1 /* 2 * QEMU System Emulator 3 * 4 * Copyright (c) 2003-2008 Fabrice Bellard 5 * Copyright (c) 2011-2015 Red Hat Inc 6 * 7 * Authors: 8 * Juan Quintela <quintela@redhat.com> 9 * 10 * Permission is hereby granted, free of charge, to any person obtaining a copy 11 * of this software and associated documentation files (the "Software"), to deal 12 * in the Software without restriction, including without limitation the rights 13 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 14 * copies of the Software, and to permit persons to whom the Software is 15 * furnished to do so, subject to the following conditions: 16 * 17 * The above copyright notice and this permission notice shall be included in 18 * all copies or substantial portions of the Software. 19 * 20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 21 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 22 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 23 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 24 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 25 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 26 * THE SOFTWARE. 27 */ 28 29 #include "qemu/osdep.h" 30 #include "cpu.h" 31 #include <zlib.h> 32 #include "qemu/cutils.h" 33 #include "qemu/bitops.h" 34 #include "qemu/bitmap.h" 35 #include "qemu/main-loop.h" 36 #include "qemu/pmem.h" 37 #include "xbzrle.h" 38 #include "ram.h" 39 #include "migration.h" 40 #include "socket.h" 41 #include "migration/register.h" 42 #include "migration/misc.h" 43 #include "qemu-file.h" 44 #include "postcopy-ram.h" 45 #include "page_cache.h" 46 #include "qemu/error-report.h" 47 #include "qapi/error.h" 48 #include "qapi/qapi-events-migration.h" 49 #include "qapi/qmp/qerror.h" 50 #include "trace.h" 51 #include "exec/ram_addr.h" 52 #include "exec/target_page.h" 53 #include "qemu/rcu_queue.h" 54 #include "migration/colo.h" 55 #include "block.h" 56 #include "sysemu/sysemu.h" 57 #include "qemu/uuid.h" 58 #include "savevm.h" 59 #include "qemu/iov.h" 60 61 /***********************************************************/ 62 /* ram save/restore */ 63 64 /* RAM_SAVE_FLAG_ZERO used to be named RAM_SAVE_FLAG_COMPRESS, it 65 * worked for pages that where filled with the same char. We switched 66 * it to only search for the zero value. And to avoid confusion with 67 * RAM_SSAVE_FLAG_COMPRESS_PAGE just rename it. 68 */ 69 70 #define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */ 71 #define RAM_SAVE_FLAG_ZERO 0x02 72 #define RAM_SAVE_FLAG_MEM_SIZE 0x04 73 #define RAM_SAVE_FLAG_PAGE 0x08 74 #define RAM_SAVE_FLAG_EOS 0x10 75 #define RAM_SAVE_FLAG_CONTINUE 0x20 76 #define RAM_SAVE_FLAG_XBZRLE 0x40 77 /* 0x80 is reserved in migration.h start with 0x100 next */ 78 #define RAM_SAVE_FLAG_COMPRESS_PAGE 0x100 79 80 static inline bool is_zero_range(uint8_t *p, uint64_t size) 81 { 82 return buffer_is_zero(p, size); 83 } 84 85 XBZRLECacheStats xbzrle_counters; 86 87 /* struct contains XBZRLE cache and a static page 88 used by the compression */ 89 static struct { 90 /* buffer used for XBZRLE encoding */ 91 uint8_t *encoded_buf; 92 /* buffer for storing page content */ 93 uint8_t *current_buf; 94 /* Cache for XBZRLE, Protected by lock. */ 95 PageCache *cache; 96 QemuMutex lock; 97 /* it will store a page full of zeros */ 98 uint8_t *zero_target_page; 99 /* buffer used for XBZRLE decoding */ 100 uint8_t *decoded_buf; 101 } XBZRLE; 102 103 static void XBZRLE_cache_lock(void) 104 { 105 if (migrate_use_xbzrle()) 106 qemu_mutex_lock(&XBZRLE.lock); 107 } 108 109 static void XBZRLE_cache_unlock(void) 110 { 111 if (migrate_use_xbzrle()) 112 qemu_mutex_unlock(&XBZRLE.lock); 113 } 114 115 /** 116 * xbzrle_cache_resize: resize the xbzrle cache 117 * 118 * This function is called from qmp_migrate_set_cache_size in main 119 * thread, possibly while a migration is in progress. A running 120 * migration may be using the cache and might finish during this call, 121 * hence changes to the cache are protected by XBZRLE.lock(). 122 * 123 * Returns 0 for success or -1 for error 124 * 125 * @new_size: new cache size 126 * @errp: set *errp if the check failed, with reason 127 */ 128 int xbzrle_cache_resize(int64_t new_size, Error **errp) 129 { 130 PageCache *new_cache; 131 int64_t ret = 0; 132 133 /* Check for truncation */ 134 if (new_size != (size_t)new_size) { 135 error_setg(errp, QERR_INVALID_PARAMETER_VALUE, "cache size", 136 "exceeding address space"); 137 return -1; 138 } 139 140 if (new_size == migrate_xbzrle_cache_size()) { 141 /* nothing to do */ 142 return 0; 143 } 144 145 XBZRLE_cache_lock(); 146 147 if (XBZRLE.cache != NULL) { 148 new_cache = cache_init(new_size, TARGET_PAGE_SIZE, errp); 149 if (!new_cache) { 150 ret = -1; 151 goto out; 152 } 153 154 cache_fini(XBZRLE.cache); 155 XBZRLE.cache = new_cache; 156 } 157 out: 158 XBZRLE_cache_unlock(); 159 return ret; 160 } 161 162 static bool ramblock_is_ignored(RAMBlock *block) 163 { 164 return !qemu_ram_is_migratable(block) || 165 (migrate_ignore_shared() && qemu_ram_is_shared(block)); 166 } 167 168 /* Should be holding either ram_list.mutex, or the RCU lock. */ 169 #define RAMBLOCK_FOREACH_NOT_IGNORED(block) \ 170 INTERNAL_RAMBLOCK_FOREACH(block) \ 171 if (ramblock_is_ignored(block)) {} else 172 173 #define RAMBLOCK_FOREACH_MIGRATABLE(block) \ 174 INTERNAL_RAMBLOCK_FOREACH(block) \ 175 if (!qemu_ram_is_migratable(block)) {} else 176 177 #undef RAMBLOCK_FOREACH 178 179 int foreach_not_ignored_block(RAMBlockIterFunc func, void *opaque) 180 { 181 RAMBlock *block; 182 int ret = 0; 183 184 rcu_read_lock(); 185 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 186 ret = func(block, opaque); 187 if (ret) { 188 break; 189 } 190 } 191 rcu_read_unlock(); 192 return ret; 193 } 194 195 static void ramblock_recv_map_init(void) 196 { 197 RAMBlock *rb; 198 199 RAMBLOCK_FOREACH_NOT_IGNORED(rb) { 200 assert(!rb->receivedmap); 201 rb->receivedmap = bitmap_new(rb->max_length >> qemu_target_page_bits()); 202 } 203 } 204 205 int ramblock_recv_bitmap_test(RAMBlock *rb, void *host_addr) 206 { 207 return test_bit(ramblock_recv_bitmap_offset(host_addr, rb), 208 rb->receivedmap); 209 } 210 211 bool ramblock_recv_bitmap_test_byte_offset(RAMBlock *rb, uint64_t byte_offset) 212 { 213 return test_bit(byte_offset >> TARGET_PAGE_BITS, rb->receivedmap); 214 } 215 216 void ramblock_recv_bitmap_set(RAMBlock *rb, void *host_addr) 217 { 218 set_bit_atomic(ramblock_recv_bitmap_offset(host_addr, rb), rb->receivedmap); 219 } 220 221 void ramblock_recv_bitmap_set_range(RAMBlock *rb, void *host_addr, 222 size_t nr) 223 { 224 bitmap_set_atomic(rb->receivedmap, 225 ramblock_recv_bitmap_offset(host_addr, rb), 226 nr); 227 } 228 229 #define RAMBLOCK_RECV_BITMAP_ENDING (0x0123456789abcdefULL) 230 231 /* 232 * Format: bitmap_size (8 bytes) + whole_bitmap (N bytes). 233 * 234 * Returns >0 if success with sent bytes, or <0 if error. 235 */ 236 int64_t ramblock_recv_bitmap_send(QEMUFile *file, 237 const char *block_name) 238 { 239 RAMBlock *block = qemu_ram_block_by_name(block_name); 240 unsigned long *le_bitmap, nbits; 241 uint64_t size; 242 243 if (!block) { 244 error_report("%s: invalid block name: %s", __func__, block_name); 245 return -1; 246 } 247 248 nbits = block->used_length >> TARGET_PAGE_BITS; 249 250 /* 251 * Make sure the tmp bitmap buffer is big enough, e.g., on 32bit 252 * machines we may need 4 more bytes for padding (see below 253 * comment). So extend it a bit before hand. 254 */ 255 le_bitmap = bitmap_new(nbits + BITS_PER_LONG); 256 257 /* 258 * Always use little endian when sending the bitmap. This is 259 * required that when source and destination VMs are not using the 260 * same endianess. (Note: big endian won't work.) 261 */ 262 bitmap_to_le(le_bitmap, block->receivedmap, nbits); 263 264 /* Size of the bitmap, in bytes */ 265 size = DIV_ROUND_UP(nbits, 8); 266 267 /* 268 * size is always aligned to 8 bytes for 64bit machines, but it 269 * may not be true for 32bit machines. We need this padding to 270 * make sure the migration can survive even between 32bit and 271 * 64bit machines. 272 */ 273 size = ROUND_UP(size, 8); 274 275 qemu_put_be64(file, size); 276 qemu_put_buffer(file, (const uint8_t *)le_bitmap, size); 277 /* 278 * Mark as an end, in case the middle part is screwed up due to 279 * some "misterious" reason. 280 */ 281 qemu_put_be64(file, RAMBLOCK_RECV_BITMAP_ENDING); 282 qemu_fflush(file); 283 284 g_free(le_bitmap); 285 286 if (qemu_file_get_error(file)) { 287 return qemu_file_get_error(file); 288 } 289 290 return size + sizeof(size); 291 } 292 293 /* 294 * An outstanding page request, on the source, having been received 295 * and queued 296 */ 297 struct RAMSrcPageRequest { 298 RAMBlock *rb; 299 hwaddr offset; 300 hwaddr len; 301 302 QSIMPLEQ_ENTRY(RAMSrcPageRequest) next_req; 303 }; 304 305 /* State of RAM for migration */ 306 struct RAMState { 307 /* QEMUFile used for this migration */ 308 QEMUFile *f; 309 /* Last block that we have visited searching for dirty pages */ 310 RAMBlock *last_seen_block; 311 /* Last block from where we have sent data */ 312 RAMBlock *last_sent_block; 313 /* Last dirty target page we have sent */ 314 ram_addr_t last_page; 315 /* last ram version we have seen */ 316 uint32_t last_version; 317 /* We are in the first round */ 318 bool ram_bulk_stage; 319 /* The free page optimization is enabled */ 320 bool fpo_enabled; 321 /* How many times we have dirty too many pages */ 322 int dirty_rate_high_cnt; 323 /* these variables are used for bitmap sync */ 324 /* last time we did a full bitmap_sync */ 325 int64_t time_last_bitmap_sync; 326 /* bytes transferred at start_time */ 327 uint64_t bytes_xfer_prev; 328 /* number of dirty pages since start_time */ 329 uint64_t num_dirty_pages_period; 330 /* xbzrle misses since the beginning of the period */ 331 uint64_t xbzrle_cache_miss_prev; 332 333 /* compression statistics since the beginning of the period */ 334 /* amount of count that no free thread to compress data */ 335 uint64_t compress_thread_busy_prev; 336 /* amount bytes after compression */ 337 uint64_t compressed_size_prev; 338 /* amount of compressed pages */ 339 uint64_t compress_pages_prev; 340 341 /* total handled target pages at the beginning of period */ 342 uint64_t target_page_count_prev; 343 /* total handled target pages since start */ 344 uint64_t target_page_count; 345 /* number of dirty bits in the bitmap */ 346 uint64_t migration_dirty_pages; 347 /* Protects modification of the bitmap and migration dirty pages */ 348 QemuMutex bitmap_mutex; 349 /* The RAMBlock used in the last src_page_requests */ 350 RAMBlock *last_req_rb; 351 /* Queue of outstanding page requests from the destination */ 352 QemuMutex src_page_req_mutex; 353 QSIMPLEQ_HEAD(, RAMSrcPageRequest) src_page_requests; 354 }; 355 typedef struct RAMState RAMState; 356 357 static RAMState *ram_state; 358 359 static NotifierWithReturnList precopy_notifier_list; 360 361 void precopy_infrastructure_init(void) 362 { 363 notifier_with_return_list_init(&precopy_notifier_list); 364 } 365 366 void precopy_add_notifier(NotifierWithReturn *n) 367 { 368 notifier_with_return_list_add(&precopy_notifier_list, n); 369 } 370 371 void precopy_remove_notifier(NotifierWithReturn *n) 372 { 373 notifier_with_return_remove(n); 374 } 375 376 int precopy_notify(PrecopyNotifyReason reason, Error **errp) 377 { 378 PrecopyNotifyData pnd; 379 pnd.reason = reason; 380 pnd.errp = errp; 381 382 return notifier_with_return_list_notify(&precopy_notifier_list, &pnd); 383 } 384 385 void precopy_enable_free_page_optimization(void) 386 { 387 if (!ram_state) { 388 return; 389 } 390 391 ram_state->fpo_enabled = true; 392 } 393 394 uint64_t ram_bytes_remaining(void) 395 { 396 return ram_state ? (ram_state->migration_dirty_pages * TARGET_PAGE_SIZE) : 397 0; 398 } 399 400 MigrationStats ram_counters; 401 402 /* used by the search for pages to send */ 403 struct PageSearchStatus { 404 /* Current block being searched */ 405 RAMBlock *block; 406 /* Current page to search from */ 407 unsigned long page; 408 /* Set once we wrap around */ 409 bool complete_round; 410 }; 411 typedef struct PageSearchStatus PageSearchStatus; 412 413 CompressionStats compression_counters; 414 415 struct CompressParam { 416 bool done; 417 bool quit; 418 bool zero_page; 419 QEMUFile *file; 420 QemuMutex mutex; 421 QemuCond cond; 422 RAMBlock *block; 423 ram_addr_t offset; 424 425 /* internally used fields */ 426 z_stream stream; 427 uint8_t *originbuf; 428 }; 429 typedef struct CompressParam CompressParam; 430 431 struct DecompressParam { 432 bool done; 433 bool quit; 434 QemuMutex mutex; 435 QemuCond cond; 436 void *des; 437 uint8_t *compbuf; 438 int len; 439 z_stream stream; 440 }; 441 typedef struct DecompressParam DecompressParam; 442 443 static CompressParam *comp_param; 444 static QemuThread *compress_threads; 445 /* comp_done_cond is used to wake up the migration thread when 446 * one of the compression threads has finished the compression. 447 * comp_done_lock is used to co-work with comp_done_cond. 448 */ 449 static QemuMutex comp_done_lock; 450 static QemuCond comp_done_cond; 451 /* The empty QEMUFileOps will be used by file in CompressParam */ 452 static const QEMUFileOps empty_ops = { }; 453 454 static QEMUFile *decomp_file; 455 static DecompressParam *decomp_param; 456 static QemuThread *decompress_threads; 457 static QemuMutex decomp_done_lock; 458 static QemuCond decomp_done_cond; 459 460 static bool do_compress_ram_page(QEMUFile *f, z_stream *stream, RAMBlock *block, 461 ram_addr_t offset, uint8_t *source_buf); 462 463 static void *do_data_compress(void *opaque) 464 { 465 CompressParam *param = opaque; 466 RAMBlock *block; 467 ram_addr_t offset; 468 bool zero_page; 469 470 qemu_mutex_lock(¶m->mutex); 471 while (!param->quit) { 472 if (param->block) { 473 block = param->block; 474 offset = param->offset; 475 param->block = NULL; 476 qemu_mutex_unlock(¶m->mutex); 477 478 zero_page = do_compress_ram_page(param->file, ¶m->stream, 479 block, offset, param->originbuf); 480 481 qemu_mutex_lock(&comp_done_lock); 482 param->done = true; 483 param->zero_page = zero_page; 484 qemu_cond_signal(&comp_done_cond); 485 qemu_mutex_unlock(&comp_done_lock); 486 487 qemu_mutex_lock(¶m->mutex); 488 } else { 489 qemu_cond_wait(¶m->cond, ¶m->mutex); 490 } 491 } 492 qemu_mutex_unlock(¶m->mutex); 493 494 return NULL; 495 } 496 497 static void compress_threads_save_cleanup(void) 498 { 499 int i, thread_count; 500 501 if (!migrate_use_compression() || !comp_param) { 502 return; 503 } 504 505 thread_count = migrate_compress_threads(); 506 for (i = 0; i < thread_count; i++) { 507 /* 508 * we use it as a indicator which shows if the thread is 509 * properly init'd or not 510 */ 511 if (!comp_param[i].file) { 512 break; 513 } 514 515 qemu_mutex_lock(&comp_param[i].mutex); 516 comp_param[i].quit = true; 517 qemu_cond_signal(&comp_param[i].cond); 518 qemu_mutex_unlock(&comp_param[i].mutex); 519 520 qemu_thread_join(compress_threads + i); 521 qemu_mutex_destroy(&comp_param[i].mutex); 522 qemu_cond_destroy(&comp_param[i].cond); 523 deflateEnd(&comp_param[i].stream); 524 g_free(comp_param[i].originbuf); 525 qemu_fclose(comp_param[i].file); 526 comp_param[i].file = NULL; 527 } 528 qemu_mutex_destroy(&comp_done_lock); 529 qemu_cond_destroy(&comp_done_cond); 530 g_free(compress_threads); 531 g_free(comp_param); 532 compress_threads = NULL; 533 comp_param = NULL; 534 } 535 536 static int compress_threads_save_setup(void) 537 { 538 int i, thread_count; 539 540 if (!migrate_use_compression()) { 541 return 0; 542 } 543 thread_count = migrate_compress_threads(); 544 compress_threads = g_new0(QemuThread, thread_count); 545 comp_param = g_new0(CompressParam, thread_count); 546 qemu_cond_init(&comp_done_cond); 547 qemu_mutex_init(&comp_done_lock); 548 for (i = 0; i < thread_count; i++) { 549 comp_param[i].originbuf = g_try_malloc(TARGET_PAGE_SIZE); 550 if (!comp_param[i].originbuf) { 551 goto exit; 552 } 553 554 if (deflateInit(&comp_param[i].stream, 555 migrate_compress_level()) != Z_OK) { 556 g_free(comp_param[i].originbuf); 557 goto exit; 558 } 559 560 /* comp_param[i].file is just used as a dummy buffer to save data, 561 * set its ops to empty. 562 */ 563 comp_param[i].file = qemu_fopen_ops(NULL, &empty_ops); 564 comp_param[i].done = true; 565 comp_param[i].quit = false; 566 qemu_mutex_init(&comp_param[i].mutex); 567 qemu_cond_init(&comp_param[i].cond); 568 qemu_thread_create(compress_threads + i, "compress", 569 do_data_compress, comp_param + i, 570 QEMU_THREAD_JOINABLE); 571 } 572 return 0; 573 574 exit: 575 compress_threads_save_cleanup(); 576 return -1; 577 } 578 579 /* Multiple fd's */ 580 581 #define MULTIFD_MAGIC 0x11223344U 582 #define MULTIFD_VERSION 1 583 584 #define MULTIFD_FLAG_SYNC (1 << 0) 585 586 typedef struct { 587 uint32_t magic; 588 uint32_t version; 589 unsigned char uuid[16]; /* QemuUUID */ 590 uint8_t id; 591 } __attribute__((packed)) MultiFDInit_t; 592 593 typedef struct { 594 uint32_t magic; 595 uint32_t version; 596 uint32_t flags; 597 uint32_t size; 598 uint32_t used; 599 uint64_t packet_num; 600 char ramblock[256]; 601 uint64_t offset[]; 602 } __attribute__((packed)) MultiFDPacket_t; 603 604 typedef struct { 605 /* number of used pages */ 606 uint32_t used; 607 /* number of allocated pages */ 608 uint32_t allocated; 609 /* global number of generated multifd packets */ 610 uint64_t packet_num; 611 /* offset of each page */ 612 ram_addr_t *offset; 613 /* pointer to each page */ 614 struct iovec *iov; 615 RAMBlock *block; 616 } MultiFDPages_t; 617 618 typedef struct { 619 /* this fields are not changed once the thread is created */ 620 /* channel number */ 621 uint8_t id; 622 /* channel thread name */ 623 char *name; 624 /* channel thread id */ 625 QemuThread thread; 626 /* communication channel */ 627 QIOChannel *c; 628 /* sem where to wait for more work */ 629 QemuSemaphore sem; 630 /* this mutex protects the following parameters */ 631 QemuMutex mutex; 632 /* is this channel thread running */ 633 bool running; 634 /* should this thread finish */ 635 bool quit; 636 /* thread has work to do */ 637 int pending_job; 638 /* array of pages to sent */ 639 MultiFDPages_t *pages; 640 /* packet allocated len */ 641 uint32_t packet_len; 642 /* pointer to the packet */ 643 MultiFDPacket_t *packet; 644 /* multifd flags for each packet */ 645 uint32_t flags; 646 /* global number of generated multifd packets */ 647 uint64_t packet_num; 648 /* thread local variables */ 649 /* packets sent through this channel */ 650 uint64_t num_packets; 651 /* pages sent through this channel */ 652 uint64_t num_pages; 653 /* syncs main thread and channels */ 654 QemuSemaphore sem_sync; 655 } MultiFDSendParams; 656 657 typedef struct { 658 /* this fields are not changed once the thread is created */ 659 /* channel number */ 660 uint8_t id; 661 /* channel thread name */ 662 char *name; 663 /* channel thread id */ 664 QemuThread thread; 665 /* communication channel */ 666 QIOChannel *c; 667 /* this mutex protects the following parameters */ 668 QemuMutex mutex; 669 /* is this channel thread running */ 670 bool running; 671 /* array of pages to receive */ 672 MultiFDPages_t *pages; 673 /* packet allocated len */ 674 uint32_t packet_len; 675 /* pointer to the packet */ 676 MultiFDPacket_t *packet; 677 /* multifd flags for each packet */ 678 uint32_t flags; 679 /* global number of generated multifd packets */ 680 uint64_t packet_num; 681 /* thread local variables */ 682 /* packets sent through this channel */ 683 uint64_t num_packets; 684 /* pages sent through this channel */ 685 uint64_t num_pages; 686 /* syncs main thread and channels */ 687 QemuSemaphore sem_sync; 688 } MultiFDRecvParams; 689 690 static int multifd_send_initial_packet(MultiFDSendParams *p, Error **errp) 691 { 692 MultiFDInit_t msg; 693 int ret; 694 695 msg.magic = cpu_to_be32(MULTIFD_MAGIC); 696 msg.version = cpu_to_be32(MULTIFD_VERSION); 697 msg.id = p->id; 698 memcpy(msg.uuid, &qemu_uuid.data, sizeof(msg.uuid)); 699 700 ret = qio_channel_write_all(p->c, (char *)&msg, sizeof(msg), errp); 701 if (ret != 0) { 702 return -1; 703 } 704 return 0; 705 } 706 707 static int multifd_recv_initial_packet(QIOChannel *c, Error **errp) 708 { 709 MultiFDInit_t msg; 710 int ret; 711 712 ret = qio_channel_read_all(c, (char *)&msg, sizeof(msg), errp); 713 if (ret != 0) { 714 return -1; 715 } 716 717 msg.magic = be32_to_cpu(msg.magic); 718 msg.version = be32_to_cpu(msg.version); 719 720 if (msg.magic != MULTIFD_MAGIC) { 721 error_setg(errp, "multifd: received packet magic %x " 722 "expected %x", msg.magic, MULTIFD_MAGIC); 723 return -1; 724 } 725 726 if (msg.version != MULTIFD_VERSION) { 727 error_setg(errp, "multifd: received packet version %d " 728 "expected %d", msg.version, MULTIFD_VERSION); 729 return -1; 730 } 731 732 if (memcmp(msg.uuid, &qemu_uuid, sizeof(qemu_uuid))) { 733 char *uuid = qemu_uuid_unparse_strdup(&qemu_uuid); 734 char *msg_uuid = qemu_uuid_unparse_strdup((const QemuUUID *)msg.uuid); 735 736 error_setg(errp, "multifd: received uuid '%s' and expected " 737 "uuid '%s' for channel %hhd", msg_uuid, uuid, msg.id); 738 g_free(uuid); 739 g_free(msg_uuid); 740 return -1; 741 } 742 743 if (msg.id > migrate_multifd_channels()) { 744 error_setg(errp, "multifd: received channel version %d " 745 "expected %d", msg.version, MULTIFD_VERSION); 746 return -1; 747 } 748 749 return msg.id; 750 } 751 752 static MultiFDPages_t *multifd_pages_init(size_t size) 753 { 754 MultiFDPages_t *pages = g_new0(MultiFDPages_t, 1); 755 756 pages->allocated = size; 757 pages->iov = g_new0(struct iovec, size); 758 pages->offset = g_new0(ram_addr_t, size); 759 760 return pages; 761 } 762 763 static void multifd_pages_clear(MultiFDPages_t *pages) 764 { 765 pages->used = 0; 766 pages->allocated = 0; 767 pages->packet_num = 0; 768 pages->block = NULL; 769 g_free(pages->iov); 770 pages->iov = NULL; 771 g_free(pages->offset); 772 pages->offset = NULL; 773 g_free(pages); 774 } 775 776 static void multifd_send_fill_packet(MultiFDSendParams *p) 777 { 778 MultiFDPacket_t *packet = p->packet; 779 int i; 780 781 packet->magic = cpu_to_be32(MULTIFD_MAGIC); 782 packet->version = cpu_to_be32(MULTIFD_VERSION); 783 packet->flags = cpu_to_be32(p->flags); 784 packet->size = cpu_to_be32(migrate_multifd_page_count()); 785 packet->used = cpu_to_be32(p->pages->used); 786 packet->packet_num = cpu_to_be64(p->packet_num); 787 788 if (p->pages->block) { 789 strncpy(packet->ramblock, p->pages->block->idstr, 256); 790 } 791 792 for (i = 0; i < p->pages->used; i++) { 793 packet->offset[i] = cpu_to_be64(p->pages->offset[i]); 794 } 795 } 796 797 static int multifd_recv_unfill_packet(MultiFDRecvParams *p, Error **errp) 798 { 799 MultiFDPacket_t *packet = p->packet; 800 RAMBlock *block; 801 int i; 802 803 packet->magic = be32_to_cpu(packet->magic); 804 if (packet->magic != MULTIFD_MAGIC) { 805 error_setg(errp, "multifd: received packet " 806 "magic %x and expected magic %x", 807 packet->magic, MULTIFD_MAGIC); 808 return -1; 809 } 810 811 packet->version = be32_to_cpu(packet->version); 812 if (packet->version != MULTIFD_VERSION) { 813 error_setg(errp, "multifd: received packet " 814 "version %d and expected version %d", 815 packet->version, MULTIFD_VERSION); 816 return -1; 817 } 818 819 p->flags = be32_to_cpu(packet->flags); 820 821 packet->size = be32_to_cpu(packet->size); 822 if (packet->size > migrate_multifd_page_count()) { 823 error_setg(errp, "multifd: received packet " 824 "with size %d and expected maximum size %d", 825 packet->size, migrate_multifd_page_count()) ; 826 return -1; 827 } 828 829 p->pages->used = be32_to_cpu(packet->used); 830 if (p->pages->used > packet->size) { 831 error_setg(errp, "multifd: received packet " 832 "with size %d and expected maximum size %d", 833 p->pages->used, packet->size) ; 834 return -1; 835 } 836 837 p->packet_num = be64_to_cpu(packet->packet_num); 838 839 if (p->pages->used) { 840 /* make sure that ramblock is 0 terminated */ 841 packet->ramblock[255] = 0; 842 block = qemu_ram_block_by_name(packet->ramblock); 843 if (!block) { 844 error_setg(errp, "multifd: unknown ram block %s", 845 packet->ramblock); 846 return -1; 847 } 848 } 849 850 for (i = 0; i < p->pages->used; i++) { 851 ram_addr_t offset = be64_to_cpu(packet->offset[i]); 852 853 if (offset > (block->used_length - TARGET_PAGE_SIZE)) { 854 error_setg(errp, "multifd: offset too long " RAM_ADDR_FMT 855 " (max " RAM_ADDR_FMT ")", 856 offset, block->max_length); 857 return -1; 858 } 859 p->pages->iov[i].iov_base = block->host + offset; 860 p->pages->iov[i].iov_len = TARGET_PAGE_SIZE; 861 } 862 863 return 0; 864 } 865 866 struct { 867 MultiFDSendParams *params; 868 /* number of created threads */ 869 int count; 870 /* array of pages to sent */ 871 MultiFDPages_t *pages; 872 /* syncs main thread and channels */ 873 QemuSemaphore sem_sync; 874 /* global number of generated multifd packets */ 875 uint64_t packet_num; 876 /* send channels ready */ 877 QemuSemaphore channels_ready; 878 } *multifd_send_state; 879 880 /* 881 * How we use multifd_send_state->pages and channel->pages? 882 * 883 * We create a pages for each channel, and a main one. Each time that 884 * we need to send a batch of pages we interchange the ones between 885 * multifd_send_state and the channel that is sending it. There are 886 * two reasons for that: 887 * - to not have to do so many mallocs during migration 888 * - to make easier to know what to free at the end of migration 889 * 890 * This way we always know who is the owner of each "pages" struct, 891 * and we don't need any loocking. It belongs to the migration thread 892 * or to the channel thread. Switching is safe because the migration 893 * thread is using the channel mutex when changing it, and the channel 894 * have to had finish with its own, otherwise pending_job can't be 895 * false. 896 */ 897 898 static void multifd_send_pages(void) 899 { 900 int i; 901 static int next_channel; 902 MultiFDSendParams *p = NULL; /* make happy gcc */ 903 MultiFDPages_t *pages = multifd_send_state->pages; 904 uint64_t transferred; 905 906 qemu_sem_wait(&multifd_send_state->channels_ready); 907 for (i = next_channel;; i = (i + 1) % migrate_multifd_channels()) { 908 p = &multifd_send_state->params[i]; 909 910 qemu_mutex_lock(&p->mutex); 911 if (!p->pending_job) { 912 p->pending_job++; 913 next_channel = (i + 1) % migrate_multifd_channels(); 914 break; 915 } 916 qemu_mutex_unlock(&p->mutex); 917 } 918 p->pages->used = 0; 919 920 p->packet_num = multifd_send_state->packet_num++; 921 p->pages->block = NULL; 922 multifd_send_state->pages = p->pages; 923 p->pages = pages; 924 transferred = ((uint64_t) pages->used) * TARGET_PAGE_SIZE + p->packet_len; 925 ram_counters.multifd_bytes += transferred; 926 ram_counters.transferred += transferred;; 927 qemu_mutex_unlock(&p->mutex); 928 qemu_sem_post(&p->sem); 929 } 930 931 static void multifd_queue_page(RAMBlock *block, ram_addr_t offset) 932 { 933 MultiFDPages_t *pages = multifd_send_state->pages; 934 935 if (!pages->block) { 936 pages->block = block; 937 } 938 939 if (pages->block == block) { 940 pages->offset[pages->used] = offset; 941 pages->iov[pages->used].iov_base = block->host + offset; 942 pages->iov[pages->used].iov_len = TARGET_PAGE_SIZE; 943 pages->used++; 944 945 if (pages->used < pages->allocated) { 946 return; 947 } 948 } 949 950 multifd_send_pages(); 951 952 if (pages->block != block) { 953 multifd_queue_page(block, offset); 954 } 955 } 956 957 static void multifd_send_terminate_threads(Error *err) 958 { 959 int i; 960 961 if (err) { 962 MigrationState *s = migrate_get_current(); 963 migrate_set_error(s, err); 964 if (s->state == MIGRATION_STATUS_SETUP || 965 s->state == MIGRATION_STATUS_PRE_SWITCHOVER || 966 s->state == MIGRATION_STATUS_DEVICE || 967 s->state == MIGRATION_STATUS_ACTIVE) { 968 migrate_set_state(&s->state, s->state, 969 MIGRATION_STATUS_FAILED); 970 } 971 } 972 973 for (i = 0; i < migrate_multifd_channels(); i++) { 974 MultiFDSendParams *p = &multifd_send_state->params[i]; 975 976 qemu_mutex_lock(&p->mutex); 977 p->quit = true; 978 qemu_sem_post(&p->sem); 979 qemu_mutex_unlock(&p->mutex); 980 } 981 } 982 983 void multifd_save_cleanup(void) 984 { 985 int i; 986 987 if (!migrate_use_multifd()) { 988 return; 989 } 990 multifd_send_terminate_threads(NULL); 991 for (i = 0; i < migrate_multifd_channels(); i++) { 992 MultiFDSendParams *p = &multifd_send_state->params[i]; 993 994 if (p->running) { 995 qemu_thread_join(&p->thread); 996 } 997 socket_send_channel_destroy(p->c); 998 p->c = NULL; 999 qemu_mutex_destroy(&p->mutex); 1000 qemu_sem_destroy(&p->sem); 1001 qemu_sem_destroy(&p->sem_sync); 1002 g_free(p->name); 1003 p->name = NULL; 1004 multifd_pages_clear(p->pages); 1005 p->pages = NULL; 1006 p->packet_len = 0; 1007 g_free(p->packet); 1008 p->packet = NULL; 1009 } 1010 qemu_sem_destroy(&multifd_send_state->channels_ready); 1011 qemu_sem_destroy(&multifd_send_state->sem_sync); 1012 g_free(multifd_send_state->params); 1013 multifd_send_state->params = NULL; 1014 multifd_pages_clear(multifd_send_state->pages); 1015 multifd_send_state->pages = NULL; 1016 g_free(multifd_send_state); 1017 multifd_send_state = NULL; 1018 } 1019 1020 static void multifd_send_sync_main(void) 1021 { 1022 int i; 1023 1024 if (!migrate_use_multifd()) { 1025 return; 1026 } 1027 if (multifd_send_state->pages->used) { 1028 multifd_send_pages(); 1029 } 1030 for (i = 0; i < migrate_multifd_channels(); i++) { 1031 MultiFDSendParams *p = &multifd_send_state->params[i]; 1032 1033 trace_multifd_send_sync_main_signal(p->id); 1034 1035 qemu_mutex_lock(&p->mutex); 1036 1037 p->packet_num = multifd_send_state->packet_num++; 1038 p->flags |= MULTIFD_FLAG_SYNC; 1039 p->pending_job++; 1040 qemu_mutex_unlock(&p->mutex); 1041 qemu_sem_post(&p->sem); 1042 } 1043 for (i = 0; i < migrate_multifd_channels(); i++) { 1044 MultiFDSendParams *p = &multifd_send_state->params[i]; 1045 1046 trace_multifd_send_sync_main_wait(p->id); 1047 qemu_sem_wait(&multifd_send_state->sem_sync); 1048 } 1049 trace_multifd_send_sync_main(multifd_send_state->packet_num); 1050 } 1051 1052 static void *multifd_send_thread(void *opaque) 1053 { 1054 MultiFDSendParams *p = opaque; 1055 Error *local_err = NULL; 1056 int ret; 1057 1058 trace_multifd_send_thread_start(p->id); 1059 rcu_register_thread(); 1060 1061 if (multifd_send_initial_packet(p, &local_err) < 0) { 1062 goto out; 1063 } 1064 /* initial packet */ 1065 p->num_packets = 1; 1066 1067 while (true) { 1068 qemu_sem_wait(&p->sem); 1069 qemu_mutex_lock(&p->mutex); 1070 1071 if (p->pending_job) { 1072 uint32_t used = p->pages->used; 1073 uint64_t packet_num = p->packet_num; 1074 uint32_t flags = p->flags; 1075 1076 multifd_send_fill_packet(p); 1077 p->flags = 0; 1078 p->num_packets++; 1079 p->num_pages += used; 1080 p->pages->used = 0; 1081 qemu_mutex_unlock(&p->mutex); 1082 1083 trace_multifd_send(p->id, packet_num, used, flags); 1084 1085 ret = qio_channel_write_all(p->c, (void *)p->packet, 1086 p->packet_len, &local_err); 1087 if (ret != 0) { 1088 break; 1089 } 1090 1091 ret = qio_channel_writev_all(p->c, p->pages->iov, used, &local_err); 1092 if (ret != 0) { 1093 break; 1094 } 1095 1096 qemu_mutex_lock(&p->mutex); 1097 p->pending_job--; 1098 qemu_mutex_unlock(&p->mutex); 1099 1100 if (flags & MULTIFD_FLAG_SYNC) { 1101 qemu_sem_post(&multifd_send_state->sem_sync); 1102 } 1103 qemu_sem_post(&multifd_send_state->channels_ready); 1104 } else if (p->quit) { 1105 qemu_mutex_unlock(&p->mutex); 1106 break; 1107 } else { 1108 qemu_mutex_unlock(&p->mutex); 1109 /* sometimes there are spurious wakeups */ 1110 } 1111 } 1112 1113 out: 1114 if (local_err) { 1115 multifd_send_terminate_threads(local_err); 1116 } 1117 1118 qemu_mutex_lock(&p->mutex); 1119 p->running = false; 1120 qemu_mutex_unlock(&p->mutex); 1121 1122 rcu_unregister_thread(); 1123 trace_multifd_send_thread_end(p->id, p->num_packets, p->num_pages); 1124 1125 return NULL; 1126 } 1127 1128 static void multifd_new_send_channel_async(QIOTask *task, gpointer opaque) 1129 { 1130 MultiFDSendParams *p = opaque; 1131 QIOChannel *sioc = QIO_CHANNEL(qio_task_get_source(task)); 1132 Error *local_err = NULL; 1133 1134 if (qio_task_propagate_error(task, &local_err)) { 1135 migrate_set_error(migrate_get_current(), local_err); 1136 multifd_save_cleanup(); 1137 } else { 1138 p->c = QIO_CHANNEL(sioc); 1139 qio_channel_set_delay(p->c, false); 1140 p->running = true; 1141 qemu_thread_create(&p->thread, p->name, multifd_send_thread, p, 1142 QEMU_THREAD_JOINABLE); 1143 1144 atomic_inc(&multifd_send_state->count); 1145 } 1146 } 1147 1148 int multifd_save_setup(void) 1149 { 1150 int thread_count; 1151 uint32_t page_count = migrate_multifd_page_count(); 1152 uint8_t i; 1153 1154 if (!migrate_use_multifd()) { 1155 return 0; 1156 } 1157 thread_count = migrate_multifd_channels(); 1158 multifd_send_state = g_malloc0(sizeof(*multifd_send_state)); 1159 multifd_send_state->params = g_new0(MultiFDSendParams, thread_count); 1160 atomic_set(&multifd_send_state->count, 0); 1161 multifd_send_state->pages = multifd_pages_init(page_count); 1162 qemu_sem_init(&multifd_send_state->sem_sync, 0); 1163 qemu_sem_init(&multifd_send_state->channels_ready, 0); 1164 1165 for (i = 0; i < thread_count; i++) { 1166 MultiFDSendParams *p = &multifd_send_state->params[i]; 1167 1168 qemu_mutex_init(&p->mutex); 1169 qemu_sem_init(&p->sem, 0); 1170 qemu_sem_init(&p->sem_sync, 0); 1171 p->quit = false; 1172 p->pending_job = 0; 1173 p->id = i; 1174 p->pages = multifd_pages_init(page_count); 1175 p->packet_len = sizeof(MultiFDPacket_t) 1176 + sizeof(ram_addr_t) * page_count; 1177 p->packet = g_malloc0(p->packet_len); 1178 p->name = g_strdup_printf("multifdsend_%d", i); 1179 socket_send_channel_create(multifd_new_send_channel_async, p); 1180 } 1181 return 0; 1182 } 1183 1184 struct { 1185 MultiFDRecvParams *params; 1186 /* number of created threads */ 1187 int count; 1188 /* syncs main thread and channels */ 1189 QemuSemaphore sem_sync; 1190 /* global number of generated multifd packets */ 1191 uint64_t packet_num; 1192 } *multifd_recv_state; 1193 1194 static void multifd_recv_terminate_threads(Error *err) 1195 { 1196 int i; 1197 1198 if (err) { 1199 MigrationState *s = migrate_get_current(); 1200 migrate_set_error(s, err); 1201 if (s->state == MIGRATION_STATUS_SETUP || 1202 s->state == MIGRATION_STATUS_ACTIVE) { 1203 migrate_set_state(&s->state, s->state, 1204 MIGRATION_STATUS_FAILED); 1205 } 1206 } 1207 1208 for (i = 0; i < migrate_multifd_channels(); i++) { 1209 MultiFDRecvParams *p = &multifd_recv_state->params[i]; 1210 1211 qemu_mutex_lock(&p->mutex); 1212 /* We could arrive here for two reasons: 1213 - normal quit, i.e. everything went fine, just finished 1214 - error quit: We close the channels so the channel threads 1215 finish the qio_channel_read_all_eof() */ 1216 qio_channel_shutdown(p->c, QIO_CHANNEL_SHUTDOWN_BOTH, NULL); 1217 qemu_mutex_unlock(&p->mutex); 1218 } 1219 } 1220 1221 int multifd_load_cleanup(Error **errp) 1222 { 1223 int i; 1224 int ret = 0; 1225 1226 if (!migrate_use_multifd()) { 1227 return 0; 1228 } 1229 multifd_recv_terminate_threads(NULL); 1230 for (i = 0; i < migrate_multifd_channels(); i++) { 1231 MultiFDRecvParams *p = &multifd_recv_state->params[i]; 1232 1233 if (p->running) { 1234 qemu_thread_join(&p->thread); 1235 } 1236 object_unref(OBJECT(p->c)); 1237 p->c = NULL; 1238 qemu_mutex_destroy(&p->mutex); 1239 qemu_sem_destroy(&p->sem_sync); 1240 g_free(p->name); 1241 p->name = NULL; 1242 multifd_pages_clear(p->pages); 1243 p->pages = NULL; 1244 p->packet_len = 0; 1245 g_free(p->packet); 1246 p->packet = NULL; 1247 } 1248 qemu_sem_destroy(&multifd_recv_state->sem_sync); 1249 g_free(multifd_recv_state->params); 1250 multifd_recv_state->params = NULL; 1251 g_free(multifd_recv_state); 1252 multifd_recv_state = NULL; 1253 1254 return ret; 1255 } 1256 1257 static void multifd_recv_sync_main(void) 1258 { 1259 int i; 1260 1261 if (!migrate_use_multifd()) { 1262 return; 1263 } 1264 for (i = 0; i < migrate_multifd_channels(); i++) { 1265 MultiFDRecvParams *p = &multifd_recv_state->params[i]; 1266 1267 trace_multifd_recv_sync_main_wait(p->id); 1268 qemu_sem_wait(&multifd_recv_state->sem_sync); 1269 qemu_mutex_lock(&p->mutex); 1270 if (multifd_recv_state->packet_num < p->packet_num) { 1271 multifd_recv_state->packet_num = p->packet_num; 1272 } 1273 qemu_mutex_unlock(&p->mutex); 1274 } 1275 for (i = 0; i < migrate_multifd_channels(); i++) { 1276 MultiFDRecvParams *p = &multifd_recv_state->params[i]; 1277 1278 trace_multifd_recv_sync_main_signal(p->id); 1279 qemu_sem_post(&p->sem_sync); 1280 } 1281 trace_multifd_recv_sync_main(multifd_recv_state->packet_num); 1282 } 1283 1284 static void *multifd_recv_thread(void *opaque) 1285 { 1286 MultiFDRecvParams *p = opaque; 1287 Error *local_err = NULL; 1288 int ret; 1289 1290 trace_multifd_recv_thread_start(p->id); 1291 rcu_register_thread(); 1292 1293 while (true) { 1294 uint32_t used; 1295 uint32_t flags; 1296 1297 ret = qio_channel_read_all_eof(p->c, (void *)p->packet, 1298 p->packet_len, &local_err); 1299 if (ret == 0) { /* EOF */ 1300 break; 1301 } 1302 if (ret == -1) { /* Error */ 1303 break; 1304 } 1305 1306 qemu_mutex_lock(&p->mutex); 1307 ret = multifd_recv_unfill_packet(p, &local_err); 1308 if (ret) { 1309 qemu_mutex_unlock(&p->mutex); 1310 break; 1311 } 1312 1313 used = p->pages->used; 1314 flags = p->flags; 1315 trace_multifd_recv(p->id, p->packet_num, used, flags); 1316 p->num_packets++; 1317 p->num_pages += used; 1318 qemu_mutex_unlock(&p->mutex); 1319 1320 ret = qio_channel_readv_all(p->c, p->pages->iov, used, &local_err); 1321 if (ret != 0) { 1322 break; 1323 } 1324 1325 if (flags & MULTIFD_FLAG_SYNC) { 1326 qemu_sem_post(&multifd_recv_state->sem_sync); 1327 qemu_sem_wait(&p->sem_sync); 1328 } 1329 } 1330 1331 if (local_err) { 1332 multifd_recv_terminate_threads(local_err); 1333 } 1334 qemu_mutex_lock(&p->mutex); 1335 p->running = false; 1336 qemu_mutex_unlock(&p->mutex); 1337 1338 rcu_unregister_thread(); 1339 trace_multifd_recv_thread_end(p->id, p->num_packets, p->num_pages); 1340 1341 return NULL; 1342 } 1343 1344 int multifd_load_setup(void) 1345 { 1346 int thread_count; 1347 uint32_t page_count = migrate_multifd_page_count(); 1348 uint8_t i; 1349 1350 if (!migrate_use_multifd()) { 1351 return 0; 1352 } 1353 thread_count = migrate_multifd_channels(); 1354 multifd_recv_state = g_malloc0(sizeof(*multifd_recv_state)); 1355 multifd_recv_state->params = g_new0(MultiFDRecvParams, thread_count); 1356 atomic_set(&multifd_recv_state->count, 0); 1357 qemu_sem_init(&multifd_recv_state->sem_sync, 0); 1358 1359 for (i = 0; i < thread_count; i++) { 1360 MultiFDRecvParams *p = &multifd_recv_state->params[i]; 1361 1362 qemu_mutex_init(&p->mutex); 1363 qemu_sem_init(&p->sem_sync, 0); 1364 p->id = i; 1365 p->pages = multifd_pages_init(page_count); 1366 p->packet_len = sizeof(MultiFDPacket_t) 1367 + sizeof(ram_addr_t) * page_count; 1368 p->packet = g_malloc0(p->packet_len); 1369 p->name = g_strdup_printf("multifdrecv_%d", i); 1370 } 1371 return 0; 1372 } 1373 1374 bool multifd_recv_all_channels_created(void) 1375 { 1376 int thread_count = migrate_multifd_channels(); 1377 1378 if (!migrate_use_multifd()) { 1379 return true; 1380 } 1381 1382 return thread_count == atomic_read(&multifd_recv_state->count); 1383 } 1384 1385 /* 1386 * Try to receive all multifd channels to get ready for the migration. 1387 * - Return true and do not set @errp when correctly receving all channels; 1388 * - Return false and do not set @errp when correctly receiving the current one; 1389 * - Return false and set @errp when failing to receive the current channel. 1390 */ 1391 bool multifd_recv_new_channel(QIOChannel *ioc, Error **errp) 1392 { 1393 MultiFDRecvParams *p; 1394 Error *local_err = NULL; 1395 int id; 1396 1397 id = multifd_recv_initial_packet(ioc, &local_err); 1398 if (id < 0) { 1399 multifd_recv_terminate_threads(local_err); 1400 error_propagate_prepend(errp, local_err, 1401 "failed to receive packet" 1402 " via multifd channel %d: ", 1403 atomic_read(&multifd_recv_state->count)); 1404 return false; 1405 } 1406 1407 p = &multifd_recv_state->params[id]; 1408 if (p->c != NULL) { 1409 error_setg(&local_err, "multifd: received id '%d' already setup'", 1410 id); 1411 multifd_recv_terminate_threads(local_err); 1412 error_propagate(errp, local_err); 1413 return false; 1414 } 1415 p->c = ioc; 1416 object_ref(OBJECT(ioc)); 1417 /* initial packet */ 1418 p->num_packets = 1; 1419 1420 p->running = true; 1421 qemu_thread_create(&p->thread, p->name, multifd_recv_thread, p, 1422 QEMU_THREAD_JOINABLE); 1423 atomic_inc(&multifd_recv_state->count); 1424 return atomic_read(&multifd_recv_state->count) == 1425 migrate_multifd_channels(); 1426 } 1427 1428 /** 1429 * save_page_header: write page header to wire 1430 * 1431 * If this is the 1st block, it also writes the block identification 1432 * 1433 * Returns the number of bytes written 1434 * 1435 * @f: QEMUFile where to send the data 1436 * @block: block that contains the page we want to send 1437 * @offset: offset inside the block for the page 1438 * in the lower bits, it contains flags 1439 */ 1440 static size_t save_page_header(RAMState *rs, QEMUFile *f, RAMBlock *block, 1441 ram_addr_t offset) 1442 { 1443 size_t size, len; 1444 1445 if (block == rs->last_sent_block) { 1446 offset |= RAM_SAVE_FLAG_CONTINUE; 1447 } 1448 qemu_put_be64(f, offset); 1449 size = 8; 1450 1451 if (!(offset & RAM_SAVE_FLAG_CONTINUE)) { 1452 len = strlen(block->idstr); 1453 qemu_put_byte(f, len); 1454 qemu_put_buffer(f, (uint8_t *)block->idstr, len); 1455 size += 1 + len; 1456 rs->last_sent_block = block; 1457 } 1458 return size; 1459 } 1460 1461 /** 1462 * mig_throttle_guest_down: throotle down the guest 1463 * 1464 * Reduce amount of guest cpu execution to hopefully slow down memory 1465 * writes. If guest dirty memory rate is reduced below the rate at 1466 * which we can transfer pages to the destination then we should be 1467 * able to complete migration. Some workloads dirty memory way too 1468 * fast and will not effectively converge, even with auto-converge. 1469 */ 1470 static void mig_throttle_guest_down(void) 1471 { 1472 MigrationState *s = migrate_get_current(); 1473 uint64_t pct_initial = s->parameters.cpu_throttle_initial; 1474 uint64_t pct_icrement = s->parameters.cpu_throttle_increment; 1475 int pct_max = s->parameters.max_cpu_throttle; 1476 1477 /* We have not started throttling yet. Let's start it. */ 1478 if (!cpu_throttle_active()) { 1479 cpu_throttle_set(pct_initial); 1480 } else { 1481 /* Throttling already on, just increase the rate */ 1482 cpu_throttle_set(MIN(cpu_throttle_get_percentage() + pct_icrement, 1483 pct_max)); 1484 } 1485 } 1486 1487 /** 1488 * xbzrle_cache_zero_page: insert a zero page in the XBZRLE cache 1489 * 1490 * @rs: current RAM state 1491 * @current_addr: address for the zero page 1492 * 1493 * Update the xbzrle cache to reflect a page that's been sent as all 0. 1494 * The important thing is that a stale (not-yet-0'd) page be replaced 1495 * by the new data. 1496 * As a bonus, if the page wasn't in the cache it gets added so that 1497 * when a small write is made into the 0'd page it gets XBZRLE sent. 1498 */ 1499 static void xbzrle_cache_zero_page(RAMState *rs, ram_addr_t current_addr) 1500 { 1501 if (rs->ram_bulk_stage || !migrate_use_xbzrle()) { 1502 return; 1503 } 1504 1505 /* We don't care if this fails to allocate a new cache page 1506 * as long as it updated an old one */ 1507 cache_insert(XBZRLE.cache, current_addr, XBZRLE.zero_target_page, 1508 ram_counters.dirty_sync_count); 1509 } 1510 1511 #define ENCODING_FLAG_XBZRLE 0x1 1512 1513 /** 1514 * save_xbzrle_page: compress and send current page 1515 * 1516 * Returns: 1 means that we wrote the page 1517 * 0 means that page is identical to the one already sent 1518 * -1 means that xbzrle would be longer than normal 1519 * 1520 * @rs: current RAM state 1521 * @current_data: pointer to the address of the page contents 1522 * @current_addr: addr of the page 1523 * @block: block that contains the page we want to send 1524 * @offset: offset inside the block for the page 1525 * @last_stage: if we are at the completion stage 1526 */ 1527 static int save_xbzrle_page(RAMState *rs, uint8_t **current_data, 1528 ram_addr_t current_addr, RAMBlock *block, 1529 ram_addr_t offset, bool last_stage) 1530 { 1531 int encoded_len = 0, bytes_xbzrle; 1532 uint8_t *prev_cached_page; 1533 1534 if (!cache_is_cached(XBZRLE.cache, current_addr, 1535 ram_counters.dirty_sync_count)) { 1536 xbzrle_counters.cache_miss++; 1537 if (!last_stage) { 1538 if (cache_insert(XBZRLE.cache, current_addr, *current_data, 1539 ram_counters.dirty_sync_count) == -1) { 1540 return -1; 1541 } else { 1542 /* update *current_data when the page has been 1543 inserted into cache */ 1544 *current_data = get_cached_data(XBZRLE.cache, current_addr); 1545 } 1546 } 1547 return -1; 1548 } 1549 1550 prev_cached_page = get_cached_data(XBZRLE.cache, current_addr); 1551 1552 /* save current buffer into memory */ 1553 memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE); 1554 1555 /* XBZRLE encoding (if there is no overflow) */ 1556 encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf, 1557 TARGET_PAGE_SIZE, XBZRLE.encoded_buf, 1558 TARGET_PAGE_SIZE); 1559 if (encoded_len == 0) { 1560 trace_save_xbzrle_page_skipping(); 1561 return 0; 1562 } else if (encoded_len == -1) { 1563 trace_save_xbzrle_page_overflow(); 1564 xbzrle_counters.overflow++; 1565 /* update data in the cache */ 1566 if (!last_stage) { 1567 memcpy(prev_cached_page, *current_data, TARGET_PAGE_SIZE); 1568 *current_data = prev_cached_page; 1569 } 1570 return -1; 1571 } 1572 1573 /* we need to update the data in the cache, in order to get the same data */ 1574 if (!last_stage) { 1575 memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE); 1576 } 1577 1578 /* Send XBZRLE based compressed page */ 1579 bytes_xbzrle = save_page_header(rs, rs->f, block, 1580 offset | RAM_SAVE_FLAG_XBZRLE); 1581 qemu_put_byte(rs->f, ENCODING_FLAG_XBZRLE); 1582 qemu_put_be16(rs->f, encoded_len); 1583 qemu_put_buffer(rs->f, XBZRLE.encoded_buf, encoded_len); 1584 bytes_xbzrle += encoded_len + 1 + 2; 1585 xbzrle_counters.pages++; 1586 xbzrle_counters.bytes += bytes_xbzrle; 1587 ram_counters.transferred += bytes_xbzrle; 1588 1589 return 1; 1590 } 1591 1592 /** 1593 * migration_bitmap_find_dirty: find the next dirty page from start 1594 * 1595 * Called with rcu_read_lock() to protect migration_bitmap 1596 * 1597 * Returns the byte offset within memory region of the start of a dirty page 1598 * 1599 * @rs: current RAM state 1600 * @rb: RAMBlock where to search for dirty pages 1601 * @start: page where we start the search 1602 */ 1603 static inline 1604 unsigned long migration_bitmap_find_dirty(RAMState *rs, RAMBlock *rb, 1605 unsigned long start) 1606 { 1607 unsigned long size = rb->used_length >> TARGET_PAGE_BITS; 1608 unsigned long *bitmap = rb->bmap; 1609 unsigned long next; 1610 1611 if (ramblock_is_ignored(rb)) { 1612 return size; 1613 } 1614 1615 /* 1616 * When the free page optimization is enabled, we need to check the bitmap 1617 * to send the non-free pages rather than all the pages in the bulk stage. 1618 */ 1619 if (!rs->fpo_enabled && rs->ram_bulk_stage && start > 0) { 1620 next = start + 1; 1621 } else { 1622 next = find_next_bit(bitmap, size, start); 1623 } 1624 1625 return next; 1626 } 1627 1628 static inline bool migration_bitmap_clear_dirty(RAMState *rs, 1629 RAMBlock *rb, 1630 unsigned long page) 1631 { 1632 bool ret; 1633 1634 qemu_mutex_lock(&rs->bitmap_mutex); 1635 ret = test_and_clear_bit(page, rb->bmap); 1636 1637 if (ret) { 1638 rs->migration_dirty_pages--; 1639 } 1640 qemu_mutex_unlock(&rs->bitmap_mutex); 1641 1642 return ret; 1643 } 1644 1645 static void migration_bitmap_sync_range(RAMState *rs, RAMBlock *rb, 1646 ram_addr_t start, ram_addr_t length) 1647 { 1648 rs->migration_dirty_pages += 1649 cpu_physical_memory_sync_dirty_bitmap(rb, start, length, 1650 &rs->num_dirty_pages_period); 1651 } 1652 1653 /** 1654 * ram_pagesize_summary: calculate all the pagesizes of a VM 1655 * 1656 * Returns a summary bitmap of the page sizes of all RAMBlocks 1657 * 1658 * For VMs with just normal pages this is equivalent to the host page 1659 * size. If it's got some huge pages then it's the OR of all the 1660 * different page sizes. 1661 */ 1662 uint64_t ram_pagesize_summary(void) 1663 { 1664 RAMBlock *block; 1665 uint64_t summary = 0; 1666 1667 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 1668 summary |= block->page_size; 1669 } 1670 1671 return summary; 1672 } 1673 1674 uint64_t ram_get_total_transferred_pages(void) 1675 { 1676 return ram_counters.normal + ram_counters.duplicate + 1677 compression_counters.pages + xbzrle_counters.pages; 1678 } 1679 1680 static void migration_update_rates(RAMState *rs, int64_t end_time) 1681 { 1682 uint64_t page_count = rs->target_page_count - rs->target_page_count_prev; 1683 double compressed_size; 1684 1685 /* calculate period counters */ 1686 ram_counters.dirty_pages_rate = rs->num_dirty_pages_period * 1000 1687 / (end_time - rs->time_last_bitmap_sync); 1688 1689 if (!page_count) { 1690 return; 1691 } 1692 1693 if (migrate_use_xbzrle()) { 1694 xbzrle_counters.cache_miss_rate = (double)(xbzrle_counters.cache_miss - 1695 rs->xbzrle_cache_miss_prev) / page_count; 1696 rs->xbzrle_cache_miss_prev = xbzrle_counters.cache_miss; 1697 } 1698 1699 if (migrate_use_compression()) { 1700 compression_counters.busy_rate = (double)(compression_counters.busy - 1701 rs->compress_thread_busy_prev) / page_count; 1702 rs->compress_thread_busy_prev = compression_counters.busy; 1703 1704 compressed_size = compression_counters.compressed_size - 1705 rs->compressed_size_prev; 1706 if (compressed_size) { 1707 double uncompressed_size = (compression_counters.pages - 1708 rs->compress_pages_prev) * TARGET_PAGE_SIZE; 1709 1710 /* Compression-Ratio = Uncompressed-size / Compressed-size */ 1711 compression_counters.compression_rate = 1712 uncompressed_size / compressed_size; 1713 1714 rs->compress_pages_prev = compression_counters.pages; 1715 rs->compressed_size_prev = compression_counters.compressed_size; 1716 } 1717 } 1718 } 1719 1720 static void migration_bitmap_sync(RAMState *rs) 1721 { 1722 RAMBlock *block; 1723 int64_t end_time; 1724 uint64_t bytes_xfer_now; 1725 1726 ram_counters.dirty_sync_count++; 1727 1728 if (!rs->time_last_bitmap_sync) { 1729 rs->time_last_bitmap_sync = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); 1730 } 1731 1732 trace_migration_bitmap_sync_start(); 1733 memory_global_dirty_log_sync(); 1734 1735 qemu_mutex_lock(&rs->bitmap_mutex); 1736 rcu_read_lock(); 1737 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 1738 migration_bitmap_sync_range(rs, block, 0, block->used_length); 1739 } 1740 ram_counters.remaining = ram_bytes_remaining(); 1741 rcu_read_unlock(); 1742 qemu_mutex_unlock(&rs->bitmap_mutex); 1743 1744 trace_migration_bitmap_sync_end(rs->num_dirty_pages_period); 1745 1746 end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); 1747 1748 /* more than 1 second = 1000 millisecons */ 1749 if (end_time > rs->time_last_bitmap_sync + 1000) { 1750 bytes_xfer_now = ram_counters.transferred; 1751 1752 /* During block migration the auto-converge logic incorrectly detects 1753 * that ram migration makes no progress. Avoid this by disabling the 1754 * throttling logic during the bulk phase of block migration. */ 1755 if (migrate_auto_converge() && !blk_mig_bulk_active()) { 1756 /* The following detection logic can be refined later. For now: 1757 Check to see if the dirtied bytes is 50% more than the approx. 1758 amount of bytes that just got transferred since the last time we 1759 were in this routine. If that happens twice, start or increase 1760 throttling */ 1761 1762 if ((rs->num_dirty_pages_period * TARGET_PAGE_SIZE > 1763 (bytes_xfer_now - rs->bytes_xfer_prev) / 2) && 1764 (++rs->dirty_rate_high_cnt >= 2)) { 1765 trace_migration_throttle(); 1766 rs->dirty_rate_high_cnt = 0; 1767 mig_throttle_guest_down(); 1768 } 1769 } 1770 1771 migration_update_rates(rs, end_time); 1772 1773 rs->target_page_count_prev = rs->target_page_count; 1774 1775 /* reset period counters */ 1776 rs->time_last_bitmap_sync = end_time; 1777 rs->num_dirty_pages_period = 0; 1778 rs->bytes_xfer_prev = bytes_xfer_now; 1779 } 1780 if (migrate_use_events()) { 1781 qapi_event_send_migration_pass(ram_counters.dirty_sync_count); 1782 } 1783 } 1784 1785 static void migration_bitmap_sync_precopy(RAMState *rs) 1786 { 1787 Error *local_err = NULL; 1788 1789 /* 1790 * The current notifier usage is just an optimization to migration, so we 1791 * don't stop the normal migration process in the error case. 1792 */ 1793 if (precopy_notify(PRECOPY_NOTIFY_BEFORE_BITMAP_SYNC, &local_err)) { 1794 error_report_err(local_err); 1795 } 1796 1797 migration_bitmap_sync(rs); 1798 1799 if (precopy_notify(PRECOPY_NOTIFY_AFTER_BITMAP_SYNC, &local_err)) { 1800 error_report_err(local_err); 1801 } 1802 } 1803 1804 /** 1805 * save_zero_page_to_file: send the zero page to the file 1806 * 1807 * Returns the size of data written to the file, 0 means the page is not 1808 * a zero page 1809 * 1810 * @rs: current RAM state 1811 * @file: the file where the data is saved 1812 * @block: block that contains the page we want to send 1813 * @offset: offset inside the block for the page 1814 */ 1815 static int save_zero_page_to_file(RAMState *rs, QEMUFile *file, 1816 RAMBlock *block, ram_addr_t offset) 1817 { 1818 uint8_t *p = block->host + offset; 1819 int len = 0; 1820 1821 if (is_zero_range(p, TARGET_PAGE_SIZE)) { 1822 len += save_page_header(rs, file, block, offset | RAM_SAVE_FLAG_ZERO); 1823 qemu_put_byte(file, 0); 1824 len += 1; 1825 } 1826 return len; 1827 } 1828 1829 /** 1830 * save_zero_page: send the zero page to the stream 1831 * 1832 * Returns the number of pages written. 1833 * 1834 * @rs: current RAM state 1835 * @block: block that contains the page we want to send 1836 * @offset: offset inside the block for the page 1837 */ 1838 static int save_zero_page(RAMState *rs, RAMBlock *block, ram_addr_t offset) 1839 { 1840 int len = save_zero_page_to_file(rs, rs->f, block, offset); 1841 1842 if (len) { 1843 ram_counters.duplicate++; 1844 ram_counters.transferred += len; 1845 return 1; 1846 } 1847 return -1; 1848 } 1849 1850 static void ram_release_pages(const char *rbname, uint64_t offset, int pages) 1851 { 1852 if (!migrate_release_ram() || !migration_in_postcopy()) { 1853 return; 1854 } 1855 1856 ram_discard_range(rbname, offset, pages << TARGET_PAGE_BITS); 1857 } 1858 1859 /* 1860 * @pages: the number of pages written by the control path, 1861 * < 0 - error 1862 * > 0 - number of pages written 1863 * 1864 * Return true if the pages has been saved, otherwise false is returned. 1865 */ 1866 static bool control_save_page(RAMState *rs, RAMBlock *block, ram_addr_t offset, 1867 int *pages) 1868 { 1869 uint64_t bytes_xmit = 0; 1870 int ret; 1871 1872 *pages = -1; 1873 ret = ram_control_save_page(rs->f, block->offset, offset, TARGET_PAGE_SIZE, 1874 &bytes_xmit); 1875 if (ret == RAM_SAVE_CONTROL_NOT_SUPP) { 1876 return false; 1877 } 1878 1879 if (bytes_xmit) { 1880 ram_counters.transferred += bytes_xmit; 1881 *pages = 1; 1882 } 1883 1884 if (ret == RAM_SAVE_CONTROL_DELAYED) { 1885 return true; 1886 } 1887 1888 if (bytes_xmit > 0) { 1889 ram_counters.normal++; 1890 } else if (bytes_xmit == 0) { 1891 ram_counters.duplicate++; 1892 } 1893 1894 return true; 1895 } 1896 1897 /* 1898 * directly send the page to the stream 1899 * 1900 * Returns the number of pages written. 1901 * 1902 * @rs: current RAM state 1903 * @block: block that contains the page we want to send 1904 * @offset: offset inside the block for the page 1905 * @buf: the page to be sent 1906 * @async: send to page asyncly 1907 */ 1908 static int save_normal_page(RAMState *rs, RAMBlock *block, ram_addr_t offset, 1909 uint8_t *buf, bool async) 1910 { 1911 ram_counters.transferred += save_page_header(rs, rs->f, block, 1912 offset | RAM_SAVE_FLAG_PAGE); 1913 if (async) { 1914 qemu_put_buffer_async(rs->f, buf, TARGET_PAGE_SIZE, 1915 migrate_release_ram() & 1916 migration_in_postcopy()); 1917 } else { 1918 qemu_put_buffer(rs->f, buf, TARGET_PAGE_SIZE); 1919 } 1920 ram_counters.transferred += TARGET_PAGE_SIZE; 1921 ram_counters.normal++; 1922 return 1; 1923 } 1924 1925 /** 1926 * ram_save_page: send the given page to the stream 1927 * 1928 * Returns the number of pages written. 1929 * < 0 - error 1930 * >=0 - Number of pages written - this might legally be 0 1931 * if xbzrle noticed the page was the same. 1932 * 1933 * @rs: current RAM state 1934 * @block: block that contains the page we want to send 1935 * @offset: offset inside the block for the page 1936 * @last_stage: if we are at the completion stage 1937 */ 1938 static int ram_save_page(RAMState *rs, PageSearchStatus *pss, bool last_stage) 1939 { 1940 int pages = -1; 1941 uint8_t *p; 1942 bool send_async = true; 1943 RAMBlock *block = pss->block; 1944 ram_addr_t offset = pss->page << TARGET_PAGE_BITS; 1945 ram_addr_t current_addr = block->offset + offset; 1946 1947 p = block->host + offset; 1948 trace_ram_save_page(block->idstr, (uint64_t)offset, p); 1949 1950 XBZRLE_cache_lock(); 1951 if (!rs->ram_bulk_stage && !migration_in_postcopy() && 1952 migrate_use_xbzrle()) { 1953 pages = save_xbzrle_page(rs, &p, current_addr, block, 1954 offset, last_stage); 1955 if (!last_stage) { 1956 /* Can't send this cached data async, since the cache page 1957 * might get updated before it gets to the wire 1958 */ 1959 send_async = false; 1960 } 1961 } 1962 1963 /* XBZRLE overflow or normal page */ 1964 if (pages == -1) { 1965 pages = save_normal_page(rs, block, offset, p, send_async); 1966 } 1967 1968 XBZRLE_cache_unlock(); 1969 1970 return pages; 1971 } 1972 1973 static int ram_save_multifd_page(RAMState *rs, RAMBlock *block, 1974 ram_addr_t offset) 1975 { 1976 multifd_queue_page(block, offset); 1977 ram_counters.normal++; 1978 1979 return 1; 1980 } 1981 1982 static bool do_compress_ram_page(QEMUFile *f, z_stream *stream, RAMBlock *block, 1983 ram_addr_t offset, uint8_t *source_buf) 1984 { 1985 RAMState *rs = ram_state; 1986 uint8_t *p = block->host + (offset & TARGET_PAGE_MASK); 1987 bool zero_page = false; 1988 int ret; 1989 1990 if (save_zero_page_to_file(rs, f, block, offset)) { 1991 zero_page = true; 1992 goto exit; 1993 } 1994 1995 save_page_header(rs, f, block, offset | RAM_SAVE_FLAG_COMPRESS_PAGE); 1996 1997 /* 1998 * copy it to a internal buffer to avoid it being modified by VM 1999 * so that we can catch up the error during compression and 2000 * decompression 2001 */ 2002 memcpy(source_buf, p, TARGET_PAGE_SIZE); 2003 ret = qemu_put_compression_data(f, stream, source_buf, TARGET_PAGE_SIZE); 2004 if (ret < 0) { 2005 qemu_file_set_error(migrate_get_current()->to_dst_file, ret); 2006 error_report("compressed data failed!"); 2007 return false; 2008 } 2009 2010 exit: 2011 ram_release_pages(block->idstr, offset & TARGET_PAGE_MASK, 1); 2012 return zero_page; 2013 } 2014 2015 static void 2016 update_compress_thread_counts(const CompressParam *param, int bytes_xmit) 2017 { 2018 ram_counters.transferred += bytes_xmit; 2019 2020 if (param->zero_page) { 2021 ram_counters.duplicate++; 2022 return; 2023 } 2024 2025 /* 8 means a header with RAM_SAVE_FLAG_CONTINUE. */ 2026 compression_counters.compressed_size += bytes_xmit - 8; 2027 compression_counters.pages++; 2028 } 2029 2030 static bool save_page_use_compression(RAMState *rs); 2031 2032 static void flush_compressed_data(RAMState *rs) 2033 { 2034 int idx, len, thread_count; 2035 2036 if (!save_page_use_compression(rs)) { 2037 return; 2038 } 2039 thread_count = migrate_compress_threads(); 2040 2041 qemu_mutex_lock(&comp_done_lock); 2042 for (idx = 0; idx < thread_count; idx++) { 2043 while (!comp_param[idx].done) { 2044 qemu_cond_wait(&comp_done_cond, &comp_done_lock); 2045 } 2046 } 2047 qemu_mutex_unlock(&comp_done_lock); 2048 2049 for (idx = 0; idx < thread_count; idx++) { 2050 qemu_mutex_lock(&comp_param[idx].mutex); 2051 if (!comp_param[idx].quit) { 2052 len = qemu_put_qemu_file(rs->f, comp_param[idx].file); 2053 /* 2054 * it's safe to fetch zero_page without holding comp_done_lock 2055 * as there is no further request submitted to the thread, 2056 * i.e, the thread should be waiting for a request at this point. 2057 */ 2058 update_compress_thread_counts(&comp_param[idx], len); 2059 } 2060 qemu_mutex_unlock(&comp_param[idx].mutex); 2061 } 2062 } 2063 2064 static inline void set_compress_params(CompressParam *param, RAMBlock *block, 2065 ram_addr_t offset) 2066 { 2067 param->block = block; 2068 param->offset = offset; 2069 } 2070 2071 static int compress_page_with_multi_thread(RAMState *rs, RAMBlock *block, 2072 ram_addr_t offset) 2073 { 2074 int idx, thread_count, bytes_xmit = -1, pages = -1; 2075 bool wait = migrate_compress_wait_thread(); 2076 2077 thread_count = migrate_compress_threads(); 2078 qemu_mutex_lock(&comp_done_lock); 2079 retry: 2080 for (idx = 0; idx < thread_count; idx++) { 2081 if (comp_param[idx].done) { 2082 comp_param[idx].done = false; 2083 bytes_xmit = qemu_put_qemu_file(rs->f, comp_param[idx].file); 2084 qemu_mutex_lock(&comp_param[idx].mutex); 2085 set_compress_params(&comp_param[idx], block, offset); 2086 qemu_cond_signal(&comp_param[idx].cond); 2087 qemu_mutex_unlock(&comp_param[idx].mutex); 2088 pages = 1; 2089 update_compress_thread_counts(&comp_param[idx], bytes_xmit); 2090 break; 2091 } 2092 } 2093 2094 /* 2095 * wait for the free thread if the user specifies 'compress-wait-thread', 2096 * otherwise we will post the page out in the main thread as normal page. 2097 */ 2098 if (pages < 0 && wait) { 2099 qemu_cond_wait(&comp_done_cond, &comp_done_lock); 2100 goto retry; 2101 } 2102 qemu_mutex_unlock(&comp_done_lock); 2103 2104 return pages; 2105 } 2106 2107 /** 2108 * find_dirty_block: find the next dirty page and update any state 2109 * associated with the search process. 2110 * 2111 * Returns if a page is found 2112 * 2113 * @rs: current RAM state 2114 * @pss: data about the state of the current dirty page scan 2115 * @again: set to false if the search has scanned the whole of RAM 2116 */ 2117 static bool find_dirty_block(RAMState *rs, PageSearchStatus *pss, bool *again) 2118 { 2119 pss->page = migration_bitmap_find_dirty(rs, pss->block, pss->page); 2120 if (pss->complete_round && pss->block == rs->last_seen_block && 2121 pss->page >= rs->last_page) { 2122 /* 2123 * We've been once around the RAM and haven't found anything. 2124 * Give up. 2125 */ 2126 *again = false; 2127 return false; 2128 } 2129 if ((pss->page << TARGET_PAGE_BITS) >= pss->block->used_length) { 2130 /* Didn't find anything in this RAM Block */ 2131 pss->page = 0; 2132 pss->block = QLIST_NEXT_RCU(pss->block, next); 2133 if (!pss->block) { 2134 /* 2135 * If memory migration starts over, we will meet a dirtied page 2136 * which may still exists in compression threads's ring, so we 2137 * should flush the compressed data to make sure the new page 2138 * is not overwritten by the old one in the destination. 2139 * 2140 * Also If xbzrle is on, stop using the data compression at this 2141 * point. In theory, xbzrle can do better than compression. 2142 */ 2143 flush_compressed_data(rs); 2144 2145 /* Hit the end of the list */ 2146 pss->block = QLIST_FIRST_RCU(&ram_list.blocks); 2147 /* Flag that we've looped */ 2148 pss->complete_round = true; 2149 rs->ram_bulk_stage = false; 2150 } 2151 /* Didn't find anything this time, but try again on the new block */ 2152 *again = true; 2153 return false; 2154 } else { 2155 /* Can go around again, but... */ 2156 *again = true; 2157 /* We've found something so probably don't need to */ 2158 return true; 2159 } 2160 } 2161 2162 /** 2163 * unqueue_page: gets a page of the queue 2164 * 2165 * Helper for 'get_queued_page' - gets a page off the queue 2166 * 2167 * Returns the block of the page (or NULL if none available) 2168 * 2169 * @rs: current RAM state 2170 * @offset: used to return the offset within the RAMBlock 2171 */ 2172 static RAMBlock *unqueue_page(RAMState *rs, ram_addr_t *offset) 2173 { 2174 RAMBlock *block = NULL; 2175 2176 if (QSIMPLEQ_EMPTY_ATOMIC(&rs->src_page_requests)) { 2177 return NULL; 2178 } 2179 2180 qemu_mutex_lock(&rs->src_page_req_mutex); 2181 if (!QSIMPLEQ_EMPTY(&rs->src_page_requests)) { 2182 struct RAMSrcPageRequest *entry = 2183 QSIMPLEQ_FIRST(&rs->src_page_requests); 2184 block = entry->rb; 2185 *offset = entry->offset; 2186 2187 if (entry->len > TARGET_PAGE_SIZE) { 2188 entry->len -= TARGET_PAGE_SIZE; 2189 entry->offset += TARGET_PAGE_SIZE; 2190 } else { 2191 memory_region_unref(block->mr); 2192 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req); 2193 g_free(entry); 2194 migration_consume_urgent_request(); 2195 } 2196 } 2197 qemu_mutex_unlock(&rs->src_page_req_mutex); 2198 2199 return block; 2200 } 2201 2202 /** 2203 * get_queued_page: unqueue a page from the postocpy requests 2204 * 2205 * Skips pages that are already sent (!dirty) 2206 * 2207 * Returns if a queued page is found 2208 * 2209 * @rs: current RAM state 2210 * @pss: data about the state of the current dirty page scan 2211 */ 2212 static bool get_queued_page(RAMState *rs, PageSearchStatus *pss) 2213 { 2214 RAMBlock *block; 2215 ram_addr_t offset; 2216 bool dirty; 2217 2218 do { 2219 block = unqueue_page(rs, &offset); 2220 /* 2221 * We're sending this page, and since it's postcopy nothing else 2222 * will dirty it, and we must make sure it doesn't get sent again 2223 * even if this queue request was received after the background 2224 * search already sent it. 2225 */ 2226 if (block) { 2227 unsigned long page; 2228 2229 page = offset >> TARGET_PAGE_BITS; 2230 dirty = test_bit(page, block->bmap); 2231 if (!dirty) { 2232 trace_get_queued_page_not_dirty(block->idstr, (uint64_t)offset, 2233 page, test_bit(page, block->unsentmap)); 2234 } else { 2235 trace_get_queued_page(block->idstr, (uint64_t)offset, page); 2236 } 2237 } 2238 2239 } while (block && !dirty); 2240 2241 if (block) { 2242 /* 2243 * As soon as we start servicing pages out of order, then we have 2244 * to kill the bulk stage, since the bulk stage assumes 2245 * in (migration_bitmap_find_and_reset_dirty) that every page is 2246 * dirty, that's no longer true. 2247 */ 2248 rs->ram_bulk_stage = false; 2249 2250 /* 2251 * We want the background search to continue from the queued page 2252 * since the guest is likely to want other pages near to the page 2253 * it just requested. 2254 */ 2255 pss->block = block; 2256 pss->page = offset >> TARGET_PAGE_BITS; 2257 } 2258 2259 return !!block; 2260 } 2261 2262 /** 2263 * migration_page_queue_free: drop any remaining pages in the ram 2264 * request queue 2265 * 2266 * It should be empty at the end anyway, but in error cases there may 2267 * be some left. in case that there is any page left, we drop it. 2268 * 2269 */ 2270 static void migration_page_queue_free(RAMState *rs) 2271 { 2272 struct RAMSrcPageRequest *mspr, *next_mspr; 2273 /* This queue generally should be empty - but in the case of a failed 2274 * migration might have some droppings in. 2275 */ 2276 rcu_read_lock(); 2277 QSIMPLEQ_FOREACH_SAFE(mspr, &rs->src_page_requests, next_req, next_mspr) { 2278 memory_region_unref(mspr->rb->mr); 2279 QSIMPLEQ_REMOVE_HEAD(&rs->src_page_requests, next_req); 2280 g_free(mspr); 2281 } 2282 rcu_read_unlock(); 2283 } 2284 2285 /** 2286 * ram_save_queue_pages: queue the page for transmission 2287 * 2288 * A request from postcopy destination for example. 2289 * 2290 * Returns zero on success or negative on error 2291 * 2292 * @rbname: Name of the RAMBLock of the request. NULL means the 2293 * same that last one. 2294 * @start: starting address from the start of the RAMBlock 2295 * @len: length (in bytes) to send 2296 */ 2297 int ram_save_queue_pages(const char *rbname, ram_addr_t start, ram_addr_t len) 2298 { 2299 RAMBlock *ramblock; 2300 RAMState *rs = ram_state; 2301 2302 ram_counters.postcopy_requests++; 2303 rcu_read_lock(); 2304 if (!rbname) { 2305 /* Reuse last RAMBlock */ 2306 ramblock = rs->last_req_rb; 2307 2308 if (!ramblock) { 2309 /* 2310 * Shouldn't happen, we can't reuse the last RAMBlock if 2311 * it's the 1st request. 2312 */ 2313 error_report("ram_save_queue_pages no previous block"); 2314 goto err; 2315 } 2316 } else { 2317 ramblock = qemu_ram_block_by_name(rbname); 2318 2319 if (!ramblock) { 2320 /* We shouldn't be asked for a non-existent RAMBlock */ 2321 error_report("ram_save_queue_pages no block '%s'", rbname); 2322 goto err; 2323 } 2324 rs->last_req_rb = ramblock; 2325 } 2326 trace_ram_save_queue_pages(ramblock->idstr, start, len); 2327 if (start+len > ramblock->used_length) { 2328 error_report("%s request overrun start=" RAM_ADDR_FMT " len=" 2329 RAM_ADDR_FMT " blocklen=" RAM_ADDR_FMT, 2330 __func__, start, len, ramblock->used_length); 2331 goto err; 2332 } 2333 2334 struct RAMSrcPageRequest *new_entry = 2335 g_malloc0(sizeof(struct RAMSrcPageRequest)); 2336 new_entry->rb = ramblock; 2337 new_entry->offset = start; 2338 new_entry->len = len; 2339 2340 memory_region_ref(ramblock->mr); 2341 qemu_mutex_lock(&rs->src_page_req_mutex); 2342 QSIMPLEQ_INSERT_TAIL(&rs->src_page_requests, new_entry, next_req); 2343 migration_make_urgent_request(); 2344 qemu_mutex_unlock(&rs->src_page_req_mutex); 2345 rcu_read_unlock(); 2346 2347 return 0; 2348 2349 err: 2350 rcu_read_unlock(); 2351 return -1; 2352 } 2353 2354 static bool save_page_use_compression(RAMState *rs) 2355 { 2356 if (!migrate_use_compression()) { 2357 return false; 2358 } 2359 2360 /* 2361 * If xbzrle is on, stop using the data compression after first 2362 * round of migration even if compression is enabled. In theory, 2363 * xbzrle can do better than compression. 2364 */ 2365 if (rs->ram_bulk_stage || !migrate_use_xbzrle()) { 2366 return true; 2367 } 2368 2369 return false; 2370 } 2371 2372 /* 2373 * try to compress the page before posting it out, return true if the page 2374 * has been properly handled by compression, otherwise needs other 2375 * paths to handle it 2376 */ 2377 static bool save_compress_page(RAMState *rs, RAMBlock *block, ram_addr_t offset) 2378 { 2379 if (!save_page_use_compression(rs)) { 2380 return false; 2381 } 2382 2383 /* 2384 * When starting the process of a new block, the first page of 2385 * the block should be sent out before other pages in the same 2386 * block, and all the pages in last block should have been sent 2387 * out, keeping this order is important, because the 'cont' flag 2388 * is used to avoid resending the block name. 2389 * 2390 * We post the fist page as normal page as compression will take 2391 * much CPU resource. 2392 */ 2393 if (block != rs->last_sent_block) { 2394 flush_compressed_data(rs); 2395 return false; 2396 } 2397 2398 if (compress_page_with_multi_thread(rs, block, offset) > 0) { 2399 return true; 2400 } 2401 2402 compression_counters.busy++; 2403 return false; 2404 } 2405 2406 /** 2407 * ram_save_target_page: save one target page 2408 * 2409 * Returns the number of pages written 2410 * 2411 * @rs: current RAM state 2412 * @pss: data about the page we want to send 2413 * @last_stage: if we are at the completion stage 2414 */ 2415 static int ram_save_target_page(RAMState *rs, PageSearchStatus *pss, 2416 bool last_stage) 2417 { 2418 RAMBlock *block = pss->block; 2419 ram_addr_t offset = pss->page << TARGET_PAGE_BITS; 2420 int res; 2421 2422 if (control_save_page(rs, block, offset, &res)) { 2423 return res; 2424 } 2425 2426 if (save_compress_page(rs, block, offset)) { 2427 return 1; 2428 } 2429 2430 res = save_zero_page(rs, block, offset); 2431 if (res > 0) { 2432 /* Must let xbzrle know, otherwise a previous (now 0'd) cached 2433 * page would be stale 2434 */ 2435 if (!save_page_use_compression(rs)) { 2436 XBZRLE_cache_lock(); 2437 xbzrle_cache_zero_page(rs, block->offset + offset); 2438 XBZRLE_cache_unlock(); 2439 } 2440 ram_release_pages(block->idstr, offset, res); 2441 return res; 2442 } 2443 2444 /* 2445 * do not use multifd for compression as the first page in the new 2446 * block should be posted out before sending the compressed page 2447 */ 2448 if (!save_page_use_compression(rs) && migrate_use_multifd()) { 2449 return ram_save_multifd_page(rs, block, offset); 2450 } 2451 2452 return ram_save_page(rs, pss, last_stage); 2453 } 2454 2455 /** 2456 * ram_save_host_page: save a whole host page 2457 * 2458 * Starting at *offset send pages up to the end of the current host 2459 * page. It's valid for the initial offset to point into the middle of 2460 * a host page in which case the remainder of the hostpage is sent. 2461 * Only dirty target pages are sent. Note that the host page size may 2462 * be a huge page for this block. 2463 * The saving stops at the boundary of the used_length of the block 2464 * if the RAMBlock isn't a multiple of the host page size. 2465 * 2466 * Returns the number of pages written or negative on error 2467 * 2468 * @rs: current RAM state 2469 * @ms: current migration state 2470 * @pss: data about the page we want to send 2471 * @last_stage: if we are at the completion stage 2472 */ 2473 static int ram_save_host_page(RAMState *rs, PageSearchStatus *pss, 2474 bool last_stage) 2475 { 2476 int tmppages, pages = 0; 2477 size_t pagesize_bits = 2478 qemu_ram_pagesize(pss->block) >> TARGET_PAGE_BITS; 2479 2480 if (ramblock_is_ignored(pss->block)) { 2481 error_report("block %s should not be migrated !", pss->block->idstr); 2482 return 0; 2483 } 2484 2485 do { 2486 /* Check the pages is dirty and if it is send it */ 2487 if (!migration_bitmap_clear_dirty(rs, pss->block, pss->page)) { 2488 pss->page++; 2489 continue; 2490 } 2491 2492 tmppages = ram_save_target_page(rs, pss, last_stage); 2493 if (tmppages < 0) { 2494 return tmppages; 2495 } 2496 2497 pages += tmppages; 2498 if (pss->block->unsentmap) { 2499 clear_bit(pss->page, pss->block->unsentmap); 2500 } 2501 2502 pss->page++; 2503 } while ((pss->page & (pagesize_bits - 1)) && 2504 offset_in_ramblock(pss->block, pss->page << TARGET_PAGE_BITS)); 2505 2506 /* The offset we leave with is the last one we looked at */ 2507 pss->page--; 2508 return pages; 2509 } 2510 2511 /** 2512 * ram_find_and_save_block: finds a dirty page and sends it to f 2513 * 2514 * Called within an RCU critical section. 2515 * 2516 * Returns the number of pages written where zero means no dirty pages, 2517 * or negative on error 2518 * 2519 * @rs: current RAM state 2520 * @last_stage: if we are at the completion stage 2521 * 2522 * On systems where host-page-size > target-page-size it will send all the 2523 * pages in a host page that are dirty. 2524 */ 2525 2526 static int ram_find_and_save_block(RAMState *rs, bool last_stage) 2527 { 2528 PageSearchStatus pss; 2529 int pages = 0; 2530 bool again, found; 2531 2532 /* No dirty page as there is zero RAM */ 2533 if (!ram_bytes_total()) { 2534 return pages; 2535 } 2536 2537 pss.block = rs->last_seen_block; 2538 pss.page = rs->last_page; 2539 pss.complete_round = false; 2540 2541 if (!pss.block) { 2542 pss.block = QLIST_FIRST_RCU(&ram_list.blocks); 2543 } 2544 2545 do { 2546 again = true; 2547 found = get_queued_page(rs, &pss); 2548 2549 if (!found) { 2550 /* priority queue empty, so just search for something dirty */ 2551 found = find_dirty_block(rs, &pss, &again); 2552 } 2553 2554 if (found) { 2555 pages = ram_save_host_page(rs, &pss, last_stage); 2556 } 2557 } while (!pages && again); 2558 2559 rs->last_seen_block = pss.block; 2560 rs->last_page = pss.page; 2561 2562 return pages; 2563 } 2564 2565 void acct_update_position(QEMUFile *f, size_t size, bool zero) 2566 { 2567 uint64_t pages = size / TARGET_PAGE_SIZE; 2568 2569 if (zero) { 2570 ram_counters.duplicate += pages; 2571 } else { 2572 ram_counters.normal += pages; 2573 ram_counters.transferred += size; 2574 qemu_update_position(f, size); 2575 } 2576 } 2577 2578 static uint64_t ram_bytes_total_common(bool count_ignored) 2579 { 2580 RAMBlock *block; 2581 uint64_t total = 0; 2582 2583 rcu_read_lock(); 2584 if (count_ignored) { 2585 RAMBLOCK_FOREACH_MIGRATABLE(block) { 2586 total += block->used_length; 2587 } 2588 } else { 2589 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 2590 total += block->used_length; 2591 } 2592 } 2593 rcu_read_unlock(); 2594 return total; 2595 } 2596 2597 uint64_t ram_bytes_total(void) 2598 { 2599 return ram_bytes_total_common(false); 2600 } 2601 2602 static void xbzrle_load_setup(void) 2603 { 2604 XBZRLE.decoded_buf = g_malloc(TARGET_PAGE_SIZE); 2605 } 2606 2607 static void xbzrle_load_cleanup(void) 2608 { 2609 g_free(XBZRLE.decoded_buf); 2610 XBZRLE.decoded_buf = NULL; 2611 } 2612 2613 static void ram_state_cleanup(RAMState **rsp) 2614 { 2615 if (*rsp) { 2616 migration_page_queue_free(*rsp); 2617 qemu_mutex_destroy(&(*rsp)->bitmap_mutex); 2618 qemu_mutex_destroy(&(*rsp)->src_page_req_mutex); 2619 g_free(*rsp); 2620 *rsp = NULL; 2621 } 2622 } 2623 2624 static void xbzrle_cleanup(void) 2625 { 2626 XBZRLE_cache_lock(); 2627 if (XBZRLE.cache) { 2628 cache_fini(XBZRLE.cache); 2629 g_free(XBZRLE.encoded_buf); 2630 g_free(XBZRLE.current_buf); 2631 g_free(XBZRLE.zero_target_page); 2632 XBZRLE.cache = NULL; 2633 XBZRLE.encoded_buf = NULL; 2634 XBZRLE.current_buf = NULL; 2635 XBZRLE.zero_target_page = NULL; 2636 } 2637 XBZRLE_cache_unlock(); 2638 } 2639 2640 static void ram_save_cleanup(void *opaque) 2641 { 2642 RAMState **rsp = opaque; 2643 RAMBlock *block; 2644 2645 /* caller have hold iothread lock or is in a bh, so there is 2646 * no writing race against this migration_bitmap 2647 */ 2648 memory_global_dirty_log_stop(); 2649 2650 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 2651 g_free(block->bmap); 2652 block->bmap = NULL; 2653 g_free(block->unsentmap); 2654 block->unsentmap = NULL; 2655 } 2656 2657 xbzrle_cleanup(); 2658 compress_threads_save_cleanup(); 2659 ram_state_cleanup(rsp); 2660 } 2661 2662 static void ram_state_reset(RAMState *rs) 2663 { 2664 rs->last_seen_block = NULL; 2665 rs->last_sent_block = NULL; 2666 rs->last_page = 0; 2667 rs->last_version = ram_list.version; 2668 rs->ram_bulk_stage = true; 2669 rs->fpo_enabled = false; 2670 } 2671 2672 #define MAX_WAIT 50 /* ms, half buffered_file limit */ 2673 2674 /* 2675 * 'expected' is the value you expect the bitmap mostly to be full 2676 * of; it won't bother printing lines that are all this value. 2677 * If 'todump' is null the migration bitmap is dumped. 2678 */ 2679 void ram_debug_dump_bitmap(unsigned long *todump, bool expected, 2680 unsigned long pages) 2681 { 2682 int64_t cur; 2683 int64_t linelen = 128; 2684 char linebuf[129]; 2685 2686 for (cur = 0; cur < pages; cur += linelen) { 2687 int64_t curb; 2688 bool found = false; 2689 /* 2690 * Last line; catch the case where the line length 2691 * is longer than remaining ram 2692 */ 2693 if (cur + linelen > pages) { 2694 linelen = pages - cur; 2695 } 2696 for (curb = 0; curb < linelen; curb++) { 2697 bool thisbit = test_bit(cur + curb, todump); 2698 linebuf[curb] = thisbit ? '1' : '.'; 2699 found = found || (thisbit != expected); 2700 } 2701 if (found) { 2702 linebuf[curb] = '\0'; 2703 fprintf(stderr, "0x%08" PRIx64 " : %s\n", cur, linebuf); 2704 } 2705 } 2706 } 2707 2708 /* **** functions for postcopy ***** */ 2709 2710 void ram_postcopy_migrated_memory_release(MigrationState *ms) 2711 { 2712 struct RAMBlock *block; 2713 2714 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 2715 unsigned long *bitmap = block->bmap; 2716 unsigned long range = block->used_length >> TARGET_PAGE_BITS; 2717 unsigned long run_start = find_next_zero_bit(bitmap, range, 0); 2718 2719 while (run_start < range) { 2720 unsigned long run_end = find_next_bit(bitmap, range, run_start + 1); 2721 ram_discard_range(block->idstr, run_start << TARGET_PAGE_BITS, 2722 (run_end - run_start) << TARGET_PAGE_BITS); 2723 run_start = find_next_zero_bit(bitmap, range, run_end + 1); 2724 } 2725 } 2726 } 2727 2728 /** 2729 * postcopy_send_discard_bm_ram: discard a RAMBlock 2730 * 2731 * Returns zero on success 2732 * 2733 * Callback from postcopy_each_ram_send_discard for each RAMBlock 2734 * Note: At this point the 'unsentmap' is the processed bitmap combined 2735 * with the dirtymap; so a '1' means it's either dirty or unsent. 2736 * 2737 * @ms: current migration state 2738 * @pds: state for postcopy 2739 * @start: RAMBlock starting page 2740 * @length: RAMBlock size 2741 */ 2742 static int postcopy_send_discard_bm_ram(MigrationState *ms, 2743 PostcopyDiscardState *pds, 2744 RAMBlock *block) 2745 { 2746 unsigned long end = block->used_length >> TARGET_PAGE_BITS; 2747 unsigned long current; 2748 unsigned long *unsentmap = block->unsentmap; 2749 2750 for (current = 0; current < end; ) { 2751 unsigned long one = find_next_bit(unsentmap, end, current); 2752 2753 if (one <= end) { 2754 unsigned long zero = find_next_zero_bit(unsentmap, end, one + 1); 2755 unsigned long discard_length; 2756 2757 if (zero >= end) { 2758 discard_length = end - one; 2759 } else { 2760 discard_length = zero - one; 2761 } 2762 if (discard_length) { 2763 postcopy_discard_send_range(ms, pds, one, discard_length); 2764 } 2765 current = one + discard_length; 2766 } else { 2767 current = one; 2768 } 2769 } 2770 2771 return 0; 2772 } 2773 2774 /** 2775 * postcopy_each_ram_send_discard: discard all RAMBlocks 2776 * 2777 * Returns 0 for success or negative for error 2778 * 2779 * Utility for the outgoing postcopy code. 2780 * Calls postcopy_send_discard_bm_ram for each RAMBlock 2781 * passing it bitmap indexes and name. 2782 * (qemu_ram_foreach_block ends up passing unscaled lengths 2783 * which would mean postcopy code would have to deal with target page) 2784 * 2785 * @ms: current migration state 2786 */ 2787 static int postcopy_each_ram_send_discard(MigrationState *ms) 2788 { 2789 struct RAMBlock *block; 2790 int ret; 2791 2792 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 2793 PostcopyDiscardState *pds = 2794 postcopy_discard_send_init(ms, block->idstr); 2795 2796 /* 2797 * Postcopy sends chunks of bitmap over the wire, but it 2798 * just needs indexes at this point, avoids it having 2799 * target page specific code. 2800 */ 2801 ret = postcopy_send_discard_bm_ram(ms, pds, block); 2802 postcopy_discard_send_finish(ms, pds); 2803 if (ret) { 2804 return ret; 2805 } 2806 } 2807 2808 return 0; 2809 } 2810 2811 /** 2812 * postcopy_chunk_hostpages_pass: canocalize bitmap in hostpages 2813 * 2814 * Helper for postcopy_chunk_hostpages; it's called twice to 2815 * canonicalize the two bitmaps, that are similar, but one is 2816 * inverted. 2817 * 2818 * Postcopy requires that all target pages in a hostpage are dirty or 2819 * clean, not a mix. This function canonicalizes the bitmaps. 2820 * 2821 * @ms: current migration state 2822 * @unsent_pass: if true we need to canonicalize partially unsent host pages 2823 * otherwise we need to canonicalize partially dirty host pages 2824 * @block: block that contains the page we want to canonicalize 2825 * @pds: state for postcopy 2826 */ 2827 static void postcopy_chunk_hostpages_pass(MigrationState *ms, bool unsent_pass, 2828 RAMBlock *block, 2829 PostcopyDiscardState *pds) 2830 { 2831 RAMState *rs = ram_state; 2832 unsigned long *bitmap = block->bmap; 2833 unsigned long *unsentmap = block->unsentmap; 2834 unsigned int host_ratio = block->page_size / TARGET_PAGE_SIZE; 2835 unsigned long pages = block->used_length >> TARGET_PAGE_BITS; 2836 unsigned long run_start; 2837 2838 if (block->page_size == TARGET_PAGE_SIZE) { 2839 /* Easy case - TPS==HPS for a non-huge page RAMBlock */ 2840 return; 2841 } 2842 2843 if (unsent_pass) { 2844 /* Find a sent page */ 2845 run_start = find_next_zero_bit(unsentmap, pages, 0); 2846 } else { 2847 /* Find a dirty page */ 2848 run_start = find_next_bit(bitmap, pages, 0); 2849 } 2850 2851 while (run_start < pages) { 2852 bool do_fixup = false; 2853 unsigned long fixup_start_addr; 2854 unsigned long host_offset; 2855 2856 /* 2857 * If the start of this run of pages is in the middle of a host 2858 * page, then we need to fixup this host page. 2859 */ 2860 host_offset = run_start % host_ratio; 2861 if (host_offset) { 2862 do_fixup = true; 2863 run_start -= host_offset; 2864 fixup_start_addr = run_start; 2865 /* For the next pass */ 2866 run_start = run_start + host_ratio; 2867 } else { 2868 /* Find the end of this run */ 2869 unsigned long run_end; 2870 if (unsent_pass) { 2871 run_end = find_next_bit(unsentmap, pages, run_start + 1); 2872 } else { 2873 run_end = find_next_zero_bit(bitmap, pages, run_start + 1); 2874 } 2875 /* 2876 * If the end isn't at the start of a host page, then the 2877 * run doesn't finish at the end of a host page 2878 * and we need to discard. 2879 */ 2880 host_offset = run_end % host_ratio; 2881 if (host_offset) { 2882 do_fixup = true; 2883 fixup_start_addr = run_end - host_offset; 2884 /* 2885 * This host page has gone, the next loop iteration starts 2886 * from after the fixup 2887 */ 2888 run_start = fixup_start_addr + host_ratio; 2889 } else { 2890 /* 2891 * No discards on this iteration, next loop starts from 2892 * next sent/dirty page 2893 */ 2894 run_start = run_end + 1; 2895 } 2896 } 2897 2898 if (do_fixup) { 2899 unsigned long page; 2900 2901 /* Tell the destination to discard this page */ 2902 if (unsent_pass || !test_bit(fixup_start_addr, unsentmap)) { 2903 /* For the unsent_pass we: 2904 * discard partially sent pages 2905 * For the !unsent_pass (dirty) we: 2906 * discard partially dirty pages that were sent 2907 * (any partially sent pages were already discarded 2908 * by the previous unsent_pass) 2909 */ 2910 postcopy_discard_send_range(ms, pds, fixup_start_addr, 2911 host_ratio); 2912 } 2913 2914 /* Clean up the bitmap */ 2915 for (page = fixup_start_addr; 2916 page < fixup_start_addr + host_ratio; page++) { 2917 /* All pages in this host page are now not sent */ 2918 set_bit(page, unsentmap); 2919 2920 /* 2921 * Remark them as dirty, updating the count for any pages 2922 * that weren't previously dirty. 2923 */ 2924 rs->migration_dirty_pages += !test_and_set_bit(page, bitmap); 2925 } 2926 } 2927 2928 if (unsent_pass) { 2929 /* Find the next sent page for the next iteration */ 2930 run_start = find_next_zero_bit(unsentmap, pages, run_start); 2931 } else { 2932 /* Find the next dirty page for the next iteration */ 2933 run_start = find_next_bit(bitmap, pages, run_start); 2934 } 2935 } 2936 } 2937 2938 /** 2939 * postcopy_chuck_hostpages: discrad any partially sent host page 2940 * 2941 * Utility for the outgoing postcopy code. 2942 * 2943 * Discard any partially sent host-page size chunks, mark any partially 2944 * dirty host-page size chunks as all dirty. In this case the host-page 2945 * is the host-page for the particular RAMBlock, i.e. it might be a huge page 2946 * 2947 * Returns zero on success 2948 * 2949 * @ms: current migration state 2950 * @block: block we want to work with 2951 */ 2952 static int postcopy_chunk_hostpages(MigrationState *ms, RAMBlock *block) 2953 { 2954 PostcopyDiscardState *pds = 2955 postcopy_discard_send_init(ms, block->idstr); 2956 2957 /* First pass: Discard all partially sent host pages */ 2958 postcopy_chunk_hostpages_pass(ms, true, block, pds); 2959 /* 2960 * Second pass: Ensure that all partially dirty host pages are made 2961 * fully dirty. 2962 */ 2963 postcopy_chunk_hostpages_pass(ms, false, block, pds); 2964 2965 postcopy_discard_send_finish(ms, pds); 2966 return 0; 2967 } 2968 2969 /** 2970 * ram_postcopy_send_discard_bitmap: transmit the discard bitmap 2971 * 2972 * Returns zero on success 2973 * 2974 * Transmit the set of pages to be discarded after precopy to the target 2975 * these are pages that: 2976 * a) Have been previously transmitted but are now dirty again 2977 * b) Pages that have never been transmitted, this ensures that 2978 * any pages on the destination that have been mapped by background 2979 * tasks get discarded (transparent huge pages is the specific concern) 2980 * Hopefully this is pretty sparse 2981 * 2982 * @ms: current migration state 2983 */ 2984 int ram_postcopy_send_discard_bitmap(MigrationState *ms) 2985 { 2986 RAMState *rs = ram_state; 2987 RAMBlock *block; 2988 int ret; 2989 2990 rcu_read_lock(); 2991 2992 /* This should be our last sync, the src is now paused */ 2993 migration_bitmap_sync(rs); 2994 2995 /* Easiest way to make sure we don't resume in the middle of a host-page */ 2996 rs->last_seen_block = NULL; 2997 rs->last_sent_block = NULL; 2998 rs->last_page = 0; 2999 3000 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3001 unsigned long pages = block->used_length >> TARGET_PAGE_BITS; 3002 unsigned long *bitmap = block->bmap; 3003 unsigned long *unsentmap = block->unsentmap; 3004 3005 if (!unsentmap) { 3006 /* We don't have a safe way to resize the sentmap, so 3007 * if the bitmap was resized it will be NULL at this 3008 * point. 3009 */ 3010 error_report("migration ram resized during precopy phase"); 3011 rcu_read_unlock(); 3012 return -EINVAL; 3013 } 3014 /* Deal with TPS != HPS and huge pages */ 3015 ret = postcopy_chunk_hostpages(ms, block); 3016 if (ret) { 3017 rcu_read_unlock(); 3018 return ret; 3019 } 3020 3021 /* 3022 * Update the unsentmap to be unsentmap = unsentmap | dirty 3023 */ 3024 bitmap_or(unsentmap, unsentmap, bitmap, pages); 3025 #ifdef DEBUG_POSTCOPY 3026 ram_debug_dump_bitmap(unsentmap, true, pages); 3027 #endif 3028 } 3029 trace_ram_postcopy_send_discard_bitmap(); 3030 3031 ret = postcopy_each_ram_send_discard(ms); 3032 rcu_read_unlock(); 3033 3034 return ret; 3035 } 3036 3037 /** 3038 * ram_discard_range: discard dirtied pages at the beginning of postcopy 3039 * 3040 * Returns zero on success 3041 * 3042 * @rbname: name of the RAMBlock of the request. NULL means the 3043 * same that last one. 3044 * @start: RAMBlock starting page 3045 * @length: RAMBlock size 3046 */ 3047 int ram_discard_range(const char *rbname, uint64_t start, size_t length) 3048 { 3049 int ret = -1; 3050 3051 trace_ram_discard_range(rbname, start, length); 3052 3053 rcu_read_lock(); 3054 RAMBlock *rb = qemu_ram_block_by_name(rbname); 3055 3056 if (!rb) { 3057 error_report("ram_discard_range: Failed to find block '%s'", rbname); 3058 goto err; 3059 } 3060 3061 /* 3062 * On source VM, we don't need to update the received bitmap since 3063 * we don't even have one. 3064 */ 3065 if (rb->receivedmap) { 3066 bitmap_clear(rb->receivedmap, start >> qemu_target_page_bits(), 3067 length >> qemu_target_page_bits()); 3068 } 3069 3070 ret = ram_block_discard_range(rb, start, length); 3071 3072 err: 3073 rcu_read_unlock(); 3074 3075 return ret; 3076 } 3077 3078 /* 3079 * For every allocation, we will try not to crash the VM if the 3080 * allocation failed. 3081 */ 3082 static int xbzrle_init(void) 3083 { 3084 Error *local_err = NULL; 3085 3086 if (!migrate_use_xbzrle()) { 3087 return 0; 3088 } 3089 3090 XBZRLE_cache_lock(); 3091 3092 XBZRLE.zero_target_page = g_try_malloc0(TARGET_PAGE_SIZE); 3093 if (!XBZRLE.zero_target_page) { 3094 error_report("%s: Error allocating zero page", __func__); 3095 goto err_out; 3096 } 3097 3098 XBZRLE.cache = cache_init(migrate_xbzrle_cache_size(), 3099 TARGET_PAGE_SIZE, &local_err); 3100 if (!XBZRLE.cache) { 3101 error_report_err(local_err); 3102 goto free_zero_page; 3103 } 3104 3105 XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE); 3106 if (!XBZRLE.encoded_buf) { 3107 error_report("%s: Error allocating encoded_buf", __func__); 3108 goto free_cache; 3109 } 3110 3111 XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE); 3112 if (!XBZRLE.current_buf) { 3113 error_report("%s: Error allocating current_buf", __func__); 3114 goto free_encoded_buf; 3115 } 3116 3117 /* We are all good */ 3118 XBZRLE_cache_unlock(); 3119 return 0; 3120 3121 free_encoded_buf: 3122 g_free(XBZRLE.encoded_buf); 3123 XBZRLE.encoded_buf = NULL; 3124 free_cache: 3125 cache_fini(XBZRLE.cache); 3126 XBZRLE.cache = NULL; 3127 free_zero_page: 3128 g_free(XBZRLE.zero_target_page); 3129 XBZRLE.zero_target_page = NULL; 3130 err_out: 3131 XBZRLE_cache_unlock(); 3132 return -ENOMEM; 3133 } 3134 3135 static int ram_state_init(RAMState **rsp) 3136 { 3137 *rsp = g_try_new0(RAMState, 1); 3138 3139 if (!*rsp) { 3140 error_report("%s: Init ramstate fail", __func__); 3141 return -1; 3142 } 3143 3144 qemu_mutex_init(&(*rsp)->bitmap_mutex); 3145 qemu_mutex_init(&(*rsp)->src_page_req_mutex); 3146 QSIMPLEQ_INIT(&(*rsp)->src_page_requests); 3147 3148 /* 3149 * Count the total number of pages used by ram blocks not including any 3150 * gaps due to alignment or unplugs. 3151 */ 3152 (*rsp)->migration_dirty_pages = ram_bytes_total() >> TARGET_PAGE_BITS; 3153 3154 ram_state_reset(*rsp); 3155 3156 return 0; 3157 } 3158 3159 static void ram_list_init_bitmaps(void) 3160 { 3161 RAMBlock *block; 3162 unsigned long pages; 3163 3164 /* Skip setting bitmap if there is no RAM */ 3165 if (ram_bytes_total()) { 3166 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3167 pages = block->max_length >> TARGET_PAGE_BITS; 3168 block->bmap = bitmap_new(pages); 3169 bitmap_set(block->bmap, 0, pages); 3170 if (migrate_postcopy_ram()) { 3171 block->unsentmap = bitmap_new(pages); 3172 bitmap_set(block->unsentmap, 0, pages); 3173 } 3174 } 3175 } 3176 } 3177 3178 static void ram_init_bitmaps(RAMState *rs) 3179 { 3180 /* For memory_global_dirty_log_start below. */ 3181 qemu_mutex_lock_iothread(); 3182 qemu_mutex_lock_ramlist(); 3183 rcu_read_lock(); 3184 3185 ram_list_init_bitmaps(); 3186 memory_global_dirty_log_start(); 3187 migration_bitmap_sync_precopy(rs); 3188 3189 rcu_read_unlock(); 3190 qemu_mutex_unlock_ramlist(); 3191 qemu_mutex_unlock_iothread(); 3192 } 3193 3194 static int ram_init_all(RAMState **rsp) 3195 { 3196 if (ram_state_init(rsp)) { 3197 return -1; 3198 } 3199 3200 if (xbzrle_init()) { 3201 ram_state_cleanup(rsp); 3202 return -1; 3203 } 3204 3205 ram_init_bitmaps(*rsp); 3206 3207 return 0; 3208 } 3209 3210 static void ram_state_resume_prepare(RAMState *rs, QEMUFile *out) 3211 { 3212 RAMBlock *block; 3213 uint64_t pages = 0; 3214 3215 /* 3216 * Postcopy is not using xbzrle/compression, so no need for that. 3217 * Also, since source are already halted, we don't need to care 3218 * about dirty page logging as well. 3219 */ 3220 3221 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3222 pages += bitmap_count_one(block->bmap, 3223 block->used_length >> TARGET_PAGE_BITS); 3224 } 3225 3226 /* This may not be aligned with current bitmaps. Recalculate. */ 3227 rs->migration_dirty_pages = pages; 3228 3229 rs->last_seen_block = NULL; 3230 rs->last_sent_block = NULL; 3231 rs->last_page = 0; 3232 rs->last_version = ram_list.version; 3233 /* 3234 * Disable the bulk stage, otherwise we'll resend the whole RAM no 3235 * matter what we have sent. 3236 */ 3237 rs->ram_bulk_stage = false; 3238 3239 /* Update RAMState cache of output QEMUFile */ 3240 rs->f = out; 3241 3242 trace_ram_state_resume_prepare(pages); 3243 } 3244 3245 /* 3246 * This function clears bits of the free pages reported by the caller from the 3247 * migration dirty bitmap. @addr is the host address corresponding to the 3248 * start of the continuous guest free pages, and @len is the total bytes of 3249 * those pages. 3250 */ 3251 void qemu_guest_free_page_hint(void *addr, size_t len) 3252 { 3253 RAMBlock *block; 3254 ram_addr_t offset; 3255 size_t used_len, start, npages; 3256 MigrationState *s = migrate_get_current(); 3257 3258 /* This function is currently expected to be used during live migration */ 3259 if (!migration_is_setup_or_active(s->state)) { 3260 return; 3261 } 3262 3263 for (; len > 0; len -= used_len, addr += used_len) { 3264 block = qemu_ram_block_from_host(addr, false, &offset); 3265 if (unlikely(!block || offset >= block->used_length)) { 3266 /* 3267 * The implementation might not support RAMBlock resize during 3268 * live migration, but it could happen in theory with future 3269 * updates. So we add a check here to capture that case. 3270 */ 3271 error_report_once("%s unexpected error", __func__); 3272 return; 3273 } 3274 3275 if (len <= block->used_length - offset) { 3276 used_len = len; 3277 } else { 3278 used_len = block->used_length - offset; 3279 } 3280 3281 start = offset >> TARGET_PAGE_BITS; 3282 npages = used_len >> TARGET_PAGE_BITS; 3283 3284 qemu_mutex_lock(&ram_state->bitmap_mutex); 3285 ram_state->migration_dirty_pages -= 3286 bitmap_count_one_with_offset(block->bmap, start, npages); 3287 bitmap_clear(block->bmap, start, npages); 3288 qemu_mutex_unlock(&ram_state->bitmap_mutex); 3289 } 3290 } 3291 3292 /* 3293 * Each of ram_save_setup, ram_save_iterate and ram_save_complete has 3294 * long-running RCU critical section. When rcu-reclaims in the code 3295 * start to become numerous it will be necessary to reduce the 3296 * granularity of these critical sections. 3297 */ 3298 3299 /** 3300 * ram_save_setup: Setup RAM for migration 3301 * 3302 * Returns zero to indicate success and negative for error 3303 * 3304 * @f: QEMUFile where to send the data 3305 * @opaque: RAMState pointer 3306 */ 3307 static int ram_save_setup(QEMUFile *f, void *opaque) 3308 { 3309 RAMState **rsp = opaque; 3310 RAMBlock *block; 3311 3312 if (compress_threads_save_setup()) { 3313 return -1; 3314 } 3315 3316 /* migration has already setup the bitmap, reuse it. */ 3317 if (!migration_in_colo_state()) { 3318 if (ram_init_all(rsp) != 0) { 3319 compress_threads_save_cleanup(); 3320 return -1; 3321 } 3322 } 3323 (*rsp)->f = f; 3324 3325 rcu_read_lock(); 3326 3327 qemu_put_be64(f, ram_bytes_total_common(true) | RAM_SAVE_FLAG_MEM_SIZE); 3328 3329 RAMBLOCK_FOREACH_MIGRATABLE(block) { 3330 qemu_put_byte(f, strlen(block->idstr)); 3331 qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr)); 3332 qemu_put_be64(f, block->used_length); 3333 if (migrate_postcopy_ram() && block->page_size != qemu_host_page_size) { 3334 qemu_put_be64(f, block->page_size); 3335 } 3336 if (migrate_ignore_shared()) { 3337 qemu_put_be64(f, block->mr->addr); 3338 qemu_put_byte(f, ramblock_is_ignored(block) ? 1 : 0); 3339 } 3340 } 3341 3342 rcu_read_unlock(); 3343 3344 ram_control_before_iterate(f, RAM_CONTROL_SETUP); 3345 ram_control_after_iterate(f, RAM_CONTROL_SETUP); 3346 3347 multifd_send_sync_main(); 3348 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 3349 qemu_fflush(f); 3350 3351 return 0; 3352 } 3353 3354 /** 3355 * ram_save_iterate: iterative stage for migration 3356 * 3357 * Returns zero to indicate success and negative for error 3358 * 3359 * @f: QEMUFile where to send the data 3360 * @opaque: RAMState pointer 3361 */ 3362 static int ram_save_iterate(QEMUFile *f, void *opaque) 3363 { 3364 RAMState **temp = opaque; 3365 RAMState *rs = *temp; 3366 int ret; 3367 int i; 3368 int64_t t0; 3369 int done = 0; 3370 3371 if (blk_mig_bulk_active()) { 3372 /* Avoid transferring ram during bulk phase of block migration as 3373 * the bulk phase will usually take a long time and transferring 3374 * ram updates during that time is pointless. */ 3375 goto out; 3376 } 3377 3378 rcu_read_lock(); 3379 if (ram_list.version != rs->last_version) { 3380 ram_state_reset(rs); 3381 } 3382 3383 /* Read version before ram_list.blocks */ 3384 smp_rmb(); 3385 3386 ram_control_before_iterate(f, RAM_CONTROL_ROUND); 3387 3388 t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 3389 i = 0; 3390 while ((ret = qemu_file_rate_limit(f)) == 0 || 3391 !QSIMPLEQ_EMPTY(&rs->src_page_requests)) { 3392 int pages; 3393 3394 if (qemu_file_get_error(f)) { 3395 break; 3396 } 3397 3398 pages = ram_find_and_save_block(rs, false); 3399 /* no more pages to sent */ 3400 if (pages == 0) { 3401 done = 1; 3402 break; 3403 } 3404 3405 if (pages < 0) { 3406 qemu_file_set_error(f, pages); 3407 break; 3408 } 3409 3410 rs->target_page_count += pages; 3411 3412 /* we want to check in the 1st loop, just in case it was the 1st time 3413 and we had to sync the dirty bitmap. 3414 qemu_get_clock_ns() is a bit expensive, so we only check each some 3415 iterations 3416 */ 3417 if ((i & 63) == 0) { 3418 uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) / 1000000; 3419 if (t1 > MAX_WAIT) { 3420 trace_ram_save_iterate_big_wait(t1, i); 3421 break; 3422 } 3423 } 3424 i++; 3425 } 3426 rcu_read_unlock(); 3427 3428 /* 3429 * Must occur before EOS (or any QEMUFile operation) 3430 * because of RDMA protocol. 3431 */ 3432 ram_control_after_iterate(f, RAM_CONTROL_ROUND); 3433 3434 multifd_send_sync_main(); 3435 out: 3436 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 3437 qemu_fflush(f); 3438 ram_counters.transferred += 8; 3439 3440 ret = qemu_file_get_error(f); 3441 if (ret < 0) { 3442 return ret; 3443 } 3444 3445 return done; 3446 } 3447 3448 /** 3449 * ram_save_complete: function called to send the remaining amount of ram 3450 * 3451 * Returns zero to indicate success or negative on error 3452 * 3453 * Called with iothread lock 3454 * 3455 * @f: QEMUFile where to send the data 3456 * @opaque: RAMState pointer 3457 */ 3458 static int ram_save_complete(QEMUFile *f, void *opaque) 3459 { 3460 RAMState **temp = opaque; 3461 RAMState *rs = *temp; 3462 int ret = 0; 3463 3464 rcu_read_lock(); 3465 3466 if (!migration_in_postcopy()) { 3467 migration_bitmap_sync_precopy(rs); 3468 } 3469 3470 ram_control_before_iterate(f, RAM_CONTROL_FINISH); 3471 3472 /* try transferring iterative blocks of memory */ 3473 3474 /* flush all remaining blocks regardless of rate limiting */ 3475 while (true) { 3476 int pages; 3477 3478 pages = ram_find_and_save_block(rs, !migration_in_colo_state()); 3479 /* no more blocks to sent */ 3480 if (pages == 0) { 3481 break; 3482 } 3483 if (pages < 0) { 3484 ret = pages; 3485 break; 3486 } 3487 } 3488 3489 flush_compressed_data(rs); 3490 ram_control_after_iterate(f, RAM_CONTROL_FINISH); 3491 3492 rcu_read_unlock(); 3493 3494 multifd_send_sync_main(); 3495 qemu_put_be64(f, RAM_SAVE_FLAG_EOS); 3496 qemu_fflush(f); 3497 3498 return ret; 3499 } 3500 3501 static void ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size, 3502 uint64_t *res_precopy_only, 3503 uint64_t *res_compatible, 3504 uint64_t *res_postcopy_only) 3505 { 3506 RAMState **temp = opaque; 3507 RAMState *rs = *temp; 3508 uint64_t remaining_size; 3509 3510 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE; 3511 3512 if (!migration_in_postcopy() && 3513 remaining_size < max_size) { 3514 qemu_mutex_lock_iothread(); 3515 rcu_read_lock(); 3516 migration_bitmap_sync_precopy(rs); 3517 rcu_read_unlock(); 3518 qemu_mutex_unlock_iothread(); 3519 remaining_size = rs->migration_dirty_pages * TARGET_PAGE_SIZE; 3520 } 3521 3522 if (migrate_postcopy_ram()) { 3523 /* We can do postcopy, and all the data is postcopiable */ 3524 *res_compatible += remaining_size; 3525 } else { 3526 *res_precopy_only += remaining_size; 3527 } 3528 } 3529 3530 static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host) 3531 { 3532 unsigned int xh_len; 3533 int xh_flags; 3534 uint8_t *loaded_data; 3535 3536 /* extract RLE header */ 3537 xh_flags = qemu_get_byte(f); 3538 xh_len = qemu_get_be16(f); 3539 3540 if (xh_flags != ENCODING_FLAG_XBZRLE) { 3541 error_report("Failed to load XBZRLE page - wrong compression!"); 3542 return -1; 3543 } 3544 3545 if (xh_len > TARGET_PAGE_SIZE) { 3546 error_report("Failed to load XBZRLE page - len overflow!"); 3547 return -1; 3548 } 3549 loaded_data = XBZRLE.decoded_buf; 3550 /* load data and decode */ 3551 /* it can change loaded_data to point to an internal buffer */ 3552 qemu_get_buffer_in_place(f, &loaded_data, xh_len); 3553 3554 /* decode RLE */ 3555 if (xbzrle_decode_buffer(loaded_data, xh_len, host, 3556 TARGET_PAGE_SIZE) == -1) { 3557 error_report("Failed to load XBZRLE page - decode error!"); 3558 return -1; 3559 } 3560 3561 return 0; 3562 } 3563 3564 /** 3565 * ram_block_from_stream: read a RAMBlock id from the migration stream 3566 * 3567 * Must be called from within a rcu critical section. 3568 * 3569 * Returns a pointer from within the RCU-protected ram_list. 3570 * 3571 * @f: QEMUFile where to read the data from 3572 * @flags: Page flags (mostly to see if it's a continuation of previous block) 3573 */ 3574 static inline RAMBlock *ram_block_from_stream(QEMUFile *f, int flags) 3575 { 3576 static RAMBlock *block = NULL; 3577 char id[256]; 3578 uint8_t len; 3579 3580 if (flags & RAM_SAVE_FLAG_CONTINUE) { 3581 if (!block) { 3582 error_report("Ack, bad migration stream!"); 3583 return NULL; 3584 } 3585 return block; 3586 } 3587 3588 len = qemu_get_byte(f); 3589 qemu_get_buffer(f, (uint8_t *)id, len); 3590 id[len] = 0; 3591 3592 block = qemu_ram_block_by_name(id); 3593 if (!block) { 3594 error_report("Can't find block %s", id); 3595 return NULL; 3596 } 3597 3598 if (ramblock_is_ignored(block)) { 3599 error_report("block %s should not be migrated !", id); 3600 return NULL; 3601 } 3602 3603 return block; 3604 } 3605 3606 static inline void *host_from_ram_block_offset(RAMBlock *block, 3607 ram_addr_t offset) 3608 { 3609 if (!offset_in_ramblock(block, offset)) { 3610 return NULL; 3611 } 3612 3613 return block->host + offset; 3614 } 3615 3616 static inline void *colo_cache_from_block_offset(RAMBlock *block, 3617 ram_addr_t offset) 3618 { 3619 if (!offset_in_ramblock(block, offset)) { 3620 return NULL; 3621 } 3622 if (!block->colo_cache) { 3623 error_report("%s: colo_cache is NULL in block :%s", 3624 __func__, block->idstr); 3625 return NULL; 3626 } 3627 3628 /* 3629 * During colo checkpoint, we need bitmap of these migrated pages. 3630 * It help us to decide which pages in ram cache should be flushed 3631 * into VM's RAM later. 3632 */ 3633 if (!test_and_set_bit(offset >> TARGET_PAGE_BITS, block->bmap)) { 3634 ram_state->migration_dirty_pages++; 3635 } 3636 return block->colo_cache + offset; 3637 } 3638 3639 /** 3640 * ram_handle_compressed: handle the zero page case 3641 * 3642 * If a page (or a whole RDMA chunk) has been 3643 * determined to be zero, then zap it. 3644 * 3645 * @host: host address for the zero page 3646 * @ch: what the page is filled from. We only support zero 3647 * @size: size of the zero page 3648 */ 3649 void ram_handle_compressed(void *host, uint8_t ch, uint64_t size) 3650 { 3651 if (ch != 0 || !is_zero_range(host, size)) { 3652 memset(host, ch, size); 3653 } 3654 } 3655 3656 /* return the size after decompression, or negative value on error */ 3657 static int 3658 qemu_uncompress_data(z_stream *stream, uint8_t *dest, size_t dest_len, 3659 const uint8_t *source, size_t source_len) 3660 { 3661 int err; 3662 3663 err = inflateReset(stream); 3664 if (err != Z_OK) { 3665 return -1; 3666 } 3667 3668 stream->avail_in = source_len; 3669 stream->next_in = (uint8_t *)source; 3670 stream->avail_out = dest_len; 3671 stream->next_out = dest; 3672 3673 err = inflate(stream, Z_NO_FLUSH); 3674 if (err != Z_STREAM_END) { 3675 return -1; 3676 } 3677 3678 return stream->total_out; 3679 } 3680 3681 static void *do_data_decompress(void *opaque) 3682 { 3683 DecompressParam *param = opaque; 3684 unsigned long pagesize; 3685 uint8_t *des; 3686 int len, ret; 3687 3688 qemu_mutex_lock(¶m->mutex); 3689 while (!param->quit) { 3690 if (param->des) { 3691 des = param->des; 3692 len = param->len; 3693 param->des = 0; 3694 qemu_mutex_unlock(¶m->mutex); 3695 3696 pagesize = TARGET_PAGE_SIZE; 3697 3698 ret = qemu_uncompress_data(¶m->stream, des, pagesize, 3699 param->compbuf, len); 3700 if (ret < 0 && migrate_get_current()->decompress_error_check) { 3701 error_report("decompress data failed"); 3702 qemu_file_set_error(decomp_file, ret); 3703 } 3704 3705 qemu_mutex_lock(&decomp_done_lock); 3706 param->done = true; 3707 qemu_cond_signal(&decomp_done_cond); 3708 qemu_mutex_unlock(&decomp_done_lock); 3709 3710 qemu_mutex_lock(¶m->mutex); 3711 } else { 3712 qemu_cond_wait(¶m->cond, ¶m->mutex); 3713 } 3714 } 3715 qemu_mutex_unlock(¶m->mutex); 3716 3717 return NULL; 3718 } 3719 3720 static int wait_for_decompress_done(void) 3721 { 3722 int idx, thread_count; 3723 3724 if (!migrate_use_compression()) { 3725 return 0; 3726 } 3727 3728 thread_count = migrate_decompress_threads(); 3729 qemu_mutex_lock(&decomp_done_lock); 3730 for (idx = 0; idx < thread_count; idx++) { 3731 while (!decomp_param[idx].done) { 3732 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock); 3733 } 3734 } 3735 qemu_mutex_unlock(&decomp_done_lock); 3736 return qemu_file_get_error(decomp_file); 3737 } 3738 3739 static void compress_threads_load_cleanup(void) 3740 { 3741 int i, thread_count; 3742 3743 if (!migrate_use_compression()) { 3744 return; 3745 } 3746 thread_count = migrate_decompress_threads(); 3747 for (i = 0; i < thread_count; i++) { 3748 /* 3749 * we use it as a indicator which shows if the thread is 3750 * properly init'd or not 3751 */ 3752 if (!decomp_param[i].compbuf) { 3753 break; 3754 } 3755 3756 qemu_mutex_lock(&decomp_param[i].mutex); 3757 decomp_param[i].quit = true; 3758 qemu_cond_signal(&decomp_param[i].cond); 3759 qemu_mutex_unlock(&decomp_param[i].mutex); 3760 } 3761 for (i = 0; i < thread_count; i++) { 3762 if (!decomp_param[i].compbuf) { 3763 break; 3764 } 3765 3766 qemu_thread_join(decompress_threads + i); 3767 qemu_mutex_destroy(&decomp_param[i].mutex); 3768 qemu_cond_destroy(&decomp_param[i].cond); 3769 inflateEnd(&decomp_param[i].stream); 3770 g_free(decomp_param[i].compbuf); 3771 decomp_param[i].compbuf = NULL; 3772 } 3773 g_free(decompress_threads); 3774 g_free(decomp_param); 3775 decompress_threads = NULL; 3776 decomp_param = NULL; 3777 decomp_file = NULL; 3778 } 3779 3780 static int compress_threads_load_setup(QEMUFile *f) 3781 { 3782 int i, thread_count; 3783 3784 if (!migrate_use_compression()) { 3785 return 0; 3786 } 3787 3788 thread_count = migrate_decompress_threads(); 3789 decompress_threads = g_new0(QemuThread, thread_count); 3790 decomp_param = g_new0(DecompressParam, thread_count); 3791 qemu_mutex_init(&decomp_done_lock); 3792 qemu_cond_init(&decomp_done_cond); 3793 decomp_file = f; 3794 for (i = 0; i < thread_count; i++) { 3795 if (inflateInit(&decomp_param[i].stream) != Z_OK) { 3796 goto exit; 3797 } 3798 3799 decomp_param[i].compbuf = g_malloc0(compressBound(TARGET_PAGE_SIZE)); 3800 qemu_mutex_init(&decomp_param[i].mutex); 3801 qemu_cond_init(&decomp_param[i].cond); 3802 decomp_param[i].done = true; 3803 decomp_param[i].quit = false; 3804 qemu_thread_create(decompress_threads + i, "decompress", 3805 do_data_decompress, decomp_param + i, 3806 QEMU_THREAD_JOINABLE); 3807 } 3808 return 0; 3809 exit: 3810 compress_threads_load_cleanup(); 3811 return -1; 3812 } 3813 3814 static void decompress_data_with_multi_threads(QEMUFile *f, 3815 void *host, int len) 3816 { 3817 int idx, thread_count; 3818 3819 thread_count = migrate_decompress_threads(); 3820 qemu_mutex_lock(&decomp_done_lock); 3821 while (true) { 3822 for (idx = 0; idx < thread_count; idx++) { 3823 if (decomp_param[idx].done) { 3824 decomp_param[idx].done = false; 3825 qemu_mutex_lock(&decomp_param[idx].mutex); 3826 qemu_get_buffer(f, decomp_param[idx].compbuf, len); 3827 decomp_param[idx].des = host; 3828 decomp_param[idx].len = len; 3829 qemu_cond_signal(&decomp_param[idx].cond); 3830 qemu_mutex_unlock(&decomp_param[idx].mutex); 3831 break; 3832 } 3833 } 3834 if (idx < thread_count) { 3835 break; 3836 } else { 3837 qemu_cond_wait(&decomp_done_cond, &decomp_done_lock); 3838 } 3839 } 3840 qemu_mutex_unlock(&decomp_done_lock); 3841 } 3842 3843 /* 3844 * colo cache: this is for secondary VM, we cache the whole 3845 * memory of the secondary VM, it is need to hold the global lock 3846 * to call this helper. 3847 */ 3848 int colo_init_ram_cache(void) 3849 { 3850 RAMBlock *block; 3851 3852 rcu_read_lock(); 3853 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3854 block->colo_cache = qemu_anon_ram_alloc(block->used_length, 3855 NULL, 3856 false); 3857 if (!block->colo_cache) { 3858 error_report("%s: Can't alloc memory for COLO cache of block %s," 3859 "size 0x" RAM_ADDR_FMT, __func__, block->idstr, 3860 block->used_length); 3861 goto out_locked; 3862 } 3863 memcpy(block->colo_cache, block->host, block->used_length); 3864 } 3865 rcu_read_unlock(); 3866 /* 3867 * Record the dirty pages that sent by PVM, we use this dirty bitmap together 3868 * with to decide which page in cache should be flushed into SVM's RAM. Here 3869 * we use the same name 'ram_bitmap' as for migration. 3870 */ 3871 if (ram_bytes_total()) { 3872 RAMBlock *block; 3873 3874 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3875 unsigned long pages = block->max_length >> TARGET_PAGE_BITS; 3876 3877 block->bmap = bitmap_new(pages); 3878 bitmap_set(block->bmap, 0, pages); 3879 } 3880 } 3881 ram_state = g_new0(RAMState, 1); 3882 ram_state->migration_dirty_pages = 0; 3883 memory_global_dirty_log_start(); 3884 3885 return 0; 3886 3887 out_locked: 3888 3889 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3890 if (block->colo_cache) { 3891 qemu_anon_ram_free(block->colo_cache, block->used_length); 3892 block->colo_cache = NULL; 3893 } 3894 } 3895 3896 rcu_read_unlock(); 3897 return -errno; 3898 } 3899 3900 /* It is need to hold the global lock to call this helper */ 3901 void colo_release_ram_cache(void) 3902 { 3903 RAMBlock *block; 3904 3905 memory_global_dirty_log_stop(); 3906 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3907 g_free(block->bmap); 3908 block->bmap = NULL; 3909 } 3910 3911 rcu_read_lock(); 3912 3913 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 3914 if (block->colo_cache) { 3915 qemu_anon_ram_free(block->colo_cache, block->used_length); 3916 block->colo_cache = NULL; 3917 } 3918 } 3919 3920 rcu_read_unlock(); 3921 g_free(ram_state); 3922 ram_state = NULL; 3923 } 3924 3925 /** 3926 * ram_load_setup: Setup RAM for migration incoming side 3927 * 3928 * Returns zero to indicate success and negative for error 3929 * 3930 * @f: QEMUFile where to receive the data 3931 * @opaque: RAMState pointer 3932 */ 3933 static int ram_load_setup(QEMUFile *f, void *opaque) 3934 { 3935 if (compress_threads_load_setup(f)) { 3936 return -1; 3937 } 3938 3939 xbzrle_load_setup(); 3940 ramblock_recv_map_init(); 3941 3942 return 0; 3943 } 3944 3945 static int ram_load_cleanup(void *opaque) 3946 { 3947 RAMBlock *rb; 3948 3949 RAMBLOCK_FOREACH_NOT_IGNORED(rb) { 3950 if (ramblock_is_pmem(rb)) { 3951 pmem_persist(rb->host, rb->used_length); 3952 } 3953 } 3954 3955 xbzrle_load_cleanup(); 3956 compress_threads_load_cleanup(); 3957 3958 RAMBLOCK_FOREACH_NOT_IGNORED(rb) { 3959 g_free(rb->receivedmap); 3960 rb->receivedmap = NULL; 3961 } 3962 3963 return 0; 3964 } 3965 3966 /** 3967 * ram_postcopy_incoming_init: allocate postcopy data structures 3968 * 3969 * Returns 0 for success and negative if there was one error 3970 * 3971 * @mis: current migration incoming state 3972 * 3973 * Allocate data structures etc needed by incoming migration with 3974 * postcopy-ram. postcopy-ram's similarly names 3975 * postcopy_ram_incoming_init does the work. 3976 */ 3977 int ram_postcopy_incoming_init(MigrationIncomingState *mis) 3978 { 3979 return postcopy_ram_incoming_init(mis); 3980 } 3981 3982 /** 3983 * ram_load_postcopy: load a page in postcopy case 3984 * 3985 * Returns 0 for success or -errno in case of error 3986 * 3987 * Called in postcopy mode by ram_load(). 3988 * rcu_read_lock is taken prior to this being called. 3989 * 3990 * @f: QEMUFile where to send the data 3991 */ 3992 static int ram_load_postcopy(QEMUFile *f) 3993 { 3994 int flags = 0, ret = 0; 3995 bool place_needed = false; 3996 bool matches_target_page_size = false; 3997 MigrationIncomingState *mis = migration_incoming_get_current(); 3998 /* Temporary page that is later 'placed' */ 3999 void *postcopy_host_page = postcopy_get_tmp_page(mis); 4000 void *last_host = NULL; 4001 bool all_zero = false; 4002 4003 while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) { 4004 ram_addr_t addr; 4005 void *host = NULL; 4006 void *page_buffer = NULL; 4007 void *place_source = NULL; 4008 RAMBlock *block = NULL; 4009 uint8_t ch; 4010 4011 addr = qemu_get_be64(f); 4012 4013 /* 4014 * If qemu file error, we should stop here, and then "addr" 4015 * may be invalid 4016 */ 4017 ret = qemu_file_get_error(f); 4018 if (ret) { 4019 break; 4020 } 4021 4022 flags = addr & ~TARGET_PAGE_MASK; 4023 addr &= TARGET_PAGE_MASK; 4024 4025 trace_ram_load_postcopy_loop((uint64_t)addr, flags); 4026 place_needed = false; 4027 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE)) { 4028 block = ram_block_from_stream(f, flags); 4029 4030 host = host_from_ram_block_offset(block, addr); 4031 if (!host) { 4032 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr); 4033 ret = -EINVAL; 4034 break; 4035 } 4036 matches_target_page_size = block->page_size == TARGET_PAGE_SIZE; 4037 /* 4038 * Postcopy requires that we place whole host pages atomically; 4039 * these may be huge pages for RAMBlocks that are backed by 4040 * hugetlbfs. 4041 * To make it atomic, the data is read into a temporary page 4042 * that's moved into place later. 4043 * The migration protocol uses, possibly smaller, target-pages 4044 * however the source ensures it always sends all the components 4045 * of a host page in order. 4046 */ 4047 page_buffer = postcopy_host_page + 4048 ((uintptr_t)host & (block->page_size - 1)); 4049 /* If all TP are zero then we can optimise the place */ 4050 if (!((uintptr_t)host & (block->page_size - 1))) { 4051 all_zero = true; 4052 } else { 4053 /* not the 1st TP within the HP */ 4054 if (host != (last_host + TARGET_PAGE_SIZE)) { 4055 error_report("Non-sequential target page %p/%p", 4056 host, last_host); 4057 ret = -EINVAL; 4058 break; 4059 } 4060 } 4061 4062 4063 /* 4064 * If it's the last part of a host page then we place the host 4065 * page 4066 */ 4067 place_needed = (((uintptr_t)host + TARGET_PAGE_SIZE) & 4068 (block->page_size - 1)) == 0; 4069 place_source = postcopy_host_page; 4070 } 4071 last_host = host; 4072 4073 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) { 4074 case RAM_SAVE_FLAG_ZERO: 4075 ch = qemu_get_byte(f); 4076 memset(page_buffer, ch, TARGET_PAGE_SIZE); 4077 if (ch) { 4078 all_zero = false; 4079 } 4080 break; 4081 4082 case RAM_SAVE_FLAG_PAGE: 4083 all_zero = false; 4084 if (!matches_target_page_size) { 4085 /* For huge pages, we always use temporary buffer */ 4086 qemu_get_buffer(f, page_buffer, TARGET_PAGE_SIZE); 4087 } else { 4088 /* 4089 * For small pages that matches target page size, we 4090 * avoid the qemu_file copy. Instead we directly use 4091 * the buffer of QEMUFile to place the page. Note: we 4092 * cannot do any QEMUFile operation before using that 4093 * buffer to make sure the buffer is valid when 4094 * placing the page. 4095 */ 4096 qemu_get_buffer_in_place(f, (uint8_t **)&place_source, 4097 TARGET_PAGE_SIZE); 4098 } 4099 break; 4100 case RAM_SAVE_FLAG_EOS: 4101 /* normal exit */ 4102 multifd_recv_sync_main(); 4103 break; 4104 default: 4105 error_report("Unknown combination of migration flags: %#x" 4106 " (postcopy mode)", flags); 4107 ret = -EINVAL; 4108 break; 4109 } 4110 4111 /* Detect for any possible file errors */ 4112 if (!ret && qemu_file_get_error(f)) { 4113 ret = qemu_file_get_error(f); 4114 } 4115 4116 if (!ret && place_needed) { 4117 /* This gets called at the last target page in the host page */ 4118 void *place_dest = host + TARGET_PAGE_SIZE - block->page_size; 4119 4120 if (all_zero) { 4121 ret = postcopy_place_page_zero(mis, place_dest, 4122 block); 4123 } else { 4124 ret = postcopy_place_page(mis, place_dest, 4125 place_source, block); 4126 } 4127 } 4128 } 4129 4130 return ret; 4131 } 4132 4133 static bool postcopy_is_advised(void) 4134 { 4135 PostcopyState ps = postcopy_state_get(); 4136 return ps >= POSTCOPY_INCOMING_ADVISE && ps < POSTCOPY_INCOMING_END; 4137 } 4138 4139 static bool postcopy_is_running(void) 4140 { 4141 PostcopyState ps = postcopy_state_get(); 4142 return ps >= POSTCOPY_INCOMING_LISTENING && ps < POSTCOPY_INCOMING_END; 4143 } 4144 4145 /* 4146 * Flush content of RAM cache into SVM's memory. 4147 * Only flush the pages that be dirtied by PVM or SVM or both. 4148 */ 4149 static void colo_flush_ram_cache(void) 4150 { 4151 RAMBlock *block = NULL; 4152 void *dst_host; 4153 void *src_host; 4154 unsigned long offset = 0; 4155 4156 memory_global_dirty_log_sync(); 4157 rcu_read_lock(); 4158 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 4159 migration_bitmap_sync_range(ram_state, block, 0, block->used_length); 4160 } 4161 rcu_read_unlock(); 4162 4163 trace_colo_flush_ram_cache_begin(ram_state->migration_dirty_pages); 4164 rcu_read_lock(); 4165 block = QLIST_FIRST_RCU(&ram_list.blocks); 4166 4167 while (block) { 4168 offset = migration_bitmap_find_dirty(ram_state, block, offset); 4169 4170 if (offset << TARGET_PAGE_BITS >= block->used_length) { 4171 offset = 0; 4172 block = QLIST_NEXT_RCU(block, next); 4173 } else { 4174 migration_bitmap_clear_dirty(ram_state, block, offset); 4175 dst_host = block->host + (offset << TARGET_PAGE_BITS); 4176 src_host = block->colo_cache + (offset << TARGET_PAGE_BITS); 4177 memcpy(dst_host, src_host, TARGET_PAGE_SIZE); 4178 } 4179 } 4180 4181 rcu_read_unlock(); 4182 trace_colo_flush_ram_cache_end(); 4183 } 4184 4185 static int ram_load(QEMUFile *f, void *opaque, int version_id) 4186 { 4187 int flags = 0, ret = 0, invalid_flags = 0; 4188 static uint64_t seq_iter; 4189 int len = 0; 4190 /* 4191 * If system is running in postcopy mode, page inserts to host memory must 4192 * be atomic 4193 */ 4194 bool postcopy_running = postcopy_is_running(); 4195 /* ADVISE is earlier, it shows the source has the postcopy capability on */ 4196 bool postcopy_advised = postcopy_is_advised(); 4197 4198 seq_iter++; 4199 4200 if (version_id != 4) { 4201 ret = -EINVAL; 4202 } 4203 4204 if (!migrate_use_compression()) { 4205 invalid_flags |= RAM_SAVE_FLAG_COMPRESS_PAGE; 4206 } 4207 /* This RCU critical section can be very long running. 4208 * When RCU reclaims in the code start to become numerous, 4209 * it will be necessary to reduce the granularity of this 4210 * critical section. 4211 */ 4212 rcu_read_lock(); 4213 4214 if (postcopy_running) { 4215 ret = ram_load_postcopy(f); 4216 } 4217 4218 while (!postcopy_running && !ret && !(flags & RAM_SAVE_FLAG_EOS)) { 4219 ram_addr_t addr, total_ram_bytes; 4220 void *host = NULL; 4221 uint8_t ch; 4222 4223 addr = qemu_get_be64(f); 4224 flags = addr & ~TARGET_PAGE_MASK; 4225 addr &= TARGET_PAGE_MASK; 4226 4227 if (flags & invalid_flags) { 4228 if (flags & invalid_flags & RAM_SAVE_FLAG_COMPRESS_PAGE) { 4229 error_report("Received an unexpected compressed page"); 4230 } 4231 4232 ret = -EINVAL; 4233 break; 4234 } 4235 4236 if (flags & (RAM_SAVE_FLAG_ZERO | RAM_SAVE_FLAG_PAGE | 4237 RAM_SAVE_FLAG_COMPRESS_PAGE | RAM_SAVE_FLAG_XBZRLE)) { 4238 RAMBlock *block = ram_block_from_stream(f, flags); 4239 4240 /* 4241 * After going into COLO, we should load the Page into colo_cache. 4242 */ 4243 if (migration_incoming_in_colo_state()) { 4244 host = colo_cache_from_block_offset(block, addr); 4245 } else { 4246 host = host_from_ram_block_offset(block, addr); 4247 } 4248 if (!host) { 4249 error_report("Illegal RAM offset " RAM_ADDR_FMT, addr); 4250 ret = -EINVAL; 4251 break; 4252 } 4253 4254 if (!migration_incoming_in_colo_state()) { 4255 ramblock_recv_bitmap_set(block, host); 4256 } 4257 4258 trace_ram_load_loop(block->idstr, (uint64_t)addr, flags, host); 4259 } 4260 4261 switch (flags & ~RAM_SAVE_FLAG_CONTINUE) { 4262 case RAM_SAVE_FLAG_MEM_SIZE: 4263 /* Synchronize RAM block list */ 4264 total_ram_bytes = addr; 4265 while (!ret && total_ram_bytes) { 4266 RAMBlock *block; 4267 char id[256]; 4268 ram_addr_t length; 4269 4270 len = qemu_get_byte(f); 4271 qemu_get_buffer(f, (uint8_t *)id, len); 4272 id[len] = 0; 4273 length = qemu_get_be64(f); 4274 4275 block = qemu_ram_block_by_name(id); 4276 if (block && !qemu_ram_is_migratable(block)) { 4277 error_report("block %s should not be migrated !", id); 4278 ret = -EINVAL; 4279 } else if (block) { 4280 if (length != block->used_length) { 4281 Error *local_err = NULL; 4282 4283 ret = qemu_ram_resize(block, length, 4284 &local_err); 4285 if (local_err) { 4286 error_report_err(local_err); 4287 } 4288 } 4289 /* For postcopy we need to check hugepage sizes match */ 4290 if (postcopy_advised && 4291 block->page_size != qemu_host_page_size) { 4292 uint64_t remote_page_size = qemu_get_be64(f); 4293 if (remote_page_size != block->page_size) { 4294 error_report("Mismatched RAM page size %s " 4295 "(local) %zd != %" PRId64, 4296 id, block->page_size, 4297 remote_page_size); 4298 ret = -EINVAL; 4299 } 4300 } 4301 if (migrate_ignore_shared()) { 4302 hwaddr addr = qemu_get_be64(f); 4303 bool ignored = qemu_get_byte(f); 4304 if (ignored != ramblock_is_ignored(block)) { 4305 error_report("RAM block %s should %s be migrated", 4306 id, ignored ? "" : "not"); 4307 ret = -EINVAL; 4308 } 4309 if (ramblock_is_ignored(block) && 4310 block->mr->addr != addr) { 4311 error_report("Mismatched GPAs for block %s " 4312 "%" PRId64 "!= %" PRId64, 4313 id, (uint64_t)addr, 4314 (uint64_t)block->mr->addr); 4315 ret = -EINVAL; 4316 } 4317 } 4318 ram_control_load_hook(f, RAM_CONTROL_BLOCK_REG, 4319 block->idstr); 4320 } else { 4321 error_report("Unknown ramblock \"%s\", cannot " 4322 "accept migration", id); 4323 ret = -EINVAL; 4324 } 4325 4326 total_ram_bytes -= length; 4327 } 4328 break; 4329 4330 case RAM_SAVE_FLAG_ZERO: 4331 ch = qemu_get_byte(f); 4332 ram_handle_compressed(host, ch, TARGET_PAGE_SIZE); 4333 break; 4334 4335 case RAM_SAVE_FLAG_PAGE: 4336 qemu_get_buffer(f, host, TARGET_PAGE_SIZE); 4337 break; 4338 4339 case RAM_SAVE_FLAG_COMPRESS_PAGE: 4340 len = qemu_get_be32(f); 4341 if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) { 4342 error_report("Invalid compressed data length: %d", len); 4343 ret = -EINVAL; 4344 break; 4345 } 4346 decompress_data_with_multi_threads(f, host, len); 4347 break; 4348 4349 case RAM_SAVE_FLAG_XBZRLE: 4350 if (load_xbzrle(f, addr, host) < 0) { 4351 error_report("Failed to decompress XBZRLE page at " 4352 RAM_ADDR_FMT, addr); 4353 ret = -EINVAL; 4354 break; 4355 } 4356 break; 4357 case RAM_SAVE_FLAG_EOS: 4358 /* normal exit */ 4359 multifd_recv_sync_main(); 4360 break; 4361 default: 4362 if (flags & RAM_SAVE_FLAG_HOOK) { 4363 ram_control_load_hook(f, RAM_CONTROL_HOOK, NULL); 4364 } else { 4365 error_report("Unknown combination of migration flags: %#x", 4366 flags); 4367 ret = -EINVAL; 4368 } 4369 } 4370 if (!ret) { 4371 ret = qemu_file_get_error(f); 4372 } 4373 } 4374 4375 ret |= wait_for_decompress_done(); 4376 rcu_read_unlock(); 4377 trace_ram_load_complete(ret, seq_iter); 4378 4379 if (!ret && migration_incoming_in_colo_state()) { 4380 colo_flush_ram_cache(); 4381 } 4382 return ret; 4383 } 4384 4385 static bool ram_has_postcopy(void *opaque) 4386 { 4387 RAMBlock *rb; 4388 RAMBLOCK_FOREACH_NOT_IGNORED(rb) { 4389 if (ramblock_is_pmem(rb)) { 4390 info_report("Block: %s, host: %p is a nvdimm memory, postcopy" 4391 "is not supported now!", rb->idstr, rb->host); 4392 return false; 4393 } 4394 } 4395 4396 return migrate_postcopy_ram(); 4397 } 4398 4399 /* Sync all the dirty bitmap with destination VM. */ 4400 static int ram_dirty_bitmap_sync_all(MigrationState *s, RAMState *rs) 4401 { 4402 RAMBlock *block; 4403 QEMUFile *file = s->to_dst_file; 4404 int ramblock_count = 0; 4405 4406 trace_ram_dirty_bitmap_sync_start(); 4407 4408 RAMBLOCK_FOREACH_NOT_IGNORED(block) { 4409 qemu_savevm_send_recv_bitmap(file, block->idstr); 4410 trace_ram_dirty_bitmap_request(block->idstr); 4411 ramblock_count++; 4412 } 4413 4414 trace_ram_dirty_bitmap_sync_wait(); 4415 4416 /* Wait until all the ramblocks' dirty bitmap synced */ 4417 while (ramblock_count--) { 4418 qemu_sem_wait(&s->rp_state.rp_sem); 4419 } 4420 4421 trace_ram_dirty_bitmap_sync_complete(); 4422 4423 return 0; 4424 } 4425 4426 static void ram_dirty_bitmap_reload_notify(MigrationState *s) 4427 { 4428 qemu_sem_post(&s->rp_state.rp_sem); 4429 } 4430 4431 /* 4432 * Read the received bitmap, revert it as the initial dirty bitmap. 4433 * This is only used when the postcopy migration is paused but wants 4434 * to resume from a middle point. 4435 */ 4436 int ram_dirty_bitmap_reload(MigrationState *s, RAMBlock *block) 4437 { 4438 int ret = -EINVAL; 4439 QEMUFile *file = s->rp_state.from_dst_file; 4440 unsigned long *le_bitmap, nbits = block->used_length >> TARGET_PAGE_BITS; 4441 uint64_t local_size = DIV_ROUND_UP(nbits, 8); 4442 uint64_t size, end_mark; 4443 4444 trace_ram_dirty_bitmap_reload_begin(block->idstr); 4445 4446 if (s->state != MIGRATION_STATUS_POSTCOPY_RECOVER) { 4447 error_report("%s: incorrect state %s", __func__, 4448 MigrationStatus_str(s->state)); 4449 return -EINVAL; 4450 } 4451 4452 /* 4453 * Note: see comments in ramblock_recv_bitmap_send() on why we 4454 * need the endianess convertion, and the paddings. 4455 */ 4456 local_size = ROUND_UP(local_size, 8); 4457 4458 /* Add paddings */ 4459 le_bitmap = bitmap_new(nbits + BITS_PER_LONG); 4460 4461 size = qemu_get_be64(file); 4462 4463 /* The size of the bitmap should match with our ramblock */ 4464 if (size != local_size) { 4465 error_report("%s: ramblock '%s' bitmap size mismatch " 4466 "(0x%"PRIx64" != 0x%"PRIx64")", __func__, 4467 block->idstr, size, local_size); 4468 ret = -EINVAL; 4469 goto out; 4470 } 4471 4472 size = qemu_get_buffer(file, (uint8_t *)le_bitmap, local_size); 4473 end_mark = qemu_get_be64(file); 4474 4475 ret = qemu_file_get_error(file); 4476 if (ret || size != local_size) { 4477 error_report("%s: read bitmap failed for ramblock '%s': %d" 4478 " (size 0x%"PRIx64", got: 0x%"PRIx64")", 4479 __func__, block->idstr, ret, local_size, size); 4480 ret = -EIO; 4481 goto out; 4482 } 4483 4484 if (end_mark != RAMBLOCK_RECV_BITMAP_ENDING) { 4485 error_report("%s: ramblock '%s' end mark incorrect: 0x%"PRIu64, 4486 __func__, block->idstr, end_mark); 4487 ret = -EINVAL; 4488 goto out; 4489 } 4490 4491 /* 4492 * Endianess convertion. We are during postcopy (though paused). 4493 * The dirty bitmap won't change. We can directly modify it. 4494 */ 4495 bitmap_from_le(block->bmap, le_bitmap, nbits); 4496 4497 /* 4498 * What we received is "received bitmap". Revert it as the initial 4499 * dirty bitmap for this ramblock. 4500 */ 4501 bitmap_complement(block->bmap, block->bmap, nbits); 4502 4503 trace_ram_dirty_bitmap_reload_complete(block->idstr); 4504 4505 /* 4506 * We succeeded to sync bitmap for current ramblock. If this is 4507 * the last one to sync, we need to notify the main send thread. 4508 */ 4509 ram_dirty_bitmap_reload_notify(s); 4510 4511 ret = 0; 4512 out: 4513 g_free(le_bitmap); 4514 return ret; 4515 } 4516 4517 static int ram_resume_prepare(MigrationState *s, void *opaque) 4518 { 4519 RAMState *rs = *(RAMState **)opaque; 4520 int ret; 4521 4522 ret = ram_dirty_bitmap_sync_all(s, rs); 4523 if (ret) { 4524 return ret; 4525 } 4526 4527 ram_state_resume_prepare(rs, s->to_dst_file); 4528 4529 return 0; 4530 } 4531 4532 static SaveVMHandlers savevm_ram_handlers = { 4533 .save_setup = ram_save_setup, 4534 .save_live_iterate = ram_save_iterate, 4535 .save_live_complete_postcopy = ram_save_complete, 4536 .save_live_complete_precopy = ram_save_complete, 4537 .has_postcopy = ram_has_postcopy, 4538 .save_live_pending = ram_save_pending, 4539 .load_state = ram_load, 4540 .save_cleanup = ram_save_cleanup, 4541 .load_setup = ram_load_setup, 4542 .load_cleanup = ram_load_cleanup, 4543 .resume_prepare = ram_resume_prepare, 4544 }; 4545 4546 void ram_mig_init(void) 4547 { 4548 qemu_mutex_init(&XBZRLE.lock); 4549 register_savevm_live(NULL, "ram", 0, 4, &savevm_ram_handlers, &ram_state); 4550 } 4551