1 /* 2 * QEMU System Emulator 3 * 4 * Copyright (c) 2003-2008 Fabrice Bellard 5 * Copyright (c) 2011-2015 Red Hat Inc 6 * 7 * Authors: 8 * Juan Quintela <quintela@redhat.com> 9 * 10 * Permission is hereby granted, free of charge, to any person obtaining a copy 11 * of this software and associated documentation files (the "Software"), to deal 12 * in the Software without restriction, including without limitation the rights 13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 14 * copies of the Software, and to permit persons to whom the Software is 15 * furnished to do so, subject to the following conditions: 16 * 17 * The above copyright notice and this permission notice shall be included in 18 * all copies or substantial portions of the Software. 19 * 20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 26 * THE SOFTWARE. 27 */ 28 29 #include "qemu/osdep.h" 30 #include "qemu/cutils.h" 31 #include "qemu/bitops.h" 32 #include "qemu/bitmap.h" 33 #include "qemu/madvise.h" 34 #include "qemu/main-loop.h" 35 #include "xbzrle.h" 36 #include "ram-compress.h" 37 #include "ram.h" 38 #include "migration.h" 39 #include "migration-stats.h" 40 #include "migration/register.h" 41 #include "migration/misc.h" 42 #include "qemu-file.h" 43 #include "postcopy-ram.h" 44 #include "page_cache.h" 45 #include "qemu/error-report.h" 46 #include "qapi/error.h" 47 #include "qapi/qapi-types-migration.h" 48 #include "qapi/qapi-events-migration.h" 49 #include "qapi/qapi-commands-migration.h" 50 #include "qapi/qmp/qerror.h" 51 #include "trace.h" 52 #include "exec/ram_addr.h" 53 #include "exec/target_page.h" 54 #include "qemu/rcu_queue.h" 55 #include "migration/colo.h" 56 #include "block.h" 57 #include "sysemu/cpu-throttle.h" 58 #include "savevm.h" 59 #include "qemu/iov.h" 60 #include "multifd.h" 61 #include "sysemu/runstate.h" 62 #include "rdma.h" 63 #include "options.h" 64 #include "sysemu/dirtylimit.h" 65 #include "sysemu/kvm.h" 66 67 #include "hw/boards.h" /* for machine_dump_guest_core() */ 68 69 #if defined(__linux__) 70 #include "qemu/userfaultfd.h" 71 #endif /* defined(__linux__) */ 72 73 /***********************************************************/ 74 /* ram save/restore */ 75 76 /* 77 * RAM_SAVE_FLAG_ZERO used to be named RAM_SAVE_FLAG_COMPRESS, it 78 * worked for pages that were filled with the same char. We switched 79 * it to only search for the zero value. And to avoid confusion with 80 * RAM_SAVE_FLAG_COMPRESS_PAGE just rename it. 81 */ 82 /* 83 * RAM_SAVE_FLAG_FULL was obsoleted in 2009, it can be reused now 84 */ 85 #define RAM_SAVE_FLAG_FULL 0x01 86 #define RAM_SAVE_FLAG_ZERO 0x02 87 #define RAM_SAVE_FLAG_MEM_SIZE 0x04 88 #define RAM_SAVE_FLAG_PAGE 0x08 89 #define RAM_SAVE_FLAG_EOS 0x10 90 #define RAM_SAVE_FLAG_CONTINUE 0x20 91 #define RAM_SAVE_FLAG_XBZRLE 0x40 92 /* 0x80 is reserved in rdma.h for RAM_SAVE_FLAG_HOOK */ 93 #define RAM_SAVE_FLAG_COMPRESS_PAGE 0x100 94 #define RAM_SAVE_FLAG_MULTIFD_FLUSH 0x200 95 /* We can't use any flag that is bigger than 0x200 */ 96 97 /* 98 * mapped-ram migration supports O_DIRECT, so we need to make sure the 99 * userspace buffer, the IO operation size and the file offset are 100 * aligned according to the underlying device's block size. The first 101 * two are already aligned to page size, but we need to add padding to 102 * the file to align the offset. We cannot read the block size 103 * dynamically because the migration file can be moved between 104 * different systems, so use 1M to cover most block sizes and to keep 105 * the file offset aligned at page size as well. 106 */ 107 #define MAPPED_RAM_FILE_OFFSET_ALIGNMENT 0x100000 108 109 /* 110 * When doing mapped-ram migration, this is the amount we read from 111 * the pages region in the migration file at a time. 112 */ 113 #define MAPPED_RAM_LOAD_BUF_SIZE 0x100000 114 115 XBZRLECacheStats xbzrle_counters; 116 117 /* used by the search for pages to send */ 118 struct PageSearchStatus { 119 /* The migration channel used for a specific host page */ 120 QEMUFile *pss_channel; 121 /* Last block from where we have sent data */ 122 RAMBlock *last_sent_block; 123 /* Current block being searched */ 124 RAMBlock *block; 125 /* Current page to search from */ 126 unsigned long page; 127 /* Set once we wrap around */ 128 bool complete_round; 129 /* Whether we're sending a host page */ 130 bool host_page_sending; 131 /* The start/end of current host page. Invalid if host_page_sending==false */ 132 unsigned long host_page_start; 133 unsigned long host_page_end; 134 }; 135 typedef struct PageSearchStatus PageSearchStatus; 136 137 /* struct contains XBZRLE cache and a static page 138 used by the compression */ 139 static struct { 140 /* buffer used for XBZRLE encoding */ 141 uint8_t *encoded_buf; 142 /* buffer for storing page content */ 143 uint8_t *current_buf; 144 /* Cache for XBZRLE, Protected by lock. */ 145 PageCache *cache; 146 QemuMutex lock; 147 /* it will store a page full of zeros */ 148 uint8_t *zero_target_page; 149 /* buffer used for XBZRLE decoding */ 150 uint8_t *decoded_buf; 151 } XBZRLE; 152 153 static void XBZRLE_cache_lock(void) 154 { 155 if (migrate_xbzrle()) { 156 qemu_mutex_lock(&XBZRLE.lock); 157 } 158 } 159 160 static void XBZRLE_cache_unlock(void) 161 { 162 if (migrate_xbzrle()) { 163 qemu_mutex_unlock(&XBZRLE.lock); 164 } 165 } 166 167 /** 168 * xbzrle_cache_resize: resize the xbzrle cache 169 * 170 * This function is called from migrate_params_apply in main 171 * thread, possibly while a migration is in progress. A running 172 * migration may be using the cache and might finish during this call, 173 * hence changes to the cache are protected by XBZRLE.lock(). 174 * 175 * Returns 0 for success or -1 for error 176 * 177 * @new_size: new cache size 178 * @errp: set *errp if the check failed, with reason 179 */ 180 int xbzrle_cache_resize(uint64_t new_size, Error **errp) 181 { 182 PageCache *new_cache; 183 int64_t ret = 0; 184 185 /* Check for truncation */ 186 if (new_size != (size_t)new_size) { 187 error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cache size", 188 "exceeding address space"); 189 return -1; 190 } 191 192 if (new_size == migrate_xbzrle_cache_size()) { 193 /* nothing to do */ 194 return 0; 195 } 196 197 XBZRLE_cache_lock(); 198 199 if (XBZRLE.cache != NULL) { 200 new_cache = cache_init(new_size, TARGET_PAGE_SIZE, errp); 201 if (!new_cache) { 202 ret = -1; 203 goto out; 204 } 205 206 cache_fini(XBZRLE.cache); 207 XBZRLE.cache = new_cache; 208 } 209 out: 210 XBZRLE_cache_unlock(); 211 return ret; 212 } 213 214 static bool postcopy_preempt_active(void) 215 { 216 return migrate_postcopy_preempt() && migration_in_postcopy(); 217 } 218 219 bool migrate_ram_is_ignored(RAMBlock *block) 220 { 221 return !qemu_ram_is_migratable(block) || 222 (migrate_ignore_shared() && qemu_ram_is_shared(block) 223 && qemu_ram_is_named_file(block)); 224 } 225 226 #undef RAMBLOCK_FOREACH 227 228 int foreach_not_ignored_block(RAMBlockIterFunc func, void *opaque) 229 { 230 RAMBlock *block; 231 int ret = 0; 232 233 RCU_READ_LOCK_GUARD(); 234 235 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 236 ret = func(block, opaque); 237 if (ret) { 238 break; 239 } 240 } 241 return ret; 242 } 243 244 static void ramblock_recv_map_init(void) 245 { 246 RAMBlock *rb; 247 248 RAMBLOCK_FOREACH_NOT_IGNORED(rb) { 249 assert(!rb->receivedmap); 250 rb->receivedmap = bitmap_new(rb->max_length >> qemu_target_page_bits()); 251 } 252 } 253 254 int ramblock_recv_bitmap_test(RAMBlock *rb, void *host_addr) 255 { 256 return test_bit(ramblock_recv_bitmap_offset(host_addr, rb), 257 rb->receivedmap); 258 } 259 260 bool ramblock_recv_bitmap_test_byte_offset(RAMBlock *rb, uint64_t byte_offset) 261 { 262 return test_bit(byte_offset >> TARGET_PAGE_BITS, rb->receivedmap); 263 } 264 265 void ramblock_recv_bitmap_set(RAMBlock *rb, void *host_addr) 266 { 267 set_bit_atomic(ramblock_recv_bitmap_offset(host_addr, rb), rb->receivedmap); 268 } 269 270 void ramblock_recv_bitmap_set_range(RAMBlock *rb, void *host_addr, 271 size_t nr) 272 { 273 bitmap_set_atomic(rb->receivedmap, 274 ramblock_recv_bitmap_offset(host_addr, rb), 275 nr); 276 } 277 278 #define RAMBLOCK_RECV_BITMAP_ENDING (0x0123456789abcdefULL) 279 280 /* 281 * Format: bitmap_size (8 bytes) + whole_bitmap (N bytes). 282 * 283 * Returns >0 if success with sent bytes, or <0 if error. 284 */ 285 int64_t ramblock_recv_bitmap_send(QEMUFile *file, 286 const char *block_name) 287 { 288 RAMBlock *block = qemu_ram_block_by_name(block_name); 289 unsigned long *le_bitmap, nbits; 290 uint64_t size; 291 292 if (!block) { 293 error_report("%s: invalid block name: %s", __func__, block_name); 294 return -1; 295 } 296 297 nbits = block->postcopy_length >> TARGET_PAGE_BITS; 298 299 /* 300 * Make sure the tmp bitmap buffer is big enough, e.g., on 32bit 301 * machines we may need 4 more bytes for padding (see below 302 * comment). So extend it a bit before hand. 303 */ 304 le_bitmap = bitmap_new(nbits + BITS_PER_LONG); 305 306 /* 307 * Always use little endian when sending the bitmap. This is 308 * required that when source and destination VMs are not using the 309 * same endianness. (Note: big endian won't work.) 310 */ 311 bitmap_to_le(le_bitmap, block->receivedmap, nbits); 312 313 /* Size of the bitmap, in bytes */ 314 size = DIV_ROUND_UP(nbits, 8); 315 316 /* 317 * size is always aligned to 8 bytes for 64bit machines, but it 318 * may not be true for 32bit machines. We need this padding to 319 * make sure the migration can survive even between 32bit and 320 * 64bit machines. 321 */ 322 size = ROUND_UP(size, 8); 323 324 qemu_put_be64(file, size); 325 qemu_put_buffer(file, (const uint8_t *)le_bitmap, size); 326 g_free(le_bitmap); 327 /* 328 * Mark as an end, in case the middle part is screwed up due to 329 * some "mysterious" reason. 330 */ 331 qemu_put_be64(file, RAMBLOCK_RECV_BITMAP_ENDING); 332 int ret = qemu_fflush(file); 333 if (ret) { 334 return ret; 335 } 336 337 return size + sizeof(size); 338 } 339 340 /* 341 * An outstanding page request, on the source, having been received 342 * and queued 343 */ 344 struct RAMSrcPageRequest { 345 RAMBlock *rb; 346 hwaddr offset; 347 hwaddr len; 348 349 QSIMPLEQ_ENTRY(RAMSrcPageRequest) next_req; 350 }; 351 352 /* State of RAM for migration */ 353 struct RAMState { 354 /* 355 * PageSearchStatus structures for the channels when send pages. 356 * Protected by the bitmap_mutex. 357 */ 358 PageSearchStatus pss[RAM_CHANNEL_MAX]; 359 /* UFFD file descriptor, used in 'write-tracking' migration */ 360 int uffdio_fd; 361 /* total ram size in bytes */ 362 uint64_t ram_bytes_total; 363 /* Last block that we have visited searching for dirty pages */ 364 RAMBlock *last_seen_block; 365 /* Last dirty target page we have sent */ 366 ram_addr_t last_page; 367 /* last ram version we have seen */ 368 uint32_t last_version; 369 /* How many times we have dirty too many pages */ 370 int dirty_rate_high_cnt; 371 /* these variables are used for bitmap sync */ 372 /* last time we did a full bitmap_sync */ 373 int64_t time_last_bitmap_sync; 374 /* bytes transferred at start_time */ 375 uint64_t bytes_xfer_prev; 376 /* number of dirty pages since start_time */ 377 uint64_t num_dirty_pages_period; 378 /* xbzrle misses since the beginning of the period */ 379 uint64_t xbzrle_cache_miss_prev; 380 /* Amount of xbzrle pages since the beginning of the period */ 381 uint64_t xbzrle_pages_prev; 382 /* Amount of xbzrle encoded bytes since the beginning of the period */ 383 uint64_t xbzrle_bytes_prev; 384 /* Are we really using XBZRLE (e.g., after the first round). */ 385 bool xbzrle_started; 386 /* Are we on the last stage of migration */ 387 bool last_stage; 388 389 /* total handled target pages at the beginning of period */ 390 uint64_t target_page_count_prev; 391 /* total handled target pages since start */ 392 uint64_t target_page_count; 393 /* number of dirty bits in the bitmap */ 394 uint64_t migration_dirty_pages; 395 /* 396 * Protects: 397 * - dirty/clear bitmap 398 * - migration_dirty_pages 399 * - pss structures 400 */ 401 QemuMutex bitmap_mutex; 402 /* The RAMBlock used in the last src_page_requests */ 403 RAMBlock *last_req_rb; 404 /* Queue of outstanding page requests from the destination */ 405 QemuMutex src_page_req_mutex; 406 QSIMPLEQ_HEAD(, RAMSrcPageRequest) src_page_requests; 407 408 /* 409 * This is only used when postcopy is in recovery phase, to communicate 410 * between the migration thread and the return path thread on dirty 411 * bitmap synchronizations. This field is unused in other stages of 412 * RAM migration. 413 */ 414 unsigned int postcopy_bmap_sync_requested; 415 }; 416 typedef struct RAMState RAMState; 417 418 static RAMState *ram_state; 419 420 static NotifierWithReturnList precopy_notifier_list; 421 422 /* Whether postcopy has queued requests? */ 423 static bool postcopy_has_request(RAMState *rs) 424 { 425 return !QSIMPLEQ_EMPTY_ATOMIC(&rs->src_page_requests); 426 } 427 428 void precopy_infrastructure_init(void) 429 { 430 notifier_with_return_list_init(&precopy_notifier_list); 431 } 432 433 void precopy_add_notifier(NotifierWithReturn *n) 434 { 435 notifier_with_return_list_add(&precopy_notifier_list, n); 436 } 437 438 void precopy_remove_notifier(NotifierWithReturn *n) 439 { 440 notifier_with_return_remove(n); 441 } 442 443 int precopy_notify(PrecopyNotifyReason reason, Error **errp) 444 { 445 PrecopyNotifyData pnd; 446 pnd.reason = reason; 447 448 return notifier_with_return_list_notify(&precopy_notifier_list, &pnd, errp); 449 } 450 451 uint64_t ram_bytes_remaining(void) 452 { 453 return ram_state ? (ram_state->migration_dirty_pages * TARGET_PAGE_SIZE) : 454 0; 455 } 456 457 void ram_transferred_add(uint64_t bytes) 458 { 459 if (runstate_is_running()) { 460 stat64_add(&mig_stats.precopy_bytes, bytes); 461 } else if (migration_in_postcopy()) { 462 stat64_add(&mig_stats.postcopy_bytes, bytes); 463 } else { 464 stat64_add(&mig_stats.downtime_bytes, bytes); 465 } 466 } 467 468 struct MigrationOps { 469 int (*ram_save_target_page)(RAMState *rs, PageSearchStatus *pss); 470 }; 471 typedef struct MigrationOps MigrationOps; 472 473 MigrationOps *migration_ops; 474 475 static int ram_save_host_page_urgent(PageSearchStatus *pss); 476 477 /* NOTE: page is the PFN not real ram_addr_t. */ 478 static void pss_init(PageSearchStatus *pss, RAMBlock *rb, ram_addr_t page) 479 { 480 pss->block = rb; 481 pss->page = page; 482 pss->complete_round = false; 483 } 484 485 /* 486 * Check whether two PSSs are actively sending the same page. Return true 487 * if it is, false otherwise. 488 */ 489 static bool pss_overlap(PageSearchStatus *pss1, PageSearchStatus *pss2) 490 { 491 return pss1->host_page_sending && pss2->host_page_sending && 492 (pss1->host_page_start == pss2->host_page_start); 493 } 494 495 /** 496 * save_page_header: write page header to wire 497 * 498 * If this is the 1st block, it also writes the block identification 499 * 500 * Returns the number of bytes written 501 * 502 * @pss: current PSS channel status 503 * @block: block that contains the page we want to send 504 * @offset: offset inside the block for the page 505 * in the lower bits, it contains flags 506 */ 507 static size_t save_page_header(PageSearchStatus *pss, QEMUFile *f, 508 RAMBlock *block, ram_addr_t offset) 509 { 510 size_t size, len; 511 bool same_block = (block == pss->last_sent_block); 512 513 if (same_block) { 514 offset |= RAM_SAVE_FLAG_CONTINUE; 515 } 516 qemu_put_be64(f, offset); 517 size = 8; 518 519 if (!same_block) { 520 len = strlen(block->idstr); 521 qemu_put_byte(f, len); 522 qemu_put_buffer(f, (uint8_t *)block->idstr, len); 523 size += 1 + len; 524 pss->last_sent_block = block; 525 } 526 return size; 527 } 528 529 /** 530 * mig_throttle_guest_down: throttle down the guest 531 * 532 * Reduce amount of guest cpu execution to hopefully slow down memory 533 * writes. If guest dirty memory rate is reduced below the rate at 534 * which we can transfer pages to the destination then we should be 535 * able to complete migration. Some workloads dirty memory way too 536 * fast and will not effectively converge, even with auto-converge. 537 */ 538 static void mig_throttle_guest_down(uint64_t bytes_dirty_period, 539 uint64_t bytes_dirty_threshold) 540 { 541 uint64_t pct_initial = migrate_cpu_throttle_initial(); 542 uint64_t pct_increment = migrate_cpu_throttle_increment(); 543 bool pct_tailslow = migrate_cpu_throttle_tailslow(); 544 int pct_max = migrate_max_cpu_throttle(); 545 546 uint64_t throttle_now = cpu_throttle_get_percentage(); 547 uint64_t cpu_now, cpu_ideal, throttle_inc; 548 549 /* We have not started throttling yet. Let's start it. */ 550 if (!cpu_throttle_active()) { 551 cpu_throttle_set(pct_initial); 552 } else { 553 /* Throttling already on, just increase the rate */ 554 if (!pct_tailslow) { 555 throttle_inc = pct_increment; 556 } else { 557 /* Compute the ideal CPU percentage used by Guest, which may 558 * make the dirty rate match the dirty rate threshold. */ 559 cpu_now = 100 - throttle_now; 560 cpu_ideal = cpu_now * (bytes_dirty_threshold * 1.0 / 561 bytes_dirty_period); 562 throttle_inc = MIN(cpu_now - cpu_ideal, pct_increment); 563 } 564 cpu_throttle_set(MIN(throttle_now + throttle_inc, pct_max)); 565 } 566 } 567 568 void mig_throttle_counter_reset(void) 569 { 570 RAMState *rs = ram_state; 571 572 rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); 573 rs->num_dirty_pages_period = 0; 574 rs->bytes_xfer_prev = migration_transferred_bytes(); 575 } 576 577 /** 578 * xbzrle_cache_zero_page: insert a zero page in the XBZRLE cache 579 * 580 * @current_addr: address for the zero page 581 * 582 * Update the xbzrle cache to reflect a page that's been sent as all 0. 583 * The important thing is that a stale (not-yet-0'd) page be replaced 584 * by the new data. 585 * As a bonus, if the page wasn't in the cache it gets added so that 586 * when a small write is made into the 0'd page it gets XBZRLE sent. 587 */ 588 static void xbzrle_cache_zero_page(ram_addr_t current_addr) 589 { 590 /* We don't care if this fails to allocate a new cache page 591 * as long as it updated an old one */ 592 cache_insert(XBZRLE.cache, current_addr, XBZRLE.zero_target_page, 593 stat64_get(&mig_stats.dirty_sync_count)); 594 } 595 596 #define ENCODING_FLAG_XBZRLE 0x1 597 598 /** 599 * save_xbzrle_page: compress and send current page 600 * 601 * Returns: 1 means that we wrote the page 602 * 0 means that page is identical to the one already sent 603 * -1 means that xbzrle would be longer than normal 604 * 605 * @rs: current RAM state 606 * @pss: current PSS channel 607 * @current_data: pointer to the address of the page contents 608 * @current_addr: addr of the page 609 * @block: block that contains the page we want to send 610 * @offset: offset inside the block for the page 611 */ 612 static int save_xbzrle_page(RAMState *rs, PageSearchStatus *pss, 613 uint8_t **current_data, ram_addr_t current_addr, 614 RAMBlock *block, ram_addr_t offset) 615 { 616 int encoded_len = 0, bytes_xbzrle; 617 uint8_t *prev_cached_page; 618 QEMUFile *file = pss->pss_channel; 619 uint64_t generation = stat64_get(&mig_stats.dirty_sync_count); 620 621 if (!cache_is_cached(XBZRLE.cache, current_addr, generation)) { 622 xbzrle_counters.cache_miss++; 623 if (!rs->last_stage) { 624 if (cache_insert(XBZRLE.cache, current_addr, *current_data, 625 generation) == -1) { 626 return -1; 627 } else { 628 /* update *current_data when the page has been 629 inserted into cache */ 630 *current_data = get_cached_data(XBZRLE.cache, current_addr); 631 } 632 } 633 return -1; 634 } 635 636 /* 637 * Reaching here means the page has hit the xbzrle cache, no matter what 638 * encoding result it is (normal encoding, overflow or skipping the page), 639 * count the page as encoded. This is used to calculate the encoding rate. 640 * 641 * Example: 2 pages (8KB) being encoded, first page encoding generates 2KB, 642 * 2nd page turns out to be skipped (i.e. no new bytes written to the 643 * page), the overall encoding rate will be 8KB / 2KB = 4, which has the 644 * skipped page included. In this way, the encoding rate can tell if the 645 * guest page is good for xbzrle encoding. 646 */ 647 xbzrle_counters.pages++; 648 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr); 649 650 /* save current buffer into memory */ 651 memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE); 652 653 /* XBZRLE encoding (if there is no overflow) */ 654 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf, 655 TARGET_PAGE_SIZE, XBZRLE.encoded_buf, 656 TARGET_PAGE_SIZE); 657 658 /* 659 * Update the cache contents, so that it corresponds to the data 660 * sent, in all cases except where we skip the page. 661 */ 662 if (!rs->last_stage && encoded_len != 0) { 663 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE); 664 /* 665 * In the case where we couldn't compress, ensure that the caller 666 * sends the data from the cache, since the guest might have 667 * changed the RAM since we copied it. 668 */ 669 *current_data = prev_cached_page; 670 } 671 672 if (encoded_len == 0) { 673 trace_save_xbzrle_page_skipping(); 674 return 0; 675 } else if (encoded_len == -1) { 676 trace_save_xbzrle_page_overflow(); 677 xbzrle_counters.overflow++; 678 xbzrle_counters.bytes += TARGET_PAGE_SIZE; 679 return -1; 680 } 681 682 /* Send XBZRLE based compressed page */ 683 bytes_xbzrle = save_page_header(pss, pss->pss_channel, block, 684 offset | RAM_SAVE_FLAG_XBZRLE); 685 qemu_put_byte(file, ENCODING_FLAG_XBZRLE); 686 qemu_put_be16(file, encoded_len); 687 qemu_put_buffer(file, XBZRLE.encoded_buf, encoded_len); 688 bytes_xbzrle += encoded_len + 1 + 2; 689 /* 690 * Like compressed_size (please see update_compress_thread_counts), 691 * the xbzrle encoded bytes don't count the 8 byte header with 692 * RAM_SAVE_FLAG_CONTINUE. 693 */ 694 xbzrle_counters.bytes += bytes_xbzrle - 8; 695 ram_transferred_add(bytes_xbzrle); 696 697 return 1; 698 } 699 700 /** 701 * pss_find_next_dirty: find the next dirty page of current ramblock 702 * 703 * This function updates pss->page to point to the next dirty page index 704 * within the ramblock to migrate, or the end of ramblock when nothing 705 * found. Note that when pss->host_page_sending==true it means we're 706 * during sending a host page, so we won't look for dirty page that is 707 * outside the host page boundary. 708 * 709 * @pss: the current page search status 710 */ 711 static void pss_find_next_dirty(PageSearchStatus *pss) 712 { 713 RAMBlock *rb = pss->block; 714 unsigned long size = rb->used_length >> TARGET_PAGE_BITS; 715 unsigned long *bitmap = rb->bmap; 716 717 if (migrate_ram_is_ignored(rb)) { 718 /* Points directly to the end, so we know no dirty page */ 719 pss->page = size; 720 return; 721 } 722 723 /* 724 * If during sending a host page, only look for dirty pages within the 725 * current host page being send. 726 */ 727 if (pss->host_page_sending) { 728 assert(pss->host_page_end); 729 size = MIN(size, pss->host_page_end); 730 } 731 732 pss->page = find_next_bit(bitmap, size, pss->page); 733 } 734 735 static void migration_clear_memory_region_dirty_bitmap(RAMBlock *rb, 736 unsigned long page) 737 { 738 uint8_t shift; 739 hwaddr size, start; 740 741 if (!rb->clear_bmap || !clear_bmap_test_and_clear(rb, page)) { 742 return; 743 } 744 745 shift = rb->clear_bmap_shift; 746 /* 747 * CLEAR_BITMAP_SHIFT_MIN should always guarantee this... this 748 * can make things easier sometimes since then start address 749 * of the small chunk will always be 64 pages aligned so the 750 * bitmap will always be aligned to unsigned long. We should 751 * even be able to remove this restriction but I'm simply 752 * keeping it. 753 */ 754 assert(shift >= 6); 755 756 size = 1ULL << (TARGET_PAGE_BITS + shift); 757 start = QEMU_ALIGN_DOWN((ram_addr_t)page << TARGET_PAGE_BITS, size); 758 trace_migration_bitmap_clear_dirty(rb->idstr, start, size, page); 759 memory_region_clear_dirty_bitmap(rb->mr, start, size); 760 } 761 762 static void 763 migration_clear_memory_region_dirty_bitmap_range(RAMBlock *rb, 764 unsigned long start, 765 unsigned long npages) 766 { 767 unsigned long i, chunk_pages = 1UL << rb->clear_bmap_shift; 768 unsigned long chunk_start = QEMU_ALIGN_DOWN(start, chunk_pages); 769 unsigned long chunk_end = QEMU_ALIGN_UP(start + npages, chunk_pages); 770 771 /* 772 * Clear pages from start to start + npages - 1, so the end boundary is 773 * exclusive. 774 */ 775 for (i = chunk_start; i < chunk_end; i += chunk_pages) { 776 migration_clear_memory_region_dirty_bitmap(rb, i); 777 } 778 } 779 780 /* 781 * colo_bitmap_find_diry:find contiguous dirty pages from start 782 * 783 * Returns the page offset within memory region of the start of the contiguout 784 * dirty page 785 * 786 * @rs: current RAM state 787 * @rb: RAMBlock where to search for dirty pages 788 * @start: page where we start the search 789 * @num: the number of contiguous dirty pages 790 */ 791 static inline 792 unsigned long colo_bitmap_find_dirty(RAMState *rs, RAMBlock *rb, 793 unsigned long start, unsigned long *num) 794 { 795 unsigned long size = rb->used_length >> TARGET_PAGE_BITS; 796 unsigned long *bitmap = rb->bmap; 797 unsigned long first, next; 798 799 *num = 0; 800 801 if (migrate_ram_is_ignored(rb)) { 802 return size; 803 } 804 805 first = find_next_bit(bitmap, size, start); 806 if (first >= size) { 807 return first; 808 } 809 next = find_next_zero_bit(bitmap, size, first + 1); 810 assert(next >= first); 811 *num = next - first; 812 return first; 813 } 814 815 static inline bool migration_bitmap_clear_dirty(RAMState *rs, 816 RAMBlock *rb, 817 unsigned long page) 818 { 819 bool ret; 820 821 /* 822 * Clear dirty bitmap if needed. This _must_ be called before we 823 * send any of the page in the chunk because we need to make sure 824 * we can capture further page content changes when we sync dirty 825 * log the next time. So as long as we are going to send any of 826 * the page in the chunk we clear the remote dirty bitmap for all. 827 * Clearing it earlier won't be a problem, but too late will. 828 */ 829 migration_clear_memory_region_dirty_bitmap(rb, page); 830 831 ret = test_and_clear_bit(page, rb->bmap); 832 if (ret) { 833 rs->migration_dirty_pages--; 834 } 835 836 return ret; 837 } 838 839 static void dirty_bitmap_clear_section(MemoryRegionSection *section, 840 void *opaque) 841 { 842 const hwaddr offset = section->offset_within_region; 843 const hwaddr size = int128_get64(section->size); 844 const unsigned long start = offset >> TARGET_PAGE_BITS; 845 const unsigned long npages = size >> TARGET_PAGE_BITS; 846 RAMBlock *rb = section->mr->ram_block; 847 uint64_t *cleared_bits = opaque; 848 849 /* 850 * We don't grab ram_state->bitmap_mutex because we expect to run 851 * only when starting migration or during postcopy recovery where 852 * we don't have concurrent access. 853 */ 854 if (!migration_in_postcopy() && !migrate_background_snapshot()) { 855 migration_clear_memory_region_dirty_bitmap_range(rb, start, npages); 856 } 857 *cleared_bits += bitmap_count_one_with_offset(rb->bmap, start, npages); 858 bitmap_clear(rb->bmap, start, npages); 859 } 860 861 /* 862 * Exclude all dirty pages from migration that fall into a discarded range as 863 * managed by a RamDiscardManager responsible for the mapped memory region of 864 * the RAMBlock. Clear the corresponding bits in the dirty bitmaps. 865 * 866 * Discarded pages ("logically unplugged") have undefined content and must 867 * not get migrated, because even reading these pages for migration might 868 * result in undesired behavior. 869 * 870 * Returns the number of cleared bits in the RAMBlock dirty bitmap. 871 * 872 * Note: The result is only stable while migrating (precopy/postcopy). 873 */ 874 static uint64_t ramblock_dirty_bitmap_clear_discarded_pages(RAMBlock *rb) 875 { 876 uint64_t cleared_bits = 0; 877 878 if (rb->mr && rb->bmap && memory_region_has_ram_discard_manager(rb->mr)) { 879 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr); 880 MemoryRegionSection section = { 881 .mr = rb->mr, 882 .offset_within_region = 0, 883 .size = int128_make64(qemu_ram_get_used_length(rb)), 884 }; 885 886 ram_discard_manager_replay_discarded(rdm, §ion, 887 dirty_bitmap_clear_section, 888 &cleared_bits); 889 } 890 return cleared_bits; 891 } 892 893 /* 894 * Check if a host-page aligned page falls into a discarded range as managed by 895 * a RamDiscardManager responsible for the mapped memory region of the RAMBlock. 896 * 897 * Note: The result is only stable while migrating (precopy/postcopy). 898 */ 899 bool ramblock_page_is_discarded(RAMBlock *rb, ram_addr_t start) 900 { 901 if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) { 902 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr); 903 MemoryRegionSection section = { 904 .mr = rb->mr, 905 .offset_within_region = start, 906 .size = int128_make64(qemu_ram_pagesize(rb)), 907 }; 908 909 return !ram_discard_manager_is_populated(rdm, §ion); 910 } 911 return false; 912 } 913 914 /* Called with RCU critical section */ 915 static void ramblock_sync_dirty_bitmap(RAMState *rs, RAMBlock *rb) 916 { 917 uint64_t new_dirty_pages = 918 cpu_physical_memory_sync_dirty_bitmap(rb, 0, rb->used_length); 919 920 rs->migration_dirty_pages += new_dirty_pages; 921 rs->num_dirty_pages_period += new_dirty_pages; 922 } 923 924 /** 925 * ram_pagesize_summary: calculate all the pagesizes of a VM 926 * 927 * Returns a summary bitmap of the page sizes of all RAMBlocks 928 * 929 * For VMs with just normal pages this is equivalent to the host page 930 * size. If it's got some huge pages then it's the OR of all the 931 * different page sizes. 932 */ 933 uint64_t ram_pagesize_summary(void) 934 { 935 RAMBlock *block; 936 uint64_t summary = 0; 937 938 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 939 summary |= block->page_size; 940 } 941 942 return summary; 943 } 944 945 uint64_t ram_get_total_transferred_pages(void) 946 { 947 return stat64_get(&mig_stats.normal_pages) + 948 stat64_get(&mig_stats.zero_pages) + 949 compress_ram_pages() + xbzrle_counters.pages; 950 } 951 952 static void migration_update_rates(RAMState *rs, int64_t end_time) 953 { 954 uint64_t page_count = rs->target_page_count - rs->target_page_count_prev; 955 956 /* calculate period counters */ 957 stat64_set(&mig_stats.dirty_pages_rate, 958 rs->num_dirty_pages_period * 1000 / 959 (end_time - rs->time_last_bitmap_sync)); 960 961 if (!page_count) { 962 return; 963 } 964 965 if (migrate_xbzrle()) { 966 double encoded_size, unencoded_size; 967 968 xbzrle_counters.cache_miss_rate = (double)(xbzrle_counters.cache_miss - 969 rs->xbzrle_cache_miss_prev) / page_count; 970 rs->xbzrle_cache_miss_prev = xbzrle_counters.cache_miss; 971 unencoded_size = (xbzrle_counters.pages - rs->xbzrle_pages_prev) * 972 TARGET_PAGE_SIZE; 973 encoded_size = xbzrle_counters.bytes - rs->xbzrle_bytes_prev; 974 if (xbzrle_counters.pages == rs->xbzrle_pages_prev || !encoded_size) { 975 xbzrle_counters.encoding_rate = 0; 976 } else { 977 xbzrle_counters.encoding_rate = unencoded_size / encoded_size; 978 } 979 rs->xbzrle_pages_prev = xbzrle_counters.pages; 980 rs->xbzrle_bytes_prev = xbzrle_counters.bytes; 981 } 982 compress_update_rates(page_count); 983 } 984 985 /* 986 * Enable dirty-limit to throttle down the guest 987 */ 988 static void migration_dirty_limit_guest(void) 989 { 990 /* 991 * dirty page rate quota for all vCPUs fetched from 992 * migration parameter 'vcpu_dirty_limit' 993 */ 994 static int64_t quota_dirtyrate; 995 MigrationState *s = migrate_get_current(); 996 997 /* 998 * If dirty limit already enabled and migration parameter 999 * vcpu-dirty-limit untouched. 1000 */ 1001 if (dirtylimit_in_service() && 1002 quota_dirtyrate == s->parameters.vcpu_dirty_limit) { 1003 return; 1004 } 1005 1006 quota_dirtyrate = s->parameters.vcpu_dirty_limit; 1007 1008 /* 1009 * Set all vCPU a quota dirtyrate, note that the second 1010 * parameter will be ignored if setting all vCPU for the vm 1011 */ 1012 qmp_set_vcpu_dirty_limit(false, -1, quota_dirtyrate, NULL); 1013 trace_migration_dirty_limit_guest(quota_dirtyrate); 1014 } 1015 1016 static void migration_trigger_throttle(RAMState *rs) 1017 { 1018 uint64_t threshold = migrate_throttle_trigger_threshold(); 1019 uint64_t bytes_xfer_period = 1020 migration_transferred_bytes() - rs->bytes_xfer_prev; 1021 uint64_t bytes_dirty_period = rs->num_dirty_pages_period * TARGET_PAGE_SIZE; 1022 uint64_t bytes_dirty_threshold = bytes_xfer_period * threshold / 100; 1023 1024 /* During block migration the auto-converge logic incorrectly detects 1025 * that ram migration makes no progress. Avoid this by disabling the 1026 * throttling logic during the bulk phase of block migration. */ 1027 if (blk_mig_bulk_active()) { 1028 return; 1029 } 1030 1031 /* 1032 * The following detection logic can be refined later. For now: 1033 * Check to see if the ratio between dirtied bytes and the approx. 1034 * amount of bytes that just got transferred since the last time 1035 * we were in this routine reaches the threshold. If that happens 1036 * twice, start or increase throttling. 1037 */ 1038 if ((bytes_dirty_period > bytes_dirty_threshold) && 1039 (++rs->dirty_rate_high_cnt >= 2)) { 1040 rs->dirty_rate_high_cnt = 0; 1041 if (migrate_auto_converge()) { 1042 trace_migration_throttle(); 1043 mig_throttle_guest_down(bytes_dirty_period, 1044 bytes_dirty_threshold); 1045 } else if (migrate_dirty_limit()) { 1046 migration_dirty_limit_guest(); 1047 } 1048 } 1049 } 1050 1051 static void migration_bitmap_sync(RAMState *rs, bool last_stage) 1052 { 1053 RAMBlock *block; 1054 int64_t end_time; 1055 1056 stat64_add(&mig_stats.dirty_sync_count, 1); 1057 1058 if (!rs->time_last_bitmap_sync) { 1059 rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); 1060 } 1061 1062 trace_migration_bitmap_sync_start(); 1063 memory_global_dirty_log_sync(last_stage); 1064 1065 qemu_mutex_lock(&rs->bitmap_mutex); 1066 WITH_RCU_READ_LOCK_GUARD() { 1067 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 1068 ramblock_sync_dirty_bitmap(rs, block); 1069 } 1070 stat64_set(&mig_stats.dirty_bytes_last_sync, ram_bytes_remaining()); 1071 } 1072 qemu_mutex_unlock(&rs->bitmap_mutex); 1073 1074 memory_global_after_dirty_log_sync(); 1075 trace_migration_bitmap_sync_end(rs->num_dirty_pages_period); 1076 1077 end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); 1078 1079 /* more than 1 second = 1000 millisecons */ 1080 if (end_time > rs->time_last_bitmap_sync + 1000) { 1081 migration_trigger_throttle(rs); 1082 1083 migration_update_rates(rs, end_time); 1084 1085 rs->target_page_count_prev = rs->target_page_count; 1086 1087 /* reset period counters */ 1088 rs->time_last_bitmap_sync = end_time; 1089 rs->num_dirty_pages_period = 0; 1090 rs->bytes_xfer_prev = migration_transferred_bytes(); 1091 } 1092 if (migrate_events()) { 1093 uint64_t generation = stat64_get(&mig_stats.dirty_sync_count); 1094 qapi_event_send_migration_pass(generation); 1095 } 1096 } 1097 1098 static void migration_bitmap_sync_precopy(RAMState *rs, bool last_stage) 1099 { 1100 Error *local_err = NULL; 1101 1102 /* 1103 * The current notifier usage is just an optimization to migration, so we 1104 * don't stop the normal migration process in the error case. 1105 */ 1106 if (precopy_notify(PRECOPY_NOTIFY_BEFORE_BITMAP_SYNC, &local_err)) { 1107 error_report_err(local_err); 1108 local_err = NULL; 1109 } 1110 1111 migration_bitmap_sync(rs, last_stage); 1112 1113 if (precopy_notify(PRECOPY_NOTIFY_AFTER_BITMAP_SYNC, &local_err)) { 1114 error_report_err(local_err); 1115 } 1116 } 1117 1118 void ram_release_page(const char *rbname, uint64_t offset) 1119 { 1120 if (!migrate_release_ram() || !migration_in_postcopy()) { 1121 return; 1122 } 1123 1124 ram_discard_range(rbname, offset, TARGET_PAGE_SIZE); 1125 } 1126 1127 /** 1128 * save_zero_page: send the zero page to the stream 1129 * 1130 * Returns the number of pages written. 1131 * 1132 * @rs: current RAM state 1133 * @pss: current PSS channel 1134 * @offset: offset inside the block for the page 1135 */ 1136 static int save_zero_page(RAMState *rs, PageSearchStatus *pss, 1137 ram_addr_t offset) 1138 { 1139 uint8_t *p = pss->block->host + offset; 1140 QEMUFile *file = pss->pss_channel; 1141 int len = 0; 1142 1143 if (!buffer_is_zero(p, TARGET_PAGE_SIZE)) { 1144 return 0; 1145 } 1146 1147 stat64_add(&mig_stats.zero_pages, 1); 1148 1149 if (migrate_mapped_ram()) { 1150 /* zero pages are not transferred with mapped-ram */ 1151 clear_bit_atomic(offset >> TARGET_PAGE_BITS, pss->block->file_bmap); 1152 return 1; 1153 } 1154 1155 len += save_page_header(pss, file, pss->block, offset | RAM_SAVE_FLAG_ZERO); 1156 qemu_put_byte(file, 0); 1157 len += 1; 1158 ram_release_page(pss->block->idstr, offset); 1159 ram_transferred_add(len); 1160 1161 /* 1162 * Must let xbzrle know, otherwise a previous (now 0'd) cached 1163 * page would be stale. 1164 */ 1165 if (rs->xbzrle_started) { 1166 XBZRLE_cache_lock(); 1167 xbzrle_cache_zero_page(pss->block->offset + offset); 1168 XBZRLE_cache_unlock(); 1169 } 1170 1171 return len; 1172 } 1173 1174 /* 1175 * @pages: the number of pages written by the control path, 1176 * < 0 - error 1177 * > 0 - number of pages written 1178 * 1179 * Return true if the pages has been saved, otherwise false is returned. 1180 */ 1181 static bool control_save_page(PageSearchStatus *pss, 1182 ram_addr_t offset, int *pages) 1183 { 1184 int ret; 1185 1186 ret = rdma_control_save_page(pss->pss_channel, pss->block->offset, offset, 1187 TARGET_PAGE_SIZE); 1188 if (ret == RAM_SAVE_CONTROL_NOT_SUPP) { 1189 return false; 1190 } 1191 1192 if (ret == RAM_SAVE_CONTROL_DELAYED) { 1193 *pages = 1; 1194 return true; 1195 } 1196 *pages = ret; 1197 return true; 1198 } 1199 1200 /* 1201 * directly send the page to the stream 1202 * 1203 * Returns the number of pages written. 1204 * 1205 * @pss: current PSS channel 1206 * @block: block that contains the page we want to send 1207 * @offset: offset inside the block for the page 1208 * @buf: the page to be sent 1209 * @async: send to page asyncly 1210 */ 1211 static int save_normal_page(PageSearchStatus *pss, RAMBlock *block, 1212 ram_addr_t offset, uint8_t *buf, bool async) 1213 { 1214 QEMUFile *file = pss->pss_channel; 1215 1216 if (migrate_mapped_ram()) { 1217 qemu_put_buffer_at(file, buf, TARGET_PAGE_SIZE, 1218 block->pages_offset + offset); 1219 set_bit(offset >> TARGET_PAGE_BITS, block->file_bmap); 1220 } else { 1221 ram_transferred_add(save_page_header(pss, pss->pss_channel, block, 1222 offset | RAM_SAVE_FLAG_PAGE)); 1223 if (async) { 1224 qemu_put_buffer_async(file, buf, TARGET_PAGE_SIZE, 1225 migrate_release_ram() && 1226 migration_in_postcopy()); 1227 } else { 1228 qemu_put_buffer(file, buf, TARGET_PAGE_SIZE); 1229 } 1230 } 1231 ram_transferred_add(TARGET_PAGE_SIZE); 1232 stat64_add(&mig_stats.normal_pages, 1); 1233 return 1; 1234 } 1235 1236 /** 1237 * ram_save_page: send the given page to the stream 1238 * 1239 * Returns the number of pages written. 1240 * < 0 - error 1241 * >=0 - Number of pages written - this might legally be 0 1242 * if xbzrle noticed the page was the same. 1243 * 1244 * @rs: current RAM state 1245 * @block: block that contains the page we want to send 1246 * @offset: offset inside the block for the page 1247 */ 1248 static int ram_save_page(RAMState *rs, PageSearchStatus *pss) 1249 { 1250 int pages = -1; 1251 uint8_t *p; 1252 bool send_async = true; 1253 RAMBlock *block = pss->block; 1254 ram_addr_t offset = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS; 1255 ram_addr_t current_addr = block->offset + offset; 1256 1257 p = block->host + offset; 1258 trace_ram_save_page(block->idstr, (uint64_t)offset, p); 1259 1260 XBZRLE_cache_lock(); 1261 if (rs->xbzrle_started && !migration_in_postcopy()) { 1262 pages = save_xbzrle_page(rs, pss, &p, current_addr, 1263 block, offset); 1264 if (!rs->last_stage) { 1265 /* Can't send this cached data async, since the cache page 1266 * might get updated before it gets to the wire 1267 */ 1268 send_async = false; 1269 } 1270 } 1271 1272 /* XBZRLE overflow or normal page */ 1273 if (pages == -1) { 1274 pages = save_normal_page(pss, block, offset, p, send_async); 1275 } 1276 1277 XBZRLE_cache_unlock(); 1278 1279 return pages; 1280 } 1281 1282 static int ram_save_multifd_page(RAMBlock *block, ram_addr_t offset) 1283 { 1284 if (!multifd_queue_page(block, offset)) { 1285 return -1; 1286 } 1287 stat64_add(&mig_stats.normal_pages, 1); 1288 1289 return 1; 1290 } 1291 1292 int compress_send_queued_data(CompressParam *param) 1293 { 1294 PageSearchStatus *pss = &ram_state->pss[RAM_CHANNEL_PRECOPY]; 1295 MigrationState *ms = migrate_get_current(); 1296 QEMUFile *file = ms->to_dst_file; 1297 int len = 0; 1298 1299 RAMBlock *block = param->block; 1300 ram_addr_t offset = param->offset; 1301 1302 if (param->result == RES_NONE) { 1303 return 0; 1304 } 1305 1306 assert(block == pss->last_sent_block); 1307 1308 if (param->result == RES_ZEROPAGE) { 1309 assert(qemu_file_buffer_empty(param->file)); 1310 len += save_page_header(pss, file, block, offset | RAM_SAVE_FLAG_ZERO); 1311 qemu_put_byte(file, 0); 1312 len += 1; 1313 ram_release_page(block->idstr, offset); 1314 } else if (param->result == RES_COMPRESS) { 1315 assert(!qemu_file_buffer_empty(param->file)); 1316 len += save_page_header(pss, file, block, 1317 offset | RAM_SAVE_FLAG_COMPRESS_PAGE); 1318 len += qemu_put_qemu_file(file, param->file); 1319 } else { 1320 abort(); 1321 } 1322 1323 update_compress_thread_counts(param, len); 1324 1325 return len; 1326 } 1327 1328 #define PAGE_ALL_CLEAN 0 1329 #define PAGE_TRY_AGAIN 1 1330 #define PAGE_DIRTY_FOUND 2 1331 /** 1332 * find_dirty_block: find the next dirty page and update any state 1333 * associated with the search process. 1334 * 1335 * Returns: 1336 * <0: An error happened 1337 * PAGE_ALL_CLEAN: no dirty page found, give up 1338 * PAGE_TRY_AGAIN: no dirty page found, retry for next block 1339 * PAGE_DIRTY_FOUND: dirty page found 1340 * 1341 * @rs: current RAM state 1342 * @pss: data about the state of the current dirty page scan 1343 * @again: set to false if the search has scanned the whole of RAM 1344 */ 1345 static int find_dirty_block(RAMState *rs, PageSearchStatus *pss) 1346 { 1347 /* Update pss->page for the next dirty bit in ramblock */ 1348 pss_find_next_dirty(pss); 1349 1350 if (pss->complete_round && pss->block == rs->last_seen_block && 1351 pss->page >= rs->last_page) { 1352 /* 1353 * We've been once around the RAM and haven't found anything. 1354 * Give up. 1355 */ 1356 return PAGE_ALL_CLEAN; 1357 } 1358 if (!offset_in_ramblock(pss->block, 1359 ((ram_addr_t)pss->page) << TARGET_PAGE_BITS)) { 1360 /* Didn't find anything in this RAM Block */ 1361 pss->page = 0; 1362 pss->block = QLIST_NEXT_RCU(pss->block, next); 1363 if (!pss->block) { 1364 if (migrate_multifd() && 1365 (!migrate_multifd_flush_after_each_section() || 1366 migrate_mapped_ram())) { 1367 QEMUFile *f = rs->pss[RAM_CHANNEL_PRECOPY].pss_channel; 1368 int ret = multifd_send_sync_main(); 1369 if (ret < 0) { 1370 return ret; 1371 } 1372 1373 if (!migrate_mapped_ram()) { 1374 qemu_put_be64(f, RAM_SAVE_FLAG_MULTIFD_FLUSH); 1375 qemu_fflush(f); 1376 } 1377 } 1378 /* 1379 * If memory migration starts over, we will meet a dirtied page 1380 * which may still exists in compression threads's ring, so we 1381 * should flush the compressed data to make sure the new page 1382 * is not overwritten by the old one in the destination. 1383 * 1384 * Also If xbzrle is on, stop using the data compression at this 1385 * point. In theory, xbzrle can do better than compression. 1386 */ 1387 compress_flush_data(); 1388 1389 /* Hit the end of the list */ 1390 pss->block = QLIST_FIRST_RCU(&ram_list.blocks); 1391 /* Flag that we've looped */ 1392 pss->complete_round = true; 1393 /* After the first round, enable XBZRLE. */ 1394 if (migrate_xbzrle()) { 1395 rs->xbzrle_started = true; 1396 } 1397 } 1398 /* Didn't find anything this time, but try again on the new block */ 1399 return PAGE_TRY_AGAIN; 1400 } else { 1401 /* We've found something */ 1402 return PAGE_DIRTY_FOUND; 1403 } 1404 } 1405 1406 /** 1407 * unqueue_page: gets a page of the queue 1408 * 1409 * Helper for 'get_queued_page' - gets a page off the queue 1410 * 1411 * Returns the block of the page (or NULL if none available) 1412 * 1413 * @rs: current RAM state 1414 * @offset: used to return the offset within the RAMBlock 1415 */ 1416 static RAMBlock *unqueue_page(RAMState *rs, ram_addr_t *offset) 1417 { 1418 struct RAMSrcPageRequest *entry; 1419 RAMBlock *block = NULL; 1420 1421 if (!postcopy_has_request(rs)) { 1422 return NULL; 1423 } 1424 1425 QEMU_LOCK_GUARD(&rs->src_page_req_mutex); 1426 1427 /* 1428 * This should _never_ change even after we take the lock, because no one 1429 * should be taking anything off the request list other than us. 1430 */ 1431 assert(postcopy_has_request(rs)); 1432 1433 entry = QSIMPLEQ_FIRST(&rs->src_page_requests); 1434 block = entry->rb; 1435 *offset = entry->offset; 1436 1437 if (entry->len > TARGET_PAGE_SIZE) { 1438 entry->len -= TARGET_PAGE_SIZE; 1439 entry->offset += TARGET_PAGE_SIZE; 1440 } else { 1441 memory_region_unref(block->mr); 1442 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req); 1443 g_free(entry); 1444 migration_consume_urgent_request(); 1445 } 1446 1447 return block; 1448 } 1449 1450 #if defined(__linux__) 1451 /** 1452 * poll_fault_page: try to get next UFFD write fault page and, if pending fault 1453 * is found, return RAM block pointer and page offset 1454 * 1455 * Returns pointer to the RAMBlock containing faulting page, 1456 * NULL if no write faults are pending 1457 * 1458 * @rs: current RAM state 1459 * @offset: page offset from the beginning of the block 1460 */ 1461 static RAMBlock *poll_fault_page(RAMState *rs, ram_addr_t *offset) 1462 { 1463 struct uffd_msg uffd_msg; 1464 void *page_address; 1465 RAMBlock *block; 1466 int res; 1467 1468 if (!migrate_background_snapshot()) { 1469 return NULL; 1470 } 1471 1472 res = uffd_read_events(rs->uffdio_fd, &uffd_msg, 1); 1473 if (res <= 0) { 1474 return NULL; 1475 } 1476 1477 page_address = (void *)(uintptr_t) uffd_msg.arg.pagefault.address; 1478 block = qemu_ram_block_from_host(page_address, false, offset); 1479 assert(block && (block->flags & RAM_UF_WRITEPROTECT) != 0); 1480 return block; 1481 } 1482 1483 /** 1484 * ram_save_release_protection: release UFFD write protection after 1485 * a range of pages has been saved 1486 * 1487 * @rs: current RAM state 1488 * @pss: page-search-status structure 1489 * @start_page: index of the first page in the range relative to pss->block 1490 * 1491 * Returns 0 on success, negative value in case of an error 1492 */ 1493 static int ram_save_release_protection(RAMState *rs, PageSearchStatus *pss, 1494 unsigned long start_page) 1495 { 1496 int res = 0; 1497 1498 /* Check if page is from UFFD-managed region. */ 1499 if (pss->block->flags & RAM_UF_WRITEPROTECT) { 1500 void *page_address = pss->block->host + (start_page << TARGET_PAGE_BITS); 1501 uint64_t run_length = (pss->page - start_page) << TARGET_PAGE_BITS; 1502 1503 /* Flush async buffers before un-protect. */ 1504 qemu_fflush(pss->pss_channel); 1505 /* Un-protect memory range. */ 1506 res = uffd_change_protection(rs->uffdio_fd, page_address, run_length, 1507 false, false); 1508 } 1509 1510 return res; 1511 } 1512 1513 /* ram_write_tracking_available: check if kernel supports required UFFD features 1514 * 1515 * Returns true if supports, false otherwise 1516 */ 1517 bool ram_write_tracking_available(void) 1518 { 1519 uint64_t uffd_features; 1520 int res; 1521 1522 res = uffd_query_features(&uffd_features); 1523 return (res == 0 && 1524 (uffd_features & UFFD_FEATURE_PAGEFAULT_FLAG_WP) != 0); 1525 } 1526 1527 /* ram_write_tracking_compatible: check if guest configuration is 1528 * compatible with 'write-tracking' 1529 * 1530 * Returns true if compatible, false otherwise 1531 */ 1532 bool ram_write_tracking_compatible(void) 1533 { 1534 const uint64_t uffd_ioctls_mask = BIT(_UFFDIO_WRITEPROTECT); 1535 int uffd_fd; 1536 RAMBlock *block; 1537 bool ret = false; 1538 1539 /* Open UFFD file descriptor */ 1540 uffd_fd = uffd_create_fd(UFFD_FEATURE_PAGEFAULT_FLAG_WP, false); 1541 if (uffd_fd < 0) { 1542 return false; 1543 } 1544 1545 RCU_READ_LOCK_GUARD(); 1546 1547 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 1548 uint64_t uffd_ioctls; 1549 1550 /* Nothing to do with read-only and MMIO-writable regions */ 1551 if (block->mr->readonly || block->mr->rom_device) { 1552 continue; 1553 } 1554 /* Try to register block memory via UFFD-IO to track writes */ 1555 if (uffd_register_memory(uffd_fd, block->host, block->max_length, 1556 UFFDIO_REGISTER_MODE_WP, &uffd_ioctls)) { 1557 goto out; 1558 } 1559 if ((uffd_ioctls & uffd_ioctls_mask) != uffd_ioctls_mask) { 1560 goto out; 1561 } 1562 } 1563 ret = true; 1564 1565 out: 1566 uffd_close_fd(uffd_fd); 1567 return ret; 1568 } 1569 1570 static inline void populate_read_range(RAMBlock *block, ram_addr_t offset, 1571 ram_addr_t size) 1572 { 1573 const ram_addr_t end = offset + size; 1574 1575 /* 1576 * We read one byte of each page; this will preallocate page tables if 1577 * required and populate the shared zeropage on MAP_PRIVATE anonymous memory 1578 * where no page was populated yet. This might require adaption when 1579 * supporting other mappings, like shmem. 1580 */ 1581 for (; offset < end; offset += block->page_size) { 1582 char tmp = *((char *)block->host + offset); 1583 1584 /* Don't optimize the read out */ 1585 asm volatile("" : "+r" (tmp)); 1586 } 1587 } 1588 1589 static inline int populate_read_section(MemoryRegionSection *section, 1590 void *opaque) 1591 { 1592 const hwaddr size = int128_get64(section->size); 1593 hwaddr offset = section->offset_within_region; 1594 RAMBlock *block = section->mr->ram_block; 1595 1596 populate_read_range(block, offset, size); 1597 return 0; 1598 } 1599 1600 /* 1601 * ram_block_populate_read: preallocate page tables and populate pages in the 1602 * RAM block by reading a byte of each page. 1603 * 1604 * Since it's solely used for userfault_fd WP feature, here we just 1605 * hardcode page size to qemu_real_host_page_size. 1606 * 1607 * @block: RAM block to populate 1608 */ 1609 static void ram_block_populate_read(RAMBlock *rb) 1610 { 1611 /* 1612 * Skip populating all pages that fall into a discarded range as managed by 1613 * a RamDiscardManager responsible for the mapped memory region of the 1614 * RAMBlock. Such discarded ("logically unplugged") parts of a RAMBlock 1615 * must not get populated automatically. We don't have to track 1616 * modifications via userfaultfd WP reliably, because these pages will 1617 * not be part of the migration stream either way -- see 1618 * ramblock_dirty_bitmap_exclude_discarded_pages(). 1619 * 1620 * Note: The result is only stable while migrating (precopy/postcopy). 1621 */ 1622 if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) { 1623 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr); 1624 MemoryRegionSection section = { 1625 .mr = rb->mr, 1626 .offset_within_region = 0, 1627 .size = rb->mr->size, 1628 }; 1629 1630 ram_discard_manager_replay_populated(rdm, §ion, 1631 populate_read_section, NULL); 1632 } else { 1633 populate_read_range(rb, 0, rb->used_length); 1634 } 1635 } 1636 1637 /* 1638 * ram_write_tracking_prepare: prepare for UFFD-WP memory tracking 1639 */ 1640 void ram_write_tracking_prepare(void) 1641 { 1642 RAMBlock *block; 1643 1644 RCU_READ_LOCK_GUARD(); 1645 1646 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 1647 /* Nothing to do with read-only and MMIO-writable regions */ 1648 if (block->mr->readonly || block->mr->rom_device) { 1649 continue; 1650 } 1651 1652 /* 1653 * Populate pages of the RAM block before enabling userfault_fd 1654 * write protection. 1655 * 1656 * This stage is required since ioctl(UFFDIO_WRITEPROTECT) with 1657 * UFFDIO_WRITEPROTECT_MODE_WP mode setting would silently skip 1658 * pages with pte_none() entries in page table. 1659 */ 1660 ram_block_populate_read(block); 1661 } 1662 } 1663 1664 static inline int uffd_protect_section(MemoryRegionSection *section, 1665 void *opaque) 1666 { 1667 const hwaddr size = int128_get64(section->size); 1668 const hwaddr offset = section->offset_within_region; 1669 RAMBlock *rb = section->mr->ram_block; 1670 int uffd_fd = (uintptr_t)opaque; 1671 1672 return uffd_change_protection(uffd_fd, rb->host + offset, size, true, 1673 false); 1674 } 1675 1676 static int ram_block_uffd_protect(RAMBlock *rb, int uffd_fd) 1677 { 1678 assert(rb->flags & RAM_UF_WRITEPROTECT); 1679 1680 /* See ram_block_populate_read() */ 1681 if (rb->mr && memory_region_has_ram_discard_manager(rb->mr)) { 1682 RamDiscardManager *rdm = memory_region_get_ram_discard_manager(rb->mr); 1683 MemoryRegionSection section = { 1684 .mr = rb->mr, 1685 .offset_within_region = 0, 1686 .size = rb->mr->size, 1687 }; 1688 1689 return ram_discard_manager_replay_populated(rdm, §ion, 1690 uffd_protect_section, 1691 (void *)(uintptr_t)uffd_fd); 1692 } 1693 return uffd_change_protection(uffd_fd, rb->host, 1694 rb->used_length, true, false); 1695 } 1696 1697 /* 1698 * ram_write_tracking_start: start UFFD-WP memory tracking 1699 * 1700 * Returns 0 for success or negative value in case of error 1701 */ 1702 int ram_write_tracking_start(void) 1703 { 1704 int uffd_fd; 1705 RAMState *rs = ram_state; 1706 RAMBlock *block; 1707 1708 /* Open UFFD file descriptor */ 1709 uffd_fd = uffd_create_fd(UFFD_FEATURE_PAGEFAULT_FLAG_WP, true); 1710 if (uffd_fd < 0) { 1711 return uffd_fd; 1712 } 1713 rs->uffdio_fd = uffd_fd; 1714 1715 RCU_READ_LOCK_GUARD(); 1716 1717 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 1718 /* Nothing to do with read-only and MMIO-writable regions */ 1719 if (block->mr->readonly || block->mr->rom_device) { 1720 continue; 1721 } 1722 1723 /* Register block memory with UFFD to track writes */ 1724 if (uffd_register_memory(rs->uffdio_fd, block->host, 1725 block->max_length, UFFDIO_REGISTER_MODE_WP, NULL)) { 1726 goto fail; 1727 } 1728 block->flags |= RAM_UF_WRITEPROTECT; 1729 memory_region_ref(block->mr); 1730 1731 /* Apply UFFD write protection to the block memory range */ 1732 if (ram_block_uffd_protect(block, uffd_fd)) { 1733 goto fail; 1734 } 1735 1736 trace_ram_write_tracking_ramblock_start(block->idstr, block->page_size, 1737 block->host, block->max_length); 1738 } 1739 1740 return 0; 1741 1742 fail: 1743 error_report("ram_write_tracking_start() failed: restoring initial memory state"); 1744 1745 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 1746 if ((block->flags & RAM_UF_WRITEPROTECT) == 0) { 1747 continue; 1748 } 1749 uffd_unregister_memory(rs->uffdio_fd, block->host, block->max_length); 1750 /* Cleanup flags and remove reference */ 1751 block->flags &= ~RAM_UF_WRITEPROTECT; 1752 memory_region_unref(block->mr); 1753 } 1754 1755 uffd_close_fd(uffd_fd); 1756 rs->uffdio_fd = -1; 1757 return -1; 1758 } 1759 1760 /** 1761 * ram_write_tracking_stop: stop UFFD-WP memory tracking and remove protection 1762 */ 1763 void ram_write_tracking_stop(void) 1764 { 1765 RAMState *rs = ram_state; 1766 RAMBlock *block; 1767 1768 RCU_READ_LOCK_GUARD(); 1769 1770 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 1771 if ((block->flags & RAM_UF_WRITEPROTECT) == 0) { 1772 continue; 1773 } 1774 uffd_unregister_memory(rs->uffdio_fd, block->host, block->max_length); 1775 1776 trace_ram_write_tracking_ramblock_stop(block->idstr, block->page_size, 1777 block->host, block->max_length); 1778 1779 /* Cleanup flags and remove reference */ 1780 block->flags &= ~RAM_UF_WRITEPROTECT; 1781 memory_region_unref(block->mr); 1782 } 1783 1784 /* Finally close UFFD file descriptor */ 1785 uffd_close_fd(rs->uffdio_fd); 1786 rs->uffdio_fd = -1; 1787 } 1788 1789 #else 1790 /* No target OS support, stubs just fail or ignore */ 1791 1792 static RAMBlock *poll_fault_page(RAMState *rs, ram_addr_t *offset) 1793 { 1794 (void) rs; 1795 (void) offset; 1796 1797 return NULL; 1798 } 1799 1800 static int ram_save_release_protection(RAMState *rs, PageSearchStatus *pss, 1801 unsigned long start_page) 1802 { 1803 (void) rs; 1804 (void) pss; 1805 (void) start_page; 1806 1807 return 0; 1808 } 1809 1810 bool ram_write_tracking_available(void) 1811 { 1812 return false; 1813 } 1814 1815 bool ram_write_tracking_compatible(void) 1816 { 1817 assert(0); 1818 return false; 1819 } 1820 1821 int ram_write_tracking_start(void) 1822 { 1823 assert(0); 1824 return -1; 1825 } 1826 1827 void ram_write_tracking_stop(void) 1828 { 1829 assert(0); 1830 } 1831 #endif /* defined(__linux__) */ 1832 1833 /** 1834 * get_queued_page: unqueue a page from the postcopy requests 1835 * 1836 * Skips pages that are already sent (!dirty) 1837 * 1838 * Returns true if a queued page is found 1839 * 1840 * @rs: current RAM state 1841 * @pss: data about the state of the current dirty page scan 1842 */ 1843 static bool get_queued_page(RAMState *rs, PageSearchStatus *pss) 1844 { 1845 RAMBlock *block; 1846 ram_addr_t offset; 1847 bool dirty; 1848 1849 do { 1850 block = unqueue_page(rs, &offset); 1851 /* 1852 * We're sending this page, and since it's postcopy nothing else 1853 * will dirty it, and we must make sure it doesn't get sent again 1854 * even if this queue request was received after the background 1855 * search already sent it. 1856 */ 1857 if (block) { 1858 unsigned long page; 1859 1860 page = offset >> TARGET_PAGE_BITS; 1861 dirty = test_bit(page, block->bmap); 1862 if (!dirty) { 1863 trace_get_queued_page_not_dirty(block->idstr, (uint64_t)offset, 1864 page); 1865 } else { 1866 trace_get_queued_page(block->idstr, (uint64_t)offset, page); 1867 } 1868 } 1869 1870 } while (block && !dirty); 1871 1872 if (!block) { 1873 /* 1874 * Poll write faults too if background snapshot is enabled; that's 1875 * when we have vcpus got blocked by the write protected pages. 1876 */ 1877 block = poll_fault_page(rs, &offset); 1878 } 1879 1880 if (block) { 1881 /* 1882 * We want the background search to continue from the queued page 1883 * since the guest is likely to want other pages near to the page 1884 * it just requested. 1885 */ 1886 pss->block = block; 1887 pss->page = offset >> TARGET_PAGE_BITS; 1888 1889 /* 1890 * This unqueued page would break the "one round" check, even is 1891 * really rare. 1892 */ 1893 pss->complete_round = false; 1894 } 1895 1896 return !!block; 1897 } 1898 1899 /** 1900 * migration_page_queue_free: drop any remaining pages in the ram 1901 * request queue 1902 * 1903 * It should be empty at the end anyway, but in error cases there may 1904 * be some left. in case that there is any page left, we drop it. 1905 * 1906 */ 1907 static void migration_page_queue_free(RAMState *rs) 1908 { 1909 struct RAMSrcPageRequest *mspr, *next_mspr; 1910 /* This queue generally should be empty - but in the case of a failed 1911 * migration might have some droppings in. 1912 */ 1913 RCU_READ_LOCK_GUARD(); 1914 QSIMPLEQ_FOREACH_SAFE(mspr, &rs->src_page_requests, next_req, next_mspr) { 1915 memory_region_unref(mspr->rb->mr); 1916 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req); 1917 g_free(mspr); 1918 } 1919 } 1920 1921 /** 1922 * ram_save_queue_pages: queue the page for transmission 1923 * 1924 * A request from postcopy destination for example. 1925 * 1926 * Returns zero on success or negative on error 1927 * 1928 * @rbname: Name of the RAMBLock of the request. NULL means the 1929 * same that last one. 1930 * @start: starting address from the start of the RAMBlock 1931 * @len: length (in bytes) to send 1932 */ 1933 int ram_save_queue_pages(const char *rbname, ram_addr_t start, ram_addr_t len, 1934 Error **errp) 1935 { 1936 RAMBlock *ramblock; 1937 RAMState *rs = ram_state; 1938 1939 stat64_add(&mig_stats.postcopy_requests, 1); 1940 RCU_READ_LOCK_GUARD(); 1941 1942 if (!rbname) { 1943 /* Reuse last RAMBlock */ 1944 ramblock = rs->last_req_rb; 1945 1946 if (!ramblock) { 1947 /* 1948 * Shouldn't happen, we can't reuse the last RAMBlock if 1949 * it's the 1st request. 1950 */ 1951 error_setg(errp, "MIG_RP_MSG_REQ_PAGES has no previous block"); 1952 return -1; 1953 } 1954 } else { 1955 ramblock = qemu_ram_block_by_name(rbname); 1956 1957 if (!ramblock) { 1958 /* We shouldn't be asked for a non-existent RAMBlock */ 1959 error_setg(errp, "MIG_RP_MSG_REQ_PAGES has no block '%s'", rbname); 1960 return -1; 1961 } 1962 rs->last_req_rb = ramblock; 1963 } 1964 trace_ram_save_queue_pages(ramblock->idstr, start, len); 1965 if (!offset_in_ramblock(ramblock, start + len - 1)) { 1966 error_setg(errp, "MIG_RP_MSG_REQ_PAGES request overrun, " 1967 "start=" RAM_ADDR_FMT " len=" 1968 RAM_ADDR_FMT " blocklen=" RAM_ADDR_FMT, 1969 start, len, ramblock->used_length); 1970 return -1; 1971 } 1972 1973 /* 1974 * When with postcopy preempt, we send back the page directly in the 1975 * rp-return thread. 1976 */ 1977 if (postcopy_preempt_active()) { 1978 ram_addr_t page_start = start >> TARGET_PAGE_BITS; 1979 size_t page_size = qemu_ram_pagesize(ramblock); 1980 PageSearchStatus *pss = &ram_state->pss[RAM_CHANNEL_POSTCOPY]; 1981 int ret = 0; 1982 1983 qemu_mutex_lock(&rs->bitmap_mutex); 1984 1985 pss_init(pss, ramblock, page_start); 1986 /* 1987 * Always use the preempt channel, and make sure it's there. It's 1988 * safe to access without lock, because when rp-thread is running 1989 * we should be the only one who operates on the qemufile 1990 */ 1991 pss->pss_channel = migrate_get_current()->postcopy_qemufile_src; 1992 assert(pss->pss_channel); 1993 1994 /* 1995 * It must be either one or multiple of host page size. Just 1996 * assert; if something wrong we're mostly split brain anyway. 1997 */ 1998 assert(len % page_size == 0); 1999 while (len) { 2000 if (ram_save_host_page_urgent(pss)) { 2001 error_setg(errp, "ram_save_host_page_urgent() failed: " 2002 "ramblock=%s, start_addr=0x"RAM_ADDR_FMT, 2003 ramblock->idstr, start); 2004 ret = -1; 2005 break; 2006 } 2007 /* 2008 * NOTE: after ram_save_host_page_urgent() succeeded, pss->page 2009 * will automatically be moved and point to the next host page 2010 * we're going to send, so no need to update here. 2011 * 2012 * Normally QEMU never sends >1 host page in requests, so 2013 * logically we don't even need that as the loop should only 2014 * run once, but just to be consistent. 2015 */ 2016 len -= page_size; 2017 }; 2018 qemu_mutex_unlock(&rs->bitmap_mutex); 2019 2020 return ret; 2021 } 2022 2023 struct RAMSrcPageRequest *new_entry = 2024 g_new0(struct RAMSrcPageRequest, 1); 2025 new_entry->rb = ramblock; 2026 new_entry->offset = start; 2027 new_entry->len = len; 2028 2029 memory_region_ref(ramblock->mr); 2030 qemu_mutex_lock(&rs->src_page_req_mutex); 2031 QSIMPLEQ_INSERT_TAIL(&rs->src_page_requests, new_entry, next_req); 2032 migration_make_urgent_request(); 2033 qemu_mutex_unlock(&rs->src_page_req_mutex); 2034 2035 return 0; 2036 } 2037 2038 /* 2039 * try to compress the page before posting it out, return true if the page 2040 * has been properly handled by compression, otherwise needs other 2041 * paths to handle it 2042 */ 2043 static bool save_compress_page(RAMState *rs, PageSearchStatus *pss, 2044 ram_addr_t offset) 2045 { 2046 if (!migrate_compress()) { 2047 return false; 2048 } 2049 2050 /* 2051 * When starting the process of a new block, the first page of 2052 * the block should be sent out before other pages in the same 2053 * block, and all the pages in last block should have been sent 2054 * out, keeping this order is important, because the 'cont' flag 2055 * is used to avoid resending the block name. 2056 * 2057 * We post the fist page as normal page as compression will take 2058 * much CPU resource. 2059 */ 2060 if (pss->block != pss->last_sent_block) { 2061 compress_flush_data(); 2062 return false; 2063 } 2064 2065 return compress_page_with_multi_thread(pss->block, offset, 2066 compress_send_queued_data); 2067 } 2068 2069 /** 2070 * ram_save_target_page_legacy: save one target page 2071 * 2072 * Returns the number of pages written 2073 * 2074 * @rs: current RAM state 2075 * @pss: data about the page we want to send 2076 */ 2077 static int ram_save_target_page_legacy(RAMState *rs, PageSearchStatus *pss) 2078 { 2079 RAMBlock *block = pss->block; 2080 ram_addr_t offset = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS; 2081 int res; 2082 2083 if (control_save_page(pss, offset, &res)) { 2084 return res; 2085 } 2086 2087 if (save_compress_page(rs, pss, offset)) { 2088 return 1; 2089 } 2090 2091 if (save_zero_page(rs, pss, offset)) { 2092 return 1; 2093 } 2094 2095 /* 2096 * Do not use multifd in postcopy as one whole host page should be 2097 * placed. Meanwhile postcopy requires atomic update of pages, so even 2098 * if host page size == guest page size the dest guest during run may 2099 * still see partially copied pages which is data corruption. 2100 */ 2101 if (migrate_multifd() && !migration_in_postcopy()) { 2102 return ram_save_multifd_page(block, offset); 2103 } 2104 2105 return ram_save_page(rs, pss); 2106 } 2107 2108 /* Should be called before sending a host page */ 2109 static void pss_host_page_prepare(PageSearchStatus *pss) 2110 { 2111 /* How many guest pages are there in one host page? */ 2112 size_t guest_pfns = qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS; 2113 2114 pss->host_page_sending = true; 2115 if (guest_pfns <= 1) { 2116 /* 2117 * This covers both when guest psize == host psize, or when guest 2118 * has larger psize than the host (guest_pfns==0). 2119 * 2120 * For the latter, we always send one whole guest page per 2121 * iteration of the host page (example: an Alpha VM on x86 host 2122 * will have guest psize 8K while host psize 4K). 2123 */ 2124 pss->host_page_start = pss->page; 2125 pss->host_page_end = pss->page + 1; 2126 } else { 2127 /* 2128 * The host page spans over multiple guest pages, we send them 2129 * within the same host page iteration. 2130 */ 2131 pss->host_page_start = ROUND_DOWN(pss->page, guest_pfns); 2132 pss->host_page_end = ROUND_UP(pss->page + 1, guest_pfns); 2133 } 2134 } 2135 2136 /* 2137 * Whether the page pointed by PSS is within the host page being sent. 2138 * Must be called after a previous pss_host_page_prepare(). 2139 */ 2140 static bool pss_within_range(PageSearchStatus *pss) 2141 { 2142 ram_addr_t ram_addr; 2143 2144 assert(pss->host_page_sending); 2145 2146 /* Over host-page boundary? */ 2147 if (pss->page >= pss->host_page_end) { 2148 return false; 2149 } 2150 2151 ram_addr = ((ram_addr_t)pss->page) << TARGET_PAGE_BITS; 2152 2153 return offset_in_ramblock(pss->block, ram_addr); 2154 } 2155 2156 static void pss_host_page_finish(PageSearchStatus *pss) 2157 { 2158 pss->host_page_sending = false; 2159 /* This is not needed, but just to reset it */ 2160 pss->host_page_start = pss->host_page_end = 0; 2161 } 2162 2163 /* 2164 * Send an urgent host page specified by `pss'. Need to be called with 2165 * bitmap_mutex held. 2166 * 2167 * Returns 0 if save host page succeeded, false otherwise. 2168 */ 2169 static int ram_save_host_page_urgent(PageSearchStatus *pss) 2170 { 2171 bool page_dirty, sent = false; 2172 RAMState *rs = ram_state; 2173 int ret = 0; 2174 2175 trace_postcopy_preempt_send_host_page(pss->block->idstr, pss->page); 2176 pss_host_page_prepare(pss); 2177 2178 /* 2179 * If precopy is sending the same page, let it be done in precopy, or 2180 * we could send the same page in two channels and none of them will 2181 * receive the whole page. 2182 */ 2183 if (pss_overlap(pss, &ram_state->pss[RAM_CHANNEL_PRECOPY])) { 2184 trace_postcopy_preempt_hit(pss->block->idstr, 2185 pss->page << TARGET_PAGE_BITS); 2186 return 0; 2187 } 2188 2189 do { 2190 page_dirty = migration_bitmap_clear_dirty(rs, pss->block, pss->page); 2191 2192 if (page_dirty) { 2193 /* Be strict to return code; it must be 1, or what else? */ 2194 if (migration_ops->ram_save_target_page(rs, pss) != 1) { 2195 error_report_once("%s: ram_save_target_page failed", __func__); 2196 ret = -1; 2197 goto out; 2198 } 2199 sent = true; 2200 } 2201 pss_find_next_dirty(pss); 2202 } while (pss_within_range(pss)); 2203 out: 2204 pss_host_page_finish(pss); 2205 /* For urgent requests, flush immediately if sent */ 2206 if (sent) { 2207 qemu_fflush(pss->pss_channel); 2208 } 2209 return ret; 2210 } 2211 2212 /** 2213 * ram_save_host_page: save a whole host page 2214 * 2215 * Starting at *offset send pages up to the end of the current host 2216 * page. It's valid for the initial offset to point into the middle of 2217 * a host page in which case the remainder of the hostpage is sent. 2218 * Only dirty target pages are sent. Note that the host page size may 2219 * be a huge page for this block. 2220 * 2221 * The saving stops at the boundary of the used_length of the block 2222 * if the RAMBlock isn't a multiple of the host page size. 2223 * 2224 * The caller must be with ram_state.bitmap_mutex held to call this 2225 * function. Note that this function can temporarily release the lock, but 2226 * when the function is returned it'll make sure the lock is still held. 2227 * 2228 * Returns the number of pages written or negative on error 2229 * 2230 * @rs: current RAM state 2231 * @pss: data about the page we want to send 2232 */ 2233 static int ram_save_host_page(RAMState *rs, PageSearchStatus *pss) 2234 { 2235 bool page_dirty, preempt_active = postcopy_preempt_active(); 2236 int tmppages, pages = 0; 2237 size_t pagesize_bits = 2238 qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS; 2239 unsigned long start_page = pss->page; 2240 int res; 2241 2242 if (migrate_ram_is_ignored(pss->block)) { 2243 error_report("block %s should not be migrated !", pss->block->idstr); 2244 return 0; 2245 } 2246 2247 /* Update host page boundary information */ 2248 pss_host_page_prepare(pss); 2249 2250 do { 2251 page_dirty = migration_bitmap_clear_dirty(rs, pss->block, pss->page); 2252 2253 /* Check the pages is dirty and if it is send it */ 2254 if (page_dirty) { 2255 /* 2256 * Properly yield the lock only in postcopy preempt mode 2257 * because both migration thread and rp-return thread can 2258 * operate on the bitmaps. 2259 */ 2260 if (preempt_active) { 2261 qemu_mutex_unlock(&rs->bitmap_mutex); 2262 } 2263 tmppages = migration_ops->ram_save_target_page(rs, pss); 2264 if (tmppages >= 0) { 2265 pages += tmppages; 2266 /* 2267 * Allow rate limiting to happen in the middle of huge pages if 2268 * something is sent in the current iteration. 2269 */ 2270 if (pagesize_bits > 1 && tmppages > 0) { 2271 migration_rate_limit(); 2272 } 2273 } 2274 if (preempt_active) { 2275 qemu_mutex_lock(&rs->bitmap_mutex); 2276 } 2277 } else { 2278 tmppages = 0; 2279 } 2280 2281 if (tmppages < 0) { 2282 pss_host_page_finish(pss); 2283 return tmppages; 2284 } 2285 2286 pss_find_next_dirty(pss); 2287 } while (pss_within_range(pss)); 2288 2289 pss_host_page_finish(pss); 2290 2291 res = ram_save_release_protection(rs, pss, start_page); 2292 return (res < 0 ? res : pages); 2293 } 2294 2295 /** 2296 * ram_find_and_save_block: finds a dirty page and sends it to f 2297 * 2298 * Called within an RCU critical section. 2299 * 2300 * Returns the number of pages written where zero means no dirty pages, 2301 * or negative on error 2302 * 2303 * @rs: current RAM state 2304 * 2305 * On systems where host-page-size > target-page-size it will send all the 2306 * pages in a host page that are dirty. 2307 */ 2308 static int ram_find_and_save_block(RAMState *rs) 2309 { 2310 PageSearchStatus *pss = &rs->pss[RAM_CHANNEL_PRECOPY]; 2311 int pages = 0; 2312 2313 /* No dirty page as there is zero RAM */ 2314 if (!rs->ram_bytes_total) { 2315 return pages; 2316 } 2317 2318 /* 2319 * Always keep last_seen_block/last_page valid during this procedure, 2320 * because find_dirty_block() relies on these values (e.g., we compare 2321 * last_seen_block with pss.block to see whether we searched all the 2322 * ramblocks) to detect the completion of migration. Having NULL value 2323 * of last_seen_block can conditionally cause below loop to run forever. 2324 */ 2325 if (!rs->last_seen_block) { 2326 rs->last_seen_block = QLIST_FIRST_RCU(&ram_list.blocks); 2327 rs->last_page = 0; 2328 } 2329 2330 pss_init(pss, rs->last_seen_block, rs->last_page); 2331 2332 while (true){ 2333 if (!get_queued_page(rs, pss)) { 2334 /* priority queue empty, so just search for something dirty */ 2335 int res = find_dirty_block(rs, pss); 2336 if (res != PAGE_DIRTY_FOUND) { 2337 if (res == PAGE_ALL_CLEAN) { 2338 break; 2339 } else if (res == PAGE_TRY_AGAIN) { 2340 continue; 2341 } else if (res < 0) { 2342 pages = res; 2343 break; 2344 } 2345 } 2346 } 2347 pages = ram_save_host_page(rs, pss); 2348 if (pages) { 2349 break; 2350 } 2351 } 2352 2353 rs->last_seen_block = pss->block; 2354 rs->last_page = pss->page; 2355 2356 return pages; 2357 } 2358 2359 static uint64_t ram_bytes_total_with_ignored(void) 2360 { 2361 RAMBlock *block; 2362 uint64_t total = 0; 2363 2364 RCU_READ_LOCK_GUARD(); 2365 2366 RAMBLOCK_FOREACH_MIGRATABLE(block) { 2367 total += block->used_length; 2368 } 2369 return total; 2370 } 2371 2372 uint64_t ram_bytes_total(void) 2373 { 2374 RAMBlock *block; 2375 uint64_t total = 0; 2376 2377 RCU_READ_LOCK_GUARD(); 2378 2379 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 2380 total += block->used_length; 2381 } 2382 return total; 2383 } 2384 2385 static void xbzrle_load_setup(void) 2386 { 2387 XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE); 2388 } 2389 2390 static void xbzrle_load_cleanup(void) 2391 { 2392 g_free(XBZRLE.decoded_buf); 2393 XBZRLE.decoded_buf = NULL; 2394 } 2395 2396 static void ram_state_cleanup(RAMState **rsp) 2397 { 2398 if (*rsp) { 2399 migration_page_queue_free(*rsp); 2400 qemu_mutex_destroy(&(*rsp)->bitmap_mutex); 2401 qemu_mutex_destroy(&(*rsp)->src_page_req_mutex); 2402 g_free(*rsp); 2403 *rsp = NULL; 2404 } 2405 } 2406 2407 static void xbzrle_cleanup(void) 2408 { 2409 XBZRLE_cache_lock(); 2410 if (XBZRLE.cache) { 2411 cache_fini(XBZRLE.cache); 2412 g_free(XBZRLE.encoded_buf); 2413 g_free(XBZRLE.current_buf); 2414 g_free(XBZRLE.zero_target_page); 2415 XBZRLE.cache = NULL; 2416 XBZRLE.encoded_buf = NULL; 2417 XBZRLE.current_buf = NULL; 2418 XBZRLE.zero_target_page = NULL; 2419 } 2420 XBZRLE_cache_unlock(); 2421 } 2422 2423 static void ram_save_cleanup(void *opaque) 2424 { 2425 RAMState **rsp = opaque; 2426 RAMBlock *block; 2427 2428 /* We don't use dirty log with background snapshots */ 2429 if (!migrate_background_snapshot()) { 2430 /* caller have hold BQL or is in a bh, so there is 2431 * no writing race against the migration bitmap 2432 */ 2433 if (global_dirty_tracking & GLOBAL_DIRTY_MIGRATION) { 2434 /* 2435 * do not stop dirty log without starting it, since 2436 * memory_global_dirty_log_stop will assert that 2437 * memory_global_dirty_log_start/stop used in pairs 2438 */ 2439 memory_global_dirty_log_stop(GLOBAL_DIRTY_MIGRATION); 2440 } 2441 } 2442 2443 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 2444 g_free(block->clear_bmap); 2445 block->clear_bmap = NULL; 2446 g_free(block->bmap); 2447 block->bmap = NULL; 2448 } 2449 2450 xbzrle_cleanup(); 2451 compress_threads_save_cleanup(); 2452 ram_state_cleanup(rsp); 2453 g_free(migration_ops); 2454 migration_ops = NULL; 2455 } 2456 2457 static void ram_state_reset(RAMState *rs) 2458 { 2459 int i; 2460 2461 for (i = 0; i < RAM_CHANNEL_MAX; i++) { 2462 rs->pss[i].last_sent_block = NULL; 2463 } 2464 2465 rs->last_seen_block = NULL; 2466 rs->last_page = 0; 2467 rs->last_version = ram_list.version; 2468 rs->xbzrle_started = false; 2469 } 2470 2471 #define MAX_WAIT 50 /* ms, half buffered_file limit */ 2472 2473 /* **** functions for postcopy ***** */ 2474 2475 void ram_postcopy_migrated_memory_release(MigrationState *ms) 2476 { 2477 struct RAMBlock *block; 2478 2479 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 2480 unsigned long *bitmap = block->bmap; 2481 unsigned long range = block->used_length >> TARGET_PAGE_BITS; 2482 unsigned long run_start = find_next_zero_bit(bitmap, range, 0); 2483 2484 while (run_start < range) { 2485 unsigned long run_end = find_next_bit(bitmap, range, run_start + 1); 2486 ram_discard_range(block->idstr, 2487 ((ram_addr_t)run_start) << TARGET_PAGE_BITS, 2488 ((ram_addr_t)(run_end - run_start)) 2489 << TARGET_PAGE_BITS); 2490 run_start = find_next_zero_bit(bitmap, range, run_end + 1); 2491 } 2492 } 2493 } 2494 2495 /** 2496 * postcopy_send_discard_bm_ram: discard a RAMBlock 2497 * 2498 * Callback from postcopy_each_ram_send_discard for each RAMBlock 2499 * 2500 * @ms: current migration state 2501 * @block: RAMBlock to discard 2502 */ 2503 static void postcopy_send_discard_bm_ram(MigrationState *ms, RAMBlock *block) 2504 { 2505 unsigned long end = block->used_length >> TARGET_PAGE_BITS; 2506 unsigned long current; 2507 unsigned long *bitmap = block->bmap; 2508 2509 for (current = 0; current < end; ) { 2510 unsigned long one = find_next_bit(bitmap, end, current); 2511 unsigned long zero, discard_length; 2512 2513 if (one >= end) { 2514 break; 2515 } 2516 2517 zero = find_next_zero_bit(bitmap, end, one + 1); 2518 2519 if (zero >= end) { 2520 discard_length = end - one; 2521 } else { 2522 discard_length = zero - one; 2523 } 2524 postcopy_discard_send_range(ms, one, discard_length); 2525 current = one + discard_length; 2526 } 2527 } 2528 2529 static void postcopy_chunk_hostpages_pass(MigrationState *ms, RAMBlock *block); 2530 2531 /** 2532 * postcopy_each_ram_send_discard: discard all RAMBlocks 2533 * 2534 * Utility for the outgoing postcopy code. 2535 * Calls postcopy_send_discard_bm_ram for each RAMBlock 2536 * passing it bitmap indexes and name. 2537 * (qemu_ram_foreach_block ends up passing unscaled lengths 2538 * which would mean postcopy code would have to deal with target page) 2539 * 2540 * @ms: current migration state 2541 */ 2542 static void postcopy_each_ram_send_discard(MigrationState *ms) 2543 { 2544 struct RAMBlock *block; 2545 2546 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 2547 postcopy_discard_send_init(ms, block->idstr); 2548 2549 /* 2550 * Deal with TPS != HPS and huge pages. It discard any partially sent 2551 * host-page size chunks, mark any partially dirty host-page size 2552 * chunks as all dirty. In this case the host-page is the host-page 2553 * for the particular RAMBlock, i.e. it might be a huge page. 2554 */ 2555 postcopy_chunk_hostpages_pass(ms, block); 2556 2557 /* 2558 * Postcopy sends chunks of bitmap over the wire, but it 2559 * just needs indexes at this point, avoids it having 2560 * target page specific code. 2561 */ 2562 postcopy_send_discard_bm_ram(ms, block); 2563 postcopy_discard_send_finish(ms); 2564 } 2565 } 2566 2567 /** 2568 * postcopy_chunk_hostpages_pass: canonicalize bitmap in hostpages 2569 * 2570 * Helper for postcopy_chunk_hostpages; it's called twice to 2571 * canonicalize the two bitmaps, that are similar, but one is 2572 * inverted. 2573 * 2574 * Postcopy requires that all target pages in a hostpage are dirty or 2575 * clean, not a mix. This function canonicalizes the bitmaps. 2576 * 2577 * @ms: current migration state 2578 * @block: block that contains the page we want to canonicalize 2579 */ 2580 static void postcopy_chunk_hostpages_pass(MigrationState *ms, RAMBlock *block) 2581 { 2582 RAMState *rs = ram_state; 2583 unsigned long *bitmap = block->bmap; 2584 unsigned int host_ratio = block->page_size / TARGET_PAGE_SIZE; 2585 unsigned long pages = block->used_length >> TARGET_PAGE_BITS; 2586 unsigned long run_start; 2587 2588 if (block->page_size == TARGET_PAGE_SIZE) { 2589 /* Easy case - TPS==HPS for a non-huge page RAMBlock */ 2590 return; 2591 } 2592 2593 /* Find a dirty page */ 2594 run_start = find_next_bit(bitmap, pages, 0); 2595 2596 while (run_start < pages) { 2597 2598 /* 2599 * If the start of this run of pages is in the middle of a host 2600 * page, then we need to fixup this host page. 2601 */ 2602 if (QEMU_IS_ALIGNED(run_start, host_ratio)) { 2603 /* Find the end of this run */ 2604 run_start = find_next_zero_bit(bitmap, pages, run_start + 1); 2605 /* 2606 * If the end isn't at the start of a host page, then the 2607 * run doesn't finish at the end of a host page 2608 * and we need to discard. 2609 */ 2610 } 2611 2612 if (!QEMU_IS_ALIGNED(run_start, host_ratio)) { 2613 unsigned long page; 2614 unsigned long fixup_start_addr = QEMU_ALIGN_DOWN(run_start, 2615 host_ratio); 2616 run_start = QEMU_ALIGN_UP(run_start, host_ratio); 2617 2618 /* Clean up the bitmap */ 2619 for (page = fixup_start_addr; 2620 page < fixup_start_addr + host_ratio; page++) { 2621 /* 2622 * Remark them as dirty, updating the count for any pages 2623 * that weren't previously dirty. 2624 */ 2625 rs->migration_dirty_pages += !test_and_set_bit(page, bitmap); 2626 } 2627 } 2628 2629 /* Find the next dirty page for the next iteration */ 2630 run_start = find_next_bit(bitmap, pages, run_start); 2631 } 2632 } 2633 2634 /** 2635 * ram_postcopy_send_discard_bitmap: transmit the discard bitmap 2636 * 2637 * Transmit the set of pages to be discarded after precopy to the target 2638 * these are pages that: 2639 * a) Have been previously transmitted but are now dirty again 2640 * b) Pages that have never been transmitted, this ensures that 2641 * any pages on the destination that have been mapped by background 2642 * tasks get discarded (transparent huge pages is the specific concern) 2643 * Hopefully this is pretty sparse 2644 * 2645 * @ms: current migration state 2646 */ 2647 void ram_postcopy_send_discard_bitmap(MigrationState *ms) 2648 { 2649 RAMState *rs = ram_state; 2650 2651 RCU_READ_LOCK_GUARD(); 2652 2653 /* This should be our last sync, the src is now paused */ 2654 migration_bitmap_sync(rs, false); 2655 2656 /* Easiest way to make sure we don't resume in the middle of a host-page */ 2657 rs->pss[RAM_CHANNEL_PRECOPY].last_sent_block = NULL; 2658 rs->last_seen_block = NULL; 2659 rs->last_page = 0; 2660 2661 postcopy_each_ram_send_discard(ms); 2662 2663 trace_ram_postcopy_send_discard_bitmap(); 2664 } 2665 2666 /** 2667 * ram_discard_range: discard dirtied pages at the beginning of postcopy 2668 * 2669 * Returns zero on success 2670 * 2671 * @rbname: name of the RAMBlock of the request. NULL means the 2672 * same that last one. 2673 * @start: RAMBlock starting page 2674 * @length: RAMBlock size 2675 */ 2676 int ram_discard_range(const char *rbname, uint64_t start, size_t length) 2677 { 2678 trace_ram_discard_range(rbname, start, length); 2679 2680 RCU_READ_LOCK_GUARD(); 2681 RAMBlock *rb = qemu_ram_block_by_name(rbname); 2682 2683 if (!rb) { 2684 error_report("ram_discard_range: Failed to find block '%s'", rbname); 2685 return -1; 2686 } 2687 2688 /* 2689 * On source VM, we don't need to update the received bitmap since 2690 * we don't even have one. 2691 */ 2692 if (rb->receivedmap) { 2693 bitmap_clear(rb->receivedmap, start >> qemu_target_page_bits(), 2694 length >> qemu_target_page_bits()); 2695 } 2696 2697 return ram_block_discard_range(rb, start, length); 2698 } 2699 2700 /* 2701 * For every allocation, we will try not to crash the VM if the 2702 * allocation failed. 2703 */ 2704 static int xbzrle_init(void) 2705 { 2706 Error *local_err = NULL; 2707 2708 if (!migrate_xbzrle()) { 2709 return 0; 2710 } 2711 2712 XBZRLE_cache_lock(); 2713 2714 XBZRLE.zero_target_page = g_try_malloc0(TARGET_PAGE_SIZE); 2715 if (!XBZRLE.zero_target_page) { 2716 error_report("%s: Error allocating zero page", __func__); 2717 goto err_out; 2718 } 2719 2720 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size(), 2721 TARGET_PAGE_SIZE, &local_err); 2722 if (!XBZRLE.cache) { 2723 error_report_err(local_err); 2724 goto free_zero_page; 2725 } 2726 2727 XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE); 2728 if (!XBZRLE.encoded_buf) { 2729 error_report("%s: Error allocating encoded_buf", __func__); 2730 goto free_cache; 2731 } 2732 2733 XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE); 2734 if (!XBZRLE.current_buf) { 2735 error_report("%s: Error allocating current_buf", __func__); 2736 goto free_encoded_buf; 2737 } 2738 2739 /* We are all good */ 2740 XBZRLE_cache_unlock(); 2741 return 0; 2742 2743 free_encoded_buf: 2744 g_free(XBZRLE.encoded_buf); 2745 XBZRLE.encoded_buf = NULL; 2746 free_cache: 2747 cache_fini(XBZRLE.cache); 2748 XBZRLE.cache = NULL; 2749 free_zero_page: 2750 g_free(XBZRLE.zero_target_page); 2751 XBZRLE.zero_target_page = NULL; 2752 err_out: 2753 XBZRLE_cache_unlock(); 2754 return -ENOMEM; 2755 } 2756 2757 static int ram_state_init(RAMState **rsp) 2758 { 2759 *rsp = g_try_new0(RAMState, 1); 2760 2761 if (!*rsp) { 2762 error_report("%s: Init ramstate fail", __func__); 2763 return -1; 2764 } 2765 2766 qemu_mutex_init(&(*rsp)->bitmap_mutex); 2767 qemu_mutex_init(&(*rsp)->src_page_req_mutex); 2768 QSIMPLEQ_INIT(&(*rsp)->src_page_requests); 2769 (*rsp)->ram_bytes_total = ram_bytes_total(); 2770 2771 /* 2772 * Count the total number of pages used by ram blocks not including any 2773 * gaps due to alignment or unplugs. 2774 * This must match with the initial values of dirty bitmap. 2775 */ 2776 (*rsp)->migration_dirty_pages = (*rsp)->ram_bytes_total >> TARGET_PAGE_BITS; 2777 ram_state_reset(*rsp); 2778 2779 return 0; 2780 } 2781 2782 static void ram_list_init_bitmaps(void) 2783 { 2784 MigrationState *ms = migrate_get_current(); 2785 RAMBlock *block; 2786 unsigned long pages; 2787 uint8_t shift; 2788 2789 /* Skip setting bitmap if there is no RAM */ 2790 if (ram_bytes_total()) { 2791 shift = ms->clear_bitmap_shift; 2792 if (shift > CLEAR_BITMAP_SHIFT_MAX) { 2793 error_report("clear_bitmap_shift (%u) too big, using " 2794 "max value (%u)", shift, CLEAR_BITMAP_SHIFT_MAX); 2795 shift = CLEAR_BITMAP_SHIFT_MAX; 2796 } else if (shift < CLEAR_BITMAP_SHIFT_MIN) { 2797 error_report("clear_bitmap_shift (%u) too small, using " 2798 "min value (%u)", shift, CLEAR_BITMAP_SHIFT_MIN); 2799 shift = CLEAR_BITMAP_SHIFT_MIN; 2800 } 2801 2802 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 2803 pages = block->max_length >> TARGET_PAGE_BITS; 2804 /* 2805 * The initial dirty bitmap for migration must be set with all 2806 * ones to make sure we'll migrate every guest RAM page to 2807 * destination. 2808 * Here we set RAMBlock.bmap all to 1 because when rebegin a 2809 * new migration after a failed migration, ram_list. 2810 * dirty_memory[DIRTY_MEMORY_MIGRATION] don't include the whole 2811 * guest memory. 2812 */ 2813 block->bmap = bitmap_new(pages); 2814 bitmap_set(block->bmap, 0, pages); 2815 if (migrate_mapped_ram()) { 2816 block->file_bmap = bitmap_new(pages); 2817 } 2818 block->clear_bmap_shift = shift; 2819 block->clear_bmap = bitmap_new(clear_bmap_size(pages, shift)); 2820 } 2821 } 2822 } 2823 2824 static void migration_bitmap_clear_discarded_pages(RAMState *rs) 2825 { 2826 unsigned long pages; 2827 RAMBlock *rb; 2828 2829 RCU_READ_LOCK_GUARD(); 2830 2831 RAMBLOCK_FOREACH_NOT_IGNORED(rb) { 2832 pages = ramblock_dirty_bitmap_clear_discarded_pages(rb); 2833 rs->migration_dirty_pages -= pages; 2834 } 2835 } 2836 2837 static void ram_init_bitmaps(RAMState *rs) 2838 { 2839 qemu_mutex_lock_ramlist(); 2840 2841 WITH_RCU_READ_LOCK_GUARD() { 2842 ram_list_init_bitmaps(); 2843 /* We don't use dirty log with background snapshots */ 2844 if (!migrate_background_snapshot()) { 2845 memory_global_dirty_log_start(GLOBAL_DIRTY_MIGRATION); 2846 migration_bitmap_sync_precopy(rs, false); 2847 } 2848 } 2849 qemu_mutex_unlock_ramlist(); 2850 2851 /* 2852 * After an eventual first bitmap sync, fixup the initial bitmap 2853 * containing all 1s to exclude any discarded pages from migration. 2854 */ 2855 migration_bitmap_clear_discarded_pages(rs); 2856 } 2857 2858 static int ram_init_all(RAMState **rsp) 2859 { 2860 if (ram_state_init(rsp)) { 2861 return -1; 2862 } 2863 2864 if (xbzrle_init()) { 2865 ram_state_cleanup(rsp); 2866 return -1; 2867 } 2868 2869 ram_init_bitmaps(*rsp); 2870 2871 return 0; 2872 } 2873 2874 static void ram_state_resume_prepare(RAMState *rs, QEMUFile *out) 2875 { 2876 RAMBlock *block; 2877 uint64_t pages = 0; 2878 2879 /* 2880 * Postcopy is not using xbzrle/compression, so no need for that. 2881 * Also, since source are already halted, we don't need to care 2882 * about dirty page logging as well. 2883 */ 2884 2885 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 2886 pages += bitmap_count_one(block->bmap, 2887 block->used_length >> TARGET_PAGE_BITS); 2888 } 2889 2890 /* This may not be aligned with current bitmaps. Recalculate. */ 2891 rs->migration_dirty_pages = pages; 2892 2893 ram_state_reset(rs); 2894 2895 /* Update RAMState cache of output QEMUFile */ 2896 rs->pss[RAM_CHANNEL_PRECOPY].pss_channel = out; 2897 2898 trace_ram_state_resume_prepare(pages); 2899 } 2900 2901 /* 2902 * This function clears bits of the free pages reported by the caller from the 2903 * migration dirty bitmap. @addr is the host address corresponding to the 2904 * start of the continuous guest free pages, and @len is the total bytes of 2905 * those pages. 2906 */ 2907 void qemu_guest_free_page_hint(void *addr, size_t len) 2908 { 2909 RAMBlock *block; 2910 ram_addr_t offset; 2911 size_t used_len, start, npages; 2912 MigrationState *s = migrate_get_current(); 2913 2914 /* This function is currently expected to be used during live migration */ 2915 if (!migration_is_setup_or_active(s->state)) { 2916 return; 2917 } 2918 2919 for (; len > 0; len -= used_len, addr += used_len) { 2920 block = qemu_ram_block_from_host(addr, false, &offset); 2921 if (unlikely(!block || offset >= block->used_length)) { 2922 /* 2923 * The implementation might not support RAMBlock resize during 2924 * live migration, but it could happen in theory with future 2925 * updates. So we add a check here to capture that case. 2926 */ 2927 error_report_once("%s unexpected error", __func__); 2928 return; 2929 } 2930 2931 if (len <= block->used_length - offset) { 2932 used_len = len; 2933 } else { 2934 used_len = block->used_length - offset; 2935 } 2936 2937 start = offset >> TARGET_PAGE_BITS; 2938 npages = used_len >> TARGET_PAGE_BITS; 2939 2940 qemu_mutex_lock(&ram_state->bitmap_mutex); 2941 /* 2942 * The skipped free pages are equavalent to be sent from clear_bmap's 2943 * perspective, so clear the bits from the memory region bitmap which 2944 * are initially set. Otherwise those skipped pages will be sent in 2945 * the next round after syncing from the memory region bitmap. 2946 */ 2947 migration_clear_memory_region_dirty_bitmap_range(block, start, npages); 2948 ram_state->migration_dirty_pages -= 2949 bitmap_count_one_with_offset(block->bmap, start, npages); 2950 bitmap_clear(block->bmap, start, npages); 2951 qemu_mutex_unlock(&ram_state->bitmap_mutex); 2952 } 2953 } 2954 2955 #define MAPPED_RAM_HDR_VERSION 1 2956 struct MappedRamHeader { 2957 uint32_t version; 2958 /* 2959 * The target's page size, so we know how many pages are in the 2960 * bitmap. 2961 */ 2962 uint64_t page_size; 2963 /* 2964 * The offset in the migration file where the pages bitmap is 2965 * stored. 2966 */ 2967 uint64_t bitmap_offset; 2968 /* 2969 * The offset in the migration file where the actual pages (data) 2970 * are stored. 2971 */ 2972 uint64_t pages_offset; 2973 } QEMU_PACKED; 2974 typedef struct MappedRamHeader MappedRamHeader; 2975 2976 static void mapped_ram_setup_ramblock(QEMUFile *file, RAMBlock *block) 2977 { 2978 g_autofree MappedRamHeader *header = NULL; 2979 size_t header_size, bitmap_size; 2980 long num_pages; 2981 2982 header = g_new0(MappedRamHeader, 1); 2983 header_size = sizeof(MappedRamHeader); 2984 2985 num_pages = block->used_length >> TARGET_PAGE_BITS; 2986 bitmap_size = BITS_TO_LONGS(num_pages) * sizeof(unsigned long); 2987 2988 /* 2989 * Save the file offsets of where the bitmap and the pages should 2990 * go as they are written at the end of migration and during the 2991 * iterative phase, respectively. 2992 */ 2993 block->bitmap_offset = qemu_get_offset(file) + header_size; 2994 block->pages_offset = ROUND_UP(block->bitmap_offset + 2995 bitmap_size, 2996 MAPPED_RAM_FILE_OFFSET_ALIGNMENT); 2997 2998 header->version = cpu_to_be32(MAPPED_RAM_HDR_VERSION); 2999 header->page_size = cpu_to_be64(TARGET_PAGE_SIZE); 3000 header->bitmap_offset = cpu_to_be64(block->bitmap_offset); 3001 header->pages_offset = cpu_to_be64(block->pages_offset); 3002 3003 qemu_put_buffer(file, (uint8_t *) header, header_size); 3004 3005 /* prepare offset for next ramblock */ 3006 qemu_set_offset(file, block->pages_offset + block->used_length, SEEK_SET); 3007 } 3008 3009 static bool mapped_ram_read_header(QEMUFile *file, MappedRamHeader *header, 3010 Error **errp) 3011 { 3012 size_t ret, header_size = sizeof(MappedRamHeader); 3013 3014 ret = qemu_get_buffer(file, (uint8_t *)header, header_size); 3015 if (ret != header_size) { 3016 error_setg(errp, "Could not read whole mapped-ram migration header " 3017 "(expected %zd, got %zd bytes)", header_size, ret); 3018 return false; 3019 } 3020 3021 /* migration stream is big-endian */ 3022 header->version = be32_to_cpu(header->version); 3023 3024 if (header->version > MAPPED_RAM_HDR_VERSION) { 3025 error_setg(errp, "Migration mapped-ram capability version not " 3026 "supported (expected <= %d, got %d)", MAPPED_RAM_HDR_VERSION, 3027 header->version); 3028 return false; 3029 } 3030 3031 header->page_size = be64_to_cpu(header->page_size); 3032 header->bitmap_offset = be64_to_cpu(header->bitmap_offset); 3033 header->pages_offset = be64_to_cpu(header->pages_offset); 3034 3035 return true; 3036 } 3037 3038 /* 3039 * Each of ram_save_setup, ram_save_iterate and ram_save_complete has 3040 * long-running RCU critical section. When rcu-reclaims in the code 3041 * start to become numerous it will be necessary to reduce the 3042 * granularity of these critical sections. 3043 */ 3044 3045 /** 3046 * ram_save_setup: Setup RAM for migration 3047 * 3048 * Returns zero to indicate success and negative for error 3049 * 3050 * @f: QEMUFile where to send the data 3051 * @opaque: RAMState pointer 3052 */ 3053 static int ram_save_setup(QEMUFile *f, void *opaque) 3054 { 3055 RAMState **rsp = opaque; 3056 RAMBlock *block; 3057 int ret, max_hg_page_size; 3058 3059 if (compress_threads_save_setup()) { 3060 return -1; 3061 } 3062 3063 /* migration has already setup the bitmap, reuse it. */ 3064 if (!migration_in_colo_state()) { 3065 if (ram_init_all(rsp) != 0) { 3066 compress_threads_save_cleanup(); 3067 return -1; 3068 } 3069 } 3070 (*rsp)->pss[RAM_CHANNEL_PRECOPY].pss_channel = f; 3071 3072 /* 3073 * ??? Mirrors the previous value of qemu_host_page_size, 3074 * but is this really what was intended for the migration? 3075 */ 3076 max_hg_page_size = MAX(qemu_real_host_page_size(), TARGET_PAGE_SIZE); 3077 3078 WITH_RCU_READ_LOCK_GUARD() { 3079 qemu_put_be64(f, ram_bytes_total_with_ignored() 3080 | RAM_SAVE_FLAG_MEM_SIZE); 3081 3082 RAMBLOCK_FOREACH_MIGRATABLE(block) { 3083 qemu_put_byte(f, strlen(block->idstr)); 3084 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr)); 3085 qemu_put_be64(f, block->used_length); 3086 if (migrate_postcopy_ram() && 3087 block->page_size != max_hg_page_size) { 3088 qemu_put_be64(f, block->page_size); 3089 } 3090 if (migrate_ignore_shared()) { 3091 qemu_put_be64(f, block->mr->addr); 3092 } 3093 3094 if (migrate_mapped_ram()) { 3095 mapped_ram_setup_ramblock(f, block); 3096 } 3097 } 3098 } 3099 3100 ret = rdma_registration_start(f, RAM_CONTROL_SETUP); 3101 if (ret < 0) { 3102 qemu_file_set_error(f, ret); 3103 return ret; 3104 } 3105 3106 ret = rdma_registration_stop(f, RAM_CONTROL_SETUP); 3107 if (ret < 0) { 3108 qemu_file_set_error(f, ret); 3109 return ret; 3110 } 3111 3112 migration_ops = g_malloc0(sizeof(MigrationOps)); 3113 migration_ops->ram_save_target_page = ram_save_target_page_legacy; 3114 3115 bql_unlock(); 3116 ret = multifd_send_sync_main(); 3117 bql_lock(); 3118 if (ret < 0) { 3119 return ret; 3120 } 3121 3122 if (migrate_multifd() && !migrate_multifd_flush_after_each_section() 3123 && !migrate_mapped_ram()) { 3124 qemu_put_be64(f, RAM_SAVE_FLAG_MULTIFD_FLUSH); 3125 } 3126 3127 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 3128 return qemu_fflush(f); 3129 } 3130 3131 static void ram_save_file_bmap(QEMUFile *f) 3132 { 3133 RAMBlock *block; 3134 3135 RAMBLOCK_FOREACH_MIGRATABLE(block) { 3136 long num_pages = block->used_length >> TARGET_PAGE_BITS; 3137 long bitmap_size = BITS_TO_LONGS(num_pages) * sizeof(unsigned long); 3138 3139 qemu_put_buffer_at(f, (uint8_t *)block->file_bmap, bitmap_size, 3140 block->bitmap_offset); 3141 ram_transferred_add(bitmap_size); 3142 3143 /* 3144 * Free the bitmap here to catch any synchronization issues 3145 * with multifd channels. No channels should be sending pages 3146 * after we've written the bitmap to file. 3147 */ 3148 g_free(block->file_bmap); 3149 block->file_bmap = NULL; 3150 } 3151 } 3152 3153 void ramblock_set_file_bmap_atomic(RAMBlock *block, ram_addr_t offset) 3154 { 3155 set_bit_atomic(offset >> TARGET_PAGE_BITS, block->file_bmap); 3156 } 3157 3158 /** 3159 * ram_save_iterate: iterative stage for migration 3160 * 3161 * Returns zero to indicate success and negative for error 3162 * 3163 * @f: QEMUFile where to send the data 3164 * @opaque: RAMState pointer 3165 */ 3166 static int ram_save_iterate(QEMUFile *f, void *opaque) 3167 { 3168 RAMState **temp = opaque; 3169 RAMState *rs = *temp; 3170 int ret = 0; 3171 int i; 3172 int64_t t0; 3173 int done = 0; 3174 3175 if (blk_mig_bulk_active()) { 3176 /* Avoid transferring ram during bulk phase of block migration as 3177 * the bulk phase will usually take a long time and transferring 3178 * ram updates during that time is pointless. */ 3179 goto out; 3180 } 3181 3182 /* 3183 * We'll take this lock a little bit long, but it's okay for two reasons. 3184 * Firstly, the only possible other thread to take it is who calls 3185 * qemu_guest_free_page_hint(), which should be rare; secondly, see 3186 * MAX_WAIT (if curious, further see commit 4508bd9ed8053ce) below, which 3187 * guarantees that we'll at least released it in a regular basis. 3188 */ 3189 WITH_QEMU_LOCK_GUARD(&rs->bitmap_mutex) { 3190 WITH_RCU_READ_LOCK_GUARD() { 3191 if (ram_list.version != rs->last_version) { 3192 ram_state_reset(rs); 3193 } 3194 3195 /* Read version before ram_list.blocks */ 3196 smp_rmb(); 3197 3198 ret = rdma_registration_start(f, RAM_CONTROL_ROUND); 3199 if (ret < 0) { 3200 qemu_file_set_error(f, ret); 3201 goto out; 3202 } 3203 3204 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 3205 i = 0; 3206 while ((ret = migration_rate_exceeded(f)) == 0 || 3207 postcopy_has_request(rs)) { 3208 int pages; 3209 3210 if (qemu_file_get_error(f)) { 3211 break; 3212 } 3213 3214 pages = ram_find_and_save_block(rs); 3215 /* no more pages to sent */ 3216 if (pages == 0) { 3217 done = 1; 3218 break; 3219 } 3220 3221 if (pages < 0) { 3222 qemu_file_set_error(f, pages); 3223 break; 3224 } 3225 3226 rs->target_page_count += pages; 3227 3228 /* 3229 * During postcopy, it is necessary to make sure one whole host 3230 * page is sent in one chunk. 3231 */ 3232 if (migrate_postcopy_ram()) { 3233 compress_flush_data(); 3234 } 3235 3236 /* 3237 * we want to check in the 1st loop, just in case it was the 1st 3238 * time and we had to sync the dirty bitmap. 3239 * qemu_clock_get_ns() is a bit expensive, so we only check each 3240 * some iterations 3241 */ 3242 if ((i & 63) == 0) { 3243 uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) / 3244 1000000; 3245 if (t1 > MAX_WAIT) { 3246 trace_ram_save_iterate_big_wait(t1, i); 3247 break; 3248 } 3249 } 3250 i++; 3251 } 3252 } 3253 } 3254 3255 /* 3256 * Must occur before EOS (or any QEMUFile operation) 3257 * because of RDMA protocol. 3258 */ 3259 ret = rdma_registration_stop(f, RAM_CONTROL_ROUND); 3260 if (ret < 0) { 3261 qemu_file_set_error(f, ret); 3262 } 3263 3264 out: 3265 if (ret >= 0 3266 && migration_is_setup_or_active(migrate_get_current()->state)) { 3267 if (migrate_multifd() && migrate_multifd_flush_after_each_section() && 3268 !migrate_mapped_ram()) { 3269 ret = multifd_send_sync_main(); 3270 if (ret < 0) { 3271 return ret; 3272 } 3273 } 3274 3275 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 3276 ram_transferred_add(8); 3277 ret = qemu_fflush(f); 3278 } 3279 if (ret < 0) { 3280 return ret; 3281 } 3282 3283 return done; 3284 } 3285 3286 /** 3287 * ram_save_complete: function called to send the remaining amount of ram 3288 * 3289 * Returns zero to indicate success or negative on error 3290 * 3291 * Called with the BQL 3292 * 3293 * @f: QEMUFile where to send the data 3294 * @opaque: RAMState pointer 3295 */ 3296 static int ram_save_complete(QEMUFile *f, void *opaque) 3297 { 3298 RAMState **temp = opaque; 3299 RAMState *rs = *temp; 3300 int ret = 0; 3301 3302 rs->last_stage = !migration_in_colo_state(); 3303 3304 WITH_RCU_READ_LOCK_GUARD() { 3305 if (!migration_in_postcopy()) { 3306 migration_bitmap_sync_precopy(rs, true); 3307 } 3308 3309 ret = rdma_registration_start(f, RAM_CONTROL_FINISH); 3310 if (ret < 0) { 3311 qemu_file_set_error(f, ret); 3312 return ret; 3313 } 3314 3315 /* try transferring iterative blocks of memory */ 3316 3317 /* flush all remaining blocks regardless of rate limiting */ 3318 qemu_mutex_lock(&rs->bitmap_mutex); 3319 while (true) { 3320 int pages; 3321 3322 pages = ram_find_and_save_block(rs); 3323 /* no more blocks to sent */ 3324 if (pages == 0) { 3325 break; 3326 } 3327 if (pages < 0) { 3328 qemu_mutex_unlock(&rs->bitmap_mutex); 3329 return pages; 3330 } 3331 } 3332 qemu_mutex_unlock(&rs->bitmap_mutex); 3333 3334 compress_flush_data(); 3335 3336 ret = rdma_registration_stop(f, RAM_CONTROL_FINISH); 3337 if (ret < 0) { 3338 qemu_file_set_error(f, ret); 3339 return ret; 3340 } 3341 } 3342 3343 ret = multifd_send_sync_main(); 3344 if (ret < 0) { 3345 return ret; 3346 } 3347 3348 if (migrate_mapped_ram()) { 3349 ram_save_file_bmap(f); 3350 3351 if (qemu_file_get_error(f)) { 3352 Error *local_err = NULL; 3353 int err = qemu_file_get_error_obj(f, &local_err); 3354 3355 error_reportf_err(local_err, "Failed to write bitmap to file: "); 3356 return -err; 3357 } 3358 } 3359 3360 if (migrate_multifd() && !migrate_multifd_flush_after_each_section() && 3361 !migrate_mapped_ram()) { 3362 qemu_put_be64(f, RAM_SAVE_FLAG_MULTIFD_FLUSH); 3363 } 3364 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 3365 return qemu_fflush(f); 3366 } 3367 3368 static void ram_state_pending_estimate(void *opaque, uint64_t *must_precopy, 3369 uint64_t *can_postcopy) 3370 { 3371 RAMState **temp = opaque; 3372 RAMState *rs = *temp; 3373 3374 uint64_t remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE; 3375 3376 if (migrate_postcopy_ram()) { 3377 /* We can do postcopy, and all the data is postcopiable */ 3378 *can_postcopy += remaining_size; 3379 } else { 3380 *must_precopy += remaining_size; 3381 } 3382 } 3383 3384 static void ram_state_pending_exact(void *opaque, uint64_t *must_precopy, 3385 uint64_t *can_postcopy) 3386 { 3387 RAMState **temp = opaque; 3388 RAMState *rs = *temp; 3389 uint64_t remaining_size; 3390 3391 if (!migration_in_postcopy()) { 3392 bql_lock(); 3393 WITH_RCU_READ_LOCK_GUARD() { 3394 migration_bitmap_sync_precopy(rs, false); 3395 } 3396 bql_unlock(); 3397 } 3398 3399 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE; 3400 3401 if (migrate_postcopy_ram()) { 3402 /* We can do postcopy, and all the data is postcopiable */ 3403 *can_postcopy += remaining_size; 3404 } else { 3405 *must_precopy += remaining_size; 3406 } 3407 } 3408 3409 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host) 3410 { 3411 unsigned int xh_len; 3412 int xh_flags; 3413 uint8_t *loaded_data; 3414 3415 /* extract RLE header */ 3416 xh_flags = qemu_get_byte(f); 3417 xh_len = qemu_get_be16(f); 3418 3419 if (xh_flags != ENCODING_FLAG_XBZRLE) { 3420 error_report("Failed to load XBZRLE page - wrong compression!"); 3421 return -1; 3422 } 3423 3424 if (xh_len > TARGET_PAGE_SIZE) { 3425 error_report("Failed to load XBZRLE page - len overflow!"); 3426 return -1; 3427 } 3428 loaded_data = XBZRLE.decoded_buf; 3429 /* load data and decode */ 3430 /* it can change loaded_data to point to an internal buffer */ 3431 qemu_get_buffer_in_place(f, &loaded_data, xh_len); 3432 3433 /* decode RLE */ 3434 if (xbzrle_decode_buffer(loaded_data, xh_len, host, 3435 TARGET_PAGE_SIZE) == -1) { 3436 error_report("Failed to load XBZRLE page - decode error!"); 3437 return -1; 3438 } 3439 3440 return 0; 3441 } 3442 3443 /** 3444 * ram_block_from_stream: read a RAMBlock id from the migration stream 3445 * 3446 * Must be called from within a rcu critical section. 3447 * 3448 * Returns a pointer from within the RCU-protected ram_list. 3449 * 3450 * @mis: the migration incoming state pointer 3451 * @f: QEMUFile where to read the data from 3452 * @flags: Page flags (mostly to see if it's a continuation of previous block) 3453 * @channel: the channel we're using 3454 */ 3455 static inline RAMBlock *ram_block_from_stream(MigrationIncomingState *mis, 3456 QEMUFile *f, int flags, 3457 int channel) 3458 { 3459 RAMBlock *block = mis->last_recv_block[channel]; 3460 char id[256]; 3461 uint8_t len; 3462 3463 if (flags & RAM_SAVE_FLAG_CONTINUE) { 3464 if (!block) { 3465 error_report("Ack, bad migration stream!"); 3466 return NULL; 3467 } 3468 return block; 3469 } 3470 3471 len = qemu_get_byte(f); 3472 qemu_get_buffer(f, (uint8_t *)id, len); 3473 id[len] = 0; 3474 3475 block = qemu_ram_block_by_name(id); 3476 if (!block) { 3477 error_report("Can't find block %s", id); 3478 return NULL; 3479 } 3480 3481 if (migrate_ram_is_ignored(block)) { 3482 error_report("block %s should not be migrated !", id); 3483 return NULL; 3484 } 3485 3486 mis->last_recv_block[channel] = block; 3487 3488 return block; 3489 } 3490 3491 static inline void *host_from_ram_block_offset(RAMBlock *block, 3492 ram_addr_t offset) 3493 { 3494 if (!offset_in_ramblock(block, offset)) { 3495 return NULL; 3496 } 3497 3498 return block->host + offset; 3499 } 3500 3501 static void *host_page_from_ram_block_offset(RAMBlock *block, 3502 ram_addr_t offset) 3503 { 3504 /* Note: Explicitly no check against offset_in_ramblock(). */ 3505 return (void *)QEMU_ALIGN_DOWN((uintptr_t)(block->host + offset), 3506 block->page_size); 3507 } 3508 3509 static ram_addr_t host_page_offset_from_ram_block_offset(RAMBlock *block, 3510 ram_addr_t offset) 3511 { 3512 return ((uintptr_t)block->host + offset) & (block->page_size - 1); 3513 } 3514 3515 void colo_record_bitmap(RAMBlock *block, ram_addr_t *normal, uint32_t pages) 3516 { 3517 qemu_mutex_lock(&ram_state->bitmap_mutex); 3518 for (int i = 0; i < pages; i++) { 3519 ram_addr_t offset = normal[i]; 3520 ram_state->migration_dirty_pages += !test_and_set_bit( 3521 offset >> TARGET_PAGE_BITS, 3522 block->bmap); 3523 } 3524 qemu_mutex_unlock(&ram_state->bitmap_mutex); 3525 } 3526 3527 static inline void *colo_cache_from_block_offset(RAMBlock *block, 3528 ram_addr_t offset, bool record_bitmap) 3529 { 3530 if (!offset_in_ramblock(block, offset)) { 3531 return NULL; 3532 } 3533 if (!block->colo_cache) { 3534 error_report("%s: colo_cache is NULL in block :%s", 3535 __func__, block->idstr); 3536 return NULL; 3537 } 3538 3539 /* 3540 * During colo checkpoint, we need bitmap of these migrated pages. 3541 * It help us to decide which pages in ram cache should be flushed 3542 * into VM's RAM later. 3543 */ 3544 if (record_bitmap) { 3545 colo_record_bitmap(block, &offset, 1); 3546 } 3547 return block->colo_cache + offset; 3548 } 3549 3550 /** 3551 * ram_handle_zero: handle the zero page case 3552 * 3553 * If a page (or a whole RDMA chunk) has been 3554 * determined to be zero, then zap it. 3555 * 3556 * @host: host address for the zero page 3557 * @ch: what the page is filled from. We only support zero 3558 * @size: size of the zero page 3559 */ 3560 void ram_handle_zero(void *host, uint64_t size) 3561 { 3562 if (!buffer_is_zero(host, size)) { 3563 memset(host, 0, size); 3564 } 3565 } 3566 3567 static void colo_init_ram_state(void) 3568 { 3569 ram_state_init(&ram_state); 3570 } 3571 3572 /* 3573 * colo cache: this is for secondary VM, we cache the whole 3574 * memory of the secondary VM, it is need to hold the global lock 3575 * to call this helper. 3576 */ 3577 int colo_init_ram_cache(void) 3578 { 3579 RAMBlock *block; 3580 3581 WITH_RCU_READ_LOCK_GUARD() { 3582 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3583 block->colo_cache = qemu_anon_ram_alloc(block->used_length, 3584 NULL, false, false); 3585 if (!block->colo_cache) { 3586 error_report("%s: Can't alloc memory for COLO cache of block %s," 3587 "size 0x" RAM_ADDR_FMT, __func__, block->idstr, 3588 block->used_length); 3589 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3590 if (block->colo_cache) { 3591 qemu_anon_ram_free(block->colo_cache, block->used_length); 3592 block->colo_cache = NULL; 3593 } 3594 } 3595 return -errno; 3596 } 3597 if (!machine_dump_guest_core(current_machine)) { 3598 qemu_madvise(block->colo_cache, block->used_length, 3599 QEMU_MADV_DONTDUMP); 3600 } 3601 } 3602 } 3603 3604 /* 3605 * Record the dirty pages that sent by PVM, we use this dirty bitmap together 3606 * with to decide which page in cache should be flushed into SVM's RAM. Here 3607 * we use the same name 'ram_bitmap' as for migration. 3608 */ 3609 if (ram_bytes_total()) { 3610 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3611 unsigned long pages = block->max_length >> TARGET_PAGE_BITS; 3612 block->bmap = bitmap_new(pages); 3613 } 3614 } 3615 3616 colo_init_ram_state(); 3617 return 0; 3618 } 3619 3620 /* TODO: duplicated with ram_init_bitmaps */ 3621 void colo_incoming_start_dirty_log(void) 3622 { 3623 RAMBlock *block = NULL; 3624 /* For memory_global_dirty_log_start below. */ 3625 bql_lock(); 3626 qemu_mutex_lock_ramlist(); 3627 3628 memory_global_dirty_log_sync(false); 3629 WITH_RCU_READ_LOCK_GUARD() { 3630 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3631 ramblock_sync_dirty_bitmap(ram_state, block); 3632 /* Discard this dirty bitmap record */ 3633 bitmap_zero(block->bmap, block->max_length >> TARGET_PAGE_BITS); 3634 } 3635 memory_global_dirty_log_start(GLOBAL_DIRTY_MIGRATION); 3636 } 3637 ram_state->migration_dirty_pages = 0; 3638 qemu_mutex_unlock_ramlist(); 3639 bql_unlock(); 3640 } 3641 3642 /* It is need to hold the global lock to call this helper */ 3643 void colo_release_ram_cache(void) 3644 { 3645 RAMBlock *block; 3646 3647 memory_global_dirty_log_stop(GLOBAL_DIRTY_MIGRATION); 3648 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3649 g_free(block->bmap); 3650 block->bmap = NULL; 3651 } 3652 3653 WITH_RCU_READ_LOCK_GUARD() { 3654 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3655 if (block->colo_cache) { 3656 qemu_anon_ram_free(block->colo_cache, block->used_length); 3657 block->colo_cache = NULL; 3658 } 3659 } 3660 } 3661 ram_state_cleanup(&ram_state); 3662 } 3663 3664 /** 3665 * ram_load_setup: Setup RAM for migration incoming side 3666 * 3667 * Returns zero to indicate success and negative for error 3668 * 3669 * @f: QEMUFile where to receive the data 3670 * @opaque: RAMState pointer 3671 */ 3672 static int ram_load_setup(QEMUFile *f, void *opaque) 3673 { 3674 xbzrle_load_setup(); 3675 ramblock_recv_map_init(); 3676 3677 return 0; 3678 } 3679 3680 static int ram_load_cleanup(void *opaque) 3681 { 3682 RAMBlock *rb; 3683 3684 RAMBLOCK_FOREACH_NOT_IGNORED(rb) { 3685 qemu_ram_block_writeback(rb); 3686 } 3687 3688 xbzrle_load_cleanup(); 3689 3690 RAMBLOCK_FOREACH_NOT_IGNORED(rb) { 3691 g_free(rb->receivedmap); 3692 rb->receivedmap = NULL; 3693 } 3694 3695 return 0; 3696 } 3697 3698 /** 3699 * ram_postcopy_incoming_init: allocate postcopy data structures 3700 * 3701 * Returns 0 for success and negative if there was one error 3702 * 3703 * @mis: current migration incoming state 3704 * 3705 * Allocate data structures etc needed by incoming migration with 3706 * postcopy-ram. postcopy-ram's similarly names 3707 * postcopy_ram_incoming_init does the work. 3708 */ 3709 int ram_postcopy_incoming_init(MigrationIncomingState *mis) 3710 { 3711 return postcopy_ram_incoming_init(mis); 3712 } 3713 3714 /** 3715 * ram_load_postcopy: load a page in postcopy case 3716 * 3717 * Returns 0 for success or -errno in case of error 3718 * 3719 * Called in postcopy mode by ram_load(). 3720 * rcu_read_lock is taken prior to this being called. 3721 * 3722 * @f: QEMUFile where to send the data 3723 * @channel: the channel to use for loading 3724 */ 3725 int ram_load_postcopy(QEMUFile *f, int channel) 3726 { 3727 int flags = 0, ret = 0; 3728 bool place_needed = false; 3729 bool matches_target_page_size = false; 3730 MigrationIncomingState *mis = migration_incoming_get_current(); 3731 PostcopyTmpPage *tmp_page = &mis->postcopy_tmp_pages[channel]; 3732 3733 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) { 3734 ram_addr_t addr; 3735 void *page_buffer = NULL; 3736 void *place_source = NULL; 3737 RAMBlock *block = NULL; 3738 uint8_t ch; 3739 int len; 3740 3741 addr = qemu_get_be64(f); 3742 3743 /* 3744 * If qemu file error, we should stop here, and then "addr" 3745 * may be invalid 3746 */ 3747 ret = qemu_file_get_error(f); 3748 if (ret) { 3749 break; 3750 } 3751 3752 flags = addr & ~TARGET_PAGE_MASK; 3753 addr &= TARGET_PAGE_MASK; 3754 3755 trace_ram_load_postcopy_loop(channel, (uint64_t)addr, flags); 3756 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE | 3757 RAM_SAVE_FLAG_COMPRESS_PAGE)) { 3758 block = ram_block_from_stream(mis, f, flags, channel); 3759 if (!block) { 3760 ret = -EINVAL; 3761 break; 3762 } 3763 3764 /* 3765 * Relying on used_length is racy and can result in false positives. 3766 * We might place pages beyond used_length in case RAM was shrunk 3767 * while in postcopy, which is fine - trying to place via 3768 * UFFDIO_COPY/UFFDIO_ZEROPAGE will never segfault. 3769 */ 3770 if (!block->host || addr >= block->postcopy_length) { 3771 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr); 3772 ret = -EINVAL; 3773 break; 3774 } 3775 tmp_page->target_pages++; 3776 matches_target_page_size = block->page_size == TARGET_PAGE_SIZE; 3777 /* 3778 * Postcopy requires that we place whole host pages atomically; 3779 * these may be huge pages for RAMBlocks that are backed by 3780 * hugetlbfs. 3781 * To make it atomic, the data is read into a temporary page 3782 * that's moved into place later. 3783 * The migration protocol uses, possibly smaller, target-pages 3784 * however the source ensures it always sends all the components 3785 * of a host page in one chunk. 3786 */ 3787 page_buffer = tmp_page->tmp_huge_page + 3788 host_page_offset_from_ram_block_offset(block, addr); 3789 /* If all TP are zero then we can optimise the place */ 3790 if (tmp_page->target_pages == 1) { 3791 tmp_page->host_addr = 3792 host_page_from_ram_block_offset(block, addr); 3793 } else if (tmp_page->host_addr != 3794 host_page_from_ram_block_offset(block, addr)) { 3795 /* not the 1st TP within the HP */ 3796 error_report("Non-same host page detected on channel %d: " 3797 "Target host page %p, received host page %p " 3798 "(rb %s offset 0x"RAM_ADDR_FMT" target_pages %d)", 3799 channel, tmp_page->host_addr, 3800 host_page_from_ram_block_offset(block, addr), 3801 block->idstr, addr, tmp_page->target_pages); 3802 ret = -EINVAL; 3803 break; 3804 } 3805 3806 /* 3807 * If it's the last part of a host page then we place the host 3808 * page 3809 */ 3810 if (tmp_page->target_pages == 3811 (block->page_size / TARGET_PAGE_SIZE)) { 3812 place_needed = true; 3813 } 3814 place_source = tmp_page->tmp_huge_page; 3815 } 3816 3817 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) { 3818 case RAM_SAVE_FLAG_ZERO: 3819 ch = qemu_get_byte(f); 3820 if (ch != 0) { 3821 error_report("Found a zero page with value %d", ch); 3822 ret = -EINVAL; 3823 break; 3824 } 3825 /* 3826 * Can skip to set page_buffer when 3827 * this is a zero page and (block->page_size == TARGET_PAGE_SIZE). 3828 */ 3829 if (!matches_target_page_size) { 3830 memset(page_buffer, ch, TARGET_PAGE_SIZE); 3831 } 3832 break; 3833 3834 case RAM_SAVE_FLAG_PAGE: 3835 tmp_page->all_zero = false; 3836 if (!matches_target_page_size) { 3837 /* For huge pages, we always use temporary buffer */ 3838 qemu_get_buffer(f, page_buffer, TARGET_PAGE_SIZE); 3839 } else { 3840 /* 3841 * For small pages that matches target page size, we 3842 * avoid the qemu_file copy. Instead we directly use 3843 * the buffer of QEMUFile to place the page. Note: we 3844 * cannot do any QEMUFile operation before using that 3845 * buffer to make sure the buffer is valid when 3846 * placing the page. 3847 */ 3848 qemu_get_buffer_in_place(f, (uint8_t **)&place_source, 3849 TARGET_PAGE_SIZE); 3850 } 3851 break; 3852 case RAM_SAVE_FLAG_COMPRESS_PAGE: 3853 tmp_page->all_zero = false; 3854 len = qemu_get_be32(f); 3855 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) { 3856 error_report("Invalid compressed data length: %d", len); 3857 ret = -EINVAL; 3858 break; 3859 } 3860 decompress_data_with_multi_threads(f, page_buffer, len); 3861 break; 3862 case RAM_SAVE_FLAG_MULTIFD_FLUSH: 3863 multifd_recv_sync_main(); 3864 break; 3865 case RAM_SAVE_FLAG_EOS: 3866 /* normal exit */ 3867 if (migrate_multifd() && 3868 migrate_multifd_flush_after_each_section()) { 3869 multifd_recv_sync_main(); 3870 } 3871 break; 3872 default: 3873 error_report("Unknown combination of migration flags: 0x%x" 3874 " (postcopy mode)", flags); 3875 ret = -EINVAL; 3876 break; 3877 } 3878 3879 /* Got the whole host page, wait for decompress before placing. */ 3880 if (place_needed) { 3881 ret |= wait_for_decompress_done(); 3882 } 3883 3884 /* Detect for any possible file errors */ 3885 if (!ret && qemu_file_get_error(f)) { 3886 ret = qemu_file_get_error(f); 3887 } 3888 3889 if (!ret && place_needed) { 3890 if (tmp_page->all_zero) { 3891 ret = postcopy_place_page_zero(mis, tmp_page->host_addr, block); 3892 } else { 3893 ret = postcopy_place_page(mis, tmp_page->host_addr, 3894 place_source, block); 3895 } 3896 place_needed = false; 3897 postcopy_temp_page_reset(tmp_page); 3898 } 3899 } 3900 3901 return ret; 3902 } 3903 3904 static bool postcopy_is_running(void) 3905 { 3906 PostcopyState ps = postcopy_state_get(); 3907 return ps >= POSTCOPY_INCOMING_LISTENING && ps < POSTCOPY_INCOMING_END; 3908 } 3909 3910 /* 3911 * Flush content of RAM cache into SVM's memory. 3912 * Only flush the pages that be dirtied by PVM or SVM or both. 3913 */ 3914 void colo_flush_ram_cache(void) 3915 { 3916 RAMBlock *block = NULL; 3917 void *dst_host; 3918 void *src_host; 3919 unsigned long offset = 0; 3920 3921 memory_global_dirty_log_sync(false); 3922 qemu_mutex_lock(&ram_state->bitmap_mutex); 3923 WITH_RCU_READ_LOCK_GUARD() { 3924 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3925 ramblock_sync_dirty_bitmap(ram_state, block); 3926 } 3927 } 3928 3929 trace_colo_flush_ram_cache_begin(ram_state->migration_dirty_pages); 3930 WITH_RCU_READ_LOCK_GUARD() { 3931 block = QLIST_FIRST_RCU(&ram_list.blocks); 3932 3933 while (block) { 3934 unsigned long num = 0; 3935 3936 offset = colo_bitmap_find_dirty(ram_state, block, offset, &num); 3937 if (!offset_in_ramblock(block, 3938 ((ram_addr_t)offset) << TARGET_PAGE_BITS)) { 3939 offset = 0; 3940 num = 0; 3941 block = QLIST_NEXT_RCU(block, next); 3942 } else { 3943 unsigned long i = 0; 3944 3945 for (i = 0; i < num; i++) { 3946 migration_bitmap_clear_dirty(ram_state, block, offset + i); 3947 } 3948 dst_host = block->host 3949 + (((ram_addr_t)offset) << TARGET_PAGE_BITS); 3950 src_host = block->colo_cache 3951 + (((ram_addr_t)offset) << TARGET_PAGE_BITS); 3952 memcpy(dst_host, src_host, TARGET_PAGE_SIZE * num); 3953 offset += num; 3954 } 3955 } 3956 } 3957 qemu_mutex_unlock(&ram_state->bitmap_mutex); 3958 trace_colo_flush_ram_cache_end(); 3959 } 3960 3961 static size_t ram_load_multifd_pages(void *host_addr, size_t size, 3962 uint64_t offset) 3963 { 3964 MultiFDRecvData *data = multifd_get_recv_data(); 3965 3966 data->opaque = host_addr; 3967 data->file_offset = offset; 3968 data->size = size; 3969 3970 if (!multifd_recv()) { 3971 return 0; 3972 } 3973 3974 return size; 3975 } 3976 3977 static bool read_ramblock_mapped_ram(QEMUFile *f, RAMBlock *block, 3978 long num_pages, unsigned long *bitmap, 3979 Error **errp) 3980 { 3981 ERRP_GUARD(); 3982 unsigned long set_bit_idx, clear_bit_idx; 3983 ram_addr_t offset; 3984 void *host; 3985 size_t read, unread, size; 3986 3987 for (set_bit_idx = find_first_bit(bitmap, num_pages); 3988 set_bit_idx < num_pages; 3989 set_bit_idx = find_next_bit(bitmap, num_pages, clear_bit_idx + 1)) { 3990 3991 clear_bit_idx = find_next_zero_bit(bitmap, num_pages, set_bit_idx + 1); 3992 3993 unread = TARGET_PAGE_SIZE * (clear_bit_idx - set_bit_idx); 3994 offset = set_bit_idx << TARGET_PAGE_BITS; 3995 3996 while (unread > 0) { 3997 host = host_from_ram_block_offset(block, offset); 3998 if (!host) { 3999 error_setg(errp, "page outside of ramblock %s range", 4000 block->idstr); 4001 return false; 4002 } 4003 4004 size = MIN(unread, MAPPED_RAM_LOAD_BUF_SIZE); 4005 4006 if (migrate_multifd()) { 4007 read = ram_load_multifd_pages(host, size, 4008 block->pages_offset + offset); 4009 } else { 4010 read = qemu_get_buffer_at(f, host, size, 4011 block->pages_offset + offset); 4012 } 4013 4014 if (!read) { 4015 goto err; 4016 } 4017 offset += read; 4018 unread -= read; 4019 } 4020 } 4021 4022 return true; 4023 4024 err: 4025 qemu_file_get_error_obj(f, errp); 4026 error_prepend(errp, "(%s) failed to read page " RAM_ADDR_FMT 4027 "from file offset %" PRIx64 ": ", block->idstr, offset, 4028 block->pages_offset + offset); 4029 return false; 4030 } 4031 4032 static void parse_ramblock_mapped_ram(QEMUFile *f, RAMBlock *block, 4033 ram_addr_t length, Error **errp) 4034 { 4035 g_autofree unsigned long *bitmap = NULL; 4036 MappedRamHeader header; 4037 size_t bitmap_size; 4038 long num_pages; 4039 4040 if (!mapped_ram_read_header(f, &header, errp)) { 4041 return; 4042 } 4043 4044 block->pages_offset = header.pages_offset; 4045 4046 /* 4047 * Check the alignment of the file region that contains pages. We 4048 * don't enforce MAPPED_RAM_FILE_OFFSET_ALIGNMENT to allow that 4049 * value to change in the future. Do only a sanity check with page 4050 * size alignment. 4051 */ 4052 if (!QEMU_IS_ALIGNED(block->pages_offset, TARGET_PAGE_SIZE)) { 4053 error_setg(errp, 4054 "Error reading ramblock %s pages, region has bad alignment", 4055 block->idstr); 4056 return; 4057 } 4058 4059 num_pages = length / header.page_size; 4060 bitmap_size = BITS_TO_LONGS(num_pages) * sizeof(unsigned long); 4061 4062 bitmap = g_malloc0(bitmap_size); 4063 if (qemu_get_buffer_at(f, (uint8_t *)bitmap, bitmap_size, 4064 header.bitmap_offset) != bitmap_size) { 4065 error_setg(errp, "Error reading dirty bitmap"); 4066 return; 4067 } 4068 4069 if (!read_ramblock_mapped_ram(f, block, num_pages, bitmap, errp)) { 4070 return; 4071 } 4072 4073 /* Skip pages array */ 4074 qemu_set_offset(f, block->pages_offset + length, SEEK_SET); 4075 4076 return; 4077 } 4078 4079 static int parse_ramblock(QEMUFile *f, RAMBlock *block, ram_addr_t length) 4080 { 4081 int ret = 0; 4082 /* ADVISE is earlier, it shows the source has the postcopy capability on */ 4083 bool postcopy_advised = migration_incoming_postcopy_advised(); 4084 int max_hg_page_size; 4085 Error *local_err = NULL; 4086 4087 assert(block); 4088 4089 if (migrate_mapped_ram()) { 4090 parse_ramblock_mapped_ram(f, block, length, &local_err); 4091 if (local_err) { 4092 error_report_err(local_err); 4093 return -EINVAL; 4094 } 4095 return 0; 4096 } 4097 4098 if (!qemu_ram_is_migratable(block)) { 4099 error_report("block %s should not be migrated !", block->idstr); 4100 return -EINVAL; 4101 } 4102 4103 if (length != block->used_length) { 4104 ret = qemu_ram_resize(block, length, &local_err); 4105 if (local_err) { 4106 error_report_err(local_err); 4107 return ret; 4108 } 4109 } 4110 4111 /* 4112 * ??? Mirrors the previous value of qemu_host_page_size, 4113 * but is this really what was intended for the migration? 4114 */ 4115 max_hg_page_size = MAX(qemu_real_host_page_size(), TARGET_PAGE_SIZE); 4116 4117 /* For postcopy we need to check hugepage sizes match */ 4118 if (postcopy_advised && migrate_postcopy_ram() && 4119 block->page_size != max_hg_page_size) { 4120 uint64_t remote_page_size = qemu_get_be64(f); 4121 if (remote_page_size != block->page_size) { 4122 error_report("Mismatched RAM page size %s " 4123 "(local) %zd != %" PRId64, block->idstr, 4124 block->page_size, remote_page_size); 4125 return -EINVAL; 4126 } 4127 } 4128 if (migrate_ignore_shared()) { 4129 hwaddr addr = qemu_get_be64(f); 4130 if (migrate_ram_is_ignored(block) && 4131 block->mr->addr != addr) { 4132 error_report("Mismatched GPAs for block %s " 4133 "%" PRId64 "!= %" PRId64, block->idstr, 4134 (uint64_t)addr, (uint64_t)block->mr->addr); 4135 return -EINVAL; 4136 } 4137 } 4138 ret = rdma_block_notification_handle(f, block->idstr); 4139 if (ret < 0) { 4140 qemu_file_set_error(f, ret); 4141 } 4142 4143 return ret; 4144 } 4145 4146 static int parse_ramblocks(QEMUFile *f, ram_addr_t total_ram_bytes) 4147 { 4148 int ret = 0; 4149 4150 /* Synchronize RAM block list */ 4151 while (!ret && total_ram_bytes) { 4152 RAMBlock *block; 4153 char id[256]; 4154 ram_addr_t length; 4155 int len = qemu_get_byte(f); 4156 4157 qemu_get_buffer(f, (uint8_t *)id, len); 4158 id[len] = 0; 4159 length = qemu_get_be64(f); 4160 4161 block = qemu_ram_block_by_name(id); 4162 if (block) { 4163 ret = parse_ramblock(f, block, length); 4164 } else { 4165 error_report("Unknown ramblock \"%s\", cannot accept " 4166 "migration", id); 4167 ret = -EINVAL; 4168 } 4169 total_ram_bytes -= length; 4170 } 4171 4172 return ret; 4173 } 4174 4175 /** 4176 * ram_load_precopy: load pages in precopy case 4177 * 4178 * Returns 0 for success or -errno in case of error 4179 * 4180 * Called in precopy mode by ram_load(). 4181 * rcu_read_lock is taken prior to this being called. 4182 * 4183 * @f: QEMUFile where to send the data 4184 */ 4185 static int ram_load_precopy(QEMUFile *f) 4186 { 4187 MigrationIncomingState *mis = migration_incoming_get_current(); 4188 int flags = 0, ret = 0, invalid_flags = 0, len = 0, i = 0; 4189 4190 if (!migrate_compress()) { 4191 invalid_flags |= RAM_SAVE_FLAG_COMPRESS_PAGE; 4192 } 4193 4194 if (migrate_mapped_ram()) { 4195 invalid_flags |= (RAM_SAVE_FLAG_HOOK | RAM_SAVE_FLAG_MULTIFD_FLUSH | 4196 RAM_SAVE_FLAG_PAGE | RAM_SAVE_FLAG_XBZRLE | 4197 RAM_SAVE_FLAG_ZERO); 4198 } 4199 4200 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) { 4201 ram_addr_t addr; 4202 void *host = NULL, *host_bak = NULL; 4203 uint8_t ch; 4204 4205 /* 4206 * Yield periodically to let main loop run, but an iteration of 4207 * the main loop is expensive, so do it each some iterations 4208 */ 4209 if ((i & 32767) == 0 && qemu_in_coroutine()) { 4210 aio_co_schedule(qemu_get_current_aio_context(), 4211 qemu_coroutine_self()); 4212 qemu_coroutine_yield(); 4213 } 4214 i++; 4215 4216 addr = qemu_get_be64(f); 4217 flags = addr & ~TARGET_PAGE_MASK; 4218 addr &= TARGET_PAGE_MASK; 4219 4220 if (flags & invalid_flags) { 4221 error_report("Unexpected RAM flags: %d", flags & invalid_flags); 4222 4223 if (flags & invalid_flags & RAM_SAVE_FLAG_COMPRESS_PAGE) { 4224 error_report("Received an unexpected compressed page"); 4225 } 4226 4227 ret = -EINVAL; 4228 break; 4229 } 4230 4231 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE | 4232 RAM_SAVE_FLAG_COMPRESS_PAGE | RAM_SAVE_FLAG_XBZRLE)) { 4233 RAMBlock *block = ram_block_from_stream(mis, f, flags, 4234 RAM_CHANNEL_PRECOPY); 4235 4236 host = host_from_ram_block_offset(block, addr); 4237 /* 4238 * After going into COLO stage, we should not load the page 4239 * into SVM's memory directly, we put them into colo_cache firstly. 4240 * NOTE: We need to keep a copy of SVM's ram in colo_cache. 4241 * Previously, we copied all these memory in preparing stage of COLO 4242 * while we need to stop VM, which is a time-consuming process. 4243 * Here we optimize it by a trick, back-up every page while in 4244 * migration process while COLO is enabled, though it affects the 4245 * speed of the migration, but it obviously reduce the downtime of 4246 * back-up all SVM'S memory in COLO preparing stage. 4247 */ 4248 if (migration_incoming_colo_enabled()) { 4249 if (migration_incoming_in_colo_state()) { 4250 /* In COLO stage, put all pages into cache temporarily */ 4251 host = colo_cache_from_block_offset(block, addr, true); 4252 } else { 4253 /* 4254 * In migration stage but before COLO stage, 4255 * Put all pages into both cache and SVM's memory. 4256 */ 4257 host_bak = colo_cache_from_block_offset(block, addr, false); 4258 } 4259 } 4260 if (!host) { 4261 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr); 4262 ret = -EINVAL; 4263 break; 4264 } 4265 if (!migration_incoming_in_colo_state()) { 4266 ramblock_recv_bitmap_set(block, host); 4267 } 4268 4269 trace_ram_load_loop(block->idstr, (uint64_t)addr, flags, host); 4270 } 4271 4272 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) { 4273 case RAM_SAVE_FLAG_MEM_SIZE: 4274 ret = parse_ramblocks(f, addr); 4275 /* 4276 * For mapped-ram migration (to a file) using multifd, we sync 4277 * once and for all here to make sure all tasks we queued to 4278 * multifd threads are completed, so that all the ramblocks 4279 * (including all the guest memory pages within) are fully 4280 * loaded after this sync returns. 4281 */ 4282 if (migrate_mapped_ram()) { 4283 multifd_recv_sync_main(); 4284 } 4285 break; 4286 4287 case RAM_SAVE_FLAG_ZERO: 4288 ch = qemu_get_byte(f); 4289 if (ch != 0) { 4290 error_report("Found a zero page with value %d", ch); 4291 ret = -EINVAL; 4292 break; 4293 } 4294 ram_handle_zero(host, TARGET_PAGE_SIZE); 4295 break; 4296 4297 case RAM_SAVE_FLAG_PAGE: 4298 qemu_get_buffer(f, host, TARGET_PAGE_SIZE); 4299 break; 4300 4301 case RAM_SAVE_FLAG_COMPRESS_PAGE: 4302 len = qemu_get_be32(f); 4303 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) { 4304 error_report("Invalid compressed data length: %d", len); 4305 ret = -EINVAL; 4306 break; 4307 } 4308 decompress_data_with_multi_threads(f, host, len); 4309 break; 4310 4311 case RAM_SAVE_FLAG_XBZRLE: 4312 if (load_xbzrle(f, addr, host) < 0) { 4313 error_report("Failed to decompress XBZRLE page at " 4314 RAM_ADDR_FMT, addr); 4315 ret = -EINVAL; 4316 break; 4317 } 4318 break; 4319 case RAM_SAVE_FLAG_MULTIFD_FLUSH: 4320 multifd_recv_sync_main(); 4321 break; 4322 case RAM_SAVE_FLAG_EOS: 4323 /* normal exit */ 4324 if (migrate_multifd() && 4325 migrate_multifd_flush_after_each_section() && 4326 /* 4327 * Mapped-ram migration flushes once and for all after 4328 * parsing ramblocks. Always ignore EOS for it. 4329 */ 4330 !migrate_mapped_ram()) { 4331 multifd_recv_sync_main(); 4332 } 4333 break; 4334 case RAM_SAVE_FLAG_HOOK: 4335 ret = rdma_registration_handle(f); 4336 if (ret < 0) { 4337 qemu_file_set_error(f, ret); 4338 } 4339 break; 4340 default: 4341 error_report("Unknown combination of migration flags: 0x%x", flags); 4342 ret = -EINVAL; 4343 } 4344 if (!ret) { 4345 ret = qemu_file_get_error(f); 4346 } 4347 if (!ret && host_bak) { 4348 memcpy(host_bak, host, TARGET_PAGE_SIZE); 4349 } 4350 } 4351 4352 ret |= wait_for_decompress_done(); 4353 return ret; 4354 } 4355 4356 static int ram_load(QEMUFile *f, void *opaque, int version_id) 4357 { 4358 int ret = 0; 4359 static uint64_t seq_iter; 4360 /* 4361 * If system is running in postcopy mode, page inserts to host memory must 4362 * be atomic 4363 */ 4364 bool postcopy_running = postcopy_is_running(); 4365 4366 seq_iter++; 4367 4368 if (version_id != 4) { 4369 return -EINVAL; 4370 } 4371 4372 /* 4373 * This RCU critical section can be very long running. 4374 * When RCU reclaims in the code start to become numerous, 4375 * it will be necessary to reduce the granularity of this 4376 * critical section. 4377 */ 4378 WITH_RCU_READ_LOCK_GUARD() { 4379 if (postcopy_running) { 4380 /* 4381 * Note! Here RAM_CHANNEL_PRECOPY is the precopy channel of 4382 * postcopy migration, we have another RAM_CHANNEL_POSTCOPY to 4383 * service fast page faults. 4384 */ 4385 ret = ram_load_postcopy(f, RAM_CHANNEL_PRECOPY); 4386 } else { 4387 ret = ram_load_precopy(f); 4388 } 4389 } 4390 trace_ram_load_complete(ret, seq_iter); 4391 4392 return ret; 4393 } 4394 4395 static bool ram_has_postcopy(void *opaque) 4396 { 4397 RAMBlock *rb; 4398 RAMBLOCK_FOREACH_NOT_IGNORED(rb) { 4399 if (ramblock_is_pmem(rb)) { 4400 info_report("Block: %s, host: %p is a nvdimm memory, postcopy" 4401 "is not supported now!", rb->idstr, rb->host); 4402 return false; 4403 } 4404 } 4405 4406 return migrate_postcopy_ram(); 4407 } 4408 4409 /* Sync all the dirty bitmap with destination VM. */ 4410 static int ram_dirty_bitmap_sync_all(MigrationState *s, RAMState *rs) 4411 { 4412 RAMBlock *block; 4413 QEMUFile *file = s->to_dst_file; 4414 4415 trace_ram_dirty_bitmap_sync_start(); 4416 4417 qatomic_set(&rs->postcopy_bmap_sync_requested, 0); 4418 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 4419 qemu_savevm_send_recv_bitmap(file, block->idstr); 4420 trace_ram_dirty_bitmap_request(block->idstr); 4421 qatomic_inc(&rs->postcopy_bmap_sync_requested); 4422 } 4423 4424 trace_ram_dirty_bitmap_sync_wait(); 4425 4426 /* Wait until all the ramblocks' dirty bitmap synced */ 4427 while (qatomic_read(&rs->postcopy_bmap_sync_requested)) { 4428 if (migration_rp_wait(s)) { 4429 return -1; 4430 } 4431 } 4432 4433 trace_ram_dirty_bitmap_sync_complete(); 4434 4435 return 0; 4436 } 4437 4438 /* 4439 * Read the received bitmap, revert it as the initial dirty bitmap. 4440 * This is only used when the postcopy migration is paused but wants 4441 * to resume from a middle point. 4442 * 4443 * Returns true if succeeded, false for errors. 4444 */ 4445 bool ram_dirty_bitmap_reload(MigrationState *s, RAMBlock *block, Error **errp) 4446 { 4447 /* from_dst_file is always valid because we're within rp_thread */ 4448 QEMUFile *file = s->rp_state.from_dst_file; 4449 g_autofree unsigned long *le_bitmap = NULL; 4450 unsigned long nbits = block->used_length >> TARGET_PAGE_BITS; 4451 uint64_t local_size = DIV_ROUND_UP(nbits, 8); 4452 uint64_t size, end_mark; 4453 RAMState *rs = ram_state; 4454 4455 trace_ram_dirty_bitmap_reload_begin(block->idstr); 4456 4457 if (s->state != MIGRATION_STATUS_POSTCOPY_RECOVER) { 4458 error_setg(errp, "Reload bitmap in incorrect state %s", 4459 MigrationStatus_str(s->state)); 4460 return false; 4461 } 4462 4463 /* 4464 * Note: see comments in ramblock_recv_bitmap_send() on why we 4465 * need the endianness conversion, and the paddings. 4466 */ 4467 local_size = ROUND_UP(local_size, 8); 4468 4469 /* Add paddings */ 4470 le_bitmap = bitmap_new(nbits + BITS_PER_LONG); 4471 4472 size = qemu_get_be64(file); 4473 4474 /* The size of the bitmap should match with our ramblock */ 4475 if (size != local_size) { 4476 error_setg(errp, "ramblock '%s' bitmap size mismatch (0x%"PRIx64 4477 " != 0x%"PRIx64")", block->idstr, size, local_size); 4478 return false; 4479 } 4480 4481 size = qemu_get_buffer(file, (uint8_t *)le_bitmap, local_size); 4482 end_mark = qemu_get_be64(file); 4483 4484 if (qemu_file_get_error(file) || size != local_size) { 4485 error_setg(errp, "read bitmap failed for ramblock '%s': " 4486 "(size 0x%"PRIx64", got: 0x%"PRIx64")", 4487 block->idstr, local_size, size); 4488 return false; 4489 } 4490 4491 if (end_mark != RAMBLOCK_RECV_BITMAP_ENDING) { 4492 error_setg(errp, "ramblock '%s' end mark incorrect: 0x%"PRIx64, 4493 block->idstr, end_mark); 4494 return false; 4495 } 4496 4497 /* 4498 * Endianness conversion. We are during postcopy (though paused). 4499 * The dirty bitmap won't change. We can directly modify it. 4500 */ 4501 bitmap_from_le(block->bmap, le_bitmap, nbits); 4502 4503 /* 4504 * What we received is "received bitmap". Revert it as the initial 4505 * dirty bitmap for this ramblock. 4506 */ 4507 bitmap_complement(block->bmap, block->bmap, nbits); 4508 4509 /* Clear dirty bits of discarded ranges that we don't want to migrate. */ 4510 ramblock_dirty_bitmap_clear_discarded_pages(block); 4511 4512 /* We'll recalculate migration_dirty_pages in ram_state_resume_prepare(). */ 4513 trace_ram_dirty_bitmap_reload_complete(block->idstr); 4514 4515 qatomic_dec(&rs->postcopy_bmap_sync_requested); 4516 4517 /* 4518 * We succeeded to sync bitmap for current ramblock. Always kick the 4519 * migration thread to check whether all requested bitmaps are 4520 * reloaded. NOTE: it's racy to only kick when requested==0, because 4521 * we don't know whether the migration thread may still be increasing 4522 * it. 4523 */ 4524 migration_rp_kick(s); 4525 4526 return true; 4527 } 4528 4529 static int ram_resume_prepare(MigrationState *s, void *opaque) 4530 { 4531 RAMState *rs = *(RAMState **)opaque; 4532 int ret; 4533 4534 ret = ram_dirty_bitmap_sync_all(s, rs); 4535 if (ret) { 4536 return ret; 4537 } 4538 4539 ram_state_resume_prepare(rs, s->to_dst_file); 4540 4541 return 0; 4542 } 4543 4544 void postcopy_preempt_shutdown_file(MigrationState *s) 4545 { 4546 qemu_put_be64(s->postcopy_qemufile_src, RAM_SAVE_FLAG_EOS); 4547 qemu_fflush(s->postcopy_qemufile_src); 4548 } 4549 4550 static SaveVMHandlers savevm_ram_handlers = { 4551 .save_setup = ram_save_setup, 4552 .save_live_iterate = ram_save_iterate, 4553 .save_live_complete_postcopy = ram_save_complete, 4554 .save_live_complete_precopy = ram_save_complete, 4555 .has_postcopy = ram_has_postcopy, 4556 .state_pending_exact = ram_state_pending_exact, 4557 .state_pending_estimate = ram_state_pending_estimate, 4558 .load_state = ram_load, 4559 .save_cleanup = ram_save_cleanup, 4560 .load_setup = ram_load_setup, 4561 .load_cleanup = ram_load_cleanup, 4562 .resume_prepare = ram_resume_prepare, 4563 }; 4564 4565 static void ram_mig_ram_block_resized(RAMBlockNotifier *n, void *host, 4566 size_t old_size, size_t new_size) 4567 { 4568 PostcopyState ps = postcopy_state_get(); 4569 ram_addr_t offset; 4570 RAMBlock *rb = qemu_ram_block_from_host(host, false, &offset); 4571 Error *err = NULL; 4572 4573 if (!rb) { 4574 error_report("RAM block not found"); 4575 return; 4576 } 4577 4578 if (migrate_ram_is_ignored(rb)) { 4579 return; 4580 } 4581 4582 if (!migration_is_idle()) { 4583 /* 4584 * Precopy code on the source cannot deal with the size of RAM blocks 4585 * changing at random points in time - especially after sending the 4586 * RAM block sizes in the migration stream, they must no longer change. 4587 * Abort and indicate a proper reason. 4588 */ 4589 error_setg(&err, "RAM block '%s' resized during precopy.", rb->idstr); 4590 migration_cancel(err); 4591 error_free(err); 4592 } 4593 4594 switch (ps) { 4595 case POSTCOPY_INCOMING_ADVISE: 4596 /* 4597 * Update what ram_postcopy_incoming_init()->init_range() does at the 4598 * time postcopy was advised. Syncing RAM blocks with the source will 4599 * result in RAM resizes. 4600 */ 4601 if (old_size < new_size) { 4602 if (ram_discard_range(rb->idstr, old_size, new_size - old_size)) { 4603 error_report("RAM block '%s' discard of resized RAM failed", 4604 rb->idstr); 4605 } 4606 } 4607 rb->postcopy_length = new_size; 4608 break; 4609 case POSTCOPY_INCOMING_NONE: 4610 case POSTCOPY_INCOMING_RUNNING: 4611 case POSTCOPY_INCOMING_END: 4612 /* 4613 * Once our guest is running, postcopy does no longer care about 4614 * resizes. When growing, the new memory was not available on the 4615 * source, no handler needed. 4616 */ 4617 break; 4618 default: 4619 error_report("RAM block '%s' resized during postcopy state: %d", 4620 rb->idstr, ps); 4621 exit(-1); 4622 } 4623 } 4624 4625 static RAMBlockNotifier ram_mig_ram_notifier = { 4626 .ram_block_resized = ram_mig_ram_block_resized, 4627 }; 4628 4629 void ram_mig_init(void) 4630 { 4631 qemu_mutex_init(&XBZRLE.lock); 4632 register_savevm_live("ram", 0, 4, &savevm_ram_handlers, &ram_state); 4633 ram_block_notifier_add(&ram_mig_ram_notifier); 4634 } 4635