE will never segfault.
3608              */
3609             if (!block->host || addr >= block->postcopy_length) {
3610                 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
3611                 ret = -EINVAL;
3612                 break;
3613             }
3614             tmp_page->target_pages++;
3615             matches_target_page_size = block->page_size == TARGET_PAGE_SIZE;
3616             /*
3617              * Postcopy requires that we place whole host pages atomically;
3618              * these may be huge pages for RAMBlocks that are backed by
3619              * hugetlbfs.
3620              * To make it atomic, the data is read into a temporary page
3621              * that's moved into place later.
3622              * The migration protocol uses,  possibly smaller, target-pages
3623              * however the source ensures it always sends all the components
3624              * of a host page in one chunk.
3625              */
3626             page_buffer = tmp_page->tmp_huge_page +
3627                           host_page_offset_from_ram_block_offset(block, addr);
3628             /* If all TP are zero then we can optimise the place */
3629             if (tmp_page->target_pages == 1) {
3630                 tmp_page->host_addr =
3631                     host_page_from_ram_block_offset(block, addr);
3632             } else if (tmp_page->host_addr !=
3633                        host_page_from_ram_block_offset(block, addr)) {
3634                 /* not the 1st TP within the HP */
3635                 error_report("Non-same host page detected on channel %d: "
3636                              "Target host page %p, received host page %p "
3637                              "(rb %s offset 0x"RAM_ADDR_FMT" target_pages %d)",
3638                              channel, tmp_page->host_addr,
3639                              host_page_from_ram_block_offset(block, addr),
3640                              block->idstr, addr, tmp_page->target_pages);
3641                 ret = -EINVAL;
3642                 break;
3643             }
3644 
3645             /*
3646              * If it's the last part of a host page then we place the host
3647              * page
3648              */
3649             if (tmp_page->target_pages ==
3650                 (block->page_size / TARGET_PAGE_SIZE)) {
3651                 place_needed = true;
3652             }
3653             place_source = tmp_page->tmp_huge_page;
3654         }
3655 
3656         switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
3657         case RAM_SAVE_FLAG_ZERO:
3658             ch = qemu_get_byte(f);
3659             if (ch != 0) {
3660                 error_report("Found a zero page with value %d", ch);
3661                 ret = -EINVAL;
3662                 break;
3663             }
3664             /*
3665              * Can skip to set page_buffer when
3666              * this is a zero page and (block->page_size == TARGET_PAGE_SIZE).
3667              */
3668             if (!matches_target_page_size) {
3669                 memset(page_buffer, ch, TARGET_PAGE_SIZE);
3670             }
3671             break;
3672 
3673         case RAM_SAVE_FLAG_PAGE:
3674             tmp_page->all_zero = false;
3675             if (!matches_target_page_size) {
3676                 /* For huge pages, we always use temporary buffer */
3677                 qemu_get_buffer(f, page_buffer, TARGET_PAGE_SIZE);
3678             } else {
3679                 /*
3680                  * For small pages that matches target page size, we
3681                  * avoid the qemu_file copy.  Instead we directly use
3682                  * the buffer of QEMUFile to place the page.  Note: we
3683                  * cannot do any QEMUFile operation before using that
3684                  * buffer to make sure the buffer is valid when
3685                  * placing the page.
3686                  */
3687                 qemu_get_buffer_in_place(f, (uint8_t **)&place_source,
3688                                          TARGET_PAGE_SIZE);
3689             }
3690             break;
3691         case RAM_SAVE_FLAG_COMPRESS_PAGE:
3692             tmp_page->all_zero = false;
3693             len = qemu_get_be32(f);
3694             if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) {
3695                 error_report("Invalid compressed data length: %d", len);
3696                 ret = -EINVAL;
3697                 break;
3698             }
3699             decompress_data_with_multi_threads(f, page_buffer, len);
3700             break;
3701         case RAM_SAVE_FLAG_MULTIFD_FLUSH:
3702             multifd_recv_sync_main();
3703             break;
3704         case RAM_SAVE_FLAG_EOS:
3705             /* normal exit */
3706             if (migrate_multifd() &&
3707                 migrate_multifd_flush_after_each_section()) {
3708                 multifd_recv_sync_main();
3709             }
3710             break;
3711         default:
3712             error_report("Unknown combination of migration flags: 0x%x"
3713                          " (postcopy mode)", flags);
3714             ret = -EINVAL;
3715             break;
3716         }
3717 
3718         /* Got the whole host page, wait for decompress before placing. */
3719         if (place_needed) {
3720             ret |= wait_for_decompress_done();
3721         }
3722 
3723         /* Detect for any possible file errors */
3724         if (!ret && qemu_file_get_error(f)) {
3725             ret = qemu_file_get_error(f);
3726         }
3727 
3728         if (!ret && place_needed) {
3729             if (tmp_page->all_zero) {
3730                 ret = postcopy_place_page_zero(mis, tmp_page->host_addr, block);
3731             } else {
3732                 ret = postcopy_place_page(mis, tmp_page->host_addr,
3733                                           place_source, block);
3734             }
3735             place_needed = false;
3736             postcopy_temp_page_reset(tmp_page);
3737         }
3738     }
3739 
3740     return ret;
3741 }
3742 
3743 static bool postcopy_is_running(void)
3744 {
3745     PostcopyState ps = postcopy_state_get();
3746     return ps >= POSTCOPY_INCOMING_LISTENING && ps < POSTCOPY_INCOMING_END;
3747 }
3748 
3749 /*
3750  * Flush content of RAM cache into SVM's memory.
3751  * Only flush the pages that be dirtied by PVM or SVM or both.
3752  */
3753 void colo_flush_ram_cache(void)
3754 {
3755     RAMBlock *block = NULL;
3756     void *dst_host;
3757     void *src_host;
3758     unsigned long offset = 0;
3759 
3760     memory_global_dirty_log_sync(false);
3761     qemu_mutex_lock(&ram_state->bitmap_mutex);
3762     WITH_RCU_READ_LOCK_GUARD() {
3763         RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3764             ramblock_sync_dirty_bitmap(ram_state, block);
3765         }
3766     }
3767 
3768     trace_colo_flush_ram_cache_begin(ram_state->migration_dirty_pages);
3769     WITH_RCU_READ_LOCK_GUARD() {
3770         block = QLIST_FIRST_RCU(&ram_list.blocks);
3771 
3772         while (block) {
3773             unsigned long num = 0;
3774 
3775             offset = colo_bitmap_find_dirty(ram_state, block, offset, &num);
3776             if (!offset_in_ramblock(block,
3777                                     ((ram_addr_t)offset) << TARGET_PAGE_BITS)) {
3778                 offset = 0;
3779                 num = 0;
3780                 block = QLIST_NEXT_RCU(block, next);
3781             } else {
3782                 unsigned long i = 0;
3783 
3784                 for (i = 0; i < num; i++) {
3785                     migration_bitmap_clear_dirty(ram_state, block, offset + i);
3786                 }
3787                 dst_host = block->host
3788                          + (((ram_addr_t)offset) << TARGET_PAGE_BITS);
3789                 src_host = block->colo_cache
3790                          + (((ram_addr_t)offset) << TARGET_PAGE_BITS);
3791                 memcpy(dst_host, src_host, TARGET_PAGE_SIZE * num);
3792                 offset += num;
3793             }
3794         }
3795     }
3796     qemu_mutex_unlock(&ram_state->bitmap_mutex);
3797     trace_colo_flush_ram_cache_end();
3798 }
3799 
3800 static int parse_ramblock(QEMUFile *f, RAMBlock *block, ram_addr_t length)
3801 {
3802     int ret = 0;
3803     /* ADVISE is earlier, it shows the source has the postcopy capability on */
3804     bool postcopy_advised = migration_incoming_postcopy_advised();
3805 
3806     assert(block);
3807 
3808     if (!qemu_ram_is_migratable(block)) {
3809         error_report("block %s should not be migrated !", block->idstr);
3810         return -EINVAL;
3811     }
3812 
3813     if (length != block->used_length) {
3814         Error *local_err = NULL;
3815 
3816         ret = qemu_ram_resize(block, length, &local_err);
3817         if (local_err) {
3818             error_report_err(local_err);
3819             return ret;
3820         }
3821     }
3822     /* For postcopy we need to check hugepage sizes match */
3823     if (postcopy_advised && migrate_postcopy_ram() &&
3824         block->page_size != qemu_host_page_size) {
3825         uint64_t remote_page_size = qemu_get_be64(f);
3826         if (remote_page_size != block->page_size) {
3827             error_report("Mismatched RAM page size %s "
3828                          "(local) %zd != %" PRId64, block->idstr,
3829                          block->page_size, remote_page_size);
3830             return -EINVAL;
3831         }
3832     }
3833     if (migrate_ignore_shared()) {
3834         hwaddr addr = qemu_get_be64(f);
3835         if (migrate_ram_is_ignored(block) &&
3836             block->mr->addr != addr) {
3837             error_report("Mismatched GPAs for block %s "
3838                          "%" PRId64 "!= %" PRId64, block->idstr,
3839                          (uint64_t)addr, (uint64_t)block->mr->addr);
3840             return -EINVAL;
3841         }
3842     }
3843     ret = rdma_block_notification_handle(f, block->idstr);
3844     if (ret < 0) {
3845         qemu_file_set_error(f, ret);
3846     }
3847 
3848     return ret;
3849 }
3850 
3851 static int parse_ramblocks(QEMUFile *f, ram_addr_t total_ram_bytes)
3852 {
3853     int ret = 0;
3854 
3855     /* Synchronize RAM block list */
3856     while (!ret && total_ram_bytes) {
3857         RAMBlock *block;
3858         char id[256];
3859         ram_addr_t length;
3860         int len = qemu_get_byte(f);
3861 
3862         qemu_get_buffer(f, (uint8_t *)id, len);
3863         id[len] = 0;
3864         length = qemu_get_be64(f);
3865 
3866         block = qemu_ram_block_by_name(id);
3867         if (block) {
3868             ret = parse_ramblock(f, block, length);
3869         } else {
3870             error_report("Unknown ramblock \"%s\", cannot accept "
3871                          "migration", id);
3872             ret = -EINVAL;
3873         }
3874         total_ram_bytes -= length;
3875     }
3876 
3877     return ret;
3878 }
3879 
3880 /**
3881  * ram_load_precopy: load pages in precopy case
3882  *
3883  * Returns 0 for success or -errno in case of error
3884  *
3885  * Called in precopy mode by ram_load().
3886  * rcu_read_lock is taken prior to this being called.
3887  *
3888  * @f: QEMUFile where to send the data
3889  */
3890 static int ram_load_precopy(QEMUFile *f)
3891 {
3892     MigrationIncomingState *mis = migration_incoming_get_current();
3893     int flags = 0, ret = 0, invalid_flags = 0, len = 0, i = 0;
3894 
3895     if (!migrate_compress()) {
3896         invalid_flags |= RAM_SAVE_FLAG_COMPRESS_PAGE;
3897     }
3898 
3899     while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
3900         ram_addr_t addr;
3901         void *host = NULL, *host_bak = NULL;
3902         uint8_t ch;
3903 
3904         /*
3905          * Yield periodically to let main loop run, but an iteration of
3906          * the main loop is expensive, so do it each some iterations
3907          */
3908         if ((i & 32767) == 0 && qemu_in_coroutine()) {
3909             aio_co_schedule(qemu_get_current_aio_context(),
3910                             qemu_coroutine_self());
3911             qemu_coroutine_yield();
3912         }
3913         i++;
3914 
3915         addr = qemu_get_be64(f);
3916         flags = addr & ~TARGET_PAGE_MASK;
3917         addr &= TARGET_PAGE_MASK;
3918 
3919         if (flags & invalid_flags) {
3920             if (flags & invalid_flags & RAM_SAVE_FLAG_COMPRESS_PAGE) {
3921                 error_report("Received an unexpected compressed page");
3922             }
3923 
3924             ret = -EINVAL;
3925             break;
3926         }
3927 
3928         if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE |
3929                      RAM_SAVE_FLAG_COMPRESS_PAGE | RAM_SAVE_FLAG_XBZRLE)) {
3930             RAMBlock *block = ram_block_from_stream(mis, f, flags,
3931                                                     RAM_CHANNEL_PRECOPY);
3932 
3933             host = host_from_ram_block_offset(block, addr);
3934             /*
3935              * After going into COLO stage, we should not load the page
3936              * into SVM's memory directly, we put them into colo_cache firstly.
3937              * NOTE: We need to keep a copy of SVM's ram in colo_cache.
3938              * Previously, we copied all these memory in preparing stage of COLO
3939              * while we need to stop VM, which is a time-consuming process.
3940              * Here we optimize it by a trick, back-up every page while in
3941              * migration process while COLO is enabled, though it affects the
3942              * speed of the migration, but it obviously reduce the downtime of
3943              * back-up all SVM'S memory in COLO preparing stage.
3944              */
3945             if (migration_incoming_colo_enabled()) {
3946                 if (migration_incoming_in_colo_state()) {
3947                     /* In COLO stage, put all pages into cache temporarily */
3948                     host = colo_cache_from_block_offset(block, addr, true);
3949                 } else {
3950                    /*
3951                     * In migration stage but before COLO stage,
3952                     * Put all pages into both cache and SVM's memory.
3953                     */
3954                     host_bak = colo_cache_from_block_offset(block, addr, false);
3955                 }
3956             }
3957             if (!host) {
3958                 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
3959                 ret = -EINVAL;
3960                 break;
3961             }
3962             if (!migration_incoming_in_colo_state()) {
3963                 ramblock_recv_bitmap_set(block, host);
3964             }
3965 
3966             trace_ram_load_loop(block->idstr, (uint64_t)addr, flags, host);
3967         }
3968 
3969         switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
3970         case RAM_SAVE_FLAG_MEM_SIZE:
3971             ret = parse_ramblocks(f, addr);
3972             break;
3973 
3974         case RAM_SAVE_FLAG_ZERO:
3975             ch = qemu_get_byte(f);
3976             if (ch != 0) {
3977                 error_report("Found a zero page with value %d", ch);
3978                 ret = -EINVAL;
3979                 break;
3980             }
3981             ram_handle_zero(host, TARGET_PAGE_SIZE);
3982             break;
3983 
3984         case RAM_SAVE_FLAG_PAGE:
3985             qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
3986             break;
3987 
3988         case RAM_SAVE_FLAG_COMPRESS_PAGE:
3989             len = qemu_get_be32(f);
3990             if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) {
3991                 error_report("Invalid compressed data length: %d", len);
3992                 ret = -EINVAL;
3993                 break;
3994             }
3995             decompress_data_with_multi_threads(f, host, len);
3996             break;
3997 
3998         case RAM_SAVE_FLAG_XBZRLE:
3999             if (load_xbzrle(f, addr, host) < 0) {
4000                 error_report("Failed to decompress XBZRLE page at "
4001                              RAM_ADDR_FMT, addr);
4002                 ret = -EINVAL;
4003                 break;
4004             }
4005             break;
4006         case RAM_SAVE_FLAG_MULTIFD_FLUSH:
4007             multifd_recv_sync_main();
4008             break;
4009         case RAM_SAVE_FLAG_EOS:
4010             /* normal exit */
4011             if (migrate_multifd() &&
4012                 migrate_multifd_flush_after_each_section()) {
4013                 multifd_recv_sync_main();
4014             }
4015             break;
4016         case RAM_SAVE_FLAG_HOOK:
4017             ret = rdma_registration_handle(f);
4018             if (ret < 0) {
4019                 qemu_file_set_error(f, ret);
4020             }
4021             break;
4022         default:
4023             error_report("Unknown combination of migration flags: 0x%x", flags);
4024             ret = -EINVAL;
4025         }
4026         if (!ret) {
4027             ret = qemu_file_get_error(f);
4028         }
4029         if (!ret && host_bak) {
4030             memcpy(host_bak, host, TARGET_PAGE_SIZE);
4031         }
4032     }
4033 
4034     ret |= wait_for_decompress_done();
4035     return ret;
4036 }
4037 
4038 static int ram_load(QEMUFile *f, void *opaque, int version_id)
4039 {
4040     int ret = 0;
4041     static uint64_t seq_iter;
4042     /*
4043      * If system is running in postcopy mode, page inserts to host memory must
4044      * be atomic
4045      */
4046     bool postcopy_running = postcopy_is_running();
4047 
4048     seq_iter++;
4049 
4050     if (version_id != 4) {
4051         return -EINVAL;
4052     }
4053 
4054     /*
4055      * This RCU critical section can be very long running.
4056      * When RCU reclaims in the code start to become numerous,
4057      * it will be necessary to reduce the granularity of this
4058      * critical section.
4059      */
4060     WITH_RCU_READ_LOCK_GUARD() {
4061         if (postcopy_running) {
4062             /*
4063              * Note!  Here RAM_CHANNEL_PRECOPY is the precopy channel of
4064              * postcopy migration, we have another RAM_CHANNEL_POSTCOPY to
4065              * service fast page faults.
4066              */
4067             ret = ram_load_postcopy(f, RAM_CHANNEL_PRECOPY);
4068         } else {
4069             ret = ram_load_precopy(f);
4070         }
4071     }
4072     trace_ram_load_complete(ret, seq_iter);
4073 
4074     return ret;
4075 }
4076 
4077 static bool ram_has_postcopy(void *opaque)
4078 {
4079     RAMBlock *rb;
4080     RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
4081         if (ramblock_is_pmem(rb)) {
4082             info_report("Block: %s, host: %p is a nvdimm memory, postcopy"
4083                          "is not supported now!", rb->idstr, rb->host);
4084             return false;
4085         }
4086     }
4087 
4088     return migrate_postcopy_ram();
4089 }
4090 
4091 /* Sync all the dirty bitmap with destination VM.  */
4092 static int ram_dirty_bitmap_sync_all(MigrationState *s, RAMState *rs)
4093 {
4094     RAMBlock *block;
4095     QEMUFile *file = s->to_dst_file;
4096 
4097     trace_ram_dirty_bitmap_sync_start();
4098 
4099     qatomic_set(&rs->postcopy_bmap_sync_requested, 0);
4100     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
4101         qemu_savevm_send_recv_bitmap(file, block->idstr);
4102         trace_ram_dirty_bitmap_request(block->idstr);
4103         qatomic_inc(&rs->postcopy_bmap_sync_requested);
4104     }
4105 
4106     trace_ram_dirty_bitmap_sync_wait();
4107 
4108     /* Wait until all the ramblocks' dirty bitmap synced */
4109     while (qatomic_read(&rs->postcopy_bmap_sync_requested)) {
4110         migration_rp_wait(s);
4111     }
4112 
4113     trace_ram_dirty_bitmap_sync_complete();
4114 
4115     return 0;
4116 }
4117 
4118 /*
4119  * Read the received bitmap, revert it as the initial dirty bitmap.
4120  * This is only used when the postcopy migration is paused but wants
4121  * to resume from a middle point.
4122  */
4123 int ram_dirty_bitmap_reload(MigrationState *s, RAMBlock *block)
4124 {
4125     int ret = -EINVAL;
4126     /* from_dst_file is always valid because we're within rp_thread */
4127     QEMUFile *file = s->rp_state.from_dst_file;
4128     g_autofree unsigned long *le_bitmap = NULL;
4129     unsigned long nbits = block->used_length >> TARGET_PAGE_BITS;
4130     uint64_t local_size = DIV_ROUND_UP(nbits, 8);
4131     uint64_t size, end_mark;
4132     RAMState *rs = ram_state;
4133 
4134     trace_ram_dirty_bitmap_reload_begin(block->idstr);
4135 
4136     if (s->state != MIGRATION_STATUS_POSTCOPY_RECOVER) {
4137         error_report("%s: incorrect state %s", __func__,
4138                      MigrationStatus_str(s->state));
4139         return -EINVAL;
4140     }
4141 
4142     /*
4143      * Note: see comments in ramblock_recv_bitmap_send() on why we
4144      * need the endianness conversion, and the paddings.
4145      */
4146     local_size = ROUND_UP(local_size, 8);
4147 
4148     /* Add paddings */
4149     le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
4150 
4151     size = qemu_get_be64(file);
4152 
4153     /* The size of the bitmap should match with our ramblock */
4154     if (size != local_size) {
4155         error_report("%s: ramblock '%s' bitmap size mismatch "
4156                      "(0x%"PRIx64" != 0x%"PRIx64")", __func__,
4157                      block->idstr, size, local_size);
4158         return -EINVAL;
4159     }
4160 
4161     size = qemu_get_buffer(file, (uint8_t *)le_bitmap, local_size);
4162     end_mark = qemu_get_be64(file);
4163 
4164     ret = qemu_file_get_error(file);
4165     if (ret || size != local_size) {
4166         error_report("%s: read bitmap failed for ramblock '%s': %d"
4167                      " (size 0x%"PRIx64", got: 0x%"PRIx64")",
4168                      __func__, block->idstr, ret, local_size, size);
4169         return -EIO;
4170     }
4171 
4172     if (end_mark != RAMBLOCK_RECV_BITMAP_ENDING) {
4173         error_report("%s: ramblock '%s' end mark incorrect: 0x%"PRIx64,
4174                      __func__, block->idstr, end_mark);
4175         return -EINVAL;
4176     }
4177 
4178     /*
4179      * Endianness conversion. We are during postcopy (though paused).
4180      * The dirty bitmap won't change. We can directly modify it.
4181      */
4182     bitmap_from_le(block->bmap, le_bitmap, nbits);
4183 
4184     /*
4185      * What we received is "received bitmap". Revert it as the initial
4186      * dirty bitmap for this ramblock.
4187      */
4188     bitmap_complement(block->bmap, block->bmap, nbits);
4189 
4190     /* Clear dirty bits of discarded ranges that we don't want to migrate. */
4191     ramblock_dirty_bitmap_clear_discarded_pages(block);
4192 
4193     /* We'll recalculate migration_dirty_pages in ram_state_resume_prepare(). */
4194     trace_ram_dirty_bitmap_reload_complete(block->idstr);
4195 
4196     qatomic_dec(&rs->postcopy_bmap_sync_requested);
4197 
4198     /*
4199      * We succeeded to sync bitmap for current ramblock. Always kick the
4200      * migration thread to check whether all requested bitmaps are
4201      * reloaded.  NOTE: it's racy to only kick when requested==0, because
4202      * we don't know whether the migration thread may still be increasing
4203      * it.
4204      */
4205     migration_rp_kick(s);
4206 
4207     return 0;
4208 }
4209 
4210 static int ram_resume_prepare(MigrationState *s, void *opaque)
4211 {
4212     RAMState *rs = *(RAMState **)opaque;
4213     int ret;
4214 
4215     ret = ram_dirty_bitmap_sync_all(s, rs);
4216     if (ret) {
4217         return ret;
4218     }
4219 
4220     ram_state_resume_prepare(rs, s->to_dst_file);
4221 
4222     return 0;
4223 }
4224 
4225 void postcopy_preempt_shutdown_file(MigrationState *s)
4226 {
4227     qemu_put_be64(s->postcopy_qemufile_src, RAM_SAVE_FLAG_EOS);
4228     qemu_fflush(s->postcopy_qemufile_src);
4229 }
4230 
4231 static SaveVMHandlers savevm_ram_handlers = {
4232     .save_setup = ram_save_setup,
4233     .save_live_iterate = ram_save_iterate,
4234     .save_live_complete_postcopy = ram_save_complete,
4235     .save_live_complete_precopy = ram_save_complete,
4236     .has_postcopy = ram_has_postcopy,
4237     .state_pending_exact = ram_state_pending_exact,
4238     .state_pending_estimate = ram_state_pending_estimate,
4239     .load_state = ram_load,
4240     .save_cleanup = ram_save_cleanup,
4241     .load_setup = ram_load_setup,
4242     .load_cleanup = ram_load_cleanup,
4243     .resume_prepare = ram_resume_prepare,
4244 };
4245 
4246 static void ram_mig_ram_block_resized(RAMBlockNotifier *n, void *host,
4247                                       size_t old_size, size_t new_size)
4248 {
4249     PostcopyState ps = postcopy_state_get();
4250     ram_addr_t offset;
4251     RAMBlock *rb = qemu_ram_block_from_host(host, false, &offset);
4252     Error *err = NULL;
4253 
4254     if (!rb) {
4255         error_report("RAM block not found");
4256         return;
4257     }
4258 
4259     if (migrate_ram_is_ignored(rb)) {
4260         return;
4261     }
4262 
4263     if (!migration_is_idle()) {
4264         /*
4265          * Precopy code on the source cannot deal with the size of RAM blocks
4266          * changing at random points in time - especially after sending the
4267          * RAM block sizes in the migration stream, they must no longer change.
4268          * Abort and indicate a proper reason.
4269          */
4270         error_setg(&err, "RAM block '%s' resized during precopy.", rb->idstr);
4271         migration_cancel(err);
4272         error_free(err);
4273     }
4274 
4275     switch (ps) {
4276     case POSTCOPY_INCOMING_ADVISE:
4277         /*
4278          * Update what ram_postcopy_incoming_init()->init_range() does at the
4279          * time postcopy was advised. Syncing RAM blocks with the source will
4280          * result in RAM resizes.
4281          */
4282         if (old_size < new_size) {
4283             if (ram_discard_range(rb->idstr, old_size, new_size - old_size)) {
4284                 error_report("RAM block '%s' discard of resized RAM failed",
4285                              rb->idstr);
4286             }
4287         }
4288         rb->postcopy_length = new_size;
4289         break;
4290     case POSTCOPY_INCOMING_NONE:
4291     case POSTCOPY_INCOMING_RUNNING:
4292     case POSTCOPY_INCOMING_END:
4293         /*
4294          * Once our guest is running, postcopy does no longer care about
4295          * resizes. When growing, the new memory was not available on the
4296          * source, no handler needed.
4297          */
4298         break;
4299     default:
4300         error_report("RAM block '%s' resized during postcopy state: %d",
4301                      rb->idstr, ps);
4302         exit(-1);
4303     }
4304 }
4305 
4306 static RAMBlockNotifier ram_mig_ram_notifier = {
4307     .ram_block_resized = ram_mig_ram_block_resized,
4308 };
4309 
4310 void ram_mig_init(void)
4311 {
4312     qemu_mutex_init(&XBZRLE.lock);
4313     register_savevm_live("ram", 0, 4, &savevm_ram_handlers, &ram_state);
4314     ram_block_notifier_add(&ram_mig_ram_notifier);
4315 }
4316