xref: /openbmc/qemu/migration/ram.c (revision 303e6f54)
1 /*
2  * QEMU System Emulator
3  *
4  * Copyright (c) 2003-2008 Fabrice Bellard
5  * Copyright (c) 2011-2015 Red Hat Inc
6  *
7  * Authors:
8  *  Juan Quintela <quintela@redhat.com>
9  *
10  * Permission is hereby granted, free of charge, to any person obtaining a copy
11  * of this software and associated documentation files (the "Software"), to deal
12  * in the Software without restriction, including without limitation the rights
13  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
14  * copies of the Software, and to permit persons to whom the Software is
15  * furnished to do so, subject to the following conditions:
16  *
17  * The above copyright notice and this permission notice shall be included in
18  * all copies or substantial portions of the Software.
19  *
20  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
21  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
22  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
23  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
24  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
25  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26  * THE SOFTWARE.
27  */
28 
29 #include "qemu/osdep.h"
30 #include "qemu/cutils.h"
31 #include "qemu/bitops.h"
32 #include "qemu/bitmap.h"
33 #include "qemu/madvise.h"
34 #include "qemu/main-loop.h"
35 #include "xbzrle.h"
36 #include "ram-compress.h"
37 #include "ram.h"
38 #include "migration.h"
39 #include "migration-stats.h"
40 #include "migration/register.h"
41 #include "migration/misc.h"
42 #include "qemu-file.h"
43 #include "postcopy-ram.h"
44 #include "page_cache.h"
45 #include "qemu/error-report.h"
46 #include "qapi/error.h"
47 #include "qapi/qapi-types-migration.h"
48 #include "qapi/qapi-events-migration.h"
49 #include "qapi/qapi-commands-migration.h"
50 #include "qapi/qmp/qerror.h"
51 #include "trace.h"
52 #include "exec/ram_addr.h"
53 #include "exec/target_page.h"
54 #include "qemu/rcu_queue.h"
55 #include "migration/colo.h"
56 #include "block.h"
57 #include "sysemu/cpu-throttle.h"
58 #include "savevm.h"
59 #include "qemu/iov.h"
60 #include "multifd.h"
61 #include "sysemu/runstate.h"
62 #include "rdma.h"
63 #include "options.h"
64 #include "sysemu/dirtylimit.h"
65 #include "sysemu/kvm.h"
66 
67 #include "hw/boards.h" /* for machine_dump_guest_core() */
68 
69 #if defined(__linux__)
70 #include "qemu/userfaultfd.h"
71 #endif /* defined(__linux__) */
72 
73 /***********************************************************/
74 /* ram save/restore */
75 
76 /*
77  * RAM_SAVE_FLAG_ZERO used to be named RAM_SAVE_FLAG_COMPRESS, it
78  * worked for pages that were filled with the same char.  We switched
79  * it to only search for the zero value.  And to avoid confusion with
80  * RAM_SAVE_FLAG_COMPRESS_PAGE just rename it.
81  */
82 /*
83  * RAM_SAVE_FLAG_FULL was obsoleted in 2009, it can be reused now
84  */
85 #define RAM_SAVE_FLAG_FULL     0x01
86 #define RAM_SAVE_FLAG_ZERO     0x02
87 #define RAM_SAVE_FLAG_MEM_SIZE 0x04
88 #define RAM_SAVE_FLAG_PAGE     0x08
89 #define RAM_SAVE_FLAG_EOS      0x10
90 #define RAM_SAVE_FLAG_CONTINUE 0x20
91 #define RAM_SAVE_FLAG_XBZRLE   0x40
92 /* 0x80 is reserved in rdma.h for RAM_SAVE_FLAG_HOOK */
93 #define RAM_SAVE_FLAG_COMPRESS_PAGE    0x100
94 #define RAM_SAVE_FLAG_MULTIFD_FLUSH    0x200
95 /* We can't use any flag that is bigger than 0x200 */
96 
97 /*
98  * mapped-ram migration supports O_DIRECT, so we need to make sure the
99  * userspace buffer, the IO operation size and the file offset are
100  * aligned according to the underlying device's block size. The first
101  * two are already aligned to page size, but we need to add padding to
102  * the file to align the offset.  We cannot read the block size
103  * dynamically because the migration file can be moved between
104  * different systems, so use 1M to cover most block sizes and to keep
105  * the file offset aligned at page size as well.
106  */
107 #define MAPPED_RAM_FILE_OFFSET_ALIGNMENT 0x100000
108 
109 /*
110  * When doing mapped-ram migration, this is the amount we read from
111  * the pages region in the migration file at a time.
112  */
113 #define MAPPED_RAM_LOAD_BUF_SIZE 0x100000
114 
115 XBZRLECacheStats xbzrle_counters;
116 
117 /* used by the search for pages to send */
118 struct PageSearchStatus {
119     /* The migration channel used for a specific host page */
120     QEMUFile    *pss_channel;
121     /* Last block from where we have sent data */
122     RAMBlock *last_sent_block;
123     /* Current block being searched */
124     RAMBlock    *block;
125     /* Current page to search from */
126     unsigned long page;
127     /* Set once we wrap around */
128     bool         complete_round;
129     /* Whether we're sending a host page */
130     bool          host_page_sending;
131     /* The start/end of current host page.  Invalid if host_page_sending==false */
132     unsigned long host_page_start;
133     unsigned long host_page_end;
134 };
135 typedef struct PageSearchStatus PageSearchStatus;
136 
137 /* struct contains XBZRLE cache and a static page
138    used by the compression */
139 static struct {
140     /* buffer used for XBZRLE encoding */
141     uint8_t *encoded_buf;
142     /* buffer for storing page content */
143     uint8_t *current_buf;
144     /* Cache for XBZRLE, Protected by lock. */
145     PageCache *cache;
146     QemuMutex lock;
147     /* it will store a page full of zeros */
148     uint8_t *zero_target_page;
149     /* buffer used for XBZRLE decoding */
150     uint8_t *decoded_buf;
151 } XBZRLE;
152 
153 static void XBZRLE_cache_lock(void)
154 {
155     if (migrate_xbzrle()) {
156         qemu_mutex_lock(&XBZRLE.lock);
157     }
158 }
159 
160 static void XBZRLE_cache_unlock(void)
161 {
162     if (migrate_xbzrle()) {
163         qemu_mutex_unlock(&XBZRLE.lock);
164     }
165 }
166 
167 /**
168  * xbzrle_cache_resize: resize the xbzrle cache
169  *
170  * This function is called from migrate_params_apply in main
171  * thread, possibly while a migration is in progress.  A running
172  * migration may be using the cache and might finish during this call,
173  * hence changes to the cache are protected by XBZRLE.lock().
174  *
175  * Returns 0 for success or -1 for error
176  *
177  * @new_size: new cache size
178  * @errp: set *errp if the check failed, with reason
179  */
180 int xbzrle_cache_resize(uint64_t new_size, Error **errp)
181 {
182     PageCache *new_cache;
183     int64_t ret = 0;
184 
185     /* Check for truncation */
186     if (new_size != (size_t)new_size) {
187         error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cache size",
188                    "exceeding address space");
189         return -1;
190     }
191 
192     if (new_size == migrate_xbzrle_cache_size()) {
193         /* nothing to do */
194         return 0;
195     }
196 
197     XBZRLE_cache_lock();
198 
199     if (XBZRLE.cache != NULL) {
200         new_cache = cache_init(new_size, TARGET_PAGE_SIZE, errp);
201         if (!new_cache) {
202             ret = -1;
203             goto out;
204         }
205 
206         cache_fini(XBZRLE.cache);
207         XBZRLE.cache = new_cache;
208     }
209 out:
210     XBZRLE_cache_unlock();
211     return ret;
212 }
213 
214 static bool postcopy_preempt_active(void)
215 {
216     return migrate_postcopy_preempt() && migration_in_postcopy();
217 }
218 
219 bool migrate_ram_is_ignored(RAMBlock *block)
220 {
221     return !qemu_ram_is_migratable(block) ||
222            (migrate_ignore_shared() && qemu_ram_is_shared(block)
223                                     && qemu_ram_is_named_file(block));
224 }
225 
226 #undef RAMBLOCK_FOREACH
227 
228 int foreach_not_ignored_block(RAMBlockIterFunc func, void *opaque)
229 {
230     RAMBlock *block;
231     int ret = 0;
232 
233     RCU_READ_LOCK_GUARD();
234 
235     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
236         ret = func(block, opaque);
237         if (ret) {
238             break;
239         }
240     }
241     return ret;
242 }
243 
244 static void ramblock_recv_map_init(void)
245 {
246     RAMBlock *rb;
247 
248     RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
249         assert(!rb->receivedmap);
250         rb->receivedmap = bitmap_new(rb->max_length >> qemu_target_page_bits());
251     }
252 }
253 
254 int ramblock_recv_bitmap_test(RAMBlock *rb, void *host_addr)
255 {
256     return test_bit(ramblock_recv_bitmap_offset(host_addr, rb),
257                     rb->receivedmap);
258 }
259 
260 bool ramblock_recv_bitmap_test_byte_offset(RAMBlock *rb, uint64_t byte_offset)
261 {
262     return test_bit(byte_offset >> TARGET_PAGE_BITS, rb->receivedmap);
263 }
264 
265 void ramblock_recv_bitmap_set(RAMBlock *rb, void *host_addr)
266 {
267     set_bit_atomic(ramblock_recv_bitmap_offset(host_addr, rb), rb->receivedmap);
268 }
269 
270 void ramblock_recv_bitmap_set_range(RAMBlock *rb, void *host_addr,
271                                     size_t nr)
272 {
273     bitmap_set_atomic(rb->receivedmap,
274                       ramblock_recv_bitmap_offset(host_addr, rb),
275                       nr);
276 }
277 
278 #define  RAMBLOCK_RECV_BITMAP_ENDING  (0x0123456789abcdefULL)
279 
280 /*
281  * Format: bitmap_size (8 bytes) + whole_bitmap (N bytes).
282  *
283  * Returns >0 if success with sent bytes, or <0 if error.
284  */
285 int64_t ramblock_recv_bitmap_send(QEMUFile *file,
286                                   const char *block_name)
287 {
288     RAMBlock *block = qemu_ram_block_by_name(block_name);
289     unsigned long *le_bitmap, nbits;
290     uint64_t size;
291 
292     if (!block) {
293         error_report("%s: invalid block name: %s", __func__, block_name);
294         return -1;
295     }
296 
297     nbits = block->postcopy_length >> TARGET_PAGE_BITS;
298 
299     /*
300      * Make sure the tmp bitmap buffer is big enough, e.g., on 32bit
301      * machines we may need 4 more bytes for padding (see below
302      * comment). So extend it a bit before hand.
303      */
304     le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
305 
306     /*
307      * Always use little endian when sending the bitmap. This is
308      * required that when source and destination VMs are not using the
309      * same endianness. (Note: big endian won't work.)
310      */
311     bitmap_to_le(le_bitmap, block->receivedmap, nbits);
312 
313     /* Size of the bitmap, in bytes */
314     size = DIV_ROUND_UP(nbits, 8);
315 
316     /*
317      * size is always aligned to 8 bytes for 64bit machines, but it
318      * may not be true for 32bit machines. We need this padding to
319      * make sure the migration can survive even between 32bit and
320      * 64bit machines.
321      */
322     size = ROUND_UP(size, 8);
323 
324     qemu_put_be64(file, size);
325     qemu_put_buffer(file, (const uint8_t *)le_bitmap, size);
326     g_free(le_bitmap);
327     /*
328      * Mark as an end, in case the middle part is screwed up due to
329      * some "mysterious" reason.
330      */
331     qemu_put_be64(file, RAMBLOCK_RECV_BITMAP_ENDING);
332     int ret = qemu_fflush(file);
333     if (ret) {
334         return ret;
335     }
336 
337     return size + sizeof(size);
338 }
339 
340 /*
341  * An outstanding page request, on the source, having been received
342  * and queued
343  */
344 struct RAMSrcPageRequest {
345     RAMBlock *rb;
346     hwaddr    offset;
347     hwaddr    len;
348 
349     QSIMPLEQ_ENTRY(RAMSrcPageRequest) next_req;
350 };
351 
352 /* State of RAM for migration */
353 struct RAMState {
354     /*
355      * PageSearchStatus structures for the channels when send pages.
356      * Protected by the bitmap_mutex.
357      */
358     PageSearchStatus pss[RAM_CHANNEL_MAX];
359     /* UFFD file descriptor, used in 'write-tracking' migration */
360     int uffdio_fd;
361     /* total ram size in bytes */
362     uint64_t ram_bytes_total;
363     /* Last block that we have visited searching for dirty pages */
364     RAMBlock *last_seen_block;
365     /* Last dirty target page we have sent */
366     ram_addr_t last_page;
367     /* last ram version we have seen */
368     uint32_t last_version;
369     /* How many times we have dirty too many pages */
370     int dirty_rate_high_cnt;
371     /* these variables are used for bitmap sync */
372     /* last time we did a full bitmap_sync */
373     int64_t time_last_bitmap_sync;
374     /* bytes transferred at start_time */
375     uint64_t bytes_xfer_prev;
376     /* number of dirty pages since start_time */
377     uint64_t num_dirty_pages_period;
378     /* xbzrle misses since the beginning of the period */
379     uint64_t xbzrle_cache_miss_prev;
380     /* Amount of xbzrle pages since the beginning of the period */
381     uint64_t xbzrle_pages_prev;
382     /* Amount of xbzrle encoded bytes since the beginning of the period */
383     uint64_t xbzrle_bytes_prev;
384     /* Are we really using XBZRLE (e.g., after the first round). */
385     bool xbzrle_started;
386     /* Are we on the last stage of migration */
387     bool last_stage;
388 
389     /* total handled target pages at the beginning of period */
390     uint64_t target_page_count_prev;
391     /* total handled target pages since start */
392     uint64_t target_page_count;
393     /* number of dirty bits in the bitmap */
394     uint64_t migration_dirty_pages;
395     /*
396      * Protects:
397      * - dirty/clear bitmap
398      * - migration_dirty_pages
399      * - pss structures
400      */
401     QemuMutex bitmap_mutex;
402     /* The RAMBlock used in the last src_page_requests */
403     RAMBlock *last_req_rb;
404     /* Queue of outstanding page requests from the destination */
405     QemuMutex src_page_req_mutex;
406     QSIMPLEQ_HEAD(, RAMSrcPageRequest) src_page_requests;
407 
408     /*
409      * This is only used when postcopy is in recovery phase, to communicate
410      * between the migration thread and the return path thread on dirty
411      * bitmap synchronizations.  This field is unused in other stages of
412      * RAM migration.
413      */
414     unsigned int postcopy_bmap_sync_requested;
415 };
416 typedef struct RAMState RAMState;
417 
418 static RAMState *ram_state;
419 
420 static NotifierWithReturnList precopy_notifier_list;
421 
422 /* Whether postcopy has queued requests? */
423 static bool postcopy_has_request(RAMState *rs)
424 {
425     return !QSIMPLEQ_EMPTY_ATOMIC(&rs->src_page_requests);
426 }
427 
428 void precopy_infrastructure_init(void)
429 {
430     notifier_with_return_list_init(&precopy_notifier_list);
431 }
432 
433 void precopy_add_notifier(NotifierWithReturn *n)
434 {
435     notifier_with_return_list_add(&precopy_notifier_list, n);
436 }
437 
438 void precopy_remove_notifier(NotifierWithReturn *n)
439 {
440     notifier_with_return_remove(n);
441 }
442 
443 int precopy_notify(PrecopyNotifyReason reason, Error **errp)
444 {
445     PrecopyNotifyData pnd;
446     pnd.reason = reason;
447 
448     return notifier_with_return_list_notify(&precopy_notifier_list, &pnd, errp);
449 }
450 
451 uint64_t ram_bytes_remaining(void)
452 {
453     return ram_state ? (ram_state->migration_dirty_pages * TARGET_PAGE_SIZE) :
454                        0;
455 }
456 
457 void ram_transferred_add(uint64_t bytes)
458 {
459     if (runstate_is_running()) {
460         stat64_add(&mig_stats.precopy_bytes, bytes);
461     } else if (migration_in_postcopy()) {
462         stat64_add(&mig_stats.postcopy_bytes, bytes);
463     } else {
464         stat64_add(&mig_stats.downtime_bytes, bytes);
465     }
466 }
467 
468 struct MigrationOps {
469     int (*ram_save_target_page)(RAMState *rs, PageSearchStatus *pss);
470 };
471 typedef struct MigrationOps MigrationOps;
472 
473 MigrationOps *migration_ops;
474 
475 static int ram_save_host_page_urgent(PageSearchStatus *pss);
476 
477 /* NOTE: page is the PFN not real ram_addr_t. */
478 static void pss_init(PageSearchStatus *pss, RAMBlock *rb, ram_addr_t page)
479 {
480     pss->block = rb;
481     pss->page = page;
482     pss->complete_round = false;
483 }
484 
485 /*
486  * Check whether two PSSs are actively sending the same page.  Return true
487  * if it is, false otherwise.
488  */
489 static bool pss_overlap(PageSearchStatus *pss1, PageSearchStatus *pss2)
490 {
491     return pss1->host_page_sending && pss2->host_page_sending &&
492         (pss1->host_page_start == pss2->host_page_start);
493 }
494 
495 /**
496  * save_page_header: write page header to wire
497  *
498  * If this is the 1st block, it also writes the block identification
499  *
500  * Returns the number of bytes written
501  *
502  * @pss: current PSS channel status
503  * @block: block that contains the page we want to send
504  * @offset: offset inside the block for the page
505  *          in the lower bits, it contains flags
506  */
507 static size_t save_page_header(PageSearchStatus *pss, QEMUFile *f,
508                                RAMBlock *block, ram_addr_t offset)
509 {
510     size_t size, len;
511     bool same_block = (block == pss->last_sent_block);
512 
513     if (same_block) {
514         offset |= RAM_SAVE_FLAG_CONTINUE;
515     }
516     qemu_put_be64(f, offset);
517     size = 8;
518 
519     if (!same_block) {
520         len = strlen(block->idstr);
521         qemu_put_byte(f, len);
522         qemu_put_buffer(f, (uint8_t *)block->idstr, len);
523         size += 1 + len;
524         pss->last_sent_block = block;
525     }
526     return size;
527 }
528 
529 /**
530  * mig_throttle_guest_down: throttle down the guest
531  *
532  * Reduce amount of guest cpu execution to hopefully slow down memory
533  * writes. If guest dirty memory rate is reduced below the rate at
534  * which we can transfer pages to the destination then we should be
535  * able to complete migration. Some workloads dirty memory way too
536  * fast and will not effectively converge, even with auto-converge.
537  */
538 static void mig_throttle_guest_down(uint64_t bytes_dirty_period,
539                                     uint64_t bytes_dirty_threshold)
540 {
541     uint64_t pct_initial = migrate_cpu_throttle_initial();
542     uint64_t pct_increment = migrate_cpu_throttle_increment();
543     bool pct_tailslow = migrate_cpu_throttle_tailslow();
544     int pct_max = migrate_max_cpu_throttle();
545 
546     uint64_t throttle_now = cpu_throttle_get_percentage();
547     uint64_t cpu_now, cpu_ideal, throttle_inc;
548 
549     /* We have not started throttling yet. Let's start it. */
550     if (!cpu_throttle_active()) {
551         cpu_throttle_set(pct_initial);
552     } else {
553         /* Throttling already on, just increase the rate */
554         if (!pct_tailslow) {
555             throttle_inc = pct_increment;
556         } else {
557             /* Compute the ideal CPU percentage used by Guest, which may
558              * make the dirty rate match the dirty rate threshold. */
559             cpu_now = 100 - throttle_now;
560             cpu_ideal = cpu_now * (bytes_dirty_threshold * 1.0 /
561                         bytes_dirty_period);
562             throttle_inc = MIN(cpu_now - cpu_ideal, pct_increment);
563         }
564         cpu_throttle_set(MIN(throttle_now + throttle_inc, pct_max));
565     }
566 }
567 
568 void mig_throttle_counter_reset(void)
569 {
570     RAMState *rs = ram_state;
571 
572     rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
573     rs->num_dirty_pages_period = 0;
574     rs->bytes_xfer_prev = migration_transferred_bytes();
575 }
576 
577 /**
578  * xbzrle_cache_zero_page: insert a zero page in the XBZRLE cache
579  *
580  * @current_addr: address for the zero page
581  *
582  * Update the xbzrle cache to reflect a page that's been sent as all 0.
583  * The important thing is that a stale (not-yet-0'd) page be replaced
584  * by the new data.
585  * As a bonus, if the page wasn't in the cache it gets added so that
586  * when a small write is made into the 0'd page it gets XBZRLE sent.
587  */
588 static void xbzrle_cache_zero_page(ram_addr_t current_addr)
589 {
590     /* We don't care if this fails to allocate a new cache page
591      * as long as it updated an old one */
592     cache_insert(XBZRLE.cache, current_addr, XBZRLE.zero_target_page,
593                  stat64_get(&mig_stats.dirty_sync_count));
594 }
595 
596 #define ENCODING_FLAG_XBZRLE 0x1
597 
598 /**
599  * save_xbzrle_page: compress and send current page
600  *
601  * Returns: 1 means that we wrote the page
602  *          0 means that page is identical to the one already sent
603  *          -1 means that xbzrle would be longer than normal
604  *
605  * @rs: current RAM state
606  * @pss: current PSS channel
607  * @current_data: pointer to the address of the page contents
608  * @current_addr: addr of the page
609  * @block: block that contains the page we want to send
610  * @offset: offset inside the block for the page
611  */
612 static int save_xbzrle_page(RAMState *rs, PageSearchStatus *pss,
613                             uint8_t **current_data, ram_addr_t current_addr,
614                             RAMBlock *block, ram_addr_t offset)
615 {
616     int encoded_len = 0, bytes_xbzrle;
617     uint8_t *prev_cached_page;
618     QEMUFile *file = pss->pss_channel;
619     uint64_t generation = stat64_get(&mig_stats.dirty_sync_count);
620 
621     if (!cache_is_cached(XBZRLE.cache, current_addr, generation)) {
622         xbzrle_counters.cache_miss++;
623         if (!rs->last_stage) {
624             if (cache_insert(XBZRLE.cache, current_addr, *current_data,
625                              generation) == -1) {
626                 return -1;
627             } else {
628                 /* update *current_data when the page has been
629                    inserted into cache */
630                 *current_data = get_cached_data(XBZRLE.cache, current_addr);
631             }
632         }
633         return -1;
634     }
635 
636     /*
637      * Reaching here means the page has hit the xbzrle cache, no matter what
638      * encoding result it is (normal encoding, overflow or skipping the page),
639      * count the page as encoded. This is used to calculate the encoding rate.
640      *
641      * Example: 2 pages (8KB) being encoded, first page encoding generates 2KB,
642      * 2nd page turns out to be skipped (i.e. no new bytes written to the
643      * page), the overall encoding rate will be 8KB / 2KB = 4, which has the
644      * skipped page included. In this way, the encoding rate can tell if the
645      * guest page is good for xbzrle encoding.
646      */
647     xbzrle_counters.pages++;
648     prev_cached_page = get_cached_data(XBZRLE.cache, current_addr);
649 
650     /* save current buffer into memory */
651     memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE);
652 
653     /* XBZRLE encoding (if there is no overflow) */
654     encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf,
655                                        TARGET_PAGE_SIZE, XBZRLE.encoded_buf,
656                                        TARGET_PAGE_SIZE);
657 
658     /*
659      * Update the cache contents, so that it corresponds to the data
660      * sent, in all cases except where we skip the page.
661      */
662     if (!rs->last_stage && encoded_len != 0) {
663         memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE);
664         /*
665          * In the case where we couldn't compress, ensure that the caller
666          * sends the data from the cache, since the guest might have
667          * changed the RAM since we copied it.
668          */
669         *current_data = prev_cached_page;
670     }
671 
672     if (encoded_len == 0) {
673         trace_save_xbzrle_page_skipping();
674         return 0;
675     } else if (encoded_len == -1) {
676         trace_save_xbzrle_page_overflow();
677         xbzrle_counters.overflow++;
678         xbzrle_counters.bytes += TARGET_PAGE_SIZE;
679         return -1;
680     }
681 
682     /* Send XBZRLE based compressed page */
683     bytes_xbzrle = save_page_header(pss, pss->pss_channel, block,
684                                     offset | RAM_SAVE_FLAG_XBZRLE);
685     qemu_put_byte(file, ENCODING_FLAG_XBZRLE);
686     qemu_put_be16(file, encoded_len);
687     qemu_put_buffer(file, XBZRLE.encoded_buf, encoded_len);
688     bytes_xbzrle += encoded_len + 1 + 2;
689     /*
690      * Like compressed_size (please see update_compress_thread_counts),
691      * the xbzrle encoded bytes don't count the 8 byte header with
692      * RAM_SAVE_FLAG_CONTINUE.
693      */
694     xbzrle_counters.bytes += bytes_xbzrle - 8;
695     ram_transferred_add(bytes_xbzrle);
696 
697     return 1;
698 }
699 
700 /**
701  * pss_find_next_dirty: find the next dirty page of current ramblock
702  *
703  * This function updates pss->page to point to the next dirty page index
704  * within the ramblock to migrate, or the end of ramblock when nothing
705  * found.  Note that when pss->host_page_sending==true it means we're
706  * during sending a host page, so we won't look for dirty page that is
707  * outside the host page boundary.
708  *
709  * @pss: the current page search status
710  */
711 static void pss_find_next_dirty(PageSearchStatus *pss)
712 {
713     RAMBlock *rb = pss->block;
714     unsigned long size = rb->used_length >> TARGET_PAGE_BITS;
715     unsigned long *bitmap = rb->bmap;
716 
717     if (migrate_ram_is_ignored(rb)) {
718         /* Points directly to the end, so we know no dirty page */
719         pss->page = size;
720         return;
721     }
722 
723     /*
724      * If during sending a host page, only look for dirty pages within the
725      * current host page being send.
726      */
727     if (pss->host_page_sending) {
728         assert(pss->host_page_end);
729         size = MIN(size, pss->host_page_end);
730     }
731 
732     pss->page = find_next_bit(bitmap, size, pss->page);
733 }
734 
735 static void migration_clear_memory_region_dirty_bitmap(RAMBlock *rb,
736                                                        unsigned long page)
737 {
738     uint8_t shift;
739     hwaddr size, start;
740 
741     if (!rb->clear_bmap || !clear_bmap_test_and_clear(rb, page)) {
742         return;
743     }
744 
745     shift = rb->clear_bmap_shift;
746     /*
747      * CLEAR_BITMAP_SHIFT_MIN should always guarantee this... this
748      * can make things easier sometimes since then start address
749      * of the small chunk will always be 64 pages aligned so the
750      * bitmap will always be aligned to unsigned long. We should
751      * even be able to remove this restriction but I'm simply
752      * keeping it.
753      */
754     assert(shift >= 6);
755 
756     size = 1ULL << (TARGET_PAGE_BITS + shift);
757     start = QEMU_ALIGN_DOWN((ram_addr_t)page << TARGET_PAGE_BITS, size);
758     trace_migration_bitmap_clear_dirty(rb->idstr, start, size, page);
759     memory_region_clear_dirty_bitmap(rb->mr, start, size);
760 }
761 
762 static void
763 migration_clear_memory_region_dirty_bitmap_range(RAMBlock *rb,
764                                                  unsigned long start,
765                                                  unsigned long npages)
766 {
767     unsigned long i, chunk_pages = 1UL << rb->clear_bmap_shift;
768     unsigned long chunk_start = QEMU_ALIGN_DOWN(start, chunk_pages);
769     unsigned long chunk_end = QEMU_ALIGN_UP(start + npages, chunk_pages);
770 
771     /*
772      * Clear pages from start to start + npages - 1, so the end boundary is
773      * exclusive.
774      */
775     for (i = chunk_start; i < chunk_end; i += chunk_pages) {
776         migration_clear_memory_region_dirty_bitmap(rb, i);
777     }
778 }
779 
780 /*
781  * colo_bitmap_find_diry:find contiguous dirty pages from start
782  *
783  * Returns the page offset within memory region of the start of the contiguout
784  * dirty page
785  *
786  * @rs: current RAM state
787  * @rb: RAMBlock where to search for dirty pages
788  * @start: page where we start the search
789  * @num: the number of contiguous dirty pages
790  */
791 static inline
792 unsigned long colo_bitmap_find_dirty(RAMState *rs, RAMBlock *rb,
793                                      unsigned long start, unsigned long *num)
794 {
795     unsigned long size = rb->used_length >> TARGET_PAGE_BITS;
796     unsigned long *bitmap = rb->bmap;
797     unsigned long first, next;
798 
799     *num = 0;
800 
801     if (migrate_ram_is_ignored(rb)) {
802         return size;
803     }
804 
805     first = find_next_bit(bitmap, size, start);
806     if (first >= size) {
807         return first;
808     }
809     next = find_next_zero_bit(bitmap, size, first + 1);
810     assert(next >= first);
811     *num = next - first;
812     return first;
813 }
814 
815 static inline bool migration_bitmap_clear_dirty(RAMState *rs,
816                                                 RAMBlock *rb,
817                                                 unsigned long page)
818 {
819     bool ret;
820 
821     /*
822      * Clear dirty bitmap if needed.  This _must_ be called before we
823      * send any of the page in the chunk because we need to make sure
824      * we can capture further page content changes when we sync dirty
825      * log the next time.  So as long as we are going to send any of
826      * the page in the chunk we clear the remote dirty bitmap for all.
827      * Clearing it earlier won't be a problem, but too late will.
828      */
829     migration_clear_memory_region_dirty_bitmap(rb, page);
830 
831     ret = test_and_clear_bit(page, rb->bmap);
832     if (ret) {
833         rs->migration_dirty_pages--;
834     }
835 
836     return ret;
837 }
838 
839 static void dirty_bitmap_clear_section(MemoryRegionSection *section,
840                                        void *opaque)
841 {
842     const hwaddr offset = section->offset_within_region;
843     const hwaddr size = int128_get64(section->size);
844     const unsigned long start = offset >> TARGET_PAGE_BITS;
845     const unsigned long npages = size >> TARGET_PAGE_BITS;
846     RAMBlock *rb = section->mr->ram_block;
847     uint64_t *cleared_bits = opaque;
848 
849     /*
850      * We don't grab ram_state->bitmap_mutex because we expect to run
851      * only when starting migration or during postcopy recovery where
852      * we don't have concurrent access.
853      */
854     if (!migration_in_postcopy() && !migrate_background_snapshot()) {
855         migration_clear_memory_region_dirty_bitmap_range(rb, start, npages);
856     }
857     *cleared_bits += bitmap_count_one_with_offset(rb->bmap, start, npages);
858     bitmap_clear(rb->bmap, start, npages);
859 }
860 
861 /*
862  * Exclude all dirty pages from migration that fall into a discarded range as
863  * managed by a RamDiscardManager responsible for the mapped memory region of
864  * the RAMBlock. Clear the corresponding bits in the dirty bitmaps.
865  *
866  * Discarded pages ("logically unplugged") have undefined content and must
867  * not get migrated, because even reading these pages for migration might
868  * result in undesired behavior.
869  *
870  * Returns the number of cleared bits in the RAMBlock dirty bitmap.
871  *
872  * Note: The result is only stable while migrating (precopy/postcopy).
873  */
874 static uint64_t ramblock_dirty_bitmap_clear_discarded_pages(RAMBlock *rb)
875 {
876     uint64_t cleared_bits = 0;
877 
878     if (rb->mr && rb->bmap && memory_region_has_ram_discard_manager(rb->mr)) {
879         RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr);
880         MemoryRegionSection section = {
881             .mr = rb->mr,
882             .offset_within_region = 0,
883             .size = int128_make64(qemu_ram_get_used_length(rb)),
884         };
885 
886         ram_discard_manager_replay_discarded(rdm, &section,
887                                              dirty_bitmap_clear_section,
888                                              &cleared_bits);
889     }
890     return cleared_bits;
891 }
892 
893 /*
894  * Check if a host-page aligned page falls into a discarded range as managed by
895  * a RamDiscardManager responsible for the mapped memory region of the RAMBlock.
896  *
897  * Note: The result is only stable while migrating (precopy/postcopy).
898  */
899 bool ramblock_page_is_discarded(RAMBlock *rb, ram_addr_t start)
900 {
901     if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) {
902         RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr);
903         MemoryRegionSection section = {
904             .mr = rb->mr,
905             .offset_within_region = start,
906             .size = int128_make64(qemu_ram_pagesize(rb)),
907         };
908 
909         return !ram_discard_manager_is_populated(rdm, &section);
910     }
911     return false;
912 }
913 
914 /* Called with RCU critical section */
915 static void ramblock_sync_dirty_bitmap(RAMState *rs, RAMBlock *rb)
916 {
917     uint64_t new_dirty_pages =
918         cpu_physical_memory_sync_dirty_bitmap(rb, 0, rb->used_length);
919 
920     rs->migration_dirty_pages += new_dirty_pages;
921     rs->num_dirty_pages_period += new_dirty_pages;
922 }
923 
924 /**
925  * ram_pagesize_summary: calculate all the pagesizes of a VM
926  *
927  * Returns a summary bitmap of the page sizes of all RAMBlocks
928  *
929  * For VMs with just normal pages this is equivalent to the host page
930  * size. If it's got some huge pages then it's the OR of all the
931  * different page sizes.
932  */
933 uint64_t ram_pagesize_summary(void)
934 {
935     RAMBlock *block;
936     uint64_t summary = 0;
937 
938     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
939         summary |= block->page_size;
940     }
941 
942     return summary;
943 }
944 
945 uint64_t ram_get_total_transferred_pages(void)
946 {
947     return stat64_get(&mig_stats.normal_pages) +
948         stat64_get(&mig_stats.zero_pages) +
949         compress_ram_pages() + xbzrle_counters.pages;
950 }
951 
952 static void migration_update_rates(RAMState *rs, int64_t end_time)
953 {
954     uint64_t page_count = rs->target_page_count - rs->target_page_count_prev;
955 
956     /* calculate period counters */
957     stat64_set(&mig_stats.dirty_pages_rate,
958                rs->num_dirty_pages_period * 1000 /
959                (end_time - rs->time_last_bitmap_sync));
960 
961     if (!page_count) {
962         return;
963     }
964 
965     if (migrate_xbzrle()) {
966         double encoded_size, unencoded_size;
967 
968         xbzrle_counters.cache_miss_rate = (double)(xbzrle_counters.cache_miss -
969             rs->xbzrle_cache_miss_prev) / page_count;
970         rs->xbzrle_cache_miss_prev = xbzrle_counters.cache_miss;
971         unencoded_size = (xbzrle_counters.pages - rs->xbzrle_pages_prev) *
972                          TARGET_PAGE_SIZE;
973         encoded_size = xbzrle_counters.bytes - rs->xbzrle_bytes_prev;
974         if (xbzrle_counters.pages == rs->xbzrle_pages_prev || !encoded_size) {
975             xbzrle_counters.encoding_rate = 0;
976         } else {
977             xbzrle_counters.encoding_rate = unencoded_size / encoded_size;
978         }
979         rs->xbzrle_pages_prev = xbzrle_counters.pages;
980         rs->xbzrle_bytes_prev = xbzrle_counters.bytes;
981     }
982     compress_update_rates(page_count);
983 }
984 
985 /*
986  * Enable dirty-limit to throttle down the guest
987  */
988 static void migration_dirty_limit_guest(void)
989 {
990     /*
991      * dirty page rate quota for all vCPUs fetched from
992      * migration parameter 'vcpu_dirty_limit'
993      */
994     static int64_t quota_dirtyrate;
995     MigrationState *s = migrate_get_current();
996 
997     /*
998      * If dirty limit already enabled and migration parameter
999      * vcpu-dirty-limit untouched.
1000      */
1001     if (dirtylimit_in_service() &&
1002         quota_dirtyrate == s->parameters.vcpu_dirty_limit) {
1003         return;
1004     }
1005 
1006     quota_dirtyrate = s->parameters.vcpu_dirty_limit;
1007 
1008     /*
1009      * Set all vCPU a quota dirtyrate, note that the second
1010      * parameter will be ignored if setting all vCPU for the vm
1011      */
1012     qmp_set_vcpu_dirty_limit(false, -1, quota_dirtyrate, NULL);
1013     trace_migration_dirty_limit_guest(quota_dirtyrate);
1014 }
1015 
1016 static void migration_trigger_throttle(RAMState *rs)
1017 {
1018     uint64_t threshold = migrate_throttle_trigger_threshold();
1019     uint64_t bytes_xfer_period =
1020         migration_transferred_bytes() - rs->bytes_xfer_prev;
1021     uint64_t bytes_dirty_period = rs->num_dirty_pages_period * TARGET_PAGE_SIZE;
1022     uint64_t bytes_dirty_threshold = bytes_xfer_period * threshold / 100;
1023 
1024     /* During block migration the auto-converge logic incorrectly detects
1025      * that ram migration makes no progress. Avoid this by disabling the
1026      * throttling logic during the bulk phase of block migration. */
1027     if (blk_mig_bulk_active()) {
1028         return;
1029     }
1030 
1031     /*
1032      * The following detection logic can be refined later. For now:
1033      * Check to see if the ratio between dirtied bytes and the approx.
1034      * amount of bytes that just got transferred since the last time
1035      * we were in this routine reaches the threshold. If that happens
1036      * twice, start or increase throttling.
1037      */
1038     if ((bytes_dirty_period > bytes_dirty_threshold) &&
1039         (++rs->dirty_rate_high_cnt >= 2)) {
1040         rs->dirty_rate_high_cnt = 0;
1041         if (migrate_auto_converge()) {
1042             trace_migration_throttle();
1043             mig_throttle_guest_down(bytes_dirty_period,
1044                                     bytes_dirty_threshold);
1045         } else if (migrate_dirty_limit()) {
1046             migration_dirty_limit_guest();
1047         }
1048     }
1049 }
1050 
1051 static void migration_bitmap_sync(RAMState *rs, bool last_stage)
1052 {
1053     RAMBlock *block;
1054     int64_t end_time;
1055 
1056     stat64_add(&mig_stats.dirty_sync_count, 1);
1057 
1058     if (!rs->time_last_bitmap_sync) {
1059         rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
1060     }
1061 
1062     trace_migration_bitmap_sync_start();
1063     memory_global_dirty_log_sync(last_stage);
1064 
1065     qemu_mutex_lock(&rs->bitmap_mutex);
1066     WITH_RCU_READ_LOCK_GUARD() {
1067         RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1068             ramblock_sync_dirty_bitmap(rs, block);
1069         }
1070         stat64_set(&mig_stats.dirty_bytes_last_sync, ram_bytes_remaining());
1071     }
1072     qemu_mutex_unlock(&rs->bitmap_mutex);
1073 
1074     memory_global_after_dirty_log_sync();
1075     trace_migration_bitmap_sync_end(rs->num_dirty_pages_period);
1076 
1077     end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME);
1078 
1079     /* more than 1 second = 1000 millisecons */
1080     if (end_time > rs->time_last_bitmap_sync + 1000) {
1081         migration_trigger_throttle(rs);
1082 
1083         migration_update_rates(rs, end_time);
1084 
1085         rs->target_page_count_prev = rs->target_page_count;
1086 
1087         /* reset period counters */
1088         rs->time_last_bitmap_sync = end_time;
1089         rs->num_dirty_pages_period = 0;
1090         rs->bytes_xfer_prev = migration_transferred_bytes();
1091     }
1092     if (migrate_events()) {
1093         uint64_t generation = stat64_get(&mig_stats.dirty_sync_count);
1094         qapi_event_send_migration_pass(generation);
1095     }
1096 }
1097 
1098 static void migration_bitmap_sync_precopy(RAMState *rs, bool last_stage)
1099 {
1100     Error *local_err = NULL;
1101 
1102     /*
1103      * The current notifier usage is just an optimization to migration, so we
1104      * don't stop the normal migration process in the error case.
1105      */
1106     if (precopy_notify(PRECOPY_NOTIFY_BEFORE_BITMAP_SYNC, &local_err)) {
1107         error_report_err(local_err);
1108         local_err = NULL;
1109     }
1110 
1111     migration_bitmap_sync(rs, last_stage);
1112 
1113     if (precopy_notify(PRECOPY_NOTIFY_AFTER_BITMAP_SYNC, &local_err)) {
1114         error_report_err(local_err);
1115     }
1116 }
1117 
1118 void ram_release_page(const char *rbname, uint64_t offset)
1119 {
1120     if (!migrate_release_ram() || !migration_in_postcopy()) {
1121         return;
1122     }
1123 
1124     ram_discard_range(rbname, offset, TARGET_PAGE_SIZE);
1125 }
1126 
1127 /**
1128  * save_zero_page: send the zero page to the stream
1129  *
1130  * Returns the number of pages written.
1131  *
1132  * @rs: current RAM state
1133  * @pss: current PSS channel
1134  * @offset: offset inside the block for the page
1135  */
1136 static int save_zero_page(RAMState *rs, PageSearchStatus *pss,
1137                           ram_addr_t offset)
1138 {
1139     uint8_t *p = pss->block->host + offset;
1140     QEMUFile *file = pss->pss_channel;
1141     int len = 0;
1142 
1143     if (migrate_zero_page_detection() == ZERO_PAGE_DETECTION_NONE) {
1144         return 0;
1145     }
1146 
1147     if (!buffer_is_zero(p, TARGET_PAGE_SIZE)) {
1148         return 0;
1149     }
1150 
1151     stat64_add(&mig_stats.zero_pages, 1);
1152 
1153     if (migrate_mapped_ram()) {
1154         /* zero pages are not transferred with mapped-ram */
1155         clear_bit_atomic(offset >> TARGET_PAGE_BITS, pss->block->file_bmap);
1156         return 1;
1157     }
1158 
1159     len += save_page_header(pss, file, pss->block, offset | RAM_SAVE_FLAG_ZERO);
1160     qemu_put_byte(file, 0);
1161     len += 1;
1162     ram_release_page(pss->block->idstr, offset);
1163     ram_transferred_add(len);
1164 
1165     /*
1166      * Must let xbzrle know, otherwise a previous (now 0'd) cached
1167      * page would be stale.
1168      */
1169     if (rs->xbzrle_started) {
1170         XBZRLE_cache_lock();
1171         xbzrle_cache_zero_page(pss->block->offset + offset);
1172         XBZRLE_cache_unlock();
1173     }
1174 
1175     return len;
1176 }
1177 
1178 /*
1179  * @pages: the number of pages written by the control path,
1180  *        < 0 - error
1181  *        > 0 - number of pages written
1182  *
1183  * Return true if the pages has been saved, otherwise false is returned.
1184  */
1185 static bool control_save_page(PageSearchStatus *pss,
1186                               ram_addr_t offset, int *pages)
1187 {
1188     int ret;
1189 
1190     ret = rdma_control_save_page(pss->pss_channel, pss->block->offset, offset,
1191                                  TARGET_PAGE_SIZE);
1192     if (ret == RAM_SAVE_CONTROL_NOT_SUPP) {
1193         return false;
1194     }
1195 
1196     if (ret == RAM_SAVE_CONTROL_DELAYED) {
1197         *pages = 1;
1198         return true;
1199     }
1200     *pages = ret;
1201     return true;
1202 }
1203 
1204 /*
1205  * directly send the page to the stream
1206  *
1207  * Returns the number of pages written.
1208  *
1209  * @pss: current PSS channel
1210  * @block: block that contains the page we want to send
1211  * @offset: offset inside the block for the page
1212  * @buf: the page to be sent
1213  * @async: send to page asyncly
1214  */
1215 static int save_normal_page(PageSearchStatus *pss, RAMBlock *block,
1216                             ram_addr_t offset, uint8_t *buf, bool async)
1217 {
1218     QEMUFile *file = pss->pss_channel;
1219 
1220     if (migrate_mapped_ram()) {
1221         qemu_put_buffer_at(file, buf, TARGET_PAGE_SIZE,
1222                            block->pages_offset + offset);
1223         set_bit(offset >> TARGET_PAGE_BITS, block->file_bmap);
1224     } else {
1225         ram_transferred_add(save_page_header(pss, pss->pss_channel, block,
1226                                              offset | RAM_SAVE_FLAG_PAGE));
1227         if (async) {
1228             qemu_put_buffer_async(file, buf, TARGET_PAGE_SIZE,
1229                                   migrate_release_ram() &&
1230                                   migration_in_postcopy());
1231         } else {
1232             qemu_put_buffer(file, buf, TARGET_PAGE_SIZE);
1233         }
1234     }
1235     ram_transferred_add(TARGET_PAGE_SIZE);
1236     stat64_add(&mig_stats.normal_pages, 1);
1237     return 1;
1238 }
1239 
1240 /**
1241  * ram_save_page: send the given page to the stream
1242  *
1243  * Returns the number of pages written.
1244  *          < 0 - error
1245  *          >=0 - Number of pages written - this might legally be 0
1246  *                if xbzrle noticed the page was the same.
1247  *
1248  * @rs: current RAM state
1249  * @block: block that contains the page we want to send
1250  * @offset: offset inside the block for the page
1251  */
1252 static int ram_save_page(RAMState *rs, PageSearchStatus *pss)
1253 {
1254     int pages = -1;
1255     uint8_t *p;
1256     bool send_async = true;
1257     RAMBlock *block = pss->block;
1258     ram_addr_t offset = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS;
1259     ram_addr_t current_addr = block->offset + offset;
1260 
1261     p = block->host + offset;
1262     trace_ram_save_page(block->idstr, (uint64_t)offset, p);
1263 
1264     XBZRLE_cache_lock();
1265     if (rs->xbzrle_started && !migration_in_postcopy()) {
1266         pages = save_xbzrle_page(rs, pss, &p, current_addr,
1267                                  block, offset);
1268         if (!rs->last_stage) {
1269             /* Can't send this cached data async, since the cache page
1270              * might get updated before it gets to the wire
1271              */
1272             send_async = false;
1273         }
1274     }
1275 
1276     /* XBZRLE overflow or normal page */
1277     if (pages == -1) {
1278         pages = save_normal_page(pss, block, offset, p, send_async);
1279     }
1280 
1281     XBZRLE_cache_unlock();
1282 
1283     return pages;
1284 }
1285 
1286 static int ram_save_multifd_page(RAMBlock *block, ram_addr_t offset)
1287 {
1288     if (!multifd_queue_page(block, offset)) {
1289         return -1;
1290     }
1291 
1292     return 1;
1293 }
1294 
1295 int compress_send_queued_data(CompressParam *param)
1296 {
1297     PageSearchStatus *pss = &ram_state->pss[RAM_CHANNEL_PRECOPY];
1298     MigrationState *ms = migrate_get_current();
1299     QEMUFile *file = ms->to_dst_file;
1300     int len = 0;
1301 
1302     RAMBlock *block = param->block;
1303     ram_addr_t offset = param->offset;
1304 
1305     if (param->result == RES_NONE) {
1306         return 0;
1307     }
1308 
1309     assert(block == pss->last_sent_block);
1310 
1311     if (param->result == RES_ZEROPAGE) {
1312         assert(qemu_file_buffer_empty(param->file));
1313         len += save_page_header(pss, file, block, offset | RAM_SAVE_FLAG_ZERO);
1314         qemu_put_byte(file, 0);
1315         len += 1;
1316         ram_release_page(block->idstr, offset);
1317     } else if (param->result == RES_COMPRESS) {
1318         assert(!qemu_file_buffer_empty(param->file));
1319         len += save_page_header(pss, file, block,
1320                                 offset | RAM_SAVE_FLAG_COMPRESS_PAGE);
1321         len += qemu_put_qemu_file(file, param->file);
1322     } else {
1323         abort();
1324     }
1325 
1326     update_compress_thread_counts(param, len);
1327 
1328     return len;
1329 }
1330 
1331 #define PAGE_ALL_CLEAN 0
1332 #define PAGE_TRY_AGAIN 1
1333 #define PAGE_DIRTY_FOUND 2
1334 /**
1335  * find_dirty_block: find the next dirty page and update any state
1336  * associated with the search process.
1337  *
1338  * Returns:
1339  *         <0: An error happened
1340  *         PAGE_ALL_CLEAN: no dirty page found, give up
1341  *         PAGE_TRY_AGAIN: no dirty page found, retry for next block
1342  *         PAGE_DIRTY_FOUND: dirty page found
1343  *
1344  * @rs: current RAM state
1345  * @pss: data about the state of the current dirty page scan
1346  * @again: set to false if the search has scanned the whole of RAM
1347  */
1348 static int find_dirty_block(RAMState *rs, PageSearchStatus *pss)
1349 {
1350     /* Update pss->page for the next dirty bit in ramblock */
1351     pss_find_next_dirty(pss);
1352 
1353     if (pss->complete_round && pss->block == rs->last_seen_block &&
1354         pss->page >= rs->last_page) {
1355         /*
1356          * We've been once around the RAM and haven't found anything.
1357          * Give up.
1358          */
1359         return PAGE_ALL_CLEAN;
1360     }
1361     if (!offset_in_ramblock(pss->block,
1362                             ((ram_addr_t)pss->page) << TARGET_PAGE_BITS)) {
1363         /* Didn't find anything in this RAM Block */
1364         pss->page = 0;
1365         pss->block = QLIST_NEXT_RCU(pss->block, next);
1366         if (!pss->block) {
1367             if (migrate_multifd() &&
1368                 (!migrate_multifd_flush_after_each_section() ||
1369                  migrate_mapped_ram())) {
1370                 QEMUFile *f = rs->pss[RAM_CHANNEL_PRECOPY].pss_channel;
1371                 int ret = multifd_send_sync_main();
1372                 if (ret < 0) {
1373                     return ret;
1374                 }
1375 
1376                 if (!migrate_mapped_ram()) {
1377                     qemu_put_be64(f, RAM_SAVE_FLAG_MULTIFD_FLUSH);
1378                     qemu_fflush(f);
1379                 }
1380             }
1381             /*
1382              * If memory migration starts over, we will meet a dirtied page
1383              * which may still exists in compression threads's ring, so we
1384              * should flush the compressed data to make sure the new page
1385              * is not overwritten by the old one in the destination.
1386              *
1387              * Also If xbzrle is on, stop using the data compression at this
1388              * point. In theory, xbzrle can do better than compression.
1389              */
1390             compress_flush_data();
1391 
1392             /* Hit the end of the list */
1393             pss->block = QLIST_FIRST_RCU(&ram_list.blocks);
1394             /* Flag that we've looped */
1395             pss->complete_round = true;
1396             /* After the first round, enable XBZRLE. */
1397             if (migrate_xbzrle()) {
1398                 rs->xbzrle_started = true;
1399             }
1400         }
1401         /* Didn't find anything this time, but try again on the new block */
1402         return PAGE_TRY_AGAIN;
1403     } else {
1404         /* We've found something */
1405         return PAGE_DIRTY_FOUND;
1406     }
1407 }
1408 
1409 /**
1410  * unqueue_page: gets a page of the queue
1411  *
1412  * Helper for 'get_queued_page' - gets a page off the queue
1413  *
1414  * Returns the block of the page (or NULL if none available)
1415  *
1416  * @rs: current RAM state
1417  * @offset: used to return the offset within the RAMBlock
1418  */
1419 static RAMBlock *unqueue_page(RAMState *rs, ram_addr_t *offset)
1420 {
1421     struct RAMSrcPageRequest *entry;
1422     RAMBlock *block = NULL;
1423 
1424     if (!postcopy_has_request(rs)) {
1425         return NULL;
1426     }
1427 
1428     QEMU_LOCK_GUARD(&rs->src_page_req_mutex);
1429 
1430     /*
1431      * This should _never_ change even after we take the lock, because no one
1432      * should be taking anything off the request list other than us.
1433      */
1434     assert(postcopy_has_request(rs));
1435 
1436     entry = QSIMPLEQ_FIRST(&rs->src_page_requests);
1437     block = entry->rb;
1438     *offset = entry->offset;
1439 
1440     if (entry->len > TARGET_PAGE_SIZE) {
1441         entry->len -= TARGET_PAGE_SIZE;
1442         entry->offset += TARGET_PAGE_SIZE;
1443     } else {
1444         memory_region_unref(block->mr);
1445         QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
1446         g_free(entry);
1447         migration_consume_urgent_request();
1448     }
1449 
1450     return block;
1451 }
1452 
1453 #if defined(__linux__)
1454 /**
1455  * poll_fault_page: try to get next UFFD write fault page and, if pending fault
1456  *   is found, return RAM block pointer and page offset
1457  *
1458  * Returns pointer to the RAMBlock containing faulting page,
1459  *   NULL if no write faults are pending
1460  *
1461  * @rs: current RAM state
1462  * @offset: page offset from the beginning of the block
1463  */
1464 static RAMBlock *poll_fault_page(RAMState *rs, ram_addr_t *offset)
1465 {
1466     struct uffd_msg uffd_msg;
1467     void *page_address;
1468     RAMBlock *block;
1469     int res;
1470 
1471     if (!migrate_background_snapshot()) {
1472         return NULL;
1473     }
1474 
1475     res = uffd_read_events(rs->uffdio_fd, &uffd_msg, 1);
1476     if (res <= 0) {
1477         return NULL;
1478     }
1479 
1480     page_address = (void *)(uintptr_t) uffd_msg.arg.pagefault.address;
1481     block = qemu_ram_block_from_host(page_address, false, offset);
1482     assert(block && (block->flags & RAM_UF_WRITEPROTECT) != 0);
1483     return block;
1484 }
1485 
1486 /**
1487  * ram_save_release_protection: release UFFD write protection after
1488  *   a range of pages has been saved
1489  *
1490  * @rs: current RAM state
1491  * @pss: page-search-status structure
1492  * @start_page: index of the first page in the range relative to pss->block
1493  *
1494  * Returns 0 on success, negative value in case of an error
1495 */
1496 static int ram_save_release_protection(RAMState *rs, PageSearchStatus *pss,
1497         unsigned long start_page)
1498 {
1499     int res = 0;
1500 
1501     /* Check if page is from UFFD-managed region. */
1502     if (pss->block->flags & RAM_UF_WRITEPROTECT) {
1503         void *page_address = pss->block->host + (start_page << TARGET_PAGE_BITS);
1504         uint64_t run_length = (pss->page - start_page) << TARGET_PAGE_BITS;
1505 
1506         /* Flush async buffers before un-protect. */
1507         qemu_fflush(pss->pss_channel);
1508         /* Un-protect memory range. */
1509         res = uffd_change_protection(rs->uffdio_fd, page_address, run_length,
1510                 false, false);
1511     }
1512 
1513     return res;
1514 }
1515 
1516 /* ram_write_tracking_available: check if kernel supports required UFFD features
1517  *
1518  * Returns true if supports, false otherwise
1519  */
1520 bool ram_write_tracking_available(void)
1521 {
1522     uint64_t uffd_features;
1523     int res;
1524 
1525     res = uffd_query_features(&uffd_features);
1526     return (res == 0 &&
1527             (uffd_features & UFFD_FEATURE_PAGEFAULT_FLAG_WP) != 0);
1528 }
1529 
1530 /* ram_write_tracking_compatible: check if guest configuration is
1531  *   compatible with 'write-tracking'
1532  *
1533  * Returns true if compatible, false otherwise
1534  */
1535 bool ram_write_tracking_compatible(void)
1536 {
1537     const uint64_t uffd_ioctls_mask = BIT(_UFFDIO_WRITEPROTECT);
1538     int uffd_fd;
1539     RAMBlock *block;
1540     bool ret = false;
1541 
1542     /* Open UFFD file descriptor */
1543     uffd_fd = uffd_create_fd(UFFD_FEATURE_PAGEFAULT_FLAG_WP, false);
1544     if (uffd_fd < 0) {
1545         return false;
1546     }
1547 
1548     RCU_READ_LOCK_GUARD();
1549 
1550     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1551         uint64_t uffd_ioctls;
1552 
1553         /* Nothing to do with read-only and MMIO-writable regions */
1554         if (block->mr->readonly || block->mr->rom_device) {
1555             continue;
1556         }
1557         /* Try to register block memory via UFFD-IO to track writes */
1558         if (uffd_register_memory(uffd_fd, block->host, block->max_length,
1559                 UFFDIO_REGISTER_MODE_WP, &uffd_ioctls)) {
1560             goto out;
1561         }
1562         if ((uffd_ioctls & uffd_ioctls_mask) != uffd_ioctls_mask) {
1563             goto out;
1564         }
1565     }
1566     ret = true;
1567 
1568 out:
1569     uffd_close_fd(uffd_fd);
1570     return ret;
1571 }
1572 
1573 static inline void populate_read_range(RAMBlock *block, ram_addr_t offset,
1574                                        ram_addr_t size)
1575 {
1576     const ram_addr_t end = offset + size;
1577 
1578     /*
1579      * We read one byte of each page; this will preallocate page tables if
1580      * required and populate the shared zeropage on MAP_PRIVATE anonymous memory
1581      * where no page was populated yet. This might require adaption when
1582      * supporting other mappings, like shmem.
1583      */
1584     for (; offset < end; offset += block->page_size) {
1585         char tmp = *((char *)block->host + offset);
1586 
1587         /* Don't optimize the read out */
1588         asm volatile("" : "+r" (tmp));
1589     }
1590 }
1591 
1592 static inline int populate_read_section(MemoryRegionSection *section,
1593                                         void *opaque)
1594 {
1595     const hwaddr size = int128_get64(section->size);
1596     hwaddr offset = section->offset_within_region;
1597     RAMBlock *block = section->mr->ram_block;
1598 
1599     populate_read_range(block, offset, size);
1600     return 0;
1601 }
1602 
1603 /*
1604  * ram_block_populate_read: preallocate page tables and populate pages in the
1605  *   RAM block by reading a byte of each page.
1606  *
1607  * Since it's solely used for userfault_fd WP feature, here we just
1608  *   hardcode page size to qemu_real_host_page_size.
1609  *
1610  * @block: RAM block to populate
1611  */
1612 static void ram_block_populate_read(RAMBlock *rb)
1613 {
1614     /*
1615      * Skip populating all pages that fall into a discarded range as managed by
1616      * a RamDiscardManager responsible for the mapped memory region of the
1617      * RAMBlock. Such discarded ("logically unplugged") parts of a RAMBlock
1618      * must not get populated automatically. We don't have to track
1619      * modifications via userfaultfd WP reliably, because these pages will
1620      * not be part of the migration stream either way -- see
1621      * ramblock_dirty_bitmap_exclude_discarded_pages().
1622      *
1623      * Note: The result is only stable while migrating (precopy/postcopy).
1624      */
1625     if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) {
1626         RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr);
1627         MemoryRegionSection section = {
1628             .mr = rb->mr,
1629             .offset_within_region = 0,
1630             .size = rb->mr->size,
1631         };
1632 
1633         ram_discard_manager_replay_populated(rdm, &section,
1634                                              populate_read_section, NULL);
1635     } else {
1636         populate_read_range(rb, 0, rb->used_length);
1637     }
1638 }
1639 
1640 /*
1641  * ram_write_tracking_prepare: prepare for UFFD-WP memory tracking
1642  */
1643 void ram_write_tracking_prepare(void)
1644 {
1645     RAMBlock *block;
1646 
1647     RCU_READ_LOCK_GUARD();
1648 
1649     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1650         /* Nothing to do with read-only and MMIO-writable regions */
1651         if (block->mr->readonly || block->mr->rom_device) {
1652             continue;
1653         }
1654 
1655         /*
1656          * Populate pages of the RAM block before enabling userfault_fd
1657          * write protection.
1658          *
1659          * This stage is required since ioctl(UFFDIO_WRITEPROTECT) with
1660          * UFFDIO_WRITEPROTECT_MODE_WP mode setting would silently skip
1661          * pages with pte_none() entries in page table.
1662          */
1663         ram_block_populate_read(block);
1664     }
1665 }
1666 
1667 static inline int uffd_protect_section(MemoryRegionSection *section,
1668                                        void *opaque)
1669 {
1670     const hwaddr size = int128_get64(section->size);
1671     const hwaddr offset = section->offset_within_region;
1672     RAMBlock *rb = section->mr->ram_block;
1673     int uffd_fd = (uintptr_t)opaque;
1674 
1675     return uffd_change_protection(uffd_fd, rb->host + offset, size, true,
1676                                   false);
1677 }
1678 
1679 static int ram_block_uffd_protect(RAMBlock *rb, int uffd_fd)
1680 {
1681     assert(rb->flags & RAM_UF_WRITEPROTECT);
1682 
1683     /* See ram_block_populate_read() */
1684     if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) {
1685         RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr);
1686         MemoryRegionSection section = {
1687             .mr = rb->mr,
1688             .offset_within_region = 0,
1689             .size = rb->mr->size,
1690         };
1691 
1692         return ram_discard_manager_replay_populated(rdm, &section,
1693                                                     uffd_protect_section,
1694                                                     (void *)(uintptr_t)uffd_fd);
1695     }
1696     return uffd_change_protection(uffd_fd, rb->host,
1697                                   rb->used_length, true, false);
1698 }
1699 
1700 /*
1701  * ram_write_tracking_start: start UFFD-WP memory tracking
1702  *
1703  * Returns 0 for success or negative value in case of error
1704  */
1705 int ram_write_tracking_start(void)
1706 {
1707     int uffd_fd;
1708     RAMState *rs = ram_state;
1709     RAMBlock *block;
1710 
1711     /* Open UFFD file descriptor */
1712     uffd_fd = uffd_create_fd(UFFD_FEATURE_PAGEFAULT_FLAG_WP, true);
1713     if (uffd_fd < 0) {
1714         return uffd_fd;
1715     }
1716     rs->uffdio_fd = uffd_fd;
1717 
1718     RCU_READ_LOCK_GUARD();
1719 
1720     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1721         /* Nothing to do with read-only and MMIO-writable regions */
1722         if (block->mr->readonly || block->mr->rom_device) {
1723             continue;
1724         }
1725 
1726         /* Register block memory with UFFD to track writes */
1727         if (uffd_register_memory(rs->uffdio_fd, block->host,
1728                 block->max_length, UFFDIO_REGISTER_MODE_WP, NULL)) {
1729             goto fail;
1730         }
1731         block->flags |= RAM_UF_WRITEPROTECT;
1732         memory_region_ref(block->mr);
1733 
1734         /* Apply UFFD write protection to the block memory range */
1735         if (ram_block_uffd_protect(block, uffd_fd)) {
1736             goto fail;
1737         }
1738 
1739         trace_ram_write_tracking_ramblock_start(block->idstr, block->page_size,
1740                 block->host, block->max_length);
1741     }
1742 
1743     return 0;
1744 
1745 fail:
1746     error_report("ram_write_tracking_start() failed: restoring initial memory state");
1747 
1748     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1749         if ((block->flags & RAM_UF_WRITEPROTECT) == 0) {
1750             continue;
1751         }
1752         uffd_unregister_memory(rs->uffdio_fd, block->host, block->max_length);
1753         /* Cleanup flags and remove reference */
1754         block->flags &= ~RAM_UF_WRITEPROTECT;
1755         memory_region_unref(block->mr);
1756     }
1757 
1758     uffd_close_fd(uffd_fd);
1759     rs->uffdio_fd = -1;
1760     return -1;
1761 }
1762 
1763 /**
1764  * ram_write_tracking_stop: stop UFFD-WP memory tracking and remove protection
1765  */
1766 void ram_write_tracking_stop(void)
1767 {
1768     RAMState *rs = ram_state;
1769     RAMBlock *block;
1770 
1771     RCU_READ_LOCK_GUARD();
1772 
1773     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
1774         if ((block->flags & RAM_UF_WRITEPROTECT) == 0) {
1775             continue;
1776         }
1777         uffd_unregister_memory(rs->uffdio_fd, block->host, block->max_length);
1778 
1779         trace_ram_write_tracking_ramblock_stop(block->idstr, block->page_size,
1780                 block->host, block->max_length);
1781 
1782         /* Cleanup flags and remove reference */
1783         block->flags &= ~RAM_UF_WRITEPROTECT;
1784         memory_region_unref(block->mr);
1785     }
1786 
1787     /* Finally close UFFD file descriptor */
1788     uffd_close_fd(rs->uffdio_fd);
1789     rs->uffdio_fd = -1;
1790 }
1791 
1792 #else
1793 /* No target OS support, stubs just fail or ignore */
1794 
1795 static RAMBlock *poll_fault_page(RAMState *rs, ram_addr_t *offset)
1796 {
1797     (void) rs;
1798     (void) offset;
1799 
1800     return NULL;
1801 }
1802 
1803 static int ram_save_release_protection(RAMState *rs, PageSearchStatus *pss,
1804         unsigned long start_page)
1805 {
1806     (void) rs;
1807     (void) pss;
1808     (void) start_page;
1809 
1810     return 0;
1811 }
1812 
1813 bool ram_write_tracking_available(void)
1814 {
1815     return false;
1816 }
1817 
1818 bool ram_write_tracking_compatible(void)
1819 {
1820     assert(0);
1821     return false;
1822 }
1823 
1824 int ram_write_tracking_start(void)
1825 {
1826     assert(0);
1827     return -1;
1828 }
1829 
1830 void ram_write_tracking_stop(void)
1831 {
1832     assert(0);
1833 }
1834 #endif /* defined(__linux__) */
1835 
1836 /**
1837  * get_queued_page: unqueue a page from the postcopy requests
1838  *
1839  * Skips pages that are already sent (!dirty)
1840  *
1841  * Returns true if a queued page is found
1842  *
1843  * @rs: current RAM state
1844  * @pss: data about the state of the current dirty page scan
1845  */
1846 static bool get_queued_page(RAMState *rs, PageSearchStatus *pss)
1847 {
1848     RAMBlock  *block;
1849     ram_addr_t offset;
1850     bool dirty;
1851 
1852     do {
1853         block = unqueue_page(rs, &offset);
1854         /*
1855          * We're sending this page, and since it's postcopy nothing else
1856          * will dirty it, and we must make sure it doesn't get sent again
1857          * even if this queue request was received after the background
1858          * search already sent it.
1859          */
1860         if (block) {
1861             unsigned long page;
1862 
1863             page = offset >> TARGET_PAGE_BITS;
1864             dirty = test_bit(page, block->bmap);
1865             if (!dirty) {
1866                 trace_get_queued_page_not_dirty(block->idstr, (uint64_t)offset,
1867                                                 page);
1868             } else {
1869                 trace_get_queued_page(block->idstr, (uint64_t)offset, page);
1870             }
1871         }
1872 
1873     } while (block && !dirty);
1874 
1875     if (!block) {
1876         /*
1877          * Poll write faults too if background snapshot is enabled; that's
1878          * when we have vcpus got blocked by the write protected pages.
1879          */
1880         block = poll_fault_page(rs, &offset);
1881     }
1882 
1883     if (block) {
1884         /*
1885          * We want the background search to continue from the queued page
1886          * since the guest is likely to want other pages near to the page
1887          * it just requested.
1888          */
1889         pss->block = block;
1890         pss->page = offset >> TARGET_PAGE_BITS;
1891 
1892         /*
1893          * This unqueued page would break the "one round" check, even is
1894          * really rare.
1895          */
1896         pss->complete_round = false;
1897     }
1898 
1899     return !!block;
1900 }
1901 
1902 /**
1903  * migration_page_queue_free: drop any remaining pages in the ram
1904  * request queue
1905  *
1906  * It should be empty at the end anyway, but in error cases there may
1907  * be some left.  in case that there is any page left, we drop it.
1908  *
1909  */
1910 static void migration_page_queue_free(RAMState *rs)
1911 {
1912     struct RAMSrcPageRequest *mspr, *next_mspr;
1913     /* This queue generally should be empty - but in the case of a failed
1914      * migration might have some droppings in.
1915      */
1916     RCU_READ_LOCK_GUARD();
1917     QSIMPLEQ_FOREACH_SAFE(mspr, &rs->src_page_requests, next_req, next_mspr) {
1918         memory_region_unref(mspr->rb->mr);
1919         QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req);
1920         g_free(mspr);
1921     }
1922 }
1923 
1924 /**
1925  * ram_save_queue_pages: queue the page for transmission
1926  *
1927  * A request from postcopy destination for example.
1928  *
1929  * Returns zero on success or negative on error
1930  *
1931  * @rbname: Name of the RAMBLock of the request. NULL means the
1932  *          same that last one.
1933  * @start: starting address from the start of the RAMBlock
1934  * @len: length (in bytes) to send
1935  */
1936 int ram_save_queue_pages(const char *rbname, ram_addr_t start, ram_addr_t len,
1937                          Error **errp)
1938 {
1939     RAMBlock *ramblock;
1940     RAMState *rs = ram_state;
1941 
1942     stat64_add(&mig_stats.postcopy_requests, 1);
1943     RCU_READ_LOCK_GUARD();
1944 
1945     if (!rbname) {
1946         /* Reuse last RAMBlock */
1947         ramblock = rs->last_req_rb;
1948 
1949         if (!ramblock) {
1950             /*
1951              * Shouldn't happen, we can't reuse the last RAMBlock if
1952              * it's the 1st request.
1953              */
1954             error_setg(errp, "MIG_RP_MSG_REQ_PAGES has no previous block");
1955             return -1;
1956         }
1957     } else {
1958         ramblock = qemu_ram_block_by_name(rbname);
1959 
1960         if (!ramblock) {
1961             /* We shouldn't be asked for a non-existent RAMBlock */
1962             error_setg(errp, "MIG_RP_MSG_REQ_PAGES has no block '%s'", rbname);
1963             return -1;
1964         }
1965         rs->last_req_rb = ramblock;
1966     }
1967     trace_ram_save_queue_pages(ramblock->idstr, start, len);
1968     if (!offset_in_ramblock(ramblock, start + len - 1)) {
1969         error_setg(errp, "MIG_RP_MSG_REQ_PAGES request overrun, "
1970                    "start=" RAM_ADDR_FMT " len="
1971                    RAM_ADDR_FMT " blocklen=" RAM_ADDR_FMT,
1972                    start, len, ramblock->used_length);
1973         return -1;
1974     }
1975 
1976     /*
1977      * When with postcopy preempt, we send back the page directly in the
1978      * rp-return thread.
1979      */
1980     if (postcopy_preempt_active()) {
1981         ram_addr_t page_start = start >> TARGET_PAGE_BITS;
1982         size_t page_size = qemu_ram_pagesize(ramblock);
1983         PageSearchStatus *pss = &ram_state->pss[RAM_CHANNEL_POSTCOPY];
1984         int ret = 0;
1985 
1986         qemu_mutex_lock(&rs->bitmap_mutex);
1987 
1988         pss_init(pss, ramblock, page_start);
1989         /*
1990          * Always use the preempt channel, and make sure it's there.  It's
1991          * safe to access without lock, because when rp-thread is running
1992          * we should be the only one who operates on the qemufile
1993          */
1994         pss->pss_channel = migrate_get_current()->postcopy_qemufile_src;
1995         assert(pss->pss_channel);
1996 
1997         /*
1998          * It must be either one or multiple of host page size.  Just
1999          * assert; if something wrong we're mostly split brain anyway.
2000          */
2001         assert(len % page_size == 0);
2002         while (len) {
2003             if (ram_save_host_page_urgent(pss)) {
2004                 error_setg(errp, "ram_save_host_page_urgent() failed: "
2005                            "ramblock=%s, start_addr=0x"RAM_ADDR_FMT,
2006                            ramblock->idstr, start);
2007                 ret = -1;
2008                 break;
2009             }
2010             /*
2011              * NOTE: after ram_save_host_page_urgent() succeeded, pss->page
2012              * will automatically be moved and point to the next host page
2013              * we're going to send, so no need to update here.
2014              *
2015              * Normally QEMU never sends >1 host page in requests, so
2016              * logically we don't even need that as the loop should only
2017              * run once, but just to be consistent.
2018              */
2019             len -= page_size;
2020         };
2021         qemu_mutex_unlock(&rs->bitmap_mutex);
2022 
2023         return ret;
2024     }
2025 
2026     struct RAMSrcPageRequest *new_entry =
2027         g_new0(struct RAMSrcPageRequest, 1);
2028     new_entry->rb = ramblock;
2029     new_entry->offset = start;
2030     new_entry->len = len;
2031 
2032     memory_region_ref(ramblock->mr);
2033     qemu_mutex_lock(&rs->src_page_req_mutex);
2034     QSIMPLEQ_INSERT_TAIL(&rs->src_page_requests, new_entry, next_req);
2035     migration_make_urgent_request();
2036     qemu_mutex_unlock(&rs->src_page_req_mutex);
2037 
2038     return 0;
2039 }
2040 
2041 /*
2042  * try to compress the page before posting it out, return true if the page
2043  * has been properly handled by compression, otherwise needs other
2044  * paths to handle it
2045  */
2046 static bool save_compress_page(RAMState *rs, PageSearchStatus *pss,
2047                                ram_addr_t offset)
2048 {
2049     if (!migrate_compress()) {
2050         return false;
2051     }
2052 
2053     /*
2054      * When starting the process of a new block, the first page of
2055      * the block should be sent out before other pages in the same
2056      * block, and all the pages in last block should have been sent
2057      * out, keeping this order is important, because the 'cont' flag
2058      * is used to avoid resending the block name.
2059      *
2060      * We post the fist page as normal page as compression will take
2061      * much CPU resource.
2062      */
2063     if (pss->block != pss->last_sent_block) {
2064         compress_flush_data();
2065         return false;
2066     }
2067 
2068     return compress_page_with_multi_thread(pss->block, offset,
2069                                            compress_send_queued_data);
2070 }
2071 
2072 /**
2073  * ram_save_target_page_legacy: save one target page
2074  *
2075  * Returns the number of pages written
2076  *
2077  * @rs: current RAM state
2078  * @pss: data about the page we want to send
2079  */
2080 static int ram_save_target_page_legacy(RAMState *rs, PageSearchStatus *pss)
2081 {
2082     RAMBlock *block = pss->block;
2083     ram_addr_t offset = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS;
2084     int res;
2085 
2086     if (control_save_page(pss, offset, &res)) {
2087         return res;
2088     }
2089 
2090     if (save_compress_page(rs, pss, offset)) {
2091         return 1;
2092     }
2093 
2094     if (save_zero_page(rs, pss, offset)) {
2095         return 1;
2096     }
2097 
2098     /*
2099      * Do not use multifd in postcopy as one whole host page should be
2100      * placed.  Meanwhile postcopy requires atomic update of pages, so even
2101      * if host page size == guest page size the dest guest during run may
2102      * still see partially copied pages which is data corruption.
2103      */
2104     if (migrate_multifd() && !migration_in_postcopy()) {
2105         return ram_save_multifd_page(block, offset);
2106     }
2107 
2108     return ram_save_page(rs, pss);
2109 }
2110 
2111 /* Should be called before sending a host page */
2112 static void pss_host_page_prepare(PageSearchStatus *pss)
2113 {
2114     /* How many guest pages are there in one host page? */
2115     size_t guest_pfns = qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS;
2116 
2117     pss->host_page_sending = true;
2118     if (guest_pfns <= 1) {
2119         /*
2120          * This covers both when guest psize == host psize, or when guest
2121          * has larger psize than the host (guest_pfns==0).
2122          *
2123          * For the latter, we always send one whole guest page per
2124          * iteration of the host page (example: an Alpha VM on x86 host
2125          * will have guest psize 8K while host psize 4K).
2126          */
2127         pss->host_page_start = pss->page;
2128         pss->host_page_end = pss->page + 1;
2129     } else {
2130         /*
2131          * The host page spans over multiple guest pages, we send them
2132          * within the same host page iteration.
2133          */
2134         pss->host_page_start = ROUND_DOWN(pss->page, guest_pfns);
2135         pss->host_page_end = ROUND_UP(pss->page + 1, guest_pfns);
2136     }
2137 }
2138 
2139 /*
2140  * Whether the page pointed by PSS is within the host page being sent.
2141  * Must be called after a previous pss_host_page_prepare().
2142  */
2143 static bool pss_within_range(PageSearchStatus *pss)
2144 {
2145     ram_addr_t ram_addr;
2146 
2147     assert(pss->host_page_sending);
2148 
2149     /* Over host-page boundary? */
2150     if (pss->page >= pss->host_page_end) {
2151         return false;
2152     }
2153 
2154     ram_addr = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS;
2155 
2156     return offset_in_ramblock(pss->block, ram_addr);
2157 }
2158 
2159 static void pss_host_page_finish(PageSearchStatus *pss)
2160 {
2161     pss->host_page_sending = false;
2162     /* This is not needed, but just to reset it */
2163     pss->host_page_start = pss->host_page_end = 0;
2164 }
2165 
2166 /*
2167  * Send an urgent host page specified by `pss'.  Need to be called with
2168  * bitmap_mutex held.
2169  *
2170  * Returns 0 if save host page succeeded, false otherwise.
2171  */
2172 static int ram_save_host_page_urgent(PageSearchStatus *pss)
2173 {
2174     bool page_dirty, sent = false;
2175     RAMState *rs = ram_state;
2176     int ret = 0;
2177 
2178     trace_postcopy_preempt_send_host_page(pss->block->idstr, pss->page);
2179     pss_host_page_prepare(pss);
2180 
2181     /*
2182      * If precopy is sending the same page, let it be done in precopy, or
2183      * we could send the same page in two channels and none of them will
2184      * receive the whole page.
2185      */
2186     if (pss_overlap(pss, &ram_state->pss[RAM_CHANNEL_PRECOPY])) {
2187         trace_postcopy_preempt_hit(pss->block->idstr,
2188                                    pss->page << TARGET_PAGE_BITS);
2189         return 0;
2190     }
2191 
2192     do {
2193         page_dirty = migration_bitmap_clear_dirty(rs, pss->block, pss->page);
2194 
2195         if (page_dirty) {
2196             /* Be strict to return code; it must be 1, or what else? */
2197             if (migration_ops->ram_save_target_page(rs, pss) != 1) {
2198                 error_report_once("%s: ram_save_target_page failed", __func__);
2199                 ret = -1;
2200                 goto out;
2201             }
2202             sent = true;
2203         }
2204         pss_find_next_dirty(pss);
2205     } while (pss_within_range(pss));
2206 out:
2207     pss_host_page_finish(pss);
2208     /* For urgent requests, flush immediately if sent */
2209     if (sent) {
2210         qemu_fflush(pss->pss_channel);
2211     }
2212     return ret;
2213 }
2214 
2215 /**
2216  * ram_save_host_page: save a whole host page
2217  *
2218  * Starting at *offset send pages up to the end of the current host
2219  * page. It's valid for the initial offset to point into the middle of
2220  * a host page in which case the remainder of the hostpage is sent.
2221  * Only dirty target pages are sent. Note that the host page size may
2222  * be a huge page for this block.
2223  *
2224  * The saving stops at the boundary of the used_length of the block
2225  * if the RAMBlock isn't a multiple of the host page size.
2226  *
2227  * The caller must be with ram_state.bitmap_mutex held to call this
2228  * function.  Note that this function can temporarily release the lock, but
2229  * when the function is returned it'll make sure the lock is still held.
2230  *
2231  * Returns the number of pages written or negative on error
2232  *
2233  * @rs: current RAM state
2234  * @pss: data about the page we want to send
2235  */
2236 static int ram_save_host_page(RAMState *rs, PageSearchStatus *pss)
2237 {
2238     bool page_dirty, preempt_active = postcopy_preempt_active();
2239     int tmppages, pages = 0;
2240     size_t pagesize_bits =
2241         qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS;
2242     unsigned long start_page = pss->page;
2243     int res;
2244 
2245     if (migrate_ram_is_ignored(pss->block)) {
2246         error_report("block %s should not be migrated !", pss->block->idstr);
2247         return 0;
2248     }
2249 
2250     /* Update host page boundary information */
2251     pss_host_page_prepare(pss);
2252 
2253     do {
2254         page_dirty = migration_bitmap_clear_dirty(rs, pss->block, pss->page);
2255 
2256         /* Check the pages is dirty and if it is send it */
2257         if (page_dirty) {
2258             /*
2259              * Properly yield the lock only in postcopy preempt mode
2260              * because both migration thread and rp-return thread can
2261              * operate on the bitmaps.
2262              */
2263             if (preempt_active) {
2264                 qemu_mutex_unlock(&rs->bitmap_mutex);
2265             }
2266             tmppages = migration_ops->ram_save_target_page(rs, pss);
2267             if (tmppages >= 0) {
2268                 pages += tmppages;
2269                 /*
2270                  * Allow rate limiting to happen in the middle of huge pages if
2271                  * something is sent in the current iteration.
2272                  */
2273                 if (pagesize_bits > 1 && tmppages > 0) {
2274                     migration_rate_limit();
2275                 }
2276             }
2277             if (preempt_active) {
2278                 qemu_mutex_lock(&rs->bitmap_mutex);
2279             }
2280         } else {
2281             tmppages = 0;
2282         }
2283 
2284         if (tmppages < 0) {
2285             pss_host_page_finish(pss);
2286             return tmppages;
2287         }
2288 
2289         pss_find_next_dirty(pss);
2290     } while (pss_within_range(pss));
2291 
2292     pss_host_page_finish(pss);
2293 
2294     res = ram_save_release_protection(rs, pss, start_page);
2295     return (res < 0 ? res : pages);
2296 }
2297 
2298 /**
2299  * ram_find_and_save_block: finds a dirty page and sends it to f
2300  *
2301  * Called within an RCU critical section.
2302  *
2303  * Returns the number of pages written where zero means no dirty pages,
2304  * or negative on error
2305  *
2306  * @rs: current RAM state
2307  *
2308  * On systems where host-page-size > target-page-size it will send all the
2309  * pages in a host page that are dirty.
2310  */
2311 static int ram_find_and_save_block(RAMState *rs)
2312 {
2313     PageSearchStatus *pss = &rs->pss[RAM_CHANNEL_PRECOPY];
2314     int pages = 0;
2315 
2316     /* No dirty page as there is zero RAM */
2317     if (!rs->ram_bytes_total) {
2318         return pages;
2319     }
2320 
2321     /*
2322      * Always keep last_seen_block/last_page valid during this procedure,
2323      * because find_dirty_block() relies on these values (e.g., we compare
2324      * last_seen_block with pss.block to see whether we searched all the
2325      * ramblocks) to detect the completion of migration.  Having NULL value
2326      * of last_seen_block can conditionally cause below loop to run forever.
2327      */
2328     if (!rs->last_seen_block) {
2329         rs->last_seen_block = QLIST_FIRST_RCU(&ram_list.blocks);
2330         rs->last_page = 0;
2331     }
2332 
2333     pss_init(pss, rs->last_seen_block, rs->last_page);
2334 
2335     while (true){
2336         if (!get_queued_page(rs, pss)) {
2337             /* priority queue empty, so just search for something dirty */
2338             int res = find_dirty_block(rs, pss);
2339             if (res != PAGE_DIRTY_FOUND) {
2340                 if (res == PAGE_ALL_CLEAN) {
2341                     break;
2342                 } else if (res == PAGE_TRY_AGAIN) {
2343                     continue;
2344                 } else if (res < 0) {
2345                     pages = res;
2346                     break;
2347                 }
2348             }
2349         }
2350         pages = ram_save_host_page(rs, pss);
2351         if (pages) {
2352             break;
2353         }
2354     }
2355 
2356     rs->last_seen_block = pss->block;
2357     rs->last_page = pss->page;
2358 
2359     return pages;
2360 }
2361 
2362 static uint64_t ram_bytes_total_with_ignored(void)
2363 {
2364     RAMBlock *block;
2365     uint64_t total = 0;
2366 
2367     RCU_READ_LOCK_GUARD();
2368 
2369     RAMBLOCK_FOREACH_MIGRATABLE(block) {
2370         total += block->used_length;
2371     }
2372     return total;
2373 }
2374 
2375 uint64_t ram_bytes_total(void)
2376 {
2377     RAMBlock *block;
2378     uint64_t total = 0;
2379 
2380     RCU_READ_LOCK_GUARD();
2381 
2382     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2383         total += block->used_length;
2384     }
2385     return total;
2386 }
2387 
2388 static void xbzrle_load_setup(void)
2389 {
2390     XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE);
2391 }
2392 
2393 static void xbzrle_load_cleanup(void)
2394 {
2395     g_free(XBZRLE.decoded_buf);
2396     XBZRLE.decoded_buf = NULL;
2397 }
2398 
2399 static void ram_state_cleanup(RAMState **rsp)
2400 {
2401     if (*rsp) {
2402         migration_page_queue_free(*rsp);
2403         qemu_mutex_destroy(&(*rsp)->bitmap_mutex);
2404         qemu_mutex_destroy(&(*rsp)->src_page_req_mutex);
2405         g_free(*rsp);
2406         *rsp = NULL;
2407     }
2408 }
2409 
2410 static void xbzrle_cleanup(void)
2411 {
2412     XBZRLE_cache_lock();
2413     if (XBZRLE.cache) {
2414         cache_fini(XBZRLE.cache);
2415         g_free(XBZRLE.encoded_buf);
2416         g_free(XBZRLE.current_buf);
2417         g_free(XBZRLE.zero_target_page);
2418         XBZRLE.cache = NULL;
2419         XBZRLE.encoded_buf = NULL;
2420         XBZRLE.current_buf = NULL;
2421         XBZRLE.zero_target_page = NULL;
2422     }
2423     XBZRLE_cache_unlock();
2424 }
2425 
2426 static void ram_save_cleanup(void *opaque)
2427 {
2428     RAMState **rsp = opaque;
2429     RAMBlock *block;
2430 
2431     /* We don't use dirty log with background snapshots */
2432     if (!migrate_background_snapshot()) {
2433         /* caller have hold BQL or is in a bh, so there is
2434          * no writing race against the migration bitmap
2435          */
2436         if (global_dirty_tracking & GLOBAL_DIRTY_MIGRATION) {
2437             /*
2438              * do not stop dirty log without starting it, since
2439              * memory_global_dirty_log_stop will assert that
2440              * memory_global_dirty_log_start/stop used in pairs
2441              */
2442             memory_global_dirty_log_stop(GLOBAL_DIRTY_MIGRATION);
2443         }
2444     }
2445 
2446     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2447         g_free(block->clear_bmap);
2448         block->clear_bmap = NULL;
2449         g_free(block->bmap);
2450         block->bmap = NULL;
2451     }
2452 
2453     xbzrle_cleanup();
2454     compress_threads_save_cleanup();
2455     ram_state_cleanup(rsp);
2456     g_free(migration_ops);
2457     migration_ops = NULL;
2458 }
2459 
2460 static void ram_state_reset(RAMState *rs)
2461 {
2462     int i;
2463 
2464     for (i = 0; i < RAM_CHANNEL_MAX; i++) {
2465         rs->pss[i].last_sent_block = NULL;
2466     }
2467 
2468     rs->last_seen_block = NULL;
2469     rs->last_page = 0;
2470     rs->last_version = ram_list.version;
2471     rs->xbzrle_started = false;
2472 }
2473 
2474 #define MAX_WAIT 50 /* ms, half buffered_file limit */
2475 
2476 /* **** functions for postcopy ***** */
2477 
2478 void ram_postcopy_migrated_memory_release(MigrationState *ms)
2479 {
2480     struct RAMBlock *block;
2481 
2482     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2483         unsigned long *bitmap = block->bmap;
2484         unsigned long range = block->used_length >> TARGET_PAGE_BITS;
2485         unsigned long run_start = find_next_zero_bit(bitmap, range, 0);
2486 
2487         while (run_start < range) {
2488             unsigned long run_end = find_next_bit(bitmap, range, run_start + 1);
2489             ram_discard_range(block->idstr,
2490                               ((ram_addr_t)run_start) << TARGET_PAGE_BITS,
2491                               ((ram_addr_t)(run_end - run_start))
2492                                 << TARGET_PAGE_BITS);
2493             run_start = find_next_zero_bit(bitmap, range, run_end + 1);
2494         }
2495     }
2496 }
2497 
2498 /**
2499  * postcopy_send_discard_bm_ram: discard a RAMBlock
2500  *
2501  * Callback from postcopy_each_ram_send_discard for each RAMBlock
2502  *
2503  * @ms: current migration state
2504  * @block: RAMBlock to discard
2505  */
2506 static void postcopy_send_discard_bm_ram(MigrationState *ms, RAMBlock *block)
2507 {
2508     unsigned long end = block->used_length >> TARGET_PAGE_BITS;
2509     unsigned long current;
2510     unsigned long *bitmap = block->bmap;
2511 
2512     for (current = 0; current < end; ) {
2513         unsigned long one = find_next_bit(bitmap, end, current);
2514         unsigned long zero, discard_length;
2515 
2516         if (one >= end) {
2517             break;
2518         }
2519 
2520         zero = find_next_zero_bit(bitmap, end, one + 1);
2521 
2522         if (zero >= end) {
2523             discard_length = end - one;
2524         } else {
2525             discard_length = zero - one;
2526         }
2527         postcopy_discard_send_range(ms, one, discard_length);
2528         current = one + discard_length;
2529     }
2530 }
2531 
2532 static void postcopy_chunk_hostpages_pass(MigrationState *ms, RAMBlock *block);
2533 
2534 /**
2535  * postcopy_each_ram_send_discard: discard all RAMBlocks
2536  *
2537  * Utility for the outgoing postcopy code.
2538  *   Calls postcopy_send_discard_bm_ram for each RAMBlock
2539  *   passing it bitmap indexes and name.
2540  * (qemu_ram_foreach_block ends up passing unscaled lengths
2541  *  which would mean postcopy code would have to deal with target page)
2542  *
2543  * @ms: current migration state
2544  */
2545 static void postcopy_each_ram_send_discard(MigrationState *ms)
2546 {
2547     struct RAMBlock *block;
2548 
2549     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2550         postcopy_discard_send_init(ms, block->idstr);
2551 
2552         /*
2553          * Deal with TPS != HPS and huge pages.  It discard any partially sent
2554          * host-page size chunks, mark any partially dirty host-page size
2555          * chunks as all dirty.  In this case the host-page is the host-page
2556          * for the particular RAMBlock, i.e. it might be a huge page.
2557          */
2558         postcopy_chunk_hostpages_pass(ms, block);
2559 
2560         /*
2561          * Postcopy sends chunks of bitmap over the wire, but it
2562          * just needs indexes at this point, avoids it having
2563          * target page specific code.
2564          */
2565         postcopy_send_discard_bm_ram(ms, block);
2566         postcopy_discard_send_finish(ms);
2567     }
2568 }
2569 
2570 /**
2571  * postcopy_chunk_hostpages_pass: canonicalize bitmap in hostpages
2572  *
2573  * Helper for postcopy_chunk_hostpages; it's called twice to
2574  * canonicalize the two bitmaps, that are similar, but one is
2575  * inverted.
2576  *
2577  * Postcopy requires that all target pages in a hostpage are dirty or
2578  * clean, not a mix.  This function canonicalizes the bitmaps.
2579  *
2580  * @ms: current migration state
2581  * @block: block that contains the page we want to canonicalize
2582  */
2583 static void postcopy_chunk_hostpages_pass(MigrationState *ms, RAMBlock *block)
2584 {
2585     RAMState *rs = ram_state;
2586     unsigned long *bitmap = block->bmap;
2587     unsigned int host_ratio = block->page_size / TARGET_PAGE_SIZE;
2588     unsigned long pages = block->used_length >> TARGET_PAGE_BITS;
2589     unsigned long run_start;
2590 
2591     if (block->page_size == TARGET_PAGE_SIZE) {
2592         /* Easy case - TPS==HPS for a non-huge page RAMBlock */
2593         return;
2594     }
2595 
2596     /* Find a dirty page */
2597     run_start = find_next_bit(bitmap, pages, 0);
2598 
2599     while (run_start < pages) {
2600 
2601         /*
2602          * If the start of this run of pages is in the middle of a host
2603          * page, then we need to fixup this host page.
2604          */
2605         if (QEMU_IS_ALIGNED(run_start, host_ratio)) {
2606             /* Find the end of this run */
2607             run_start = find_next_zero_bit(bitmap, pages, run_start + 1);
2608             /*
2609              * If the end isn't at the start of a host page, then the
2610              * run doesn't finish at the end of a host page
2611              * and we need to discard.
2612              */
2613         }
2614 
2615         if (!QEMU_IS_ALIGNED(run_start, host_ratio)) {
2616             unsigned long page;
2617             unsigned long fixup_start_addr = QEMU_ALIGN_DOWN(run_start,
2618                                                              host_ratio);
2619             run_start = QEMU_ALIGN_UP(run_start, host_ratio);
2620 
2621             /* Clean up the bitmap */
2622             for (page = fixup_start_addr;
2623                  page < fixup_start_addr + host_ratio; page++) {
2624                 /*
2625                  * Remark them as dirty, updating the count for any pages
2626                  * that weren't previously dirty.
2627                  */
2628                 rs->migration_dirty_pages += !test_and_set_bit(page, bitmap);
2629             }
2630         }
2631 
2632         /* Find the next dirty page for the next iteration */
2633         run_start = find_next_bit(bitmap, pages, run_start);
2634     }
2635 }
2636 
2637 /**
2638  * ram_postcopy_send_discard_bitmap: transmit the discard bitmap
2639  *
2640  * Transmit the set of pages to be discarded after precopy to the target
2641  * these are pages that:
2642  *     a) Have been previously transmitted but are now dirty again
2643  *     b) Pages that have never been transmitted, this ensures that
2644  *        any pages on the destination that have been mapped by background
2645  *        tasks get discarded (transparent huge pages is the specific concern)
2646  * Hopefully this is pretty sparse
2647  *
2648  * @ms: current migration state
2649  */
2650 void ram_postcopy_send_discard_bitmap(MigrationState *ms)
2651 {
2652     RAMState *rs = ram_state;
2653 
2654     RCU_READ_LOCK_GUARD();
2655 
2656     /* This should be our last sync, the src is now paused */
2657     migration_bitmap_sync(rs, false);
2658 
2659     /* Easiest way to make sure we don't resume in the middle of a host-page */
2660     rs->pss[RAM_CHANNEL_PRECOPY].last_sent_block = NULL;
2661     rs->last_seen_block = NULL;
2662     rs->last_page = 0;
2663 
2664     postcopy_each_ram_send_discard(ms);
2665 
2666     trace_ram_postcopy_send_discard_bitmap();
2667 }
2668 
2669 /**
2670  * ram_discard_range: discard dirtied pages at the beginning of postcopy
2671  *
2672  * Returns zero on success
2673  *
2674  * @rbname: name of the RAMBlock of the request. NULL means the
2675  *          same that last one.
2676  * @start: RAMBlock starting page
2677  * @length: RAMBlock size
2678  */
2679 int ram_discard_range(const char *rbname, uint64_t start, size_t length)
2680 {
2681     trace_ram_discard_range(rbname, start, length);
2682 
2683     RCU_READ_LOCK_GUARD();
2684     RAMBlock *rb = qemu_ram_block_by_name(rbname);
2685 
2686     if (!rb) {
2687         error_report("ram_discard_range: Failed to find block '%s'", rbname);
2688         return -1;
2689     }
2690 
2691     /*
2692      * On source VM, we don't need to update the received bitmap since
2693      * we don't even have one.
2694      */
2695     if (rb->receivedmap) {
2696         bitmap_clear(rb->receivedmap, start >> qemu_target_page_bits(),
2697                      length >> qemu_target_page_bits());
2698     }
2699 
2700     return ram_block_discard_range(rb, start, length);
2701 }
2702 
2703 /*
2704  * For every allocation, we will try not to crash the VM if the
2705  * allocation failed.
2706  */
2707 static int xbzrle_init(void)
2708 {
2709     Error *local_err = NULL;
2710 
2711     if (!migrate_xbzrle()) {
2712         return 0;
2713     }
2714 
2715     XBZRLE_cache_lock();
2716 
2717     XBZRLE.zero_target_page = g_try_malloc0(TARGET_PAGE_SIZE);
2718     if (!XBZRLE.zero_target_page) {
2719         error_report("%s: Error allocating zero page", __func__);
2720         goto err_out;
2721     }
2722 
2723     XBZRLE.cache = cache_init(migrate_xbzrle_cache_size(),
2724                               TARGET_PAGE_SIZE, &local_err);
2725     if (!XBZRLE.cache) {
2726         error_report_err(local_err);
2727         goto free_zero_page;
2728     }
2729 
2730     XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE);
2731     if (!XBZRLE.encoded_buf) {
2732         error_report("%s: Error allocating encoded_buf", __func__);
2733         goto free_cache;
2734     }
2735 
2736     XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE);
2737     if (!XBZRLE.current_buf) {
2738         error_report("%s: Error allocating current_buf", __func__);
2739         goto free_encoded_buf;
2740     }
2741 
2742     /* We are all good */
2743     XBZRLE_cache_unlock();
2744     return 0;
2745 
2746 free_encoded_buf:
2747     g_free(XBZRLE.encoded_buf);
2748     XBZRLE.encoded_buf = NULL;
2749 free_cache:
2750     cache_fini(XBZRLE.cache);
2751     XBZRLE.cache = NULL;
2752 free_zero_page:
2753     g_free(XBZRLE.zero_target_page);
2754     XBZRLE.zero_target_page = NULL;
2755 err_out:
2756     XBZRLE_cache_unlock();
2757     return -ENOMEM;
2758 }
2759 
2760 static int ram_state_init(RAMState **rsp)
2761 {
2762     *rsp = g_try_new0(RAMState, 1);
2763 
2764     if (!*rsp) {
2765         error_report("%s: Init ramstate fail", __func__);
2766         return -1;
2767     }
2768 
2769     qemu_mutex_init(&(*rsp)->bitmap_mutex);
2770     qemu_mutex_init(&(*rsp)->src_page_req_mutex);
2771     QSIMPLEQ_INIT(&(*rsp)->src_page_requests);
2772     (*rsp)->ram_bytes_total = ram_bytes_total();
2773 
2774     /*
2775      * Count the total number of pages used by ram blocks not including any
2776      * gaps due to alignment or unplugs.
2777      * This must match with the initial values of dirty bitmap.
2778      */
2779     (*rsp)->migration_dirty_pages = (*rsp)->ram_bytes_total >> TARGET_PAGE_BITS;
2780     ram_state_reset(*rsp);
2781 
2782     return 0;
2783 }
2784 
2785 static void ram_list_init_bitmaps(void)
2786 {
2787     MigrationState *ms = migrate_get_current();
2788     RAMBlock *block;
2789     unsigned long pages;
2790     uint8_t shift;
2791 
2792     /* Skip setting bitmap if there is no RAM */
2793     if (ram_bytes_total()) {
2794         shift = ms->clear_bitmap_shift;
2795         if (shift > CLEAR_BITMAP_SHIFT_MAX) {
2796             error_report("clear_bitmap_shift (%u) too big, using "
2797                          "max value (%u)", shift, CLEAR_BITMAP_SHIFT_MAX);
2798             shift = CLEAR_BITMAP_SHIFT_MAX;
2799         } else if (shift < CLEAR_BITMAP_SHIFT_MIN) {
2800             error_report("clear_bitmap_shift (%u) too small, using "
2801                          "min value (%u)", shift, CLEAR_BITMAP_SHIFT_MIN);
2802             shift = CLEAR_BITMAP_SHIFT_MIN;
2803         }
2804 
2805         RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2806             pages = block->max_length >> TARGET_PAGE_BITS;
2807             /*
2808              * The initial dirty bitmap for migration must be set with all
2809              * ones to make sure we'll migrate every guest RAM page to
2810              * destination.
2811              * Here we set RAMBlock.bmap all to 1 because when rebegin a
2812              * new migration after a failed migration, ram_list.
2813              * dirty_memory[DIRTY_MEMORY_MIGRATION] don't include the whole
2814              * guest memory.
2815              */
2816             block->bmap = bitmap_new(pages);
2817             bitmap_set(block->bmap, 0, pages);
2818             if (migrate_mapped_ram()) {
2819                 block->file_bmap = bitmap_new(pages);
2820             }
2821             block->clear_bmap_shift = shift;
2822             block->clear_bmap = bitmap_new(clear_bmap_size(pages, shift));
2823         }
2824     }
2825 }
2826 
2827 static void migration_bitmap_clear_discarded_pages(RAMState *rs)
2828 {
2829     unsigned long pages;
2830     RAMBlock *rb;
2831 
2832     RCU_READ_LOCK_GUARD();
2833 
2834     RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
2835             pages = ramblock_dirty_bitmap_clear_discarded_pages(rb);
2836             rs->migration_dirty_pages -= pages;
2837     }
2838 }
2839 
2840 static void ram_init_bitmaps(RAMState *rs)
2841 {
2842     qemu_mutex_lock_ramlist();
2843 
2844     WITH_RCU_READ_LOCK_GUARD() {
2845         ram_list_init_bitmaps();
2846         /* We don't use dirty log with background snapshots */
2847         if (!migrate_background_snapshot()) {
2848             memory_global_dirty_log_start(GLOBAL_DIRTY_MIGRATION);
2849             migration_bitmap_sync_precopy(rs, false);
2850         }
2851     }
2852     qemu_mutex_unlock_ramlist();
2853 
2854     /*
2855      * After an eventual first bitmap sync, fixup the initial bitmap
2856      * containing all 1s to exclude any discarded pages from migration.
2857      */
2858     migration_bitmap_clear_discarded_pages(rs);
2859 }
2860 
2861 static int ram_init_all(RAMState **rsp)
2862 {
2863     if (ram_state_init(rsp)) {
2864         return -1;
2865     }
2866 
2867     if (xbzrle_init()) {
2868         ram_state_cleanup(rsp);
2869         return -1;
2870     }
2871 
2872     ram_init_bitmaps(*rsp);
2873 
2874     return 0;
2875 }
2876 
2877 static void ram_state_resume_prepare(RAMState *rs, QEMUFile *out)
2878 {
2879     RAMBlock *block;
2880     uint64_t pages = 0;
2881 
2882     /*
2883      * Postcopy is not using xbzrle/compression, so no need for that.
2884      * Also, since source are already halted, we don't need to care
2885      * about dirty page logging as well.
2886      */
2887 
2888     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
2889         pages += bitmap_count_one(block->bmap,
2890                                   block->used_length >> TARGET_PAGE_BITS);
2891     }
2892 
2893     /* This may not be aligned with current bitmaps. Recalculate. */
2894     rs->migration_dirty_pages = pages;
2895 
2896     ram_state_reset(rs);
2897 
2898     /* Update RAMState cache of output QEMUFile */
2899     rs->pss[RAM_CHANNEL_PRECOPY].pss_channel = out;
2900 
2901     trace_ram_state_resume_prepare(pages);
2902 }
2903 
2904 /*
2905  * This function clears bits of the free pages reported by the caller from the
2906  * migration dirty bitmap. @addr is the host address corresponding to the
2907  * start of the continuous guest free pages, and @len is the total bytes of
2908  * those pages.
2909  */
2910 void qemu_guest_free_page_hint(void *addr, size_t len)
2911 {
2912     RAMBlock *block;
2913     ram_addr_t offset;
2914     size_t used_len, start, npages;
2915 
2916     /* This function is currently expected to be used during live migration */
2917     if (!migration_is_setup_or_active()) {
2918         return;
2919     }
2920 
2921     for (; len > 0; len -= used_len, addr += used_len) {
2922         block = qemu_ram_block_from_host(addr, false, &offset);
2923         if (unlikely(!block || offset >= block->used_length)) {
2924             /*
2925              * The implementation might not support RAMBlock resize during
2926              * live migration, but it could happen in theory with future
2927              * updates. So we add a check here to capture that case.
2928              */
2929             error_report_once("%s unexpected error", __func__);
2930             return;
2931         }
2932 
2933         if (len <= block->used_length - offset) {
2934             used_len = len;
2935         } else {
2936             used_len = block->used_length - offset;
2937         }
2938 
2939         start = offset >> TARGET_PAGE_BITS;
2940         npages = used_len >> TARGET_PAGE_BITS;
2941 
2942         qemu_mutex_lock(&ram_state->bitmap_mutex);
2943         /*
2944          * The skipped free pages are equavalent to be sent from clear_bmap's
2945          * perspective, so clear the bits from the memory region bitmap which
2946          * are initially set. Otherwise those skipped pages will be sent in
2947          * the next round after syncing from the memory region bitmap.
2948          */
2949         migration_clear_memory_region_dirty_bitmap_range(block, start, npages);
2950         ram_state->migration_dirty_pages -=
2951                       bitmap_count_one_with_offset(block->bmap, start, npages);
2952         bitmap_clear(block->bmap, start, npages);
2953         qemu_mutex_unlock(&ram_state->bitmap_mutex);
2954     }
2955 }
2956 
2957 #define MAPPED_RAM_HDR_VERSION 1
2958 struct MappedRamHeader {
2959     uint32_t version;
2960     /*
2961      * The target's page size, so we know how many pages are in the
2962      * bitmap.
2963      */
2964     uint64_t page_size;
2965     /*
2966      * The offset in the migration file where the pages bitmap is
2967      * stored.
2968      */
2969     uint64_t bitmap_offset;
2970     /*
2971      * The offset in the migration file where the actual pages (data)
2972      * are stored.
2973      */
2974     uint64_t pages_offset;
2975 } QEMU_PACKED;
2976 typedef struct MappedRamHeader MappedRamHeader;
2977 
2978 static void mapped_ram_setup_ramblock(QEMUFile *file, RAMBlock *block)
2979 {
2980     g_autofree MappedRamHeader *header = NULL;
2981     size_t header_size, bitmap_size;
2982     long num_pages;
2983 
2984     header = g_new0(MappedRamHeader, 1);
2985     header_size = sizeof(MappedRamHeader);
2986 
2987     num_pages = block->used_length >> TARGET_PAGE_BITS;
2988     bitmap_size = BITS_TO_LONGS(num_pages) * sizeof(unsigned long);
2989 
2990     /*
2991      * Save the file offsets of where the bitmap and the pages should
2992      * go as they are written at the end of migration and during the
2993      * iterative phase, respectively.
2994      */
2995     block->bitmap_offset = qemu_get_offset(file) + header_size;
2996     block->pages_offset = ROUND_UP(block->bitmap_offset +
2997                                    bitmap_size,
2998                                    MAPPED_RAM_FILE_OFFSET_ALIGNMENT);
2999 
3000     header->version = cpu_to_be32(MAPPED_RAM_HDR_VERSION);
3001     header->page_size = cpu_to_be64(TARGET_PAGE_SIZE);
3002     header->bitmap_offset = cpu_to_be64(block->bitmap_offset);
3003     header->pages_offset = cpu_to_be64(block->pages_offset);
3004 
3005     qemu_put_buffer(file, (uint8_t *) header, header_size);
3006 
3007     /* prepare offset for next ramblock */
3008     qemu_set_offset(file, block->pages_offset + block->used_length, SEEK_SET);
3009 }
3010 
3011 static bool mapped_ram_read_header(QEMUFile *file, MappedRamHeader *header,
3012                                    Error **errp)
3013 {
3014     size_t ret, header_size = sizeof(MappedRamHeader);
3015 
3016     ret = qemu_get_buffer(file, (uint8_t *)header, header_size);
3017     if (ret != header_size) {
3018         error_setg(errp, "Could not read whole mapped-ram migration header "
3019                    "(expected %zd, got %zd bytes)", header_size, ret);
3020         return false;
3021     }
3022 
3023     /* migration stream is big-endian */
3024     header->version = be32_to_cpu(header->version);
3025 
3026     if (header->version > MAPPED_RAM_HDR_VERSION) {
3027         error_setg(errp, "Migration mapped-ram capability version not "
3028                    "supported (expected <= %d, got %d)", MAPPED_RAM_HDR_VERSION,
3029                    header->version);
3030         return false;
3031     }
3032 
3033     header->page_size = be64_to_cpu(header->page_size);
3034     header->bitmap_offset = be64_to_cpu(header->bitmap_offset);
3035     header->pages_offset = be64_to_cpu(header->pages_offset);
3036 
3037     return true;
3038 }
3039 
3040 /*
3041  * Each of ram_save_setup, ram_save_iterate and ram_save_complete has
3042  * long-running RCU critical section.  When rcu-reclaims in the code
3043  * start to become numerous it will be necessary to reduce the
3044  * granularity of these critical sections.
3045  */
3046 
3047 /**
3048  * ram_save_setup: Setup RAM for migration
3049  *
3050  * Returns zero to indicate success and negative for error
3051  *
3052  * @f: QEMUFile where to send the data
3053  * @opaque: RAMState pointer
3054  */
3055 static int ram_save_setup(QEMUFile *f, void *opaque)
3056 {
3057     RAMState **rsp = opaque;
3058     RAMBlock *block;
3059     int ret, max_hg_page_size;
3060 
3061     if (compress_threads_save_setup()) {
3062         return -1;
3063     }
3064 
3065     /* migration has already setup the bitmap, reuse it. */
3066     if (!migration_in_colo_state()) {
3067         if (ram_init_all(rsp) != 0) {
3068             compress_threads_save_cleanup();
3069             return -1;
3070         }
3071     }
3072     (*rsp)->pss[RAM_CHANNEL_PRECOPY].pss_channel = f;
3073 
3074     /*
3075      * ??? Mirrors the previous value of qemu_host_page_size,
3076      * but is this really what was intended for the migration?
3077      */
3078     max_hg_page_size = MAX(qemu_real_host_page_size(), TARGET_PAGE_SIZE);
3079 
3080     WITH_RCU_READ_LOCK_GUARD() {
3081         qemu_put_be64(f, ram_bytes_total_with_ignored()
3082                          | RAM_SAVE_FLAG_MEM_SIZE);
3083 
3084         RAMBLOCK_FOREACH_MIGRATABLE(block) {
3085             qemu_put_byte(f, strlen(block->idstr));
3086             qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr));
3087             qemu_put_be64(f, block->used_length);
3088             if (migrate_postcopy_ram() &&
3089                 block->page_size != max_hg_page_size) {
3090                 qemu_put_be64(f, block->page_size);
3091             }
3092             if (migrate_ignore_shared()) {
3093                 qemu_put_be64(f, block->mr->addr);
3094             }
3095 
3096             if (migrate_mapped_ram()) {
3097                 mapped_ram_setup_ramblock(f, block);
3098             }
3099         }
3100     }
3101 
3102     ret = rdma_registration_start(f, RAM_CONTROL_SETUP);
3103     if (ret < 0) {
3104         qemu_file_set_error(f, ret);
3105         return ret;
3106     }
3107 
3108     ret = rdma_registration_stop(f, RAM_CONTROL_SETUP);
3109     if (ret < 0) {
3110         qemu_file_set_error(f, ret);
3111         return ret;
3112     }
3113 
3114     migration_ops = g_malloc0(sizeof(MigrationOps));
3115     migration_ops->ram_save_target_page = ram_save_target_page_legacy;
3116 
3117     bql_unlock();
3118     ret = multifd_send_sync_main();
3119     bql_lock();
3120     if (ret < 0) {
3121         return ret;
3122     }
3123 
3124     if (migrate_multifd() && !migrate_multifd_flush_after_each_section()
3125         && !migrate_mapped_ram()) {
3126         qemu_put_be64(f, RAM_SAVE_FLAG_MULTIFD_FLUSH);
3127     }
3128 
3129     qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3130     return qemu_fflush(f);
3131 }
3132 
3133 static void ram_save_file_bmap(QEMUFile *f)
3134 {
3135     RAMBlock *block;
3136 
3137     RAMBLOCK_FOREACH_MIGRATABLE(block) {
3138         long num_pages = block->used_length >> TARGET_PAGE_BITS;
3139         long bitmap_size = BITS_TO_LONGS(num_pages) * sizeof(unsigned long);
3140 
3141         qemu_put_buffer_at(f, (uint8_t *)block->file_bmap, bitmap_size,
3142                            block->bitmap_offset);
3143         ram_transferred_add(bitmap_size);
3144 
3145         /*
3146          * Free the bitmap here to catch any synchronization issues
3147          * with multifd channels. No channels should be sending pages
3148          * after we've written the bitmap to file.
3149          */
3150         g_free(block->file_bmap);
3151         block->file_bmap = NULL;
3152     }
3153 }
3154 
3155 void ramblock_set_file_bmap_atomic(RAMBlock *block, ram_addr_t offset, bool set)
3156 {
3157     if (set) {
3158         set_bit_atomic(offset >> TARGET_PAGE_BITS, block->file_bmap);
3159     } else {
3160         clear_bit_atomic(offset >> TARGET_PAGE_BITS, block->file_bmap);
3161     }
3162 }
3163 
3164 /**
3165  * ram_save_iterate: iterative stage for migration
3166  *
3167  * Returns zero to indicate success and negative for error
3168  *
3169  * @f: QEMUFile where to send the data
3170  * @opaque: RAMState pointer
3171  */
3172 static int ram_save_iterate(QEMUFile *f, void *opaque)
3173 {
3174     RAMState **temp = opaque;
3175     RAMState *rs = *temp;
3176     int ret = 0;
3177     int i;
3178     int64_t t0;
3179     int done = 0;
3180 
3181     if (blk_mig_bulk_active()) {
3182         /* Avoid transferring ram during bulk phase of block migration as
3183          * the bulk phase will usually take a long time and transferring
3184          * ram updates during that time is pointless. */
3185         goto out;
3186     }
3187 
3188     /*
3189      * We'll take this lock a little bit long, but it's okay for two reasons.
3190      * Firstly, the only possible other thread to take it is who calls
3191      * qemu_guest_free_page_hint(), which should be rare; secondly, see
3192      * MAX_WAIT (if curious, further see commit 4508bd9ed8053ce) below, which
3193      * guarantees that we'll at least released it in a regular basis.
3194      */
3195     WITH_QEMU_LOCK_GUARD(&rs->bitmap_mutex) {
3196         WITH_RCU_READ_LOCK_GUARD() {
3197             if (ram_list.version != rs->last_version) {
3198                 ram_state_reset(rs);
3199             }
3200 
3201             /* Read version before ram_list.blocks */
3202             smp_rmb();
3203 
3204             ret = rdma_registration_start(f, RAM_CONTROL_ROUND);
3205             if (ret < 0) {
3206                 qemu_file_set_error(f, ret);
3207                 goto out;
3208             }
3209 
3210             t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
3211             i = 0;
3212             while ((ret = migration_rate_exceeded(f)) == 0 ||
3213                    postcopy_has_request(rs)) {
3214                 int pages;
3215 
3216                 if (qemu_file_get_error(f)) {
3217                     break;
3218                 }
3219 
3220                 pages = ram_find_and_save_block(rs);
3221                 /* no more pages to sent */
3222                 if (pages == 0) {
3223                     done = 1;
3224                     break;
3225                 }
3226 
3227                 if (pages < 0) {
3228                     qemu_file_set_error(f, pages);
3229                     break;
3230                 }
3231 
3232                 rs->target_page_count += pages;
3233 
3234                 /*
3235                  * During postcopy, it is necessary to make sure one whole host
3236                  * page is sent in one chunk.
3237                  */
3238                 if (migrate_postcopy_ram()) {
3239                     compress_flush_data();
3240                 }
3241 
3242                 /*
3243                  * we want to check in the 1st loop, just in case it was the 1st
3244                  * time and we had to sync the dirty bitmap.
3245                  * qemu_clock_get_ns() is a bit expensive, so we only check each
3246                  * some iterations
3247                  */
3248                 if ((i & 63) == 0) {
3249                     uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) /
3250                         1000000;
3251                     if (t1 > MAX_WAIT) {
3252                         trace_ram_save_iterate_big_wait(t1, i);
3253                         break;
3254                     }
3255                 }
3256                 i++;
3257             }
3258         }
3259     }
3260 
3261     /*
3262      * Must occur before EOS (or any QEMUFile operation)
3263      * because of RDMA protocol.
3264      */
3265     ret = rdma_registration_stop(f, RAM_CONTROL_ROUND);
3266     if (ret < 0) {
3267         qemu_file_set_error(f, ret);
3268     }
3269 
3270 out:
3271     if (ret >= 0
3272         && migration_is_setup_or_active()) {
3273         if (migrate_multifd() && migrate_multifd_flush_after_each_section() &&
3274             !migrate_mapped_ram()) {
3275             ret = multifd_send_sync_main();
3276             if (ret < 0) {
3277                 return ret;
3278             }
3279         }
3280 
3281         qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3282         ram_transferred_add(8);
3283         ret = qemu_fflush(f);
3284     }
3285     if (ret < 0) {
3286         return ret;
3287     }
3288 
3289     return done;
3290 }
3291 
3292 /**
3293  * ram_save_complete: function called to send the remaining amount of ram
3294  *
3295  * Returns zero to indicate success or negative on error
3296  *
3297  * Called with the BQL
3298  *
3299  * @f: QEMUFile where to send the data
3300  * @opaque: RAMState pointer
3301  */
3302 static int ram_save_complete(QEMUFile *f, void *opaque)
3303 {
3304     RAMState **temp = opaque;
3305     RAMState *rs = *temp;
3306     int ret = 0;
3307 
3308     rs->last_stage = !migration_in_colo_state();
3309 
3310     WITH_RCU_READ_LOCK_GUARD() {
3311         if (!migration_in_postcopy()) {
3312             migration_bitmap_sync_precopy(rs, true);
3313         }
3314 
3315         ret = rdma_registration_start(f, RAM_CONTROL_FINISH);
3316         if (ret < 0) {
3317             qemu_file_set_error(f, ret);
3318             return ret;
3319         }
3320 
3321         /* try transferring iterative blocks of memory */
3322 
3323         /* flush all remaining blocks regardless of rate limiting */
3324         qemu_mutex_lock(&rs->bitmap_mutex);
3325         while (true) {
3326             int pages;
3327 
3328             pages = ram_find_and_save_block(rs);
3329             /* no more blocks to sent */
3330             if (pages == 0) {
3331                 break;
3332             }
3333             if (pages < 0) {
3334                 qemu_mutex_unlock(&rs->bitmap_mutex);
3335                 return pages;
3336             }
3337         }
3338         qemu_mutex_unlock(&rs->bitmap_mutex);
3339 
3340         compress_flush_data();
3341 
3342         ret = rdma_registration_stop(f, RAM_CONTROL_FINISH);
3343         if (ret < 0) {
3344             qemu_file_set_error(f, ret);
3345             return ret;
3346         }
3347     }
3348 
3349     ret = multifd_send_sync_main();
3350     if (ret < 0) {
3351         return ret;
3352     }
3353 
3354     if (migrate_mapped_ram()) {
3355         ram_save_file_bmap(f);
3356 
3357         if (qemu_file_get_error(f)) {
3358             Error *local_err = NULL;
3359             int err = qemu_file_get_error_obj(f, &local_err);
3360 
3361             error_reportf_err(local_err, "Failed to write bitmap to file: ");
3362             return -err;
3363         }
3364     }
3365 
3366     if (migrate_multifd() && !migrate_multifd_flush_after_each_section() &&
3367         !migrate_mapped_ram()) {
3368         qemu_put_be64(f, RAM_SAVE_FLAG_MULTIFD_FLUSH);
3369     }
3370     qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3371     return qemu_fflush(f);
3372 }
3373 
3374 static void ram_state_pending_estimate(void *opaque, uint64_t *must_precopy,
3375                                        uint64_t *can_postcopy)
3376 {
3377     RAMState **temp = opaque;
3378     RAMState *rs = *temp;
3379 
3380     uint64_t remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
3381 
3382     if (migrate_postcopy_ram()) {
3383         /* We can do postcopy, and all the data is postcopiable */
3384         *can_postcopy += remaining_size;
3385     } else {
3386         *must_precopy += remaining_size;
3387     }
3388 }
3389 
3390 static void ram_state_pending_exact(void *opaque, uint64_t *must_precopy,
3391                                     uint64_t *can_postcopy)
3392 {
3393     RAMState **temp = opaque;
3394     RAMState *rs = *temp;
3395     uint64_t remaining_size;
3396 
3397     if (!migration_in_postcopy()) {
3398         bql_lock();
3399         WITH_RCU_READ_LOCK_GUARD() {
3400             migration_bitmap_sync_precopy(rs, false);
3401         }
3402         bql_unlock();
3403     }
3404 
3405     remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE;
3406 
3407     if (migrate_postcopy_ram()) {
3408         /* We can do postcopy, and all the data is postcopiable */
3409         *can_postcopy += remaining_size;
3410     } else {
3411         *must_precopy += remaining_size;
3412     }
3413 }
3414 
3415 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host)
3416 {
3417     unsigned int xh_len;
3418     int xh_flags;
3419     uint8_t *loaded_data;
3420 
3421     /* extract RLE header */
3422     xh_flags = qemu_get_byte(f);
3423     xh_len = qemu_get_be16(f);
3424 
3425     if (xh_flags != ENCODING_FLAG_XBZRLE) {
3426         error_report("Failed to load XBZRLE page - wrong compression!");
3427         return -1;
3428     }
3429 
3430     if (xh_len > TARGET_PAGE_SIZE) {
3431         error_report("Failed to load XBZRLE page - len overflow!");
3432         return -1;
3433     }
3434     loaded_data = XBZRLE.decoded_buf;
3435     /* load data and decode */
3436     /* it can change loaded_data to point to an internal buffer */
3437     qemu_get_buffer_in_place(f, &loaded_data, xh_len);
3438 
3439     /* decode RLE */
3440     if (xbzrle_decode_buffer(loaded_data, xh_len, host,
3441                              TARGET_PAGE_SIZE) == -1) {
3442         error_report("Failed to load XBZRLE page - decode error!");
3443         return -1;
3444     }
3445 
3446     return 0;
3447 }
3448 
3449 /**
3450  * ram_block_from_stream: read a RAMBlock id from the migration stream
3451  *
3452  * Must be called from within a rcu critical section.
3453  *
3454  * Returns a pointer from within the RCU-protected ram_list.
3455  *
3456  * @mis: the migration incoming state pointer
3457  * @f: QEMUFile where to read the data from
3458  * @flags: Page flags (mostly to see if it's a continuation of previous block)
3459  * @channel: the channel we're using
3460  */
3461 static inline RAMBlock *ram_block_from_stream(MigrationIncomingState *mis,
3462                                               QEMUFile *f, int flags,
3463                                               int channel)
3464 {
3465     RAMBlock *block = mis->last_recv_block[channel];
3466     char id[256];
3467     uint8_t len;
3468 
3469     if (flags & RAM_SAVE_FLAG_CONTINUE) {
3470         if (!block) {
3471             error_report("Ack, bad migration stream!");
3472             return NULL;
3473         }
3474         return block;
3475     }
3476 
3477     len = qemu_get_byte(f);
3478     qemu_get_buffer(f, (uint8_t *)id, len);
3479     id[len] = 0;
3480 
3481     block = qemu_ram_block_by_name(id);
3482     if (!block) {
3483         error_report("Can't find block %s", id);
3484         return NULL;
3485     }
3486 
3487     if (migrate_ram_is_ignored(block)) {
3488         error_report("block %s should not be migrated !", id);
3489         return NULL;
3490     }
3491 
3492     mis->last_recv_block[channel] = block;
3493 
3494     return block;
3495 }
3496 
3497 static inline void *host_from_ram_block_offset(RAMBlock *block,
3498                                                ram_addr_t offset)
3499 {
3500     if (!offset_in_ramblock(block, offset)) {
3501         return NULL;
3502     }
3503 
3504     return block->host + offset;
3505 }
3506 
3507 static void *host_page_from_ram_block_offset(RAMBlock *block,
3508                                              ram_addr_t offset)
3509 {
3510     /* Note: Explicitly no check against offset_in_ramblock(). */
3511     return (void *)QEMU_ALIGN_DOWN((uintptr_t)(block->host + offset),
3512                                    block->page_size);
3513 }
3514 
3515 static ram_addr_t host_page_offset_from_ram_block_offset(RAMBlock *block,
3516                                                          ram_addr_t offset)
3517 {
3518     return ((uintptr_t)block->host + offset) & (block->page_size - 1);
3519 }
3520 
3521 void colo_record_bitmap(RAMBlock *block, ram_addr_t *normal, uint32_t pages)
3522 {
3523     qemu_mutex_lock(&ram_state->bitmap_mutex);
3524     for (int i = 0; i < pages; i++) {
3525         ram_addr_t offset = normal[i];
3526         ram_state->migration_dirty_pages += !test_and_set_bit(
3527                                                 offset >> TARGET_PAGE_BITS,
3528                                                 block->bmap);
3529     }
3530     qemu_mutex_unlock(&ram_state->bitmap_mutex);
3531 }
3532 
3533 static inline void *colo_cache_from_block_offset(RAMBlock *block,
3534                              ram_addr_t offset, bool record_bitmap)
3535 {
3536     if (!offset_in_ramblock(block, offset)) {
3537         return NULL;
3538     }
3539     if (!block->colo_cache) {
3540         error_report("%s: colo_cache is NULL in block :%s",
3541                      __func__, block->idstr);
3542         return NULL;
3543     }
3544 
3545     /*
3546     * During colo checkpoint, we need bitmap of these migrated pages.
3547     * It help us to decide which pages in ram cache should be flushed
3548     * into VM's RAM later.
3549     */
3550     if (record_bitmap) {
3551         colo_record_bitmap(block, &offset, 1);
3552     }
3553     return block->colo_cache + offset;
3554 }
3555 
3556 /**
3557  * ram_handle_zero: handle the zero page case
3558  *
3559  * If a page (or a whole RDMA chunk) has been
3560  * determined to be zero, then zap it.
3561  *
3562  * @host: host address for the zero page
3563  * @ch: what the page is filled from.  We only support zero
3564  * @size: size of the zero page
3565  */
3566 void ram_handle_zero(void *host, uint64_t size)
3567 {
3568     if (!buffer_is_zero(host, size)) {
3569         memset(host, 0, size);
3570     }
3571 }
3572 
3573 static void colo_init_ram_state(void)
3574 {
3575     ram_state_init(&ram_state);
3576 }
3577 
3578 /*
3579  * colo cache: this is for secondary VM, we cache the whole
3580  * memory of the secondary VM, it is need to hold the global lock
3581  * to call this helper.
3582  */
3583 int colo_init_ram_cache(void)
3584 {
3585     RAMBlock *block;
3586 
3587     WITH_RCU_READ_LOCK_GUARD() {
3588         RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3589             block->colo_cache = qemu_anon_ram_alloc(block->used_length,
3590                                                     NULL, false, false);
3591             if (!block->colo_cache) {
3592                 error_report("%s: Can't alloc memory for COLO cache of block %s,"
3593                              "size 0x" RAM_ADDR_FMT, __func__, block->idstr,
3594                              block->used_length);
3595                 RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3596                     if (block->colo_cache) {
3597                         qemu_anon_ram_free(block->colo_cache, block->used_length);
3598                         block->colo_cache = NULL;
3599                     }
3600                 }
3601                 return -errno;
3602             }
3603             if (!machine_dump_guest_core(current_machine)) {
3604                 qemu_madvise(block->colo_cache, block->used_length,
3605                              QEMU_MADV_DONTDUMP);
3606             }
3607         }
3608     }
3609 
3610     /*
3611     * Record the dirty pages that sent by PVM, we use this dirty bitmap together
3612     * with to decide which page in cache should be flushed into SVM's RAM. Here
3613     * we use the same name 'ram_bitmap' as for migration.
3614     */
3615     if (ram_bytes_total()) {
3616         RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3617             unsigned long pages = block->max_length >> TARGET_PAGE_BITS;
3618             block->bmap = bitmap_new(pages);
3619         }
3620     }
3621 
3622     colo_init_ram_state();
3623     return 0;
3624 }
3625 
3626 /* TODO: duplicated with ram_init_bitmaps */
3627 void colo_incoming_start_dirty_log(void)
3628 {
3629     RAMBlock *block = NULL;
3630     /* For memory_global_dirty_log_start below. */
3631     bql_lock();
3632     qemu_mutex_lock_ramlist();
3633 
3634     memory_global_dirty_log_sync(false);
3635     WITH_RCU_READ_LOCK_GUARD() {
3636         RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3637             ramblock_sync_dirty_bitmap(ram_state, block);
3638             /* Discard this dirty bitmap record */
3639             bitmap_zero(block->bmap, block->max_length >> TARGET_PAGE_BITS);
3640         }
3641         memory_global_dirty_log_start(GLOBAL_DIRTY_MIGRATION);
3642     }
3643     ram_state->migration_dirty_pages = 0;
3644     qemu_mutex_unlock_ramlist();
3645     bql_unlock();
3646 }
3647 
3648 /* It is need to hold the global lock to call this helper */
3649 void colo_release_ram_cache(void)
3650 {
3651     RAMBlock *block;
3652 
3653     memory_global_dirty_log_stop(GLOBAL_DIRTY_MIGRATION);
3654     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3655         g_free(block->bmap);
3656         block->bmap = NULL;
3657     }
3658 
3659     WITH_RCU_READ_LOCK_GUARD() {
3660         RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3661             if (block->colo_cache) {
3662                 qemu_anon_ram_free(block->colo_cache, block->used_length);
3663                 block->colo_cache = NULL;
3664             }
3665         }
3666     }
3667     ram_state_cleanup(&ram_state);
3668 }
3669 
3670 /**
3671  * ram_load_setup: Setup RAM for migration incoming side
3672  *
3673  * Returns zero to indicate success and negative for error
3674  *
3675  * @f: QEMUFile where to receive the data
3676  * @opaque: RAMState pointer
3677  */
3678 static int ram_load_setup(QEMUFile *f, void *opaque)
3679 {
3680     xbzrle_load_setup();
3681     ramblock_recv_map_init();
3682 
3683     return 0;
3684 }
3685 
3686 static int ram_load_cleanup(void *opaque)
3687 {
3688     RAMBlock *rb;
3689 
3690     RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
3691         qemu_ram_block_writeback(rb);
3692     }
3693 
3694     xbzrle_load_cleanup();
3695 
3696     RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
3697         g_free(rb->receivedmap);
3698         rb->receivedmap = NULL;
3699     }
3700 
3701     return 0;
3702 }
3703 
3704 /**
3705  * ram_postcopy_incoming_init: allocate postcopy data structures
3706  *
3707  * Returns 0 for success and negative if there was one error
3708  *
3709  * @mis: current migration incoming state
3710  *
3711  * Allocate data structures etc needed by incoming migration with
3712  * postcopy-ram. postcopy-ram's similarly names
3713  * postcopy_ram_incoming_init does the work.
3714  */
3715 int ram_postcopy_incoming_init(MigrationIncomingState *mis)
3716 {
3717     return postcopy_ram_incoming_init(mis);
3718 }
3719 
3720 /**
3721  * ram_load_postcopy: load a page in postcopy case
3722  *
3723  * Returns 0 for success or -errno in case of error
3724  *
3725  * Called in postcopy mode by ram_load().
3726  * rcu_read_lock is taken prior to this being called.
3727  *
3728  * @f: QEMUFile where to send the data
3729  * @channel: the channel to use for loading
3730  */
3731 int ram_load_postcopy(QEMUFile *f, int channel)
3732 {
3733     int flags = 0, ret = 0;
3734     bool place_needed = false;
3735     bool matches_target_page_size = false;
3736     MigrationIncomingState *mis = migration_incoming_get_current();
3737     PostcopyTmpPage *tmp_page = &mis->postcopy_tmp_pages[channel];
3738 
3739     while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
3740         ram_addr_t addr;
3741         void *page_buffer = NULL;
3742         void *place_source = NULL;
3743         RAMBlock *block = NULL;
3744         uint8_t ch;
3745         int len;
3746 
3747         addr = qemu_get_be64(f);
3748 
3749         /*
3750          * If qemu file error, we should stop here, and then "addr"
3751          * may be invalid
3752          */
3753         ret = qemu_file_get_error(f);
3754         if (ret) {
3755             break;
3756         }
3757 
3758         flags = addr & ~TARGET_PAGE_MASK;
3759         addr &= TARGET_PAGE_MASK;
3760 
3761         trace_ram_load_postcopy_loop(channel, (uint64_t)addr, flags);
3762         if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE |
3763                      RAM_SAVE_FLAG_COMPRESS_PAGE)) {
3764             block = ram_block_from_stream(mis, f, flags, channel);
3765             if (!block) {
3766                 ret = -EINVAL;
3767                 break;
3768             }
3769 
3770             /*
3771              * Relying on used_length is racy and can result in false positives.
3772              * We might place pages beyond used_length in case RAM was shrunk
3773              * while in postcopy, which is fine - trying to place via
3774              * UFFDIO_COPY/UFFDIO_ZEROPAGE will never segfault.
3775              */
3776             if (!block->host || addr >= block->postcopy_length) {
3777                 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
3778                 ret = -EINVAL;
3779                 break;
3780             }
3781             tmp_page->target_pages++;
3782             matches_target_page_size = block->page_size == TARGET_PAGE_SIZE;
3783             /*
3784              * Postcopy requires that we place whole host pages atomically;
3785              * these may be huge pages for RAMBlocks that are backed by
3786              * hugetlbfs.
3787              * To make it atomic, the data is read into a temporary page
3788              * that's moved into place later.
3789              * The migration protocol uses,  possibly smaller, target-pages
3790              * however the source ensures it always sends all the components
3791              * of a host page in one chunk.
3792              */
3793             page_buffer = tmp_page->tmp_huge_page +
3794                           host_page_offset_from_ram_block_offset(block, addr);
3795             /* If all TP are zero then we can optimise the place */
3796             if (tmp_page->target_pages == 1) {
3797                 tmp_page->host_addr =
3798                     host_page_from_ram_block_offset(block, addr);
3799             } else if (tmp_page->host_addr !=
3800                        host_page_from_ram_block_offset(block, addr)) {
3801                 /* not the 1st TP within the HP */
3802                 error_report("Non-same host page detected on channel %d: "
3803                              "Target host page %p, received host page %p "
3804                              "(rb %s offset 0x"RAM_ADDR_FMT" target_pages %d)",
3805                              channel, tmp_page->host_addr,
3806                              host_page_from_ram_block_offset(block, addr),
3807                              block->idstr, addr, tmp_page->target_pages);
3808                 ret = -EINVAL;
3809                 break;
3810             }
3811 
3812             /*
3813              * If it's the last part of a host page then we place the host
3814              * page
3815              */
3816             if (tmp_page->target_pages ==
3817                 (block->page_size / TARGET_PAGE_SIZE)) {
3818                 place_needed = true;
3819             }
3820             place_source = tmp_page->tmp_huge_page;
3821         }
3822 
3823         switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
3824         case RAM_SAVE_FLAG_ZERO:
3825             ch = qemu_get_byte(f);
3826             if (ch != 0) {
3827                 error_report("Found a zero page with value %d", ch);
3828                 ret = -EINVAL;
3829                 break;
3830             }
3831             /*
3832              * Can skip to set page_buffer when
3833              * this is a zero page and (block->page_size == TARGET_PAGE_SIZE).
3834              */
3835             if (!matches_target_page_size) {
3836                 memset(page_buffer, ch, TARGET_PAGE_SIZE);
3837             }
3838             break;
3839 
3840         case RAM_SAVE_FLAG_PAGE:
3841             tmp_page->all_zero = false;
3842             if (!matches_target_page_size) {
3843                 /* For huge pages, we always use temporary buffer */
3844                 qemu_get_buffer(f, page_buffer, TARGET_PAGE_SIZE);
3845             } else {
3846                 /*
3847                  * For small pages that matches target page size, we
3848                  * avoid the qemu_file copy.  Instead we directly use
3849                  * the buffer of QEMUFile to place the page.  Note: we
3850                  * cannot do any QEMUFile operation before using that
3851                  * buffer to make sure the buffer is valid when
3852                  * placing the page.
3853                  */
3854                 qemu_get_buffer_in_place(f, (uint8_t **)&place_source,
3855                                          TARGET_PAGE_SIZE);
3856             }
3857             break;
3858         case RAM_SAVE_FLAG_COMPRESS_PAGE:
3859             tmp_page->all_zero = false;
3860             len = qemu_get_be32(f);
3861             if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) {
3862                 error_report("Invalid compressed data length: %d", len);
3863                 ret = -EINVAL;
3864                 break;
3865             }
3866             decompress_data_with_multi_threads(f, page_buffer, len);
3867             break;
3868         case RAM_SAVE_FLAG_MULTIFD_FLUSH:
3869             multifd_recv_sync_main();
3870             break;
3871         case RAM_SAVE_FLAG_EOS:
3872             /* normal exit */
3873             if (migrate_multifd() &&
3874                 migrate_multifd_flush_after_each_section()) {
3875                 multifd_recv_sync_main();
3876             }
3877             break;
3878         default:
3879             error_report("Unknown combination of migration flags: 0x%x"
3880                          " (postcopy mode)", flags);
3881             ret = -EINVAL;
3882             break;
3883         }
3884 
3885         /* Got the whole host page, wait for decompress before placing. */
3886         if (place_needed) {
3887             ret |= wait_for_decompress_done();
3888         }
3889 
3890         /* Detect for any possible file errors */
3891         if (!ret && qemu_file_get_error(f)) {
3892             ret = qemu_file_get_error(f);
3893         }
3894 
3895         if (!ret && place_needed) {
3896             if (tmp_page->all_zero) {
3897                 ret = postcopy_place_page_zero(mis, tmp_page->host_addr, block);
3898             } else {
3899                 ret = postcopy_place_page(mis, tmp_page->host_addr,
3900                                           place_source, block);
3901             }
3902             place_needed = false;
3903             postcopy_temp_page_reset(tmp_page);
3904         }
3905     }
3906 
3907     return ret;
3908 }
3909 
3910 static bool postcopy_is_running(void)
3911 {
3912     PostcopyState ps = postcopy_state_get();
3913     return ps >= POSTCOPY_INCOMING_LISTENING && ps < POSTCOPY_INCOMING_END;
3914 }
3915 
3916 /*
3917  * Flush content of RAM cache into SVM's memory.
3918  * Only flush the pages that be dirtied by PVM or SVM or both.
3919  */
3920 void colo_flush_ram_cache(void)
3921 {
3922     RAMBlock *block = NULL;
3923     void *dst_host;
3924     void *src_host;
3925     unsigned long offset = 0;
3926 
3927     memory_global_dirty_log_sync(false);
3928     qemu_mutex_lock(&ram_state->bitmap_mutex);
3929     WITH_RCU_READ_LOCK_GUARD() {
3930         RAMBLOCK_FOREACH_NOT_IGNORED(block) {
3931             ramblock_sync_dirty_bitmap(ram_state, block);
3932         }
3933     }
3934 
3935     trace_colo_flush_ram_cache_begin(ram_state->migration_dirty_pages);
3936     WITH_RCU_READ_LOCK_GUARD() {
3937         block = QLIST_FIRST_RCU(&ram_list.blocks);
3938 
3939         while (block) {
3940             unsigned long num = 0;
3941 
3942             offset = colo_bitmap_find_dirty(ram_state, block, offset, &num);
3943             if (!offset_in_ramblock(block,
3944                                     ((ram_addr_t)offset) << TARGET_PAGE_BITS)) {
3945                 offset = 0;
3946                 num = 0;
3947                 block = QLIST_NEXT_RCU(block, next);
3948             } else {
3949                 unsigned long i = 0;
3950 
3951                 for (i = 0; i < num; i++) {
3952                     migration_bitmap_clear_dirty(ram_state, block, offset + i);
3953                 }
3954                 dst_host = block->host
3955                          + (((ram_addr_t)offset) << TARGET_PAGE_BITS);
3956                 src_host = block->colo_cache
3957                          + (((ram_addr_t)offset) << TARGET_PAGE_BITS);
3958                 memcpy(dst_host, src_host, TARGET_PAGE_SIZE * num);
3959                 offset += num;
3960             }
3961         }
3962     }
3963     qemu_mutex_unlock(&ram_state->bitmap_mutex);
3964     trace_colo_flush_ram_cache_end();
3965 }
3966 
3967 static size_t ram_load_multifd_pages(void *host_addr, size_t size,
3968                                      uint64_t offset)
3969 {
3970     MultiFDRecvData *data = multifd_get_recv_data();
3971 
3972     data->opaque = host_addr;
3973     data->file_offset = offset;
3974     data->size = size;
3975 
3976     if (!multifd_recv()) {
3977         return 0;
3978     }
3979 
3980     return size;
3981 }
3982 
3983 static bool read_ramblock_mapped_ram(QEMUFile *f, RAMBlock *block,
3984                                      long num_pages, unsigned long *bitmap,
3985                                      Error **errp)
3986 {
3987     ERRP_GUARD();
3988     unsigned long set_bit_idx, clear_bit_idx;
3989     ram_addr_t offset;
3990     void *host;
3991     size_t read, unread, size;
3992 
3993     for (set_bit_idx = find_first_bit(bitmap, num_pages);
3994          set_bit_idx < num_pages;
3995          set_bit_idx = find_next_bit(bitmap, num_pages, clear_bit_idx + 1)) {
3996 
3997         clear_bit_idx = find_next_zero_bit(bitmap, num_pages, set_bit_idx + 1);
3998 
3999         unread = TARGET_PAGE_SIZE * (clear_bit_idx - set_bit_idx);
4000         offset = set_bit_idx << TARGET_PAGE_BITS;
4001 
4002         while (unread > 0) {
4003             host = host_from_ram_block_offset(block, offset);
4004             if (!host) {
4005                 error_setg(errp, "page outside of ramblock %s range",
4006                            block->idstr);
4007                 return false;
4008             }
4009 
4010             size = MIN(unread, MAPPED_RAM_LOAD_BUF_SIZE);
4011 
4012             if (migrate_multifd()) {
4013                 read = ram_load_multifd_pages(host, size,
4014                                               block->pages_offset + offset);
4015             } else {
4016                 read = qemu_get_buffer_at(f, host, size,
4017                                           block->pages_offset + offset);
4018             }
4019 
4020             if (!read) {
4021                 goto err;
4022             }
4023             offset += read;
4024             unread -= read;
4025         }
4026     }
4027 
4028     return true;
4029 
4030 err:
4031     qemu_file_get_error_obj(f, errp);
4032     error_prepend(errp, "(%s) failed to read page " RAM_ADDR_FMT
4033                   "from file offset %" PRIx64 ": ", block->idstr, offset,
4034                   block->pages_offset + offset);
4035     return false;
4036 }
4037 
4038 static void parse_ramblock_mapped_ram(QEMUFile *f, RAMBlock *block,
4039                                       ram_addr_t length, Error **errp)
4040 {
4041     g_autofree unsigned long *bitmap = NULL;
4042     MappedRamHeader header;
4043     size_t bitmap_size;
4044     long num_pages;
4045 
4046     if (!mapped_ram_read_header(f, &header, errp)) {
4047         return;
4048     }
4049 
4050     block->pages_offset = header.pages_offset;
4051 
4052     /*
4053      * Check the alignment of the file region that contains pages. We
4054      * don't enforce MAPPED_RAM_FILE_OFFSET_ALIGNMENT to allow that
4055      * value to change in the future. Do only a sanity check with page
4056      * size alignment.
4057      */
4058     if (!QEMU_IS_ALIGNED(block->pages_offset, TARGET_PAGE_SIZE)) {
4059         error_setg(errp,
4060                    "Error reading ramblock %s pages, region has bad alignment",
4061                    block->idstr);
4062         return;
4063     }
4064 
4065     num_pages = length / header.page_size;
4066     bitmap_size = BITS_TO_LONGS(num_pages) * sizeof(unsigned long);
4067 
4068     bitmap = g_malloc0(bitmap_size);
4069     if (qemu_get_buffer_at(f, (uint8_t *)bitmap, bitmap_size,
4070                            header.bitmap_offset) != bitmap_size) {
4071         error_setg(errp, "Error reading dirty bitmap");
4072         return;
4073     }
4074 
4075     if (!read_ramblock_mapped_ram(f, block, num_pages, bitmap, errp)) {
4076         return;
4077     }
4078 
4079     /* Skip pages array */
4080     qemu_set_offset(f, block->pages_offset + length, SEEK_SET);
4081 
4082     return;
4083 }
4084 
4085 static int parse_ramblock(QEMUFile *f, RAMBlock *block, ram_addr_t length)
4086 {
4087     int ret = 0;
4088     /* ADVISE is earlier, it shows the source has the postcopy capability on */
4089     bool postcopy_advised = migration_incoming_postcopy_advised();
4090     int max_hg_page_size;
4091     Error *local_err = NULL;
4092 
4093     assert(block);
4094 
4095     if (migrate_mapped_ram()) {
4096         parse_ramblock_mapped_ram(f, block, length, &local_err);
4097         if (local_err) {
4098             error_report_err(local_err);
4099             return -EINVAL;
4100         }
4101         return 0;
4102     }
4103 
4104     if (!qemu_ram_is_migratable(block)) {
4105         error_report("block %s should not be migrated !", block->idstr);
4106         return -EINVAL;
4107     }
4108 
4109     if (length != block->used_length) {
4110         ret = qemu_ram_resize(block, length, &local_err);
4111         if (local_err) {
4112             error_report_err(local_err);
4113             return ret;
4114         }
4115     }
4116 
4117     /*
4118      * ??? Mirrors the previous value of qemu_host_page_size,
4119      * but is this really what was intended for the migration?
4120      */
4121     max_hg_page_size = MAX(qemu_real_host_page_size(), TARGET_PAGE_SIZE);
4122 
4123     /* For postcopy we need to check hugepage sizes match */
4124     if (postcopy_advised && migrate_postcopy_ram() &&
4125         block->page_size != max_hg_page_size) {
4126         uint64_t remote_page_size = qemu_get_be64(f);
4127         if (remote_page_size != block->page_size) {
4128             error_report("Mismatched RAM page size %s "
4129                          "(local) %zd != %" PRId64, block->idstr,
4130                          block->page_size, remote_page_size);
4131             return -EINVAL;
4132         }
4133     }
4134     if (migrate_ignore_shared()) {
4135         hwaddr addr = qemu_get_be64(f);
4136         if (migrate_ram_is_ignored(block) &&
4137             block->mr->addr != addr) {
4138             error_report("Mismatched GPAs for block %s "
4139                          "%" PRId64 "!= %" PRId64, block->idstr,
4140                          (uint64_t)addr, (uint64_t)block->mr->addr);
4141             return -EINVAL;
4142         }
4143     }
4144     ret = rdma_block_notification_handle(f, block->idstr);
4145     if (ret < 0) {
4146         qemu_file_set_error(f, ret);
4147     }
4148 
4149     return ret;
4150 }
4151 
4152 static int parse_ramblocks(QEMUFile *f, ram_addr_t total_ram_bytes)
4153 {
4154     int ret = 0;
4155 
4156     /* Synchronize RAM block list */
4157     while (!ret && total_ram_bytes) {
4158         RAMBlock *block;
4159         char id[256];
4160         ram_addr_t length;
4161         int len = qemu_get_byte(f);
4162 
4163         qemu_get_buffer(f, (uint8_t *)id, len);
4164         id[len] = 0;
4165         length = qemu_get_be64(f);
4166 
4167         block = qemu_ram_block_by_name(id);
4168         if (block) {
4169             ret = parse_ramblock(f, block, length);
4170         } else {
4171             error_report("Unknown ramblock \"%s\", cannot accept "
4172                          "migration", id);
4173             ret = -EINVAL;
4174         }
4175         total_ram_bytes -= length;
4176     }
4177 
4178     return ret;
4179 }
4180 
4181 /**
4182  * ram_load_precopy: load pages in precopy case
4183  *
4184  * Returns 0 for success or -errno in case of error
4185  *
4186  * Called in precopy mode by ram_load().
4187  * rcu_read_lock is taken prior to this being called.
4188  *
4189  * @f: QEMUFile where to send the data
4190  */
4191 static int ram_load_precopy(QEMUFile *f)
4192 {
4193     MigrationIncomingState *mis = migration_incoming_get_current();
4194     int flags = 0, ret = 0, invalid_flags = 0, len = 0, i = 0;
4195 
4196     if (!migrate_compress()) {
4197         invalid_flags |= RAM_SAVE_FLAG_COMPRESS_PAGE;
4198     }
4199 
4200     if (migrate_mapped_ram()) {
4201         invalid_flags |= (RAM_SAVE_FLAG_HOOK | RAM_SAVE_FLAG_MULTIFD_FLUSH |
4202                           RAM_SAVE_FLAG_PAGE | RAM_SAVE_FLAG_XBZRLE |
4203                           RAM_SAVE_FLAG_ZERO);
4204     }
4205 
4206     while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) {
4207         ram_addr_t addr;
4208         void *host = NULL, *host_bak = NULL;
4209         uint8_t ch;
4210 
4211         /*
4212          * Yield periodically to let main loop run, but an iteration of
4213          * the main loop is expensive, so do it each some iterations
4214          */
4215         if ((i & 32767) == 0 && qemu_in_coroutine()) {
4216             aio_co_schedule(qemu_get_current_aio_context(),
4217                             qemu_coroutine_self());
4218             qemu_coroutine_yield();
4219         }
4220         i++;
4221 
4222         addr = qemu_get_be64(f);
4223         ret = qemu_file_get_error(f);
4224         if (ret) {
4225             error_report("Getting RAM address failed");
4226             break;
4227         }
4228 
4229         flags = addr & ~TARGET_PAGE_MASK;
4230         addr &= TARGET_PAGE_MASK;
4231 
4232         if (flags & invalid_flags) {
4233             error_report("Unexpected RAM flags: %d", flags & invalid_flags);
4234 
4235             if (flags & invalid_flags & RAM_SAVE_FLAG_COMPRESS_PAGE) {
4236                 error_report("Received an unexpected compressed page");
4237             }
4238 
4239             ret = -EINVAL;
4240             break;
4241         }
4242 
4243         if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE |
4244                      RAM_SAVE_FLAG_COMPRESS_PAGE | RAM_SAVE_FLAG_XBZRLE)) {
4245             RAMBlock *block = ram_block_from_stream(mis, f, flags,
4246                                                     RAM_CHANNEL_PRECOPY);
4247 
4248             host = host_from_ram_block_offset(block, addr);
4249             /*
4250              * After going into COLO stage, we should not load the page
4251              * into SVM's memory directly, we put them into colo_cache firstly.
4252              * NOTE: We need to keep a copy of SVM's ram in colo_cache.
4253              * Previously, we copied all these memory in preparing stage of COLO
4254              * while we need to stop VM, which is a time-consuming process.
4255              * Here we optimize it by a trick, back-up every page while in
4256              * migration process while COLO is enabled, though it affects the
4257              * speed of the migration, but it obviously reduce the downtime of
4258              * back-up all SVM'S memory in COLO preparing stage.
4259              */
4260             if (migration_incoming_colo_enabled()) {
4261                 if (migration_incoming_in_colo_state()) {
4262                     /* In COLO stage, put all pages into cache temporarily */
4263                     host = colo_cache_from_block_offset(block, addr, true);
4264                 } else {
4265                    /*
4266                     * In migration stage but before COLO stage,
4267                     * Put all pages into both cache and SVM's memory.
4268                     */
4269                     host_bak = colo_cache_from_block_offset(block, addr, false);
4270                 }
4271             }
4272             if (!host) {
4273                 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr);
4274                 ret = -EINVAL;
4275                 break;
4276             }
4277             if (!migration_incoming_in_colo_state()) {
4278                 ramblock_recv_bitmap_set(block, host);
4279             }
4280 
4281             trace_ram_load_loop(block->idstr, (uint64_t)addr, flags, host);
4282         }
4283 
4284         switch (flags & ~RAM_SAVE_FLAG_CONTINUE) {
4285         case RAM_SAVE_FLAG_MEM_SIZE:
4286             ret = parse_ramblocks(f, addr);
4287             /*
4288              * For mapped-ram migration (to a file) using multifd, we sync
4289              * once and for all here to make sure all tasks we queued to
4290              * multifd threads are completed, so that all the ramblocks
4291              * (including all the guest memory pages within) are fully
4292              * loaded after this sync returns.
4293              */
4294             if (migrate_mapped_ram()) {
4295                 multifd_recv_sync_main();
4296             }
4297             break;
4298 
4299         case RAM_SAVE_FLAG_ZERO:
4300             ch = qemu_get_byte(f);
4301             if (ch != 0) {
4302                 error_report("Found a zero page with value %d", ch);
4303                 ret = -EINVAL;
4304                 break;
4305             }
4306             ram_handle_zero(host, TARGET_PAGE_SIZE);
4307             break;
4308 
4309         case RAM_SAVE_FLAG_PAGE:
4310             qemu_get_buffer(f, host, TARGET_PAGE_SIZE);
4311             break;
4312 
4313         case RAM_SAVE_FLAG_COMPRESS_PAGE:
4314             len = qemu_get_be32(f);
4315             if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) {
4316                 error_report("Invalid compressed data length: %d", len);
4317                 ret = -EINVAL;
4318                 break;
4319             }
4320             decompress_data_with_multi_threads(f, host, len);
4321             break;
4322 
4323         case RAM_SAVE_FLAG_XBZRLE:
4324             if (load_xbzrle(f, addr, host) < 0) {
4325                 error_report("Failed to decompress XBZRLE page at "
4326                              RAM_ADDR_FMT, addr);
4327                 ret = -EINVAL;
4328                 break;
4329             }
4330             break;
4331         case RAM_SAVE_FLAG_MULTIFD_FLUSH:
4332             multifd_recv_sync_main();
4333             break;
4334         case RAM_SAVE_FLAG_EOS:
4335             /* normal exit */
4336             if (migrate_multifd() &&
4337                 migrate_multifd_flush_after_each_section() &&
4338                 /*
4339                  * Mapped-ram migration flushes once and for all after
4340                  * parsing ramblocks. Always ignore EOS for it.
4341                  */
4342                 !migrate_mapped_ram()) {
4343                 multifd_recv_sync_main();
4344             }
4345             break;
4346         case RAM_SAVE_FLAG_HOOK:
4347             ret = rdma_registration_handle(f);
4348             if (ret < 0) {
4349                 qemu_file_set_error(f, ret);
4350             }
4351             break;
4352         default:
4353             error_report("Unknown combination of migration flags: 0x%x", flags);
4354             ret = -EINVAL;
4355         }
4356         if (!ret) {
4357             ret = qemu_file_get_error(f);
4358         }
4359         if (!ret && host_bak) {
4360             memcpy(host_bak, host, TARGET_PAGE_SIZE);
4361         }
4362     }
4363 
4364     ret |= wait_for_decompress_done();
4365     return ret;
4366 }
4367 
4368 static int ram_load(QEMUFile *f, void *opaque, int version_id)
4369 {
4370     int ret = 0;
4371     static uint64_t seq_iter;
4372     /*
4373      * If system is running in postcopy mode, page inserts to host memory must
4374      * be atomic
4375      */
4376     bool postcopy_running = postcopy_is_running();
4377 
4378     seq_iter++;
4379 
4380     if (version_id != 4) {
4381         return -EINVAL;
4382     }
4383 
4384     /*
4385      * This RCU critical section can be very long running.
4386      * When RCU reclaims in the code start to become numerous,
4387      * it will be necessary to reduce the granularity of this
4388      * critical section.
4389      */
4390     WITH_RCU_READ_LOCK_GUARD() {
4391         if (postcopy_running) {
4392             /*
4393              * Note!  Here RAM_CHANNEL_PRECOPY is the precopy channel of
4394              * postcopy migration, we have another RAM_CHANNEL_POSTCOPY to
4395              * service fast page faults.
4396              */
4397             ret = ram_load_postcopy(f, RAM_CHANNEL_PRECOPY);
4398         } else {
4399             ret = ram_load_precopy(f);
4400         }
4401     }
4402     trace_ram_load_complete(ret, seq_iter);
4403 
4404     return ret;
4405 }
4406 
4407 static bool ram_has_postcopy(void *opaque)
4408 {
4409     RAMBlock *rb;
4410     RAMBLOCK_FOREACH_NOT_IGNORED(rb) {
4411         if (ramblock_is_pmem(rb)) {
4412             info_report("Block: %s, host: %p is a nvdimm memory, postcopy"
4413                          "is not supported now!", rb->idstr, rb->host);
4414             return false;
4415         }
4416     }
4417 
4418     return migrate_postcopy_ram();
4419 }
4420 
4421 /* Sync all the dirty bitmap with destination VM.  */
4422 static int ram_dirty_bitmap_sync_all(MigrationState *s, RAMState *rs)
4423 {
4424     RAMBlock *block;
4425     QEMUFile *file = s->to_dst_file;
4426 
4427     trace_ram_dirty_bitmap_sync_start();
4428 
4429     qatomic_set(&rs->postcopy_bmap_sync_requested, 0);
4430     RAMBLOCK_FOREACH_NOT_IGNORED(block) {
4431         qemu_savevm_send_recv_bitmap(file, block->idstr);
4432         trace_ram_dirty_bitmap_request(block->idstr);
4433         qatomic_inc(&rs->postcopy_bmap_sync_requested);
4434     }
4435 
4436     trace_ram_dirty_bitmap_sync_wait();
4437 
4438     /* Wait until all the ramblocks' dirty bitmap synced */
4439     while (qatomic_read(&rs->postcopy_bmap_sync_requested)) {
4440         if (migration_rp_wait(s)) {
4441             return -1;
4442         }
4443     }
4444 
4445     trace_ram_dirty_bitmap_sync_complete();
4446 
4447     return 0;
4448 }
4449 
4450 /*
4451  * Read the received bitmap, revert it as the initial dirty bitmap.
4452  * This is only used when the postcopy migration is paused but wants
4453  * to resume from a middle point.
4454  *
4455  * Returns true if succeeded, false for errors.
4456  */
4457 bool ram_dirty_bitmap_reload(MigrationState *s, RAMBlock *block, Error **errp)
4458 {
4459     /* from_dst_file is always valid because we're within rp_thread */
4460     QEMUFile *file = s->rp_state.from_dst_file;
4461     g_autofree unsigned long *le_bitmap = NULL;
4462     unsigned long nbits = block->used_length >> TARGET_PAGE_BITS;
4463     uint64_t local_size = DIV_ROUND_UP(nbits, 8);
4464     uint64_t size, end_mark;
4465     RAMState *rs = ram_state;
4466 
4467     trace_ram_dirty_bitmap_reload_begin(block->idstr);
4468 
4469     if (s->state != MIGRATION_STATUS_POSTCOPY_RECOVER) {
4470         error_setg(errp, "Reload bitmap in incorrect state %s",
4471                    MigrationStatus_str(s->state));
4472         return false;
4473     }
4474 
4475     /*
4476      * Note: see comments in ramblock_recv_bitmap_send() on why we
4477      * need the endianness conversion, and the paddings.
4478      */
4479     local_size = ROUND_UP(local_size, 8);
4480 
4481     /* Add paddings */
4482     le_bitmap = bitmap_new(nbits + BITS_PER_LONG);
4483 
4484     size = qemu_get_be64(file);
4485 
4486     /* The size of the bitmap should match with our ramblock */
4487     if (size != local_size) {
4488         error_setg(errp, "ramblock '%s' bitmap size mismatch (0x%"PRIx64
4489                    " != 0x%"PRIx64")", block->idstr, size, local_size);
4490         return false;
4491     }
4492 
4493     size = qemu_get_buffer(file, (uint8_t *)le_bitmap, local_size);
4494     end_mark = qemu_get_be64(file);
4495 
4496     if (qemu_file_get_error(file) || size != local_size) {
4497         error_setg(errp, "read bitmap failed for ramblock '%s': "
4498                    "(size 0x%"PRIx64", got: 0x%"PRIx64")",
4499                    block->idstr, local_size, size);
4500         return false;
4501     }
4502 
4503     if (end_mark != RAMBLOCK_RECV_BITMAP_ENDING) {
4504         error_setg(errp, "ramblock '%s' end mark incorrect: 0x%"PRIx64,
4505                    block->idstr, end_mark);
4506         return false;
4507     }
4508 
4509     /*
4510      * Endianness conversion. We are during postcopy (though paused).
4511      * The dirty bitmap won't change. We can directly modify it.
4512      */
4513     bitmap_from_le(block->bmap, le_bitmap, nbits);
4514 
4515     /*
4516      * What we received is "received bitmap". Revert it as the initial
4517      * dirty bitmap for this ramblock.
4518      */
4519     bitmap_complement(block->bmap, block->bmap, nbits);
4520 
4521     /* Clear dirty bits of discarded ranges that we don't want to migrate. */
4522     ramblock_dirty_bitmap_clear_discarded_pages(block);
4523 
4524     /* We'll recalculate migration_dirty_pages in ram_state_resume_prepare(). */
4525     trace_ram_dirty_bitmap_reload_complete(block->idstr);
4526 
4527     qatomic_dec(&rs->postcopy_bmap_sync_requested);
4528 
4529     /*
4530      * We succeeded to sync bitmap for current ramblock. Always kick the
4531      * migration thread to check whether all requested bitmaps are
4532      * reloaded.  NOTE: it's racy to only kick when requested==0, because
4533      * we don't know whether the migration thread may still be increasing
4534      * it.
4535      */
4536     migration_rp_kick(s);
4537 
4538     return true;
4539 }
4540 
4541 static int ram_resume_prepare(MigrationState *s, void *opaque)
4542 {
4543     RAMState *rs = *(RAMState **)opaque;
4544     int ret;
4545 
4546     ret = ram_dirty_bitmap_sync_all(s, rs);
4547     if (ret) {
4548         return ret;
4549     }
4550 
4551     ram_state_resume_prepare(rs, s->to_dst_file);
4552 
4553     return 0;
4554 }
4555 
4556 void postcopy_preempt_shutdown_file(MigrationState *s)
4557 {
4558     qemu_put_be64(s->postcopy_qemufile_src, RAM_SAVE_FLAG_EOS);
4559     qemu_fflush(s->postcopy_qemufile_src);
4560 }
4561 
4562 static SaveVMHandlers savevm_ram_handlers = {
4563     .save_setup = ram_save_setup,
4564     .save_live_iterate = ram_save_iterate,
4565     .save_live_complete_postcopy = ram_save_complete,
4566     .save_live_complete_precopy = ram_save_complete,
4567     .has_postcopy = ram_has_postcopy,
4568     .state_pending_exact = ram_state_pending_exact,
4569     .state_pending_estimate = ram_state_pending_estimate,
4570     .load_state = ram_load,
4571     .save_cleanup = ram_save_cleanup,
4572     .load_setup = ram_load_setup,
4573     .load_cleanup = ram_load_cleanup,
4574     .resume_prepare = ram_resume_prepare,
4575 };
4576 
4577 static void ram_mig_ram_block_resized(RAMBlockNotifier *n, void *host,
4578                                       size_t old_size, size_t new_size)
4579 {
4580     PostcopyState ps = postcopy_state_get();
4581     ram_addr_t offset;
4582     RAMBlock *rb = qemu_ram_block_from_host(host, false, &offset);
4583     Error *err = NULL;
4584 
4585     if (!rb) {
4586         error_report("RAM block not found");
4587         return;
4588     }
4589 
4590     if (migrate_ram_is_ignored(rb)) {
4591         return;
4592     }
4593 
4594     if (!migration_is_idle()) {
4595         /*
4596          * Precopy code on the source cannot deal with the size of RAM blocks
4597          * changing at random points in time - especially after sending the
4598          * RAM block sizes in the migration stream, they must no longer change.
4599          * Abort and indicate a proper reason.
4600          */
4601         error_setg(&err, "RAM block '%s' resized during precopy.", rb->idstr);
4602         migration_cancel(err);
4603         error_free(err);
4604     }
4605 
4606     switch (ps) {
4607     case POSTCOPY_INCOMING_ADVISE:
4608         /*
4609          * Update what ram_postcopy_incoming_init()->init_range() does at the
4610          * time postcopy was advised. Syncing RAM blocks with the source will
4611          * result in RAM resizes.
4612          */
4613         if (old_size < new_size) {
4614             if (ram_discard_range(rb->idstr, old_size, new_size - old_size)) {
4615                 error_report("RAM block '%s' discard of resized RAM failed",
4616                              rb->idstr);
4617             }
4618         }
4619         rb->postcopy_length = new_size;
4620         break;
4621     case POSTCOPY_INCOMING_NONE:
4622     case POSTCOPY_INCOMING_RUNNING:
4623     case POSTCOPY_INCOMING_END:
4624         /*
4625          * Once our guest is running, postcopy does no longer care about
4626          * resizes. When growing, the new memory was not available on the
4627          * source, no handler needed.
4628          */
4629         break;
4630     default:
4631         error_report("RAM block '%s' resized during postcopy state: %d",
4632                      rb->idstr, ps);
4633         exit(-1);
4634     }
4635 }
4636 
4637 static RAMBlockNotifier ram_mig_ram_notifier = {
4638     .ram_block_resized = ram_mig_ram_block_resized,
4639 };
4640 
4641 void ram_mig_init(void)
4642 {
4643     qemu_mutex_init(&XBZRLE.lock);
4644     register_savevm_live("ram", 0, 4, &savevm_ram_handlers, &ram_state);
4645     ram_block_notifier_add(&ram_mig_ram_notifier);
4646 }
4647